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ABSTRACT 

This study has been c a r r i e d  out  i n  two r e l a t e d  sec t ions .  In  t h e  f i r s t  
s e c t i o n ,  exact  a n a l y t i c  equat ions  have been derived t o  d e f i n e  breakthrough 
curves (d i sp l ac ing  f l u i d  c u t  versus  pore volumes i n j e c t e d ,  or area swept 
versus pore volume i n j e c t e d )  f o r  d i f f e r e n t  developed f looding  w e l l  p a t t e r n s  
f o r  u n i t  mobi l i ty  r a t i o .  In  t he  d e r i v a t i o n  of equat ions ,  it was assumed t h a t  
t h e  displacements were p is ton- l ike  with no c a p i l l a r y  and g r a v i t y  effects. The 
a n a l y t i c  s o l u t i o n s  are var ious  forms of e l l i p t i c  i n t e g r a l s  which d i f f e r  
depending on the  geometry of the  pa t t e rn .  The exac t  e l l i p t i c  i n t e g r a l  solu-  
t i o n s  f o r  t he  breakthrough curves have been c o r r e l a t e d  i n t o  a s i n g l e  curve by 
d e f i n i n g  a c o r r e l a t i n g  parameter,  we have c a l l e d  t h e  dimensionless  pore 
volume. Since breakthrough curves f o r  the  p a t t e r n s  considered i n  t h i s  s tudy  
( f  ive- spot , inver ted  seven-spot , d i r e c t  l i n e  d r i v e ,  and s taggered  l i n e  d r i v e )  
a l l  c o r r e l a t e  i n t o  a s i n g l e  curve, i t  is  concluded t h a t  t he  breakthrough 
curves f o r  any o the r  repea t ing  p a t t e r n s  should a l s o  l i e  reasonably near t h i s  
same c o r r e l a t i n g  curve. 

The first sec t ion  a l s o  inc ludes  an ex tens ion  of an a n a l y t i c a l  d e f i n i t i o n  of 
p a t t e r n  breakthrough curves f o r  mobi l i ty  r a t i o  o t h e r  than one. In  t h e  
d e r i v a t i o n s ,  it was assumed t h a t  t h e  s t reaml ines  of a p a t t e r n  d id  not  change 
wi th  mobi l i ty  r a t i o .  The r e s u l t s  of t he  a n a l y s i s  showed t h a t  t he  breakthrough 
areal sweep e f f i c i e n c i e s  a t  var ious  mobil i ty  r a t i o s  were nea r ly  independent of 
mobi l i ty  r a t i o s ,  while  t he  post  breakthrough d a t a  were d i f f e r e n t  f o r  each 
mob i l i t y  r a t i o .  

The second p a r t  d i scusses  flow of a tracer s l u g  i n  var ious pa t t e rns .  In  each 
system, the  long i tud ina l  mixing of t he  tracer s l u g  i n  a genera l  s t reamtube of 
t h e  p a t t e r n  has been formulated mathematically.  A l i n e  i n t e g r a l  a long a 
streamtube was derived which r ep resen t s  the  l eng th  of t he  mixed zone. When 
t h i s  l i n e  i n t e g r a l  was s u b s t i t u t e d  i n t o  t h e  mixing equat ion ,  an express ion  f o r  
t h e  concent ra t ion  of tracer a t  any l o c a t i o n  wi th in  a streamtube r e su l t ed .  
Furthermore, t hese  expressions i n t e g r a t e d  over a l l  t h e  s t r eaml ines  produced a 
set of equat ions desc r ib ing  tracer production curves from homogeneous repea ted  
pa t t e rns .  The s tudy shows t h a t  t he  e f f l u e n t  tracer concent ra t ion  depends upon 
the  p a t t e r n  geometry and s ize ,  and the  d i spe r s ion  cons tan t  of the  formation. 

Tracer production curves f o r  t he  d i f f e r e n t  p a t t e r n s  considered have a l s o  been 
c o r r e l a t e d  i n t o  a set of curves depending on ala ,  (a - d i s t a n c e  between l i k e  
wells, a = d i spe r s ion  constant) .  The c o r r e l a t i o n  was achieved by de r iv ing  two 
sets of c o r r e c t i o n  f a c t o r s ,  one f o r  tracer peak concent ra t ion ,  and another  f o r  
ala r a t i o .  As a r e s u l t  of t h i s  c o r r e l a t i o n ,  a tracer response from any 
repeated homogeneous p a t t e r n  can be es t imated  from t h e  response of an  
equiva len t  five- spot system by u t i l i z i n g  the  co r r ec t ion  f a c t o r s .  

A computer program based on a non- linear op t imiza t ion  technique was developed 
which decomposes a de tec ted  tracer breakthrough p r o f i l e  from a mul t i layered  
system i n t o  responses from ind iv idua l  l aye r s .  The program computes porosi ty-  
th ickness  and f r a c t i o n a l  permeabil i ty- thickness  f o r  each l aye r .  The a lgor i thm 
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u t i l i z e s  t h e  equat ions of t he  five- spot p a t t e r n  i n  conjunct ion wi th  the  
developed c o r r e c t i o n  f a c t o r s .  A f ive- spot  f i e l d  example which has been 
succes s fu l ly  decomposed i n t o  eeve ra l  l a y e r s  is shown t o  i l l u s t r a t e  t he  use of 
t h i s  research.  
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1 INTRODUCTION 

Reservoir heterogeneities play an important role in oil recovery by improved 
recovery techniques . In any fluid injection operation, high permeability 
streaks divert substantial quantities of the injected fluid. This unequal 
distribution of the injected fluid greatly reduces the volumetric sweep 
efficiency of the reservoir and, hence, lowers the efficiency of the displace- 
ment processes. Therefore, detection of high permeability zones and channels 
would be helpful in the understanding, design, operation, and interpretation 
of injection projects. 

A means to follow fluid movement in a reservoir would be an important tool in 
determining the characteristics of a formation directly. Radioactive and 
chemical tracers provide the capability to achieve this purpose. Information 
on reservoir heterogeneity supplied by flow of tracers in a reservoir is 
invaluable in the design of assisted recovery operations and also useful in 
reservoir simulation studies. This information, whether qualitative or 
quantitative, is generally extracted from tracer breakthrough profiles 
detected at the production wells. Often, tracer breakthrough profiles are a 
summation of tracer responses from several layers which constitute the 
formation. In practice, the number of the layers is unknown and only a tracer 
breakthrough curve from a stratified system is available. This is a classic 
inversion problem. To analyze tracer breakthrough profiles, results must be 
deconvoluted into the constituent layer responses. From the constructed layer 
responses, it would be possible to compute important parameters for the layers 
such as permeability, porosity, and thickness. 

Several works (Brigham and Smith, 1965; Baldwin, 1966; and Yuen -- et al. 1979) 
have been published on tracer flow which have attempted to obtain quantitative 
information about the nature of reservoirs. Each of these had limitations 
which led to incorrectly defined reservoir parameters and also each of these 
methods considered only fully developed five-spot patterns and unit mobility 
ratio. 

This study draws from these earlier works and was initiated to develop an 
analysis for tracer tests which could be used for any repeated pattern within 
the limitation of mobility ratio of one. To do this a mathematical descrip- 
tion of tracer breakthrough curves for any developed homogeneous pattern is 
required. For the breakthrough curves to be precise, the analysis must 
include a rigorous treatment of the mixing of tracer in the patterns. Also, a 
correlation of these tracer production curves into a single curve (or a single 
set of curves) could simplify the analysis. Finally, a method which could 
analyze tracer elution curves from stratified reservoirs without adopting 
lengthy trial and error procedures could reduce the needed time for an 
analysis. With these points in mind, a new tracer analysis method has been 
developed. 
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2. LITERATURE REVIEW 

In t h e  p a s t  several decades, both r ad ioac t ive  and chemical tracers have been 
used as e f f e c t i v e  t o o l s  f o r  eva lua t ion  of var ious  subter ranean  formations such 
as petroleum and geothermal r e s e r v o i r s  and underground aqu i f e r s .  The tracer 
tests conducted are usua l ly  of two types: 1) well- to-well ( i n t e r w e l l )  tests 
i n  which a tracer is i n j e c t e d  i n  an i n j e c t i o n  w e l l  and de tec ted  cont inuously 
at a production w e l l ;  or 2) s i n g l e  w e l l  tests i n  which the  tracer is i n j e c t e d  
i n t o  a w e l l  and is allowed t o  react wi th  t h e  formation f l u i d  before  being 
produced from the  same w e l l .  I n  t h i s  s tudy,  only the  well- to-well tracer flow 
tests are considered. 

This chapter  has been divided i n t o  four  main pa r t s .  In  t he  f i r s t ,  l i t e r a t u r e  
r e l a t e d  t o  q u a l i t a t i v e  i n t e r p r e t a t i o n  of tracer tests is presented.  The 
second par t  d i scusses  the  mechanism of tracer flow i n  porous media. In  t h i s  
p a r t ,  d i spe r s ion  (mixing) i n  l i n e a r  and non- linear flow geometries is covered 
a t  length.  Quan t i t a t i ve  a n a l y s i s  of tracer test da t a  from var ious  underground 
r e s e r v o i r s  is presented i n  t he  t h i r d  p a r t .  The las t  p a r t  provides a summary 
t o  t h i s  chapter .  

2.1 QUALITATIVE INTERPRETATION OF TRACER DATA 

The r e s u l t s  of i n t e r w e l l  tracer tests usua l ly  have been i n t e r p r e t e d  on a 
q u a l i t a t i v e  bas i s .  Therefore,  only genera l  i deas  about t he  c h a r a c t e r i s t i c s  of 
t he  formation have been ex t r ac t ed  from the  tracer tests. Strum and Johnson 
(1951) v e r i f i e d  the  occurrence of c r ev ices  and jo in t- plane  p a r t i n g s  i n  t he  
Pennsylvanian Bradford Third Sand formation by q u a l i t a t i v e l y  s tudying t h e  
r e s u l t s  of several t r a c e r  tests conducted i n  t h i s  sand. Three d i f f e r e n t  
tracers were used: b r ine ,  f l uo resce in  and a su r f ace  a c t i v e  compound. The 
r e s u l t s  v e r i f i e d  the  ex i s t ence  of d i r e c t i o n a l  pe rmeab i l i t i e s  which had a l r eady  
been measured from core samples. Based on t h i s  f i nd ing ,  subsequent waterf lood 
w e l l  p a t t e r n s  were designed t o  improve the  swept volumes. 

Carpenter -- e t  a l .  (1952) used boron i n  t he  form of Borax and bo r i c  a c i d  as a 
water so lub le  tracer t o  f i n d  the  main f e a t u r e s  of t h r e e  oi l- bearing forma- 
t ions .  They concluded t h a t  i n  two of t he  formations,  several channels were 
present  i n s t ead  of a s i n g l e  "pipe-line" channel,  and the  t h i r d  formation d id  
not  have channels or by-passing zones. Their conclusions were based upon the  
concent ra t ion  l e v e l s  of boron de tec ted  a t  t he  producers ,  and the  elapsed t i m e  
between the  i n j e c t i o n  of the  tracer and its appearance a t  t h e  producing wells. 

A comprehensive l i s t  of information obta inable  from tracer tests was presented 
by Wagner (1977), who s tudied  t h e  r e s u l t s  of twenty tracer programs conducted 
i n  r e s e r v o i r s  undergoing waterf loods,  gas d r i v e s  and water- solvent i n j e c t i o n  
opera t ions .  His l is t  included t h e  fol lowing items: 
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Volumetric sweep-The volume of f l u i d  i n j e c t e d  a t  an i n j e c t i o n  w e l l  t o  
breakthrough of t he  tracer at an o f f s e t  producer is i n d i c a t i v e  of t he  
volumetr ic  sweep- e f f i c i e n c y  between t h a t  p a i r  of wells. A small break- 
through sweep e f f i c i6ncy  i n d i c a t e s  t he  ex i s t ence  of a f r a c t u r e  o r  a t h i n ,  
high permeabi l i ty  s t r e a k  between the  two w e l l s .  

~. 

I d e n t i f i c a t i o n  of offending injectors--With d i f f e r e n t  tracers i n j e c t e d  
i n t o  a formation,  a comparison of a r r i v a l  times of tracers at t h e  
product ion wells can determine the  i n j e c t o r s  r e spons ib l e  f o r  e a r l y  break- 
through i n  s p e c i f i c  producers. Remedial t rea tment  of t he  i n j e c t o r s  would 
normally be necessary. 

D i rec t iona l  flow trends-When d i f f e r e n t  tracers are i n j e c t e d  i n t o  r egu la r  
p a t t e r n s ,  t he  e x i s t i n g  d i r e c t i o n a l  flow t r ends  are i d e n t i f i e d  by e a r l y  
tracer breakthrough at the  producers loca ted  along t h e  p r e f e r e n t i a l  flow 
d i r ec t ion .  

Del inea t ion  of flow barriers- Lack of response t o  an i n j e c t e d  tracer at a 
production w e l l  i n d i c a t e s  the  ex i s t ence  of a b a r r i e r  or a s e a l i n g  f a u l t  
between the  p a i r  of wells. 

Rela t ive  v e l o c i t i e s  of i n j e c t e d  fluids-When d i f f e r e n t  f l u i d s  tagged with 
d i f fe ren t :  tracers are i n j e c t e d  simultaneously or s e q u e n t i a l l y  i n  t he  same 
w e l l ,  the  i nd iv idua l  a r r i v a l  t i m e  of the  tracers a t  t he  producers can be 
used t o  measure the  re lat ive v e l o c i t i e s  of t h e  i n j e c t e d  f l u i d s .  This 
information is use fu l  i n  determining t h e  app ropr i a t e  f l u i d  t o  use f o r  
mobi l i ty  con t ro l  t o  achieve a more uniform sweep i n  t e r t i a r y  o i l  recovery 
opera t ions .  

Evaluat ion of sweep improvement treatments-The success  or  e f f e c t i v e n e s s  
of sweep e f f i c i e n c y  t rea tments  can be evaluated by comparing the  break- 
through times of tracers before and a f t e r  t he  t reatment .  

an implementation of Wagner's work, D'Hooge -- e t  al.  (1981) s imultaneously 
i n j e c t e d  fou r  r ad ioac t ive  tracers (carbon-14, cobalt- 57, cobalt- 60 and 
t r i t i u m )  i n t o  t h e  West Sumatra formation (Pennsylvanian age sandstone)  t o  
t r a c k  the  movements of t he  i n j e c t e d  f l u i d s .  A q u a l i t a t i v e  i n t e r p r e t a t i o n  of 
tracer concent ra t ion  a r r i v a l  curves at  d i f f e r e n t  product ion w e l l s  provided 
valuable  information on t h e  d i r e c t i o n  of flow, r e s e r v o i r  d i s c o n t i n u i t i e s ,  and 
probable areas of poor sweep e f f i c i ency .  These i n v e s t i g a t o r s ,  however, d id  
not  analyze t h e  tracer e l u t i o n  curves i n  d e t a i l  t o  o b t a i n  q u a n t i t a t i v e  
information about formation he terogenei ty .  

2.2 MECHANISM OF TRACER FLOW 

To perform d e t a i l e d  q u a n t i t a t i v e  a n a l y s i s  on i n t e r w e l l  tracer breakthrough 
curves,  one must have a thorough knowledge of the  mechanism of tracer movement 
i n  t h e  formation. In  genera l ,  t he  t r a n s p o r t  of tracer material i n  a porous 
medium is sub jec t  t o  two phenomena--convection and hydrodynamic d i spe r s ion  
(Bear, 1972). 

- 3 -  



2.2.1 Convection 

Convection is used here  t o  desc r ibe  bulk movement of f l u i d s  as governed by 
Darcy's l a w .  This"-floc) r e s u l t s  from p o t e n t i a l  g r a d i e n t s  imposed on t h e  .. 
system. In a r e s e r v o i r ,  the  p o t e n t i a l  d i f f e r ences  are e s t a b l i s h e d  e i t h e r  by 
d e n s i t y  d i f f e r ences  between the  flowing f l u i d s ,  or by product ion and i n j e c t i o n  
wells d r i l l e d  i n t o  a formation. Convection depends mainly on t h e  w e l l  
arrangements and ope ra t ing  condi t ions ,  such as flow rates of t h e  w e l l s .  A 
comprehensive survey of t h e  work done on convection f o r  d i f f e r e n t  w e l l  
p a t t e r n s  was provided by Craig (1971). 

2.2.2 Hydrodynamic Dispersion 

Hydrodynamic d i spe r s ion  is composed of two parts- molecular d i f f u s i o n  and 
mechanical d i spe r s ion .  Molecular d i f f u s i o n  r e s u l t s  from component concen- 
t r a t i o n  g rad ien t s  e s t ab l i shed  between two misc ib le  f l u i d s ,  and is  independent 
of flow ve loc i ty .  Mechanical d i spe r s ion ,  on the  o the r  hand, is the  r e s u l t  of 
movement of i nd iv idua l  f l u i d  p a r t i c l e s  i n  t o r tuous  pore channels of a porous 
medium. On a microscopic l e v e l ,  d i spe r s ion  r e s u l t s  from v a r i a t i o n s  i n  
v e l o c i t y  of tracer material as it flows through the sepa ra t ing  and r e j o i n i n g  
pore passages. In  two dimensional flow, a d i s t i n c t i o n  has been made between 
mechanical d i spe r s ion  occurr ing  i n  t h e  d i r e c t i o n  of f low ( l o n g i t u d i n a l  
d i s p e r s i o n ) ,  and t h a t  occurr ing  i n  a d i r e c t i o n  perpendicular  t o  t he  mean f low 
( t r a n s v e r s e  d i spe r s ion ) .  

As a consequence of hydrodynamic d i spe r s ion ,  tracer material gradual ly  spreads 
and occupies an inc reas ing  por t ion  of t he  flow domain beyond the  reg ion  i t  
would occupy according t o  f l u i d  convection alone. The amount of spreading (or 
mixing) depends on the  d i s p e r s i v i t y  of t he  porous medium and the  geometry of 
t h e  flow system. Considerable work, both t h e o r e t i c a l  and experimental ,  has 
been done t o  s tudy t h e  phenomenon of d i spe r s ion  (mixing) i n  porous media f o r  
var ious  flow geometries.  

2.2.2.1 Linear  Flow 

Aronofsky and Heller (1957) presented a mathematical a n a l y s i s  of mixing 
(d i spe r s ion )  t h a t  occurs  between two misc ib le  f l u i d s  as one f l u i d  d i sp l aces  
t h e  o the r  l i n e a r l y  through a porous medium. They solved t h e  fol lowing 
con t inu i ty  equat ion f o r  t he  f l u i d  concentrat ion:  

ac ac 
v -  = 7F K- - ax 

a2 c 
ax 2 

C(x,O) = 0 

C("",t) = 0 
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Where, 

C = concent ra t ion  of d i sp l ac ing  f l u i d ,  mass f r a c t i o n  

K = e f f e c t i v e  mixing c o e f f i c i e n t  

v = microscopic ve loc i ty ,  q/A4 

The Aronofsky-Heller s o l u t i o n  is: 

The authors  showed t h a t  t h e  second term i n  the  bracke ts  was q u i t e  small except  
a t  small values of x or l a r g e  values of K. 

Aronofsky and Heller used t h i s  s o l u t i o n  t o  analyze d a t a  from misc ib l e  f low 
experiments t h a t  were a v a i l a b l e  i n  t h e  l i t e r a t u r e .  They were ab le  t o  match 
the  da t a  repor ted  by von Rosenburg (1956),  as w e l l  as d a t a  provided by Koch 
and Slobod (1957). From the  a n a l y s i s  of von Rosenburg's d a t a ,  they discovered 
t h a t  the  e f f e c t i v e  mixing c o e f f i c i e n t ,  K, was a func t ion  of f l u i d  ve loc i ty .  
Furthermore, t he  K-values computed from von Rosenburg's d a t a  when graphed 
aga ins t  flow rate on log- log graph paper r e su l t ed  i n  a s t r a i g h t  l i n e  wi th  a 
s lope  equal  t o  1.2. From t h i s  observat ion,  Aronofsky and Heller concluded 
t h a t  t he  e f f e c t i v e  mixing c o e f f i c i e n t  was propor t iona l  t o  flow v e l o c i t y  t o  t he  
power 1.2. 

Ogata and Banks (1961) independently solved the  one-dimensional convect ive 
d i f f u s i v i t y  equat ion (Eq. 2-1) with the  same boundary condi t ions  considered by 
Aronofsky and Heller, and obtained a s o l u t i o n  i d e n t i c a l  i n  form t o  Eq. 2-2. 
Ogata and Banks showed t h a t  the  concent ra t ion  p r o f i l e s  corresponding t o  Eq. 
2-2 s o l u t i o n  were not symmetrical about t he  plane of x = v t  f o r  small values 
of vx/K.  For vx/K > 500, a maximum e r r o r  of 3% w a s  introduced by neg lec t ing  
t h e  second term i n  Eq. 2-2, and t h e  corresponding concent ra t ion  p r o f i l e s  
became symmetric about t he  x = v t  plane. In ord inary  experiments,  e r r o r s  of 
t h e  order  of magnitude of experimental e r r o r s  are introduced i f  a symmetrical 
s o l u t i o n  is assumed in s t ead  of t he  a c t u a l  asymmetrical one. This impl ies  t h a t  
t he  second term can be neglected f o r  a l l  p r a c t i c a l  purposes. 

Raimondi e t  al. (1959) found t h a t  mixing between misc ib l e  f l u i d s  w a s  con- 
t r o l l e d  by two parameters:  c o e f f i c i e n t  of molecular d i f f u s i o n ,  and a constant  
determined by s t r u c t u r e  of t h e  porous medium. They concluded t h a t  t h e  
e f f e c t i v e  mixing c o e f f i c i e n t  was given by K = D' + av. In  t h i s  r e l a t i o n s h i p ,  
D' is t h e  apparent  c o e f f i c i e n t  of molecular d i f f u s i o n  wi th in  t h e  porous 
medium. It is less than t h e  a c t u a l  molecular d i f f u s i o n  c o e f f i c i e n t  by product 
of formation r e s i s t i v i t y  f a c t o r  and poros i ty .  The term a is a cons tan t  which 
depends on t h e  s t r u c t u r e ,  pore s i z e  and g ra in  s i z e  d i s t r i b u t i o n  of t he  porous 
medium. For consol idated Berea sandstone cores ,  t he  experimental  values of a 
were between 0.15 and 0.25 cm. For packings of uniform s i z e  p a r t i c l e s ,  a w a s  

c h a r a c t e r i s t i c  cons tan t  08 t he  packs which w a s  found t o  be equal  t o  0.68 f o r  
uniform spheres .  The experiments showed t h a t  molecular d i f f u s i o n  was t h e  
dominating f a c t o r  a t  low flow rates, and became n e g l i g i b l e  a t  high flow rates. 

-- 

equal  t o  E 2 dp, where d is t h e  average g r a i n  diameter  and c2 i s  a 
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Handy (1959) designed an  experiment t o  s tudy t h e  e f f e c t s  of molecular 
d i f f u s i o n  on the  mixing-zone s i z e  f o r  misc ib le  displacements.  H e  added 
methanol and sucrose as double tracers t o  t he  d i sp l ac ing  f l u i d .  Methanol has 
a h igher  molecular d i f f u s i o n  c o e f f i c i e n t  than sucrose.  The methanol and 
sucrose  concent ra t ion  p r o f i l e s  de tec ted  a t  t he  o u t l e t  end of the  l i n e a r  core 
showed no apprec iab le  d i f f e r e n c e s  a t  two displacement rates: 0.5 f t l d a y  and 
16.5 f t / day .  This i nd i ca t ed  t h a t  molecular d i f f u s i o n  was not an important 
f a c t o r  i n  t h e  mixing of d i sp l ac ing  and d isp laced  f l u i d s  i n  t h e  f r o n t a l  
regions.  

A thorough experimental  i n v e s t i g a t i o n  of hydrodynamic d i spe r s ion  i n  l i n e a r  
misc ib le  displacements  was c a r r i e d  out  by Brigham et  al .  (1961). They s tud ied  
t h e  e f f e c t s  of f l u i d  v e l o c i t y ,  d i s t ance  t r a v e l l e d ,  bead s i z e  ( type  of porous 
medium), v i s c o s i t y  r a t i o  of t he  f l u i d s  and pack diameter on t h e  amount of 
hydrodynamic d i spe r s ion  which they c a l l e d  length  of mixed zone. Their conclu- 
s i o n  was t h a t  mixing phenomenon i n  displacements wi th  favorable  v i s c o s i t y  
r a t i o  could be explained by: 

-- 

with an e f f e c t i v e  mixing c o e f f i c i e n t  of :  

The f i r s t  term on the  r i g h t  hand s i d e  of Eq. 2-4 is t h e  apparent  molecular 
d i f f u s i o n ,  which i s  equal  t o  the r a t i o  of the molecular d i f f u s i o n  constant: 
d iv ided  by the  product of t he  formation r e s i s t i v i t y  f a c t o r  and po ros i ty  of the  
system. The second term is t he  mechanical d i spers ion .  Constant a, known as 
t h e  d i spe r s ion  cons tan t ,  depends on the  na tu re  of porous medium as w e l l  as the  
v i s c o s i t y  r a t i o  of t h e  f l u i d s .  For consol idated cores ,  values of a were found 
t o  be 10 t o  100 times greater than the  values of a f o r  unconsol idated cores .  
This implied t h a t  s u b s t a n t i a l  mixing had occurred i n  consol ida ted  cores  com- 
pared t o  t h e  packed beds. The au thors  a l s o  discovered t h a t  t h e  e f f e c t  of 
molecular d i f f u s i o n  on mixing was n e g l i g i b l e  except at very low v e l o c i t i e s .  
Their Fig. 5 is reproduced here as Fig. 2.1, and i l l u s t r a t e s  t hese  po in t s  
c l e a r l y .  Brigham e t  al., however, d id  not  present  t h e  e f f e c t s  of la tera l  
( t r a n s v e r s e )  d i spe r s ion  on mixing. 

Blackwell (1962) s tud ied  both long i tud ina l  and t r ansve r se  d i spe r s ion  i n  sand- 
packed columns. H e  found t h a t  mixing i n  both d i r e c t i o n s  was dominated by 
molecular d i f f u s i o n  at low rates, and by mechanical d i spe r s ion  at high rates. 
However, mass t r a n s p o r t  by molecular d i f f u s i o n  w a s  more important f o r  t r ans-  
ve r se  mixing than f o r  l ong i tud ina l  mixing. A t  s u f f i c i e n t l y  high rates, 
t r ansve r se  mixing c o e f f i c i e n t s  were found t o  be smaller by a f a c t o r  of about 
24 compared t o  those  i n  t he  flow d i r e c t i o n  f o r  both 20-30 mesh O t t a w a  sand and 
40-400 mesh s i l i ca  sand. Figure 7 of t h e i r  paper is reproduced here  as Fig. 
2.2, and shows the  mixing c o e f f i c i e n t s  f o r  var ious  packs. 

- 6 -  



IO' 

IO' 

IO' 

IO 

0 Buds 0.470 0.175 
0.100 0.175 
0.044 0.175 
0.100 0.990 

0.175 
0.175 

0 B u d s  
0 Beads 
0 B u d s  
H Berm 500 d 
4 Torpedo 250 d 

IO -I 1.0 IO' lo2 lo3 - 10- 

R v  
D 
- 

Fig. 2.1: EFFECT OF RATE AND TYPE OF POROUS MEDIUM ON MIXING 
COEFFICIENT (Brigham e t  a l . ,  1961) 
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Fig. 2.2: LONGITUDINAL AND LATERAL MIXING COEFFICIENTS 
FOR VARIOUS SANDS ( a f t e r  Blackwell, 1962) 
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Harleman and Rumer's (1963) exp r mental work showed that the longitudinal 
mixing coeff c nt was K = g, ve.l, while the transverse mixing coefficient 
was KT = a Y'O.'. The vejocity, v, is the microscopic average velocity along 
the main f?ow direction. The ratio of the dispersion constants %/aT was 
18.3. This was in good agreement with the value of 24 reported by Blackwell. 
Although molecular diffusion was not reported in this study, the authors 
speculated that the effects of molecular diffusion would be minimal. 

. 

Besides the diffusion model (error function type solutions) describing mixing 
phenomenon, other models have also been presented to predict mixing in a 
porous medium. The simplest one is the mixing cell, or stirred-tank model, 
presented by Aris and Amundson (1957). In this model, the porous medium is 
viewed as a series of cells or tanks connected to each other by tubes having 
no volumes. Complete mixing is assumed within each cell, resulting in a 
uniform composition in each cell. For a small number of such cells in series, 
the calculated concentration profile is asymmetrical. However, for larger 
numbers of cells, the concentration profile approaches the symmetrical normal 
distribution curve computed from a diffusion model. 

In some linear miscible flow experiments, especially those run with short 
cores, a "talling" in the effluent concentration profile is observed and the 
effluent profile is asymmetric. The degree of asymmetry is more pronounced in 
consolidated porous media than in laboratory packed columns. Usually, the 
deviation is not serious and the diffusivity equations provide a good approxi- 
mation to actual observations. However, several investigators have attempted 
to explain the asymmetrical concentration profiles quantitatively. Deans 
(1963) considered the porous medium as a series of normal pores with frequent 
dead-end passages, or stagnant zones distributed throughout the system. These 
stagnant pockets store fluids, thereby elongate the mixing zone, and give a 
tall to the concentration profile. To describe this phenomenon mathemati- 
cally, Deans modified the mixing cell model to include mass transfer from the 
flowing stream into the stagnant volumes. As a result, he produced a capaci- 
tance model which has three parameters: number of mixing cells (equivalent to 
dispersion coefficient); amount of stagnant volume (1-f), f being the flowing 
volume as a fraction of total pore volume; and a rate constant for the mass 
transfer into the stagnant volumes. Because of the existence of three degrees 
of freedom (three constants), the capacitance model fits experimental data 
better than does a diffusion model which contains only one constant (the 
dispersion coefficient, K). 

Coats and Smith (1964) augmented the diffusion equation with Deans' modified 
mixing-cell model and produced a differential capacitance model. They used 
the new model to match their data obtained from displacement of calcium 
choloride solution by a sodium chloride solution In linear cores. The cores 
were both consolidated and unconsolidated, and between 8 and 9 inches long. 
The effluent concentration profiles from the consolidated cores exhibited 
considerable asymmetry, while the unconsolidated cores yielded nearly sym- 
metrical profiles. Coats and Smith demonstrated that the differential 
capacitance model matched the data significantly better than a simple 
diffusion model. This behavior was rationalized on the basis that the 
capacitance model attributed a certain amount of mixing to dead end pore 
volume effects, while the dispersion model considered only part of the mixing 
generated in the experiments. The degree of contribution of capacitance 
effects could be estimated from a dimensionless group defined as a = K,L/v, 
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( K m  = 
t h e i r  
f i c a n t  

mass t r a n s f e r  rate, L = l eng th  of the  sys t em and v = v e l o c i t y ) .  For 
l abo ra to ry  experiments,  "a" was a small number which ind ica t ed  a s ign i-  

con t r ibu t ion  to the  mixing by capaci tance e f f e c t s .  However, f o r  f i e l d  
cases, where "a" is  a lh -ge  number (small v and l a r g e  L) ,  t he  capac i tance  
e f f e c t s  would be v i r t u a l l y  absent  and mixing would be con t ro l l ed  almost 
e n t i r e l y  by a d i spe r s ion  mechanism. Thus, danger ar ises  from a t t r i b u t i n g  t h e  
t o t a l  mixing observed i n  s h o r t  l abora tory  cores  t o  t h e  d i spe r s ion  mechanism 
a lone ,  and subsquent ly e x t r a p o l a t i n g  the  r e s u l t s  t o  f i e l d  scale. An easy 
a l t e r n a t i v e  would be t o  use longer  cores  i n  t h e  experiments designed t o  s tudy  
d i spe r s ion  c h a r a c t e r i s t i c s  of a s p e c i f i c  porous medium. Because it is o f t e n  
impossible  t o  r e t r i e v e  long cores  from a formation, t he  r e s u l t s  of experiments 
conducted wi th  s h o r t  cores  should be i n t e r p r e t e d  wi th  s p e c i a l  cons ide ra t ions .  

A s p e c i f i c  s tudy of mixing i n  s h o r t  l i n e a r  cores  w a s  performed by Brigham 
(1974).  For such systems, t h e  boundary condi t ions  used i n  so lv ing  t h e  
convect ive d i f f u s i v i t y  equat ion (Eq. 2- l ) ,  g r e a t l y  a f f e c t e d  t h e  r e s u l t a n t  
s o l u t i o n s .  However, by d i f f e r e n t i a t i n g  between the  in- s i tu  concent ra t ion  and 
t h e  flowing concent ra t ion ,  and al lowing f o r  t h i s  d i f f e r e n c e  a t  t h e  boundary 
condi t ions  as w e l l ,  Brigham showed t h a t  t he  r e s u l t s  computed from va r ious  
forms of so lu t ions  t o  t h e  d i f f u s i v i t y  equat ion were nea r ly  i d e n t i c a l .  The 
s o l u t i o n  given by Aronofsky and Heller and Ogata and Banks (Eq. 2-2) was found 
t o  genera te  values f o r  concent ra t ions  which were i n  good agreement wi th  o the r  
s o l u t i o n s .  The dead-end-pore models (capac i tance  and d i f f e r e n t i a l  capac i tance  
models) were found t o  have been based on the  in- s i tu  concent ra t ions ,  while 
Coats and Smith had used them t o  match the flowing concent ra t ion  da t a .  
Although Coats and Smith obtained good matches t o  t h e i r  experimental d a t a ,  t he  
parameters computed from the d i f f e r e n t i a l  capaci tance model would not  proper ly  
r ep re sen t  t h e  behavior of the same porous medium with longer  lengths.  Brigham 
ad jus t ed  Coats and Smith's s o l u t i o n  (Eq. 28 i n  t h e i r  paper)  t o  cons ider  t h e  
d i f f e r e n c e  between flowing and in- s i tu  concent ra t ions .  He showed t h a t  with 
the  new s o l u t i o n ,  the  behavior of l a r g e  systems might be computed c o r r e c t l y  by 
parameters obtained from small cores  (Fig. 6 i n  Brigham's paper).  Brigham 
concluded t h a t  f o r  l a r g e  systems, t he  cor rec ted  capaci tance model behaves l i k e  
t h e  ord inary  d i f f u s i o n  model with a somewhat g r e a t e r  e f f e c t i v e  d i spe r s ion  
cons t an t ,  and t h a t  t he  simple e r r o r  func t ion  s o l u t i o n  (Eq. 2-3) t o  the  d i f f u-  
s i v i t y  equat ion y i e l d s  s a t i s f a c t o r y  r e s u l t s .  

2.2.2.2 Non-linear Flow 

The preceeding cons iders  mixing or d i spe r s ion  i n  l i n e a r  systems where t h e  flow 
is  uniform and the  average v e l o c i t y  is cons tan t .  For o the r  geometr ies ,  f l u i d  
v e l o c i t y  is a func t ion  of pos i t i on ,  and correspondingly,  the  mixing coe f f i-  
c i e n t  v a r i e s  from poin t  t o  poin t .  Therefore,  any s tudy of mixing i n  systems 
t h a t  do not  e x h i b i t  uniform flow must consider  t h e  dependence of d i spe r s ion  on 
ve loc i ty .  The var ing  d i spe r s ion  c o e f f i c i e n t  makes i t  very d i f f i c u l t ,  i f  no t  
impossible ,  t o  de r ive  a n a l y t i c  equat ions  t o  desc r ibe  mixing i n  non-uniform 
flow f i e l d s .  Even f o r  a simple geometry, such as a diverg ing  r a d i a l  flow, t h e  
exac t  a n a l y t i c  s o l u t i o n  t o  t he  convect ive d i f  f u s i v i t y  equat ion has not  been 
obtained i n  a usable  form, according t o  Bear (1972).  However, s e v e r a l  
approximate s o l u t i o n s  are a v a i l a b l e  which desc r ibe  mixing i n  r a d i a l  flow 
systems with good accuracy. Raimondi -- et a l e  (1959) derived an approximate 
s o l u t i o n  based on t h e  assumption t h a t  t he  inf luence  of d i spe r s ion  becomes 
small i n  comparison t o  l o c a l  convection as the  d i sp l ac ing  f l u i d  (or t r a c e r )  
moves away from the  source ( i n j e c t i o n  w e l l ) .  Raimondi's s o l u t i o n  is: 
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where, 

q = i n j e c t i o n  rate 

a = d i spe r s ion  cons tan t  

D’ = apparent molecular d i f f u s i o n  c o e f f i c i e n t  

In t h i s  s o l u t i o n ,  t he  i n i t i a l  condi t ion  C ( r , O )  = 0 is not s a t i s f i e d .  This 
impl ies  t h a t  t h e  approximate s o l u t i o n  assumes a f i n i t e  amount of tracer mass 
present  i n i t i a l l y  i n  t h e  porous medium. Although t h i s  e r r o r  is l a r g e  i n  t he  
immediate v i c i n i t y  of t he  i n j e c t i o n  w e l l ,  it is v i r t u a l l y  n e g l i g i b l e  at l a r g e r  
d i s t ances  from the  i n j e c t i o n  w e l l .  

Another appraximate s o l u t i o n  f o r  d i spe r s ion  i n  a r a d i a l l y  d iverg ing  flow was 
obtained by Lau _I- e t  al .  (1959). The approach was based on t h e  assumption t h a t  
t h e  growth of the  l eng th  of the  mixed zone i n  a r a d i a l  misc ib le  displacement 
w a s  a l i n e a r  sum of two e f f e c t s :  one due t o  d i s t ance  t r a v e l l e d  ( l o n g i t u d i n a l  
d i s p e r s i o n ) ,  and the  o the r  due t o  t he  geometry of flow (divergence of stream- 
l i n e s ) .  The d i s t a n c e  e f f e c t s  were obtained from the  mixing equat ion f o r  a 
l i n e a r  system. The geometry e f f e c t s  were der ived  from cons ide ra t ion  of 
material balance,  no t ing  t h a t  the volume of the  d ispersed  zone had t o  remain 
cons tan t  a t  a given poin t  r ega rd l e s s  of t he  geometry of the system. The 
s o l u t i o n  presented by Lau e t  a l .  is: -- 

where r is t h e  average r ad ius  of t he  d i sp l ac ing  f l u i d .  Raimondi’s s o l u t i o n  
(Eq. 2-5), a l s o  redu_cLes t o  t h i s  equat ion by using t h e  material balance rela- 
t i o n s h i p ,  Q t  = 0.5 r , neg lec t ing  the  molecular d i f f u s i o n  term and assuming 
t h a t  r + r 2 r  i n  Eq. 2-5. For systems i n  which the  s i z e  of mixed zone is 
small, these  assumptions are realistic. 

Lau et al .  (1959) and Bentsen and Nielsen (1965) v e r i f i e d  the  a p p l i c a b i l i t y  of 
Eq. 2-6 experimentaly. Bentsen and Nielsen conducted t h e i r  experiments i n  a 
homogeneous s l a b  of c i r c u l a r  consol idated Berea sandstone which had a r ad ius  
of 91.4 c m  and a th ickness  of 1.9 cm. The v i s c o s i t y  of t he  d i sp l ac ing  f l u i d  
was higher  than  t h e  v i s c o s i t y  of t he  d isp laced  f l u i d  t o  avoid v iscous  
f inge r ing .  The concent ra t ions  were measured i n- s i t u  us ing  t h e  d i e l e c t r i c  
cons t an t s  of t h e  f l u i d s  at each rad ius .  

-- 

An extens ion  of Lau e t  a l e ’ s  method was made by Baldwin (1966) t o  desc r ibe  
mixing i n  convergent r a d i a l  flow. Baldwin w a s  p r imar i ly  i n t e r e s t e d  i n  com- 
put ing  the  tracer e f f l u e n t  concent ra t ion  p r o f i l e  from a developed f ive- spot  
p a t t e r n  for a batch of tracer i n j e c t e d  i n t o  the  system. He divided the  f i v e-  
spot  flow domain i n t o  a series of r a d i a l l y  divergent- convergent flow tubes and 

-- 
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computed the  tracer concentra t ions  e n t e r i n g  t h e  production well from each flow 
tube. By t h i s  method, he matched the  exper imenta l ly  determined tracer break- 
through curves reasonably w e l l .  

Gelhar and Col l ins  (1971) developed a genera l  approximate a n a l y t i c  s o l u t i o n  
for l o n g i t u d i n a l  d i s p e r s i o n  i n  s t eady  flows wi th  v a r i a t i o n s  i n  v e l o c i t y  a long 
s t reamlines .  Their s o l u t i o n  con ta ins  two i n t e g r a l s  r e l a t e d  t o  ve loc i ty .  When 
t h i s  genera l  s o l u t i o n  was app l i ed  t o  a r a d i a l  flow, i t  generated t h e  same 
approximate s o l u t i o n  as proposed by Raimondi -- et  a l .  (1959). A comparison of 
r e s u l t s  computed from Raimondi-type s o l u t i o n s  wi th  those obta ined from numer- 
ical  s imula t ion of a r a d i a l  misc ib le  flow was made t o  determine t h e  accuracy 
of the approximate s o l u t i o n .  The comparison i n d i c a t e d  t h a t  Raimondi's 
s o l u t i o n  would y i e l d  good r e s u l t s  a f t e r  t h e  f r o n t  had t r a v e l l e d  a d i s t a n c e  on 
t h e  order  of 100 times t h e  d i s p e r s i v i t y  of t h e  porous medium (r/a > 100). In  
r e s e r v o i r s ,  t h i s  condi t ion  is e a s i l y  m e t  because t h e  o v e r a l l  scale of t h e  f low 
is much l a r g e r  than t h e  d i s p e r s i v i t y  of the  formation. This i l l u s t r a t e s  the  
f a c t  t h a t  i n  f i e l d  a p p l i c a t i o n s  t h e  approximate s o l u t i o n s  u s u a l l y  genera te  
accep tab le  r e s u l t s .  Although t h e  s o l u t i o n  given by Gelhar and Col l ins  is a 
genera l  one, f o r  complicated v e l o c i t y  f i e l d s  it  becomes d i f f i c u l t  t o  e v a l u a t e  
t h e  v e l o c i t y  i n t e g r a l s .  Therefore, more simple approximate s o l u t i o n s  would be 
more d e s i r a b l e  f o r  p r a c t i c a l  app l i ca t ions .  

Brigham (1973) der ived simple equat ions  t o  desc r ibe  mixing i n  systems i n  which 
t h e  width of the  flow passage var ied  l i n e a r l y  wi th  the  d i s t a n c e  t r a v e l l e d .  
Although t h i s  might impose some r e s t r i c t i o n s  on t h e  a p p l i c a b i l i t y  of h i s  
equat ions ,  Brigham showed t h a t  by breaking t h e  flow system i n t o  segments i n  
which width was a l i n e a r  func t ion  of d i s t a n c e ,  and by repeated  use of h i s  
s o l u t i o n ,  mixing could be computed f o r  a v a r i e t y  of geometries. Despite t h e  
f a c t  t h a t  t h i s  method con ta ins  s e v e r a l  approximations, it has a d e f i n i t e  
advantage over numerical schemes and o the r  complex so lu t ions .  The method is 
simple,  f a s t  and produces r e l i a b l e  r e s u l t s .  

The preceeding survey on hydrodynamic d i spe r s ion  r e v e a l s  t h e  fo l lowing fac ts .  
Molecular d i f f u s i o n  and t r a n s v e r s e  d i spe r s ion  play n e g l i g i b l e  r o l e s  i n  t h e  
amount of mixing i n  misc ib le  displacements. An equat ion similar t o  Eq. 2.6 
can adequately desc r ibe  mixing i n  l i n e a r  and non- linear flow geometries f o r  
p r a c t i c a l  purposes. 

2.3 QUANTITATIVE ANALYSIS OF TRACER DATA 

The rest of t h i s  s e c t i o n  w i l l  focus on works which have d e a l t  wi th  quan t i t a-  
t i v e  a n a l y s i s  of tracer breakthrough p r o f i l e s  from petroleum and geothermal 
r e s e r v o i r s  and underground aqu i fe r s .  

2.3.1 Petroleum Reservoirs  

Perhaps Wallick and Jenkins  (1954) were t h e  earliest i n v e s t i g a t o r s  who t r i e d  
t o  e x t r a c t  q u a n t i t a t i v e  information about the  c h a r a c t e r i s t i c s  of a formation 
from tracer output  da ta .  They developed a t h e o r e t i c a l  method t o  compute t h e  
r e s u l t s  of a short- time tracer test.  In  t h i s ,  a pulse  of tracer material was 
i n j e c t e d  under s teady s ta te  flow condi t ions  i n t o  one w e l l  and w a s  de tec ted  a t  
a second well. In t h e  a n a l y s i s ,  t h e  r e s e r v o i r  was assumed t o  be homogeneous 
and i n f i n i t e l y  l a rge .  The d i spe r s ion  of tracer i n  t h e  formation was ignored,  
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meaning t h a t  t h e  tracer material d id  not mix with f l u i d s  ahead or behind i t .  
The t h e o r e t i c a l  computation of tracer concent ra t ion  p r o f i l e s  a t  t he  product ion 
w e l l  was then achieved by computing t h e  tracer t r a v e l  times on var ious  stream- 
l i n e s  of t h i s  i s o l a t e d  source- sink system. Therefore,  only convection was 
considered. Wallick and Jenkins appl ied  t h e i r  method t o  analyze the  r e s u l t s  
of a f i e l d  tracer tes t  i n  which helium was i n j e c t e d  wi th  a i r  i n t o  a r e s e r v o i r  
undergoing in- s i tu  combustion. The computed concent ra t ion  p r o f i l e  w a s  i n  
q u a l i t a t i v e  agreement with the  observed da t a ,  and the  average permeabi l i ty  and 
po ros i ty  va lues  computed f o r  t h e  formation were reasonably c l o s e  t o  those  
determined from core  da ta .  

