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ABSTRACT

In performing material balance calculations as proposed by Van Everdingen and Hurst
(1949), and Hurst (1958), the dimensionless aquifer response to a unit pressure drop or a unit
fluid-withdrawal rate is needed. Later, Mueller (1962) used finite-difference techniques to
compute dimensionless pressure drop or cumulative influx for nonhomogeneous aquifers.

This study presents new analytical solutions for the dimensionless pressure drop or cumu-
lative influx for nonhomogeneous aquifers whose thickness, permeability-viscosity ratio, or
porosity-compressibility vary linearly with distance. These solutions apply to linear flow con-
ditions with finite aquifer size. The inner boundary condition may be either constant rate or
constant pressure. The outer boundary may be either closed, or at constant pressure.

Based on this study, a nonhomogeneous aquifer behaves as a homogeneous aquifer at
early times. At late times, pseudosteady, exponential depletion, or steady state behavior is
observed, depending on the outer boundary condition. But the dimensionless time to late time

state is dependent on the type and severity of the property variation. Limiting solutions at
early and late times are presented for each case.

Attempts to obtain analytical solutions for radial nonhomogeneous systems with proper-
ties varying linearly with radial distance were unsuccessful. However, a discussion of tech-

niques considered appears in this study. The reasons why the techniques failed may be helpful
in future attempts to solve the problem.






" 1. INTRODUCTION

Many hydrocarbon reservoirs are at least partly bounded by water-bearing rocks called -
aquifers. The aquifer size may appear infinite or finite compared to the reservoirs they adjoin.
The outer boundary of a finite aquifer may be either closed, at a constant pressure, or combina-
tions thereof. The aquifer supplies water to the adjoining reservoir in response to a reservoir
pressure decline with time because of hydrocarbon production. Past studies have concemed

linear, radial, and spherical flow in the aquifers. Several studies of water influx have been
described by Craft and Hawkins (1959).

Schilthius (1936) first proposed a steady-state water influx model. A significant advance
was made by the Van Everdingen and Hurst (1949) unsteady-state water influx model that used
the response of a dimensionless aquifer with time. They considered the aquifer to be homo-
geneous and infinite in extent. Later, Hurst (1958) presented a simplified solution of a
material balance which used the response for linear and radial homogeneous, infinite aquifers,
Miller (1962), and Nabor and Barham (1964) presented analytical solutions for linear, homo-
geneous aquifers. Chatas (1953) presented extended solutions for radial, homogeneous
aquifers. Chatas (1953), and Nabor and Barham (1964) considered both constant rate and con-
stant pressure inner boundary conditions. They also considered the outer boundary to be
infinite, closed or at constant pressure. Mueller (1962) studied the problem of the transient
response of nonhomogeneous aquifers, and presented finite-difference solutions for finite linear
and radial aquifers. He considered linear thickness, permeability or ¢c, variation with distance
from the producing boundary.

Home and Temeng (1982), and Gerard and Home (1982) considered the effects of
pinch-out boundaries on pressure transient response of a well producing from a formation of
nonconstant thickness. They developed analytical solution to the diffusivity equation in radial
coordinates by superposing line source segments in a vertical plane passing through the well.
Details of the solution technique and the results can be found in the report by Temeng (1981).
Thus, analytical solutions for the response from nonhomogeneous systems have been presented
only for limited cases so far. This report seeks to fill that gap. Analytical solutions for finite,
linear aquifers may be found for linear thickness, permeability, or ¢c, variation with distance in
Section 2, and various appendices. However, only approximate analytical solutions were found
for radial nonhomogeneous systems, and are discussed in Section 3. Section 4 presents the
results for linear aquifers. Conclusions are presented in Section 5.



2. MATHEMATICAL MODEL FOR LINEAR AQUIFERS

A partial differential equation describing the flow of a slightly compressible fluid in
porous media is: ‘ .

v (2 ,] Cpen 22
V.[u Vp]-(bc,h 3 (2.1)

In writing Eq. 2.1, we assume a horizontal formation, no gravity forces, isotropic properties, a
single fluid of small but constant compressibility, etc.

For a linear, one-dimensional medium, Eq. 2.1 can be written as:

9 |kh Op |_ 9
= [u ax] dc h <2 22)

As indicated by Mueller (1962), kh/u and ¢c.h are two groups of variables which can be
a function of the space variable. Thickness appears in both groups. So one may study cases
wherein either &/l (or k), h or ¢c, is a function of the space variable. Let us identify these as
different cases:

CASE I --- Linear thickness variation,
CASE II --- Linear permeability, or permeability-viscosity ratio variation, and
CASE III --- Linear porosity-compressibilty product variation.

As introduced by Mueller (1962), the dimensionless parameter, B, is defined to be the
ratio of the value of the variable group at the outer boundary to that at the inner boundary.
We will often refer to B as "property ratio”. For example, in the case of thickness variation:

B=— 2.3)

where h, (k) is the thickness at the outer (inner) boundary.

A schematic sketch showing linear thickness variation is presented in Fig. 2.1. For all
cases, the usual dimensionless quantities have been used, except that all the properties used in
these definitions are defined at the inner boundary. In the case of thickness variation:

m=%, (2.4)

t = kt
ouc, L2

2.5)
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Pp=

ot i - s 2.6)

for a constant-rate inner boundary condition, and

p(xvt) = Di
pp=————, 2.7
P b, - p;

for a constant-pressure inner boundary condition.

In the case of a constant-pressure inner boundary condition, the dimensionless influx rate
is: '

gp=—00EL _ - | 2.8)
kb yfp, - p)

and the dimensionless cumulative influx is:

Ip

Op= JQD dip . 2.9

2.1. AQUIFER INNER AND OUTER BOUNDARY

For all cases, aquifer boundaries are set as per Fig. 2.2. If the variable property increases
with distance (§ > 1), the inner boundary is at x5 “=" 0, and the outer boundary is at xp ~="
1. If the property decreases with distance (B < 1), the inner boundary is at xp “=" 1, and the
outer boundary is at x, “=" 0. This definition keeps the arguments of Bessel and Airy func-
tions (which are solutions of the problem) positive. Positive arguments are required for the
IMSL library that was used to compute Bessel and Airy functions. IMSL library contains the
subroutines written in FORTRAN to compute special functions, and is installed on the
Petroleum Engineering Department computer VAX 11/750.

2.2. DIMENSIONLESS PARTIAL DIFFERENTIAL EQUATIONS

Equation 2.2 can be written in dimensionless form for different cases identified earlier
using the definitions of dimensionless variables presented in Egs. 2.3 through 2.7. Dimension-
less partial differential equations for different cases are:

CASE1I:

For the case of B > 1,

Zol+axp. (2.10)
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For the case of § < 1,

h
'h_l=B+(lxD.

o is defined as;

a

B-1, for B>1
= l1-B, for B <1

Next let:

1+(B-1) *p. for B >1
2= IB+(1-B) xp, for <1

Obviously, z is dimensionless.

The dimensionless partial differential equation for case I then is:

2 |, %0 |_, %
axD axD BtD )

CASE 1I:
For the case of B > 1,

—=1+(XXD.

For B < 1,

k
;’-=[3+0LxD.

In this case, the dimensionless partial differential equation is:

9 |, %p |_9np
aXD oxp otp '

where o and z are given by Eqs. 2.12 and 2.13 respectively.

2.11)

(2.12)

(2.13)

(2.14)

@.15)

(2.16)

2.17)



CASE III:

For the case of B > 1,

oy = 1+ o xp. (2.18)
ForB<1,
oo,
o = B+oxp. | (2.19)

In this case, dimensionless partial differential equation is:

azpu 9pp
=z —=—, 2.20

where o and z are given by Eqs. 2.12 and 2.13 respectively.

2.3. DIMENSIONLESS INITIAL AND BOUNDARY CONDITIONS
Initial condition for all cases is:
pp xp0)=0. (2.21)
. The boundary conditions for § >1 follow. The constant-rate inner boundary condition is:

9rp

=-1, (2.22)
axD ID’—'O

whereas the constant-pressure inner boundary condition is:

pp O 2p)=1. (2.23)
The closed outer boundary condition is:

opp

- (Lp=0. 224

o (1,1p) 7 (2.24)

The constant-pressure outer boundary condition is:

pp (Ltp)=0. (2.25)
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Corresponding boundary conditions for B <1 follow. The constant-rate inner boundary
condition is: '

-gfc—z | = (2.26)
‘ The constant-pressure inner boundary condition is:
pp(Lpp)=1. 2.27)
The closed outer boundary condition is:
%Eg Oz =0, ‘ (2.28)
~whereas the constant-pressure outer boundary condition is:
pp Op)=0. (2.29)

Appropriate inner and outer boundary conditions are chosen from the preceding set of
conditions to evaluate constants in the solution for a particular case.

2.4 SOLUTION METHOD USING LAPLACE TRANSFORM

The Laplace transform of pp with respect to #p is defined as:

o0

Pp (xp.s) = l[pp(xp,tp) e Pt . (2.30)

The Laplace transform of boundary conditions and the appropriate partial differential
equation using the initial condition is taken. The appropriate partial differential equation is
thus transformed to the following ordinary differential equations:

d ( dpp _
CASE I: —szpp =0, 231
. ~Z dxg } SZPp - (231
r d_
CASE II: L P o8 } —spp =0, 2.32)
Xp L dXD
d?pp _
CASE III: D o szpp =0. (2.33)
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Solutions for Cases I and II may be found by comparison with the general Bessel equa-
tion (Carslaw and Jaegar, 1959).- For Case III, exact solution may be obtained by comparing
Eq. 2.33 with the standard Airy equation (Abramowitz and Stegun, 1972). These solutions
appear in Appendices A through C. Appendix D presents the solutions for homogeneous
aquifer cases using the Laplace transform. Appendix E contains late and early time limiting

“solutions for different cases. R : SR * :

For constant-pressure inner boundary cases, we are interested in dimensionless cumulative
influx behavior. Dimensionless cumulative influx in Laplace space is given as:

app

Op (xp.s) =F - . (2.34)

where the upper sign is for the case of § > 1, and the lower sign is for f < 1. The same con-
vention is followed in the appendices. Solutions were inverted from Laplace space to real
space using a numerical Laplace transform inverter (Stehfest, 1970).
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3. RADIAL’ NONHOMOGENEOUS SYSTEMS

In this section, we consider the. problem of transient response of nonhomogeneous sys-
tems with radially-varying properties. Different solution methods are then considered. Some

of the methods produced approximate solutions. leltauons and results obtamed by applying
d1fferent methods are discussed.

The general partial differential equation in radial coordinates m‘ay“be written as:

1 9 |rkh op| _ op
r E)r[ e ar]_f‘bclh ot ‘ (3f1)

In writing Eq. 3.1, we assume horizontal flow, negligible gravity effects, isotropic porous
medium, a single fluid of small compressibility, and applicability of Darcy’s law.

In Eq. 3.1, we can let k (or k/Q), h or ¢c, be linear functions of radius, r, and study the

transient response of such systems. Let us start with permeability as a linear function of
radius. This relationship can be expressed as:

k, — k
k=k,+———(° D (r—ry, (3.2)
(r e — T w)
where:
k; = Permeability at the inner boundary, and
k, = Permeability at the outer boundary.
The initial condition is:
p(r,o)=p;. (3.3

At the inner boundary, we can have one of the two conditions:

Constant rate:

21tksh _@E
=— —]r , (3.4)
7 H [ or ] =
or constant pressure:
p (rt) =p, - 3.5)

Similarly, at the outer boundary, one of the two conditions hold:
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Closed:
W a0
3 r.=0, (3.6)
Or constant pressure:
) p(revt) =Di (37)

Mixed boundary conditions are not considered here.

3.1. DIMENSIONLESS VARIABLES

For constant rate at the inner boundary, dimensionless pressure drop is defined as:

. 2mkhip; — p(r, D]

Pbp ) (3.8)
qu
and for the constant inner boundary pressure case:
pi— p(r! t)
pp=—— (3.9)
Pi—DPw
Other dimensionless variables are defined as:
rp=—, (3.10)
r, :
kgt
tp = — = 3.11)
duc,rs,
r .
p==2. (3.12)
ki

3.2. PROBLEM IN DIMENSIONLESS FORM

‘Using the preceding definitions of dimensionless variables, we can write Eq. 3.2 as:

ko By, .13
k[ TeD — 1 . :
where:
rop =% . (3.14)
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Equation 3.13 can be written as:

Rp)=—=a+brp, (3.15)
I .
where:
a=1--B=L g4 (3.16)
reD b 1
p=B=-1 (3.17)
rED - 1 B . : : L

Equation 3.1 in dimensionless form becomes:

1 4 [r apD]=aPD

3.18
rD arD arD atD ( )

The initial condition in dimensionless form is:
pp (rp, 0)=0. (3.19)

We illustrate all the solution techniques with respect to a constant-rate inner boundary
and closed outer boundary, which in dimensionless form are:

..
rp 222 ] =-1, (3.20)
arD rp=1
and:
J .
%o =0. 3.21)
arD TO=Tuh

Takmg the Laplace transform of the partial differential equatlon Eq 3.18, with respect to
tp and using the initial condition, we obtain: :

14 [,Df _pD} ~sPp=0, - (3.22)
p er er

which can be written as:

dPD .1 dop 5 _ oy
+ 4+ —|—-=pp=0, (3.23)
ard [ rD]d’D. 7 PP
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where:

f'= =4 - =b. (324)

er

Using Eqs. 3.15 and 3.24, Eq. 3.23 can be rewritten as:

2_.

-
(arp + br,%) + (a + 2er) — —rpsPp=0. ~ (3.25)
dr%) drp

Equation 3.25 is a second-order, homogeneous ordmary differential equation with variable
coefficients. Boundary conditions in Laplace space are:

rp 2D ==L O (326)
er rp=1 )
dp; _
o } =0. o @2aD
er rp= - . IR R .

33. SOLUTION TECHNIQUES

Before d1scussmg a number of solution techniques in detail, we note that Eq. 3.25 can-
not be recast 1n a form comparable to the general Bessel equation, because of the form of
coefficients of d%pp, / drk and dpy, / drp that involve sum of tenns wnh dlfferent powers of rD

3.3.1. Similarity Transformation Method

We define a similarity variable 1 as:

T]:

3 :
T (3.28)

This is sometimes known as the Botzmann transformation. A Boltzmann tranfonnanon
of this type reduces Eq. 3.18 to:

dpp |4 dpp -

which is a first-order, homogeneous- ordinary differential equation in dpp / dn. ‘But in order
for a similarity transformation method to work, it'is also necessary to be able to reduce the
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number of conditions by one. In our case, Egs. 3.19 through 3.21 transform to:

Polgse=0, (3.30)

arp ‘ . o
8 ~—— =-1, .
" ]n=1/4ru o 3D
aPD

=0. 3.32
orp ]TF’ZD’ 4ip e LN 332

It is not possible to reduce three conditions to two, because the system is finite. Thus,
the Boltzmann transformation does not help for this problem.

3.3.2. Hypergeometric Equation form

Equation 3.25 can be written as:

arp + br% dzp‘D N a+ 2brp dpp
rn dr% D er

- spp=0. 63

. Equation 3.33 has three pbles at rp = oo, 0 and — (a/b). Such an equaiion with three
poles can be transformed to a hypergeometric equation for which poles are at =, 0 and 1. The
hypergeometric equation is written as (Abramowitz and Stegun, 1972):

d*u N du Lot '
z(1 — Z)_d—; + [d —(e+g+ I)Z]Z ~egu=10. (3.34)

Equation 3.33 can be transformed by using the substitution:

£=— % - (3.35)
into the form:
dp; dp;
E1-E) dgf +(1-28) -;f—é’—-— S tm=0. (3.36)

Equation 3.36 has poles at & = e, 0, 1; and is similar to Eq. 3.34, except that the coefficient of
DPp in Eq. 3.36°is variable. Thus, the problem cannot be reduced to hypergeometric equation
form.
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3.3.3. Approximate Sol‘_uti‘on Using;_l):ependen‘t_;Yaxjiable Substitution

Consider Eq. 3.23. Substitute:

.‘;}2 ;[z_ " Lo o

’ %
PD =ve (3.37)
in Eq. 3.23 to obtain:
Rl ¥ =0, 3.38
R d,% : (FD”) v ; . ( )
where: o .
5 f:r..f .L' : 1 1 d £
= e e e e b + —— — e m—— r— . .
R [f ] 2 drp [f ' ] G

If orp) is a slowly-vaxymg functxon m a reglon and is negative, then an approximate
solution to Eq. 3.38 is:

V= (—o)” va [A exp ( j er) + B exp (- [V=ou drp)] . (3.40)

If a(rp) is a slowly- varymg functlon in a. reglon and is positive, then an approximate
solution to Eq. 3.38 is:

v= (a)““ [C cos (J Vo o drp) + D sin ( [ Vo drp)) . (341)

Behavior of o(rp) is shown for one case in Table 3.1. The function a(rp) changes sign,
and varies significantly in the domain of interest. Therefore, this approximate solution will be
of little potential use for this problem.

3.3.4. Approximate Solution Using Independent Variable Substitution

In Eq. 3.22, we use the substitution:

er rp
0= . 342
j a [a + er] (342)

This substitution results in the transformation of Eq. 3.22 to the form:

-5 fspp=0, (3.43)
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TABLE 3.1: BEHAVIOR OF o () FOR p =3,

rp | orp)

: 0233
5.085e-02
1.797e-02
6.799¢-03
1.805e-03

- -7.960e-04 |

-2.286¢-03

-3.194e-03 |

-3.771e-03

10 | -4.147e-03

15 | -4.755e-03

20 | -4.696e-03
. 25 | -4.494e-03
30 | -4.265e-03
35 | -4.040e-03 |
- 40 | -3.830e-03
45 | -3.636e-03 |

50 | -3.459e-03
55 -3.297e-03
60 -3.148¢-03
65 | -3.012¢-03
- 170 -2.887e-03
75 -2.771e-03
80 | -2.665e-03
85 -2.566e-03
90 -2.474¢-03
95 -2.388e-03
100 -2.308e-03
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which can be simplified to:

dpp &

Y (344).
Let: :
Dt non 3 | 220 ;
\ ase
a®) = - Qb (3.45)
Equation 3.44 becomes:
d
dg D =0, (3.46)

which is similar in form to Eq: 3.38. Agam, if a(e) is a slowly-varying function and is nega-
tive, then an approximate solutmn is: .

Pp = (— o) [A exp ( j de) + B exp (J-\/_ do)] . (3.47)

If o) is positive, then an approximate solution is:

Pp = ol [c cos j o d0 + D sin j ] , (3.48)

where A, B, C, and D are arbitrary cdﬁs’tﬁnts in Eqs. 3.47 and 3.48.

Writing approximate solutions in Sections 3.3.3 and 3.3.4 involve solving the correspond-
ing Ricatti equation (Watson, 1944), associated with normal equation such as Eq. 3.38 or 3.46
approximately. Behavior of a (8) is shown for one case in Table 3.2. Though o(6) is always
negative in the domain of interest, it varies considerably and thus the assumption of a slowly-
varying function is violated. Therefore, we can not use the solution as presented in Eq. 3.47.

3.3.5. Frobenius Method (Series Solution Technique)

Consider Eq. 3.25. The point rp = 0 is a regular singular point for this equation, and so
we use the Frobenius method to solve the problem.