Brigham and Smith (1965) performed a d e t a i l e d  q u a n t i t a t i v e  a n a l y s i s  on tracer 
e l u t i o n  curves f o r  developed f ive- spot  pa t t e rns .  F i r s t ,  they der ived  an 
equat ion  t o  compute t h e  tracer response curves f o r  a homogeneous developed 
f ive- spot  p a t t e r n  f o r  a s l u g  of tracer i n j e c t e d  i n t o  the  system. The deriva-  
t i o n  of t h i s  equat ion was accomplished by combining t h e  tracer d i spe r s ion  
e f f e c t s  wi th  the  areal sweep e f f e c t s  f o r  t h i s  p a r t i c u l a r  p a t t e r n .  The d isper-  
s i o n  e f f e c t s  were evaluated by approximating the  flow f i e l d  as r a d i a l  flow t o  
t h e  product ion w e l l  and us ing  t h e  simple mixing equat ion (Eq. 2- 6) f o r  r a d i a l  
flow systems. This approximation, however, introduced e r r o r s  i n  t h e  computa- 
t i o n  of d i spe r s ion  e f f e c t s .  Brigham and Smith extended t h e  t h e o r e t i c a l  
a n a l y s i s  t o  developed five- spot p a t t e r n s  with v e r t i c a l  v a r i a t i o n s  i n  t h e  
permeabi l i ty .  They modeled t h i s  type of r e s e r v o i r  as a s t a c k  of non- 
communicating homogeneous layers. The o v e r a l l  tracer breakthrough curve from 
t h i s  composite model was computed by volumetr ica l ly  adding the  tracer a r r iva l  
curves from ind iv idua l  l aye r s .  The model was appl ied  t o  analyze tracer 
breakthrough curves from a f i e l d  test conducted i n  a f ive- spot  p a t t e r n .  The 
computed tracer curves had the  same t r ends  as the  f i e l d  data .  To a r r i v e  a t  
these  matched curves,  Brigham and Smith used th ree  l a y e r s ,  and had t o  vary t h e  
permeabi l i ty  and th ickness  of the l a y e r s  by a t r i a l  and e r r o r  procedure. This 
process  was time consuming. 

Baldwin (1966) a l s o  analyzed the  f i e l d  tracer da t a  repor ted  by Brigham and 
Smith. He modeled the  r e s e r v o i r  wi th  twenty homogeneous, non-communicating 
l a y e r s  with permeabi l i ty  of l a y e r s  ranging from 34 t o  4200 md as determined 
from core  data .  Based on h i s  equat ions  f o r  r a d i a l l y  convergent- divergent 
flow, he ca l cu la t ed  a tracer response curve from t h i s  layer- cake model. 
Figure 8 of h i s  paper is  reproduced he re  as Fig. 2.3 t o  i l l u s t r a t e  t h e  
r e s u l t s .  The match is  good f o r  t he  e a r l y  po r t ion  of d a t a ,  but it dev ia t e s  
from the  later  da t a  appreciably.  Since the  major po r t ion  of tracer flow is  i n  
t h e  high permeable zones, the  low permeabil i ty  values used by Baldwin are not 
important.  In r e a l i t y ,  Baldwin's match is  wi th  fewer than  20 l a y e r s .  

Yuen et  a l .  (1979) rev ised  Brigham and Smith's a n a l y t i c a l  s o l u t i o n  t o  inc lude  
the  e T e x  of diverging-converging flow on d ispers ion .  Based on the  r ev i sed  
s o l u t i o n ,  a computer program was developed which would decompose an o v e r a l l  
tracer curve from a mul t i l aye r  developed five- spot p a t t e r n  i n t o  the  cons t i t u-  
t i n g  l a y e r  responses,  and compute $h and kh/Ckh of t he  layers .  The a lgor i thm 
could handle four  l aye r s .  As i npu t ,  peak da t a  (concent ra t ion  and volume) of 
tracer breakthrough curves from t h e  l a y e r s  were required.  Yuen e t  a l .  
demonstrated t h a t  peak l o c a t i o n s  i n  t he  o v e r a l l  tracer e f f l u x  curve did not  
correspond exac t ly  t o  peak l o c a t i o n s  i n  t h e  ind iv idua l  l a y e r  responses.  
Therefore,  t h e  peak d a t a  f o r  t he  l a y e r s  had t o  be determined by a t r ia l- and-  
e r r o r  procedure. 

-- 
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Fig. 2.3: MATCH To PRODUCED TRACER CONCENTRATION FOR WELL A, 
REPORTED BY SMITH AND BRIGHAM, AFTER BALDWZN (1966) 

t a l ' s  work was modified by Brown and Brigham (1981) t o  handle l a r g e r  
number of l aye r s .  This modified algori thm was used t o  analyze one of t h e  
tracer breakthrough curves reported by Brigham and Smith (1965). Several  
matches were obtained with d i f f e r e n t  numbers of l a y e r s ,  t he  bes t  match being 
wi th  t en  l aye r s .  The method is use fu l  but cumbersome as it requ i r e s  many 
t r ia l s  t o  ob ta in  the  optimum match f o r  any chosen number of l aye r s .  

. -- 

2.3.2 Underground Aquifers 

Besides petroleum engineers ,  hydro log i s t s  have a l s o  been i n t e r e s t e d  i n  
de f in ing  a q u i f e r s  i n  adequate d e t a i l .  Halevy and N i r  (1962) introduced a 
p u l s e  of r ad ioac t ive  Co60 i n  t h e  form of K ~ C O ( C N ) ~  i n t o  a f a i r l y  homogeneous 
a q u i f e r  and cont inously recorded a c t i v i t y  of t h e  water a t  a pumped w e l l  
l oca t ed  250 meters from the  inpu t  w e l l .  This test d i f f e r e d  from usua l  i n t e r -  
w e l l  tracer tests because the  i n j e c t e d  batch of tracer was not  d i sp laced  by a 
chase f l u i d .  Ins tead ,  the  tracer flowed towards the  pumped w e l l  as a r e s u l t  
of r eg iona l  pressure  g rad ien t s  e s t ab l i shed  by t h e  pumping ac t ion .  Since t h e  
f low f i e l d  was e s s e n t i a l l y  r a d i a l ,  it was assumed t h a t  produced tracer peak 
concent ra t ion  occurred a f t e r  pumping a volume equal  t o  t he  c y l i n d r i c a l  pore 
volume between the  observat ion w e l l  and the  pumped w e l l .  Po ros i ty  of t he  
a q u i f e r  was subsequently ca l cu la t ed  from t h i s  peak tracer volume. This w a s  
f e a s i b l e  because formation th ickness  had a l r eady  been determined from 
geo log ica l  da ta .  Halevy and N i r  neg lec ted  d i spe r s ion  of tracer. This 
s i m p l i f i c a t i o n  de t r ac t ed  from t h e  accuracy of t h e i r  r e s u l t s .  
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A similar test was conducted by Mercado and Halevy (1966) i n  a shal low 
s t r a t i f i e d  aqu i f e r .  The same r a d i o a c t i v e  material was i n j e c t e d  through a 
dua l ly  completed observat,ion w e l l .  The tracer a r r i v a l  curve ind ica t ed  t h a t  
t he  a q u i f e r  was composed of four  d i s t i n c t  l aye r s .  The permeabil i ty- thickness  . 
product of l a y e r s  and average po ros i ty  of the formation were computed from an 
a n a l y s i s  based on the  method i l l u s t r a t e d  by Halevy and N i r  (1962). Tracer 
d i spe r s ion  e f f e c t s  as w e l l  as i n t e r a c t i o n  of tracer response curves from 
ind iv idua l  l a y e r s  were neglected.  These assumptions are u n r e a l i s t i c ,  and 
the re f  o r e  reduce the  accuracy of t he  r e s u l t s  . 
Zaghi (1977) extended Wallick and Jenkins '  (1954) work f o r  a case of n ine  
double ts  (n ine  i n j e c t o r s  and nine producers)  unequally spaced i n  a d i r e c t  
l ine- dr ive  fashion.  He assumed t h a t  t h e  tracer d i spe r s ion  w a s  n e g l i g i b l e  and 
as a r e s u l t ,  t he  tracer had sharp  i n t e r f a c e s  wi th  the  contacted f l u i d s  ahead 
and behind. He developed a computer program t o  c a l c u l a t e  the  breakthrough 
curves both f o r  t he  leading  and the  t r a i l i n g  edges of the  tracer s l u g  at the  
product ion w e l l s .  The e f f l u e n t  tracer concent ra t ion  curve a t  each product ion 
w e l l  was  then the  d i f f e r ence  of t hese  two breakthrough curves a t  t h a t  w e l l .  
Although t h i s  a n a l y s i s  c o r r e c t l y  included the  convect ive e f f e c t s  i n  t h e  
t r a n s p o r t  of tracer material, a neglec t  of t he  t r a c e r  mixing e f f e c t s  d id  not 
genera te  accu ra t e  tracer concent ra t ion  curves a t  the  wells. 

Ivanovich and Smith (1978) included d i spe r s ion  e f f e c t s  i n  analyzing tracer 
d a t a  from a p i l o t  i n v e s t i g a t i o n  of an underground aqu i f e r .  The procedure f o r  
t h e  tes t  was the same as the  one reported by Halevy and Nir except t he  tracer 
used was Br . The tracer concent ra t ion  p r o f i l e  de tec ted  a t  t he  pumped w e l l  
i nd i ca t ed  t h a t  a t  least  two d i f f e r e n t  responses had been superimposed on each 
o ther .  A s t a t i s t i c a l  model was used t o  f i t  the  observed f i e l d  d a t a  with two 
one-dimensional d i spe r s ion  equat ions.  A s  a r e s u l t  of the  a n a l y s i s ,  the  l a y e r s  
had d i f f e r e n t  d i spe r s ion  cons t an t s ,  pe rmeab i l i t i e s ,  p o r o s i t i e s  and average 
l i n e a r  v e l o c i t i e s .  The v e l o c i t i e s  were considered t o  be along the  l i n e  
j o i n i n g  the  input  and the  pumped w e l l s .  

82 

The main drawback i n  t h i s  a n a l y s i s  was the  use of an u n i d i r e c t i o n a l  d i spe r s ion  
equat ion i n  t he  s t a t i s t i ca l  model. For a r a d i a l  drawdown, such as t h i s  one, 
t h e  s t reaml ines  are not l i n e a r  and the  a c t u a l  amount of d i spe r s ion  caused by 
non-uniform v e l o c i t y  f i e l d  is d i f f e r e n t  from t h a t  pred ic ted  by one-dimensional 
models . 
2.3.3 Geothermal Reservoirs  

Geologic c h a r a c t e r i s t i c s  of geothermal r e s e r v o i r s  can a l s o  be revealed through 
d e t a i l e d  a n a l y s i s  of tracer tests conducted i n  geothermal formations. Unlike 
petroleum r e s e r v o i r s ,  most geothermal r e s e r v o i r s  are h ighly  f r a c t u r e d  and the  
f r a c t u r e s  are connected t o  each o the r  forming a network of channels (Horne, 
1981). Short c i r c u i t i n g  and e a r l y  appearance of i n j e c t e d  material a t  t h e  
product ion wells are common. A response from an i n j e c t e d  pulse  of tracer i s  
gene ra l ly  de tec ted  i n  a matter of hours and the  response curve usua l ly  has a 
s i n g l e  peak wi th  a long t a i l .  Although methods developed t o  analyze geo- 
thermal tracer d a t a  are somewhat d i f f e r e n t  from those  of sedimentary 
formations,  the  bas i c  i deas  are the  same. 
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Tester et  a l .  (1979) concluded t h a t  a tracer response curve from a hydraul- 
i c a l l y  f f a z u r e d  g r a n i t i c  geothermal r e s e r v o i r  was a l s o  a combination of 
several responses,  each p r r i v i n g  from a subzone of the  formation. A f i e l d  
test conducted with a p a i r  of i n j e c t i o n  and production wells us ing  B r a 2  
and Irff as r ad ioac t ive  tracers. Tester et a l .  proposed a mathematical model 
i n  which the  r e s e r v o i r  was assumed t o  be composed of several porous zones, 
each zone being homogeneous but d i f f e r e n t  i n  c h a r a c t e r i s t i c s  from others .  In 
t h i s  model, a two-dimensional convect ive d i f f u s i v i t y  equat ion ,  wi th  d i s p e r s i o n  
c o e f f i c i e n t s  being p ropor t iona l  t o  f l u i d  v e l o c i t y  in each d i r e c t i o n ,  was 
solved t o  compute the  tracer response p r o f i l e  from a homogeneous l a y e r .  The 
a n a l y s i s  of tracer f i e l d  d a t a  was performed b a s i c a l l y  by curve f i t t i n g  the  
observed f i e l d  d a t a  wi th  those computed from t h e  model. The curve f i t t i n g  
process  au tomat ica l ly  generated t h e  parameters of t he  zones. 

. 

-- 

Horne and Rodriguez (1981) derived an a n a l y t i c  express ion  t o  desc r ibe  the  f low 
of tracers i n  a s i n g l e  f r a c t u r e d  system. Based on Taylor 's (1953) classic 
work of convect ive d i spe r s ion  i n  pipe flow, they obtained an  e f f e c t i v e  longi-  
t u d i n a l  d i spe r s ion  c o e f f i c i e n t  f o r  tracer flow i n  a f r a c t u r e .  Horne and 
Rodriguez matched a tracer response curve from a geothermal f i e l d  wi th  t h e i r  
model and computed the  width and l eng th  of the  f r a c t u r e  d i r e c t l y .  Although 
the  match d id  not inc lude  the  t a i l  end of t he  d a t a ,  it was pos tu l a t ed  t h a t  a 
mul t ip l e  f r a c t u r e  model similar t o  Tester's (1979) multizone or Brigham and 
Smith' (1965) mul t i l aye r  model could be developed which would match a l l  t he  
d a t a  c lose ly .  

2.4 SUMMARY 

From t he  preceding l i t e r a t u r e  survey,  it becomes evident  t h a t  flow of tracers 
i n  any formation--whether it be a petroleum, a geothermal o r  an underground 
aquifer--can reveal d e t a i l e d  information about t he  r e s e r v o i r  which may other-  
w i s e  be una t t a inab le .  This information can gene ra l ly  be obtained from a 
d e t a i l e d  mathematical a n a l y s i s  of a tracer breakthrough curve. In  most of t he  
ana lyses ,  the  convective d i f f u s i v i t y  equat ion has been solved i n  some geometry 
t o  inc lude  d i spe r s ion  of a tracer and some flow p a t t e r n  has been assumed t o  
t ake  i n t o  cons idera t ion  the  areal movement of t he  tracer. The accuracy of t h e  
methods depends on how w e l l  d i spe r s ion  is defined and whether t h e  assumed 
f lowl ines  are c l o s e  t o  t he  t r u e  s t reaml ines .  However, i n  most of t h e  previous 
works, e i t h e r  d i spe r s ion  has not  been formulated c o r r e c t l y  (even sometimes 
neglec ted)  o r  the  flow f i e l d  has been approximated by too simple and unrea- 
l i s t i c  flow geometries. 

Methods developed t o  analyze complex tracer breakthrough curves have only been 
f o r  bounded ( repea ted)  f ive- spot  p a t t e r n s .  These methods gene ra l ly  r e q u i r e  a 
d i r e c t  and lengthy i n t e r a c t i o n  wi th  the  computer i n  order  t o  genera te  a good 
match t o  t h e  tracer product ion d a t a  from f ive- spot  p a t t e r n s .  In  t h e s e  
methods, d i spe r s ion  of tracer has not been formulated accura te ly .  No s t u d i e s  
of tracer breakthrough curves f o r  o the r  p a t t e r n s  have been repor ted .  It was 
t h e  purpose of t h l s  s tudy t o  develop a method which would adequately analyze 
tracer breakthrough curves not  only f o r  developed five- spot p a t t e r n s  but a l s o  
f o r  o the r  common developed f looding  pa t t e rns .  It was a l s o  t h e  goal  of t h i s  
research  t h a t  t he  a n a l y s i s  technique be f r e e  of cumbersome t r ia l- and- error  
procedures.  
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3. METHOD OF SOLUTION 

This s e c t i o n  provides a mathematical a n a l y s i s  of tracer flow i n  s e v e r a l  
bounded f looding  p a t t e r n s  f o r  a mobi l i ty  r a t i o  of uni ty .  The s e c t i o n  is  
divided i n t o  t h r ee  main p a r t s .  I n  t he  f i r s t ,  a n a l y t i c  equat ions  are der ived 
t o  de f ine  t he  performance of the  f looding  p a t t e r n s  f o r  immiscible d i sp lace-  
ments wi th  u n i t  mobi l i ty  r a t i o .  I n  t h i s  p a r t ,  an attempt has a l s o  been made 
t o  extend the  a n a l y t i c a l  ana lys i s  f o r  mobi l i ty  r a t i o s  o the r  than one. The 
second p a r t  covers t he  flow of a t r a c e r  s l u g  i n  homogeneous r e s e r v o i r s .  
Tracer  d i spe r s ion  e f f e c t s  are mathematically superimposed on the  immiscible 
p a t t e r n  breakthrough curves t o  genera te  tracer production curves.  The 
a n a l y t i c a l l y  defined tracer production curves are co r r e l a t ed  i n t o  a s i n g l e  s e t  
of curves which represen ts  t r a c e r  flow i n  var ious  pa t t e rn s .  The las t  p a r t  of 
t h i s  s e c t i o n  s t u d i e s  t r a c e r  breakthrough curves from non-communicating, 
s t r a t i f i e d  r e se rvo i r s .  A technique developed t o  analyze t r a c e r  response 
curves f o r  these  systems is  presented.  

3.1 PATTERN PERFORMANCE 

The a r e a l  movement of displacement f l u i d s  is the  prime f e a t u r e  i n  t he  recovery 
performance of a pa t t e rn .  I n  gene ra l ,  t h i s  is  charac te r ized  by a p a t t e r n  
breakthrough curve,  o r  a r e a l  sweep e f f i c i e n c y  curve. This s ec t i on  i l l u s t r a t e s  
t he  a n a l y t i c a l  de r iva t i on  and c o r r e l a t i o n  of these  curves f o r  a v a r i e t y  of 
repeated f looding pa t t e rns .  

3.1.1 Steadv Multi-Well Flow Theorv 

A s  was discussed i n  t he  l i t e r a t u r e  review, the  t r anspo r t  of t r a c e r  s o l u t i o n s  
i n  any flow system is sub jec t  t o  convection and d i spers ion .  Convection 
r ep re sen t s  t he  gross  movement of f l u i d s  i n  t he  system. Its e f f e c t s  are 
obtained from displacements i n  which sharp f r o n t s  between the  f l u i d s  are 
preserved. To i l l u s t r a t e  t h i s  po in t ,  consider  a five- spot p a t t e r n  i n i t i a l l y  
f i l l e d  with  f l u i d  A. Fluid  B is i n j e c t e d  i n t o  t he  p a t t e r n  cont inuously t o  
d i sp l ace  f l u i d  A with a sharp f r o n t .  Figure 3.la shows the  l o c a t i o n  of f l u i d  
B i n  t he  system a f t e r  i n j e c t i n g  a d e f i n i t e  volume of t he  f l u i d .  The break- 
through curve descr ib ing  the  f r a c t i o n  of f l u i d  B i n  t he  producing stream at  a 
production w e l l  is given I n  Fig. 3.lb. As t h i s  f i g u r e  shows, t h e r e  is no 
product ion of B u n t i l  breakthrough, a f t e r  which production of B rises s t e e p l y  
and approaches 100% asymptot ical ly .  This s i t u a t i o n  corresponds t o  t he  f i l l - u p  
of t he  e n t i r e  p a t t e r n  by f l u i d  B. The shape of the  curve i n  Fig. 3. lb is a 
func t ion  of two parameters: t he  geometry of t he  p a t t e r n ,  and the  mobi l i ty  
r a t i o  of t he  f l u i d s .  

Consider another  case i n  which a s l u g  of f l u i d  B is i n j e c t e d  i n t o  t he  same 
p a t t e r n  and then followed by f l u i d  A as shown i n  Fig. 3.2a. Because sharp  
f r o n t s  are assumed between B/A and A/B, t he  breakthrough curve f o r  A d i s-  
plac ing  B is i d e n t i c a l  i n  shape t o  t he  curve i n  Fig. 3. lb except t h a t  i t  l a g s  
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by an amount equal  t o  t he  volume of s l u g  B. Figure 3.2b shows the  t h e o r e t i c a l  
breakthrough curves f o r  B d i sp l ac ing  A and f o r  A d i sp l ac ing  B. The break- 
through curve f o r  f l u i d  B is  then  the  d i f f e r ence  of these  two curves.  This is  
i l l u s t r a t e d  as a shaded p r o f i l e  i n  Fig. 3.2b. The peak concent ra t ion  ( o r  
f r a c t i o n )  of B produced from t h i s  system is considerably less than t h e  concen- 
t r a t i o n  f lowing i n  the  r e s e r v o i r  which is  100 percent .  The d i l u t i o n  of B is  
t h e  r e s u l t  of convection o r  areal sweep e f f e c t s .  For t he  case where B is  
misc ib l e  with A, d i spe r s ion  e f f e c t s  are imposed on the  shaded curve, hence, 
causing f u r t h e r  d i l u t i o n .  The broken- line p r o f i l e  i n  t h e  same f i g u r e  shows 
t h e  breakthrough curve for  f l u i d  B from t h i s  p a t t e r n  wi th  d i s p e r s i o n  
e f f e c t s .  To conserve a material balance,  t he  areas under t hese  two curves 
must be equal.  

I n  e a r l y  phases of t h i s  r e sea rch ,  it w a s  specula ted  t h a t  any t h e o r e t i c a l  
d e s c r i p t i o n  of tracer flow i n  p a t t e r n s  must be r e l a t e d  t o  t h e  p a t t e r n  
breakthrough curves such as the  one shown i n  Fig. 3.lb. Therefore,  an at tempt  
was made t o  desc r ibe  the  p a t t e r n  breakthrough curves a n a l y t i c a l l y  f o r  s e v e r a l  
common, bounded, f looding  p a t t e r n s  a t  a mobi l i ty  r a t i o  of un i ty .  

3.1.2 P a t t e r n  Breakthrounh Curves 

Any mathematical d e s c r i p t i o n  of f l u i d  movement i n  a flow system requ i r e s  a 
knowledge of a p o t e n t i a l  f i e l d  f o r  t h a t  system. For single- phase s teady  flow, 
t h e  p o t e n t i a l  f i e l d  can usua l ly  be obtained e i t h e r  from a s o l u t i o n  of the  
Laplace equat ion  with app ropr i a t e  boundary condi t ions ,  o r  by a p p l i c a t i o n  of 
t h e  superpos i t ion  p r i n c i p l e  as ind ica t ed  by Muskat (1949) and P r a t s  -- et a l .  
(1955). General ly ,  it  is  s impler  t o  so lve  the  problem i n  a complex plane and 
de r ive  an expression f o r  t h e  complex p o t e n t i a l  of t he  geometry. This  expres- 
s i o n  can be decomposed i n t o  a real p a r t  and an imaginary pa r t .  The real p a r t  
i s  the  equat ion f o r  t h e  p o t e n t i a l  d i s t r i b u t i o n  (p ropor t iona l  t o  p r e s s u r e s ) ,  
and the  imaginary p a r t  i s  the  stream funct ion .  Morel-Seytoux (1966) provides 
t h e  complex p o t e n t i a l s  f o r  a v a r i e t y  of f looding pa t t e rns .  Although he does 
not g ive  t h e  pressure  and stream func t ions  f o r  a l l  p a t t e r n s ,  they can be 
gene ra l ly  der ived from the  complex p o t e n t i a l s .  

Since stream funct ions  are a v a i l a b l e  o r  can be cons t ruc ted  for a v a r i e t y  of 
flow p a t t e r n s ,  it is f e a s i b l e  t o  descr ibe  t h e  displacement of two f l u i d s  i n  
d i f f e r e n t  p a t t e r n s  mathematically.  The displacements are assumed t o  be of 
u n i t  mobi l i ty  r a t i o  and p is ton- l ike .  F lu ids  are assumed incompressible  and 
g r a v i t y  and c a p i l l a r y  e f f e c t s  are neglected.  The fol lowing genera l  procedure 
is  used t o  de r ive  t h e  a n a l y t i c  express ions  f o r  t h e  breakthrough curve 
(d i sp l ac ing  f l u i d  cut  versus pore volumes i n j e c t e d )  of any p a t t e r n :  

1) Compute t h e  time requi red  f o r  a p a r t i c l e  t o  t r a v e l  from t h e  i n j e c t i o n  
w e l l  t o  a product ion w e l l  on a genera l  s t reaml ine  of a p a t t e r n .  This  is  
t h e  breakthrough time f o r  t h a t  s t reaml ine .  

2) Mult iply the  breakthrough time by the  i n j e c t i o n  rate and d iv ide  by t h e  
p a t t e r n  area t o  ob ta in  t h e  pore volumes i n j e c t e d  at breakthrough of t h a t  
s t reaml ine .  
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3) Compute t he  angle at which the  considered s t reaml ine  e n t e r s  t he  produc- 
t i o n  wel l  or leaves  t he  i n j e c t i o n  w e l l .  Divide t h i s  angle  by the  t o t a l  
angle  sub j ec t  t o  flow a t  e i t h e r  t he  production or  i n j e c t i o n  w e l l  t o  
ob t a in  t he  d i sp l ac ing  f l u i d  cu t  a t  t he  producing stream. This calcu-  
l a t i o n  is  co r r ec t  because f o r  mobi l i ty  rat io of one, t he  t o t a l  flow rate 
of each f l u i d  is propor t iona l  t o  t he  t o t a l  ang le  from which each f l u i d  
e n t e r s . t h e  production wel l .  The ca l cu l a t ed  cu t  corresponds t o  t he  pore 
volume determined i n  item 2. 

The mathematical formulat ion of breakthrough curves f o r  fou r  bounded homo- 
geneous patterns- - staggered l i n e  d r i v e ,  f ive- spot ,  d i r e c t  l i n e  d r i v e  and 
inve r t ed  seven-spot--are given i n  Appendices A. 1, A.2, A.3, A.4, respec- 
t i v e l y .  Figure  3.3 shows breakthrough curves f o r  t he se  f o u r  p a t t e r n s .  
Staggered l i n e  d r ive  and d i r e c t  l i n e  d r ive  p a t t e r n s  have d i f f e r e n t  break- 
through curves depending on t h e i r  d / a  r a t i o s .  The r a t i o  d /a  r ep re sen t s  t he  
r a t i o  of t he  d i s t ance  between t h e  un l ike  w e l l s  (an i n j e c t o r  and a producer) t o  
the  d i s t ance  between l i k e  wel l s  (two i n j e c t o r s  or  two producers).  

These r e s u l t s  a r e  u se fu l  i n  computing o i l  recovery from displacement processes  
wherein the  assumption of u n i t  mobi l i ty  r a t i o  can be j u s t i f i e d .  However, f o r  

ca l cu l a t i ons ;  areal sweep e f f i c i e n c y  versus  pore volume of d i sp l ac ing  

1.0 

0.8 

0.6 

0.4 

0 . 2  

0 

- - 

- - 
Direc t  Line Drive,  I! = 1 -- 

a 
e..... Five Spot  - 
--- Inver ted  Seven Spot 

- Staggered Line Drive,  - = 1 d 
a - 

0.5  1.0 1.5 

PORE VOLUMES INJECTED, VpD 

2.0 

Fig. 3.3: PATTERN BREAKTHROUGH CURVES FOR DEVELOPED SYSTEMS, 
MOBILITY RATIO = 1 
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f l u i d  i n j e c t e d  would be more use fu l .  Areal sweep e f f i c i e n c y  may be computed 
from the  fol lowing (Craig,  1971): 

-. - 
b 

( 1  - f D )  dVpD 

= v  pDbt +/" (1 - f D )  dVpD 

'pDbt 
where, 

EA = areal sweep e f f i c i e n c y  

fD = d i sp l ac ing  f l u i d  cut  i n  t h e  product ion stream 

VpDbt = breakthrough pore volume or  breakthrough areal sweep 
e f f i c i e n c y  

VpD = d i sp l ac ing  pore volume corresponding t o  c u t ,  fD 

This i n t e g r a l  corresponds t o  t he  area above the  curves i n  Fig. 3.3. It i s  
a l t e r n a t i v e l y  given by: 

The in tegrand  is a func t ion  of f D  and the  func t iona l  r e l a t i o n s h i p s  are given 
i n  Appendix A f o r  var ious  pa t t e rns .  The r e s u l t s  of i n t e g r a t i o n  are shown i n  
Fig. 3.4. 

3.1.3 Cor re l a t ion  of Pa t t e rn  Breakthroueh Curves 

For p a t t e r n s  o the r  than those included i n  t h i s  s tudy ,  t he  same d e r i v a t i o n s  
must be performed t o  ob ta in  a breakthrough curve similar t o  the  curves i n  Fig. 
3.3. However, it would be d e s i r a b l e  t o  relate a l l  p a t t e r n  breakthrough curves 
and f i n d  a genera l  c o r r e l a t i o n  which would be app l i cab le  f o r  a l l  p a t t e r n s .  
Previous ly ,  Morgan (1977) I n  cont inua t ion  of Morales' (1975) work concluded 
t h a t  the  breakthrough curves f o r  d i f f e r e n t  p a t t e r n s  could poss ib ly  be corre-  
l a t e d  i n t o  a s i n g l e  curve f o r  each mobi l i ty  r a t i o  of displacement.  The 
parameter t h a t  was used i n  t h e  c o r r e l a t i o n  w a s  a dimensionless  q u a n t i t y  
def ined  as: 

'pD - 'pDbt PVD - - 'pDbt 
(3-3) 

The PVD term w i l l  be r e f e r r e d  t o  as dimensionless pore volume i n  t h i s  s tudy.  
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Fig. 3.4: AREAL SWEEP EFFICIENCY CURVES FOR DEVELOPED PATTERNS, 
MOBILITY RATIO = 1 

Morgan was working with l im i t ed  experimental  da t a ,  he could not confirm 
t h e  accuracy of t he  c o r r e l a t i o n ,  al though it  appeared t o  be reasonably 
accura te .  I n  t h i s  s tudy,  however, it  is demonstrated t h a t  by using t h e  
dimensionless parameter def ined by Eq. 3-3, a l l  the  a n a l y t i c a l l y  def ined  
p a t t e r n  breakthrough curves co l l apse  i n t o  v i r t u a l l y  a s i n g l e  curve as shown i n  
Fig.  3.5.  Staggered l i n e  d r i v e  and d i r e c t  l i n e  d r i v e  p a t t e r n s  with  var ious  
d/a  r a t i o s  are a l l  included i n  t h i s  s i n g l e  co r r e l a t i on .  A s i m p l e  equat ion f o r  
t he  curve i n  Fig. 3.5 is  obtained by a non- linear cu rve- f i t t i ng  method, as 
fol lows : 

Equation 3-4 y ie ld s  a maximum e r r o r  of 2% i n  fD f o r  a l l  t he  curves,  except f o r  
very e a r l y  p a r t s  of the  curves where the  e r r o r  is la rge .  

A comparison of t h e  experimentally-measured d a t a  wi th  t he  a n a l y t i c a l l y  
computed and co r r e l a t ed  curve is i l l u s t r a t e d  i n  Fig. 3.6. The da t a  f o r  t h e  
f ive- spot ,  d i r e c t  l i n e  d r ive  and the  s taggered l i n e  d r ive  have been taken from 
Dyes -- et  al.  (1954). The da t a  f o r  t he  inver ted  seven-spot p a t t e r n  are from 
Guckert (1961). Figure 3.7 shows a comparison of r e s u l t s  f o r  a repeated f i ve-  
spot  p a t t e r n  where s eve ra l  i n v e s t i g a t o r s  have repor ted  e i t h e r  numerical o r  
experimental  d a t a  f o r  t h e  performance of t h i s  p a t t e r n  (Fay and P r a t s ,  1951; 
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Fig, 3.7 : COMPARISON OF THE CORRELATED PATTERN BREAKTHROUGH CURVE AND 
DEVELOPED FIVE-SPOT DATA, MOBILITY RATIO = 1 

Dyes -- et al., 1954; and Caudle and Witte, 1959). The dashed curve in this 
figure has been obtained by differentiating the equation for the areal sweep 
efficiencies reported by Craig _.- et al. (1955). It is believed that the 
deviations of data from the analytic curve are due to smearing of the 
displacement fronts by capillary forces (immiscible displacements) or mixing 
(miscible displacements). Experimental errors also contribute to the 
deviations. 

The curves in Fig. 3 .4  can also be correlated into a single curve. This 
requires defining another parameter, called dimensionless areal sweep 
efficiency, as follows: 

where : 

EAbt = breakthrough areal sweep efficiency = VpDbt 

The correlation i s  shown in Fig. 3.8. The equation for this curve obtained by 
a non-linear curve-fitting routine is: 

0 .9273  - 0.74 13( PVD) 
E m = l - e  ( 3 - 6 )  
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Fig.  3.8: CORRELATION OF AREAL SWEEP EFFICIENCY CURVES OF DEVELOPED - 
PATTERNS, 

A c o r r e l a t i o n  of f D  and 
i s  provided i n  Fig. 28 t o complete t he  set 

of c o r r e l a t i o n s .  Also 
shown i n  t h i s  f i g u r e  is  
t h e  c o r r e l a t i o n  o r i g i-  
n a l l y  reported by Morgan 
(1977). Tables 3.1 
through 3.4 g ive  t he  
numerical values  of t he  
dimensionless pore vol-  
umes and the  dimension- 
less areal sweep e f f i -  
c i e n c i e s  f o r  d i f f e r e n t  
p a t t e r n s .  Comparison of 
t he se  values  f o r  t h e  
var ious  p a t t e r n s  shows 
t h e  accuracy of the  cor- 
r e l a t i o n s .  

The f a c t  t h a t  t he  break- 
through curves and areal 
sweep curves f o r  a l l  t he  
p a t t e r n s  s tud ied  could 
be condensed i n t o  s i n g l e  
curves is important f o r  
r ap id  c a l c u l a t i o n  of 
recover ies  by f looding.  

MOBILITY RATIO = 1 

0 0.2  0.4 0.6 0.8 1 .o 

Fig. 3.9: CORRELATION OF DISPLACING F L U I D  CUT VS 
DIMENSIONLESS AREAL SWEEP EFFICIENCY, 
DEVELOPED PATTERNS AND MOBILITY RATIO = 1 
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From these  r e s u l t s ,  one could expect t h a t  t he  genera l ized  curves of Figs.  3.5 
and 3.8 o r  3.9 would be v a l i d  f o r  any balanced p a t t e r n s .  Thus, one of the 
c o r r e l a t e d  curves could be used as a basis f o r  post-breakthrough c a l c u l a t i o n  
of recovery versus volume i n j e c t e d  f o r  f l oods  without r e s o r t i n g  t o  complex 
modeling ca l cu la t ions .  

Table 3.1 

VALUES OF BREAKTHROUGH AND AREAL SWEEP EFFICIENCY CURVES FOR 
A DEVELOPED FIVE-SPOT, MOBILITY RATIO = 1 

f D  --- 
0.00 
0.05 
0.10 

0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 

0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

PD 
V 

-------- 
0.71777 
0.71887 
0.72222 

0.72786 
0.73589 
0.74645 
0.75976 
0.77608 
0.79576 
0.81926 

0 A4720 
0.88038 
0.91993 
0.96742 
1.02514 
1.09666 
1.18789 
1.30986 
1.48714 
1.79710 

pvD _------- 
0.00000 

0.00391 
0.01576 

0.03573 
0.06419 
0.10164 
0.14880 
0.20661 
0.27634 

0.35961 
0.45860 
0.57617 
0.71630 
0.88456 
1.08908 
1.34248 
1.66572 
2.09791 
2.72604 
3.82430 

EA -_------  
0.71777 
0.71884 
0.72192 
0.72684 
0.73346 
0.74164 
0.75128 
0.76228 
0.77456 

0.78806 
0.80270 
0.81844 
0.83522 

0.85299 
0.87170 
0.89130 
0.91173 
0.93291 
0.95475 
0.97709 

-------  
0 .ooooo 
0.00378 
0.01471 

0.03215 
0.05559 
0.08457 
0.11872 

0.15700 
0.20123 

0.24905 
0.30094 
0.35671 
0.41616 

0.47912 
0 34542 
0.61486 
0.68724 
0.76230 

0.83968 
0.91883 
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Table 3.2 

VALUE OF BREAKTHROUGH AND AREAL SWEEP EFFICIENCY CURVES FOR A 
DEVELOPED ItNERTED SEVEM-SPOT, MOBILITY RATIO 1 

f D  --- 
0 .oo 
0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.35 

0.40 

0.45 

0.50 

0.55 

0.60 

0.65 

0.70 

0.75 

0.80 

0.85 

0.90 

0.95 

V 
PD 

0.74368 

0.74470 

0.74778 

0.75297 

0.76036 

0.77007 

0.78230 

0.79728 

0.81532 

0.83683 

0.86237 

0.89265 

0.92869 

0.97187 

1.02426 

1.08905 

1.17153 

1.28162 

1.44137 

1.72088 

-------- pvD EA ' . . . . . . . . . . . . . . . . . . . . . . .  
0 .ooooo 0.74368 0 .ooooo 
0.00390 0.74458 0.00350 

0.01592 0.74703 0.01305 

0.03616 0.75156 0.03072 

0.06499 0.75760 0.05447 

0.10290 0.76517 0.08382 

0.15061 0.77403 0.11838 

0.20905 0.78412 0.15775 

0.27942 0.79538 0.20168 

0.36337 0.80774 0.24990 

0.46299 0.82112 0.30214 

0.58116 0.83549 0.35818 

0.72175 0.85077 0.41781 

0.89025 0.86694 0.48087 

1.09467 0.88392 0.54713 

1.34744 0 .go168 0.61642 

1.66927 0.92014 0.68843 

2.72209 0.93925 0.76301 

2.72209 0.95894 0.83981 

3.81263 0.97908 0.91838 

3.1.4 

Displacement of f l u i d s  with unequal m o b i l i t i e s  d i f f e r s  from s i n g l e  phase flow 
(mobi l i ty  r a t i o  equal  t o  one) f o r  two reasons.  F i r s t ,  t h e  o v e r a l l  r e s i s t i v i t y  
t o  f l u i d  flow depends on t h e  l o c a t i o n  of displacement i n t e r f a c e .  This impl ies  
t h a t  f o r  a constant  flow r a t e  displacement,  t he  p ressure  drop between an 
i n j e c t i o n  w e l l  and a production w e l l  v a r i e s  con t inua l ly  as t h e  displacement 
f r o n t  advances towards t he  production w e l l .  For a favorab le  mobi l i ty  r a t i o  
(M < l), the  pressure  drop inc reases  while f o r  an unfavorable m b i l i t y  r a t i o  
(M > 1) it decreases.  Second, p o t e n t i a l  d i s t r i b u t i o n s  i n  the  d i sp laced  region 

P a t t e r n  Breakthrough Curves f o r  Non-Unit Mobili ty Rat io  

- 26 - 



n 
2 

m 
*a 

P a w 

a 
W 

n 
& 

> 

0 

0 

0 

8 
? 

m 
m m 
I- 
I- 

0 

0 
0 
0 

8 
0 

m 
m m 
I- 
I- 

0 

0 
0 
0 
0 

0 
3 

U m 
W 
0 
I- 

0 

0 
0 
0 
0 

0 
? 

U m 
W 
0 
I- 

O 

0 
0 
0 
0 

0 
9 

W m 
W m 
0 

m 

0 

0 

0 

8 
9 

W m 
W m 
0 

m 

0 

0 
9 

0 
0 
U 
0 x 
U m 
0 
OD 
I- 

d 

m 
U 
U 
0 

0 
9 

I- m 
0 
OD 
I- 

0 

m 
N : 
? 
0 

m m 
I- 
0 
I- 

O 

0 
U 
U 
0 

0 
? 

U 
W 
I- 
0 
I- 

d 

I- 
I- m 
0 

0 
? 

2 
? 
rl 
I- 

0 

g 
? 

3 

m 
0 

0 

rl 
I- 
m 
0 

m 

0 
9 

I - m  \ D m  
W W  r l m  

0 0  
9 9  

L 

I- 
O 
Irl 
OD 
I- 

0 

rD 
OD 
I- 
rl 

0 
? 

m m m 
W 
I- 

0 

W 
U 
W 
rl 

0 
? 

W 
rl 
rl 
rl 
I- 

O 

W 
W 
I- 
rl 

0 
? 

m m 
rl 
rl 
I- 

0 

m 
W 
U 
rl 

0 
? 

W 
I- m 
I- 

0 
? 

I- 
W m 
rl 

0 
? 

rl m 
W 
I- 

0 
7 

0 
rl 

0 

4 
U 
f- 
W 
I- 

0 

m m 
0 
U 

0 
9 

51 
W 
W 
I- 

O 

m 
m 
m 

0 

m 

9 

0 
W 
rl 
I- 

O 

m 

W 

m 

0 

m m 

? 

W 
0 
W 
rl 
I- 

d 

0 
0 
N m 

0 
? 

U m m 
OD m 
0 

I- m m m 

0 
? 

ys 
OD 
U 
OD 

0 
Y 

m 
rl 

0 

I- 
W 
N 
W x 
rl 
N 
0 m 
? 
0 

m 
m 
hl 
I- 

0 
? 

In m m 
I- 
m 

O 

0 
N 
W 

0 

m 

? 

W 
m 
U 
N 
I- 

0 

rl 
W 
rl 
I- 

0 
? 

I- m 
I- 
N 
I- 

0 

m 
U m m 

2 
N 
U m 
m m 

d 

rl 
0 
U rD 

0 
3 

rl 
rl 
I- 

m 
0 

m 

0 
N 
0 

N 
0 m m 
? 
0 

In 
0 
0 
0 

2 
m 
rl 
U 
rl 
rl 

0 

b m 
U 
0 

0 
? 

rl 
rl 
U m 
? 
0 

OD 

m 
0 
I- 

O 

m 

I- 
O m 
4 
rl 

0 

m m 
m 
I- 

O 

m 

N m 
U 
OD 

0 
9 

d 
m 
0 : 

2 
0 
W 
rl 
0 

m 
N 
m 
rl 

0 
? 

VI 
N 

d 

m 
W 
N m 
rl 

d 

0 
I- s 
? 
0 

m 
0 
\o 
W 
rl 

0 

0 
rl 
W 
rl 

0 
? 

OD 
W 
rl 
m 
rl 

d 

rl 
0 m 
U 
I- 

0 

m 
U 
W 
rl 

0 

m 

2 
U m 
I- 

O 

I- m 
2 
rl 

0 

I- 
I- 
O 
N 

0 
? 

OD 
4 

U 
4 

m 

d 

I- 
I- m m 

0 
? 

z! 
0 

m 
rD m 
I- 
rl 

0 

U 
rl 
OD 
rl 

0 
? 

I- 
OD 

N 
N 

0 

m 

0 
rl 

51 
? 
0 

m 
N 
U 
I- 
rl 

0 

rl 
m 
I- m 
I- 

0 

W 
0 
W 
N 
N 

0 

N 
m 
m 
I- 
I- 

O 

N m 
m 

0 

a0 

rl 

m 
I- 
f- m 
W 

d 

U 
W 
I- 
O 
N 
0 

N 
0 
m 

0 

m 
? 

m 
m 
0 

- 27 - 

U 
N 
N 
N 

0 

m 

I- m 
N 

0 
? 

N 
W m 
0 

0 
? 

rl 

U 

0 

3 
? 

m m 
rl 
N 
N 
0 

m m 
r( 
I- 
I- 

0 

m m m 
0 m 
0 

OD 
U m 
I- 

0 

m 

0 

N 
0 

0 

m 

"! 

rl 

W m 

0 

m 

? 

OD 

W 
I- 
N 
0 

m 

U 
W 

OD 

0 

m 

? 

0 
U 

0 

OD 
N 
U b 
N 
0 

a 
? 
m m 

0 

0 
5: m m 
0 

m m 
W 
W 

0 
? 

I- m 
N 
I- 
N 
0 

m m 
W 
W 
f- 

0 

N 
I- 
N m 
? 
0 

I- 
W 
rl 
N 

0 
? 

I- 

rl m 
N 
0 

m 

N 

I- 

'4 
0 

m m 
U 
W 

0 
? 

rl 
U 
W 
N 
I- 

0 

m 
U 

0 

m 
hl 

N m 
0 

m 

N 

m 

0 

z 
? 

e 
OD 

m 

0 

m 
s 

W 
W 

W 

0 

m 

? 

5: 
I- 
N m 
0 

N 
m 
N 
0 

0 
? 

I- 

U I- 
m 
? 
0 

m 
U 
N 
m 

0 
? 

m 
U m 
0 m 
0 

m 
0 rl 
0 
I- 

0 

m m 
W 
W 

0 
? 

0 m 
0 
I- 
I- 

O 

5: 
0 

W 
U 
I- 
OD m 
0 

I- 
OD 
U 
W 

0 
? 

I- m 
N 
N 

0 
? 

m 
I- 
W 
rl 

0 
m 

U I- 
m 
OD m 
0 

N 
W 

rl 
m 

? 
0 

m 
N 
0 
N 

0 
? 

OD 
U 
W 
W 

0 
? 

m 
0 m 
W 

0 
? 

0 

N 
b 

0 

z 

m 
OD 
I- 
OD m 
0 

m m 
N 
N 

0 
? 

In m 
d 

U m 
OD 
U 

2 
U m 
OD 
I- 

0 
? 

rl m 
W 
W 
I- 

O 

m 
U 
OD 
U 

0 
Q: 

rl 

W 
U 

0 

m 

? 

OD m 
I- m 

0 
? 

N 
U 
U 
W 
I- 

O 

N 
W 
0 m 

0 
Q: 

U m 
U 
h( 

0 
9 

51 

d 

N m 
I- 

I- 
I- 
N m 
ys 

0 

OD 

U 
OD 

0 

m 

? 