The Frobenius method was first used to solve the problem in the domain (1,r.p). The
solution involved infinite series with terms like rp" ~ ! which grew very large as n became
large, even for r,p as small as 20. So the domain of the problem was changed to (r,p, 1) by
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TABLE 3.2: BEHAVIOR OF « (6) FOR B =3,
T'ep =lm, AND Ip= 100

I} -6.932e-03
2 -2.829¢-02 |
e -6.490e-02 |
4 ous |
5 -0.187
6 -0.275
7 -0.381
8 -0.506
gl 0652
10 { -0.819
15 | -2.001
20 | 3837
25 | -6433
30 -9.893
35 - -14.323
40 - -19.828
45 -26.513
50 =34.482
55 -43.842
60 | -54.696
65 -67.150
10 -81.309
s 1 97277
80 | -115.161
85 -135.064
90: | -157.093
95 | “-181.351
S 100 ] -207.945
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the following change of definitions of dimensionless variables and other parameters:

==L '
D= (3.49)
t bt (3.50)
D = ’ .
. ¢l~lcxrg2
erf 7, ) B . | (3.51)
k
frp) = - =aet brp , (3.15)
(B - l) rwp
=1 3.52
(1 - 'th) ) ( )
p=bB-1 (3.53)
e l -— er R : :

This change of scale was designated to resolve numerical problems in computation.
Using these definitions, we again obtain Eq. 3.25. But inner and outer boundary conditions
become:

| rD-(—fE- ] =1 (3.54)
rD D=y S ! 5
and:
u
> D] =0. (3.55)
er rp=1 . ‘

A complete development of the Frobenius method is now illustrated for the precedmg
problem. Assume the first independent solution to be:

Za A  (3.56)

where u is an undetermined parameter. The two values u can assume are the same, and
equal to zero. This can be shown by some algebralc manipulations omitted here. Thus, the
first mdependent solution has the form:

¥ =Fa . | G5
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and it can be shown that:
a=1,
a=0,

Gp = A= rp)s g =B - D 1 (1~ Dayy , for n22. (3.58)
(1 - B rup)n® |

Since both values of u are equal to zero, the second linearly 1ndependent solution is of
the following form (Boyce and DiPrima, 1977):

Y,=Y1In@p)+ X b, 1H
: n=1

=InGp)+ 3 [a,1n (rp) + b,1r) . (3.59)

n=1

where b, are undetermined coefficients. Determination of b, leads to:

b=0
by = _]3—_1_
o 1-Br,,
b = s(1 = r,p) 'vn?'ibn—Z - 2na, ,
T A=-Br.p n*
-1 |n@yy + (-1 b, ) —n-1a,
1(ﬁ[3r1) [( 1.2 ) Be) l]fornZZ (3.60)
- wD n
A general solution to the problem then is:
bb=Cih+G Y, (3.61)

where C; and C, are arbitrary constants that are determined by using the boundary conditions
(Egs. 3.53 and 3.54). :

This solution did not pose a computational convergence problem for the homogeneous
system with B = 1. Spot checks indicated that the solution reproduced the pressure transient
response of a homogeneous reservoir case reported in the literature (Aziz and Flock, 1963).
Solution for homogeneous reservoir (B = 1) case usmg numerical inversion of pp given by Eq.
3.61 is presented in Fig. 3.1.
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The pressure transient response for B =0.5 was studied, but convergence was not
obtained at early times for several values of r,;. Coefficients Coefficients a, and b, are shown
in Fig. 3.2 for a typical case. The coefficients a, and b, in this case go to zero asymptotically,
which explains convergence for the problem. For other values of B, behavior of a, and b, for
- large n precluded convergence. The coefficients a, and b, are tabulated in Table 3 3 for one

case which is-typical behavior. Such oscﬂlatory behav1or of a, and b, is the reason for lack of
convergence in.most cases. ,

TABLE 3.3 a, AND b, FORB—B r,D_loo AND

tp =:100
n Gy b,
0 1 | o
1 0 - 2.1
2 17.7 - ~15.6
3 -24.3 1.1
4 115.8 -106.5
5 -259.8 | 196.9
6 673.9 -608.5 -
7 -1566.1 1438.5
8§ | 35704 -3403.6
9 79114 7707.4
10 | 17206.8 | -17052.2

3.3.6.‘ Treatment as a Sturm-Liouville Problem

, The original problem can be recast in the form of a Sturm-Liouville differential equation,
if we assume the solution to be of the form:

porp, tp) = pp, (rp) + pp, K(rp» tp) » (3.62)

- where pp (rp) is the solution to time-independent problem, and pp x(rp, ¢p) represents the
transient contribution to pressure drop.

Pp(rp) may be obtained by solving:

1 d dPD e
_— - =e, 3.63
n er [rD f er ] ¢ ( )

where e is a constant. If the boundary conditions are such that the system approaches steady
state behavior at late time, the constant e is taken to be zero. This applies to constant-
pressure outer boundary situations. If the outer boundary is closed, the system behavior will
approach pseudo-steady state at late time, and the constant e represents the slope of dimen-
sionles pressure drop vs. dimensionless time at long time.

Solutions of the time-independent problem with appropriate boundary conditions makes
boundary conditions to the transient problem homogeneous. Initial condition to the transient
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problem will be inhomogeneous. The typical transient problem obtained will resemble:

1 4 9Pph _ OPp
D arD [er arD ] - BtD ‘ (318)
The initial condition is;
Ppy (rp, 0) = —pp (rp) . (3.64)

Inner and outer boundary conditions will be homogeneous, e.g., constant rate inner boundary
condition is: '

9

D ] -0, (3.65)
or, D Jrp=1
and the closed outer boundary condition is:

F:)
PD ] =0. (3.66)
orp e

Since boundary conditions are homogeneous, separation of variables can be employed to
solve the transient problem. If we assume pp, to be of the form:

Pos (s 1) = (rp) (i) » | 3.67)

- then Eq. 3.18 can be transformed to the form:

do _ 1 _d P, _di]=_x, (3.68)

1
a dtD - érD er b er

where A is a separation constant.
It is obvious that:©

G=Ae™ ‘ (3.69)

where A is an arbitrary constant. The term ¢ may be obtained by solving the following
Sturm-Liouville ordinary differential equation: T

~

_d_ P,D _49;] +hrp d=0. (3.70)

er er
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The initial condition, Eq. 3.64, determines the constant A in Eq. 3.69. But attempts to
obtain an analytical solution to Eq. 3.70 did not succeed. It seems to proceed with a numerical
solution to Eq. 3.70, because the primary intention was to solve the problem analytically.
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4. RESULTS AND DISCUSSION

Some of the response functions obtained analytically in this work for linear system were
first generated by Mueller (1962) numerically. For all cases, capable of solution our results
compare very well with his results. Our results are compared with Mueller’s solution (1962)
for one case in Table 4.1. Homogeneous case results were obtained previously by Miller
(1962), Nabor and Barham (1964), and Mueller (1962).

TABLE 4.1 COMPARISON OF DIMENSIONLESS PRESSURE-DROP FOR
LINEAR FINITE SYSTEM, CLOSED OUTER BOUNDARY
AND CONSTANT RATE INNER BOUNDARY ( p=4)

Dimensionless | Mueller’s solution | This study

Time

0.001 0.035 0.0343
0.005 0.073 0.0731
0.01 0.1 0.1
0.05 0.198 0.1972
0.1 0.258 0.2573
0.5 0.465 0.4642
1 0.66 10.6648
5 23 2.2650

10 42 4.2653

Note: * -- Read off Fig. 9 of Mueller (1962)

4.1. THICKNESS VARIATION

Figures 4.1 through 4.4 present the solutions for various inner and outer boundary condi-
tions where thickness varies linearly with distance. At early times, all results cluster in all
cases, except for B = 10 and 100. Actually, results for § = 10 and 100 also approach the B =1
case at dimensionless times lower than shown on the figures. At late times, flow goes to pseu-
dosteady or steady state. The dimensionless time to pseudosteady or steady state is dependent
on the "property ratio”. The approximate time to pseudosteady or steady state is shown on all
figures. The approximate time to pseudosteady or steady state is the time by which the dimen-
sionless pressure drop or cumulative influx is within 2% of those given by corresponding late
“time solution. When pseudosteady or steady state is attained, all curves become paralle] to the
curve for a homogeneous aquifer case (B = 1) on a log-log graph. Results from the Stehfest
inversion algorithm for = 4 appear in Table 4.2.

4.2. PERMEABILITY VARIATION

Figures 4.5 through 4.8 present solutions for the cases where permeability varies linearly
with distance. Again at early times, all curves (except for B =10 and 100) are clustered
together. In the closed outer boundary cases, all curves merge with the homogeneous aquifer
case solution at late times (See Figs. 4.5 and 4.7) on log-log graphs. But in the constant pres-
sure outer boundary cases, all curves become parallel to the homogeneous aquifer case, on a
log-log graph (See Figs. 4.6 and 4.8).



TABLE 4.2: DIMENSIONLESS PRESSURE DROP OR

..2']..

CUMULATIVE INFLUX FOR A LINEAR, FINITE AQUIFER
(LINEAR THICKNESS VARIATION, B = 4)

Inner Constant Constant Constant Constant

Dimensionless boundary rate rate pressure pressure
time Outer Closed Constant Closed Constant
boundary pressure pressure

0.001 0.03426 0.03426 0.03716 0.03716
0.003 0.05768 0.05768 0.06618 0.06618
0.005 0.07308 0.07308 0.08703 0.08703
0.007 0.08519 0.08519 0.10448 0.10448
0.01 0.09997 0.09997 0.12713 0.12713
0.03 0.16035 0.16035 0.23710 0.23709
0.05 0.19725 0.19725 0.32055 0.32053
0.07 0.22494 0.22488 -.°0.39278 0.39285
0.1 0.25731 0.25717 0.48930 0.48959
0.3 0.37938 0.37313 0.98808 0.99888
0.5 0.46420 042177 1.35694 1.44359
0.7 0.54480 0.44352 1.63563 1.87851
1. 0.66481 0.45632 1.93038 2.52812
3. 1.46482 0.46226 2.46254 6.85664
5. 2.26496 0.46208 2.50036 11.18540
7. 3.06508 0.46206 2.50204 15.51416
10. 426527 0.46208 2.50063 22.00729
30. 12.26650 046210 2.49984 65.29482
50. 20.26774 0.46210 2.49995 108.58233
70. 28.26897 0.46210 2.49999 151.86985
100. 40.27082 046210 2.49999 216.80113
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As also observed by Mueller (1962), at intermediate times, results for § < 1 are closer to
the homogeneous aquifer case than are results for § > 1, for the same proportion of increase or
decrease in permeability (See Figs. 4.5 through 4.8). This observation is also true for the cases

of thickness or porosity-compressibility variation. Results from the Stehfest inversion algo-
rithm for B =4 are presented in Table 4.3.

43. POROSITY-COMPRESSIBILITY VARIATION

Referring to Figs. 4.9 through 4.12, behavior approaches pseudosteady or steady state at
different dimensionless times depending on "property ratio”. For closed outer boundary cases,
the response functions become parallel to the homogeneous aquifer case on a log-log graph,
and for the constant pressure outer boundary cases, response functions merge with the homo-
geneous aquifer case. This is opposite the observation in the case of permeability variation.
These observations resulted because ¢c, appears only in the accumulation term, and permeabil-

ity appears only in the diffusive term of the problem. Results from Stehfest algorithm for
B = 4 are presented in Table 4.4.