0 

2 

m 
rl 
N 
rl 
m 
d 

I- m 
N m 
? 
0 

0 
U 
W m 

0 
0' 

I- 

m 
OD 

m 

: 
W 
W 
0 rl 
m 
d 

s: 
? 
W m 

0 

U I- 
U m 

0 
m 

U 
W 
0 
W 

0 
Q: 

m m 
OD 

0 

m 

s 

OD 
N 
0 
4 
d 

m 
U 
W 
0 : 
m 
I- 

m 

0 

m 

Q: 

m 

0 
'4 

m 
W 
I- 
I- m 
0 

OD 
OD 
W 
0 : 
rl 
N 
m 
rl 

rl 

m 

rl 
I- 
0 m 
9 
rl 

N 
W 
W 
I- m 
0 

I- 
W m 
I- 

0 
? 

I- 
rl 
W m 
rl 

rl 

I- 
m 
0 
U 

rl 
? 

rl 
W 
I- m m 
0 

OD m 

? 
0 

U 
U ua 
4 
rl 

rl 

N 
rl 

5: 
9 
rl 

0 
I- 

0 

OD 
U m 
U 

0 
? 

m 
PI 
rl 
N 

0 
Q: 

OD 
b m 
OD 

rl 
? 

rl 
rl 
m 
OD 

rl 
? 

U 
U 
U 
U 

0 
? 

m 

m 
? 

m 
m 

c 

I- m m 

? 
rl 

m 
N m 
rl 
rl 

rl 

m 
N In 
N 

0 
'? 

m m m m 

0 
3 

b 
4 
U 
I- 

rl 
? 

2 
W 

a 
rl 

rl 

m 
I- 

O 

m m 
U 
rl 
I- 

O 

U 
0 
I- m 

0 
0: 

rl m 
U m 
? 
rl 

I- 
4 m 
In 
rl 

rl 

m 
I- 
0 
rl 
I- 

0 

m 
m 
rl 

cn 

m 
0 

I- 
rl 
m m 
? 
rl 

U 
3 
U z 
rl 

0 
0 
3 
I- 

m 

d 

m 
N 
rl 
I- 

0 
9 

0 
VI 
OD m 
? 
rl 

W 

E m 
rl 

0 

0 
? 

0 
U 
OD 
I- 

O 

m 

m m 
N m 

0 
0: 

0 a 
? 
m 

N 

m 
U 
N 
U N 

3 

m m 
U 
W 
I- 

0 

I- 
W 
W 
p7 

0 
m 

OD 
rl 
rl 
0 
rl 

N 

I- 
m m 
N 
m 
rl 

m 
U 
I- 
I- 

0 

m 

N 
rl m 
0 

0 
m 

rl 
W 
U 
N 
rl 

N 

I- 
O 
U 
W 
U 
rl 

m 

0 
? 

rl 
rl 
W m 

2 
W 
N 
W 
W 

0 
m 

N 
W 
W 
I- 

? 
N 

W 
W 

W 
m 
rl 

m 

m 
I- 
m 
m 

0 
? 

U 
W 
I- m 

0 
m 

N 
m 
0 
W 

N 
? 

0 m 
m 
U 
rl 

m 

W 
I- 

U 

0 

m 

? 

m m m 
m 

0 
0' 

m m 
rl m 
I- 

N 

U m m 
U 
I- 

rl 

0 

0 
0: 

0 
b 
N 

0 

m 

0: 

m 
0 
U 
W 

0 
0: 

N 
0 
N 
I- 

m 
? 

m m 
W m 
rl 

m 

m 
I- 
I- 
N 

0 
0: 

W 
I- 
W 
I- 

0 
m 

0 
W 
W 
I- 
W 

m 

m 
W 
W 
W 
I- 

rl 

m 
W 
U N 

0 
0: 

I- 
W 
I- 
W 

0 
0' 

rl 
N 
m 
I- 
I- 

m 

0 
I- 
0 

rl 

N 

m 

m 

0 
0' 



2 w 

U w 

0 
5 
01 

pa 
3 

2 
W 

ma 

n E 

n a =. 

I 

0 
0 
0 
0 

0 
9 

rl 
I- m 
Qo 

0 
? 

8 
9 
0 
0 

0 

d 
I- m 
rn 
? 
0 

0 
0 
0 
0 

0 
9 

m 
m 
m m 

0 
? 

0 

8 
8 
0 

m 
m 
m m 

0 
? 

0 

0 

0 

8 
9 

U 
OD 

I- 

O 

m 
a, 

0 
0 
0 
0 

0 
9 

U 
OD 
OD 
OD 

0 
? 

0 

0 
9 

z 
3 
U 
0 

0 
-.. 

OD d 

0 m 
‘9 
0 

In 

2 
9 
0 

r: 
9 
0 m 

0 

m 
N 
U 
0 

0 
9 

N 
0 
U m 

0 
OD 

U 
U 
U 
0 

0 
9 

* 
m 

0 

z 
? 

m 
rl 
U 
0 

0 
9 

N 
I- 

OD 

0 

m 
? 

m 
N 
U 
0 

0 
9 

m 
I- m 
OD 

0 
? 

m 

0 
9 

O D 9  9 m  
9 9  d m  

0 0  
9 9  

h .  

U m 
rl m 

0 
OD 

I- 
OD 
I- 
d 

0 
9 

OD ro 
d m 

0 
? 

N * 
9 
rl 

9 
0 

m 
OD m m 

0 
? 

0 
I- 
d 

0 
9 

0 
0 9 
m 

0 
? 

OD 
0 
9 
rl 

0 
9 

U N 
N 
I- 

0 

m 

m 
N 
I- 
rl 

0 
9 

OD 
U 
N m 
I- 

0 

0 
rl 

d 

N 
I- 
m m 

0 
9 

d 
U 
0 
U 

0 
9 

ro 
d 
U m 
? 
0 

U 
N 
9 
m 

0 
9 

d 
I- m m : 
I- 
N 
0 
U 

0 
9 

0 
m 
m m 

0 
00. 

OD 
0 m 
m 

8 
m 
N 
9 m 
I- 

O 

m m 
OD m 

0 
9 

I- 
0 
I- m 
I- 

0 

m 
d 

d 

0 
I- 
N 
9 

0 
9 

N 
ro 
9 m 

0 
? 

OD 
0 
N 

6 
0 

m 
ro 
I- m 
9 
0 

OD 
U 
N 
9 

0 
9 

m 
m 
N 
9 

0 
‘9 

m 
3 
N 
I- 

0 
? 

I- m 
m 
9 

0 
? 

U 
In 
0 
9 

0 
9 

N 
9 
rl 
0 

0 
? 

m 

ro 

0 

m 

3 

s m 
0 : 
0 
N 

0 

9 

m 

0 

5: 
9 

m 
d 
0 
0 

0 
Q: 

0 
N 
2 
fl 
0 

0 m 
N 
0 

0 
Q: 

In 
I- 
U m 
9 
0 

OD 
N 
I- 
9 

0 
? 

N 
OD 
m 
d 
d 

0 

OD 
0 
0 
I- 

0 
? 

m 
OD 
rl m 

0 
9 

m 
N 
OD 
0 

0 
‘9 

0 
U 
El 
2 
m 
rl 
N 
rl 

0 
? 

m 
N 

0 

0 m 
N 
m 
d 

0 

ro m 
U 
0 

0 
4 

m 
U ro 
\o 

0 
I 

ro 
0 
OD 
0 

0 
0: 

m 
U N 
m 
rl 

0 

N 

N 
I- 

0 
? 

U m m 
9 
d 

0 

N 
I- 
I- 
I- 

? 
0 

m 
\o 

rl 
3 
d 

d 
0 
9 
rl 

0 
OD 

9 
d 
d 
9 

0 
I 

I- 
OD 
N 
N : 
0 m 
d 

d 
I- m 
I- 
d 

0 

m 
0 

0 

a 
0: 

U m 
N 
N 

0 

m 

I- 

51 
d 

0 
m 

m 
rl m 
I- 
d 

0 

ai 
0 m 
I- 

? 
0 

I- 
N m 
N 
N 

0 

d 
0 
I- 
OD 

0 
‘0 

m m 
0 
I- 
rl 

0 

d 
OD 
U 
N 

0 
? 

N 
0 m 
N 

0 
N. 

m m m m 

0 
9 

m m 
d 

- 28 - 

U d 

Q‘ 
0 

0 
I- m s: 
0 

N 
U m 
N 

0 
o: 

m m 
N 
N 
N 

0 

0 s 
? 
a0 

0 

I- 
OD 
U 
0, 
0 

m 
2 
? 
m 

0 

m m 
9 
rl 
N 

0 

OD m 
U 
0 

0 
9 

m 
0 
I- m 
N 
0 

I- m 
rl m 

0 
9 

0 

0 
3 

U m 
U 
I- 
N 

0 

ro m 
d 

0 

m 
0‘ 

OD 

m 

0 

5: 
? 

OD 
N 
m m 

0 
m 

U ro m 
I- 
N 

0 

d 
m 
m m 

0 
? 

rl 
d 
U m m 
0 

I- 
d 
d 
d 

0 
0: 

m 
9 
ro 
N 

0 

m 

N 
N m 
U 

0 
? 

m 
OD 
U 
OD 

2 

2 
0 
rl x 

In 

0 
? 

rl 
m m 
N m 
0 

m 
0 ro 
N 
Q: 
0 

N m m m 

2 
U 
U 
U 

0 
Q: 

U m 
N m 
0 

* m 
rl 
0 

0 
0: 

N 
OD 
OD m 
? 
0 

N m 
9 
N 

0 
0: 

I- 
rl 
rl 
N 

0 
? 

ro 
9 
ro m 

0 
? 

OD 
d co 
OD 

0 
? 

N m 
r( m 

0 
? 

0 

0 
Y 

rl m 
I- 
OD 

0 
1 

m 
U 
N 
m 
0: 
0 

m 
ro 
N 
N 

0 
? 

OD m 
OD m 

0 
Q: 

0 
I- 
9 
OD 
m 
0 

m 
0 
0 d 

0’ 
0 

m 
U rl 
N 

0 
? 

5: 
U e 

0 
m 

rl 
OD 
OD 
I- m 
0 

m 
OD 
03 
9 

0 
? 

m 
ro 
0 

0 

m 

? 

OD m 
I- 
d 

0 
m 

In m 
0 

OD m 
OD 
U 

0 
3 

2 
Q: 
m m 

0 

m m ro ro 

0 
? 

m 
N 
U 
I- 

0 
o: 

YI 
I- 
I- 
U 
U 

0 

U 

d 

0 
o: 

d 
m m 
9 
I- 

O 

0 
9 m 
9 

0 
Q: 

I- m m m 

0 
? 

ro 
9 d 

OD 

0 
? 

0 m 
N m 
I- 

0 

N 
OD 
I- 
U 

2 

s 
d 

9 
d 
N 
d m 
0 

m 
rl 
ro 
U 

0 
0: 

d 
U * m 

2 
0, m 
N m 
0: 
0 

U m 
d 
d 
m 
0 

9 m 
N 

0 
Q: 

a 
0: 
m m 

0 

0 m 
0 m 

0 
0: 

U 
d m 
0 m 
0 

OD 

m 

0 

5: 
? 

m 
I- 
N 
N 

0 
0: 

m 

m 

* m 
OD 

d 

m 

0 
‘4 

d m 
I- 
I- m 
0 

m 
U m m 
m 
0 

m 
m d m 
d 

d 

m m m 
d 

rl 
9 

m 
d 
I- 
I- m 
0 

0 
0 
OD 
m 

0 
o: 

El 
OD 
m 
rl 

d 

m 
N 
0 N 

d 
9 

rl 
N 
ro m 
0 

m 

U 

0 

0 

a 
Q: 

m m 
ro 
N 

d 
I 

N 
I- 
ro 
N 

d 
9 

0 
I- 

0 

m 
U m 
U 

0 
? 

0 m 
0 ro 

0 
0: 

N 
I- m 
OD 

d 
? 

U m 
N 
U 

d 
9 

OD 
I- 
U 
U 

0 
? 

N m 
I- 
U 

0 
Q: 

0 
OD 
U 
OD 
m 
d 

m 
U 
9 m 

d 
9 

ro 
U 
I- m 
ro 
0 

m 
U m 
N 

0 
Q: 

N 
In m 
I- 

d 
? 

4 
? 
m 
I- 

d 

In 
I- 

0 

m m 
U d 
I- 

O 

N m 
9 

2 
N 
N 
U m 

rl 
? 

I- m 
9 
I- 

? 
d 

m m 
d 
I- 

O 

h 
0 
OD m 

0 
Q: 

N 

m 

d 

2 
? 

N 
I- 
rl 

0 d 

d 

m 
I- 
0 
I- 

O 

m 
N 
OD m 

0 
0’ 

0 
\o 
OD 
OD 

rl 
? 

0 
U m 
U 
rl 

d 

0 

0 

0 m 
U 
03 
I- 

O 

OD 
N 
9 
I- 

0 
m 

I- 
OD 
OD m 
9 
N 

a 
d 
N 
d 

rl 

d 
U 
U 
OD 
I- 

0 

m m 
OD 
9 

0 
o: 

m m 
9 
N 

m 
d 
d 
9 
d 

4 

m 
N 

I- 
I- 

0 

m 

m m m m 

0 
0: 

d 
d 
rl 
0 

N 
I 

rl m 
N m 
N 
d 

m 

0 
‘9 

El 
‘9 
9 
m 

0 

m 
d 
U m m 
d 

m 
U ro 
I- 

N 
? 

d m 
U 
d 

d 

9 

m 

0 

1 %  

? 

m 
OD m 
I- 

0 
o: 

N 
0 m 
I- 

N 
? 

d 
0 
9 * 
N 

rl 

rl 
rl 
N 
m 

0 
? 

I- 
I- 

9 m 
0 

ca 

0 N 
N 
m 
? 
N 

U m 
I- m m 
rl 

0 

C 
0: 

0 m 
h 
N 

0 
0: 

m 
0 
N m o: 
0 

0 
N 
N 
I- 

m 
? 

m 
I- 
U m 
N 

d 

m 
I- 
I- 
N 

0 
m 

0 
v m m m 
0 

v 
0 
9 
I- 
9 

m 

m 
m 
N m 
? 
rl 

m 
OD m 
N 

0 
m 

U 
m 
U 
OD 

0 
o: 

rl 
I- 

2i 
I- 

m 

U N 
m 
I- 
In 
d 

m 

0 
m 



and the  non-invaded zone cont inuously change with the  movement of t he  d i s-  
placement f r o n t .  As a r e s u l t  of these  v a r i a b l e  p ressure  f i e l d s ,  s t reaml ines  
dev i a t e  from those of a s i n g l e  f l u i d  flow. The amount and na ture  of dev i a t i on  
depends on the l oca t i on  of t he  i n t e r f a c e .  

I f  the  s h i f t  of s t reaml ines  from those corresponding t o  a s i n g l e  f l u i d  flow is 
assumed t o  be minor, c a l cu l a t i ons  can be made t o  p r ed i c t  recovery performance 
of p a t t e r n s  f o r  d i f f e r e n t  mobi l i ty  r a t i o s .  Appendix B p resen ts  t he  d e r i v a t i o n  
of equat ions  f o r  recovery performance of a developed five- spot p a t t e r n  f o r  
va r ious  mobi l i ty  r a t i o s .  The de r iva t i on  is based on f i xed  s t reaml ines  and 
pis ton- l ike  displacements.  Table 3.5 and Figs. 3.10 and 3.11 show t h e  
r e s u l t s .  As these  f i g u r e s  I l l u s t r a t e ,  t he  breakthrough areal sweep eff i-  
c ienc i e s  ca l cu l a t ed  using the se  assumptions are near ly  independent of mob i l i t y  
ratio. This conclusion has a l s o  been reached by Morel-Seytoux (19651, whose 
mathematical approach is d i f f e r e n t  from the  one taken i n  t h i s  s tudy.  The 
independence of areal sweep e f f i c i e n c i e s  f o r  d i f f e r e n t  mobi l i ty  r a t i o s  is i n  
d i r e c t  c o n f l i c t  with experimental  da t a  which show t h a t  breakthrough areal 
sweep e f f i c i e n c i e s  are func t ions  of mobi l i ty  r a t i o  (Dyes -- et al . ,  1954). 
Therefore ,  t he  assumption of no s t reaml ine  change with  mobi l i ty  r a t i o  is 
u n r e a l i s t i c  and c a l c u l a t i o n s  of p i s ton- l ike  displacements based on t h i s  
assumption generate  erroneous results. 

One of the  methods t h a t  has been ex t ens ive ly  used i n  approximate c a l c u l a t i o n  
of waterf lood and gas f lood performances is Higgins and Leighton's (1962) 
streamtube method. This method i s  based on the  assumption t h a t  s t reaml ines  
are independent of mobi l i ty  r a t i o  and t h a t  Buckley-Leverett theory can be 
appl ied  t o  c a l c u l a t e  t he  f l u i d  displacement i n  streamtubes comprising the  flow 
system. The p r i n c i p l e  j u s t i f i c a t i o n  of the  method was  t he  good agreement 
between the  recovery values  computed from t h e i r  method and the  labora tory  da t a  
reported by Douglas -- e t  al.  (1959) f o r  a repeated five- spot waterf lood i n  a 

Table 3.5 

VALUES OF BREAKTHROUGH AND AREAL SWEEP EFFICIENCY CURVES FOR A 
DEVELOPED FIVE-SPOT PATTERN AT VARIOUS MOBILITY RATIOS 

M - 0.5 M I 1  M - 3  

fD PD 
V EA fD PD 

V =A PD 
V EA 

0.1646 0.7403 0.7305 0.10 0.7222 0.7219 0.1690 0.7142 0.7137 
0.3437 0.7946 0.7707 0.20 0.7359 0.7335 0.3164 0.7305 0.7257 
0.4399 0.0396 0.0063 0.30 0.7590 0.7513 0.4433 0.7611 0.7442 
0.5410 0.9017 0.0301 0.40 0.7950 0.7746 0.5537 0.0106 0.7602 
0.6473 0.9090 0.0734 0.50 0.0472 0.8027 0.6505 0.0063 0.7973 
0.7591 1.1204 0.9133 0.60 0.9199 0.0352 0.7361 1.0002 0.0300 
0.0767 1.3551 0.9556 0.70 1.0251 0.0717 0.8123 1.1752 0.0603 
0.9253 1.5300 0.9732 0.00 1.1079 0.9117 0.0009 1.4619 0.9094 
0.9749 1.9093 0.9910 0.90 1.4071 0.9540 0.9430 2.0190 0.9537 
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3.10: AREAL SWEEP EFFICIENCY CURVES FOR A DEVELOPED FIVE-SPOT 
PATTERN AT VARIOUS MOBILITY RATIOS (ASSUMING STREAMLINES 
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Fig. 3.11: BREAKTHROUGH CURVES FOR A DEVELOPED FIVE-SPOT PATTERN 
AT VARIOUS MOBILITY RATIOS (ASSUMING STREAMLINES ARE 
INDEPENDENT OF MOBILITY RATIO) 
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sand model. Figure 3.12, which 
is  a reproduct ion of Fig. 1 i n  
Higgins and Leighton 's  paper ,  
shows the  c loseness  of t h e  
agreement. E 

s U 

Since waterf looding is a Buck- 3 
ley- Leveret t  type displacement 
process ,  t he  pore volumes of o i l  
produced i n  Fig 3.12 are equal  0 
t o  t h e  product of areal sweep 
e f f i c i e n c i e s  and displacement 
e f f  iciencies . Displacement ef-  +I 

f i c i e n c y  is defined as t h e  
d i f f e r e n c e  between average water 2 
s a t u r a t i o n  behind t h e  f r o n t  and 2 
i r r e d u c i b l e  water s a t u r a t i o n .  
A t  breakthrough, values of d i s-  
placement e f f i c i e n c i e s  can be 
obta ined  from t h e  f r a c t i o n a l  
flow curves generated from rela- 
t i v e  permeabi l i ty  da t a  and o i l -  
water  v i s c o s i t y  r a t i o s .  Figure 
3.13 shows the  f r a c t i o n a l  f low 
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0.1 

0 

0 Computed Values by 
Higgins-Leighton 
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PORE VOLUMES INJECTED 

curves constructed for  the four Fig. 3.12: COMPARISON OF LABORATORY DATA 
oi l- water  v i s c o s i t y  r a t i o s  used 
i n  t h e  Higgins and Leighton 
paper. 

AND COMPUTER PERFORMANCE 
CALCULATIONS FOR A DEVELOPED 
FIVE-SPOT PATTERN (Higgins 
and Leighton, 1962) 

From the  f r a c t i o n a l  flow curves 
and the  recovery d a t a  i n  Fig. 
3.12, t he  breakthrough areal 
sweep e f f i c i e n c y  f o r  each d i s-  
placement is ca l cu la t ed  by 
d iv id ing  the  computed break- 
through o i l  recovery value by 
the  corresponding breakthrough 
displacement e f f i c i ency .  Table 
3.6 presen t s  t he  r e s u l t s .  A s  
t h i s  t a b l e  shows, t he  computed 
breakthrough areal sweep e f f i -  
c i e n c i e s  f o r  v i s c o s i t y  r a t i o s  of 
0.083 and 8.08 are p r a c t i c a l l y  
t h e  same and c l o s e  t o  t h a t  f o r  
u n i t  mobi l i ty  r a t i o ,  while  t he  
sweep va lues  corresponding t o  
h igher  v i s c o s i t y  r a t i o s  are even 
h igher  and are thus  i n  e r r o r .  
This  discrepancy seems t o  be due 
t o  t h e  low breakthrough d i s-  
placement e f f i c i e n c i e s  obtained 
from t h e  f r a c t i o n a l  flow curves. 
Although a good reason f o r  t h i s  
discrepancy could not be found, 
t h e  i n v a l i d i t y  of Buckley- 
Leve re t t  theory at high mobi l i ty  
r a t i o s  might be a f a c t o r .  
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Table 3.6 