4.4.- EARLY AND LATE TIME BEHAVIOR

Appendix C presents early and late time solutions for the cases considered in this study.
Equation C-13 (early time solution for all cases) indicates that a nonhomogeneous aquifer
behaves as an equivalent homogeneous aquifer at early times. Differences between homogene-
ous and nonhomogeneous aquifer cases appear when late time solutions are inspected.

In most cases, if other relevant information is available, a Cartesian graph of pressure
drop or cumulative influx vs. time can help determine the value of B} except for linear ¢c, vari-
ation (constant-rate inner and constant-pressure outer boundary) and linear permeability varia-
tion (constant-pressure inner and closed outer boundary). In these graphs, either slope, inter-
cept, or both, contains only unknown P. Thus, the value of B can be obtained using either
slope, intercept or both. This assumes the following three conditions to hold:

1. Property variation of only one class is involved and we know which class it is.
2. Property variation can be reasonably approximated as linear with distance.
3. Knowledge about inner and outer boundary conditions is available.

4.5. DISCUSSION

In all cases with constant rate at the inner boundary, dimensionless pressure drop func-
tions for B < 1 remain above those for § > 1. That is, we incur more pressure drop for the
same cumulative influx when permeability, thickness or ¢c, decreases away from the aquifer
inner boundary. In all cases with constant pressure at the inner boundary, dimensionless

- cumulative influx functions for B < 1 remain below those for § > 1. That is, for the same
pressure drop, cumulative influx is greater if permeability, thickness or ¢c, increases away from
the aquifer inner boundary. A summary of intermediate and late time behavior for different
cases appears in Tables 4.5 through 4.7.

Mixed inner and outer boundary conditions were not considered herein. It is not difficult
to develop solutions for such cases following the development in this study, if necessary. Also
we have restricted consideration to linear variation of the property. Solutions may also be
obtained analytically for other types of variation functions, e.g, power law variation (Carslaw
and Jaegar, 1959). '
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CUMULATIVE INFLUX FOR A LINEAR, FINITE AQUIFER

(LINEAR PERMEABILITY VARIATION, B = 4)

v Inner Constant Constant Constant Constant
Dimensionless boundary rate rate pressure pressure
time Outer Closed Constant Closed Constant

‘ boundary pressure pressure
0.001 0.03495 0.03495 0.03643 0.03643
0.003 0.05965 0.05965 0.06402 0.06402
0.005 0.07625 0.07625 0.08347 0.08347
0.007 10.08950 0.08950 0.09954 0.09954
0.01 0.10592 0.10592 0.12015 0.12015
0.03 0.17578 0.17574 0.21698 0.21702
6.05 0.22073 0.22058 0.28774 0.28796
0.07 0.25549 0.25536 0.34772 0.34800
0.1 0.29777 0.29681 0.42590 0.42723
0.3 0.51045 0.42280 0.75110 0.87571
0.5 0.71055 0.45241 0.89052 1.30874
0.7 0.91051 0.45995 0.95111 1.74153

1. 1.21054 0.46224 0.98561 2.39081
3. 3.21086 0.46206 1.00040 6.71958
5. 5.21117 0.46207 0.99992 11.04833
7. 7.21148 0.46208 0.99990 15.37708
10. 10.21194 0.46209 0.99994 21.87021
30. 30.21502 0.46210 1.00000 65.15773
50. 50.21810 0.46210 1.00000 108.44525
70. 70.22118 0.46210 1.00000 151.73277
100. 100.22580 0.46210 1.00000 216.66405
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 TABLE 4.4: DIMENSIONLESS PRESSURE DROP OR
CUMULATIVE INFLUX FOR A LINEAR, FINITE AQUIFER
(LINEAR POROSITY-COMPRESSIBILITY VARIATION, B = 4)

Inner Constant Constant Constant Constant

Dimensionless boundary rate rate pressure pressure
time Outer Closed Constant Closed Constant
boundary pressure ‘ pressure

0.003 0.05962 | 0.05962 0.06406 0.06406
0.005 - 0.07618 0.07618 0.08354 0.08354
0.007 - 0.08940 0.08940 0.09966 0.09966
0.01 0.10650 0.10650 0.11951 0.11951
0.03 0.17818 0.17818 0.21417 0.21417
. 0.05 0.22520 0.22520 0.28231 - 0.28231
0.07 0.26222 0.26223 0.33932 0.33931
0.1 0.30756 0.30757 041311 041308
-0.3 0.49640 0.49609 0.76637 0.76698
0.5 0.61628 0.61508 1.02782 1.02984
0.7 0.71282 0.70345 1.24507 1.25826
1. 0.84190 0.79852 1.51109 1.57536
3. 1.64561 0.98358 2.29229 3.58401
5. 2.44561 0.99951 2.45521 5.58408
7. 3.24574 1.00069 249226 7.58437
10. 4.44593 1.00030 2.50176 10.58484
30. 12.44718 0.99994 2.49974 30.58796
50. 20.44842 0.99998 2.49983 50.59104
70. 28.44965 0.99999 2.49992 70.59412
100. 40.45150 0.99999 2.49997 100.59861
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TABLE 4.5: INTERMEDIATE AND LATE TIME BEHAVIOR
‘ FOR LINEAR THICKNESSVARIATION '

Inner Outer Intermediate time Late time
boundary boundary behavior behavior
Constant Closed BT, ppl BT g4

rate Bl ppT
Constant Constant BT, ppd BT, ¢, 4

rate pressure Bl pp T Bl T
Constant Closed BT,op T BT tuepterion T
pressure k B J" QD ‘J’ B ’ tdeplen'on ‘L
Constant Constant BT,0p T BT, el
pressure pressure Bl,opl Bl e, T

TABLE 4.6: INTERMEDIATE AND

FOR LINEAR PERMEABIL

LATE TIME BEHAVIOR
ITY VARIATION '

Inner Outer Intermediate time Late time
boundary boundary behavior behavior
Constant Closed BT,ppd Mergerto B = 1

rate Bl,ppT on log-log graph
Constant Constant BT,ppd BT, ¢, l

rate pressure Bl,pp T Bl, e, T
Constant Closed BT,op T BT, by d
pressure Bl,op! Bd, Lss T

Op=1
Constant Constant BT,0p T BT, el
pressure pressure Bl,op! Bl . T
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TABLE 4.7: INTERMEDIATE AND LATE TIME BEHAVIOR
FOR LINEAR POROSITY-COMPRESSIBILITY VARIATION

Inner

Outer

Intermédiaté time

* Late time

boundary boundary behavior behavior
Constant. Closed BT.ppd BN T
rate Bl.pp T Bt d
Constant Constant BT.ppi )
rate pressure Bl,pp T Bl 1, d
pp=1
Constant Closed BT.op T BTt T
pressure pl.opd Bty d
Constant | Constant BT,op T Mergerto B = 1
pressure pressure B !, Op l on log-log graph
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5. CONCLUSIONS

Transient response problems for finite linear aquifers with linearly varying properues
have been solved analytically for a variety of boundary conditions.

At early times, nonhomogeneous aquifers behave as equivalent homogeneous aquifers.
After boundary effects have been felt at the reservoir-aquifer plane, there is a significant
transition period before behavior goes to pseudosteady or steady state. During this transi-
tion period, response functions differ from the homogeneous aquifer solution. The varia-
tion of the response functions depends upon the value of P and type of property variation.
Once the aquifer is in pseudosteady or steady state, response functions either merge with
or stay parallel to homogeneous aquifer solutions on a log-log graph. :‘Thus nonhomo-

geneous aquifers do not always necessarily behave as a homogeneous aquer with
equivalent properties.

Aquifers attain pseudosteady or steady state at different dimensionless times depending
on the type and severity of variation.

For constant-rate cases at the inner boundary, the dimensionless pressure drop functions
for f < 1 stay above those for B > 1; and for constant-pressure cases at the inner boun-

dary, the dimensionless cumulative influx functions for § < 1 stay below those those for
B>1.

In most cases, if other relevant information is available, a Cartesian graph of pressure
drop or cumulative influx vs. time can help determine the value of B except for linear ¢c,
variation (constant-rate inner boundary and constant-pressure outer boundary) and linear
permeability variation (constant-pressure inner and closed outer boundary).
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6. NOMENCLATURE

Constants.

Airy functions :

Parameter defined by Eq. 3. 16

Coefficients defined by Eq. 3.58 forn = 0
‘Width of the system, and parameter defined by Eq. 3.17
Coefficients defined by Eq. 3.60 forn =0
Arbitrary Constants

Total system compressibility

Parameters in Eq. 3.34

Constant in Eq. 3.63

Function defined by Eq. 3.15

Thickness

Thickness at inner boundary

Thickness at outer boundary

Modified Bessel function of order zero
Modified Bessel function of order one
Absolute permeability

Permeability at inner boundary

System length

Pressure

Dimensionless pressure

Solution to time-independent problem
Transient contribution to pressure drop
Dimensionless pressure drop in Laplace space
Initial pressure

Constant flowing pressure

Dimensionless cumulative influx
Dimensionless cumulative influx in Laplace space
Influx rate

Dimensionless influx rate

Radial distance

Dimensionless radius

Outer boundary radius

Dimensionless outer radius

Inner boundary radius

Dimensionless inner boundary radius

Laplace variable with respect to time

Time

Dimensionless time

Distance

Dimensionless distance

Dependent varible in Eq. 3.34, and parameter in Eq. 3.56
Dependent variable in Eq. 3.38

Independent solutions given by Eqs. 3.57 and 3.59 respectively

Parameter as defined by Eq. 2.13, and independent variable in Eq. 3.34
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Greek symbols

o Parameter as defined by Eq. 2.12

o Function defined by Eq. 3.39 or 3.45
G Function of ¢ in Eq. 3.67 ' ‘
B Ratio of property at outer to inner boundaxy
3 Parameter as defined by Eq C-5

Y Euler’s constant

T Parameter as defined by Eq C-6

\% Differential operator

d Partial derivative

¥ Parameter as defined by Eq. C-1.

) Porosity

0] Function of rp in Eq. 3. 67

R . Viscosity.

n Similarity variable

A Separation constant in Eq. 3.68

0 Variable defined by Eq. 3.42

& Variable defined by Eq. 3.35
Subscripts

D Dimensionless

i Initial

I Inner

o Outer

t Total
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11.
12.
13,

14.

15.
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APPENDIX A -- LINEAR SYSTEM SOLUTIONS (THICKNESS VARIATION)

The following presents analytical solutions for the cases conéidered in this study.

Constant-Rate Inner and Closed Outer Boundary

5 Vs V5 V5
o5 (28] [50] s [
Pplxp, 5) = (A-1)
o 5 (8] o] s 2]
o o o o
Constant-Rate Inner and Constant-Pressure Outer Boundary
gl [
o P52 ) ] [
Ppxp, 8) = (A-2)
5 (2o [ 2]
o o o o
Constant-Pressure Inner and Closed Outer Boundary
5 V5 V5 V5
g o (42 [S2]n [5
Op(xp 5) = s (A-3)
{, [iﬁ_ K, [i ol _q K, __aﬂ
o o o o
Constant-Pressure Inner and Outer Boundary
5 J5 V5
sl esblcd
Op(xp, ) = (A-4)
e ) (8] - [ (2]
o o o o
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APPENDIX B -- LINEAR SYSTEM SOLUTIONS (PERMEABILITY VARIATION)

The following presents analytical solutions for the cases considered in this study.

Constant-Rate Inner and Closed Outer Boundary

I [2‘1 E} Ky 2\/sz] + 1, [2 Vsﬁ] K [2 Vs@]A

Pplap. §) = * = x (B-1)
l [ ] [ ]w’[zs]K’[zs]J
[94 . O o ]

Constant-Rate Inner and Constant-Pressure Outer Boundary

[ 2] -0 2] 22

; B2
SN REmTRs

Pplxp, 5) =

o

Constant-Pressure Inner and Closed Outer Boundary

o8] e o

— o o
Oplxp, 5) = (B-3)
o VAL P ) B AT AR A AT
1 o 0 o 0 o 1 o

Constant-Pressure Inner and Outer Boundary

o e [ 3]

o o

Op(xp, 5) = (B-4)
e A e ]
o o o o

These solutions also apply in cases of linearly varying permeability-viscosity ratio or reciprocal
viscosity. '
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APPENDIX C -- LINEAR SYSTEM SOLUTIONS (¢c, VARIATION)

Equation 2.33 can be transformed into standard Airy equation form by substituting:

73
N .
¥Y=|— . ‘ ; C-
- [ ol AT (C-1)
which then becomes:
> _\pr=Q, ‘ (C-2)
whose solution is: ~
Pp=A AiY)+B Bi(¥), (C-3)

where A and B ‘are constants determméd by boundary conditions. Airy functions can be
represented in terms of fractional Bessel functions (Abramow1tz and Stegun 1972). Solutions
for different cases follow:

Constant-Rate Inner and Closed Outer Boundary

Ai'(e)Bi(Y) — Ai(¥)Bi'(e)

Pplxp, 8) = C-4)
s(so)*? [: A{(©)BI'(T) + ATBI'(E) ]
where: | | : : i
N L[—‘g]z/s ; )
B e
and Ai and Bi' refer to’derivatives of Airy functions \&ith respect to z.
Constanf—Rate Inner and Constant-Pressure‘ Outer Boundary
Polip, §) = Ai(e)Bi(¥) — Ai(¥)Bi(g) (C-7)

s(so)3 [ F Ai(e)Bi'(I) Ai’(T')Bi(a)]
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Constant-Pressure Inner and Closed Outer Boundary-

(50" [4= Al(e)BI'(¥) + Af(\P)_Bi',(s)]

Op(xp.s) =

s |A'(©BIT) - BY(©AIT) J
Constant-Pressure Inner and Outer Boundary N

(so)l3 [# A©)BI (%) + Ai’(‘i‘)Bi(é)]

Op(xp, 5) =

52 [Ai(e)Bi(l") - Bi(e)Ai(I‘)J

(€-8)

U (C9)
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APPENDIX D -- LINEAR HOMOGENEOUS SYSTEM SOLUTIONS -

In the case of a line_ar homogeneous system (B = 1), the partial differential equation is:

32171)‘ dpp
—_— 12 D-1
oxd \A otp R | (-1

Solutions for different cases can be obtained via Laplace transform and are presented in the
following. S R

Constant-Rate Inner and Closed Outer Boundary

Vs(1 - xp) + e—\/;(l - xp)

Ppxp, §) = (D-2)
s3/2 (e‘J; —e S)
Constant-Rate Inner and Constant-Pressure Outer Boundary
e\/;(l -xp) e-\E(l - xp)
Pp(xp, §) = (D-3)
2 + e
Constant-Pressure Inner and Closed Outer Boundary
. Vs(l - xp) e—‘/§(1 - xp)
Op(xp, 5) = (D-4)
% AN 5
Constant-Pressure Inner and Outer Boundary
. Vs(1 - xp) + e-\l?(l - xp)
Qp(xp, 5) = D-5)

372 (e\[; — %

The preceding solutions were evaluated at xp = 0, corresponding to the reservoir-aquifer
plane. Equations D-2 and D-5 will produce the same solution. The same remark is true for
Egs. D-3 and D-4.
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APPENDIX E -- EARLY AND LATE TIME APPROXIMATE SOLUTIONS FOR
LINEAR SYSTEMS

The following presents early and late time solutions for the cases considered in this
study. s .

Early Time Solutions

- Early time solutions were obtained by using the approximations for Bessel and -Airy func-
tions as s—eo (Abramowitz and Stegun, 1972). Solutions were then inverted analyuea]ly Ear-
ly time solutions for all cases are:

T tD o TR St s
poor @) =2 2 E1)

Late Time Solutions

Late time solutions in Laplace space were derived using the approximations for Bessel
and Airy functions as s—0(Abramowitz and Stegun, 1972). These solutions were then invert-
ed analytically. Late time solutions are listed in the following.

Linear Thickness Variation

Late time solutions for different boundary conditions for the case of linear thickness vari-
ation follow:

Constant-Rate Inner and Closed Outer Boundary

R S R L
Pp= B+ [21‘1‘) [B—l] [0.5 ln(oc)]] (E-2)

Constant-Rate Inner and Constant-Pressure Outer Boundary

-

C(E-3)

Constant-Pressure Inner and Closed Outer Boundary

0p=8L B4y
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Constant-Pressure Inner and Outer Boundary

Op = o - (—1+2 1n(20c/B)-—2'y]

x < -
n @) “da ) )

where v is Euler’s constant, equal to 0.577216.

Linear Permeability Variation

. 'When permeability or mobility varies linearly with distance, late time solutions are given
by the following: PO e TR e i . -

Constant-Rate Inner and Closed O'uvte.r‘ Boundary

Pp=tp+ -ﬁi [1+21n(a)—2y] | (E-6)
o

Constant-Rate Inner and Constant-Pressure Outer Boundary

=t e

Constant-Pressure Inner and Closed Outer Boundary

0p=1 | @9

Constant-Pressure Inner and Outer Boundary

[1—2 m(V[S—/a) —27]
o In(B)

o

In(B)

Op=+ tip+ (E-9)

_Linear Porosity-compressibility Product Variation
Late time solutions for the case of ¢c, variation are presented in the following;

Constant-Rate Inner and Closed Outer BOUndary o

‘. ‘M\' N 2
Pp= L [ZtD - %] (E-10)

o
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Constant-Rate Inner and Constant-Pressure Outer Boundary

pp=1 (E-113

Constant-Pressure Inner and Closed Outer Boundary

QD = .E_'_"_l (E-12)

Constant-Pressure Inner and Outer Boundary

Op=1tp- =B E-13)
2o
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APPENDIX F
Program No. 1 --- Linear system with linear thickness variation
Program No. 2 --- Linear system with linear permeability variation
Program No. 3 --- Linear system with linear porosity-compressibility variation
Program No. 4 --- Radial system with permeability variation linear with r
Program No. 5 --- Stehfest algorithm used with Program No. 1, 2, and 3
Program No. 6 --- Stehfest algorithm used with Program No. 4
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PROGRAM # 1
Name : Anil Kumar Ambastha
Date : May 30, 1985

Purpose of this program is to generate
pressure transient response at the inner
boundary. in non-homogeneous linear system.
This program handles cases for beta
greater and less than 1 and deals
with linear variation of thickness
in a linear system. It can handle
IBC of const rate or const pre. and
OBC of closed or const. pre.

% % o % O H % % % % %k % * %

H % Ok ok % % ok O ¥ % R N * *

***************************************************

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION TD(20)

COMMON BETA,M, ICODE, JCODE

OPEN (UNIT=7,FILE="output")

PRINT *,’/READ THE VALUE OF BETA '
READ (5, *} BETA |

PRINT *,’# OF CYCLES OF DATA REQUIRED’
READ (5, *)NC

PRINT *,’GIVE FIRST VALUE OF TD'
READ(S,*)TDl

PRINT *,’NUMBER OF TERMS TO BE USED IN STEHFEST'
READ (5, *)NTERM

READ CODES FOR BOUNDARY CONDITIONS

PRINT *,’SUPPLY INNER BOUNDARY CONDITION CODE’
PRINT *,?1 —--— CONSTANT RATE’

PRINT *,’2 ---- CONSTANT PRESSURE’
READ (5, *) ICODE

PRINT *,’SUPPLY OUTER BOUNDARY CONDITION CODE’
PRINT *,’1 ---- CLOSED'
PRINT *,’2 ---- CONSTANT PRESSURE/

READ (5, *) JCODE

M=777
GENERATE THE FIRST SET OF TD VECTOR

TD (1)=TD1
TD(2)=1.5*TD1
TD (3)=2.*TD1
TD (4) =2 .5*TD1
TD (5)=3.*ID1
TD (6)=3.5*TD1
TD(7)=4.*TD1
TD(8)=4.5*TD1
TD(9)=5.*TD1
TD(10)=6.*TD1
TD(11)=7.*TD1
TD (12)=8.*TD1
TD (13)=9.*TD1

WRITE THE NUMBER OF DATA POINTS GENERATED
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WRITE (7, *) 13*NC
C GENERATE AND PRINT THE PRESSURE TRANSIENT RESPONSE

DO 1 I=1,NC

po 2 J=1,13

SPC=TD (J)

PD=PWD (SPC, NTERM)
WRITE (7, 9) TD (J) ,PD

2 TD (J) =10 .*TD (J)

1 CONTINUE

9 FORMAT (2X,F15.5,2X,F15. 7)
STOP
END

*******************************************************************

FUNCTION PWDL(S)

IMPLICIT REAL*8 ‘(A-H,0-2)

DOUBLE PRECISION MMBSIO, MMBSIl MMBSKO MMBSKl
COMMON BETA,M, ICODE JCODE

IF(BETA.GT.I.)ALPHA=BETA—1.
IF (BETA.LT.1.)ALPHA=1.-BETA
ARG1=BETA*DSQRT (S) /ALPHA
ARG2=DSQRT (S) /ALPHA

X1=DSQRT (S)
X2=8*%*1.5

c EVALUATION OF CONSTANTS ’A’ AND ‘B’
F=DEXP (-2.* (ARG1-ARG2))

IF (JCODE.EQ.1) THEN
C1=X1*MMBSI1 (2,ARG1, IER)
C2=-X1*MMBSK1 (2, ARG1, IER)

ENDIF ‘

IF (JCODE.EQ.2) THEN
C1=MMBSI0 (2, ARG1, IER)
C2=MMBSKO (2, ARG1, IER)

ENDIF
Cc CALCULATION OF C3 AND C4 FOR ICODE = 1
* APPLIES TO BETA > 1.