BREAKTHROUGH AREAL SWEEP EFFICIENCIES EXTRACTED FROM HIGGINS AND 
LEIGHTON MATCHITO DATA REPORTED BY DOUGLAS -- ET AL. (1959)  

~~~~ ~ 

Oil-water v i s c o s i t y  r a t i o  0.083 8.080 141 754 

I r r e d u c i b l e  water s a t u r a t i o n  0.125 0.087 0.087 0.087 

Average water s a t u r a t i o n  behind f r o n t  0.895 0.600 0.340 0.245 

Breakthrough displacement e f f i c i e n c y  0.770 0.513 0.253 0.158 

Pore volume o i l  produced at breakthrough 0.600 0.380 0.210 0.140 

Breakthrough areal sweep e f f i c i e n c y  0.770 0.740 0.830 0.880 

Wu ( 1 9 6 4 )  i nves t iga t ed  the  accuracy of t he  Higgins and Leighton method both a t  
breakthrough and af ter  breakthrough. H e  conducted s e v e r a l  displacement exper- 
iments on a quadrant of a five- spot sand model i n  which water d isp laced  o i l  a t  
d i f f e r e n t  v i s c o s i t y  r a t i o s .  The same computer program developed by Higgins 
and Leighton was used t o  match the  experimental  recovery da ta .  F r a c t i o n a l  
f low curves needed f o r  t h e  program were prepared from t h e  pre-determined 
r e l a t i v e  permeabi l i ty  curves on a l i n e a r  core with the  same sand. From the  
a n a l y s i s ,  Wu concluded t h a t :  1 )  breakthrough areal sweep e f f i c i e n c i e s  com- 
puted by the streamtube method a t  var ious  mobi l i ty  r a t i o s  were not d i f f e r e n t  
from each o t h e r ,  i n  con t r a s t  t o  h i s  experimental observa t ions  t h a t  confirmed a 
s t rong  v a r i a t i o n  of areal sweep e f f i c i e n c i e s  with mobi l i ty  r a t i o ;  and 2) post-  
breakthrough o i l  r ecove r i e s  computed from t h e  streamtube program c l o s e l y  
approximated the  experimental da ta .  No reasons f o r  t h i s  were given. 

Despi te  t he  f a c t  t h a t  Higgins and Leighton 's  method generates  nea r ly  i d e n t i c a l  
va lues  f o r  breakthrough areal sweep e f f i c i e n c i e s  at a l l  mobi l i ty  r a t i o s ,  t he  
method appears t o  adequately desc r ibe  recovery performance of Buckley- 
Leveret t- type displacements.  The main reason f o r  t h i s  seems t o  be t h a t  t h e  
e f f e c t  of displacement e f f i c i e n c y  on recovery c a l c u l a t i o n s  is more important 
than the  e f f e c t  of areal sweep. On the  o the r  hand, i n  p is ton- l ike  d isp lace-  
ments, such as misc ib le  displacements i n  which the  displacement e f f i c i e n c y  is 
100 percent ,  c a l c u l a t i o n  of p a t t e r n  breakthrough curves based on f i x e d  stream- 
l i n e s  w i l l  not  genera te  accu ra t e  r e s u l t s .  Because of t h i s  conclusion,  t he  
computation of tracer flow i n  t h i s  s tudy  was only performed f o r  u n i t  mob i l i t y  
rat i o .  

3.2 TRACER FLOW IN HOMOGENEOUS SYSTEMS 

Besides p a t t e r n  sweep e f f i c i e n c y  (areal e f f e c t s ) ,  mixing due t o  d i spe r s ion  
in f luences  breakthrough h i s t o r y  of a tracer from a pa t t e rn .  A mathematical 
d e s c r i p t i o n  of mixing i n  a genera l  flow passage is provided i n  t h e  f i r s t  p a r t  
of t h i s  s ec t ion .  The second p a r t  u t i l i z e s  t h i s  mixing equat ion  t o  d e r i v e  
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express ions  f o r  tracer production curves from var ious  systems. L a s t l y ,  a 
technique is  presented which c o r r e l a t e s  tracer product ion curves i n t o  a s i n g l e  
se t  of curves.  

--_ '. 

3.2.1 Mixing Theory 

When one f l u i d  misc ib ly  d i sp l aces  another  f l u i d  i n  a porous medium, a t r a n s i-  
t i o n  zone (mixed region)  is  formed between them a t  the  reg ion  of contac t .  The 
es tab l i shment  of the  mixed zone is due t o  a phenomenon known as hydrodynamic 
d i spe r s ion .  I n  genera l ,  hydrodynamic d i spe r s ion  c o n s i s t s  of two p a r t s :  
mechanical d i spe r s ion  and molecular d i f fus ion .  Mechanical d i spe r s ion  r e s u l t s  
from the  movement of i nd iv idua l  f l u i d  p a r t i c l e s  which t r a v e l  at v a r i a b l e  
v e l o c i t i e s  through tor tuous  pore channels of t he  porous medium. This  random 
f l u i d  movement i n  i r r e g u l a r  flow pa ths  spreads the  d i sp l ac ing  f l u i d  i n t o  t h e  
d isp laced  f l u i d ,  thereby genera t ing  a blended reg ion  between them. The amount 
of spreading depends on the  d i s p e r s i v e  c a p a b i l i t y  of t he  porous medium. The 
proper ty  of porous medium t h a t  is a measure of i t s  capac i ty  t o  cause 
mechanical d i spe r s ion  is c a l l e d  d i s p e r s i v i t y .  I n  genera l ,  d i s p e r s i v i t y  i s  
considered t o  have two components : one i n  t h e  d i r e c t i o n  of mean flow 
( l o n g i t u d i n a l  d i spe r s ion )  and one perpendicular  t o  the d i r e c t i o n  of mean f low 
( t r a n s v e r s e  d i spe r s ion ) .  For p r a c t i c a l  purposes,  however, t r a n s v e r s e  
d i spe r s ion  has a small e f f e c t  on the  amount of mixing between f l u i d s  compared 
t o  l ong i tud ina l  d i spe r s ion ,  as w a s  i l l u s t r a t e d  by Blackwell (1962),  Harleman 
and Rumer (1963) ,  and Sauty (1980). 

The second component of hydrodynamic dispersion--namely , molecular diffusion- -  
occurs  on a macroscopic l e v e l  as a consequence of ne t  concent ra t ion  g r a d i e n t s  
ac ros s  su r f aces  perpendicular  t o  t he  average flow d i r e c t i o n .  It is caused by 
t h e  random movement of the d i f f e r i n g  molecules. This molecular d i f f u s i o n  
con t r ibu te s  t o  t he  growth of t h e  mixed region as w e l l .  However, it has been 
v e r i f i e d  t h a t  t he  e f f e c t  of molecular d i f f u s i o n  on mixing is n e g l i g i b l e  un le s s  
t h e  displacement takes p lace  at  low v e l o c i t i e s  (Raimondi -- et al . ,  1959; Handy, 
1959; Brigham _.- e t  a l . ,  1961; and Blackwell,  1962). Therefore,  i n  most prac- 
t i c a l  misc ib le  f l u i d  flow through porous media, l ong i tud ina l  mechanical 
d i s p e r s i o n  is the  major f a c t o r  i n  c r e a t i n g  a mixed zone between the  f l u i d s .  

The concent ra t ion  of each f l u i d  i n  t h e  mixed zone can be computed as a 
func t ion  of p o s i t i o n  if t h e  flow geometry and t h e  d i s p e r s i v i t y  of porous 
medium are known. For s t a b l e  misc ib le  displacements ( i n  t h e  absence of 
v i scous  f i n g e r i n g ) ,  equat ions i n  c losed  form are a v a i l a b l e  which desc r ibe  
concent ra t ion  of t he  f l u i d s .  These equat ions have been der ived  f o r  non- 
adsorbing,  non-decaying and non- reactive misc ib l e  f l u i d s .  Aronofsky and 
Heller (1957) and Ogata and Banks (1961) present  exact  s o l u t i o n s  f o r  l i n e a r  
displacements (Eq. 2-2), whi le  Ogata (1958) gives  an  exac t  equat ion  f o r  a 
d iverg ing  r a d i a l  flow. Ogata's s o l u t i o n  involves  a very d i f f i c u l t  i n t e g r a l .  
However, these  exac t  s o l u t i o n s  can be reduced t o  more simple forms, provided 
t h a t  t h e  phys ica l  dimensions of the  flow systems are l a r g e r  than  t h e  d is-  
pe r s ion  constant  of a porous medium, and t h a t  t he  molecular d i f f u s i o n  e f f e c t s  
are neg l ig ib l e .  The dimensionless group which cha rac t e r i ze s  t h i s  condi t ion  i s  
known as the  Pec l e t  number. It is defined as the  r a t i o  of the displacement 
f r o n t  p o s i t i o n  t o  t he  d i spe r s ion  cons tan t  of t he  porous medium. For a l i n e a r  

- 33 - 



uniform displacement wi th  a Pec le t  number of : / a  > 100 (Sauty, 1980), t he  
r e s u l t i n g  equat ion is: 

,_ 

where : 

(3-7) ~ 

C = concent ra t ion  at l o c a t i o n  x 

Co = i n i t i a l  concent ra t ion  of d i sp l ac ing  f l u i d  
- 
x = f r o n t  l o c a t i o n  corresponding t o  C = 0.5 Co 

a = l o n g i t u d i n a l  d i spe r s ion  cons t an t ,  l ength  u n i t ,  same as x 

e r f c  = complementary e r r o r  func t ion  = 1 - e r f  

The corresponding approximate equat ion f o r  r a d i a l  flow is given by Lau -- et a l .  
(1959) and Raimondi -- et al. (1959) .  The s o l u t i o n  is accu ra t e  when the  P e c l e t  
number is  g r e a t e r  than  100 ( ; / a  > loo) ,  as was shown by Gelhar and Co l l in s  
(1971) and Sauty (1980): 

I 

For most f i e l d  a p p l i c a t i o n s ,  the condi t ion  of Pec l e t  number g r e a t e r  than  100 
is usua l ly  achieved because of t h e  d i s t ances  involved. Theref o r e ,  the  
fol lowing equat ion can be viewed as a genera l  de f in ing  equat ion t o  desc r ibe  
mixing i n  d i f f e r e n t  flow geometries with p r a c t i c a l  accuracy (Brigham, 1973): 

- C = - 1 e r f c  ( s k t  ) 
cO 2 

(3-9) 

where : 

s = l o c a t i o n  corresponding t o  concent ra t ion  C 

- 
s * l o c a t i o n  of the  f r o n t  corresponding t o  C = 0.5C0 

u = measure of t he  length  of t he  mixed zone computed at s. This  corre-  
sponds $0 t h e  s tandard  dev ia t ion  term2in stat ist ics.  For l i n e a r  
flow, u = 2ad and f o r  r a d i a l  flow, u = 2ag/3, as are deduced by 
comparing Eqs. 3-7 and 3-8 with  Eq. 3-9, r e spec t ive ly .  

I f  u is known f o r  a system, Eq. 3-9 can be used t o  compute t h e  concent ra t ion  
of t h e  d i sp l ac ing  f l u i d  a t  var ious  po in t s  i n  t h e  system. Hence, it is only 
necessary  t o  der ive  an expression f o r  u i n  a genera l  flow geometry. This  can 
be accomplished by not ing  t h a t  i n  an  a r b i t r a r y  flow passage, such as Fig. 
3.14,  t he  growth of t h e  l eng th  of t he  mixed zone i s  a f f ec t ed  by two f a c t o r s  as 
t h e  f l u i d  moves from poin t  A t o  poin t  B: 

1) The movement of f l u i d  through porous media ( t h e  longer  t h e  d i s t ance  
t r a v e l l e d ,  t he  longer  t he  mixed zone); and 
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s = L  

s - 0  

B S 

Fig. 3.14: A GENERAL FLOW PASSAGE 

2)  The change of geometry of t he  flow pa th  ( t h e  wider t he  passage,  t h e  
narrower the mixed zone). 

Therefore ,  t he  t o t a l  change i n  a is  (Lau -- et al. ,  1959; Baldwin, 1966; and 
Brigham, 1973) : 

da = dos + da  (3-10) 
g 

where, das is the  change due t o  movement along path s and da  is the  change 
due t o  t he  geometry of the  passage. Equation 3-10 is similae' t o  t h e  super-  
p o s i t i o n  p r i n c i p l e  i n  which independently computed e f f e c t s  are added t o  each 
o t h e r  t o  produce a combined e f f e c t .  

I n  computing e i t h e r  of t he  changes i n  a,  the  o the r  must be t r e a t e d  as a 
cons tan t .  I n  t h i s  manny,  dos is  computed from the  mixing equat ion  f o r  a 
l i n e a r  system f o r  which u = 201s. D i f f e r e n t i a t i n g  t h i s  expression:  

a ds  dos = - (3-11) 

The geometry e f f e c t s  are obtained by not ing  t h a t  the  volume of the  mixed zone 
a t  any l o c a t i o n  must remain cons tan t ,  r ega rd l e s s  of t he  shape of the  system a t  
t h a t  pos i t i on .  Since the, mixed zone is  usua l ly  small compared t o  t he  flow 
pa th ,  then aw = cons tan t ,  where w is the  width of t he  flow channel a t  t h a t  
pos i t i on .  D i f f e r e n t i a t i n g  t h i s  r e l a t i o n s h i p :  

w d a  + crdw = 0 
g 

(3-12) 

(3-13) 

then  : 
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Since the  width of the  passage is i nve r se ly  propor t iona l  t o  t h e  v e l o c i t y  of 
f l u i d  a t  t h a t  po in t ,  Eq. 3-13 i n  terms of v e l o c i t y  becomes: 

u dv du = - g V 

S u b s t i t u t i n g  Eqs. 3-11 and 3-14 i n  Eq. 3-10, one ge t s :  

a d s  u dv do =-+- 
U V 

2 Mul t ip ly  bo th  s i d e s  by 2a/v and rearrange:  

O r :  

2a ds  2 
I -  

2u du 2u dv 
2 

- -  
V 

3 
V 

2 
V 

ds  

V 

I n t e g r a t i n g  between poin t  A and poin t  B: 

(3-14) 

(3-15) 

(3-16) 

If t h e r e  is no mixing at the e n t r y  i n i t i a l l y ,  then  uA = 0 a t  s = 0 and: 

(3-17) 

(3-18) 

(3-19) 

This is t he  genera l  equat ion f o r  u which is app l i cab le  f o r  flow passages of 
any geometry. For example, i n  z a d i a l  flow i n  which ds = d r ,  v(s) = q/2nr ,  and 
v(s) 5 q /2z r ,  it foLJows t h a t  u = 2ay/3. For s p h e r i c 9  flow, ds = d r ,  v ( s )  = 
q/4nr  , V(S) = q/4nr  , t he  express ion  f o r  u2 becomes u = 2ar/5,  Thts is t he  
same r e l a t i o n s h i p  as Gelhar and Co l l in s  (1971) repor ted ,  if r + r .I 2r  i s  used 
i n  t h e i r  equat ion.  

3.2.2 Tracer Production Curves 

I n  t h i s  s e c t i o n ,  equat ions are derived which p r e d i c t  tracer breakthrough 
curves from s e v e r a l  homogeneous f lood ing  p a t t e r n s  f o r  a s l u g  of tracer 
i n j e c t e d  i n t o  t h e  pa t t e rns .  I n  t h e  development of t h e  equat ions ,  the 
fol lowing assumptions are made: 
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1) 

2) 
3) Tracer s l u g  has the same mobi l i ty  as t he  displaced and the  d i sp l ac ing  

4) Tracer  does not adsorb on the  formation rock nor does it react with  

5 )  Dispersion of tracer can be descr ibed by the  genera l  approximate mixing 

6) 
7) A s teady- s ta te  flow condi t ion  is es t ab l i shed  p r i o r  t o  and dur ing tracer 

Or ig ina l ly ,  t he re  is only one m b i l e  f l u i d  i n  t he  system. 

Tracer material is misc ib le  with t he  f l u i d s  both ahead and behind. 

f l u i d s  ( u n i t  mobi l i ty  r a t i o  displacements) .  

e i t h e r  t he  formation f l u i d  or  t he  formation matrix.  

equat ion (Eqs. 3-9 and 3-19). 

Tracer s l u g  s i z e  is small compared t o  t he  volume of t he  pa t t e rn .  

i n j e c t i o n .  

The flow of d i f f e r e n t  f l u i d s  with t he  same mobi l i ty  is e s s e n t i a l l y  equiva len t  
t o  a single- phase flow. Because i n  single- phase s teady- s ta te  f low only one 
pressure  f i e l d  i s  imposed on the  e n t i r e  system, the  s t reaml ines  and t h e  
i s o p o t e n t i a l  l i n e s  f o r  the  system are unaffected by the  l o c a t i o n  of t he  d i s-  
placement f r o n t s .  Such flow systems can be divided i n t o  s e v e r a l  unvarying 
streamtubes and f l u i d  flow i n  each can be s tud ied .  As an example, consider  a 
repeated f looding p a t t e r n  such as a s taggered l i n e  dr ive  (as shown i n  Fig. 
3.15). Assume t h a t  a s l ug  of t r a c e r  wi th  an i n i t i a l  concent ra t ion  Co i s  

Fig. 3.15: A STAGGERED LINE DRIVE PATTERN WITH TRACER 
CONCENTRATION PROFILE I N  A STREAMTUBE 
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i n j e c t e d  i n t o  t he  p a t t e r n ,  followed by a chase f l u i d  t o  d i sp l ace  it through 
the  formation.  The tracer s l u g  w i l l  be d i s t r i b u t e d  among the  streamtubes t h a t  
comprise t he  p a t t e r n  volume. I n  any streamtube, mixing w i l l  occur at both t he  
lead ing  edge and the ' - t r a i l i ng  edge of t he  s l u g ,  hence d i l u t i n g  the  tracer s l u g  
as it moves down the  tube. The amount of mixing occurr ing at each edge can be 
computed by assuming t h a t  t he  tracer s lug  behaves as though it  was continuous 
a t  t h a t  edge. Mathematically, t he  mixings at  t he  edges are given by Eq. 3-9 
wi th  u defined by Eq. 3-19. A t  any po in t  i n  t he  streamtube, t he  sum of t h r ee  
concentra t ions- - tracer  concent ra t ion ,  chase f l u i d  concent ra t ion ,  and formation 
f l u i d  concentration-- is equal  t o  t he  i n i t i a l  tracer concent ra t ion ,  Coo Thus: 

c - c  - c b - c  
0 a 

where: 

(3-20) 

C = concentrat ion of t r a c e r  

Ca = concentrat ion of f l u i d  ahead of t he  s l u g  (formation f l u i d )  

Cb = concentrat ion of f l u i d  behind the  s lug  (chase f l u i d )  

From mixing equa t ions ,  t he  concentrat ion of f l u i d  ahead of t he  s lug  is def ined 
as : 

and behind the  s lug:  

(3-21) 

(3-22) 

Combining Eqs. 3-20, 3-21 and 3-22, the  concent ra t ion  p r o f i l e  of t h e  tracer 
s l u g  is expressed by: 

where : 

8 = l o c a t i o n  corresponding t o  concent ra t ion  C 
- 
s = l o c a t i o n  of t he  f r o n t  at the  lead ing  edge 

s = l o c a t i o n  of the  f r o n t  at  t he  t r a i l i n g  edge 

u1 = s tandard dev i a t i on  computed a t  t he  lead ing  edge 

u2 = s tandard dev ia t ion  computed a t  t he  t r a i l i n g  edge 

1 

2 
- 

(3-23) 
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Since adsorpt ion and r eac t i on  (o r  decay) of the  t r a c e r  material are assumed 
n e g l i g i b l e ,  the  volume of t r a c e r  s lug  wi th in  the  streamtube remains constant  
a t  any t i m e  during the  i n j e c t i o n  process. However, the  undi luted width of 
t r a c e r  is a func t ion  of pds i t i on ;  hence, t he  width is a func t ion  of t he  width 
of t he  streamtube a t  t h a t  loca t ion .  The undi luted width of tracer is defined 
as : 

. 

- - 
A S = S  - S  1 2  (3-24) 

If t he  tracer s l u g  is small compared t o  t he  s ize  of the  streamtube (which is 
usua l ly  the  case), then Eq. 3-23 may be wr i t t en  as: 

C As As dF - = a i m  [F(s  - T )  - F(S + T ) ]  = - A s  - ds  
‘0 A s + O  

(3-25) 

where, 

Theref o r e ,  

(3-26) 

(3-27 ) 

Equation 3-27 implies  t h a t  maximum _tracer concentrat ion i n  a streamtube occurs 
a t  po in t  s. For small s lug  s i z e ,  s can be viewed as t he  f r o n t  l o c a t i o n  i n  an 
immiscible displacement of the o r i g i n a l  formation f l u i d  by t he  chase f l u i d  
alone.  The u is computed a t  s and it is given by Eq. 3-19. 

The computation of t r a c e r  
concent ra t ions  from Eq. 
3-27 r equ i r e s  calcula-  
t i o n s  involving d i s t ances  
along t h e  streamtubes.  
However, it is more con- 
venien t  t o  r ep l ace  t he  
d i s t ance  terms with  t h e i r  
equ iva len t  volumetr ic  
terms i n  Eq. 3-27. This 
conversion process is 
accomplished by approxi-  
mating the  a c t u a l  loca-  
t i o n  of t he  t r a c e r  s l u g  
i n  t h e  streamtube by a 
r ec t ang le  as shown I n  
Fig. 3.16. The approxi-  
mation is j u s t i f i e d  s ince  
t h e  s l u g  s i z e  is small. 

FLOW 

1 PRODUCTION WELL 

c 

Fig.  3.16: APPROXIMATE LOCATION OF A TRACER 
SLUG IN A STREAMTUBE 
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From Fig. 3.16, t he  equat ion r e l a t i n g  the  d i s t ance  terms t o  volumes is: 

- - '. 1- 

( S  - S)wh (pSw = V - V 
where, 

w - width of the  streamtube at volumetr ic  l o c a t i o n  

h - th ickness  of t he  streamtube 

(3-28) ~ 

(p = poros i t y  

S, = disp laced  f l u i d  s a t u r a t i o n  i n  t he  system 

V = d i sp l aceab l e  pore volume of streamtube up t o  l o c a t i o n  s 

V = d i sp l aceab l e  pore volume of streamtube up t o  l oca t i on  s - 

The width of t he  streamtube a t  s is r e l a t e d  t o  the  v e l o c i t y  of f l u i d  a t  t h a t  
point  by: 

where, 

v = microscopic v e l o c i t y ,  darcy ve loc i t y  divided by poros i ty  

q = i n j e c t i o n  r a t e  i n t o  the  streamtube 

S u b s t i t u t i n g  Eq. 3-29 i n t o  Eq. 3-28: 

- V - 
s - s --  (V - v) 

4 

(3-29) 

(3-30) 

Simi l a r ly ,  the  undi luted width of t r a c e r ,  As, is r e l a t e d  t o  t he  volume of t he  
tracer s lug  i n j e c t e d  i n t o  t he  streamtube, Vtr.  This is: 

S u b s t i t u t i o n  of Eqs. 3-19, 3-30 and 3-31 i n t o  Eq. 3-27 and f u r t h e r  s impli-  
f i c a t i o n  r e s u l t s  in :  

(3-32) 

where, 

(3-33) 
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Equation 3-32 de f ines  the  tracer concent ra t ion  a t  any l o c a t i o n  wi th in  the  
s t reamtube i n  terms of volumes. A t  t he  product ion w e l l ,  the  concent ra t ion  of 
tracer is  computed by s u b s t i t u t i n g  the  t o t a l  d i sp l aceab le  pore volume of the 
s t reamtube f o r  V. For t h i s  case, a t  any t i m e ,  t: 

- 
v - v = q( tb t  - t )  ( 3- 3 4 )  

where t b t  i s  t h e  breakthrough t i m e  of t he  i n j e c t e d  f l u i d  i n  the  streamtube. 
The times, t b t  and t ,  may be obtained from material balance cons idera t ions  as 
fo l lows  : 

V 
P t = -  

Qt 

where, 

(3-35) 

(3-36) 

Vp 
= t o t a l  volume of chase f l u i d  i n j e c t e d  i n t o  t h e  p a t t e r n  a t  t i m e  t 

Vpbt = volume of chase f l u i d  necessary t o  i n j e c t  i n t o  the  p a t t e r n  i n  o rde r  
t o  ge t  breakthrough from the  streamtube under s tudy 

qt = t o t a l  i n j e c t i o n  rate i n t o  the  p a t t e r n  

Theref o r e ,  

- Q  
('pbt - v - v = -  

q t  

I n  terms of p a t t e r n  d i sp l aceab le  pore volumes, Eq. 3-37 reduces t o :  

( 3-37) 

(3-38) 

where, 

= d i sp l aceab le  pore volumes i n j e c t e d  i n t o  t h e  p a t t e r n  at breakthrough 
of t he  streamtube under s tudy = Vpbt/A4hsw 

'pDbt 

= d i sp l aceab le  pore volumes i n j e c t e d  i n t o  t h e  p a t t e r n  = Vp/A$hSw VPD 
A = area of the  p a t t e r n  
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Simi l a r ly ,  the amount of tracer i n j e c t e d  i n t o  a streamtube is p ropor t iona l  t o  
flow rate i n  t he  tube. This means t h a t :  

( 3- 3 9 )  

where VTr is t h e  t o t a l  volume of tracer i n j e c t e d  i n t o  the  pa t t e rn .  Tracer 
volume i n  a streamtube can a l s o  be expressed i n  terms of d i sp l aceab le  pore 
volume of t he  pa t t e rn :  

= p_ A+hS F w r  
where, 

'Tr Fr - 
A W w  

( 3- 4 0 )  

( 3 - 4 1 )  

F is  the  t r a c e r  s l u g  volume i n j e c t e d  i n t o  the  p a t t e r n  expressed as a f r a c t i o n  
of the  d i sp l aceab le  pore volume of t he  pa t t e rn .  

Since the  flow around wellbores  is e s s e n t i a l l y  r a d i a l ,  t he  p o t e n t i a l s  i n  t h e  
immediate v i c i n i t y  of a wellbore can be expressed by 4 = c h ( r )  + c2 where 
c1 and c2 are cons tan ts .  I n  genera l ,  the values of these  cons tan ts  can be 
determined from the  flow rate and the  p o t e n t i a l  va lue  a t  a wellbore.  Because 
absolu te  va lues  of p o t e n t i a l s  and flow rates do not a f f e c t  the  na tu re  of 
tracer flow, for mathematical convenience, the  cons tan ts  c1 and c are chosen 
t o  be equal  t o  one and zero,  r e spec t ive ly .  Therefore,  4 = h ( r f  and conse- 
quent ly ,  t he  s t reaml ines  are defined i n  accordance wi th  t h i s  l a t t e r  p o t e n t i a l  
equat ion  as shown i n  Appendix A. From Darcy's Law: 

1 

( 3- 4 2 )  

Using t h i s  express ion  f o r  qt i n  Eqs. 3-40 and 3-39 and s u b s t i t u t i n g  t h e  
subsequent expressions i n t o  Eq. 3- 32,  t h e  fol lowing r e s u l t  is obtained:  

This  I s  a genera l  equat ion which descr ibes  tracer concent ra t ion  i n  any 
p a r t i c u l a r  streamtube, (I)), a t  a product ion w e l l  f o r  any repeated p a t t e r n .  
Equations f o r  s p e c i f i c  p a t t e r n s  can be deduced from t h i s  equat ion  if 
express ions  f o r  t he  I i n t e g r a l  (Eq. 3- 33) f o r  t hese  p a t t e r n s  are a v a i l a b l e .  
Der iva t ion  of expressions f o r  t h e  I i n t e g r a l  f o r  t he  developed s taggered l i n e  
d r i v e ,  f ive- spot  and d i r e c t  l i n e  d r i v e  p a t t e r n s  has  been provided i n  
Appendices C . l ,  C.2 and C . 3 ,  respec t ive ly .  With the  a i d  of t hese  appendices,  
t he  fol lowing equat ions  which d e f i n e  tracer concent ra t ion  i n  a genera l  stream- 
tube ,  ($), of t hese  s p e c i f i c  p a t t e r n s  are obtained. 
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Staggered Line Drive: Staggered l i n e  d r i v e  sys tems  d i f f e r  from each o the r  by 
t h e i r  d / a  r a t i o s ,  where d i s  t h e  d i s t ance  between un l ike  wells  ( i n j e c t o r-  
producer) ,  and a is  t h e  d i s t a n c e  between l i k e  wells (two i n j e c t o r s  or  two 
producers) .  From Appendix C . l  and Fig. C-1, t he  fol lowing r e l a t i o n s h i p s  are 
obtained : 

A = 2 d a  (3-44 

and, 

K'(m) d 
2K(m) a 
-P- (3-45) 

(3-46) 

S u b s t i t u t e  Eqs. 3-44, 3-45, 3-46 i n  Eq. 3-43, and rearrange:  

( 3-37 1 

The term VpDbt($) de f ines  t h e  p a t t e r n  breakthrough curve and is given by Eq. 
A-35 i n  Appendix A. l  with TI term i n  t h a t  equation r e l a t e d  t o  t h e  s t r eaml ine  
$. The term Y($) is obtained from Eq. C-21 i n  Appendix C. l .  

Five-Spot: 
when d / a  = 1/2. For t h e  f ive- spot:  

The f ive- spot is a s p e c i a l  case of a staggered l i n e  d r i v e  p a t t e r n  

K(m) = K' (m)  = 1.8540747 

Equation 3-47 s i m p l i f i e s  t o :  

L 0.645776 a - Y($) a ('pDbt(') - "pD ) (3-48) 

For t h i s  p a t t e r n ,  VpDbt($) and Y($) are given by Eqs. A-49 and C-23, 
r e spec t ive ly .  

Direct Line Drive: 
d /a  r a t i o s .  From Appendix C.3: 

Direct l i n e  d r i v e  systems are a l s o  charac te r i zed  by t h e i r  

A = 2 d a  (3-44 
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and, 

( 3 - 4 5 )  

( 3 - 4 6 )  

Therefore:  

( 3 - 4 7 )  

The VpDbt($) term is given by Eq. A-73 and Y($) is  given by Eq. C-58. 

Note t h a t  f o r  t hese  p a t t e r n s ,  exac t ly  t he  
same form of equat ion desc r ibes  tracer 
concent ra t ions  i n  a streamtube at t he  pro- 
duct ion  w e l l .  Only the  Y($) term which is  
r e l a t e d  t o  t r a c e r  d i spe r s ion ,  and VpDbt, 
which r ep resen t s  the  convection of t racer ,  
are d i f f e r e n t  . Theref o r e ,  it is specula ted  
t h a t  o the r  p a t t e r n s  w i l l  a l s o  have the  same 
form as Eq. 3-47 but with d i f f e r e n t  expres- 
s ions  f o r  the  Y and VpDbt terms. 

For any pore volume of d i sp l ac ing  f l u i d ,  
V D ,  i n j e c t e d  i t l to  a p a t t e r n ,  t h e r e  i s  
t t a c e r  flow from a l l  t he  streamtubes t o  t he  
product ion w e l l .  Therefore,  the  output 
t r a c e r  concent ra t ion  from t h e  product ion 
w e l l  of a homogeneous p a t t e r n  is the  sum of 
concent ra t ions  from t h e  streamtubes. A t  t h e  
l i m i t ,  t he  summation reduces t o  an i n t e g r a l  Fig. 3.17: ELEMENT CONSIDERED 
and the  streamtubes become s t reaml ines .  The I N  COMPUTING TRACER 
fol lowing p re sen t s  eva lua t ion  of t r a c e r  pro- PRODUCTION CURVES 
duct ion  curves from the  p a t t e r n s  considered FOR THE STAGGERED 
i n  t h i s  study. LINE DRIVE PATTERN 

Staggered Line Drive: Due t o  symmetry, only 1/8 of a staggered l i n e  d r i v e  
p a t t e r n  is considered,  as shown i n  Fig. 3 . 1 7 .  

Ef f luen t  tracer concent ra t ion ,  E, from t h i s  system is then given by: 

0 
C qt - 

8 

( 3- 49)  
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Because of unit mobility ratio displacement, flow rates in the streamtubes are 
constant and equal t o  each other. At the limit, when the streamtubes approach 
the streamlines: 

9, = 2 nq (3- 50)  

& 

Substitution for C($)/Cofrom Eq. 3-47 and qt from Eq. 3-50 and simplification 
yields : 

(3- 51)  

where is a dimensionless quantity defined as: D 

( 3 -52 )  

Five-Spot: For this pattern, Eq. 3-51 with K(m) = K'(m) = 1.854074 reduces 
to : 

- 
CD = 0.577266 

The term ED is defined by Eq. 3-52. 

(3-53) 

Direct Line Drive: For a direct line drive, 1 / 4  of the pattern must be 
considered, as shown in Fig. 3.18.  

For this system, the effluent concentration integral is: 

qt 
t 

( 3- 54 )  

where C($)/Co is given by Eq. 3-47 and qt by Eq. 3-50. Therefore: 

1 1 2  K(m) K' 2 (m) a 

lr26 vm 
a ('pDbt(') - 'PD)~] 

h 4  d$ 
- 2 4 G  K'(m) 1 [- 
cD 

(3 -55)  
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is due t o  t he  l a r g e r  amount of mixing t h a t  
occurs  f o r  small values  of Peclet numbers. 
Another c h a r a c t e r i s t i c  of these  curves i s  
t h a t  they a l l  e x h i b i t  t r a c e r  production a t  

values  l e s s  than 0.85. This number is  

I un 

0.20 

0.15 

0.10 

0.05 

0 
0.5 1 .o 1.5 

PD 
PORE VOLUHES INJECTED, V 

Fig.  3.19: DIMENSIONLESS TRACER CONCENTRATIONS VS PORE VOLUMES INJECTED, 
DEVELOPED STAGGERED LINE DRIVE, d / a  = 1.5  
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Fig. 3.20: DIMENSIONLESS TRACER CONCENTRATIONS VS PORE VOLUMES INJECTED, 
DEVELOPED FIVE-SPOT 

0.20 

0.15 

0.10 

0.05 

- 
C - 

'D 

1 1 I 1 

0 0.5 1 .o 

QD 
PORE VOLUMES INJECTED, V 

" 
0 0.5 1 .o 

QD 
PORE VOLUMES INJECTED, V 

5 

5 

Fig. 3.21: DIMENSIONLESS TRACER CONCENTRATIONS VS PORE VOLUMES INJECTED, 
DIRECT LINE DRIVE, d/a = 1 
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Fig.  3 . 2 2 :  TRACER PRODUCTION CURVES FOR DIFFERENT DEVELOPED AND 
HOMOGENEOUS PATTERNS, ala = 500 

I I I I 

1 DIRECT LINE DRIVE, 
d/a = 1 
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d/a = 1.5 

--- BREAKTHROUGH AREAL 
SWEEP EFFICIENCY 
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t he  same genera l  c h a r a c t e r i s t i c s .  A comparison of t r a c e r  product ion curves 
from these  t h r e e  p a t t e r n s  f o r  a /a  = 500 is  i l l u s t r a t e d  i n  Fig. 3 . 2 2 .  Again, 
tracer product ion occurs  before  the  t h e o r e t i c a l  breakthrough areal sweep 
e f f i c i e n c y  of the  p a t t e r n s ;  the  curves spread as the r e s u l t  of d i spe r s ion .  

3 . 2 . 3  Cor re l a t ion  of Tracer Production Curves 

I n  the  previous s e c t i o n ,  i t  was shown t h a t  t he  tracer product ion curve from a 
p a t t e r n  was a func t ion  of Pec l e t  number, a/a. Therefore,  f o r  each p a t t e r n ,  a 
set of tracer response curves was obtained with a la  as a parameter. I n  t h i s  
s e c t i o n ,  t he  sets of tracer p r o f i l e s  from var ious  p a t t e r n s  are c o r r e l a t e d  i n t o  
a s i n g l e  set of curves (a/a being the  parameter) which r ep resen t s  t he  tracer 
product ion curves from repeated homogeneous p a t t e r n s .  

The fol lowing approach was  taken t o  accomplish t h e  c o r r e l a t i o n .  The peak d a t a  
(maximum tracer concent ra t ions  and corresponding pore volumes) of tracer pro- 
duct ion curves f o r  d i f f e r e n t  systems were p l o t t e d  versus a/a. Figure  3.23  i s  
t h e  graph of dimensionless maximum concent ra t ion ,  and Fig. 3.24 is t he  graph 
of peak dimensionless volume l o c a t i o n  where t h e  maximum tracer concent ra t ion  
occurs.  The o rd ina t e  of t he  lat ter  f i g u r e  is  the  same dimensionless volume 
parameter t h a t  was used t o  c o r r e l a t e  t he  p a t t e r n  breakthrough curves i n  
Sec t ion  3 . 1 . 3 .  I n  both of t he  f i g u r e s ,  the  d a t a  f o r  every system y i e l d  a 
s t r a i g h t  l i n e  on log-log paper. A v e r t i c a l  s h i f t  of l i n e s  i n  Fig. 3 .23  and a 
h o r i z o n t a l  s h i f t  of l i n e s  i n  Fig. 3.24 c o r r e l a t e d  the r e spec t ive  sets  of l i n e s  
i n t o  a s i n g l e  l i n e  f o r  each f igu re .  The f ive- spot  system was chosen as a 
re ference  f o r  c o r r e l a t i o n  i n  both of t h e  f i g u r e s .  The amount of s h i f t  of 
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Fig. 3.23: PLOT OF DIMENSIONLESS MAXIMUM TRACER CONCENTRATIONS VS PECLET 
NUMBER FOR HOMOGENEOUS DEVELOPED PATTERNS 
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F i g .  3 . 2 4 :  PLOT OF DIMENSIONLESS PEAK PORE VOLUME LOCATION VS PECLET NUMBER 
FOR HOMOGENEOUS DEVELOPED PATTERNS 
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t h e s e  l i n e s  with respec t  t o  t h e  five- spot l i n e s  produced two sets of correc-  
t i o n  f a c t o r s :  one f o r  maximum tracer concent ra t ion ,  and the  o the r  one f o r  a / a  
t o  c a l c u l a t e  t he  peak, l oca t ion .  The co r rec t ion  f a c t o r s ,  which are i n  t he  form 
of m u l t i p l i e r s ,  are shown’,in Figs.  3.25 and 3.26. The t abu la t ed  va lues  of 
t h e s e  co r r ec t ion  f a c t o r s  are provided i n  Table 3.7. I f  t he  co r r ec t ion  f a c t o r s  
from these  two f i g u r e s  are appl ied  t o  t he  peak da t a  of a t r a c e r  breakthrough 
curve from a f ive- spot  s y s t e m ,  they produce the  peak d a t a  for t h e  p a t t e r n  

.. 

3.0 

2.5 

2.0 

1 .5  

1 .0  

0.5 

0.5 1.0 1.5 2 .0  2.5 3.0 

Fig.  3.25: CORRECTION FACTORS ON PEAK CONCENTRATIONS 
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corresponding t o  the selected correct ion f a c t o r s .  
may be used for  the conversion: 

The fo l lowing re la t ionsh ips  

(3-56) 
pat tern 

where, fm i s  the correct ion fac tor  on the peak concentration (F ig .  3 . 2 5 ) .  
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Fig. 3.26: CORRECTION FACTORS ON a/a TO CALCULATE PEAK LOCATIONS 
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Table 3.7 

CORRECTION FACTORS ON TRACER PEAK CONCENTRATION AND a/a FOR 
STAGGERED LINE -DRIVE AND DIRECT LINE DRIVE AT VARIOUS d/a RATIOS ’ .  

d 
a 
- 

STAGGERED LINE DRIVE DIRECT LINE DRIVE 

m f f 
P 

f 
P 

f m 

0.75 1.13 1.09 

1.00 1.36 1.22 

1.25 1.76 1.37 

1.50 2.26 1.52 

0.092 1.06 

0.173 1.03 

0.280 1.07 

0.410 1.17 

1.75 2.76 1.68 0.536 1.27 

2.00 3.26 1.83 0.665 1.39 

2.25 3.78 1.99 0.790 1.50 

2.50 4.28 2.14 0.915 1.62 

2.75 4.79 2.30 1.040 1.74 

3.00 5.30 2.46 1.165 1.85 

3.25 5.81 2.63 1.294 1.95 

3.50 6.12 2.78 1.420 2.06 

Subst i tut ing for from Eq.  3-52 and s implifying:  D 

‘max . (g) pattern ( 3-57) (e) 5-spot 
( ’pattern 

The correct ion factor  on Peclet  number, f (Fig.  3.26), r e l a t e s  a / a  values:  P 

a 

(+)pattern = f p  (T)5-spot 
(3-58) 
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F i n a l l y  : 

( cmax) p a t t e r n  = 6 (cmax)5-sp0t 
(3-59 

Pore volumes corresponding t o  peak concent ra t ions  are a l s o  conve r t ib l e ,  
because maximum concent ra t ions  occur a t  the  same dimensionless  pore volumes, 
i.e.: 

(3-60) 

S-SpOt 

pD,max - "pDbt pD,max - 'pDbt 

O r ,  equiva len t ly :  

p a t t e r n  
(' - 'pDbt 

'pD , max - 'p Db t 

- 'pDbt 
('PD,max) 

p a t  t e r n  

+ ('pDbt) (3-61) 
p a t t e r n  

where, VpDbt is  the  areal sweep e f f i c i e n c y  expressed as a f r a c t i o n .  

Having been ab le  t o  c o r r e l a t e  one poin t  from each curve--namely, t he  maximum 
poin t  of t he  tracer breakthrough p r o f i l e  from var ious  systems--the a n a l y s i s  
was extended t o  c o r r e l a t e  t h e  tracer breakthrough curves over t h e i r  e n t i r e  
concent ra t ion  versus volume range. To do t h i s ,  f i r s t ,  t he  tracer breakthrough 
p r o f i l e s  of systems were normalized by d iv id ing  the  concent ra t ion  values by 
the maximum concent ra t ions  f o r  each curve. An example of t h i s  f o r  a developed 
f ive- spot  system is shown i n  Fig. 3.27. Second, t he  co r r ec t ion  f a c t o r s  on a /a  
i n  Fig. 3.26 were u t i l i z e d  t o  c o r r e l a t e  the  normalized curves of d i f f e r e n t  
p a t t e r n s  i n t o  one curve. To accomplish t h i s ,  t he  volume coordinate  used on 
t h e  a b s c i s s a  was the  same dimensionless pore volume func t ion  t h a t  was found 
u s e f u l  i n  t he  c o r r e l a t i o n  of p a t t e r n  breakthrough curves discussed i n  Sec t ion  
3.1.3. Figure  3.28 shows a p a r t i c u l a r  c o r r e l a t i o n  obtained when comparing a 
f ive- spot  with a/a = 700 t o  t he  equiva len t  d i r e c t  l i n e  d r i v e  (d /a  = 1, a/a = 
1201, and the  equiva len t  s taggered l i n e  d r i v e  (d /a  = 2, a/a = 2280). The 
va lues  of a/a f o r  t h e  l a t t e r  two p a t t e r n s  were computed using Eq. 3-58 with 

The corre-  
l a t i o n  i s  e x c e l l e n t  i n  t h e  v i c i n i t y  of the  peak. A t  smaller and l a r g e r  pore 
volumes, i t  i s  somewhat poor, but  s t i l l  adequate as w i l l  be seen later. Due 
t o  t he  low concent ra t ions  at  each end of t he  c o r r e l a t i o n ,  t he  r e l a t i v e  e r r o r s  
by t he  c o r r e l a t i o n  are small a t  the  volume extremes. 

- 0.17 and f p  = 3.26, r e spec t ive ly ,  obtained from Fig. 3.25. f P  
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For any value of ala and for different geometries, the actual curves can be 
related to a five-spot system by using the parameters in the coordinates of 
Fig. 3.28,  and the correction factors on Fig. 3.25 and 3.26 as follows: 

max pattern max 

Substitute for maximum concentrations from Eq. 3-59: 

- 
'pattern = f m 6  'S-spot 

(3-62) 

(3-63) 

The pore volumes at which the concentrations in Eq. 3-63 occur are obtained 
from the dimensionless pore volume abscissa coordinate of Fig. 3.28.  The 
relationship is similar to Eq. 3-61 and subsequently is given by: 

'pDbt 

('pD) pattern = c--vpDbt ) 5-spot - 'pDbt) pattern + ('pDbt) pattern 

(3-64) 

By using Eq. 3-58, different patterns can be correlated into an equivalent 
five-spot pattern; thereafter, breakthrough curves can be computed from the 
five-spot tracer breakthrough profile through Eqs. 3-63 and 3-64 only. 

3 . 3  TRACER FLOW IN HETEROGENEOUS SYTEMS 

This section focuses on the mathematical description of tracer movement in 
non-uniform reservoirs. The non-uniformity of a reservoir is represented with 
a stratified model. 

3.3 .1  Concept of Multilayered Modeling 

Reservoirs often are sedimentary deposits laid down in a body of water over a 
long period of time. After deposition, they undergo further physical and 
chemical changes. As a result of the non-uniform nature of deposition and 
secondary alteration, heterogeneities develop within the reservoirs. The 
severity of the heterogeneity depends on the lithology and the external forces 
acting upon the system. In general, sandstone reservoirs tend to be more 
uniform than limestone or carbonate reservoirs. Levorsen (1956) details 
sedimentary basins including the origin of heterogeneities i n  each basin. 
Hutchinson (1959) presents an excellent review on reservoir inhomogeneity. 

Since the sediments are deposited areally, it is expected that some lateral 
uniformity exists over wide ranges of a reservoir. However, a variation is 
anticipated in the vertical direction due to differences in the depositional 
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time and environment. This scheme 
of deposition indicates that the 
sediments are generally laid down in 
layers which are fairly haiform in 
lateral direction but differ with 
elevation. For many sandstone 
reservoirs, this type of hetero- 
geneity is a fair representation of 
the reservoir. The fact that the 
permeabilities measured in the ver- 
tical direction are frequently a 
small fraction of the horizontal 
penneabilit ies emphasizes the 
validity of this representation. 
Figures 3.29a and b show outcrops of 
sandstone reservoirs. These pic- 
tures illustrate that formations are 
often composed of layers. In some 
cases, thin layers of shale or silt 
are deposited between the sand 
layers and prevent interlayer fluid 
transport. However, in other cases 

layers and hence, unrestricted or with Thin Subunits of Sand 
partially restricted cross-flow 
occurs between the layers. Some- 
times, cross-bedding , pinching out 
and local non-uniformities within 
the layers distort the homogeneity 
and the continuity of the layers. 

there is no barrier between the Fig* 3o2ga Marine Sandstone Deposit 

Despite physical limitations, reser- 
voirs can often be simulated as 
though they are composed of parallx 
layers with no interlayer communica- 
tion. Based on this model, several 
reservoir engineering calculations 
can be made. Dykstra and Parsons 
(1950) presented a method for calcu- 
lating reservoir vertical coverage 
in waterflooding operations using 
this concept. Their method has been 
found to match the results of many 
waterflood operations. Elkins and 
Skov (1962) matched the performance 
of two gas-condensate cycling pro- Fig. 3.29b Channel Sandstone Deposit 
jects and an enriched gas-drive Exhibiting Highly Irregular 
project with a multi-strata model. Bedding 
Fitch and Griffith (1964) also 
matched the performance of an LPG 
slug miscible drive in an isolated Fig. 3.29: OUTCROPS OF SANDSTONE 
five-spot pilot test by using a RESERVOIRS (after Zeito, 
stratified model with no cross-flow 1965) 
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between t h e  l aye r s .  The s t r a t a  d e s c r i p t i o n  f o r  t h e  p i l o t  was obtained from 
core da ta .  Based on a s t r a t i f i e d  model, Hearn (1971) developed t h e o r e t i c a l  
pseudo- relat ive- permeabil i ty  curves f o r  a r e s e r v o i r  which included v e r t i c a l  
permeabi l i ty  v a r i a t i o n .  T,he pseudo- relative- permeabili ty curves converted t h e  
s t r a t i f i e d  r e s e r v o i r  i n t o  a mathematically- equivalent,  two-dimensional homo- 
geneous system wi th  pseudo p rope r t i e s .  This  model was shown t o  match the  
performance . of a waterf looding opera t ion  conducted i n  a carbonate  r e se rvo i r .  
There was v e r t i c a l  communication among the  l a y e r s  of t h i s  r e se rvo i r .  

Cross-flow between t h e  l a y e r s  occurs  as a r e s u l t  of t h e  es tab l i shment  of a 
v e r t i c a l  p ressure  g rad ien t  between the  l aye r s .  One o r  more of t h r e e  f o r c e s  
may cause v e r t i c a l  p ressure  g rad ien t s  t o  develop. These are g r a v i t y ,  
c a p i l l a r y  and viscous fo rces .  I n  misc ib le  displacements ,  v e r t i c a l  d i s p e r s i o n  
a l s o  con t r ibu te s  t o  t h e  amount of cross-flow. I n  a misc ib le  displacement of 
f l u i d s  wi th  equal  d e n s i t i e s ,  t h e r e  are no g r a v i t y  and c a p i l l a r y  fo rces .  If 
t h e  f l u i d s  a l s o  have the  same v i s c o s i t y  (mobi l i ty  r a t i o  equal  t o  one) ,  no 
viscous f o r c e s  w i l l  be present  across  t he  l aye r s .  A misc ib le  displacement i n  
which these  fo rces  are absent w i l l  t h e o r e t i c a l l y  produce similar r e s u l t s  i n  a 
s t r a t i f i e d  system wi th  no b a r r i e r  between the  l a y e r s ,  and i n  a system i n  which 
impermeable l a y e r s  prevent cross-flow. However, t he  systems which e x h i b i t  
cross- flow can a l s o  be modeled by a hypo the t i ca l  system with no cross- flow. 
This was i l l u s t r a t e d  by F i t c h  and G r i f f i t h  (1964), who matched the  r e s u l t s  of 
a misc ib le  test by a s t r a t i f i e d  model wi th  no cross- flow. The test w a s  con- 
ducted i n  labora tory  layered- prototypes without b a r r i e r s  between the  l a y e r s  a t  
a mobi l i ty  r a t i o  of about twenty. The success  of s t r a t i f i e d  r e s e r v o i r  models 
i n  matching performance of misc ib le  and immiscible displacements i n d i c a t e s  
t h a t  t h i s  concept of modeling is  o f t en  reasonable.  

S imi l a r ly ,  t he  flow of tracers i n  heterogeneous r e s e r v o i r s  can be modeled by a 
s t r a t i f i e d  system. Since t h e  tracer material i s  misc ib l e  wi th  both the  
d i sp l ac ing  and d isp laced  f l u i d s ,  and has the  same dens i ty  and v i s c o s i t y  as 
these  f l u i d s ,  cross- flow can occur only as a r e s u l t  of la tera l  d i spe r s ion .  
However, the  e f f e c t s  of l a t e ra l  d i spe r s ion  are much smaller than  long i tud ina l  
d i spe r s ion ,  as has been discussed earl ier .  Therefore,  f o r  p r a c t i c a l  purposes,  
t h e  r e s u l t s  of tracer flow i n  a s t r a t i f i e d  r e s e r v o i r ,  wi th  o r  without  b a r r i e r s  
between the  l a y e r s ,  would be similar. 

3.3.2 Tracer Production Curves from Layered Systems 

To compute tracer response curves from layered  systems, the  fol lowing assump- 
t i o n s  are made: 

1) The ind iv idua l  l a y e r s  are homogeneous (uniform poros i ty  and permeabi l i ty  
throughout each l a y e r ) ;  

2) There is no cross flow between t h e  l aye r s ;  

3) The d i spe r s ion  cons t an t ,  a, is t he  same f o r  each l a y e r ;  

4) Water s a t u r a t i o n  is constant  and is the  same i n  each l a y e r ;  and 

5) The mobi l i ty  r a t i o  of the  displacement is equal  t o  uni ty .  
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The j u s t i f i c a t i o n  of t he  t h i r d  assumption stems from two f a c t s :  1) f o r  the 
formations wi th  t h e  same sedimentary depos i t  o r i g i n s ,  d i spe r s ion  cons tan ts  do 
not  vary apprec iab ly  wi th in  t h e  same producing zones of formations;  and 2) 
tracer breakthrough 'curvet do not  depend s t rong ly  on d i spe r s ion  cons tan ts .  
This  can be seen from e i t h e r  Fig. 3.19 or 3.23. The f i f t h  assumption is v a l i d  
f o r  t he  tracer tests run i n  gas r e s e r v o i r s  o r  watered-out r e s e r v o i r s  ( p r i o r  t o  
t e r t i a r y  ope ra t ions )  wherein t h e  f l u i d  flowing ahead of t he  tracer s l u g  is  
e s s e n t i a l l y  water, and the  chase f l u i d  is a l s o  water. I n  secondary recovery 
water f looding  i n  r e s e r v o i r s  with high connate-water s a t u r a t i o n ,  t h e  f l u i d  bank 
ahead of t h e  tracer s l u g  w i l l  be mainly water. Hence, t h e  assumption of u n i t  
mob i l i t y  r a t i o  would be appl icable .  I n  almost a l l  gas cyc l ing  p r o j e c t s ,  t h e  
assumption of u n i t  mobi l i ty  r a t i o  is va l id .  

I n  a layered  system, the  o v e r a l l  tracer output  curve is  a combination of 
responses from t h e  c o n s t i t u e n t  l aye r s .  The i n d i v i d u a l  l a y e r  responses are 
p r e d i c t a b l e  and c o r r e l a t a b l e  by t h e  a n a l y s i s  discussed i n  t h e  previous 
s e c t i o n s .  However, t he  tracer a r r i v a l  time a t  the  product ion w e l l  and t h e  
tracer concent ra t ion  cont r ibu ted  from each l a y e r  are func t ions  of t h e  
po ros i ty ,  permeabi l i ty  and th ickness  of each l aye r .  Because of t h e  un i t-  
mobi l i t y  r a t i o  assumption, any material i n j e c t e d  i n t o  a mul t i layered  system is 
d i s t r i b u t e d  among the  l a y e r s  i n  propor t ion  t o  conductances, kh. I f  VT is t h e  
t o t a l  volume ( i n  b a r r e l s )  of d i sp l ac ing  f l u i d  i n j e c t e d ,  then t h e  pore volume 
i n j e c t e d  i n t o  l a y e r  j is: 

A t  t he  producing wellbore,  the  tracer 
tracer concent ra t ions  from the  l a y e r s .  

(3-65) 
= @ Ckh A Sw 

j 

concent ra t ion  is  the  volumetr ic  sum of 
This is  given by: 

(3-66) 

where : 

n = number of l a y e r s  
- 
C, = tracer concent ra t ion  flowing from l a y e r  j i n t o  the  wellbore,  corn- 

puted at pore volume (VpD) 
j 

From Eq. 3-52 f o r  l a y e r  j : 

where Fr 
of t h e  pdre volume of l a y e r  j. 

i s  the  tracer s l u g  s i z e  i n j e c t e d  i n t o  l a y e r  j 
It is thus  given by: 

(kh) j "Tr j 'Tr 
= $ Ckh AS, 

k 
=- 

j 
j r j  Ckh A (Oh) Sw 

j 

(3-67) 

i n  terms of f r a c t i o n  

(3-68) 
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- 
and C is the dimensionless concentration from layer j calculated at V PD = 
(V ?' This dimensionless concentration is given by one of the Eqs. 3-51, 3- 
53'?# 3-55, depending on the type of pattern. If thickness, porosity and 
permeability of the layers are known, the tracer concentration profiles for 
various patterns can be constructed. Conversely, the decomposition of a 
tracer production curve from a multilayered system into the constituent layer 
responses can yield the layer parameters. Yuen -- et al. (1979) presented a 
method for the decomposition of overall tracer response curves from developed 
five-spot systems. 

To study the flow of tracer in layered systems, a hypothetical four-layered 
staggered line drive with d/a = 1 was considered. The area of the system was 
90,000 ft2, the Peclet number was a/a - 2000, and the total tracer injected 
into the system was 10 ft3. Also, the system was considered to be of unit 
thickness with a porosity of 0.25 and an initial water saturation of 60 
percent. Table 3.8 shows the assumed parameters of the layers. The calcu- 
lated tracer response from this system is presented in Fig. 3.30. There are 
four distinct peaks in this figure which are widely separated from each 
other. A computer algorithm, based on the Yuen -- et ale's (1979) method, was 
prepared which would deconvolve the overall tracer profile into the consti- 
tuent layer responses, and thus evaluate the porosity thickness and fractional 
permeability thickness products of the individual layers from the input peak 
data (concentration and volume). The computer program would then regenerate 
the entire tracer production profile based on the computed layer parameters. 
This program will be referred to as "deconvolution routine" in this study. 
Table 3.8 shows the computed results using the deconvolution routine based on 
exact equations for a staggered line drive system. The corresponding computed 
tracer curve was close to the original profile. 

Table 3.8 

ASSUMED AND COMPUTED PARAMETERS OF THE LAYERS FOR THE THEORETICAL 
STAGGERED LINE DRIVE, EXAMPLE 1 

COMPUTED PARAMETERS COMPUTED PARAHETERS 
USING EQUATIONS OF USING EQUATIONS FOR 

EQUIVALENT 5-SPOT SYSTEM ASSUMED STAGGERED LINE DRIVE, 
PARAHETERS d/a = 1 

LAYER 
kh 
Ckh 
- kh 

Ckh 
- kh 

Ckh 
- 

1.00601 0.39824 1.00197 0.39664 2 1.0134 0.4 

1.13376 0.29921 1.13944 0.30071 3 1.1403 0.3 

4 0.5068 0.1 0.51094 0.101 13 0.52816 0.10454 

2.9307 1 0.99608 2.94787 0.99819 SUM 2.9455 1.0 
--------------___-_-----------------  
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Fig. 3.30: TRACER RESPONSE FROM A FOUR-LAYERED STAGGERED 
LINE DRIVE, d / a  = 1, "FIRST EXAMPLE" 

The c o r r e l a t i n g  technique developed f o r  t r a c e r  production curves was appl ied  
t o  t h i s  mul t i layered system. The s taggered l i n e  d r i v e  was converted i n t o  an 
equiva len t  f ive- spot  using Eq. 3-58 with f p  = 1.36 obtained from Fig. 3.26. 
This changed the  value of a /a  from 2000 t o  1470. Next, t he  deconvolution 
rou t ine  was modified t o  combine t r a c e r  concent ra t ion  equat ions  f o r  t he  f i ve-  
spot  system with  t he  c o r r e l a t i n g  Eqs. 3-63 and 3-64. This modified vers ion  of 
t he  deconvolution rou t ine  was used, with appropr ia te  m u l t i p l i e r s  and break- 
through a r e a l  sweep e f f i c i e n c i e s ,  t o  decompose the  o r i g i n a l  t r a c e r  curve i n  
Fig.  3.30. The regenerated p r o f i l e  based on the  c o r r e l a t i o n  is seen i n  Fig 
3.31. The match i s  good with  only s l i g h t  divergence i n  the  v i c i n i t y  of t h e  
l o c a l  minima. This divergence was expected because t he  o r i g i n a l  c o r r e l a t i o n  
was not p e r f e c t  at l a r g e r  and smaller values  of pore volumes. The parameters 
of t he  l aye r s  computed by the  program a r e  shown i n  Table 3.8. The ca l cu l a t ed  
values  of $h and kh are c lo se  t o  t he  values  used to  genera te  t he  da t a .  

I n  t he  second hypo the t i ca l  example, t he  same four- layer  s taggered l i n e  d r i v e  
system w a s  considered.  This time the  parameters of t he  l a y e r s  were changed t o  
ob t a in  peaks near each o ther .  Table 3.9 presen ts  the  s e l e c t e d  parameters of 
t he  l aye r s .  The tracer response from t h i s  system is  shown i n  Fig. 3.32. As 
before ,  t he  deconvolution rou t ine  was used with  t he  input  observed peak da t a  
t o  genera te  a match t o  t h i s  curve. The r e s u l t i n g  match, shown in Fig. 3.32, 
is not a s a t i s f a c t o r y  one. Yuen -- et al .  (1979) have i l l u s t r a t e d  t h a t  when 
peaks a r e  near each o t h e r ,  the  observed peak loca t i ons  do not correspond t o  
t he  exact  peak l o c a t i o n s  from the  i nd iv idua l  The ind iv idua l  l a y e r  responses.  
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Fig. 3.31: MATCH OBTAINED USING THE DECONVOLUTION ROUTINE AND TRACER 
CORRELATION PARAMETERS 

Table 3.9 

ASSUMED AND COMPUTED PARAMETERS OF THE LAYERS FC#R THE THEORETICAL 
STAGGERED LINE DRIVE, EXAMPLE 2 

ASSUMED PARAMETERS 
COMPUTED PARAMETERS USING 
OPTIMIZATION TECHNIQUE 

LAYER - kh h, k ,  
4h Ckh f t  md 

- kh h ,  k ,  
" Ckh f t  md _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - _ - - - -  

1 0.315 0.15 1.26 119.05 0.314996 0.149998 1.26 119.05 

2 1.000 0.40 4.00 100.00 0.999957 0.399984 4.00 100.00 

3 0.6875 0.25 2.75 90.91 0.687447 0.249983 2.75 90.91 

4 0.6000 0.20 2.4 83.33 0.600065 0.200024 2.40 83.33 

SUM 2.6025 1.00 2.602466 0.999989 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ - - - - - - - - - - - - _ - -  

~~ * 
The k and h values  i n  t h i s  tab le  have been computed for 4 = .25 and 
Ckh = 1000 m d- f t .  
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Fig. 3.32:  TRACER RESPONSE FROM A FOUR-LAYER DEVELOPED STAGGERED LINE DRIVE 
(d/a = 1) AND THE MATCH OBTAINED USING THE DECONVOLUTION ROUTINE, . -  
"SECOND EXAMPLE" 

tracer response curves interfere with each other and, hence, shift the 
location of the observed peaks from their corresponding layer peaks. Brown 
and Brigham (1981) have shown a method of handling this shift using a trial- 
and-error procedure for each peak. This usually requires many trials to 
achieve a desirable match and can be tedious for large systems. In this 
study, an attempt has been made to overcome this problem. 

4 . 3 . 3  Optimization Technique 

Non-linear optimization (or multiple regression analysis) is a powerful tech- 
nique in fitting data by a set of variables. This procedure is also known as 
a non-linear least-squares method for curve fitting. The idea is to minimize 
the objective function F: 

N 

where : 

c; = 

N =  

i =  

observed concentration at sample point i 

overall concentration computed at sample point i 

number of data points or number of observed concentrations 

an observation point 
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For a mul t i l aye r  system, the  i n j e c t e d  tracer and d i sp l ac ing  f l u i d  w i l l  be 
d iv ided  i n t o  l a y e r s  p ropor t iona l  t o  the kh of each l aye r .  If (VT)i i s  the  
t o t a l  volume ( i n  barrels) i n j e c t e d  at  t he  t i m e  po in t  i is observed, the  pore 
volumes i n j e c t e d  i n t o - l a y e r  j a t  t h i s  time from Eq. 3-65 are: 

The o v e r a l l  tracer concent ra t ion  being produced a t  t h e  t i m e  of observa t ion  
po in t  i is  the  sum of tracer concent ra t ions  being suppl ied  by each l a y e r .  
This  concept is considered i n  Eq. 3-66 and is given by: 

(3-71) 

where is the  concent ra t ion  flowing t o  the  wellbore from l a y e r  j a t  t he  
t i m e  ar3d) i n j e c t i o n  volume assoc ia ted  with poin t  i. This concent ra t ion  i s  
computed from Eq. 3-67 as fol lows:  

(3-72) 

where F . i s  given by Eq. 3-68 and (e  ) .  , dimensionless concent ra t ion  i n  
l a y e r  j,”is ca l cu la t ed  a t  V = ( V P D l j , i  Dia’the equat ion  f o r  tracer product ion 
curves from homogeneous pat!Erns. 

From Eqs.  3-51, o r  3-53, or 3-55 ( f o r  t he  p a t t e r n  of i n t e r e s t ) ,  and Eqs. 3-68 
and 3-70 through 3-72, it  can be concluded t h a t  Ei is  only a func t ion  of 
k /(4jZkh), (kh)j/Zkh, (VT)i, and the  number of l aye r s .  The f u n c t i o n a l  form 
i$ : 

(3-73) 

where I’ is  a func t ion  given by combining Eqs. 3-51, or  3-53, or 3-55 ( f o r  t he  
p a t t e r n s )  wi th  Eq. 3-70 and 3-72. Denoting: 

and, 

(3-74) 

(3-75) 
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Equation 3-73 becomes : 

(3-76) . 

The subrout ine  VARPRO a t  the  Stanford Center f o r  Information Technology ( C I T )  
can minimize t h e  func t ion  F given i n  Eq. 3-69 when i s  i n  t h e  form of Eq. 
3-76. This  subrout ine  r equ i r e s  i n i t i a l  estimates on non- linear parameters ,  

case of i n t e r e s t  he re ,  t he  i n i t i a l  estimates on Z can be obtained e a s i l y  from 
Eq. 3-70 by assuming t h a t  t he  observed l o c a t i o n  df peaks i n  t he  tracer break- 
through curve correspond t o  the  l o c a t i o n  of peaks from i n d i v i d u a l  l a y e r  
responses.  This  is given by the  fol lowing equat ion:  

i 
with no requirements on i n i t i a l  estimates f o r  l i n e a r  parameters,  . I n  xj 

(3-77) 

where : 

= volume corresponding t o  the  jth peak in t he  observed tracer 
p r o f i l e ,  bb l s  ( 'T ,max) 

= pore volume corresponding t o  t he  peak l o c a t i o n  i n  t r a c e r  
response from a homogeneous system. This can be obtained 
from Fig. 3.24 combined with breakthrough areal sweep e f f i -  
ciency equat ions  provided i n  Appendix A f o r  d i f f e r e n t  
p a t t e r n s  

'pD ,max 

A computer program has been developed which u t i l i z e s  the  subrout ine  VARPRO t o  
perform the opt imiza t ion .  The input  da t a  f o r  t h i s  program are as fol lows:  N 
d a t a  po in t s  from the  o v e r a l l  tracer p r o f i l e ,  number of l a y e r s  expected ( n )  
where n is smaller than N, and n loca t ion  volumes corresponding t o  peaks i n  
t h e  observed t r a c e r  breakthrough curve. The program computes n non- linear 
parameters and n l i n e a r  parameters with the  least  poss ib l e  e r r o r s .  From t h e s e  
parameters ,  $h and kh/Ckh of each l a y e r  are computed as fol lows:  

xj 

j 
Ckh 2 (3-78) 

(3-79) 

Based on t h e  above computed parameters,  t h e  program regenera tes  t h e  e n t i r e  
tracer breakthrough curve. 

The tracer p r o f i l e  i n  Fig. 3.32 was analyzed us ing  t h i s  op t imiza t ion  tech-  
nique. Twenty d a t a  po in t s  and four  l a y e r s  were chosen. The r e s u l t  of t h i s  
op t imiza t ion  is  shown i n  Fig. 3.33. There is v i r t u a l l y  no d i f f e r e n c e  between 
the  o r i g i n a l  p r o f i l e  and t h e  matched curve. The important po in t  here  is t h a t  
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VOLUME INJECTED, MBBLS 

F ig .  3.33: MATCH OBTAINED USING THE OPTIMIZATION ROUTINE WITH FOUR LAYERS, 
"SECOND EXAMPLE" 

Fig. 3.33 was obtained i n  one run,  and no t r i a l  runs were necessary.  Table 
3.9  shows the  numerical values  of the  parameters of t he  l a y e r s  computed by the  
program. The r e s u l t s  are v i r t u a l l y  i d e n t i c a l  t o  the  input  da ta .  I f  t he  
l a y e r s  are assumed t o  have the  same poros i t y ,  and i f  average conductance of 
t h e  system is known, the  th icknesses  and pe rmeab i l i t i e s  of t he  l a y e r s  can be 
computed. Table 3.9 a l s o  shows the  computed permeabi l i ty  and thickness  of t he  
l a y e r s  f o r  uniform po ros i t y  of 0.25 and Ckh of 1000 md-ft. 

TO s tudy the  effect of assuming a smaller number of l a y e r s  or a g r e a t e r  number 
of l a y e r s  on the  a n a l y s i s ,  the  p r o f i l e  i n  Fig. 3.32 was optimized using th ree  
and f i v e  layers. The r e s u l t s  are shown in Figs.  3.34 and 3.35, r e spec t ive ly .  
Both f i g u r e s  have the  same area under t he  curve f o r  t he  a lgor i thm maintains  a 
m a t e r i a l  balance. For t he  f ive- layer  case, t he  program produced two peak 
l o c a t i o n s  t h a t  were very c lo se  t o  each o ther  (19,394 bbls  and 19,399 bb l s ) ,  
implying t h a t  t he  two l a y e r s  belonging t o  t he  peaks are a c t u a l l y  only one 
l a y e r  and, t h e r e f o r e ,  t he  system is composed of four  layers .  Figure 3.34 
shows t h a t  with t h r ee  l a y e r s  the  ana lys i s  did not  produce a good match. This  
i n d i c a t e s  t h a t  more l a y e r s  are required f o r  a better match. Table 3.10 i l l u s -  
trates the  results of t he  op t imiza t ion  wi th  t h r ee  and f i v e  l aye r s .  Also shown 
i n  t h i s  t a b l e  are the  computed values  of pe rmeab i l i t i e s  and th icknesses  f o r  
equal  values  of poros i ty  i n  t he  l aye r s .  Since two of t he  l a y e r s  i n  Table 3.10 
have v i r t u a l l y  t he  same permeabi l i ty ,  it is concluded t h a t  t he  system is 
a c t u a l l y  composed of only four  l aye r s .  Again, the  r e s u l t s  of t h i s  a n a l y s i s  
are v i r t u a l l y  i d e n t i c a l  with t he  input  data .  
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VOLUME INJECTED, HBBLS 

Fig.  3 . 3 4 :  MATCH OBTAINED USING THE OPTIMIZATION ROUTINE W I T H  THREE LAYERS, 
"SECOND EXAMPLE" 

VOLUME INJECTED, HBBLS 

Fig. 3.35: MATCH OBTAINED USING THE OPTIMIZATION ROUTINE W I T H  FIVE LAYERS, 
"SECOND EXAMPLE" 
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Table 3.10 

COMPUTED PARAMETERS OF THE LAYERS USING THE OPTIMIZAZION 
TECHNIQUE W I T H  VARIOUS NlMBER OF LAYERS, EXAMPLE 2 

COMPUTED PARAMETERS 
WITH THREE LAYERS 

COMPUTED PARAMETERS 
WITH FIVE LAYERS 

LAYER 
- kh h, k, 

$h Ckh f t  md 
kh h,  k, 

$h Ckh f t  md 

2 1.17024 0.46375 4.68 681.02 0.62362 0.24942 2.49 99.99 

3 0.94361 0.32965 3.77 87.34 0.37630 0.15055 1.51 100.01 

4 0.68738 0.24996 2.75 90.91 

5 0.60014 0.20005 2.40 83.33 

SUM 3.45202 0.95404 9.80 2.60243 0.99998 10.00 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 
The k and h values i n  t h i s  t a b l e  have been computed for 4 = .25 and 
Ckh = 1000 md-ft. 

The opt imizat ion computer program developed i n  t h i s  s tudy generated e x c e l l e n t  
matches t o  t h e o r e t i c a l  t r a c e r  curves from mul t i layered p a t t e r n s .  The match 
obta ined wi th  fewer than the  a c t u a l  number of l a y e r s  was not good, while t h a t  
obtained wi th  an excess ive  number of l a y e r s  was e x c e l l e n t .  The program a l s o  
produced the  c o r r e c t  number of l a y e r s  whenever more l a y e r s  were used than 
should have been. This proved t h a t  t h e  program was capable of analyzing 
t h e o r e t i c a l  tracer curves. However, it  remains t o  tes t  t h e  p r a c t i c a l  use of 
the method on f i e l d  tracer response curves. 
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4. FIELD EXAMPLE 

A f t e r  s u c c e s s f u l  a n a l y s i s  of t r a c e r  responses from h y p o t h e t i c a l l y  cons t ruc ted  
mul t i- layered systems, the  s tudy was d i r e c t e d  t o  t h e  a n a l y s i s  of f i e l d  da ta .  
The fol lowing example was taken from t h e  paper by Brigham and Smith (1965). 

4.1 HISTORY MD DESIGN OF ?HE TEST 

The system considered was an unbalanced, inver ted  f ive- spot p i l o t  p a t t e r n  
l o c a t e d  i n  t h e  Loco F ie ld  i n  Oklahoma. The r e s e r v o i r  had been under water-  
f l o o d i n g  s i n c e  e a r l y  1950. I n  1959, hot  water  i n j e c t i o n  began. The p i l o t  
l o c a t i o n  was s e l e c t e d  i n  an a r e a  t h a t  had been deple ted  beyond the  economic 
l i m i t  by convent ional  waterf looding.  Beside t h e  p i l o t  i n j e c t i o n  well ,  seven 
o t h e r  i n j e c t o r s  had been also opera t ing  i n  the  v i c i n i t y  of t h e  p i l o t  area as 
Ehown i n  Fig. 4.1. Martin -- e t  al. (1968) present  t h e  geo log ica l  da ta  on t h e  
s t r u c t u r e  of the  r e s e r v o i r  and t h e  p i l o t  area i n  p a r t i c u l a r .  

Fig. 4.1 : ISOPACH MAP OF LOCO WATERFLOOD PILOT AREA 
(Af te r  Martin 7- e t  al. ,  1968) 



A t r a c e r  program was i n i t i a t e d  
i n  1962 t o  measure t r ave l  
times and breakthrough char- 
a c t e r i s t i c s  f o r  t h i s  pis3 o t  . 
P r i o r  t o  t h e  t e s t ,  the  in jec-  
t i o n  and production rates were 
s t a b l e  and remained cons tan t  
dur ing  most of t h e  tes t .  Flow 
rates and information regard-  
i n g  t h e  p a t t e r n  and r e s e r v o i r  
are shown on Fig. 4.2. Be- 
cause of opera t ing  problems, 
t h e  i n j e c t i o n  pump was s h u t  
d o m  on t h e  18th  day of t h e  
p r o j e c t  through the  21st day. 
Water i n j e c t i o n  W B S  then re- 
sumed a t  600 BWPD, equal  t o  
t h e  i n j e c t i o n  ra te  p r i o r  t o  
t h e  s h u t  down. Tota l  produc- 
t i o n  ra te  from t h e  f o u r  wells  
was 800 BWPD, implying t h a t  
t h e  product ion w e l l s  produced 
200 BYPD from o u t s i d e  of the  
p a t t e r n  a r e a .  This amount w a s  
not  enough t o  balance t h e  
pat terrz completely. For an  
i s o l a t e d  f ive- spot  p a t t e r n  t o  
a c t  as though it is  conf ined,  
i t  2s necessary  t h a t  t h e  pro- 
duc t ion  rate  from each we l l  be 
equa l  t o  t h e  i n j e c t i o n  rate. 

’&o hundred pounds of ammonium 
t h i o c y a n a t e  and 150 pounds of 
potassium i o d i d e  were d i s-  
solved i n  approximately t e n  
b a r r e l s  of water  and i n j e c t e d  
i n t o  t h e  formation as tracers. 
The volume of tracers used was 
chosen on t h e  fo l lowing bas i s .  
A n a l y t i c a l  measuring tech-  
niques  imposed a requirement 
of a minimum 25 ppm peak con- 
c e n t r a t i o n  t o  d e f i n e  the 
tracer breakthrough curves  
adequately.  This requ i red  peak 
concen t ra t ion  w a s  doubled as a 
s a f e t y  f a c t o r .  Hence, t h e  t e s t  

260 B’IJPD 160 BWPD 
A B 

c \ 

INJECTOR 

140 BWPD 

PATTERN AREA 

DISTAKCE BETWEEN PRODUCERS, a 

TOTAL TRACER INJECTED 

NET PAY THICKNESS 

AVERAGE PERMEABILITY 

AVERAGE POROSITY 

AVERAGE WATER SATURATION 

MIXING CONSTANT, c1 

d 
B 

240 BWPD 

= 2.5 acres 

= 330 f t  

= 200 lbs 

= 12  f t  

= lS00 md 

= 0.26 

= 0.55 

= 0.05 ft 

Fig. 4.2:  PATTERN CONFIGURATION AND 
RESERVOIR DATA FOR THE F I E L D  T E S T  

was designed f o r  a 50 ppm peak concentra t ion .  For des ign purposes,  t h e  
p a t t e r n  h = 12 f t ,  
Cp -- 0.26 and k = 1500 md. The d i spe r s ion  cons tan t ,  a, measured from 
l a b o r a t o r y  misc ib le  displacements on l i n e a r  co res  from t h e  formation was found 
t o  be e q u a l  t o  0.05 f t .  Equation 23 i n  t h e  paper by Brighan and Smith (1965) 

was assuiiled t o  be a homogeneous, developed f ive- spot  with 
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showed t h a t  t h e  amount of tracer required  was about 150 pounds. To compensate 
f o r  d i l u t i o n  caused by flow from o u t s i d e  t h e  p a t t e r n ,  t h i s  amount w a s  
inc reased  by 800/600 which r e s u l t e d  i n  200 pounds of tracer requirement. 
Since l abora to ry  a n a l y s i s  .f or i o d i d e  was more p r e c i s e ,  t h e  d i l u t i o n  e f f e c t s  
for t h i s  tracer were neglected ,  and only 150 pounds of potassium iod ide  were 
used. The four  producing wells were sampled every t h r e e  hours f o r  nine days,  
every f o u r  .hours f o r  e i g h t  days, every s i x  hours f o r  six days, and d a i l y  f o r  
twelve days t o  d e f i n e  tracer breakthrough curves adequately.  De ta i l ed  
informat ion on t h e  sampling procedure is provided i n  Smith and Brigham (1965). 

The amount of tracer required  t o  r e s u l t  i n  a 50 ppm peak concen t ra t ion  from a 
homogeneous, developed f ive- spot p a t t e r n  was a l s o  c a l c u l a t e d  us ing  t h e  
a n a l y s i s  developed i n  t h i s  s tudy.  The r e s u l t  was d i f f e r e n t  from Brigham and 
Smith's designed value  of 150 pounds. This was expected s i n c e  Brigham and 
Smith had n o t  formulated t h e  tracer d i s p e r s i o n  e f f e c t s  c o r r e c t l y .  From Eqs. 
3-41 and 3-52: 

Tr  
Fr A 4hS 

E 

W 

Mass of tracer is r e l a t e d  t o  volume by: 

mT = '0 'Tr 'T 

where, 

mT = mass of tracer, pounds 

Vn: = volume of tracer s o l u t i o n  

Co = i n i t i a l  tracer concentra t ion ,  mass f r a c t i o n  

pT = dens i ty  of tracer s o l u t i o n  = dens i ty  of water 

From Eqs. 4-1, 4-2, and 4-3, t he  express ion f o r  mT is: 

( 4 - 2 )  

(4-3 
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For A = 2.5 acres, t h e  value of a is equal  t o  330-ft and hence, a/a = 330/0.05 
= 6600. From Fig. 3.23 for t h i s  5-spot p a t t e r n ,  C = 0.07. Therefore,  

D ,  max 

-6 50 X 10 )(62.4)(2.5 x 43560)(0.26)(12)(0.55) I 

The t i m e  t o  appearance of t h e  peak f o r  t h e  assumed homogeneous p i l o t  is 
computed from Fig. 3.24 f o r  a/a = 6600 as follows:  

- VpDbt = 0.043 pD, max V 

For a developed f ive- spot p a t t e r n ,  VpDbt = 0.7178. Therefore,  

'pD, max = 0.73 

The volume of f l u i d  i n j e c t e d  i n t o  t h e  system a t  t h e  peak: 

V = A +hS V max w pD, max 

= ( 2 . 5  X 4 3 5 6 0 ) ( 0 . 2 6 ) ( 1 2 ) ( 0 . 5 5 ) ( 0 . 7 3 ) / 5 . 6 1 5  = 24,300 bb l s  

Time t o  the  peak: 

24300 
600 = - 5  40.5 days max V 

= 
tph i n j e c t i o n  rate  

I f  t h e  system is s t r a t i f i e d  and t h e  permeabi l i ty  of the most permeable l a y e r  
is known, t h e  t i m e  a t  which t h i s  l a y e r  reaches a peak is es t imated from: 

t = t  (2) 
PP Ph 

where, 

tpp = t i m e  t o  peak of t h e  most permeable l a y e r  

tph  = t i m e  t o  peak of t h e  homogeneous system 

kp = permeabi l i ty  of t h e  high permeable l a y e r  

kh 5 permeabi l i ty  of the homogeneous system 

(4-5) 
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The core d a t a  from the  w e l l s  loca ted  i n  t h e  p i l o t  area had revealed a possi-  
b i l i t y  of a t h i n ,  high- permeabili ty s t r e a k  wi th  permeabi l i ty  of 5000 md. 
Theref o r e ,  

PP 

The t i m e  of 12 days can be viewed as an approximate time f o r  tracer break- 
through from t h i s  p i l o t .  

A t  t he  completion of t h e  
tracer tes t ,  there  were 
unequal amounts of tracer 
flow from Wells A, C and 
D, wi th  abso lu t e ly  no 
tracer product ion from 
Well B dur ing  t h e  test 
period.  This implied 
t h a t  t h e r e  was l i m i t e d  
communication between t h e  
i n j e c t o r  and Well B. This 
f a c t  is subs t an t i a t ed  
f u r t h e r  by a s tudy of 
wellhead temperatures of 
t he  wells during the  hot  
water i n j e c t i o n  period i n  
which t h e  temperature of 
Well B remained near  
65OF. Figure 4.3 shows 
t h e  isotherms of average 
sand temperature f o r  t he  
p i l o t .  This f i g u r e  was 
taken from Martin &. 
(1968). 

A B 

100 O F  

C 

Fig.  4.3: 
The tracer e l u t i o n  curves 
for potassium iodide  and 
ammonium th iocyanate  were 
similar f o r  each w e l l ,  
but  not exac t ly  the  same. These are 

D 160T 

ISOTHERMS OF AVERAGE SAND TEMPERATURE 
DURING HOT WATER I N J E C T I O N  
( a f t e r  Mart in  e t  a l . ,  1968) 

shown i n  Fig. 4.4. By i n t e g r a t i n g  the  
areas under t hese  curves,  Smith and Brigham (1965) concluded t h a t  40 percent  
of ammonium thiocyanate  and 44 percent  of potassium iodide  were recovered from 
t h e  t h r e e  producing wells. This observa t ion  suggested t h a t  e i t h e r  t h e r e  was 
l i t t l e  adsorp t ion  of the  tracers i n  t h e  formation or t h e  adsorp t ion  of each 
tracer was nea r ly  i d e n t i c a l .  The former a l t e r n a t i v e  is t h e  more l i k e l y .  Fur- 
thermore, t he re  is an unce r t a in ty  i n  t h e  iod ide  d a t a  due t o  presence of back- 
ground iod ide  concent ra t ion  i n  both t h e  i n j e c t e d  and t h e  formation water. 
Because of t h i s  unce r t a in ty ,  only th iocyanate  d a t a  is considered i n  t h i s  
s tudy.  Since the  i n j e c t i o n  was down for about four  days near t he  end of t h e  
test, only e a r l y  po r t ions  of the  tracer breakthrough curves from Wells A and D 
are analyzed i n  d e t a i l ,  For t h i s  per iod ,  Well C did  not  e x h i b i t  s u b s t a n t i a l  
tracer production as is i l l u s t r a t e d  i n  Fig. 4.4b. 
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Fig.  4.4a 

Fig.  4 . 4 b  

Fig.  4.4c 

WELL ' C "  
TRACER CONCENTRATION - AMMONIUM TMIOCYANATE ------ POTASSIUM IODIDE 

E 

W 

L 

INJECTION 
DOWN 

_..~ 

PROWCTlON AFTER TRACER IWJLCTION - 
I I I I I 1 I I I I I 

t WELL ' 0 '  
0 

3 as 
z - AMMONIUM TMIOCYANATE 

TRACER CONCENTRATION - - - 
- 

------ POTASSIUM IODIDE --- AMMONIUM ION 
- 

- 
t 

Fig.  4.4: TRACER ELUTION CURVES FOR FIELD TEST (Smith and Brigham, 1965) 
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4.2  ANALYSIS OF TRACER RESULTS 

The t h e o r e t i c a l  model t o  analyze tracer breakthrough curves developed i n  t h i s  
s tudy is based on developed p a t t e r n s  where a complete balance between t h e  
amount of i n j e c t i o n  and production is  e s t ab l i shed .  In  t h i s  p i l o t  p a t t e r n ,  
however, t he  o f f s e t  wells produced a t  unequal rates r e s u l t i n g  i n  unequal d i s-  
t r i b u t i o n  of i n j e c t e d  f l u i d s  towards the  producing wells. Furthermore, none 
of t h e  w e l l s  received l / 4  of t h e  produced f l u i d  from the  c e n t r a l  i n j e c t o r .  
This i nd ica t ed  t h a t  t h e  in-  
j e c t e d  material could have 
taken  low v e l o c i t y  rou te s  
along s t reaml ines  extending qA qB 
beyond the  bounds of t he  f ive-  o - I I l l - - - - - - - - - - -  -0 
spot .  Figure 4.5 shows qual i-  

I I 
t a t i v e l y  t h e  s t reaml ines  f o r  I I 

Well D of t he  p i l o t .  The area I I 

d ra ined  by t h e  w e l l  does not  I I 

t h e  five- spot pa t te rn .  I 

The t h e o r e t i c a l  model can be I 
used t o  analyze t h i s  unbal- I 

anced p a t t e r n  i f  assumptions 
regarding t h e  flow l i n e s  and 
the  amount of f l u i d  i n j e c t e d  I 

i n t o  each drainage area can be I 

made. Because the main por- I 

t i o n  of t r a c e r  flow is through 

tracer concent ra t ions  from t h e  
extended streamtubes are small 
due t o  d i l u t i o n  by the  t i m e  
f l u i d s  reach a product ion 

approximation of t h e  flow 
l i n e s  of t he  unbounded f ive-  

I I 

I 

I 
correspond t o  one q u a r t e r  of 

I 

I 

I 

I 

0-  - - - - - - 

W 
t h e  s h o r t e s t  s t reamtubes,  qC 

w e l l  . This i n d i c a t e s  t h a t  P c.c 
spot  p a t t e r n  by those of a 
developed one is  reasonable.  

Fig.  4 .5 :  QUALITATIVE STREAMLINES FOR 
D i s t r i b u t i o n  of i n  j ect ed WELL D OF THE PILOT 
f l u i d s  among t h e  f o u r  pro- 
ducers  was ca l cu la t ed  by t h e  
fol lowing procedure. Since 
Well C did not  produce tracer, it was assumed t h a t  only 50 BWPD w a s  moving 
towards t h i s  w e l l .  This assumption can be j u s t i f i e d  from a hea t  balance on 
Fig. 4.3 from Martin -- e t  al .  (1968). The remaining 550 BWPD was divided among 
the  o t h e r  t h r e e  wells according t o  t h e  product ion rates: Well A--225 BWPD, 
Well C--120 BWPD, and Well E-205 BWPD. The i n j e c t e d  tracer was d i s t r i b u t e d  
among the  drainage areas a t  a quan t i t y  p ropor t iona l  t o  t he  assumed rates flow- 
i n g  towards the  wells. For example, for Well A t h e  amount of tracer w a s  equal  
t o  (225 BWPD) x (200 lbs ) / (600  BWPD) = 75 pounds. The area dra ined  by e ch 
w e l l  however, was assumed t o  be one q u a r t e r  of t he  p a t t e r n  area (27,225 f t  ). 
Although t h i s  assumption in t roduces  some e r r o r  i n  the  computation of abso lu t e  
va lues  of t he  l a y e r  parameters,  t he  r e l a t i v e  values ( t o  each o t h e r )  of l a y e r  
parameters w i l l  remain v i r t u a l l y  unchanged as w i l l  be demonstrated later .  

1 
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As a r e s u l t  of flow from o u t s i d e  t h e  p a t t e r n ,  the  t r a c e r  concen t ra t ions  had 
been d i l u t e d  and t h e  corresponding produced volumes had been inc reased .  
Therefore ,  i n  t h e  a n a l y s i s  of t r a c e r  d a t a ,  the  e f f e c t  of flow from o u t s i d e  of 
the  p a t t e r n  on t h e  produced t r a c e r  concen t ra t ion  curves was considered.  For 
Well D ,  t h e  observed concen t ra t ions  were m u l t i p l i e d  by 240 /205 ,  and t h e  
volumes were divided by 240/205.  For Well A ,  t h i s  f a c t o r  was 2601225. 

The op t lmiza t ion  rou t ine  was used t o  analyze the  tracer production curve from 
Well D. Th i r ty  four  d a t a  p o i n t s  from t h e  tracer curve were inputed i n t o  t h e  
r o u t i n e .  Figure 4.6  shows t h e  match when only f i v e  layers were used. The 
i n p u t  peak-volumes and t h e  f i n a l  peak-vol.umes computed by t h e  r o u t i n e  are 
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Fig. 4 . 6 :  ANALYSIS OF TRACER DATA FOR WELL D WITH FIVE LAYERS 

shown on t h i s  f i g u r e .  The shape of t h e  computed curve shows t h a t  more l a y e r s  
should improve t h e  match. Figure  4.7 i l l u s t r a t e s  t h e  new match us ing seven 
l a y e r s .  For t h i s  a n a l y s i s ,  t h e  peak volumes wsre chosen a t  t h e  computed 
l o c a t i o n s  i n  Fig. 4.6 and t h e  a d d i t i o n a l  two peaks were s e l e c t e d  a t  3050 bbls 
and 2200 bbls .  The match wi th  seven layers  shows an improvement over t h e  
match w i t h  f i v e  layers. The a n a l y s i s  was continued wi th  n ine  and ten layers ,  
each t i m e  u t i l i z i n g  t h e  computed peak- locations from t h e  previous  match and 
adding a d d i t i o n a l  peaks i n  t h e  p o s i t i o n s  where t h e  greatest divergence w a s  
observed between the f i e l d  da ta  and the  match. Figures  4.8 and 4.9 a r e  t h e  
matches wi th  nine and t e n  l a y e r s ,  r e spec t ive ly .  The l a t e r  p o r t i o n  of t h e  
f i e l d  d a t a  could not  be matched very w e l l  as shown i n  t h e s e  f i g u r e s .  This i s  
be l i eved  t o  be due t o  inaccuracy of t h e  f i e l d  d a t a  c l o s e  t o  t h e  shut-down 
t i m e .  Table 4.1 shows t h e  r e s u l t s  of t h e  a n a l y s i s  wi th  d i f f e r i n g  numbers of 
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Table 4.1 