IF (ICODE.EQ.1) THEN
C3=-X2*MMBSI1 (2, ARG2, IER)
C4=X2*MMBSK1 (2, ARG2, IER)

ENDIF

* APPLIES TO BETA < 1.

IF(ICODE.EQ.1.AND.BETA.LT.1.)THEN

c3=-C3
C4=-C4
ENDIF
Cc CALCULAION OF C3 AND C4 FOR ICODE = 2

IF (ICODE.EQ.2) THEN
C3=S*MMBSIO (2, ARG2, IER)
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C4=S*MMBSKO (2, ARG2, IER)
ENDIF

CALCULATION OF Al AND A2 FOR ICODE = 1

IF (ICODE.EQ.1) THEN
Al1=MMBSIO (2, ARG2, IER)
A2=MMBSKO (2, ARG2, IER)
ENDIF

CALCULATION OF Al AND A2 FOR ICODE = 2
IF (ICODE.EQ.2) THEN
Al=-MMBSI1(2,ARG2, IER)/Xl
A2=MMBSK1 (2, ARG2, IER) /X1
ENDIF

IF(ICODE.EQ.Z.AND.BETA.LT.l})THEN

Al=-Al
AZ2=-A2
ENDIF

CALCULATION OF THE TRANSFORMED SOLUTION

FOR BETA > 1., IT IS AT XD =
FOR BETA < 1., IT IS AT XD =

| i
o

F1=C4-C2*C3*F/C1
F2=-C2*A1*F/Cl/F1
F3=A2/F1

PWDL REPRESENTS LAPLACE TRANSFORM OF PWD FOR ICODE = 1
PWDL REPRESENTS LAPLACE TRANSFORM OF QD FOR ICODE = 2

PWDL=F2+4F3
RETURN
END

AhhhkhkhkAkhkhkhkAhkAAA A ARk A ATk A AR ARA AR KRRk Ak hkhkkhkkhhkhhkhkhkhkkhkhhkhhhkhkhhrhhkddi
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* **************************************************3\;;
* * PROGRAM No. 2 *
* e eem—————————— *
* * Name : Anil Kumar Ambastha *
* * Date : May 30, 1985 *
* * *
* * Purpose of this program is to generate *
* * pressure transient response at the inner *
* * boundary in non-homogeneous linear system. *
* * This program handles cases for beta *
* * greater and less than 1 and deals *
* * “with linear variation of permeability *
* * in a linear system. It can handle *
* * IBC of const rate or const pre. and *
* * OBC of closed or const. pre. *
* Ak AkAhkhkhkhkhhkhkhkhkhkhkhAhhhkkhkkhkhkhkhkdhhkhkhhkhkhkhhhkhhkhkhkhkhkhkhkxhhkk

IMPLICIT REAL*8 (A~H,0-Z)

DIMENSION TD (20)

COMMON BETA,M, ICODE, JCODE

OPEN (UNIT=7,FILE="output")

PRINT *,’READ THE VALUE OF BETA '
READ (5, *) BETA

PRINT *,'# OF CYCLES OF DATA REQUIRED’
READ (5, *) NC

PRINT *,’GIVE FIRST VALUE OF TD'
READ (5, *) TD1

PRINT *,’NUMBER OF TERMS TO BE USED IN STEHFEST'
READ (5, *) NTERM

c READ CODES FOR BOUNDARY CONDITIONS
PRINT *,’SUPPLY INNER BOUNDARY CONDITION CODE’
PRINT *,’1 -—-- CONSTANT RATE’
PRINT *,’2 ---- CONSTANT PRESSURE’
READ (5, *) ICODE

PRINT *,’SUPPLY OUTER BOUNDARY CONDITION CODE’

PRINT *,’1 ---- CLOSED'
PRINT *,72 ~--- CONSTANT PRESSURE’
READ (5, *) JCODE
M=777

Cc GENERATE THE FIRST SET OF TD VECTOR
TD (1) =TD1

TD (2)=1.5*TD1
TD (3)=2.*TD1l
TD{(4)=2.5*TD1
TD (5)=3.*TD1
TD(6)=3.5*TD1
TD(7)=4.*TD1
TD(8)=4.5*TD1
TD(9)=5.*TD1
TD(10)=6.*TD1
TD(11)=7.*TD1
TD(12)=8.*TD1
TD(13)=9.*TD1
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c _WRITE THE NUMBER OF DATA POINTS GENERATED
WRITE (7, *) 13*NC
C GENERATE AND PRINT THE PRESSURE TRANSIENT RESPONSE

Do 1 I=1,NC

po 2 J=1,13

SPC=TD (J)

PD=PWD (SPC, NTERM)
WRITE (7, 9)TD(J),PD

TD (J)=10.*TD (J)

CONTINUE

FORMAT (2X,F15.5,2X,F15.7)
STOP

END
*****-k*************************************************************

w RN

FUNCTION PWDL(S)

IMPLICIT REAL*8 (A-H,0-2)

DOUBLE PRECISION MMBSIO,MMBSI1,MMBSKO,MMBSK1
COMMON BETA,M, ICODE, JCODE

IF (BETA.GT.1.)ALPHA=BETA-1.
IF (BETA.LT.1.)ALPHA=1.-BETA
ARG1=2./ALPHA*DSQRT (S*BETA)
ARG2=2./ALPHA*DSQRT (S)

X1=DSQRT (S/BETA)
X2=§%*1.5

c EVALUATION OF CONSTANTS ‘A’ :AND 'B'

F=DEXP (-2 .* (ARG1-ARG2) )

IF (JCODE.EQ.1) THEN
C1=X1*MMBSI1(2,ARGl, IER)
C2=-X1*MMBSK1 (2, ARG1, IER)

ENDIF

IF (JCODE.EQ.2) THEN
C1=MMBSIO (2, ARG1, IER)
C2=MMBSKO (2, ARG1, IER)

ENDIF
Cc CALCULATION OF C3 AND C4 FOR ICODE = 1

* APPLIES TO BETA > 1
" IF (ICODE.EQ.1) THEN
C3=-X2*MMBSI1 (2, ARG2, IER)
C4=X2*MMBSK1 (2, ARG2, IER)
ENDIF
* APPLIES TO BETA < 1

IF(ICODE.EQ.l.AND.BETA.LT.I.)THEN

C3=-C3
c4=-C4
ENDIF
c CALCULATION OF C3 AND C4 FOR ICODE = 2

IF (ICODE.EQ.2) THEN
C3=S*MMBSIO (2, ARG2, IER)
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C4=5*MMBSKO0 (2, ARGZ2, IER)
ENDIF

Cc CALCULATION OF Al AND A2 FOR ICODE = 1

IF (ICODE.EQ.1) THEN
Al1=MMBSIO (2, ARG2, IER)
A2=MMBSKO (2, ARG2, IER)

ENDIF

C CALCULATION OF Al AND A2 FOR ICODE = 2

IF (ICODE.EQ.2) THEN
Al=-MMBSI1 (2, ARG2, IER) /DSQRT (S)
A2=MMBSK1 (2, ARG2, IER) /DSQRT (S)

ENDIF

IF (ICODE.EQ.2.AND.BETA.LT.1.) THEN
Al=-Al
A2=-A2

ENDIF

c CALCULATION OF TRANSFORMED SOLUTION

* FOR BETA >-1., IT IS AT XD
* FOR BETA < 1., IT IS AT XD

LI
[
r O

F1=C4-C2*C3*F/C1
F2=-C2*A1*F/C1/F1l
F3=A2/F1

c PWDL REPRESENTS LAPLACE TRANSFORM OF PWD FOR ICODE = 1
C PWDL REPRESNTS LAPLACE TRANSFORM OF ‘QD FOR ICODE = 2
PWDL=F2+F3

RETURN

END . :
************************************************************‘***********
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PROGRAM No. 3

Name : Anil Kumar Ambastha
Date : June 18, 1985

*

*

*

*

*

Purpose of this program is to generate *

pressure transient response at the inner *

boundary in non-homogeneous linear system. *
This program handles cases for beta *
greater and less than 1 and deals *
with linear variation of porosity * comp. *
in a linear system. It can handle *
IBC of const rate or const pre. and *

* OBC of closed or const. pre. *

***************************************************

IMPLICIT REAL*B (A-H,0-2)

DIMENSION TD(20)

COMMON BETA,M, ICODE, JCODE

OPEN (UNIT=7,FILE="output")

PRINT *,’READ THE VALUE OF BETA '

READ (5, *) BETA

PRINT *,’#:0F CYCLES OF DATA REQUIRED’

READ (5, *) NC

PRINT *,’GIVE FIRST VALUE OF TD’

READ (5, *) TD1

PRINT *,YNUMBER OF TERMS TO BE USED IN STEHFEST'

READ (5, *) NTERM

¥ O H % % o % F % % % % ¥ F* ¥ %
* O % % ¥ % ¥ X % % F ¥ *

Cc READ CODES FOR BOUNDARY CONDITIONS

PRINT *,’SUPPLY INNER BOUNDARY CONDITION CODE’
PRINT *,’1 —-—— CONSTANT RATE’