COMPUTED LAYER PARAMETERS FOR F I E L D  TEST, WELL D, U S I N G  THE 
OPTIMIZATION ROUTINE WITH DIFFERENT NUMBER OF LAYERS 

4000 

~. 

F I V E  LAYERS SEVEN LAYERS N I N E  LAYERS TEN LAYERS 

kh 
Zkh 
- Oh 

kh 
9h Zkh w Zkh 

kh 
Lkh 9h - - kh LAYER - 

____-___-____________- - - - - - - - - - - - - - - - - - - - - - - - - - -  
1 0.035312 0.033734 0.015658 0.016360 0.011562 0.012167 0.011410 0.012009 

2 0.106529 0.092838 0.047419 0.043769 0.015575 0.015031 0.013782 0.013344 

3 0.106198 0.082195 0.084410. 0.072963 0.041926 0.038131 0.034880 0.031938 

4 0.094516 0.066012 0.052945 0.041998 0.078987 0.068042 0.070605 0.061395 

5 0.088629 0.055505 0.058256 0.043471 0.052492 0.041585 0.026728 0.022284 

6 0.087285 0.060604 0.057068 0.042590 0.047820 0.037617 

7 0.087122 0.054503 0.084869 0.058990 0.053306 0.039756 

8 0.075888 0.047784 0.084649 0.058840 

9 0.021086 0.012465 0.075661 0.047642 
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Table 4.2 

COMPUTED PERMEABILITIES AND THICKNESSES OF LAYERS FOZ FIELD 
TEST, WELL D, WITH DIFFERENT NUMBER OF LAYERS 

TEN LAYERS FIVE LAYERS SEVEN LAYERS NINE LAYERS 

h , f t  k,md h , f t  k,md h , f t  k,md h , f t  k,md 
M Y  ER 

____-___-- - - - - - - - - - - - - - - - - - - - - - - - - - -  
1 0.1358 4471 0.0602 

2 0.4097 4078 0.1824 

3 0.4085 3622 0.3248 

4 0.3635 3267 0.2036 

5 0.3409 2931 0.2036 

6 0.3357 

7 0.3351 

8 

9 

10 

4890 

4320 

4044 

3712 

3843 

3249 

2928 

0.0445 

0.0599 

0.1613 

0.3038 

0.2019 

0.2195 

0.3264 

0.2919 

0.0811 

4925 

4516 

4257 

4032 

3708 

3493 

3253 

294 7 

2767 

0.0439 

0.0530 

0.1342 

0.2716 

0.1028 

0.1839 

0.2050 

0.3256 

0.2910 

0.0810 

4926 

4531 

4285 

4070 

3902 

3682 

3490 

3253 

2947 

2768 - * 
The k and h va lues  i n  t h i s  t a b l e  have been computed f o r  @ = .26 and 
Ckh = 18000 md-ft. 

l a y e r s .  In  a l l  t h e  cases ,  t h e  sum of tjh and t h e  sum of kh/Ckh are almost t h e  
same. If l a y e r s  are 
assumed t o  have t h e  same po ros i ty  and i f  an average value f o r  kh of the  s y s t e a  
is known, t h e  i n d i v i d u a l  permeabi l i ty  and th ickness  of each l a y e r  can a l s o  be 
computed. Table 4.2 presen t s  t he  computed permeabi l i ty  and th ickness  of t h e  
layers f o r  an average po ros i ty  of 0.26, and average permeabi l i ty  t h i ckness  
product  of 18,000 md-ft. 

This is due t o  conserva t ion  of mass by m a t e r i a l  balance. 

I n  o rde r  to improve the  match as much as poss ib l e ,  an at tempt  was made t o  
opt imize  t h e  data by us ing  more than t e n  l aye r s .  Each time t h i s  was t r i e d ,  
t h e  r o u t i n e  f a i l e d  t o  converge. This was found t o  be due t o  f a i l u r e  i n  a 
b u i l t- i n  mat r ix  manipulat ion i n  t h e  VARPRO rou t ine .  It appears t h a t  t h e  d a t a  
cannot be matched wi th  more than  t e n  l aye r s .  I n  any case, t h e  match wi th  t e n  
layers, being t h e  f i n a l  match f o r  Well D, is a s a t i s f a c t o r y  one. It is worth 
mentioning t h a t  it rook only a small  number of i t e r a t i o n s  i n  t h e  opt imiza t ion  
r o u t i n e  t o  arrive a t  t hese  matches wi th  d i f f e r e n t  number of l aye r s .  Usual ly,  
t h e  number of i t e r a t i o n s  decreased wi th  an i n c r e a s e  i n  t h e  number of l aye r s .  
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For example, t h e  match with t en  l a y e r s  was generated wi th  only th ree  i tera-  
t i o n s .  It was a l s o  found t h a t  t h e  i n i t i a l  estimates requi red  by the  r o u t i n e  
( inpu t  peak volumes) sometimes were important i n  determining convergences. 
This w a s  more important wi th  a higher  number of l aye r s .  

The t r a c e r  breakthrough curve f o r  Well A was a l s o  matched wi th  t e n  l a y e r s  
u s ing  the  opt imiza t ion  rout ine .  For t h i s  example, for ty- four  d a t a  po in t s  were 
chosen from the  tracer breakthrough curve. Figures  4.10, 4.11 and 4.12 show 
t h e  matches wi th  f i v e ,  seven, and t e n  l a y e r s ,  r e spec t ive ly .  Again, t h e  
q u a l i t y  of t h e  matches between 4,000 and 4,500 bb l s  is caused by t h e  
i n a c c u r a t e  f i e l d  da t a  near o r  during t h e  shut-down period.  Table 4.3 shows 
$h and kh/Ckh for t h e  l a y e r s ,  as determined by t h e  program. For a uniform 
p o r o s i t y  of 0.26 for t h e  e n t i r e  system and average kh of 18,000 md, t h e  
ca l cu la t ed  pe rmeab i l i t i e s  and th icknesses  of the  l a y e r s  are given i n  Table 
4.4. Comparisons of Tables 4.1 and 4.3 o r  Tables 4.2 and 4.4 show t h a t  t h e  
t e n  l a y e r s  f o r  each quadrant are somewhat: d i f f e r e n t  for each quadrant.  The 
d i f f e r e n c e s  i n  t he  formation c h a r a c t e r i s t i c s  ca l cu la t ed  are due t o  independent 
modeling of each quadrant of the  pa t t e rn .  In  o the r  words, t he  behavior of 
Well D corresponds t o  behavior of a w e l l  i n  a ten- layer  s t r a t i f i e d  formation 
wi th  t h e  parameters given i n  Table 4.1, while f o r  Well A, t h e  behavior w i l l  be 
p red ic t ed  by another  t e n  l aye r  formation wi th  parameters of Table 4.3. 
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T a b l e  4.3 

COMPUTED LAYER PARAMETERS FOR FIELD TEST, WELL A, USING THE 
OPTIMIZATION ROUTINE WITH DIFFERENT NUMBER OF LAYERS 

FIVE LAYERS SEVEN LAYERS TEN LAYERS 
LAYER 

kh - 
4h zkh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 0.059200 0.048826 0.032384 0.027887 0.003501 0.003406 

2 0.106992 0.079197 0.062602 0.049838 0.014466 0.012830 

3 0.127590 0.086185 0.088567 0.064821 0.033026 0.027410 

4 0.108782 0.067011 0.114285 0.077143 0.044046 0.035187 

5 0.133239 0.073089 0.080341 0.050052 0.085634 0.062662 

6 0.066540 0.038455 0.104723 0.070947 

7 0.101029 0.054634 0.045561 0.029158 

8 0.055029 0.033550 

9 0.061547 0.035315 

10 0.096968 0.052357 

SUM 0.535732 0.354308 0.545748 0.36283 0.545301 0.362822 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T a b l e  4.4 

COMPUTED PERMEABILITIES AND THICKNESSES OF LAYERS FOR FIELD TEST, 
WELL A, W I T H  DIFFERENT NUMBER OF LAYERS 

~~ ~~ 

FIVE LAYERS SEVEN LAYERS TEN LAYERS 
LAYER 

h,ft k s d  h,ft k , d  h,ft k , d  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1 0.2277 3860 0.1246 4030 0.0135 4553 

2 0.4115 3464 0.2408 3726 0.0556 4151 

3 0.4905 3163 0.3406 3425 0.1270 3884 

4 0.4184 2883 0.4396 3159 0.1725 3672 

5 0.5125 2567 0.3090 2916 0.3294 3425 

6 0.2559 2704 0.4028 3171 

7 0.3886 2530 0.1752 2995 

8 0.2117 2853 

9 0.2367 2685 

10 0.3730 2527 



To i n v e s t i g a t e  t h e  e f f e c t  of drainage areas on t h e  a n a l y s i s ,  the  tracer d a t a  
2 of Well A was recalc l a t e d  us ing  an est imated drained area of 40,800 f t  

r a t h e r  than  27,225 f t  as used before.  This value was computed by d iv id ing  
t h e  p a t t e r n  area i n t o  segments p ropor t iona l  t o  t he  amounts of f l u i d s  moving 
towards the  wells, as has been suggested by Deppe (1961). The match based on 
t h i s  drainage area and t en  l a y e r s  was v i r t u a l l y  i d e n t i c a l  to Fig. 4.12. Table 
4.5 presen t s  t he  parameters of t he  l a y e r s  computed from t h i s  match. The 
permeabi l i ty  values a l l  are g r e a t e r  than those  i n  Table 4.3 by a f a c t o r  of 
40,800/27,225 = 1.5 ( r a t i o  of t h e  assumed drainage areas); however, t he  
r e l a t i v e  va lues  of pe rmeab i l i t i e s  i n  Tables 4.2 and 4.5 are i d e n t i c a l .  

Y 

I n  summary, t h e  tracer i n t e r p r e t a t i o n  method developed in t h i s  s tudy  can 
provide valuable  d e t a i l e d  information on r e s e r v o i r  cha rac t e r i za t ion .  Although 
t h e  method is f o r  developed p a t t e r n s ,  i ts  a p p l i c a t i o n  t o  an  unbounded, 
unbalanced f ive- spot  p a t t e r n  was i l l u s t r a t e d  i n  t h i s  s ec t ion .  The approxi- 
mations made i n  analyzing t h e  f i e l d  d a t a  produced e r r o r s  on t h e  computed 
values of r e s e r v o i r  parameters,  However, a method similar t o  the  one 
presented  i n  t h i s  s tudy can be developed t o  inco rpora t e  t h e  a c t u a l  flow f i e l d  
of t he  p i l o t  p a t t e r n  wi th  t h e  tracer mixing equat ions ,  and thereby genera te  
more p r e c i s e  r e s u l t s .  

Table 4.5 

COMPUTED PARAMETERS OF LAYERS FOR WELL A WITH TEN LAYERS 
AND DRAINAGE AREA OF 40,800 FT2 

2 0.009530 0.012830 0.0371 6220 

3 0.022038 0.027410 0.0848 5821 

4 0.029925 0.035187 0.1151 5503 

5 0.057142 0.062662 0.2198 5132 

6 0.069879 0.070947 0.2688 4752 

7 0.030402 0.029158 0.1169 4488 

8 0.036720 0.033550 i3.1412 4276 

9 0.041069 0.035315 0.1580 4024 



5 . CONCLUSIONS 

1, Equations were derived which describe the concentration of a tracer slug 
in a general streamtube for any flow system with mobility ratio of one. 
In the derivation of these equations, the mixing coefficient was assumed 
to be proportional to fluid velocity which was a function of location in 
the s treamtube. The proportionality constant is the longitudinal 
dispersion constant of the porous medium. Transverse dispersion and 
molecular diffusion were assumed to be negligible. 

2.  By integrating individual streamtube-tracer concentration expressions over 
several developed patterns, analytic expressions were obtained which 
define the tracer breakthrough curves for each of these homogeneous 
developed patterns. 

3. The study shows that the tracer breakthrough curves from a homogeneous 
system depend upon the geometry, pattern size, and dispersion constant of 
the formation rock. 

4. In the derivation of equations for effluent tracer concentrations from 
patterns, it was also necessary to derive expressions for pattern break- 
through curves from developed patterns. Exact analytical equations were 
obtained in the form of elliptic integrals which describe several pattern 
breakthrough curves for a mobility ratio of unity. Results for different 
patterns were reduced into a single curve by defining a simple correlatlng 
parameter, which we have called the dimensionless pore volume. Because 
the breakthrough curves for various developed patterns considered in this 
study correlate as a single curve, it is concluded that the breakthrough 
curve for any repeating pattern should also lie on this same correlation. 

5 .  An attempt was made to define analytically pattern breakthrough curves for 
mobility ratios other than one. It was assumed that the streamlines were 
independent of mobility ratio. For a developed five-spot, the analysis 
generated nearly identical values for breakthrough areal sweep effi- 
ciencies at any mobility ratio. This result is in direct conflict with 
experimental observations. Hence, the assumption of no streamline change 
with mobility ratio is. unrealistic. 

6. Tracer breakthrough curves from several patterns were also correlated as a 
single set of curves using the Peclet number, a/a, as a parameter. The 
correlation was achieved by obtaining two sets of correction factors--one 
Pbr a/a to determine peak-locations, and another for peak concentration. 
These correction factors convert all the patterns studied into equivalent 
five-spot systems. 

7 , A computer program was developed which analyzes tracer breakthrough Curves 
from stratified reservoirs, and computes porosity thicknesses and frac- 
tional permeability thicknesses of the layers, The algorithm utilizes a 
non-linear least-squares routine as an optimization technique to minimize 
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t h e  d i f f e r ences  between observed tracer da t a  and computed concent ra t ions  
and, hence, genera tes  an optimum match f o r  a given number of l aye r s .  A l s o  
incorpora ted  i n  t h e  a lgor i thm are the  co r r ec t i on  f a c t o r s  developed i n  
c o r r e l a t i o n  of t he  tracer curves.  As i npu t ,  t he  program requ i r e s  t he  
es t imated number of l a y e r s ,  volume of the  produced f l u i d  corresponding to 
each peak, and the  type of pa t t e rn .  

8. Tracer breakthrough curves from a f i e l d  test on a f ive- spot  p i l o t  have 
been matched c loae ly  us ing  t h i s  op t imiza t ion  program wi th  t en  l aye r s .  
This example ahowed t h a t  tracer data f u r n i s h  information about the high 
perme8bi l i ty  zones of t he  r e se rvo i r .  

9 .  The method developed i n  t h i s  s tudy can a l s o  be used i n  design of well- to- 
w e l l  t r a c e r  tests. The amount of t r a c e r  required and tracer breakthrough 
times may be computed from the  method presented herein .  

- 84 - 



6. RECOMMENDATIONS FOR FUTURE WORK 

The method presented i n  t h i s  study considers  only developed p a t t e r n s .  Because 
s t reaml ines  of a system with  any w e l l  arrangement f o r  u n i t  mobi l i ty  r a t i o  are 
computable, t he  method can be extended t o  inc lude  a n a l y s i s  of tracer response 
curves from i s o l a t e d  and i r r e g u l a r  pa t te rns .  Therefore,  t he  tracer curves 
from the  f i e l d  example can be analyzed using a c t u a l  f low l i n e s  of t he  system. 
Comparison of t he  r e s u l t s  wi th  those computed i n  t h i s  s tudy would i l l u s t r a t e  
t he  accuracy of approximating an open system by a developed p a t t e r n .  

Fur ther  work is necessary t o  compute tracer flow i n  systems where a c o n t r a s t  
between the  mobi l i ty  of tracer s o l u t i o n  and the  m o b i l i t i e s  of formation f l u i d  
and chase f l u i d  e x i s t s .  Because t he  p a t t e r n  breakthrough curves  at mobi l i ty  
r a t i o s  o the r  than one could not  be generated accu ra t e ly  by t h e  s t reamtube 
procedure,  it appears t h a t  numerical schemes should be adopted t o  compute 
t r a c e r  breakthrough curves. However, numerical d i spe r s ion  a s soc i a t ed  w i t h  
t he se  schemes w i l l  l i k e l y  mask the  e f f e c t s  of phys ica l  tracer d i spers ion .  
One pos s ib l e  s o l u t i o n  would be t o  incorpora te  t he  t r a c e r  mixing equa t ions  
i l l u s t r a t e d  i n  t h i s  s tudy with numerically pre-determined f r o n t  l o c a t i o n s  t o  
genera te  t r a c e r  concent ra t ion  p r o f i l e s .  Viscous f i nge r ing  a s soc i a t ed  wi th  
uns tab le  displacement would f u r t h e r  complicate t he  ana lys i s .  

F ina l ly ,  t r a c e r  adsorp t ion ,  r e a c t i o n ,  and p a r t i t i o n i n g  e f f e c t s  should be 
incorporated i n  t h e  development of r igorous  t r a c e r  i n t e r p r e t a t i o n  techniques 
t o  genera te  p r ec i s e  r e s u l t s .  Before these  va r i ab l e s  can be incorporated i n t o  
mathematical models, more labora tory  work is necessary t o  i nc rea se  t he  under- 
standing of how each a f f e c t s  t r a c e r  flow. 
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NOMENCLATURE 

2 A = area, ft 

a = distance between like wells, L 

Co = initial tracer concentration, mass fraction 

Ca = formation fluid concentration in the tracer dispersed zone, 
mass fraction 

% = chase fluid concentration in the trace dispersed zone, mass 
fraction 

C, C(e) = tracer concentration in a streamtube, mass fraction 

'max = maximum tracer concentration in the tracer breakthrough curve 
from a homogeneous pattern, mass fraction 

- 
C = effluent tracer concentration from a homogenenous or a 

stratified pattern, mass fraction 

CD - dimensionless tracer Concentration from a homogeneous pattern 

= dimensionless tracer concentration from layer j % 
C q J  = dimensionless tracer concentration from layer j at sample 

j 4 point i 
- - dimensionless maximum tracer concentration from a homogeneous 

pattern %, max 

- 
C = effluent tracer concentration from layer j, mass fraction 
j - 

C = effluent tracer concentration from layer j at sample point i, 
3,' mass fraction 
- 
Ci - effluent tracer concentration from a multi-layered system, 

computed at sample point i, mass fraction 
* 
Ci = effluent tracer concentration from a multi-layered system 

observed at sample point i, mass fraction 

D = molecular diffusion coefficient, L2/T 

D' = apparent molecular diffusion coefficient, L2/T 

d = distance between unlike wells, L 
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d P  = 

do = 

EA . E 

I 'Abt 

EAD = 

e r f c  (x) = 

e r f  (x) = 

F =  

f D  

f =  

1 - f  = 

f m  E 

f P  * 

Fr = 

Frj 
I: 

F ( v , K )  - 
E 

average g ra in  s i z e  diameter ,  L 

d i f f e r e n t i a l  change i n  s tandard dev i a t i on  term used i n  mixing 
equat ion 

a r e a l  sweep e f f i c i e n c y ,  f r a c t i o n  of p a t t e r n  area 

breakthrough areal sweep e f f i c i e n c y ,  f r a c t i o n  of p a t t e r n  area 

dimensionless areal sweep e f f i c i e n c y ,  a c o r r e l a t i n g  parameter 

complementary e r r o r  func t ion  = 1 - e r f  (x)  

formation r e s i s t i v i t y  f a c t o r ,  dimensionless 

d i sp l ac lng  f l u i d  cut  i n  t he  production stream, f r a c t i o n  

flowing volume of porous medium i n  t he  capaci tance model, 
f r a c t i o n  of t o t a l  pore volume 

s tagnant  or dead-end-pore volume , f r a c t i o n  of t o t a l  pore 
volume 

m u l t i p l i e r  on peak concentrat ion f o r  tracer breakthrough curves 
from homogeneous systems 

m u l t i p l i e r  on a/a t o  convert p a t t e r n s  i n t o  equiva len t  developed 
f ive- spot 

t r a c e r  s l ug  s i z e  i n j e c t e d  i n t o  a homogeneous p a t t e r n  i n  terms 
of f r a c t i o n  of p a t t e r n  d i sp laceab le  pore volume, dimensionless  

tracer s l u g  s i z e  i n j e c t e d  i n t o  l a y e r  j i n  terms of f r a c t i o n  of 
l aye r  d i sp laceab le  pore volume, dimensionless 

incomplete e l l i p t i c  i n t e g r a l  of t he  f i r s t  kind 

where y = s i n  v 

th ickness ,  f t  

th ickness  of l aye r  j 

mixing l i n e  i n t e g r a l  f o r  s t r eaml ine  $ 

permeabi l i ty ,  md 
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kj = permeability of layer j, md 

kh = permeability of a homogeneous pattern, md 

kp = permeability of the most permeable layer, md 

K ' = effective mixing coefficient , L ~ / T  

KL = effective longitudinal mixing coefficient, L2/T 

L2/T I$,, = mass transfer coefficience in the capacitance model, 

KT - effective transverse mixing coefficient , L2/T 
K(m), K'(m) = complementary and incomplementary complete elliptic integrals 

of the first kind 

m, ml - parameters of the Jacobian elliptic functions and elliptic 
integrals, m + ml = 1 

mT = mass of tracer injected to a pattern, lbs 

N = 

n = number of layers in the multilayered model 

number of data points used in the optimization routine 

p - pressure 

PVD = dimensionless pore volume, a correlating parameter 

q = flow rate in the sfreamtube, L3/T 

qt - total injection rate into a homogeneous pattern, L3/T 

R = average grain diameter, L 

r = radius, L 

r = front location in radial flow, L 

S, = water saturation, fraction of pore volume 

8 = dfstance along the etreamline, L 

sA, sB = distances along a streamline up to points A and B on the 
streamline, L 

- -  - 
8, SI' s2 = front locations in the streamtubes, L 

sn, cn, dn = elementary Jacobian elliptic functions 

t - injection time, T 

tbt = breakthrough time of a Streamline, T 
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t ph = i n j e c t i o n  t i m e  necessary t o  reach the  peak i n  t r a c e r  break- 
through curve from a homogeneous p a t t e r n ,  T 

= t i m e  t o  peak of t he  most permeable l a y e r ,  T tPP 

v = microscopic (pore)  v e l o c i t y ,  darcy ve loc i t y  divided by 
po ros i t y ,  L/T 

vx = microscopic ve loc i t y  component i n  the x d i r e c t i o n ,  L/T 

v = microscopic v e l o c i t y  component i n  t he  y d i r e c t i o n ,  L/T Y 
V = d i sp l aceab l e  pore volume of a streamtube, L3 

= disp laceab le  pore volu? of a streamtube up t o  tracer f r o n t  
l o c a t i o n  i n  t h e  tube,  L 

) ('T,max 
= volume corresponding t o  t he  j th peak i n  an observed ( f i e l d )  

tracer p r o f i l e ,  bbls  

's ',ax = volume of chase f l u i d  i n j e c t e d  i n t o  a homogeneous p a t t e  
corresponding t o  t he  peak l o c a t i o n  i n  tracer response,  L 

Vp = t o t a l  volu e of chase f l u i d  i n j ec t ed  i n t o  a homogeneous !J p a t t e r n ,  L 

Vpbt = t o t a l  volume of chase f l u i d  i n j e c t e d  i n t o  a homogeneous p a t t e r n  
at  a breakthrough of a s t reaml ine ,  L3 

VpDbt($) = disp laceab le  pore volume of d i sp l ac ing  f l u i d  i n j e c t e d  at break- 
through of a s t r eaml ine ,  $, dimensionless 

VpDbt = breakthrough pore volume or breakthrough areal sweep e f f i c i e n c y  
of a p a t t e r n ,  dimensionless 

VpD - d i sp l aceab l e  pore volume i n j e c t e d  i n t o  a homogeneous p a t t e r n ,  
dimensionless 

(V ) = d i sp l aceab l e  pore volume i n j e c t e d  i n t o  l a y e r  j,  dimensionless 
pD j 

(V ) = disp laceab le  pore volumes i n j e c t e d  i n t o  l a y e r  j at sample 
pD j , i  poin t  i, dimensionless 

'pD ,max = d i sp l aceab l e  pore volume corresponding t o  the peak loca t i on  i n  
tracer response from homogeneous system, dimensionless 

VT = t o t a l  volume i n j e c t e d  i n t o  a pa t t e rn ,  bb ls  

(vT)i = t o t a l  volume i n j e c t e d  i n t o  t he  p a t t e r n  a t  sample point  i, b b l s  

('T,max) = volume a t  t h e  jthpeak i n  t h e  observed tracer p r o f i l e ,  bbls  

Vh: = t o t a l  volume of t ra  er s lug  i n j e c t e d  i n t o  e i t h e r  homogeneous or 
l ayered  p a t t e r n ,  f t  s 
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"tr 

w =  

x =  
- .  
x =  

= 
I 

('j 'est 
u =  

aL E 

"T = 

€ 2  = 

As = 

L '  42 E 

J , =  

4 0  

n =  

v =  

U =  

3 tracer volume injected into a streamtube, ft 

width of a streamtube, L 

distance in a linear flow, L 

front location in a linear displacement, L 

jth linear parameter in the optimization program 

the integral in the equation of line integral 

jth non-linear parameter in the optimization program 

initial estimate of non-linear parameters 

hydrodynamic dispersion constant, L 

longitudinal dispersion constant, L 

transverse dispersion coefficient, L 

characteristic constant of the laboratory core packs 

undiluted width of tracer in a streamtube, L 

porosity, fraction 

porosity of layer j, fraction 

density of tracer solution, lb/ft 3 

viscoslty, cp 

standard deviation, measure of the 1 gth of mixed 

stream function or value of a streamline 

potential function 

on , L 

modulus of an incomplete elliptic integral, where modulus is 
equal to the square root of parameter 

complex potential 

argument of an incomplete elliptic integral 

strength of a source or a sink 
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APPEND ICES 

There are four  appendices i n  t h i s  s e c t i o n ,  most c o n s i s t i n g  of s e v e r a l  sub- 
appendices. The f i r s t  set ,  Appendix A, provides d e r i v a t i o n s  of t h e  a n a l y t i c  
equat ions  f o r  s e v e r a l  p a t t e r n  breakthrough curves a t  a mobi l i ty  r a t i o  of 
un i ty .  An extens ion  of t h e  a n a l y s i s  t o  a developed f ive- spot  p a t t e r n  at a n  
a r b i t r a r y  mobi l i ty  ra t io  is provided i n  Appendix B. The t h i r d  set,  Appendix 
C, i l l u s t r a t e s  eva lua t ion  of t he  l i n e  i n t e g r a l  embodied i n  t h e  equat ions  of 
tracer concent ra t ion  p r o f i l e s .  The computer program developed t o  ana lyze  
tracer breakthrough curves from s t r a t i f i e d  r e s e r v o i r s  is provided i n  Appendix 
D. Also given i n  Appendix D are t h e  programs t o  compute p a t t e r n  breakthrough 
curves of a developed, i nve r t ed  seven-spot a t  u n i t  mobi l i ty  r a t i o  and a 
developed five- spot at any mobi l i ty  r a t i o .  

Appendix A 

DERIVATION OF EQUATIONS FOR PATTERN BREAKTHROUGH CURVES 
FOR MOBILITY RATIO OF ONE 

This appendix c o n s i s t s  of f i v e  sub-appendices. The f i r s t  four  present  t h e  
development of mathematical equat ions t o  de f ine  p a t t e r n  breakthrough curves of 
s taggered l i n e  d r i v e ,  f ive- spot ,  d i r e c t  l i n e  d r i v e  and inve r t ed  seven-spot. 
A l l  t h e  p a t t e r n s  are bounded and t h e  mobi l i ty  r a t i o  of displacement is equal  
t o  one. The las t  appendix of t h i s  s e c t i o n  d e t a i l s  d e r i v a t i o n  of some 
equat ions  used i n  Appendices A.l and A.3. 

When formulat ing the  equat ions f o r  f l u i d  flow i n  any p a t t e r n ,  p o t e n t i a l  
equat ions  or  stream funct ions  are required.  A basic theory  of p o t e n t i a l s  is 
b r i e f l y  presented i n  t h e  fol lowing paragraphs. Applicat ion of t h e  theory t o  
s p e c i f i c  p a t t e r n s  is then i l l u s t r a t e d  i n  t he  p e r t i n e n t  sub-appendices. 

From t h e  theory of incompressible and i r r o t a t i o n a l  f l u i d  flow i n  two dimen- 
s i o n s ,  it fol lows t h a t :  
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where, 

n ( z )  = complex p o t e n t i a l  

#(x,y) = ve loc i ty  p o t e n t i a l  equat ion 

$(x,y)  = stream func t ion  

z = x + i y  

Both #(x,y) and Jl(x,y) are harmonic func t ions ;  t he re fo re ,  they s a t i s f y  t he  
Laplace equation.  From t h e  Cauchy-Riemann p r i n c i p l e  and Darcy's l a w ,  t he  
v e l o c i t y  components of f l u i d  a t  any po in t  are r e l a t e d  t o  t he  p o t e n t i a l  
equat ion and t h e  stream func t ion  as follows: 

and, 

where, k is the  permeabi l i ty  and IJ is the  f l u i d  v i scos i ty .  

The complex p o t e n t i a l  f o r  a l i n e  source ( i n j e c t i o n  we l l )  i n  an i n f i n i t e  medium 
under s teady state condi t ion is: 

where, u is  the  s t r e n g t h  of t he  source and z is the  d i s t ance  of a poin t  from 
the  o r i g i n  of a coord ina te  system posi t ioned on the  source.  If  t he  source is 
loca ted  a t  a d i s t ance  zo from t h e  o r i g i n  of a s p e c i f i e d  coord ina te  
system, Q ( z )  is given by: 

The complex p o t e n t i a l  due t o  a sink (product ion w e l l )  is subsequently given by 
t h e  negat ive of e i t h e r  Eq. A-4 o r  Eq. A-5. 

Since the  complex p o t e n t i a l  def ined by Eq. A-1 s a t i s f i e s  t he  Laplace equa t ion ,  
t h e  superpos i t ion  p r i n c i p l e  can be used t o  ob t a in  t h e  complex p o t e n t i a l  f o r  
any combination of i n j e c t o r s  and producers.  For a system of n i n j e c t o r s  

( j  = 1, ..., n2) ,  t he  o v e r a l l  complex p o t e n t i a l  a t  any po in t ,  z, is: 
loca ted  a t  po in t s  ai ( i  = 1, ..., nl)  and n2 producers p o s i t  i oned a t  bj 
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The terms v and u denote t he  s t r e n g t h  of t he  i n j e c t o r s  and producers,  
respec t ive ly?  Equa@on A-6 can be used t o  de r ive  Q(z) f o r  any well arrange-  
ment. However, f o r  some p a r t i c u l a r  w e l l  p a t t e r n s ,  t h e  use of conformal 
mapping g r e a t l y  eases t h e  determinat ion of complex p o t e n t i a l s .  h i s  is 
i l l u s t r a t e d  i n  Appendices A.1 and A.3. 

Appendix A.1: STAGGERED LINE DRIVE 

Consider a repeated s taggered l i n e  d r i v e  p a t t e r n  as shown in Fig. A-1: 

Z-PLANE 

PRODUCTION 0 

Y 

0 I 0 0 

*d INJECT ION 

X 

P 

0 0 0 0 

Fig. A-1: A DEVELOPED STAGGERED LINE DRIVE I N  Z-PLANE 

Using t h e  fol lowing conformal t ransformat ion  (Spiegel ,  1964): 

(A-7) 
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t h e  shaded segment i n  Fig. A-1 is transformed i n t o  t h e  upper half- plane of the  
w-plane as shown i n  Fig. A-2. The product ion w e l l s  are mapped at w = 1 and 
w = -1, t h e  "corners" of the  p a t t e r n  (B and F) are mapped a t  f s, and t h e  
i n j e c t i o n  w e l l  is mapped a t  i n f i n i t y .  

W- PLANE 

I -1 -- 
f i  

I 

3 1 

Fig A-2 : W-PLANE SHOWING THE TRANSFORMATION 

The i n t e g r a l  i n  Eq. A-7 is the  inve r se  of t h e  Jacobian e l l i p t i c  func t ion ,  
sn(z,m), as defined by Byrd and Friedman (1954). Therefore: 

(A-8) -1 z = s n  (w,m) 

Correspondingly: 

w = sn(z,m) 

Introducing a second t ransformation:  

(A- 9) 

- 
w = i w  (A- 10)  
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t h e  upper ha l f  of t he  w-plane 
i s  mapped i n t o  t he  l e f t  ha l f  
of the ;;-plane as shown i n  Fig. 
A-3. 

The production wells are now 
at c = i and w = -i and the  
i n j e c t i o n  wel l  is  again a t  
i n f i n i t y .  The second t r ans fo r-  
mation w i l l  only change t h e  
values  of t he  s t reaml ines .  The 
v a x i s  i n  Fig. A-3 is  a no flow 
boundary, hence it can be math- 
ema t i ca l l y  removed by super- 
imposing an image of t he  l e f t  
ha l f  of t he  w-plane i n t o  t h e  
r i g h t  ha l f  of t he  &plane. I n  
t h i s  way, t he  w e l l  system i n  
t h e  +plane becomes equivalent  
t o  two producers i n  an i n f i n i t e  
medium. Since one qua r t e r  of a 
product ion  w e l l  i n  t he  z-plane 
is mapped i n t o  one half  of a 
w e l l  i n  t he  w or &plane, it is 
concluded t h a t  the  s t r e n g t h  of 
a w e l l  i n  t h e  ;-plane is  equal 
t o  one ha l f  of t he  s t r e n g t h  of 
a corresponding wel l  i n  t he  z- 
plane.  For mathematical con- 
venience,  t he  s t r eng ths  of t he  
we l l s  i n  t he  z-plane a r e  as- 
sumed t o  be equal  t o  one and 
the  complex p o t e n t i a l  i n  t he  
&plane subsequently i s  ob- 
ta ined  from Eq. A-6 as  follows: 

- 

W-PLANE 

Fig. A.3: WELL LOCATIONS FOR A DEVELOPED 
STAGGERED LINE DRIVE I N  ii-PLANE 

(A-11) 

The w e l l s  at  i n f i n i t y  do not con t r i bu t e  t o  t he  complex p o t e n t i a l .  From Eqs.  
A-0 and A-9: 

- 
w = -i sn(z,m) (A-12) 

S u b s t i t u t e  Eq. A-12 i 3 E q .  A-11 and 
e l l i p t i c  func t ions ,  sn (z,m) = 1 - cn (z,m): 

o t e  t h a t  from the  p rope r t i e s  of Jacobian 9 

~ ( z )  = - an [cn(z,m)] (A-13) 
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P r a t s  (1956) has reported the  above express ion (A-13) f o r  t he  complex poten- 
t i a l  but wi th  a p o s l t i v e  s ign  because t he  i n j e c t o r s  were assigned nega t ive  
p o t e n t i a l  i n  h i s  formulation.  From Byrd and Friedman (1954): 

cn(x) cn(y) - i sn(x)  dn(x) sn(y)  dn(y) 
cn(z,m) = cn(x + i y , m )  = 2 2 1 - sn (y)  dn (x) 

(A-14) 

where, sn(x)  = sn(x,m), cn(x) = cn(x,m), dn(x) = dn(x,m), sn(y)  = sn(y,ml) and 
cn(y) = cn(y,m ) are var ious  Jacobian e l l i p t i c  func t ions  with parameters m and 
ml where m + ml = 1. 1 From complex v a r i a b l e  theory: 

Using Eqs. A-14 and A-15 i n  Eq. A-13, it is concluded t h a t :  

2 2 2 2 cn (x) cn (y) + sn (x)  dn (x)  sn (y) dn2(y) 

[ 1 - sn2(y)  dn2(x)] 
n(z )  = - -  2 

(A-16) 

Comparing Eq. A-16 with Eq. A-1, it  follows t h a t :  

(A-18) 

Prats -- et  al .  (1955) had der ived Eqs. A-17 and A-18 f o r  t he  s t reaml ines  by 
applying Eq. A-6 t o  an i n f i n i t e  a r r ay  of w e l l s .  Figure A-4 shows the  coor- 
d i n a t e  system and the  values  of s t reaml ines  computed from Eqs. A-17 and A-18. 
The terms K(m) and K'(m) i n  t h i s  f i g u r e  a r e  complementary and incomplementary 
complete e l l i p t i c  i n t e g r a l s  def ined by Eq. A-7 with w = 1 and w - -1, respec- 
t i v e l y .  The r e l a t i o n s h i p ,  K'(m)/2K(m) = d / a ,  relates the  parameter m t o  t he  
geometry of t he  system. The quadrant shown i n  Fig. A-4 is used i n  de r iva t i on  
of t he  equat ions  f o r  t he  p a t t e r n  breakthrough curves. 
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0 
II 
-5 

0 4 X 

Fig. A-4: COORDINATE SYSTEM FOR A DEVELOPED STAGGERED LINE DRIVE 

The breakthrough time, tbts of a particle on a streamline JI is determined by a 
line integral along that streamline. This is: 

where vx is the x component of the microscopic velocity. From Eq. A-2: 

(A-19) 

(A- 20) 

where 4 is the porosity. From Eq. A-17 for the streamline $: 

(A- 21)  
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where, 

(A-22) 

Theref ore, 

Substitute Eq. A-23 in Eq. A-19: 

(A-23) 

(A-24 ) 

The pore volume injected into the system at the time of breakthrough of 
streamline $ is: 

'bt qt v =  
pD 44h K(m) K'(m) 

(A- 25) 

where qt is the injection rate and h is the thickness of the pattern. The 
flow rate is given by: 

(A-26) kh 
qt =r * S d +  

where the integral is taken around any closed surface in the flow regime. 
Because the flow in the vicinity of a wellbore i s  essentially radial, Eq. A- 
26, with the values of streamline shown in Fig. A-4, reduces t o :  

(A-27) kh 2nkh 
I- A$ = - 

qt IJ 11 

Using this expressfon for qt and Eq. A-24 for tbt, Eq. A-25 simplifies to: 

(A-28) 

(A-29) 

and rl is a constant for the streamline $. 
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Equations A-149 and A-150, derived la ter ,  r e l a t e  t he  d e r i v a t i v e s  t o  t h e  func- 
t i o n s .  The d e t a i l e d  de r iva t i on  of t he se  two r e l a t i o n s h i p s  is presented i n  
Appendix A.5.1. The equat ions  for t he se  d e r i v a t i v e s  are: 

2 4 - 2Bf (x,m) + f (x,m) 

and , 

(A-30) 

where B = m - m l '  
terms of x terms as follows: 

From Eqs. A-17 and A-29, t he  y terms can be expressed i n  

(A-32) 

U t i l i z i n g  Eqs. A-31 and A-32, Eq. A-28 becomes: 

% 'II ( 1  + n )  f (x,m) dx (A-33) 
2 'pD 2K(m) K'(m) 

Introducing a change of var iab le  z = f2(x,m) and using Eq. A-30 t o  s u b s t i t u t e  
f o r  f ' (x ,m),  the  fol lowing equat ion is obtained: 

The i n t e g r a l  term i n  Eq. A-34 is  of t he  form of an incomplete e l l i p t i c  
i n t e g r a l  of f i r s t  order.  The roo t s  of t he  quad ra t i c  equat ions  under t h e  
square roo t s  a l l  are complex. A closed-form s o l u t i o n  f o r  t h i s  i n t e g r a l  is 
obtained from Byrd and Friedman (1954). The r e s u l t  is: 

(A-35) 

where F(v , K )  and F(v , K )  are incomplete e l l i p t i c  i n t e g r a l s  of t h e  f i r s t  kind 
wi th  modulus K and arguments v1 and v2 given by: 1 

I (- + al g l )  
2 a1 + B g l  

V (A-36 ) 



v = ta;' (-7) 1 
1 

a : = l - B  2 

A = l + r ,  

2 
" A + B  

4AB 

(A + B)* 
K 2  = 

(A-37 ) 

(A-38) 

(A-39) 

(A-40) 

(A-41) 

(A-42 ) 

(A-43) 

For a u n i t  mobi l i ty  r a t i o  and a p is ton- l ike  displacement,  t he  d i sp l ac ing  f l u i d  
cu t  i n  t he  producing stream a t  t he  product ion w e l l ,  fD, 1s t he  r a t i o  of t h e  
angle  a t  whlch the  s t reaml ine  JI e n t e r s  the w e l l  t o  t he  e n t i r e  angle  a v a i l a b l e  
f o r  flow. From Fig. A-4, t h i s  is  expressed by: 

(A-44) 

Equations A-35 and A-44 j o i n t l y  desc r ibe  t h e  p a t t e r n  breakthrough curve of a 
developed s taggered l i n e  d r i v e  system. 

Breakthrough Areal Sweep Eff ic iency  

The breakthrough s t reaml ine  is J, - n/4 . Therefore,  at breakthrough, fD = 0 
and rl = 1, and Eq. A-34 reduces t o :  

00 

I f dz  (A-45) 

d ( z 2  + 282 +1)(z2 -282 +1) 
'pDbt 2 K(m) K'(m) 
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Due t o  symmetry of t he  breakthrough s t r eaml ine  around t h e  poln t  {K(m)/2, 
K'(m)/2), Eq. A-45 can be w r i t t e n  as: 

dz  

( z 2  + 282 +1)(z2 - 3 2  +I )  

71 = 
"pDbt K(m) K '  (m) 

(A-46) 

The upper l i m i t  of t he  i n t e g r a l  is ca l cu la t ed  from z = f 2 [  K(m)/2 , m] 1. 
The answer t o  t h i s  i n t e g r a l  is obtained from t h e  Byrd and Friedman handbook 
(1954) : 

.. n K[(I  - 2 m ) 2 ~  (A-47 ) 
'pDbt 2 K(m) K ' ( m )  

Appendix A. 2 : FIVE-SPOT PATTeRN 

The f ive- spot  is  a s taggered l i n e  d r i v e  p a t t e r n  with d /a  = 1/2 .  For t h i s  
s p e c i a l  case: 

m = ml = 0.5 

B = m - ml = 0 

K(m) = K'(m) = 1.8540747 

Equation A-34 then reduces to :  

From a handbook of e l l i p t i c  i n t e g r a l s  ( f o r  example, Byrd and Friedman, 1954, 
or Abramowitz, 1972), t he  i n t e g r a l  i n  t h i s  equat ion  is equal  t o  K ( l  - n2) ,  
hence : 

= 0.228473 (1 + 11) K ( l  - n2) (A-49) 
'PD 

where , 
2 rl = t a n  JI (A-50) 
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Breakthrough Areal Sweep Eff ic iency  

Breakthrough areal sweep e f f i c i e n c y  is r e a d i l y  computed from Eq. A-49 with 
TI - 1 for which K ( 0 )  = r / 2  : 

"pDbt = 0.71777 

ADDendix A.3: DIRECT LINE DRIVE 

The complex p o t e n t i a l  for t h i s  p a t t e r n  is obtained i n  a manner similar t o  t h a t  
d i scussed  i n  Appendix A.1. Equation A-7 is appl ied  t o  t ransform t h e  segment 
i n  Fig. A-5 i n t o  t h e  upper half- plane of t he  w-plane. The production w e l l  is 
mapped a t  i n f i n i t y  and t h e  i n j e c t i o n  well is mapped at the  o r i g i n  as was shown 
in Fig. A-2. 

Z-PLANE 

PRODUCTION 0 

X 

Fig. A-5: A DEVELOPED DIRECT LINE DRIVE I N  2-PLANE 
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The complex p o t e n t i a l  i n  t h e  w-plane f o r  t h i s  p a t t e r n  is: 

Q(w) - Rn w 

S u b s t i t u t e  f o r  w from Eq. A-9: 

(A-52) 

~ ( z )  - i n  [sn(z,m)] (A-53) 

Equation A-1 can be used t o  ob ta in  t h e  stream funct ions .  
Morel-Seytoux (1966) obtained t h e  fol lowing equat ion  for t h e  s t reaml ines :  

Hauber (1964) and 

where , 
(A-55) 

Figure A-6 shows the  values of s t r eaml ines  and t h e  element considered i n  
ana lyz ing  the  d i r e c t  l i n e  d r ive  pa t t e rn .  

The breakthrough t i m e  of a p a r t i c l e  on a genera l  s t r eaml ine  J, is computed by 
us ing  t h e  y component; of t he  p a r t i c l e  ve loc i ty  as fol lows:  

From Eq. A-3, the  y component of microscopic v e l o c i t y  is: 

From Eq. A-54 on the  s t r eaml ine  Q: 

and, 

(A-57) 

(A-58) 

(A-59) 

(A-60) 
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0 

Fig. A-6: COORDINATE SYSTEM FOR A DEVELOPED DIRECT LINE DRIVE 

S u b s t i t u t i n g  Eq. A-58 i n  Eq. A-57 and us ing  Eqs. A-59 and A- 60: 

Pore volume i n j e c t e d  up t o  t h i s  breakthrough t i m e  is given by: 

I t b t  qt  
'pD 4 @h K(m) K f ( m )  

(A- 61)  

(A- 62) 

Flow rate qt is equal  t o  Zrkh/p as was shown i n  A p p e n d i x  A.1. Using t h i s  
va lue  f o r  qt and s u b s t i t u t i n g  for t b t  from Eq. A-61,  Eq. A-62 reduces to: 

(A-63) 

- 109 - 



Since t h e  s t reaml ines  are symmetric about y = K ' ( m ) / 2 ,  t he  t r a v e l  time from 
y = 0 t o  y = K'(m)/2 is equal  t o  t h e  t r a v e l  t i m e  from y = K'(m)/2 t o  
y - K'(m). Therefore: 

K' (m) 
dy  6' g(Ysml) f ' (x ,m) 

n ( 1  + n) 
K ( d  K'(m) 

v = -  
PD 

(A-64) 

2 I n  t h i s  equat ion,  r( = t a n  $ which is constant  for a s p e c i f i e d  s t reamline.  