PRINT *,’2 —---— CONSTANT PRESSURE’
READ (5, *) ICODE

PRINT *,’SUPPLY OUTER BOUNDARY CONDITION CODE’

PRINT *,’1 —---- CLOSED’
PRINT *,’2 -~——- CONSTANT PRESSURE’
READ (5, *¥) JCODE
M=T777

c GENERATE THE FIRST SET OF TD VECTOR
TD (1)=TD1

TD (2)=1.5*TD1
TD(3)=2.*TD1
TD(4)=2.5*TD1
TD (5)=3.*TD1
TD (6)=3.5*TD1
TD(7)=4.*ID1
TD (8)=4.5*TD1
TD(9)=5.*TD1
TD(10)=6.*TD1
TD (11)=7.*TD1
TD(12)=8.*TD1
TD(13)=9.*TD1
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c WRITE THE NUMBER OF DATA POINTS GENERATED
WRITE (7,*)13*NC
C GENERATE AND PRINT THE PRESSURE TRANSIENT RESPCONSE

DO 1 I=1,NC

DO 2 J=1,13

SPC=TD (J)

PD=PWD (SPC, NTERM)
WRITE(7,9)TD(J),PD

TD (J)=10.*TD(J)

CONTINUE

FORMAT (2X,F15.5, 2X,F15.7)
STOP : ~
END
***********************************’*********jk**********************

o =N

FUNCTION PWDL(S)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION AK({l),AI(1l)
COMMON BETA,M, ICODE, JCODE

IF (BETA.GT.1.)ALPHA=BETA-1.
IF(BETA.LT.1.)ALPHA=1.-BETA
cl=1./3.

Cc=2./3.

X=DSQRT (S) /ALPHA
PI=2.*ASIN(1.)

ARG2=C*X
ARG1=ARGZ2*BETA**1.5

Z2=X**C

Z1=BETA*Z2

X1=ALPHA*X**C

X2=X1*S

X3=X1/S
o! X4=DEXP (-2 .*ARG1)
c XS5=DEXP (-2 .*ARG2)

CALL MMBSKR(ARG2,C1,1, AK, IER)

CALL MMBSIR(ARGZ,C1,1,1,AI,IER)

ak (1)=ak (1) *dexp (-arg2)

AI2=DSQRT (22/3.) /PI*AK (1)

BI2=DSQRT (22/3.)* (DSQRT (3.D00) /PI*AK(1)+2.*
& AI(1l))

CALL MMBSKR (ARG2,C,1,AK, IER)

CALL MMBSIR(ARGZ2,C,1,1,AI, IER)

ak (1)=ak (1) *dexp (-arg2)

AIP2=-22/PI/DSQRT (3.D00) *AK (1)

BIP2=%2/DSQRT (3.D00) * (2.*AI (1) +DSQRT(3.D00)/
& PI*AK(1l))

Cc EVALUATION OF CONSTANTS 'A’ AND 'B’
Cc F=DEXP (-2.* (ARG1-ARG2))

IF (JCODE.EQ.1) THEN
CALL MMBSKR (ARG1,C,1,RK, IER)
CALL MMBSIR(ARG1,C,1,1,AI,IER)
ak (1)=ak (1) *dexp (-argl)
AIP1=-21/PI/DSQRT (3.D00) *AK (1)
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BIP1=21/DSQRT(3.D00)* (2. *AI (1) +DSQRT(3.D00)/
& PI*AK(1)) :
Cl=X1*AIP1
C2=X1*BIP1
ENDIF

IF (JCODE.EQ.2) THEN
CALL MMBSKR(ARG1,C1,1, AK, IER)
CALL MMBSIR(ARG1,C1,1,1,AI,IER)
ak (1)=ak (1) *dexp (-argl)
AI1=DSQRT(21/3.)/PI*AK(1)
BI1=DSQRT (21/3.) *(DSQRT (3.D00) /PI*AK(1)+2.*AI (1))

Cl=AIl
C2=BIl
ENDIF
c CALCULATION OF C3 AND C4 FOR ICODE = 1
* APPLIES TO BETA > 1.

IF (ICODE.EQ.1) THEN
C3=-X2*AIP2
C4=-X2*BIP2

ENDIF )

* APPLIES TO BETA < 1.

IF (ICODE.EQ.1.AND.BETA.LT.1.) THEN

C3=-C3
C4=-C4
ENDIF
Cc CALCULAION OF C3 AND C4 FOR ICODE = 2

IF (ICODE.EQ.2) THEN

C3=AI2*S
. C4=BI2*S
ENDIF
Cc CALCULATION OF Al AND A2 FOR ICODE = 1
IF (ICODE.EQ.1) THEN
Al1=AI2
A2=BI2
ENDIF
c CALCULATION OF Al AND A2 FOR ICODE = 2
IF (ICODE.EQ.2) THEN
Al=-X3*AIP2
A2=-X3*BIP2
ENDIF
IF (ICODE.EQ.2 .AND.BETA.LT.1.)THEN
Al=-Al
A2=-A2
ENDIF
Cc CALCULATION OF THE TRANSFORMED SOLUTION
* FOR BETA > 1., IT IS AT XD = 0.
* FOR BETA < 1., IT IS AT XD = 1.
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F1=C4-C2*C3/C1
F2=-C2*Al/C1l/F1
F3=A2/F1

Cc PWDL REPRESENTS LAPLACE TRANSFORM OF PWD FOR ICODE = 1
C PWDL REPRESENTS LAPLACE TRANSFORM OF QD FOR ICODE: = 2

PWDL=F2+F3
RETURN
END :
AR IK KA AR KK KA KA KA A AR R A A AR AR A A AR AR Ak A R A kA A AR AR ARk Kk kkk kA kA XAk Ak kkkhhkkk
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PROGRAM # 4

Name : Anil Kumar Ambastha
Date : March 26, 1985

*
*
*
*
*
Purpose of this program is to generate *
pressure transient response at the well *
in non-homogeneous radial system. *
BETA is thé ratio of permeability at the *
outer boundary to that at the inner boundary. *

*

*

*

*

Inner boundary: Constant rate

Outer boundary: Closed
Kkhdkkhkhkhkkhkhkhkdhkhhkhhhkhhhkhkh Ak AARAkA AR AR AR hd bk hhhkhkkkk
IMPLICIT REAL*8 (A-H,0-2)

DIMENSION TD(20),TDC(20)

COMMON RWD,BETA, TOLR, M

OPEN (UNIT=7,FILE="OUTPUT")

OPEN (UNIT=8,FILE="CO1")

OPEN (UNIT=9,FILE="CO2")

PRINT *,’'READ THE VALUES OF RWD,BETA AND TOLERANCE'
READ (5, *) RWD, BETA, TOLR

PRINT *,’# OF CYCLES OF DATA REQUIRED’

READ (5, *) NC

PRINT *,’GIVE FIRST VALUE OF TD'

READ (5, *) TD1

PRINT *,’NUMBER OF TERMS TO BE USED IN STEHFEST'
READ (5, *) NTERM :

M=7717

¥ % % F Ok X % % ¥ N K * *

GENERATE THE FIRST SET OF TD VECTOR

RR=RWD**2

TD (1) =TD1*RR
TD(2)=1.5*TD1*RR
TD(3)=2.*TD1*RR
TD(4)=2.5*TD1*RR
TD(5)=3.*TD1*RR
TD(6)=3.5*TD1*RR
TD (7)=4.*TD1*RR
TD(8)=4.5*TD1*RR
TD (9)=5.*TD1*RR
TD(10)=6.*TD1*RR
TD (11)=7.*TD1*RR
TD(12)=8.*TD1*RR
TD (13)=9.*TD1*RR

WRITE THE NUMBER OF DATA POINTS GENERATED
WRITE (7, *) 13*NC

GENERATE AND PRINT THE PRESSURE TRANSIENT RESPONSE
DO 1 I=1,NC

Do 2 J=1,13

SPC=TD (J)

TDC (J)=TD (J) /RR
PD=PWD (SPC, NTERM)
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WRITE (7, *) TDC (J),PD

TD (J) =10 . *TD (J)

CONTINUE

STOP

END

A KA A A KA AR A A A A AR AR AL A AARAARAKRA IR AR KR AAAA AR AR A A AR A A A AR A A A Ak kA A A khkkhkkk

- N

FUNCTION PWDL(S)

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION AB(0:100),B(0:100)
COMMON RWD, BETA, TOLR, M

c CALCULATION OF ARRAY ’AB’

S1=1.~RWD
§2=1.-BETA*RWD
AB(0)=1.
AB(1)=0.
IF (BETA.NE.1.) THEN
DO 13 N=2,100 ;
AB(N) = (S*S1*AB (N-2) - (BETA-1.) *N* (N-1) *AB(N-1) ) /N/N/S2
write (8, *)n,ab (n) o
13 CONTINUE
ELSE .
DO 15 N=2,100,2
AB (N)=S*AB(N-2) /N/N
15 CONTINUE
DO 16 N=3,99,2
16 AB (N)=0.
ENDIF'

C CALCULATION OF ARRAY ’'B’

B(0)=0.
B(1)=(1.-BETA)/S2
IF (BETA.NE.1l.,) THEN
DO 14 N=2,100
FAC1l=(N*B(N-2)-2.*AB(N-2))/ (N**3) *51/52
FAC2= (N* (AB (N-1)+{(N-1) *B(N-1) ) - (N-1) *AB(N-1) ) *B(1) /N/N
B(N)=S*FAC1+FAC2
write (9, *)n,b(n)
14 CONTINUE
ELSE
DO 17 N=2,100,2
B(N)=S* ((N*B(N-2)-2.*AB(N-2)) /N**3)

17 CONTINUE
DO 18 N=3,99,2
18 B(N)=0.
ENDIF
C CALCULATION OF ‘Y1’
N=2

IF (BETA.NE.1.)MM=-999

IF (BETA.NE.1.)SUM=1.

IF (BETA.EQ.1.)SUM=1.+AB(2) *RWD**2
1 SUM1=SUM

IF (BETA.NE.1.) SUM=SUM+AB (N) *RWD**N

IF (BETA.EQ.1.) THEN

MM=2*N
SUM=SUM+AB (MM) *RWD* *MM
ENDIF

IF (DABS ( (SUM-SUM1) /SUM) .LE.TOLR) THEN
Y1=SUM
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GO TO 2
ELSE
IF(N.GE.60.0R.MM.GE. 60) THEN
Y1=SUM
PRINT *,’ITR LIM EXCEEDED FOR Y1’
GO TO 2
ELSE
N=N+1
GO TO 1
ENDIF
ENDIF

c CALCULATION OF 'Y2'

2 N=2
XX=DLOG (RWD)
IF (BETA.NE.1.)SUM=XX+B (1) *RWD
IF (BETA.EQ.1.)SUM=XX+ (AB (2) *XX+B (2) ) *RWD**2
3 SUM1=SUM
IF (BETA.NE.1.)SUM=SUM+ (AB (N} *XX+B (N) ) *RWD* *N
IF (BETA.EQ.1.) THEN
MM=2*N
SUM=SUM+ (AB (MM) *XX+B (MM) ) *RWD* *MM
ENDIF :
IF (DABS ( (SUM-SUM1) /SUM) .LE.TOLR) THEN
Y2=SUM :
GO TO 4
ELSE
IF(N.GE.60.OR.M.GE. 60) THEN
Y2=5UM
PRINT *,’ITR LIM EXCEEDED FOR Y2'
GO TO 4
ELSE
N=N+1
GO TO 3
ENDIF
ENDIF

c CALCULATION OF ’'D’
4 SuM=0.
N=1
5 SUM1=5UM
IF (BETA.NE.1l.) SUM=SUM+ (N+1) *AB (N+1) *RWD** (N+1)
IF (BETA.EQ.1.) THEN
MM=2*N
SUM=SUM+MM*AB (MM) *RWD * *MM
ENDIF
IF (DABS ( (SUM-SUM1) /SUM) .LE.TOLR) THEN
D=-5*SUM
GO TO 40
ELSE
IF (N.GE.59.0R.MM.GE. 60) THEN
D=-§*SUM
PRINT *,’ITR LIM EXCEEDED FOR D’
GO TO 40
ELSE
N=N+1
GO TO 5
ENDIF
ENDIF

C CALCULATION OF 'F’
40 SuM=0.
N=1
50 SUM1=SUM
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IF(BETA.NE.1.) SUM=SUM+ (N+1) *AB (N+1) + (N+2) *AB (N+2)
IF (BETA.EQ.1.) THEN
IF(N.EQ.1)MM=2*N
IF (N.NE.1)MM=N+1
SUM=SUM+MM*AB (MM)
ENDIF
IF(DABS((SUM—SUMl)/SUM) LE.TOLR) THEN
F=SUM
GO TO 6
ELSE
IF (N.GE.59) THEN
F=SUM
PRINT *,’ITR LIM EXCEEDED FOR F'
GO TO 6
ELSE
N=N+2
GO TO 50
ENDIF
ENDIF

CALCULATION OF 'G’
SUM=1.
N=1
SUM1=SUM
IF (BETA.NE.1.) SUM=SUM+N*B (N) +AB (N) + (N+1) *B (N+1) +AB (N+1)
IF (BETA.EQ.1.) THEN
J=2*N
SUM=SUM+J*B (J) +AB (J) + (J+2) *B (J+2) +AB (J+2)
ENDIF
IF (DABS ( (SUM-SUM1) /SUM) .LE.TOLR) THEN
G=SUM
GO TO 8
ELSE
IF(N.GE.60.0R.J.GE.60) THEN
G=SUM
PRINT *,fITR LIM EXCEEDED FOR G’
GO TO 8 '
ELSE
N=N+2
GO TO 7
ENDIF
ENDIF

CALCULATION OF 'E’
SUM=1.
N=1
SUM1=SUM
IF (BETA.NE.1l.) THEN
SUM—SUM+(N*AB(N)*DLOG(RWD)+N*B(N)+AB(N))*RWD**N
ELSE
J=2*N
SUM=SUM+ (J*AB (J) *DLOG (RWD) +J*B (J) +AB (J) ) *RWD**J
ENDIF
IF (DABS ( (SUM-SUM1) /SUM) .LE.TOLR) THEN
E=-5*SUM
GO TO 12
ELSE
IF (N.GE.60.0R.J.GE.60) THEN
E=-5*S5UM
PRINT *,’ITR LIM EXCEEDED FOR E’
GO TO 12
ELSE
N=N+1
GO TO 11
ENDIF
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ENDIF

c CALCULATION OF 'Cl’ AND ’C2’
12 AL=E*F-D*G
Cl=-G/AL
C2=F/AL

Cc CALCULATIQN OF THE TRANSFORMED SOLUTION (AT RD=RWD)

PWDL=Cl*Y1+C2*Y2
RETURN
END
R L e E T e T s 2
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* PROGRAM # 5
* e e ——
C THE STEHFEST ALGORITHM
C hhkhkkhkhkhkhkhkkkhkhhkhkdrhhkhkhkkhkhkhhhkhkhk
e .
FUNCTION PWD (TD,N)
C THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
C INVERSE OF F(S).
COMMOCN BETA,M, ICODE, JCODE
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION G(50),V(50),H(25)
C
C NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
C GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
C F(S).
IF (N.EQ.M) GO TO 17
M=N
DLOGTW=0.6931471805599
NH=N/2
C
C THE FACTQRIALS OF 1 TO N ARE CALCULATED INTO ARRAY G.
G(l)=1 :
DO 1 I=2,N
G(I)=G(I-1)*I
1 CONTINUE
C
C TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
H(1)=2./G(NH-1)
DO 6 I=2,NH
FI=1
IF (I-NH) 4,5,6
4 H(I)=FI**NH*G(2*I)/(G(NH-I)*G(I)*G(I-1))
GO TO 6
5 H(I)=FI**NH*G(2*I)/(G(I)*G(I-1))
6 CONTINUE
C
C THE TERMS (-1)**NH+1 ARE CALCULATED.
C FIRST THE TERM FOR I=1
SN=2* (NH-NH/2%2) -1
C
C THE REST OF THE SN‘'S ARECALCULATED IN THE MAIN RUTINE.
C
C
C THE ARRAY V(1) IS CALCULATED.
po 7 1I=1,N
C
C FIRST SET V(I)=0
vV(I)=0.
C
C THE LIMITS FOR K ARE ESTABLISHED.
C THE LOWER LIMIT IS K1=INTEG((I+1/2))
Kl=(I+1)/2
C
C THE UPPER LIMIT IS K2=MIN(I,N/2)
K2=1
IF (K2-NH) 8,8,9
9 K2=NH
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o
c THE SUMMATION TERM IN V(I) IS CALCULATED.
8 DO 10 K=K1,K2 )
IF (2*K-I1) 12,13,12
12 IF (I-K) 11,14,11
11 V(I)=V(I)+H(K)/(G(I-K)*G(2*K-I))
GO TO 10 ‘
13 V(I)=V(I)+H(K)/G(I-K)
GO TO 10 .
14 V(I)=V(I)+H(K)/G(2*K-I)
10 CONTINUE ,
C .
(o} THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING
ACCORDING TO SN.
V(I)=SN*V(I)
c : ‘
C THE TERM SN CHANGES ITS SIGN EACH ITERATION.
SN=-SN . .
7 CONTINUE
c
c THE NUMERICAL APPROXIMATION IS CALCULATED.
17 PWD=0. '
A=DLOGTW/TD
po 15 I=1,N
ARG=A*I
PWD=PWD+V (1) *PWDL (ARG)
15 CONTINUE ) ‘
PWD=PWD*A
18 RETURN

END
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* PROGRAM # 6
x 0 e ————
o THE STEHFEST ALGORITHM
C AkhkkhkhkhkAkhkhhkhkhkhkhkkhhhkhhkhkhkkhkkhkkk
o
FUNCTION PWD (TD,N)
C THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM
(o} INVERSE OF F(8). ' :
COMMON RWD, BETA, TOLR,M
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION G(50),V(50),H(25)
c
c NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
C GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE
o} F(5).
IF (N.EQ.M) GO TO 17
M=N
DLOGTW=0.6931471805599
NH=N/2
C .
C THE FACTORIALS OF 1 TO N ARE CALCULATED INTO ARRAY G.
G(1)=1
po 1 1=2,N
G(I)=G(I-1)*I
1 CONTINUE
C
c TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.
H(1)=2./G(NH-1)
DO 6 I=2,NH
FI=I
IF(I-NH) 4,5,6
4 H(I)=FI**NH*G(2*I)/(G(NH~I)*G(I)*G(I-1))
GO TO 6
5 H(I)=FI**NH*G(2*I)/(G(I)*G(I-1))
6 CONTINUE
C
C THE TERMS (-1)**NH+1 ARE CALCULATED.
c FIRST THE TERM FOR I=1
SN=2* (NH-NH/2*2) -1
c
c THE REST OF THE SN'‘'S ARECALCULATED IN THE MAIN RUTINE.
c
C
C THE ARRAY V(I) IS CALCULATED.
po 7 I=1,N
o]
C FIRST SET V{I)=0
V(I)=0.
C
c THE LIMITS FOR K ARE ESTABLISHED.
c THE LOWER LIMIT IS K1=INTEG({(I+1/2))
Kl=(I+1)/2
o}
c THE UPPER LIMIT IS K2=MIN(I,N/2)
K2=1
IF (K2-NH) 8,8,9
9 K2=NH
C
c THE SUMMATION TERM IN V(I) IS CALCULATED.
8 DO 10 K=K1,K2



- 77 =
stehl.f Wed Feb 11 15:40:47 1987

IF (2*K-I) 12,13,12
12 IF (I-K) 11,14,11
11 V(I)=V(I)+H(K) / (G (I-K) *G (2*K-I))

oo

GO TO 10
13 V{I)=V(I)+H (K)/G(I-K)
- GO TO 10
14 V{I)=V(I)+H(K)/G(2*K-I)
10 CONTINUE
c
c THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING
C ACCORDING TO SN.
V(I)=SN*V(I)
THE TERM SN CHANGES ITS SIGN EACH ITERATION.
SN=-SN
7 CONTINUE
C
c THE NUMERICAL APPROXIMATION IS CALCULATED.
17 PWD=0.
=DLOGTW/TD
DO 15 I=1,N
ARG=A*I

PWD=PWD+V (I) *PWDL (ARG)
15 CONTINUE

PWD=PWD*A
18 RETURN
. END
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