Equations A-158 and A-166 i n  Appendix A.5.2 relate t h e  d e r i v a t i v e s  t o  t h e  
func t ions  as fol lows:  

(A-65) 
2 2 2 

f '(x,m) - - [ml  - f (x,m)] + 4 f (x,m) 

(A-66) 

Using Eq. A-65 in conjunct ion wi th  Eqs. A-29 and A-60 t o  e l imina te  f(x,m), Eq. 
A-64 reduces t o  : 

Introduce a change of v a r i a b l e ,  z = g2(y,ml) and use  Eq. A-66 to r ep l ace  t h e  
g'(y,ml) term, Eq. A-67 is s impl i f i ed  to:  

dt 
a - t)(b - t)(t - c)(t - d)  

f (1  + n )  v =  
pD 2 m t  K(m) K'(m) 

where , 
1 a =  

(1 -m2 
1 b -  

(1  +m2 

(A-68) 

(A-69) 

(A-70) 

(A-71) 
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= - a n  - n  d =  
(1 -via2 

(A-72) 

From Byrd and Friedman's (1954) t a b l e  of e l l i p t i c  i n t e g r a l s ,  an a n a l y t i c  
express ion  f o r  t he  i n t e g r a l  i n  Eq. A-68 is obtained.  This is: 

where, F ( u , K )  is an incomplete e l l i p t i c  i n t e g r a l  of t h e  f i r s t  kind wi th  
argument v and modulus K given by the  fol lowing two expressions:  

v = Arcsin(d-) a + m  

2 ab (1 + n l 2  
(a + bn)(b + an) K =  

(A-74) 

(A-75) 

The values of F ( u , K )  can e i t h e r  be obtained from a mathematical handbook or 
computed d i r e c t l y  us ing  Ascending Landen t ransformat ion  success ive ly  
(Abramowitz, 1972). 

The d i sp l ac ing  f l u i d  c u t ,  as before ,  is ca l cu la t ed  from the  angle a t  which the  
s t reaml ine  e n t e r s  the  w e l l .  From Fig. A-6 it is: 

f D =  1 - 7  2JI 

and thus ,  n i s  r e l a t e d  t o  f D  as fol lows:  

(A-76) 

(A-77) 

Equations A-73 and A-77 j o i n t l y  desc r ibe  t h e  brea.-t..rough curve of a developed 
d i r e c t  l i n e  d r i v e  pa t t e rn .  

Breakthrough Areal Sweep Eff ic iency  

A t  breakthrough; fD = 0, hence rl = OD, K2 = 1 and Eqs. A-73 through A-75 reduce 
t o  : 

v = Arcsin ($ ) (A-78) 

= F(v , l )  
VpDbt m2 K(m) K'(m) 

1 

(A-79) 
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However, 

F(v,l) = Rn (tan u + sec U) 
From Eq. A-78: 

sin v =$- 

Therefore, Eq. A-79 becomes: 

I 1 In [<+*I  
VpDbt m2 1 K(m) K'(m) v= 

Substitute for a and b from E q s .  A-69 and A-70 and simplify: 

- 'II h(m) 
'pDbtP 4 ml K)m) K'(m) 

(A-80) 

(A-81) 

(A-82) 

(A-83) 

Appendix A.4: INVERTED SEVEN-SPOT 

The complex potential for this pattern is given by Morel-Seytoux (1966) as 
follows : 

Q ( z )  = Rn f(z) (A-84 ) 

where, 

From Eq. A-14: 

(A-85) 
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L e t  : 

cn(z,m) = h - i g  

S u b s t i t u t e  Eq. A-88 i n  Eq. A-85: 

2 

2 

[ l  - (h2 - g2> + i 2hg][a + b(h2 - g ) - i 2bhg] 

[ l  + (h2 - g2)  - i 2hg][a - b(h2 - g ) + i Zbhg] 
f ( z )  = 

Equation A-89 can be s imp l i f i ed  to: 

f ( z )  C - iD 0 c2 + 
A C - B ; + i A D + B C  C2 + D2 A + i B  

where, 

2 A = a + 4bu - ( a  - b)* - b t  

B = 2u(a - b + 2bG)  

2 C = a + 4bu + (a - b ) E  - b t  

D = 2u(a - b - 2 b f i )  

and, 

(A- 86) 

(A-87) 

(A- 88) 

(A- 89 ) 

(A- 90) 

(A- 91) 

(A- 92) 

(A- 93)  

(A- 94) 

(A- 95) 

(A- 96) 
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From E q s .  A-15, A-84 and A-90 the complex po ten t ia l  is:  

Comparing Eq. A-1 and A-97: 

(A-97) 

(A-98) 

Subst i tute  for A, B ,  C, D from Eq. A-91 through A-94 i n  Eq. A-98 and 
rearrange: 

(A-99) 
l1 I 4u[(l - b2)(4u2 + t )  + a2 - 

+ = t a i l  f 2 
8u2(2b2u2 - 5 + b t )  + a2 + b2t2 -14t 

Streamlines given by t h i s  equation are shown i n  Fig.  A-7. 

Y 

Fig. A-7 : COORDINATE SYSTEM FOR AN IWERTED DEVELOPED SEVEN-SPOT 
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I n  t h e  coord ina te  system of Fig. A-7, K'(m) = flK(m). 
t h e  a n a l y s i s  is 1/12 of t he  p a t t e r n  bounded between J, = 2n/3 and J ,  = II. 
t o  breakthrough of s t r eaml ine  J, is: 

The element chosen f o r  
Time 

2K'  (m) 

dr 
t b t  1 v Y 

(A- 1 00 ) 

and v i s  given by Eq. A-58. 
i n  JI equat ion (A-99): 

Making t h e  fol lowing s u b s t i t u t i o n s  f o r  t h e  terms Y 

r = (1 - b2)(4u2 + t )  + a2 - 1 

w = 8u2(2b2u2 - 5 + b 2 t )  + a2 + b2t2 - 14t 

then: 

Therefore,  from Eqs. A-58 and A-103: 

S u b s t i t u t e  Eq. A-104 i n  Eq. A-100 and rear range:  

2K' (m) 
A f 3  --I 

wLdy 
tb t  = - k 4 w(ru' + r ' u )  - NW' 

Pore volumes i n j e c t e d  : 

= t b t  q t  
' p ~  p a t t e r n  pore volume 

(A-10 1 )- 

(A-102) 

(A- 10 3 ) 

(A-104) 

(A- 1 05 ) 

(A-106) 

Flow rate around the  wellbores  from Eq. A-26: 

(A-107) k k 'i; AJ, = 4~ - IJ 4, 

and, 

(A-108) 2 p a t t e r n  pore volume - 2VT4 K (m) 
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Using Eqs. A-105, A-107 and A-108, i n  t he  Eq. A-106, one obtains:  

2K' (m) 

2 w dy 
( A- 1 09 ) w(ru' + r ' u )  - ruw' 

x = X(rCl,Y) 

- n ( l  + t a n  
'pD = 

From Eqs. A-95, A-96, A-101 and A-102, t he  d e r i v a t i v e s  of var ious  terms i n  
Eq. A-109 are: 

u' = h'g 4 hg' (A-1 10) 

r '  = ( 1  - b2)(8uu' + t ' )  (A- 1 1 1 ) 

w' = 16uu'(4b2u2 - 5 + b 2 t )  + 2b2(4u2 + t ) t '  - 1 4 t '  (A-112) 

t' = 4(h2 - g 2 )(hh'  - gg') (A-1 13) 

From Eqs. A-86, A-87 and A-141 through A-143 the  fol lowing express ions  for 
h' = ahfax and g' = ag/ax are obtained: 

2 R + 2m cn (x)sn  

R2 
h' P - sn (x )  dn (x) cn ( y 1 (A-1 14) 

2 2 2 2 
R[dn (x)  - m sn (XI] - 2m sn (y)dn (x)sn 

R2 

(A-115) 

(A-1 16) 2 2 R = 1 - sn  (y)dn (x) 

In computing V values  from Eq. A-109, t he  x terms i n  t h e  i n t e g r a l  should be 
expressed as fPuDnctions of y. Therefore,  for a s e l e c t e d  x value on a stream- 
l i n e  $, t he  corresponding y value has to  be evaluated.  This w a s  accomplished 
numerical ly  by applying a root- finding rou t ine  to  Eq. A-99 with  a constant  9 
value.  The computed coordinate  po in t s  on s t r eaml ine  $ were then s u b s t i t u t e d  
i n t o  Eq. A-109 and t h e  i n t e g r a l  term i n  t h i s  equat ion was evaluated numer- 
i c a l l y .  Equations A-110 through A-116 were used i n  eva lua t i ng  the  necessary 
terms i n  Eq. A-109, The computer program developed t o  genera te  t he  break- 
through curve of t h i s  p a t t e r n  is given i n  Appendix D.2. 
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Displac ing  f l u i d  cu t  at breakthrough of s t reaml ine  Q from Fig. A-7 is: 

where : 2n - < < < r  
3 

(A-117) 

Equations A-109 and A-117 desc r ibe  t h e  breakthrough curve of a repeated 
inve r t ed  seven spot  pa t t e rn .  

Breakthrough Areal Sweep Eff ic iency  

The breakthrough s t reaml ine  is Q - n. 
cn(x,m) = 1, dn(x,m) = 1, and sn(x,m) = 0. 
t ake  s impler  forms as follows: 

On t h i s  s t r eaml ine ,  x = 0; t h e r e f o r e ,  
A l l  t h e  parameters def ined before 

(A-1 18) 

g = o  (A-119) 

h '  = 0 (A-120) 

(A- 121) 

u = o  (A- 12 2 ) 

1 
t =  4 

cn (y,ml) 

t' - 0 

4 2 (a2 - 1)cn (y,ml) + (1 - b 1 
4 r -  

(y,m,) 

(A-123) 

(A- 1 24) 

(A-125) 

(A-126) 
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r' = 0 

w' = 0 

(A-127) 

(A- 1 28 

(A- 1 2 9 ) 

Substitute E q s .  A-118 through A-129 into Eq. A-109 and rearrange: 

(A- 1 3 0 

To calculate the integral, let p = cn2(y,ml), then: 

(A-131) 

and, 

2 2K'(m) rmll - (2 -fi)2 = b2 p = cn [ 3  

Hence, Eq. A-130 becomes: 

a2p4 - 14p2 + b2 
2 dP 

l - b  1 p(1 - P)(mlP + m)(p + - P a2 - 1 

'II 

1 
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But : 

m = ( 2  - m / 4  

m y  = 1 - ml = ( 2  + 43)/4 

Using Eqs. A-133 and A-134, Eq. A-132 f u r t h e r  s i m p l i f i e s  t o :  

b 
(p  + l ) (P  -;> 

P(P +a) 
dP (A-135) 

2 b  
2 n a  = 

'pDbt 4 s  m1(a2  - 1)K2(m) 

The i n t e g r a l  can now be ca lcu la ted .  This is: 

-1 1 (A-136) 
2 b - 

tan-l(b) - t a n  (r) dp = - 2 b  b 
(p  + l ) ( P  - 

P(P + z) 

For : 
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The value of VpDbt computed from Eq A-135 wi th  the i n t e g r a l  given by Eq. A-136 
is : 

VpDbt = 0.743682 

Appendix A.5: RELATING DERIVATIVES OF THE STREAM FUNCTIONS 
'IO THE STREAM FUNCTIONS 

This appendix is divided i n t o  two p a r t s .  The f i r s t  p a r t  covers the s t aggered  
l i n e  d r i v e  p a t t e r n  and the second p a r t  d i scusses  the d i r e c t  l i n e  d r i v e  
p a t t e r n  . 

Appendix A.5.1: STAGGERED LINE DRIVE 

From Abramowitz (1972) or Byrd and Friedman (1954): 

And : 

(A-137) 

(A- 13 8 ) 

(A-139) 

(A-140) 

(A-1 4 1 ) 

(A-142) 

(A- 1 4 3 ) 
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Theref ore : 

(A- 144)  

From Eq. A- 137: 

Or: 

L e t :  
2 

y = ml - m - f ( y , m l )  

The so lu t ion  f o r  the quadratic equation i n  A- 145 is:  

(A- 146)  

(A- 147) 

The negative  sign is impossible,  because m and ml both are p o s i t i v e  numbers. 
Subst i tute  Eq. A- I47 i n  Eq. A- 144 and s i m p l i f y :  

Subst i tute  back f o r  y from Eq. A- 146: 

( A- 1 48 ) 

(A- 149) 
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Simi la r ly :  

2 4 1 + 2(ml - m) f (x,m) + f (x,m) 

Appendix A.5.2: DIRECT LINE DRIVE 

From Eq. A-55: 

(A-150) 

(A-151) 

Using t h e  d e r i v a t i v e  of the Jacobian e l l i p t i c  func t ions  from Eqs.  A-138 
through A-143: 

2 2 2 dn (x,m) + m sn (x,m) cn (x,m) 
2 

f ' (x ,m) = - 
sn ( x , m >  

4 
e m sn(x,m) - 1 

2 
sn (x,m) 

From Eq. A-151: 

2 2 

2 
2 cn (x,m) dn (x,m> 

f (x,m> = 
sn (x,m> 

4 2 
I m sn(x,m) - (1 + m)sn (x,m) + 1 

2 sn (x,m) 

O r  : 

Let :  

2 = 1 + m + f (x,m) 
y1 

The s o l u t i o n  to Eq. A-153 is:  

2 sn (x,m) = 
2m 

(A- 152) 

(A-153) 

(A-154) 

(A-155) 
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S u b s t i t u t e  Eq. A-155 i n  Eq. A-152 and s impl i fy :  

(A-156) 

Because m> 0 and -1 < sn(x,m) < 1, from Eq.  A-152 it i s  concluded t h a t  
f '(x,m) < 0. Therefore: 

S u b s t i t u t e  f o r  Y 1  from Eq. A-154 i n  Eq. A-157: 

(A-157) 

(A- 1 58 ) 

The above approach can a l s o  be used t o  relate g'(y,ml) t o  g(y,ml). From 
Eq. A-56 : 

(A-159) 

The d e r i v a t i v e  of t h i s  func t ion  is: 

(A-160) 

Using E q s .  A-141 through A-143 t o  express  sn(y,ml) and cn(y,ml) in terms 
of dn(y,ml) , Eq.  A-160 reduces to: 

4 dn (y,ml) - m 

ml dn (y,ml) 
(A-161) g'(Y,ml) = 2 

From Eq.  A-159: 
2 2 

2 sn (y,ml) (Y,rn,) 
g (Y,ml)  - 2 

dn ( ~ , m 1 )  

4 2 - dn (y,ml) + (1 + m)dn (y,m,) - m 
= 

m2 1 dn4(y,ml) 
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Let: 

(A- 16 3 ) 2 2  y p  = 1 + m - ml g (y,m1) 
2 The solution for dn (y,m,) from Eq. A-162 is: 

2 Y2 f 
dn b,m1 1 = 2 

Substitute Eq. A-164 in Eq. A-161 and simplify: 

From Abramowitz (1972): 

dn(O,ml) = 1 

Therefore, From Eq. A-161 it is concluded that: 

Substitute for y p  from Eq. A-163 in A-165 and rearrange: 

(A-164) 

( A-1 6 5 ) 

(A-166) 
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Appendix B 

DERIVATION OF EQUATIONS FOR PATTERN RECOVERY CURVES 
AT VARIOUS MOBILITY RATIOS 

The location of the displacement front plays a major role in the analysis of 
pattern performance when the mobility ratio is other than one. For such a 
displacement: 1) the streamlines in the regions behind and ahead of front 
deviate from those determined at mobility ratio of one; and 2) the total 
resistance to flow continually changes as the location of the front varies. 
This is in contrast to a unit mobility ratio displacement in which the 
resistance to flow is constant and independent of the interface position. In 
the following analysis, it is assumed that streamlines are the same for any 
mobility ratio while the overall resistance to flow varies during the 
displacement. Consequently, for a constant pressure drop between an injection 
well and a production well, the total flow rate in the pattern as well as the 
flow rates in the individual streamtubes will change as the front advances 
towards the production well. Furthermore, at any particular time, the flow 
rates in the individual streamtubes will differ from each other. This is due 
to establishment of different resistances in the streamtubes for the same 
total pressure drop across them. 

Consider a piston-like displacement of two fluids in a developed five-spot 
pattern, as shown in Fig B-1. 

Flow rate in a general streamtube $1 when the displacement front is at 
location s in the tube is: 

$1 

where : 

x = -  = fluid mobility u 
A(s) = cross sectional area of streamtube at location s 

a,b = subscripts for displacing and displaced fluids respectively 

p = pressure 

q$l(i) = flow rate in the streamtube $1 as a function of front location 
- - 

$1 
s = front location, same as s 

- 125 - 



S = Path Along A 
Streamline 

F i g .  B-1: FRONT LOCATION IN A DEVELOPED FIVE-SPOT PATTERN 
AT AN ARBITRARY MOBILITY RATIO 

Integrate Eq. B-1 to obtain the pressure drops in each zone: 

- 
t 

'a 

and, 

q$ l(a 
@pb)$l = A b  

$1 
S 

where : 

- total length of the streamtube $1 
= front location in the streamtube $1 

- 
*$I 
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The t o t a l  p ressure  drop ac ros s  t h e  streamtube is t h e  sum of pressure  drops i n  
the Lnvaded and the non-invaded zones. This t o t a l  p ressure  drop is t h e  same 
for all t he  tubes and w i l l  be assumed t o  be cons tan t  i n  t h i s  ana lys i s .  Add 
Eqe. B-2 and B-3 and so lve  f o r  q ( E )  : $1 

where Ap is the  t o t a l  p re s su re  drop and M is the  mobi l i ty  r a t i o  def ined  as: 

The t i m e  requi red  f o r  t h e  f r o n t  i n  t h i s  streamtube t o  reach the  product ion 
w e l l  is: 

S u b s t i t u t e  f o r  q (s) from Eq. B-4: 111 

A t  t h i s  t i m e ,  t he  f r o n t  l o c a t i o n  i n  t h e  streamtube $2 is at $2 ' which is 
given by: - 

Equate Eqs. B-7 and B-8: 
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Equation B-9 provides t he  f r o n t  l oca t i on  i n  the streamtube $2 a t  the t i m e  when 
the  f r o n t  i n  t he  streamtube $1 reaches the production w e l l .  

Areal sweep e f f i c i e n c y  at t he  t i m e  of breakthrough i n  t h e  streamtube $1 is  the  
sum of two areas: 1) t he  t o t a l  area of t he  streamtubes t h a t  are completely 
f i l l ed  with  the d i sp l ac ing  f l u i d  (broken-through s t reamtubes) ;  and 2) t he  
t o t a l  swept area i n  t he  unbroken streamtubes.  Mathematically, t he  areal sweep 
e f f i c i e n c y  is given by: 

['%*'A(s) ds  d$ + l%;*.I., ds d$ 

(B-10) 
EA = ( p a t t e r n  pore a r e a ) / 8  

For t he  developed f i v e  spot  system i n  Fig. B-1, t he  p a t t e r n  pore area can be 
ca l cu l a t ed  from the  following equat ion:  

p a t t e r n  pore a r ea  = 44K2(0.5) = 4(l.8540746)2~ = 13.75036 4 

Therefore,  Eq. B-10 becomes: 

EA 0.5818 4 [ X s ' A ( 8 )  ds d$ f r A ( s )  ds d$ (B-11) 

Pore volumes i n j e c t e d ,  VpD, a t  the  time of breakthrough i n  t he  s t reamtube $1 
are ca l cu l a t ed  from: 

EA -k ('pD)a (B-12) 
PD 

where, ( V  ) is  the pore volumes of d i sp l ac ing  f l u i d  produced at t h a t  t i m e .  
The term (VpD)a is  equal  t o  the sum of t he  cumulative volumes of t he  
d i sp l ac ing  f l u i d  produced from each broken-through streamtube s i n c e  the  break- 
through t i m e  i n  each i nd iv idua l  tube. Because only one f l u i d  is flowing i n  
t he  broken-through s t reamtubes,  t he  f law rates i n  such streamtubes are 'equal 
and remain constant  a f t e r  breakthrough of t he  d i sp l ac ing  f l u i d  from t h e  
p a t t e r n .  Mathematically, t he  pore volumes of d i sp l ac ing  f l u i d  produced may be 
computed trom: 

PD a 

n / 4  1 Ibt 
( t$ lb t  - t$bt)  dJ, 

("PD), - ( p a t t e r n  pore volume)/8 (B-13) 
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In  t h i s  equat ion,  t h r e e  terms must be defined. F i r s t ,  q r ep re sen t s  the flow 
rate i n  the s t reamtubes t h a t  produce d i sp l ac ing  f l u i d .  #is term Is the  same 
f o r  a l l  the  streamtubes t h a t  have a l ready  broken-through. It is given by: 

(B-14) 

The i n t e g r a l  i n  t h e  denominator of Eq. B-14 can be computed on any streamtube 
t h a t  is f i l l e d  w i t h  the d i sp l ac ing  f l u i d ,  a. The o the r  two terms, t t l b t  and 

r ep resen t  t he  breakthrough t i m e  from t he  s t r eaml ine  $1 and gene ra l  t t b t  s reamline,  J, r e spec t ive ly .  In  analogy t o  Eq. B-7: 

S u b s t i t u t e  Eqs. B-7, B-14 and B-15 i n t o  Eq. B-13 and s impl i fy :  

(B-16) 

Displacing f l u i d  c u t ,  f , is the  r a t i o  of producing d i sp l ac ing  f l u i d  rate 
divided by the  t o t a l  pro8uct ion rate. This is given by: 

(B-17) 

where, q i s  the  flow rate i n  any streamtube t h a t  has not broken through. It 

t h e  i n t e g r a l  s ign.  
v a r i e s  w 9 t h  time and is d i f f e r e n t  f o r  d i f f e r e n t  streamtubes, as it is w i t h i n  
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Substitute for qb from Eq. B-4 and for qa from Eq. B-14: 

1 - f.. - u 
(B-18) 

Equations B-11, B-12, B-16 and B-18 are written in general forms. 
this appendix focusses on simplifing these equations. 

Because of the assumption of no streamllne change with mobility ratio, the 
area terms in the preceding equations can be calculated from the streamlines 
determined at unit mobility ratio. That is: 

The rest of 

(B-19) 

where, 

q 

[.(.)I M=1 M = 1 

= flow rate in the streamtube if the displacement was at M = 1 
M= 1 

= microscopic velocity at location s if the displacement was at 

From Eqs. 3-42 and 3-50 with h = 1, it is concluded that: 

(B-20) 

de 
A(s) The term - which appears frequently in the preceeding equations becomes: 

ds = 2 ds [ . ( s i ]  m X  M= 1 

The following relationships facilitate evaluation of Eq. B-21: 

(B-21) 

(B-22) 

(B-23) 
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Theref o r e  : 

From Eq. A-23: 

( B-24 ) 

(B-25) 

(B-26) 

and s i m i l a r l y  : 

where, f(x,m) and f(y,ml) are given by Eq. A-18. For a f ive- spot  p a t t e r n ,  
m = ml = 0.5, hence B = m - m = 0. Equations A-30 and A-31 reduce to:  1 

(B-28) 

(B-29) 

S u b s t i t u t e  Eqs. B-26 through B-29 i n  B-25 and use  Eq. A-32 t o  r ep l ace  t h e  
f(y,ml) terms by f(x,m) terms: 

(B-30) 

in which , 

(B-31) 2 rl = t a n  JI 

as proposed i n  Appendix Introducing t h e  same change of v a r i a b l e ,  z = f (x,m), 2 
A.1: 

2 

2 2  
( n + z )  dz 

2 z & l  + z )(rl + z2)  

(B-32) 
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From Gredshteyn and Ryzhik (1980):  

Let  : 
(B-33) 

(B-34 ) 

A t  z - 0 and z - m, t h e  term G(z,n) approaches i n f i n i t y .  These po in t s  corre-  
spond t o  s i n g u l a r i t i e s  a t  the  i n j e c t i o n  and product ion w e l l s .  To avold t h e  
s i n g u l a r i t l e s  i n  the  c a l c u l a t i o n s ,  a r ad ius  equal  t o  d/10000 is assigned t o  
t he  wells, where d is  the  d i s t a n c e  between an i n j e c t o r  and a producer. 

Another term tha t  can be s imp l i f i ed  is the i n t e g r a l  def ined  i n  Eq. B-8 and i n  
similar equat ions.  Designate: 

(B-35) 

The A(s)ds term i n  t h i s  equat ion can be reduced t o  the  fol lowing by using Eqs. 
B-19, B-20, B-22, B-23 and B-24: 

X dx 
(B-36) 

Using Eqs. B-33, B-34 and B-36 and not ing  t h a t  wel lbores  have d e f i n i t e  r a d i i ,  
t h e  term i n  brackets  i n  Eq. B-35 reduces t o :  

(B-37 ) 

where , 
(B-38 ) 

(B-39 ) 



and, 

- 2  z 5 f (H,m) 

x = r s i n  J, w i  w 

( B-40 ) 

(B-41) 

x - r cos JI (B-42) 
W p w  

- 
x i s  the  x component of f r o n t  l o c a t i o n ,  rw i s  the  wellbore r ad ius  and J, is  the  
value of a general  s t reaml ine  shown i n  Fig. B-1. 

Define : 

P ( n )  M G(z ,rl) - G(zi,n) P 

Using E q s .  B-36, B-37 and B-43, t he  H term defined i n  Eq. B-35 becomes: 

(B-43) 

- 
where, 
19, A-25, A-27 and A-34 with $ 5 0, it is concluded t h a t :  

i s  the  x coord iaa te  of the f r o n t  i n  the  streamtube $. From E q s .  A- x
$ 

From Byrd and Friedman (1954): 

where, 

wi th  t he  proper ty  t h a t ,  

(B-45) 

(B-46) 

(B-47) 

(B-48) 

(B-49) 



S u b s t i t u t e  Eq. B-45 and B-46 i n  Eq. B-44 and rearrange:  

- 
When t h e  f r o n t  i n  t he  s t reamtube $1 reaches t he  production w e l l ,  

i n f i n i t y  (gee Eq. B- 38).  Therefore,  the  argument of F(u,K)  dcomes equal 
t o  n/2 and from Eq. B- 49,  F ( n / 2 , K )  - K(K). Thus, t he  f r o n t  i n  any s t reamtube,  
$2 def ined by Eq. B-9, is reduced to:  

However, z is ca l cu l a t ed  a t  t he  production w e l l  and, hence, z 

( B- 5 1 )  

where, $1 r ep re sen t s  $1 a t  breakthrough. Note t h a t  i n  Eq. B- 51, the  l e f t  
hand s i d e  bfs computed a t  $2 and the  r i g h t  s i d e  a t  $ l b t .  

A t  t he  breakthrough of $1, s u b s t i t u t i o n  of Eq. B-36 i n  Eq. B-11 r e s u l t s  i n :  

Applying Eqs. B- 45, B-46 and B-47 t o  Eq. B-52 and no t ing  t h a t  z - * at t h e  
production w e l l :  

where, U and K are defined by Eqs. B-47 and B-48. Values of are obtained 
from the  so lu t i on  of Eq. B-51. 
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The pore volumes of d i s p l a c l n g  f l u i d  produced a t  breakthrough of t h e  stream- 
l i n e  $lbt are computed from Eqs. B-16, B-33, B-34, B-35 and B-50. The r e s u l t  
is  : 

dJ, (B-54) 

where, H r ep resen t s  a streamline at breakthrough and is given by: 
'bt 

1 + n  H =- 'bt 4 
G(E,n) d; 1 

(B-55) 

Displac ing f l u i d  cut  is computed from Eqs. B-18, B-33, B-34, B-37, and B-43 as 
fo l lows : 

n 
4 - "bt 

(B-56) 
dJI 

P(n)  + (1 - M) G ( E , n )  

f D  .c 
II T - '1bt +- [G(zPsl) - G(zisl)] 

The computer program given i n  Appendix D.3 u t i l i z e s  Eqs. B-12, B-53, B-54 and 
B-56 t o  eva lua te  areal sweep e f f i c i e n c y  and d i s p l a c i n g  f l u i d  c u t  f o r  var ious  
mobi l i ty  r a t i o s .  
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Appendix C 

. EVALUATION OF THE L I N E  INTEGRAL I N  MIXING EQUATIONS 

In  t h i s  appendix, eva lua t ion  of t he  l i n e  i n t e g r a l  i n  t h e  mixing equat ions  is 
i l l u s t r a t e d  f o r  developed s taggered l i n e  d r i v e ,  f ive- spot ,  and d i r e c t  l i n e  
d r i v e  pa t t e rn s .  The appendix c o n s i s t s  of t h r ee  sub-appendices, each corre-  
sponding t o  one of t he  above pa t t e rn s .  

Appendix C.1: STAGGERED L I N E  DRIVE 

Consider a s taggered l i n e  d r i v e  p a t t e r n  with t he  dimensions shown i n  Fig. 0 1 .  

d 

Fig. C-1: DIMENSIONS FOR A STAGGERED LINE DRIVE CONSIDERED 
I N  ME ANALYSIS OF MIXING L I N E  INTEGRAL 

The stream func t ions  f o r  t h i s  system are given by analogy t o  Eqs. A-17 and 
A- 18 as follows: 

sn(w,m) dn(w,m) 
f(w,m) = cn(w,m) 
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2 K b )  
a w -- (C-3) 

Using Eqs. B-22, B-23 and B-24, the line integral, I = 
reduced to : - 

X 

( C-6 1 dx 

X 

If initial water saturation in the reservoir is S,, from Eqs. A-2 and A-3 the 
components of microscopic velocity are given by: 

Differentiating Eq. C-1 with respect to y and x,  the velocity equations 
be come : 

k K'(m) f(w,m> f '(z,ml) 
2 % - -  d 

1 + [f(w,m) f(z,ml)] "X ww 

On a general streamline, 6 is a constant and Eq. C-1 yields: 

where, 
2 n = tan 41 = constant 

(C-10) 

(C-11)  

(C-12) 
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Utilizing Eqs. 0 3 ,  C-5, C-9, C-10 and C-11, the following expression for the 
line integral is obtained: - 

where, 

Equations A-149 and A-150 relate the derivatives to the functions. These are: 

(C-15) 

where , 

m l  B = m -  (C-17) 

Substitute for the derivatives in Eq. C-13 and C-14 from Eqs. C-15 and C-16, 
and eliminate f(z,ml) by Eq. C-11; then Eq. C-13 simplifies to: 

2 3 
ad 

2K(m)K' 2(m) 

2 f (w,m) dw 
* I  

(C-18) 

2 Introducing a variable change of f (w,m) - t , and using Eq. 0 1 6  to replace 
the f'(w,m) terms, Eq. C-18 becomes: 

2 
Y 

4K(m) K' (m) 
where, 

(C-19) 

3 f2(F,m) 

(C-20) 
fl dt Y - (1  + n )  

(t2 - 2f3t +l)(t2 + 2Bnt + n 2 m 2  + n) 
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w z 
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0 0.2 0.4 0.6 0.8 1 .o 
- 

X-COMPONENT OF TRACER FRONT LOCATION, w/K(m) ,  2;/a 

Fig. C-2: VARIATION OF MIXING L I N E  INTEGRAL WIm TRACER FRONT LOCATION 
FOR VARIOUS STREAMLINES OF A STAGGERED L I N E  DRIVE,  d/a - 1 
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t he  amount of tracer flow t o  the  w e l l  is i n s i g n i f i c a n t  unless the  tracer f r o n t  
is c lose  t o  the production w e l l .  Therefore, f o r  a l l  practical purposes, the  
upper l i m i t  of the  i n t e g r a l  ,fn Eq. C-20 can always be computed a t  the  produc- 
t i o n  w e l l .  For t h i s  case, f [K(m),m] - and Y is: 

A l l  t he  roots  of the quadra t ic  equations in Eq. C-21 are complex. Therefore, 
the re  is no s i n g u l a r i t y  in the  range of in teg ra t ion .  However, f o r  d/a 3 2 ,  
m + 0 ,  6 + -1; hence, one of the  roo t s  approaches rl. For t h i s  case, precau- 
t i o n s  should be taken i n  the  numerical in teg ra t ion  around the  point  t - rl. 

Appendix C.2: FIVE SPOT 

For a five- spot system: 

B = m - m  = O  1 

K(m) = K'(m) = 1.854074 

Equations C-19 and C-21 reduce t o :  

3 
Y 

3 0 1  e97678 

where , 
fi d t  

(C-22) 

(C- 23) 
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Appendix C . 3 :  DIRECT L I N E  DRIVE 

Figure C-3 shows the coordinate system with the dimensions for t h i s  pattern: 

0 

1 

d i  0 
I s  d) 

Fig. C-3: DIMENSIONS OF A DEVELOPED DIRECT LINE DRIVE CONSIDERED 
I N  'ME ANALYSIS OF MIXING LINE INTEGRAL 

The stream functions for the above coordinate system are obtained by analogy 
t o  Eqs .  A- 5 4 ,  A-55 and A-56 as follows: 

(C- 25) 

( C- 26) 
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w=- x 2 K h )  (C-27 ) 
a 

2 =- K ' ( d  (C- 28) 
d 

The following equations f a c i l i t a t e  evaluat ion of I = 

ds = 4 (dx)' 

2 v2 = v + v 
X Y 

Using these equations,  the  I 

I =  

i n t e g r a l  becomes: 

(C- 29) 

(C- 30) 

( 0 3 1 )  

(C- 32) 

( c-33 1 

J, vy 4-- 
The veloci ty  components are re la t ed  t o  stream functions by Eqs. C-7 and C-8. 
Performing the  p a r t i a l  d i f f e ren t ion  on J,(x,y), the  expressions f o r  the  
v e l o c i t i e s  become : 

f ' (w,m) g(z,m,) 

1 + [f(w,m) g(z,m,>] 

k 2K(m) 
2 V E--  Y v+sw a 

For a general s treamline,  J, is constant and Eq. C-24 r e s u l t s  in :  

(C- 34) 

(C-35) 

(C- 36) 

where, n is given by Eq. C-12. 
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Utilizing Eq. C-28 and Eqs. C-33 through C-36, the following expression for 
the line integral, I, is obtained: 

Equations A-158 and A-166 relate the derivatives to the functions: 

and, 
1 t 

(C-38) 

( c-39 ) 

(C-40) 

Substitute for the derivatives from Eqs. C-39 and C-40 in Eq. C-37 and 
eliminate the f(w,m) term by using Eq. C-36: 

2 Introducing a change of variable, t = g (z,ml) : 

(043) 
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S u b s t i t u t e  t h i s  new va r i ab l e  and Eq. e 4 3  i n t o  Eq. 0 4 1  and u t i l i z e  t h e  ranges 
given i n  Eq. C-40, the  r e s u l t  of Eq. C-41 is: 

with  : 

K' (m 1 
if o < z < + , or equ iva l en t ly ,  o < g2(T,ml < 

and, 

(1  +m2 

( c-44 ) 

( 0 4 5  ) 

(C- 46) 

- 
and g2[K'(m),ml] = 0; the re fo re ,  from Eq. A t  t he  product ion w e l l ,  2 - K' (m) ,  

c-45 : 
n 

The roo t s  of t he  quadra t i c  equat ions i n  t h e  expression for Q i n  Eq. C-46 are: 

2t2 - 2(2 - m l ) t  + 1 = m12(t  - a ) ( t  - b )  (C-49)  ml 

2t2 + n = m12(t i e) (C- 51) ml 
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where : 

1 a =  
( 1  -*I2 

1 b -  
(1  + S I 2  

( C- 5 2 )  

( c- 5 3 )  

( C - 5 4 )  

( C- 5 5 )  2 d = [ -  n ( 2  - ml) - 2n6] / m l  

e = i - rl - complex ( C- 5 6 )  
1 m 

Since rl 0 ,  0 < m < 1 ,  and 0 < m C 1; then, a > b, c < 0 and d < 0.  There- 
fore ,  the integran4 contains a singularity at point t = b which corresponds to 
the upper l i m i t  of the integral i n  Eq. C- 48. To remove t h i s  s ingularity,  l e t :  

b - t = E 2  (C-57 ) 

Then : 

where : 

= m 254 - 2(bm12 + 211 - ‘lml)F2 + b2m12 + 2b11(2 - ml) + 11 2 
T1 1 

T2 - a - b + E2 

*E4 - 2b ml 2 2  5 + b2m12 + rl 
T3 = ml 

( C- 5 8 )  

( c- 59 ) 

( C- 6 0 )  

( C- 6 1 )  
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Appendix D 

COMPUTER PROGRAMS 

This appendix c o n s i s t s  of t h r e e  sub-appendices, each conta in ing  a compu zr 
program. The f i r s t  appendix provides a program t o  analyze tracer breakthrough 
curves from s t r a t i f i e d  r e se rvo i r s .  The second appendix g ives  an a lgor i thm t o  
compute the  p a t t e r n  breakthrough curve of a developed inve r t ed  seven-spot f o r  
mob i l i t y  r a t i o  of one. A program t o  c a l c u l a t e  t h e  p a t t e r n  breakthrough curve 
of a developed five- spot a t  any mobi l i ty  r a t i o  is the  content  of t he  last 
appendix. 

Appendix D.l: PROGRAM TO ANALYZE A TRACER ELUTION CURVE 

The a lgor i thm provided i n  t h i s  s e c t i o n  decomposes a tracer breathrough p r o f i l e  
from a s t r a t i f i e d  formation i n t o  several l a y e r  responses.  From the  con- 
s t r u c t e d  l a y e r  responses,  the  parameters of the  l a y e r s  are evaluated.  The 
decomposition process is c a r r i e d  out  i n t e r n a l l y  through a non- linear least- 
squares  r o u t i n e  ( subrout ine  VARPRO). Since an  i n v e r s e  problem i s  being 
so lved ,  the  number of l a y e r s  should be determined by t r ia l- and- error ,  each 
time observing t h e  improvement of t he  generated match wi th  an i n c r e a s e  i n  
number of l aye r s .  However, t h i s  program can be modified t o  perform t h i s  
i te ra t ive  process  i n t e r n a l l y  and genera te  an optimum match i n  one run,  
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// JOB (JE.NAD, lOQ), 'MAGSUD' 
// EXEC WATFIV 
/ /GO.SYSIN DD * 
C 
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C * * 
C * T H I S  PROGRAM ANALYZES A TRACER BREAKTHROUGTH CURVE FROM A * 
C * S T R A T I F I E D  RESERVOJR FOR A G I V E N  TYPE OF FLOODING PATTERN. * 
C * THE PROGRAM GENERATES POROSITY THICKNESS PRODUCT, ( P H I * H ) ,  * 
C * AND FRACTIONAL P E R M E A B I L I T Y  THICKNESS PRODUCT, (KH/SUM(KH),* 
C * FOR EACH LAYER AS N E L L  AS A MATCH TO THE I N P U T  TRACER * 
C * BREAKTHROUGH P R O F I L E  FOR A S P E C I F I E D  NUMBER OF LAYERS. * 
C * THE PROGRAM CAN CURRENTLY HANDLE F I F T E E N  LAYERS. * 
C * * 
C ********i***************************************************** 

C 
C PREPARED BY 
C 
C MAGHSOOD ABBASZADEH-DEHGHANI 
C STAN FORD U :.( I V ERS I TY 
C J U L Y  1982 
C 
C NOMENCLATURE: 
C 
C AALFAP = PECLET NUMSER FOR THE PATTERN 
C AALFA5 = PECLET NUMBER FOR AN EQUIVALENT F IVE- SPOT 
C AREA = DRAINAGE AREA OF A WELL WHOSE TRACER RESPONSE CURVE 
C IS B E I N G  ANALYZED, FT SQUARE 
C C P H I H J  = TRACE2 COKCENTRATION FROYI LAYER J, C / C O  
C CSTAR = TRACER CONCENTKATIOKS I N  THE F I E L D  TRACER E L U T I O N  
C CURVE, PPH. AN ARRAY CONTAINING NDATA P O I N T S  
C COIKEN = T R A C E R  CONCENTRATION IN THE GENERATED MATCH, mi 
C EABTP = BREAKTHROUGH AREAL S!JEEP E F F l C I E N C Y  OF A DEVELOPED 
C PATTERN 
C EABT5 = BREAKTHROUGH AREAL SldEEP E F F I C I E N C Y  OF A DEVELOPED 
C F I  VE-SPOT 
C FACTOR = A CONVERSION FACTOR TO CONVERT TRACER CONCENTRATION 

C FM = CORRECTION FACTOR ON TRACER PEAK CONCENTRATION 
C FP = CORRECTION FACTOR ON PECLET NUPIBER 
C FRAC = R A T I O  OF THE RATE OF F L U I D  FLONING FROM THE INJECTOR 

C (FROM U S U A L L Y  PPr i )  T O  WEIGHT FRACTION 

C OF THE PATTERN TOWARDS THE WELL, D I V I D E D  BY THE TOTAL 
C PRODUCTION RATE FROM THE WELL. FOR EXAMPLE, I N  A 
C DEVELOPED F IVE- SPOT WHEN TRACER IS I N J E C T E D  I N T O  ONE 
C OF THE WELLS ONLY, FRAC 0.25 
C K, KP = COMPLEMENTARY AND INCOMPLEMENTARY COMPLETE E L L I P T I C  
C INTEGRALS OF THE F I R S T  K I N D  

C NDATA = NUMBER OF DATA P O I N T S  I N P U T E D  FROM A F I E L D  TRACER 
C RESPONSE CURVE 
C NLAYER = NUMBER OF LAYERS I N  THE S T R A T I F I E D  MODEL 
C NOTPUT = NUMBER OF P O I N T S  DESIRED TO B E  CALCULATED ON THE 
C MATCH CURVE 
C P H I H J  = POROSITY THICKNESS PRODUCT OF LAYER J 
C PVDMX5 = CORRELATING DIMENSIONLESS PORE VOLUME FOR A DEVE- 
C LOPED F IVE- SPOT.  
C SW = I N I T I A L  WATER SATURATION I N  THE RESERVOIR 
C T = VOLUMES CORRESPONDING TO SELECTED "CSTAR" VALUES 

C TR = TOTAL VOLUME OF TRACER SOLUTION I N J E C T E D  I N T O  A 

C K H J  = FRACTIONAL CONDUCTANCE OF LAYER J, (KH)J /SUM(KH)  

C I N  THE F I E L D  DATA, BBLS 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C .  
C 
C 

C 
C 
C 

1 0  

20 
C 
C 
C 
C 
C 

C 
C 
C 

VCAL = 

VMXCAL = 

VOBSRV = 
VPDBT = 

VPDMXP = 

VTMAX = 

V T M I N  = 
VTMAXP = 

Y S I G H  = 

Y ( J )  = 

X Y ( J )  = 
- - 
- - 

I M P L I C I T  

PATTERN, F T 3 .  
CALCULATED PEAK VOLUMES OF THE LAYERS,  I F  THE 
SYSTEM WAS DEVELOPED AND THE WELL WAS R E C E I V I N G  

CALCULATED PEAK VOLUMES OF THE LAYERS I N  THE MATCH 
TRACER FROM A L L  THE I N J E C T O R S  SURRONDING I T ,  BDLS 

CURVE TO THE F I E L D  DATA,  B B L S  
VOLUMES I N  THE MATCH CURVE ( X - A X I S ) ,  B B L S  
X - C W R D I N B T E  OF THE PATTERN BREAKTHROUGH CURVE OF A 
DEVELOPED F I V E- S P O T  ( D I S P L A C I N G  F L U I D  CUT VS PORE 

PORE VOLUMES CORRESPONDING TO THE PEAK CONCENTRATION 
I N  A TRACER BREAKTHROUGH CURVE FROM A HOMOGENEOUS 

UPPER VALUE OF THE RANGE AT WHICH A MATCH TO T H E  

VOLUMES) 9 D I M E N S I O N L E S S  

PATTERN, D I M E N S I O N L E S S  

F I E L D  TRACER E L U T I O N  CURVE I S  SOUGHT, B B L S  
LOWER VALUE OF THE RANGE, B B L S  
VOLUMES CORRESPONDING TO THE PEAK CONCENTRATIONS I N  
THE F I E L D  TRACER RESPONSE CURVE, B B L S .  THESE W I L L  B E  
USED AS I N I T I A L  E S T I M A T E S  I N  THE O P T I M I Z A T I O N  R O U T I N E  
"Ytr VALUE IN THE M I X I N G  L I N E  I N T E G R A L ,  F U N C T I O N  OF 
S T R E A M L I N E  
J TH NONLINEAR PARAMETER I N  THE O P T I M I Z A T I O N  R O U T I N E  
K J / ( P H I * S U M ( K H ) )  
J TH L I N E A R  PARAMETER I N  THE O P T I M I Z A T I O N  R O U T I N E  
K J /  ( PHI *SUM(  KH 1 ) f K H  J /SUM( KH 1 

REAL *8 ( A-  t i ,  0-2 1 
REAL * S  K , KP , M , M 1 , KH J , K ET A 
D I M E N S I O N  V P D B T ( l l O ) ~ Y S I G H ( 1 1 0 ) ~ T ( 5 O ~ l ~ ~ C S T A R ( 5 0 )  
D I M E N S I O N  W ( 5 0 ) , A A ( 5 0 , 3 2 ) , Y ( 1 5 ) , X Y ( l 5 ) , C P H I H ( 1 5 ) , V T M A X P ( l 5 )  
EXTERNAL ADA 

COMMON /PARK/K,KP,VTMAXP1VPDMXP,EABT5,EABT5,EABTP,FM,FP 
COMMON I P A R I Y S I G H  VPDBT 

COMMON / F O R M I  AREA , SW , A/ \  L FA5 9 TR 8 N v NM , tl 1 , H 2  

I N P U T  PARAMETERS: 

READpFRAC,FACTOR,NDATA,NLAYER 
READ,SW,AREA,AALFAP,TR 
READPEABTPPFMPFP 
READ,VTMIN,VTMAX,NOTPUT 
DO 1 0  J = l , N L A Y E R  
READ,VTMAXP(J )  
VTMAXP(J)=VTMAXP(J)*FRAC 
DO 20 I = l , N D A T A  
R E A D , T ( I , l ) p C S T A R ( I )  
T ( I , l ) = T ( I , l ) * F R A C  
CSTAR(I)=CSTAR(I)/FRAC*FACTOR 

I N  THE ABOVE, VALUES OF VTMAXP, T, AND CSTAR WERE CONVERETED TO 
THOSE CORRESPONDING TO A DEVELOPED PATTERN 

E A B T 5 z . 7 1 7 7 7 8 3  

AN E Q U I V A L E N T  F I V E- S P O T  I S  DETERMINED 

AAL FASZAAL F A P / F P  
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C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

30 
40 

50 
C 
C 
C 
C 

C 
C 
C 
C 

6 0  

DIMENSIONLESS CORRELATING P O R E  VOLUME I S  COMPUTED FROM T H E  
EQUATION O F  T H E  FIVE-SPOT LINE IN FIG. 3.24 

P O R E  VOLUME CORRESPONDING TO A PEAK FROM A HOMOGENEOUS 
PATTERN I S  COPlPUTED 

VPDMXP=EABTP+(l.-EABTP)*PVDMX5 
PI='Y.*DATAN(l.DO) 
K=1.8540746773DO 
KP=K 
M=O . 5 D O  
M l = M  

PATTERN BREAKTHROUGH CURVE, "VPBD", A N D  MIXING LINE INTEGRAL t 
"Y(SIGH)** FOR A DEVELOPED FIVE-SPOT A R E  COMPUTED. I N  T H E  

DIVIDED INTO "N=50" STREANTUBES A N D  T H O S E  BETWEEN 10 DEGRRES 
AND 45  DEGREES ARE ALSO DIVIDED INTO "N=50" TUBES. T H I S  I S  
D O N E  TO OBTAIN HIGHER ACCURACY FOR T H E  EXTREME STREAMTUBES 

FOLLOWING, T H E  STREAMLINES BETWEEN ZERO A N D  10 DEGREES A R E  

UPPER=l.D+4 
TETl=O.DO 
TETL=PI*lO. 0 1  180. 
N = 5 0  
NN=N+ 1 
NHN=?*NN- 1 
N?l= 2 ++N 
H2=(PI/4.-TETL)/N 
H 1 =TET L/N 
DO 5 0  Iz2,NNN 
IF (1.LE.NN)GO TO 30 
TET=TETL+H2*(I-N-l) 
GO TO 40 
TET=Hl*(I-l) 
ETA=DTAN(TET)**2 
C=PI/4.*(1+ETA)/K/KP 
ZZ=l.-ETA**2 

VPDBT(I-l)=CRKETA 

YSIGH(I-l)=SIGMA 

CALL KVALUE(Z2,KETA) 

CALL GAUSS(UPPER,ETA,SIGMA) 

"IPRINT" CONTROLS T H E  TYPE OF T H E  OUTPUT FROM T H E  OPTIMIZATION 
ROUTINE. S E E  SUBROUTINE "VARPRC" FOR INFORMATION 

IPRINT=l 

T H E  WEGHTING FACTORS FOR T H E  FUNCTION NEEDED I N  "VARPRO" ARE  
EVALUATED 

DO 60 LMKz1,NDATA 
W(LMK)=l. 
L E K G T H = 2 W L A Y E R + 2  
CALL VARPRO(NLAYER,NLAYER,NDATA,NDATAtLENGTH,l,T,CSTAR,W, 

& ADA,AA,IPRINT,YtXYpIERR) 

- 149 - 



7 0  

C 
C 
C 
C 

80 
9 0  

1 0 0  
C 
C 
C 
C 

1 1 0  

1 2 0  
1 8 3  
C 
C 
C 
C 
C 
C 
C 

200 

20 1 
2 0 2  

204  
205 

300 

C 
C 
C 

C 
C 

W R I T E ( 6  r70 1 
FORMAT( '1 ' , 2X , ' LAYER NO~'~7X~'POROSITY.THICKNESS'~l2X, 

X ' KH /SUM(KH) ' , / )  

CALCULATE THE PARAEETRES OF THE LAYERS FROM THE COMPUTED L I N E A R  
AND NDN-L INEAR PARAMETERS 

DO 90 I O P T = l , N L A Y E R  
K H J  = X Y ( I O P T ) / Y ( I O P T )  
PHIHJ=XY(IOPT)~Y(IOPT)/Y(IOPT) 

I F  ( P H I H J . L T . O . ) G O  TO 2 0 4  

CONTINUE 

W R I T E ( 6 , 8 0  ) I O P T t P H I t i J e K H J  

FORMAT(6X~IZ~l4X,FlO.6,16X~F10.6) 

W R I T E ( 6 , l O O )  
F O R M A T ( ' l ' , l X , ' V O L U M E  PRODUCED, BBLS ' ,  X I  CON ENTR 

A MATCH TO THE F I E L D  DATA W I T H I N  THE S P E C I F I E D  RANGE 
AND D E S I R E D  NUMBER OF P O I N T S  I S  GENERATED 

T I O N ,  PPM', /  

OF VOLUMES 

DELTAP=(VTMAX-VTMIN)/NOTPUT 
NOTPT=NOTPUT+ l  

VOBSRV=(IK-l)*DELTAP+VTMIN 
V P A T T = V  0 9 S RV EFR A C 

SUMC=O. 

SUMC=SUMC+XY(ML)*CPHIH(ML) 
C 0 N C EN = F E A C/ FA C T 0 R*S UMC 

DO 1 8 0  I K = l , N O T P T  

CALL  FUNCCYpVPATT , C P H I H i K L A Y E R )  

DO 1 1 0  M L = l , N L A Y E R  

KRITE(6rl20)VOBSRV,CONCEN 
FORMAT(5X,F9.2,20X,FlO.6) 
CONTINUE 

"NLAYERql VOLUMES CORRESPOtiDING TO THE PEAK VOLUNES FROM THE 
C O K S T I T U T I N G  LAYERS ARE CONPUTED. THE D I F F E R E N C E  BETNEEN THE 

AROUNT OF S H I F T  GENERATED UPON ADDING THE LAYER RESPONSES TO 
FRODUCE AN OVERAL TRACER BREAKTHROUGH CURVE 

I N P U T E D  PEAK VOLUMES AND THE COMPUTED PEAK VOLUMES IS THE 

W R I T E ( 6 , 2 0 0 )  
FORMAT( / / , lX , 'SELECTED PEAK VOLUME',5X,'COMPUTED PEAK VOLUME', /)  
DO 2 0 1  I J I = l , N L A Y E R  
VTMAXP(IJI)=VTMAXP(IJI)/FRAC 
VCAL=AREAxSI.J*VPDPiXP / 5 . 6 1 5 / Y ( I J I )  
VMXCAL=VCAL/FRAC 
W R I T E  (6,202)VTMAXP(IJI),VMXCAL 
FO R N A  T ( 7 X  , F 7 - 1  , 1 8 X  , F 7  . 1 1 
GO TO 3 0 0  
W R I T E ( 6 8 2 0 5 )  
FORMAT(/ / ,ZX, 'A LAYER PARAMETER I S  N E G A T I V E , ' , / , 2 X , ' P R O D A B L Y  THE 

& SELECTED PEAK VOLUMES ARE NOT GOOD',/ / )  
STOP 
END 

SUBROUTINE FUNC(VARBLEtVT,GAMA,NLAYER) 

T H I S  SUBROUTINE COMPUTES THE G A M A ( J , I )  FOR A G I V E N  TOTAL VOLUME 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 

4 0  
80 

50 
90 

INJECTED. WHERE, GAMMA CORRESPOND TO T H E  PHI(J,I) FUNCTION IN 
SUBROUTINE "VARPRO". THE ROUTINE USES T H E  EQUATIONS OF TACER 
BREAKTHROUGH CURVE FROM A DEVELOPED FIVE-SPOT IN CONJUCTION 
WITH THE CQRRECTION FACTORS TO EVALUATE T H E  TRACER BREAKTHROUGH 
FROM A PATTERN. 

INPUT: VARBLE = 
VT = 

NLAYER = 
OUTPUT: GAMA = 

KJ/(PHf)J*SUM(KH), THE NON-LINEAR PARAMETERS 
TOTAL PORE VOLUMES INJECTED INTO T H E  PATTERN 
AT LJHICH GAMA WILL B E  CALCULATED 
NUMDER O F  LAYERS 
VALUE OF GAMA AT VT. IF THIS VALUE I S  MULTI- 

CONCENTRATION FOR LAYER J AT TOTAL VOLUME OF 
PLIED BY TtlE J TH NON-LINEAR PARftFlETER, TRACER 

V T ,  I S  OBTAINED. 

IMPLICIT REAL*8 (A-HPO-2) 
REAL*8 K,KP 
DIMENSION Y S I G H ( l 1 0 ) ~ V P D B T ( 1 1 0 ~ ~ V A R B L E ~ N L A Y E R ) ~ G A M A ~ l 5 ~  
DIMENSION FS(lOl),VTMAXP(15) 
CoririoN IPARIYSIGH, VPDBT 
COMMON /PARK/K,KPtVTMAXP,VPDMXP,EABT5,EABTP1FM,FP 
C 0 FlM 0 N 1 F 0 EM 1 A R E A 9 S 14 , A A L F A 5 , T R , N , N M 8 H 1 , H 2 
PI=4.*DATAN(l.DO) 

VPDPAT=5.615*VT*VARBLE(IJ)/(AREA*SW) 
DO 55 IJZ1,NLAYER 

P O R E  VOLUFIES INJECTED INTO A N  EQUIVALENT FIVE-SPOT ARE CALCULATED 
FROPl THE PORE VOLUMES INJECTED INTO A PATTERN 

DIMENSIONLESS TRACER CONCENTRATIONS, CD, FROM A DEVELOPED 
HOKOGEHEOUS FIVE-SPOT ARE COrlPUTED 

FS( 1 )=O. 

P V D I F F = ( V P D B T ( J ) - V F D 5 ) a w 2  
EX=-K*KP*KPsAALFA5*PVDIFF/(PI*PI*YSIGH(J)) 
IF(EX.LT.-170.DO)GO TO 4 0  
FS(J+l)=DEXP(EX)/DfQRT(YSIGH(J)) 
GO TO 80 
FS(J+l)=O.DO 
CONTINUE 

DO 80 J=l,N 

CALL INTGRL(N,Hl,FS,VOLl) 
DO 90 J=N,NM 
PVDIFF=(VPDBT(J)-VPD5)**2 
EX=-K*KPsKPsAALFA5xPVDIFF/(PI*PI*YSIGH(J)) 
IF(EX.LT.-170.DO)GO TO 50 
FS(J+l-N)=DEXP(EX)/DSQRT(YSIGH(J)) 
GO TO 90 
FS(J+l-N)=O.DO 
CONTINUE 
CALL INTGRL(NIH2,FS,VOLP) 
VOL=VOLl+VOL2 
IF(VOL.GT.1.D-70)GO TO 115 
GAMA(IJ)=O.DO 
GO TO 55 

C 
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C 
C 
115 

C 
C 
C 
C 
C 

55 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 

4 0  
80 

VALUES OF "GAMA" FOR A F I V E- S P O T  AXE EVALUATED 

THE COMPUTED "GAMA" VALUES FOR THE F I V E- S P O T  ARE CONVERTED 
TO THOSE CORRESPONDING TO A PATTERN B Y  U S I N G  THE CORRECTION 
FACTORS, FM AND F P .  

GAMA(IJ)=GAMA(IJ)*FMSDSQRT(FP) 

RETURN 
END 

CONTINUE 

SUBROUTINE DFUNC(VARBLE,VT,DGAMA,NLAYER) 

T H I S  SUBROUTINE CONPUTES D E R I V A T I V E  O F  THE GAMA FUNCTION W I T H  
RESPECT TO NON- LINEAR PARAKETERS FOR EACH LAYER. 

I N P U T :  VARBLE = K J / ( P H I ) J * S U M ( K H ) ,  THE NON- LINEAR PARAMETERS 
VT = TOTAL PORE VOLUMES I N J E C T E D  I N T O  THE PATTERN 

AT WHICH GAKA W I L L  B E  CALCULATED 
NLAYER = KUMBER O F  LAYERS 

OUTPUT : DGAMA = D E R I V A T I V E  OF THE GAMA FUNCTION W I T H  RESPECT 
TO THE NON- LINER PARAMETER COMPUTED AT TOTAL 
VOLUME I N J E C T E D ,  VT. 

I M P L I C I T  REALSS (A-H ,O-Z)  
R E A L x S  K t K P  
D I t l E N S I O N  YSIGHC I 1 0  1 t V P D B T (  1 1 0  1 ,VARBLE(NLAYER)  ,DGANA( 1 5 )  
D IP lE t<S ION FS( I 3 1 ) , V T M A X P ( 1 5 )  
COI.I;ION /PAR/YSIGH,  VPDST 
COPIMON /PARK/K,KP,VTMAXPtVPDMXP,EABT5~EAUTP,FM,FP 
COMMON / F O ~ M / A R E A , S W , A A L F A 5 , T R , N , N ~ N ~ , H l , H 2  
P I = 4 . % D A T A N (  1 .DO) 

V?DPAT=5.615*VT*VARBLE(IJ)/(AREA*SN) 
DO 55 I J z l p N L A Y E R  

PORE VOLUMES I N J E C T E D  I N T O  A PATTERN ARE CONVERTED I N T O  THOSE 
FROM AN EQUIVALENT DEVELOPED F I V E- S P O T  

D E I V A T I V E S  OF D I M E N S I O K L E S S  TRACER BREAKTHROUGH CURVE FROM A 
H3MOGENEOUS F I V E- S P O T  ARE COFlPUTED 

FSC 1 )=O. 

PVDIFF=(VPDBT(J)-VPD5)**2 
EX=-K*KP*KP*AALFA5*PVDIFF/(PI*PI*YSIGH(J)) 
I F ( E X . L T . - 1 5 0 . D O ) G O  TO 40 
FS(J+l)=DEXP(EX)/DSQRT(YSIGH(J))*(VPDBT(J)-VPDS)/YSIGH(J) 
GO TO 80 
F S ( J + l ) = O . D O  
CONTINUE 

DO 80 J = l r N  

C A L L  I N T G R L ( N , H l , F S , V O L l )  
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50 
90 

C 
C 
C 
C 
115 

C 
C 
C 
C 

55 

C 
C 
C 

C 
C 
C 
C 
C 

C 

30 

10 
6 

7 

DO 90 J=N,NM 
PVDIFF=(VPDBT(J)-VPD5)**2 
EX=-K*KP*KP*AALFA5*PVDIFF/(PI*PI*YSIGH(J)) 
IF(EX.LT.-150.DO)GO TO 5 0  
FS(J+l-N)=DEXP(EX)/DSQRT(YSIGH(J))*(VPDBT(J)-VPD5)/YSIGH(J) 
GO TO 90 
FS(J+l-N)=O.DO 
CONTINUE 
CALL INTGRL(N,H2,FS,VOL2) 
VOL=VOL 1tVOL2 
IF(DABS(VOL).GT.l.D-70)GO T O  115 
DGAFtA( IJ )=O. DO 
GO TO 55 

DERIVATIVES OF GAMA FUNCTION FOR A DEVELOPED FIVE-SPOT ARE 
CALCULATED 

DERIVATIVES OF GAMA FUNCTION ARE CONVERTED TO THOSE CORRESPONDING 
TO THE PATTERN 

DGAMA(IJ)=DGAMA(IJ)~(l-EABT5)/(1-EABTP)wFMwDSQRT(FP) 
CONTINUE 
RETURN 
END 

SUBROUTINE ADA(LP,NLAYER,NMAXA,NDATA,LENGTH,IPltApINC,T,ALF 
& ,ISEL) 

THIS SUBROUTINE SUPPLIES THE REQUIRED PARAMETRES FOR SUBROUTINE 
I’ V A R P R 0” 

IMPLICIT REAL*8 (A-H,O-Z) 
REAL*S K I K P  
DINENSION Y S I G H ( l l O ) ~ V P D B T ( 1 1 0 ~ ~ I N C ( 1 5 ~ 1 6 ~ ~ T ~ N D A T A ~ l ~  
DIMENSION A(NDATA,LENGTH),VTMAXP(l5)rC(15),DC(15)rALF(NLAYER) 
COMMON /PAR/YSIGH, VPDBT 
COMMON /PARK/ K,KP,VTMAXP,VPDMXP,EABT5,EABTP,FM,FP 
COMMON / F O R M / A E E A , S W , A A ? F A 5 ~ T R p N ~ N P l ~ H l ~ H 2  

IF(ISEL.EQ.1)GO TO 10 
IF(ISEL.EQ.2)GO T O  20 
DO 30 I=l,NDATA 
VT=T(Ip 1 )  
CALL DFUNC(ALF,VTtDC,NLAYER) 
DO 30 J=l,NLAYER 
A(I,NLAYER+l+J)=DC(J) 
GO TO 100 
DO 6 I=l,NLAYER 
INC(I,I)=l 
DO 7 I=l,NLAYER 
A L F ( I ) = A R E A * S W + V P D M X P / 5 . 6 1 5 / V T M A X P ( I )  
DO 9 I=l,NDATA 
VT=T(I, 1 )  
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9 

20 

12 
100 

CALL FUNC(ALFpVT,C,NLAYER) 
CALL DFUNC(ALF,VT,DC,NLAYER) 
DO 9 J=l,NLAYER 
A(I,J)=C(J) 
A(I,NLAYER+l+J)=DC(J) 
GO TO 100 
DO 12 I=l,NDATA 
VT=T<I,l) 
CALL FUNC(ALF,VT,C,NLAYER) 
DO 12 J=l,NLAYER 
A ( I p . J  1 =C ( J 1 
RET U R t i  
END 

C 
C 

SUBROUTINE INTGRL(N,H,F,VOL) 

50 

THIS SUBROUTINE COMPUTES VALUE OF A N  INTEGRAL USING SIMPSON'S 
R U L E  OF INTEGRATION. 
INPUT: N = NUMBER OF INTERVALS, AN EVEN INTEGER NUMBER 

H = INTERVAL SIZE 
F = VALUES OF FUNCTIONS CCMPUTED AT INTERVALS, AN ARRAY 

OUTPUT: VOL = VALUE OF THE INTEGRAL 

IMPLICIT REAL*S (A-H,O-Z) 
DIMENSIOIJ F(91) 
SUN 1 = O  
SUM?=O 
N 1 =N/2- 1 

SUN 1=SUP11 + F (  2*I ) 
SUNZ=SUP12 +F(2*1+1) 
SUP1 1=SUM1 +F(N) 
VOL = W 3 * (  F( 1 1 t F ( Nt 1 1 t4. *SUM 1 t2. *SUM2) 
RETURN 
END 

DO 50 I=l,Nl 

C 
C 
C 

SUBROUTINE GAUSS(UPPER,E,SIGMA) 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS SUBROUTINE COMPUTES THE rcYcl TERM IN THE MIXING LINE 
INTEGRAL. THE ROUTINE UTILIZES 8-POINT GAUSSIAN QUDRATURE METHOD 
APPLIED SUCCESSIVELY TO A SERIES OF BROKEN INTERVALS. 

INPUT: UPPER = UPPER LIMIT OF THE INTEGRAL 

OUTPUT: SIGMA = VALUE OF THE INTEGRAL WHICH CORRESPONDS TO 
E = PARAPIETERS OF THE INTEGRAL = TAN(SIGH)**2 

Y ( SI GH 1 

IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION W(15),X(15) 
F ( Y ) = D S Q R T ( Y / ( ( Y * Y + l . ) + ( Y * Y + E 2 ) * ( Y * Y + E ) ) )  
E2=E*E 
N=8 
X(1)=.18343464249565ODO 
X(2)=.525532409916329DO 
X(3)=.796664774136272DO 
X(4)=.960289856497536DO 
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C 
C 
C 
C 
C 

2 0  

10 

50 

30 

C 
C 

C 
C 
C 
C 
C 

X(5)=-X(1) 
X(6)=-X(2) 
X(7)=-X(3) 
X(81=-X(4) 
W(1)=.362683783378362DO 
W ( 2 1 = .3 1 37 0 6 6 4 5877887 DO 
W(3)=.222381034453374DO 
W(4)=.10122853629037600 
W(5)=W( 1 )  
W (6 )=N( 2 1 

W( 8)=W(4 1 
AINT=O .DO 

w( 7 j =w( 3) 

FOR VERY SMALL VALUES OF "E" (THE EXTREME STRRAMTUBES), 
T=O APPROACHES A SINGULARITY. THEREFORE, SMALL INTERVAL 
SIZES ARE CHOSEN AROUND THE LOWER LIMIT OF THE INTEGRAL. 

As0 .DO 
B=. 0 l*E 
1FCUPPER.LE.B) BZUPPER 
SUM=O . DO 
Y=.5DO+((B+A)+(B-A)~X(I)) 

VALUE=.5DOw(B-A)sSUM 
AJNT=AINT+VALUE 
IF(UPPER.EQ.B)GO T O  30 
A = B  
IF(B.GT.1.0) GO T O  50 

GO TO 20 
Bz5.DOsB 
GO T O  20 
SIGMA=(l.DO+E)**l.5*AINT 
RETUXN 
END 

DO 10 I=lrN 

SUM=SUMtW( I )*F(Y 1 

B=2. ODOSB 

SUBROUTINE KVALUECMtKM) 

THIS SUBROUTINE COMPUTES THE VALUES OF K(M) 
K(M)=COMPLEMENTARY COMPLETE ELLIPTIC INTEGRAL OF FIRST KIND 
M=INPUT ,KM=OUTPUT 

IMPLICIT REAL+8 (A-HpO-2) 
REALE8 M,Ml,KM 
Ml=l .DO-M 
A0=1.38629436112DO 
Al=.09666344259DO 

A3=.03742563713DO 
A4=.01451196212DO 
BO=.5DO 
BlS.12498593597DO 
B2=.06880248576DO 
83=.03328355346DO 
B4=.00441787012DO 
X=AOtAl*MltA2~ill**2+A3*Rl**3+A4*~l**4 
Y=BO+B1*M1+B2~M1+*2+B3*~1**3+B4*Ml**4 

A2=.03590092383DO 
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KM=X+Y*DLOG(l./Ml) 
RETURN 
END 

C 
C 

SUBROUTINE ELLEP(Y,Z,A) 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

15 

30 

THIS SUBROUTINE COMPUTES INCOPIPLETE ELLIPTIC INTEGRALN F(PH1,k) 
PHI IS THE ARGUMEl4T AND k IS THE MODULUS. THE MODULUS IS EQUAL 
TO THE, SQUAFE ROOT OF THE PARAMETER. 
INPUT: Y = ARGUMENT OF THE ELLIPTIC FUNCTION 

2 = PARAMETER OF THE ELLIPTIC INTEGRAL 
A = VALUE OF THE ELLIPTIC INTEGRAL 

THE ROUTINE USES LANDENS DECENDING TRANSFORMATION. FOR REFERENCE 
SEE ABRAMOWITZ, PAGE 

IMPLICIT REAL*S (A-HvO-2) 
REAL*S K,Kl,KP 
TOL=1 .D-4 
PI=4.*DATAN(l.D0) 
W=1 .DO 
x = Y  
K=DSQRT(Z) 
Kl=P.SDSQRT(K)/(l+K) 
X=.5+(X+DARSIN(K*DSIN(X))) 
QE=DARSIN(Kl) 
QE=QEs18D./PI 
w = 2 . w / (  1 + K )  
IF((90.-QE).LE.TOL)GO T O  30 
K=K1 
GO T O  15 
A=WsDLOG(DTAN(PI/4+X/2)) 
RETURN 
END 

C 
SUEROUTINE VARPRO ( L ,  NL, N, NMAX, LPP2, IV, T, Y, W ,  ADA, A, 

X IPRINT, ALF, BETA, IERR) 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

GIVEN A SET OF N OBSERVATIONS, CONSISTING OF VALUES Y(1)r 
Y(2), ... t Y(N) OF A DEPENDENT VARIABLE Y, WHERE Y(1) 
CORRESPONDS TO THE IV INDEPENDENT VARIABLE(S1 T(I,l), T ( I , 2 ) ,  
..., T(I,IV), VARPEO ATTEMPTS TO COMPUTE A WEIGHTED LEAST 
SQUARES FIT TO A FUNCTION ETA (THE 'MODEL') NtiICH IS A LINEAR 
COMB I N AT I ON 

L 
ETA(ALF, BETA; T )  = SUM BETA * PHI CALF; T) + PHI (ALF; 1) 

J = 1  J J L +  1 

OF NONLINEAR FUNCTIONS PHICJ) (E.G., A SUN OF EXPONENTIALS AND/ 
OR GAUSSIANS). THAT IS, DETERMINE THE LINEAR PARAMETERS 
BETACJ) AND THE VECTOR OF NONLINEAR PARAMETERS ALF BY MINIMIZ- 
ING 

2 N 2 
NOKM(RES1DUAL) = SUN W * ( Y  - ETACALF, BETA; T 1) . 

1=1 I I I 

THE (L+l)-ST TERN IS OPTIONAL, AND IS USED WHEN IT IS DESIRED 
TO FIX ONE OR MORE OF THE BETA'S (RATHER THAN LET THEM B E  
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

DETERMINED). VARPRO REQUIRES F I R S T  D E R I V A T I V E S  OF THE P H I ' S .  

NOTES : 

A )  THE ABOVE PROBLEM I S  ALSO REFERRED TO AS ' M U L T I P L E  

VARPRO RETURNS THE RESIDUALS, THE COVARIANCE M A T R I X  OF THE 
L I N E A R  AND NOIILINFAR PARAPIETERS, AND THE ESTIPiATED VARIANCE OF 
THE OBSERVATIONS. 

NONLINEAR REGRESSION'. FOR USE I N  S T A T I S T I C A L  E S T I M A T I O N ,  

B )  'AN ETA OF THE ABOVE FORM I S  CALLED 'SEPARABLE' .  THE 

AND U S I N G  P H I ( L + l ) .  
CASE OF A NONSEPARABLE ETA CAN B E  HANDLED BY S E T T I N G  L = 0 

C )  VARPRO MAY ALSO B E  USED TO SOLVE L I N E A R  LEAST SQUARES 
PROBLEMS ( I N  THAT CASE NO I T E R A T I O N S  ARE PERFORMED). SET 
NL = 0 .  

D )  THE M A I N  ADVANTAGE OF VARPRO OVER OTHER LEAST SQUARES 
PROGRAPlS I S  THAT NO I N I T I A L  GUESSES ARE NEEDED FOR THE L I N E A R  

OFTEN LEADS TO FASTER CONVERGENCE. 
PARAMETERS. NOT ONLY DOES T H I S  M A K E  I T  E A S I E R  TO USE, BUT I T  

D E S C R I P T I O N  O F  PARAMETERS 

L 
NL 
N 

I V  
T 

Y 
W 

I N C  

HMAX 

L P P 2  

A 

NUMBER OF L I N E A R  PARAMETERS BETA (MUST B E  .GE. 0). 
NUFIBER O F  NONLINEAR F'ARAMETERS A L F  (MUST B E  .GE. 0). 
NUMBER O F  OBSERVATIONS. N MUST B E  GREATER THAN 1 + NL 

NUrlSER OF PARAPIETERS) . 
NUllBER O F  INOEt'ENDEKT VARIABLES T .  

( I . E .  t THE HLPIBER O F  ODSERVhTIONS MUST EXCEED THE 

REAL N BY I V  M A T R I X  OF INDEPENDENT VARIABLES.  T ( I t  J )  
COHTAINS THE VALUE OF THE I - T H  OBSERVATION OF THE J- T H  
I NDEF E N  D Et: T V AI: I A EL E. 

N-VECTOR OF NONNEGATIVE WEIGHTS. S H O U L D  B E  SET TO 1 ' s  
I F  LJEIGHTS ARE NOT DESIRED.  I F  VAEIANCES OF THE 

TO l . / V A R I A N C E ( I ) .  
NL X ( L + 1 )  INTEGER I N C I D E N C E  M A T R I X .  INCCK, J )  = 1 I F  
NON-LINEAR PARAMETER ALFCK) APPEARS I N  THE J- TH 

N-VECTOR O F  OBSERVATIONS, ONE FOR EACH ROW OF T .  

I N D I V I D U A L  O D S C R V A T I O ! 4 S  ARE KNOldti, W (  I) SHOULD B E  SET 

FUNCTION P H I C J ) .  ( T H E  PROGRAM SETS A L L  OTHER INCCK, J )  
TO ZERO.) I F  P H I ( L + l )  I S  INCLUDED I N  THE MODEL, 
THE APPROPRIATE ELEMENTS OF THE ( L + O - S T  COLUMN SHOULD 
B E  SET TO 1 ' s .  I N C  I S  NOT NEEDED WHEN L 0 OR NL = 0 .  
CAUTION: THE DECLARED ROLJ DIMENSION OF I N C  ( I N  ADA) 
MUST CURRENTLY B E  SET TO 1 2 .  SEE ' R E S T R I C T I O N S '  BELOW. 
THE DECLARED ROW DIMENSION OF THE MATRICES A AND T. 
I T  MUST B E  AT LEAST MAXCN, 2 * N L + 3 ) .  
L+P+2,  WHERE P I S  THE NUflBER OF ONES I N  THE M A T R I X  I N C .  
THE DECLARED COLUMN DIMENSION OF A r iusi BE A T  L E A S T  
LPP2.  ( I F  L = 0 ,  SET L P P 2  = NL+2.  I F  NL = 0 ,  SET LPPZ 
L t 2 . 1  
REAL M A T R I X  OF S I Z E  MAX(N, 2*NL+3)  BY L+P+2.  ON I N P U T  
I T  CONTAINS THE P H I ( J ) ' S  AND T H E I R  D E R I V A T I V E S  ( S E E  

A W I L L  CONTAIN AN APFROXIPlATION TO THE (WEIGHTED) 
BELOW). ON OUTPUT, THE F I R S T  L+NL ROWS AND COLUMNS OF 

COVARIANCE M A T R I X  AT THE SOLUTION (THE F I R S T  L ROWS 
CORRESPOND TO THE L I N E A R  PARAMETERS, THE LAST NL TO THE 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

NONLINEAR ONES), COLUMN L + N L + l  W I L L  CONTAIN THE 
WEIGHTED RESIDUALS CY - E T A ) ,  A ( 1 ,  L + N L + 2 )  M I L L  CONTAIN 
THE (EUCLIDEAN)  NORM OF THE IJEIGHTED RESIDUAL,  AND 
A ( 2 r  L + N L + 2 )  W I L L  CONTAIN AN E S T I N A T E  OF THE (WEIGHTED) 
VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL)**2/  
( N  - L - N L ) .  

I P R I N T  I N P U T  INTEGER CONTROLLING P R I N T E D  OUTPUT. I F  I P R I N T  I S  
P O S I T I V E ,  THE NOHLINEAR PARAMETERS, THE NORM OF THE 
RESIDUAL,  AND THE MARQUARDT PARANETER W I L L  B E  OUTPUT 
EVERY I P R I N T - T H  I T E R A T I O N  (AND I N I T I A L L Y ,  AND AT THE 
F I N A L  I T E R A T I O N ) .  THE L I N E A R  PARAMETERS W I L L  B E  
P R I N T E D  AT THE F I N A L  I T E R A T I O N .  ANY ERROR MESSAGES 
W I L L  ALSO B E  PRINTED.  ( I P R I N T  = 1 I S  RECOMMENDED AT 
F I R S T . )  I F  I P R I N T  = 0 ,  ONLY THE F I N A L  Q U A N T I T I E S  W I L L  
B E  PRINTED,  AS WELL AS ANY ERROR MESSAGES. I F  I P R I N T  = 
- 1  t N O  P R I N T I N G  W I L L  B E  DONE. THE USER I S  THEN 
RESPONSIBLE FOR CHECKING THE PARAMETER I E R R  FOR ERRORS. 

( I N P U T ) .  ON OUTFUT I T  W I L L  CONTAIN OPTIMAL VALUES OF 
THE NONLINEAR PARAMETERS. 

A L F  NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS 

BETA L-VECTOR OF L I N E A R  PARAMETERS (OUTPUT ONLY) .  
I E R R  INTEGER ERROR FLAG (OUTPUT) :  

.GT. 0 - SUCCESSFUL CONVERGENCE, I E R R  I S  THE NUMBER OF 

- 1  TERMINATED FOR TOO NANY I T E R A T I O N S .  
- 2  TERMINATED FOX I L L - C O N D I T I O N I N G  (MAEQUARDT 

I T E R A T I O K S  TAKEN. 

PARANETER TOO LARGE.) ALSO SEE I E R R  = -8 BELOW. 
-4 I N P U T  ERROR I N  PARAllETER N, L ,  NL, LPFZ,  OR NMAX. 
-3 I t i C  M A T R I X  IP i fROFERLY S P E C I F I E D ,  OR P DISPtG!?EES 

WITH LPl"2. 
-6 A LI'EIGHT L!A5 NEGATIVE.  
- 7  'COHSTANT' COLUMN W A S  CO:lFUTED MOiZE THAN ONCE. 
-S CATASTROr'WIC F A I L U R E  - A COLLIMN OF THE A M A T R I X  HAS 

BECOYE ZERO. SEE 'CONVERGENCE F A I L U R E S '  BELOLJ. 

( I F  I E R R  .LE.  -4, THE LIIZEAR PARAMETERS, COVARIANCE 
MATRIX,  ETC. ARE NOT RETURNED.) 

SUBROUTINES REQUIRED 

N I N E  SUBROUTINES, DFA, ORFACt, ORFACP, BACSUBt POSTPR, COVI 
XNORM, I N I T ,  AND VARERR ARE PROVIDED. I N  A D D I T I O N ,  THE USER 
MUST PROVIDE A SUBROUTINE (CORRESPONDING TO THE ARGUPlENT ADA) 
WHICH, G I V E N  ALF,  W I L L  EVALUATE THE FUNCTIONS P H I C J )  AND T H E I R  

T ( I > .  T H I S  ROUTINE MUST B E  DECLARED 'EXTERNAL'  I N  THE C A L L I N G  
PROGRAM. I T S  C A L L I N G  SEQUENCE I S  

P A R T I A L  D E R I V A T I V E S  D P H I ( J ) / D  A L F ( K ) ,  AT THE SAMPLE P O I N T S  

SUBROUTINE ADA ( L + 1 ,  NL, N, NMAXt LPPP, I V t  A ,  INC,  T ,  ALF, 
I S E L )  

THE USER SHOULD MODIFY THE EXAMPLE SUBROUTINE 'ADA'  ( G I V E N  
ELSEWHERE) FOR H I S  OWN FUNCTIONS. 

THE VECTOR SAMPLED FUNCTIONS P H I C J )  SHOULD B E  STORED I N  THE 
F I R S T  N ROWS AND F I R S T  L + 1  COLUMNS OF THE M A T R I X  A, 1 . E . t  
A ( I ,  J )  SHOULD COKTAIN P H I C J ,  ALF; T C I t l ) ,  T ( I , 2 ) ,  p 

T ( I , I V ) ) ,  I = 1, ..., N; J = 1 ,  ... , L (OR L + 1 ) .  THE ( L + l ) - S T  
COLUNN OF A CONTAINS P H I ( L + l )  I F  P H I ( L + l )  IS I N  THE MODEL, 
OTHERLJISE I T  I S  RESERVED FOR WORKSPACE. THE 'CONSTANT' FUNC- 
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C 
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C 
C 
C 
C 
C 
C 

r 
b 

T I O N S  (THESE ARE FUNCTIONS P H I C J )  WHICH DO NOT DEPEND UPON ANY 

F I R S T ,  STARTING I N  COLUFIN 1. THE COLUiiN N-VECTORS OF NONZERO 
P A R T I A L  D E R I V A T I V E S  D P H I C J )  D ALFCK) SHOULD B E  STORED 
SEQUENTIALLY I N  THE WATRIX A I N  COLUrlNS L + 2  THROUGH L + P + l .  
THE ORDER IS 

NONLINEAR PARAMETERS ALF, E . G .  T ( I ) * S J )  ( I F  ANY) MUST APPEAR 

O M I T T I N G  COLUMNS 
P H I  ( L +  1 )  COLUBNS 

OF D E R I V A T I V E S  WHICH ARE ZERO, AND O M I T T I N G  
I F  P H I ( L + O  I S  NOT I N  THE MODEL. NOTE THAT 

THE L I N E A R  PARAMETERS BETA ARE NOT USED I N  THE M A T R I X  A .  
COLUMN L + P + 2  I S  RESERVED FOR WORKSPACE. 

THE CODING OF ADA SHOULD B E  ARRANGED SO THAT: 

I S E L  = 1 (WHICH OCCURS THE F I R S T  T I N E  ADA IS CALLED) MEANS: 
A .  F I L L  I N  THE I N C I D E R C E  M A T R I X  I N C  
B. STGRE ANY CONSTANT P H I ' S  I N  A .  
C .  CORPUTE NONCONSTANT P H I  ' S AND P A R T I A L  D E R I V A-  

T I V E S .  
= 2 MEANS COMPUTE ONLY TI!E NONCONSTANT FUNCTIONS P H I  
= 3 MEANS COXPUTE ONLY T t iE  D E R I V A T I V E S  

(WHEN THE PROBLEM IS L I N E A R  ( N L  = 0) ONLY ISEL = 1 I S  USED1 AND 
D E E I V A T I V E S  ARE NOT NEEDED. 1 

RESTRICT 1 ONS 

THE SUBROUTINES DPA, I t t I T  (AND ADA) CONTAIN THE LOCALLY 
DIMENSIONED PlATRIX I E I C ,  KHDSE DIMEI IS IOI IS  ARE CURRENTLY SET FOE 
MAXIMA OF L t l  = 1 6 ,  NL = 15. T l iEY KUST B E  CHANGED FOR LARGER 
PROBLEMS. DATA PLACED I N  ARRAY A IS OVERWCITTEN ( 'DESTROYED' ) .  
DATA PLACED I N  ARRAYS T, Y AND I N C  IS LEFT I N T A C T .  THE PROGRAM 
RUNS I N  WATFIV, EXCEPT WHEN L = 0 OR NL = 0 .  

I T  I S  ASSUMED THAT THE M A T R I X  P H I ( J 1  ALF;  T ( 1 ) )  HAS FULL 
COLUMN RANK. T H I S  MEANS THAT THE F I R S T  L COLUMNS OF THE M A T R I X  
A MUST B E  L I N E A R L Y  INDEPENDENT. 

OPTIONAL NOTE: AS W I L L  B E  NOTED FROM THE SAMPLE SUBPROGRAM 
ADA, THE D E R I V A T I V E S  D P H I ( J ) / D  ALFCK) ( I S E L  3 )  MUST B E  
COrlPUTED INDEPENDENTLY OF THE FUNCTIONS P H I C J )  ( I S E L  = 21, 
S I N C E  THE FUNCTION VALUES ARE OVERldRITTEN AFTER ADA I S  CALLED 

S I B L E  EXPENSE OF SOME RECOMPUTATION ( S I N C E  THE FUNCTIONS AND 

REDUCE THE AMOUNT OF COMPUTATION AT THE EXPENSE OF SOME 

W I T H  I S E L  = 2. T H I S  IS DONE TO M I N I M I Z E  S'IORAGE, AT THE POS- 

DERIVATIVES FREQUENTLY H A V E  SOME Cor i r ioN SUBEXPRESSIONS). T O  

STORAGE, CREATE A M A T R I X  B OF DIMENSION NMAX BY L + t  IN ADA, AND 
AFTER THE COMPUTATION OF THE P H I ' S  ( I S E L  = 21,  COPY THE VALUES 
I N T O  B. THESE VALUES CAN THEN B E  USED TO CALCULATE THE D E R I V-  
A T I V E S  ( I S E L  = 3 ) .  ( T H I S  MAKES USE OF THE FACT THAT WHEN A 

ALFS ARE THE SAME.) 
CALL TO ADA W I T H  ISEL = 3 FOLLOWS A CALL W I T H  I S E L  = 2 ,  THE 
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TO CONVERT TO OTHER MACHINES, CHANGE THE OUTPUT U N I T  I N  THE 
DATA STATEMENTS I N  VARPRO, DPA, POSTPR, AND VARERR. THE 
PROGRAM HAS BEEN CHECKED FOR P O R T A B I L I T Y  BY THE BELL LABS PFORT 

MAY BE D E S I R A B L E  TO CONVERT TO S I N G L E  P R E C I S I O N .  T H I S  CAN DE 
DONE BY CHANGING ( A )  THE DECLARATIONS 'DOUBLE P R E C I S I O N '  TO 
'REAL ' ,  ( B )  THE PATTERN ' . D '  TO ' . E '  I N  THE 'DATA '  STATEMENT I N  

V E R I F I E R .  FOR MACHINES MITHOUT DOUBLE P R E C I S I O N  HARDWARE, I T  

VARPRO, ( C )  DSIGN, DSQRT AND DABS TO SIGN,  SQRT AND ABS, 
RESPECTIVELY, AND ( D )  DEXP TO EXP I N  THE SAMPLE PROGRAMS ONLY. 

NOTE ON INTERPRETATION OF COVARIANCE M A T R I X  

FOR USE I N  S T A T I S T I C A L  E S T I M A T I O N  ( M U L T I P L E  NONLINEAR 
REGRESSION) VARPRO RETURNS THE COVARIANCE M A T R I X  OF THE L I N E A R  
AND NONLINEAR PARAMETERS. T H I S  M A T R I X  W I L L  BE USEFUL ONLY I F  

ERRORS I N  THE OBSERVATIONS ARE INDEPENDENT AND NORMALLY D I S T R I -  
THE USUAL S T A T I S T I C A L  ASSUMPTIONS HOLD: AFTER WEIGHTING, THE 

BUTED, W I T H  MEAN ZERO AND THE SAME VARIANCE. I F  THE ERRORS DO 
NOT HAVE MEAN ZERO (OR ARE UNKNO!.!N), THE PROGRAM N I L L  I S S U E  A 
WARNING MESSAGE (UNLESS I P R I N T  . L T .  0 )  AND THE COVARIANCE 

ALTERED TO INCLUDE A CONSTANT TERM (SET P H I ( 1 )  = 1 . ) .  
M A T R I X  W I L L  NOT B E  V A L I D .  I N  THAT CASE, THE MODEL SHOULD B E  

NOTE ALSO THAT, I N  ORDER FOR T t iE  USUAL ASSUMPTIONS TO HOLD, 
THE OBSERVATIONS MUST ALL B E  O F  APPROXIMATELY THE SANE 
MAGNITUDE ( I N  THE ABSENCE OF INFORMATION ABOUT THE ERROR OF 
EACH OBSERVATION) , OTItEi?L*JISE T l l E  VARIANCES W I L L  NOT B E  THE 
SAME. I F  THE OBSERVATIONS ARE NOT THE 5AME S I Z E ,  T H I S  CAN B E  
CURED BY WEIGHTING. 

I F  T t iE  USUAL ASSUMFTIONS HOLD, THE SQUARE ROOTS OF THE 
DIAGONALS O F  THE COVARIANCE M A T R I X  A G I V E  THE STANDARD ERROR 
S ( 1 )  OF EACH PARAllETER. D I V I D I t j G  A ( I , J )  BY S ( I ) * S ( J )  Y I E L D S  
THE CORRELATION M A T R I X  O F  THE PARAIIETERS. P R I I j C I P A L  AXES AND 
CONFIDENCE E L L I P S O I D S  CAN BE OBTAINED BY PERFORMING AN EIGEH-  
VALUEt'EIGENVECIOR ANALYSIS ON A.  0I:E StiOULD CALL THE EISPACK 

PROGRAM). 
PROGRAM TRED2, FOLLOLdED BY TQL2 (OR USE THE E I S P A C  CONTROL 

CONVERGENCE F A I L U R E S  

I F  CONVERGENCE F A I L U R E S  OCCUR, F I R S T  CHECK FOR INCORRECT 
CODING OF THE SUBROUTINE ADA. CHECK E S P E C I A L L Y  THE ACTION OF 
I S E L ,  AtiD THE COMPUTATION OF THE P A R T I A L  D E R I V A T I V E S .  I F  THESE 

I S  CODED CORRECTLY, AND I F  ERROR RETURNS I E R R  = - 2  OR -8 

MAY B E  CAUSED BY SEVERAL THINGS. ONE I S  POOR S C A L I N G  OF THE 
PARAMETERS; ANOTHER I S  AN UNFORTUNATE I N I T I A L  GUESS FOR THE 

ARE CORRECT, TRY SEVERAL STARTING GUESSES FOR ALF.  I F  ADA 

PERSISTENTLY OCCUR, T H I S  I S  A S I G N  OF I L L- C O N D I T I O N I N G ,  WHICH 

PARAMETERS, S T I L L  ANOTHER IS A POOR CHOICE OF THE MODEL. 

ALGOR I THM 

THE RESIDUAL R IS M O D I F I E D  TO INCORPORATE, FOR ANY F I X E D  
ALF,  THE OPTIMAL L I N E A R  PARAMETERS FOR THAT ALF.  I T  I S  THEN 
P O S S I B L E  TO M I N I M I Z E  ONLY ON THE NONLINEAR PARAMETERS. AFTER 
THE OPTIMAL VALUES OF THE NONLINEAR PARAMETERS HAVE BEEN DETER- 

SQUARES TECHNIQUES (SEE REF. 1 ) .  
MINED, THE L I N E A R  PARAMETERS CAN L E  RECOVERED BY L I N E A R  LEAST 
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T t i E  M I N I M I Z A T I O N  I S  BY A M O D I F I C A T I O N  OF OSBORNE'S (REF.  3) 
M O D I F I C A T I O N  OF THE LEVENBERG-MARQUARDT ALGORITHM. I N S T E A D  OF 
SOLVING THE NORMAL EQUATIONS W I T H  M A T R I X  

T 2 
( J  J + NU * D), WHERE J = D ( E T A ) / D ( A L F ) ,  

STABLE ORTHOGONAL (HOUSEHOLDER) REFLECTIONS ARE USED ON A 
M O D I F I C A T I O N  OF THE M A T R I X  

( J >  
(------ 

( NU*D 1 
1 ,  

WHERE D I S  A DIAGONAL M A T R I X  C O N S I S T I N G  OF THE LENGTHS OF THE 
COLUMNS OF J. T H I S  MARQUARDT S T A B I L I Z A T I O N  ALLOWS THE ROUTINE 
TO RECOVER FROM SOME RANK D E F I C I E N C I E S  I N  THE JACOBIAN.  
OSBORNE'S E M P I R I C A L  STRATEGY FOR CHOOSING THE MARQUARDT PARAM- 
ETER HAS PROVEN REASONABLY SUCCESSFUL I N  PRACTICE.  (GAUSS- 
NENTON WITH STEP CONTROL CAN BE ODTAINED BY MAKING THE CHANGE 
I N D I C A T E D  BEFORE THE INSTRUCTION LABELED 5 ) .  A D E S C R I P T I O N  CAN 
BE FOUND I N  REF. ( 3 1 1  AND A FLOW CHART I N  ( 2 1 ,  P. 22. 

FOR REFERENCE, SEE 

1 .  

2. 
3 .  

4. 

5. 

6 .  

7.  

GENE H. GOLUB AND V .  PEREYRA, 'THE D I F F E R E N T I A T I O N  OF 
PSEUDO- INVERSES AND NONLINEAR LEAST SQUARES PROBLEMS WHOSE 

( 1 9 7 3 ) .  
VARIABLES SEPARATE,'  S I A M  J.  NUMER. ANAL. 1 0 ,  413-432 

------ , SAME T I T L E ,  STANFORD C.S. REPORT 7 2 - 2 6 1 ,  FEB.  1 9 7 2 .  
OSBORNE, FIICHAEL R., ' S O K E  ASFECTS OF RON- LINEAE LEAST 
SQUARES CALCULATIONS, '  I N  LOOTSrlA, ED., 'KUNERICAL METHODS 
FOE N o l i- L I N E A R  O f T I M I Z A T I O N , '  ACADEr l IC PRESS, LONDON, 1 9 7 2 .  

JECTION ALGORITIiFl  FOR KOt iLINEAR LEAST SQUARES P R O L L E N S ~  ' 
K R O G H ,  FRED, ' E F F I C I E N T  I r lPLEMENTATION OF A V A R I A B L E  FRO- 

coriri. A C M  1 7 ,  PP. 1 6 7 - 1 6 9  ( M A R C H ,  1 9 7 4 ) .  
KAUFMAN, L I N D A ,  ' A  V A R I A B L E  PROJECTION METHOD FOR SOLVING 
SEPARABLE NONLINEAR LEAST SQUARES PROBLEMS', B . 1 . T .  1 5 ,  
4 9- 5 7  ( 1 9 7 5 ) .  
DRAPER, N. t AND SMITH, H. t A P P L I E D  REGRESSION ANALYSIS,  
WILEY,  N.Y., 1 9 6 6  (FOR S T A T I S T I C A L  INFORMATION ONLY).  
C .  LAlJSON AND R .  HANSON, SOLVING LEAST SQUARES PROBLEMS, 
PRENTICE- HALL,  ENGLEWOOD C L I F F S ,  N .  J., 1 9 7 4 .  

JOHN BOLSTAD 

STANFORD U N I V E R S I T Y  
COXPUTER SCIENCE DEPT., SERRA HOUSE 

JANUARY, 1 9 7 7  

.................................................................. 
DOUBLE P R E C I S I O N  A(NMAX, L P P Z ) ,  BETACL),  A L F ( N L ) ,  TCNMAX, I V ) ,  

2 W(N), Y ( N ) ,  ACUM, EPS1, GNSTEP, NU, PRJRES, R, RNEW, XNORM 
INTEGER B l t  OUTPUT 
LOGICAL S K I P  
EXTERNAL ADA 
DATA E P S l  I 1 . D - 6 1 ,  I T M A X  1281, OUTPUT / 6 /  

THE FOLLOWING TKO PARAMETERS ARE USED I N  THE CONVERGENCE 
TEST: E P S l  I S  AN ABSOLUTE AND R E L A T I V E  TOLERANCE FOR THE 
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C 
C JACOBIAN OF THE V A R I A B L E  PROJECTION FUNCTIONAL.  
C I T M A X  I S  THE MAXIMUM NUFiDER OF FUNCTION AND D E R I V A T I V E  
C EVALUATIONS ALLOWED. CAUTION: E P S l  MUST NOT B E  
C SET SMALLER THAN 1 0  T I M E S  THE U N I T  ROUND-OFF OF THE MACHINE. 
C 
c---------------------------'-"""""-------------------------- 
CALL L I B  MONITOR FROM VARPRO, MAINTENANCE NUMBER 5 0 9 ,  DATE 77178 
C**fPLEASE DON'T REMOVE OR CHANGE THE ABOVE CALL.  I T  I S  YOUR ONLY 
C*S*PROTECTION AGAINST YOUR U S I N G  AN OUT-OF-DATE OR INCORRECT 

NORM OF THE PROJECTION OF THE RESIDUAL ONTO THE RANGE OF THE 

C***VERSION OF THE ROUTINE. THE L I B R A R Y  MONITOR REMOVES T H I S  CALL,  
C***SO I T  ONLY OCCURS ONCE, ON THE F I R S T  ENTRY TO T H I S  ROUTINE. 
c----------------------------------------------------------------- 

I E R R  = 1 
I T E R  = 0 
L P 1  = L + 1 
B l = L + 2  
L N L 2  = L + NL + 2 
N L P 1  = NL + 1 
S K I P  = .FALSE. 
K O D I T  = I P R I N T  
I F  ( I P R I N T  .LE.  0 )  MODIT = I T M A X  + 2 
NU = 0 .  

NU = 1 .  
C I F  GAUSS-NEWTON I S  DESIRED REMOVE THE NEXT STATEMENT. 

P b 

C B E G I N  OUTER I T E R A T I O N  LOOP TO UPDATE A L F .  
C CALCULATE THE N O R M  OF 7HE RESIDUAL AND THE D E R I V A T I V E  OF 
C THE M O D I F I E D  RESIDUAL THE F I R S T  T IME,  BUT ONLY THE 
C D E R I V A T I V E  I N  SUBSEQUENT I T E R A T I O N S .  
C 

5 CALL DPA ( L ,  NL ,  N t  NMAX, LPPZ,  X V t  T, Y t  W, ALF,  ADA, I E R R ,  
X I P R I N T ,  A ,  BETA, A ( 1 ,  L P l ) ,  R )  

GNSTEP = 1 . 0  
I T E R l N  = 0 
I F  ( I T E R  .GT. 0 )  GO T O  1 0  

I F  ( N L  .EQ. 0 )  GO TO 90 
I F  ( I E R R  .NE. 1 )  GO TO 9 9  

I F  ( I P R I N T  .LE.  0) GO TO 10  
C 

WRITE (OUTPUT, 2 0 7 )  XTERIN,  R 
WRITE (OUTPUT,  200) riu 

C B E G I N  TWO-STAGE ORTHOGONAL F A C T O R I Z A T I O N  
1 0  CALL O R F A C l ( N L P 1 r  NMAXt Np L ,  I P R I N T ,  A c t ,  B 1 ) ,  PRJRESt  I E R R )  

I F  ( I E R R  . L T .  0 )  GO TO 9 9  
I E R R  = 2 
I F  (NU .EQ. 0 . )  GO TO 30 

C 
C B E G I N  INNER I T E R A T I O N  LOOP FOR GENERATING NEW A L F  AND 
C T E S T I N G  I T  FOR ACCEPTANCE. 
C 

C 
C SOLVE A NL  X NL UFPER TRIANGULAR SYSTEM FOR DELTA- ALF.  
C THE TRANSFORMED RESIDUAL ( I N  COL. LNLP DF A )  I S  OVER- 
C WRITTEN BY THE RESULT DELTA- ALF.  
C 

25 CALL ORFAC2CNLP1, NMAX, NU, A ( l ,  B l ) )  

3 0  CALL BACSUB (NMAX, N L I  A ( l r  B l ) ,  A ( 1 t  L N L 2 ) )  
DO 35 K = t ,  NL 

35 A(K, 8 1 )  = A L F ( K )  + A(K,  L N L 2 )  
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C 
C 
C 
C 
C 

4 0  
X 

C 
4 5  

5 0  
C 
C 
C 

C 

55 

C 
6 0  

C 
C 

6 5  

70 

C 
C 
C 

NEW A L F ( K )  = ALFCK) + DELTA ALFCK) 

STEP TO THE NEW P O I N T  NE14 ALF, AND COMPUTE THE NEW 
NORM OF RESIDUAL.  NEW A L F  I S  STORED I N  COLUMN B 1  OF A .  

CALL DPA ( L j  NL, N, NMAX, LPP2,  I V t  T, Y ,  W s  A t 1 8  B l ) ,  ADA, 
I E R R t  I P R I N T j  A I  BETA, A ( l r  L P 1 ) t  RNEW) 
I F  ( I E R R  .NE. 2 )  GO TO 9 9  
I T E R  = I T E R  + 1 
I T E R I N  = I T E R I N  + 1 

I F  ( S K I P )  GO TO 4 5  
S K I P  = MOD(ITER, MODIT)  .NE. 0 

WRITE (OUTPUT, 2 0 3 )  I T E R  
WRITE (OUTPUT, 2 1 6 )  ( A ( K ,  B l ) ,  K = 1, N L )  
WRITE (OUTPUT, 207 )  I T E R I N ,  RNEW 

I F  ( I T E R  .LT .  I T M A X )  GO TO 50 
I E R R  = - 1  

GI) TO 9 5  
CALL VARERR ( I P R I N T ,  I E R K t  1 )  

I F  (RNEW - R . L T .  EPS1*(R + 1.DO)) GO TO 75 

RETRACT THE STEP JUST TAKEN 

I F  (NU .NE. 0 . )  GO TO 6 0  

GNSTEP = O.S*GNSTEP 
I F  (GtiSTEP . L T .  EPS1)  GO TO 9 5  

GAUSS-NEWTON OPTION OI iLY 

DO 55 K = 1, NL 
A(K ,  B 1 )  = ALFCK) + GNSTEP*A(K, L N L Z )  

GO T O  4 0  
ENLARGE THE KAAQUARDT PARAMETER 

NU = 1 .5 fNU 
I F  ( .NOT.  S K I P )  WRITE (OUTPUT, 2 0 6 )  NU 
I F  (NU . L E .  1 0 0 . 1  GO TO 6 5  

I E R R  = - 2  

GO TO 95 
CALL VARERR ( I P R I N T ,  I E K R ,  1 )  

R E T R I E V E  UPPER TRIANGULAR FORM 
AND RESIDUAL OF F I R S T  STAGE. 

DO 70 K = 19 NL 
KSUB = L P 1  + K 
DO 70 J = K t  N L P l  

JSUB = L P 1  + J 
JSUB = N L P l  + J 
A(K,  JSUB) = A ( I S U B ,  KSUB) 

GO TO 25 
END OF INNER I T E R A T I O N  LOOP 

ACCEPT THE STEP JUST TAKEN 

75 R = RNEW 
DO 80 K = 1 ,  NL 

80 ALFCK) = A(K,  B 1 )  
C CALC. NORMCDELTA ALF) /NORM(ALF)  

C 
C I F  I T E R I N  I S  GREATER THAN 1, A STEP WAS RETRACTED DURING 
C T H I S  OUTER I T E R A T I O N .  
C 

ACUM = GNSTEP*XNORM(NL, A c t ,  LNL2)) /XNORM(NL,  A L F )  

I F  ( I T E R I N  .EQ. 1 )  NU = 0.5*NU 
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I F  (SKIP) GO T O  85 
WR I T E  (OUTPUT, 200) NU 
W R I T E  (OUTPUT, 208) ACUM 

85 IERR = 3 
IF (PRJRES .GT.  EPSl*(R + 1.DO)) GO TO 5 

C END OF OUTER ITERATION LOOP 
C 
C CALCULATE FINAL QUANTITIES -- LINEAR PARAMETERS, RESIDUALS, 
C COVARIANCE MATRIX, ETC. 
C 

9 0  IERR = ITER 
95 I F  (NL .GT. 0) CALL DPACL, NL, Nt NMAX, LPP2, I V ,  T, Y ,  W ,  ALF, 

X ADA, 4 ,  IPRINT, A, BETA, A C 1 ,  LPl), R) 
CALL POSTPRCL, NL, N ,  NMAX, LNL2, EPSl, R, IPRINT, ALF, W ,  A, 

X A(1, LPl), BETA, IERR) 
99 RETURN 

C 
2 0 0  FORMAT (9H NU = t  E15.7) 
2 0 3  FOEMAT (12HO ITERATION, 14, 2 4 H  NONLINEAR PARAMETERS) 
206 FORflAT (25H STEP RETRACTED, NU =, E15.7) 
2 0 7  FORMAT (IHO, 15, 20H NORM OF RESIDUAL = p  E15.7) 
2 0 8  FORMAT (34H NORMCDELTA-ALF) / NORMCALF) =, E12.3) 
216 FORMAT (lHO, 7E15.7) 

END 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

C 

SUBEOUTINE ORFAClCNLPl, NMAX, N, L, IPRINT, B, FRJRES, IERR) 

STAGE 1:  HOUSEI1OLDER REDUCTION O F  

( 1 ( DE'. R3 1 NL 
( DR . R 2  1 TO (----. -- 1, 
( ) ( G . R4 1 N-L-NL 

N L 1 NL 1 

W H E R E  DR = -D(Q2)sY IS THE DERIVATIVE O F  T H E  MCDIFIED RESIDUAL 
PRODUCED BY DPA, R 2  I S  T H E  TRANSFORPIED RESIDUAL FROM DPA, A N D  
DR' I S  IN UPPER TRIANGULAR FORI.1 (AS IN REF. (21, P. 18). 
DR I S  STORED IN ROIdS L + l  T O N A N D  COLU[lNS L+2 TO L + NL + 1 O F  
T H E  MATRIX A (I.E., COLUMNS 1 T O  NL O F  T H E  MATRIX B). R 2  IS 
STORED IN COLUMN L + NL + 2 O F  T H E  MATRIX A (COLUMN NL + 1 O F  
8). FOR K = 1 ,  2, ..., NL, F I N D  REFLECTION I - U * U' / BETA 
WHICH Z E R O E S  B(It K ) ,  I = L+K+l, ... ) N. 

.................................................................... 
DOUBLE PRECISION ACUM, ALPHA, BCNMAX, NLPI), BETA, DSIGN, PRJRES, 

X Ut XNORM 

NL = NLPl - 1 
N L 23 = 2rNL + 3 
LPl = L + 1 

D O  3 0  K = 1 ,  NL 
LPK = L + K 
ALPHA = DSIGN(XNORM(Ntl-LPK, BCLPK, K)), BCLPK, K ) )  
U = BCLPK, K) + ALPHA 
BCLPK, K) = U 
BETA = ALPHA * U 
I F  (ALPHA .NE. 0.0) GO T O  13 
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C COLUMN IJAS ZERO 
I E R R  = -8 

GO TO 9 9  
CALL VARERR ( I P R I N T ,  I E R R ,  L P l  + K )  

C APPLY REFLECTIONS TO R E M A I N I N G  COLUPlNS 
C OF B AND TO RESIDUAL VECTOR. 

13 K P l  = K + 1 
DO 25 J = KP1,  NLf ' l  

ACUM = 0 .0  
DO 2 0  1 = LPK, N 

2 0  ACUM = ACUM + B ( I ,  K )  * B ( I ,  J )  
ACUPi = ACUM / BETA 
DO 25 I = LPK, N 

25 B ( 1 ,  J )  = B ( 1 ,  J )  - B ( I ,  K )  * ACUM 
30 BCLPK, K )  = -ALPHA 

C 

C 
C SAVE UPPER TRIANGULAR FORM AND TRANSFORMED RESIDUAL,  FOR USE 

C 

PRJRES = XNORM(NL, B ( L P 1 ,  N L P 1 ) )  

C I N  CASE A STEP IS RETRACTED.  A L S O  COPiFUTE c o L u r i N  LENGTHS. 

I F  ( I E R R  .EQ. 4 )  GO TO 9 9  
DO 50 K = I t  NL 

LPK = L + K 
DO 4 0  J = K, N L P l  

JCJUB = N L P l  + J 
B ( K ,  J )  = B ( L P K ,  J) 

4 0  BCJSUB, K) = B ( L P K ,  J )  
50 B ( r ( L 2 3 ,  K )  = X N O R ? l ( K p  B ( L P I ,  K)) 

C 
9 9  RETURN 

END 
C 

C 
C STAGE 2: S P E C I A L  HOUSEHOLDER REDUCTIOH OF 
C 
C NL ( DR' . R 3  (DR" . R 5  1 
C (----- . -- 1 (----- . -- 1 
C N- L-NL ( 0 . R 4 )  TO ( 0 . R 4 )  
C (----- . -- I (----- . -- 1 

NL (NU*D . 0 1 ( 0 . R 6 )  C 
C 
C NL 1 NL 1 
C 
C WHERE DR', R3,  AND R4 ARE AS I N  ORFAC1, NU IS THE MARQUARDT 
C PARAPIETER, D IS A DIAGONAL M A T R I X  C O N S I S T I N G  OF THE LENGTHS OF 
C THE COLUMNS OF DR' ,  AND DR" IS IN UPPER TRIANGULAR FORM. 
C D E T A I L S  I N  ( 1 1 ,  PP. 4 2 3 - 4 2 4 .  NOTE THAT THE ( N - L - N L )  BAND OF 
C ZEROES, AND R4, ARE OMITTED I N  STORAGE. 
C 
C .................................................................. 
C 

SUBROUTINE OEFAC2(NLP1 p NMAXt NU, B )  

DOUBLE P R E C I S I O N  ACUM, ALPHA, BCNMAX, N L P l ) ,  BETA, D S I G N t  NU, U P  
X XNORM 

C 
NL = N L P l  - 1 
N L 2  = 2*NL 
N L 2 3  = N L 2  + 3 
DO 30 K = 1, NL 
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C 
C 

C 

C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 

KP1 = K + 1 
NLPK = NL + K 
NLPKMl = NLPK - 1 
BCNLPK, K) = NU * B(NL23, K) 
B(NLp K) = B(K, K) 
ALPHA = DSIGN(XNORM(K+lr BCNL, K)), B(K9 K)) 
U = B(K, K) + ALPHA 
BETA = ALPHA * U 
B(K, K) = -ALPHA 

T H E  K-TH REFLECTION FlODIFIES ONLY R O W S  K, 
NL+l, NL+Z, ... , NL+K, A N D  COLUMNS K TO NL+l. 

DO 30 J = KP1, NLP1 
BCNLPK, J )  = 0 .  
ACUM = U * B(K,J) 
DO 2 0  I = NLP1, NLPKMl 

2 0  ACUM = ACUM + B(I,K) * B(I,J) 
ACUM = ACUM 1 BETA 
B(K,J) = B(K,J) - U * ACUM 
DO 30 I = NLP1, NLPK 

30 B(I,J) = B(I,J) - B(I,K) * ACUM 
RETURN 
END 

SUBROUTINE DPA ( L t  NL, N, NMAX, LPFZ, IV, T, Ye LJ, ALF, ADA, ISEL, 
X IPRIKT, A, Ut R, RNORM) 

COFlPUTE T H E  NORM OF T H E  RESIDUAL (IF ISEL = 1 OR 21, OR T H E  
(N-L) X NL DERIVATIVE O F  T H E  FlODIFIED RESIDUAL (N-L) VECTOR 
Q2*Y (IF ISEL = 1 OR 3). HERE Q * Pt1I = S ,  I . E . ,  

N L 1 P L 1 P 

WHERE Q I S  N X N ORTHOGONAL, A N D  S I S  L X L UPPER TRIANGULAR. 
T H E  NORM O F  T H E  RESIDUAL = NORPl(RZ), A N D  T H E  DESIRED DERIVATIVE 
ACCORDING T O  REF. (51, I S  

- 1  
D(Q2 * Y )  = -42 * D(PHI)* S * Q1* Y .  

.................................................................. 
DOUBLE PRECISION A(Nf'lAX, LPP21, ALF(NL), TCNMAX, IV), W(N), Y(N), 

X ACUM, ALPHA, BETA, RNORM, DSIGN, DSQRT, SAVE, RCN), U(L), XNORM 
INTEGER FIRSTC, FIRSTR, INC(15,16) 
LOGICAL NOWATE, PHILPl 
EXTERNAL ADA 

I F  (ISEL .NE. 1 )  GO T O  3 
LPl = L + 1 
LNL2 = L + 2 + NL 
LP2 = L + 2 
LPPl = LPPZ - 1 
FIRSTC = 1 
LASTC = LPPl 
FIRSTR = LPl 
CALL INXT(L8 NL, N, NMAX, LPP2, IV, T I  W ,  A L F I  ADA, ISEL, 
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I S E L  = 1 OR 2 

WEIGHT APPROPRIATE COLUMNS 

X I P R I N T ,  A, I N C ,  NCON, NCONPl,  P H I L P 1 ,  NOGIATEI 
I F  ( I S E L  .NE. 1 )  GO TO 9 9  
GO TO 30 

C 
3 CALL ADA ( L P l ,  NL, N, NMAX, LPP2,  I V ,  A ,  I N C ,  T, ALF,  M I N O C I S E L ,  
x 31) 

I F  ( I S E L  .EQ. 2 1  GO TO 6 

F I R S T C  = L P 2  
LASTC = L P P l  
F I R S T R  = (4 - I S E L ) * L  + 1 
GO TO 50 

C I S E L  = 3 OR 4 

C I S E L  = 2 
6 F I R S T C  = NCONPl 

LASTC = L P l  
I F  (NCON .EQ. 0 1  GO TO 30 
I F  ( A ( 1 ,  NCON) .EQ. SAVE) GO TO 30 

I S E L  = - 7  

GO TO 9 9  
CALL VARERR ( I P R I N T ,  I S E L ,  NCON) 

C 
30 I F  ( P H I L P I )  GO TO 4 0  

35 R ( I 1  = Y ( I 1  
GO TO 50 

DO 35 I = 1 ,  N 

4 0  DO 45 I = 1 ,  N 
45 R(I) = Y ( 1 )  - R ( I )  

50  I F  (NONATEI  GO TO 58 

ACUn = W ( I )  

c 

DO 55 I = 1,  N 

DO 55 J = F I R S T C ,  LASTC 
55 A ( I ,  J I  = A C I D  J )  * ACUM 

C 
C COFlPU T E ORTHO GON A L FACT O R  I Z A T  IO t i  S BY ti0 U 5 EHO L DER 
C REFLECTIONS.  I F  I S E L  = 1 OR 2 ,  REDUCE P H I  (STORED I N  THE 
C FI iZST L COLUMIiS OF THE F lATRIX A )  T O  UPPER TRIANGULAR FORM, 
C ( Q S P H I  = SI, AND TRANSFDRM Y (STORED I N  COLUMN L + 1 ) ,  GETTING 
C Q*Y = R .  I F  I S E L  = 1 ,  ALSO TRANSFORM J = D P H I  (STORED I N  
C COLUMNS L + 2  THROUGH L + P + 1  OF THE M A T R I X  A I ,  GETTING Q*J = F. 
C I F  I S E L  = 3 OR 4, P H I  HAS ALREADY BEEN REDUCED, TRANSFORM 
C ONLY J. 5 ,  R, AND F OVERWRITE P H I ,  Y, AND J ,  RESPECTIVELY,  
C AND A FACTORED FORM OF Q IS SAVED I N  U AND THE LOLJER 
C TRIANGLE OF P H I .  
C 

58 I F  ( L  .EQ. 0 1  GO TO 75 
DO 7 0  K = 1, L 

KP1 = K + 1 
I F  ( I S E L  .GE. 3 .OR. ( I S E L  .EQ. 2 .AND. K . L T . N C O N P l l l  GO TO 6 6  
ALPHA = DSIGN(XNORM(N+l-K,  A(K,  K l l ,  A (K ,  K ) I  
U ( K 1  = ACK, K )  + ALPHA 
A(K,  K )  = -ALPHA 
F I R S T C  = K P 1  
I F  (ALPHA .NE. 0.01 GO TO 6 6  
I S E L  = -8 

GO TO 9 9  
CALL VARERR ( I P R I N T ,  I S E L ,  K )  

C APPLY REFLECTIONS TO COLUMNS 
C F I R S T C  TO LASTC. 

6 6  BETA = -A(K,  K) * U ( K )  

- 167 - 



DO 70 J = FIRSTC, LASTC 
ACUM = U(K)*A(K, J) 
DO 68 I = KP1, N 

I F ~ D A B S ~ A ~ I ~ K ~ ~ . L T . 1 ~ D ~ 3 O . O ~ ~ D A B S ~ A ~ I , J ~ ~ ~ L T ~ l ~ D ~ 3 O ~ G O  TO 68 
ACUM = ACUM + A(I, K)*A(I, J) 

68 CONTINUE 
ACUM = ACUM / BETA 
A(K,J) = A(K,J) - U(K)*ACUM 
DO 70 I = KP!, N 

70 A(I, J)  = A(I1 J)  - A(1t K)*ACUM 
C 

75 I F  (ISEL .GE. 3 )  GO TO 85 

I F  (ISEL .EQ.  2) G O  TO 99 
RNORM = XNORM(N-L, R(LP1)) 

I F  (NCON .GT. 0) SAVE = A(1, NCON) 
C 
C F 2  I S  NOW CONTAINED IN ROWS L + l  T O  N A N D  COLUMNS L + 2  TO 
C L+P+1 OF T H E  MATRIX A. NOW SOLVE T H E  L X L UPPER TRIANGULAR 
C SYSTEM S*BETA = R1 FOR T H E  LINEAR PARAMETERS BETA. BETA 
C OVERWRITES R1. 
C 

C 
C KAJOR PART OF KAUFMAN'S SIMPLIFICATION OCCURS HERE. COMPUTE 
C THE DERIVATIVE OF ETA WITH RESPECT TO T H E  NONLINEAR 
C PARAMETERS 
C 
C T D ETA T L D PHICJ) D PHI(L+l) 

1 = F2*BETA C Q * -------- = Q f (SUM BETA(J) -------- + ---------- 
C D ALFCK) J =  1 D ALFCK) D ALFCK) 
C 
C AND STORE T H E  RESULT IN COLUMNS L+2 TO L+NL+l. IF ISEL NOT 
C = 4 ,  THE FIRST L ROlc'S ARE OMITTED. THIS I S  -D(C2)*Y. I F  
C ISEL R O T  = 4 THE RESIDUAL R2 = Q2*Y ( I N  COL. L + l )  I S COPIED 
C TO COLEMN L + N L + ? .  OTHERLJISE A L L  OF COLUPlN L+l I S  COPIED. 
C 

85 IF  (L .GT. 0) CALL BACSUB (NMAX, L ,  A, R) 

DO 95 I = FIRSTR, N 
IF ( L  .EQ. NCON) GO TO 9 5  
M = LP1 
DO 90 K = 1 ,  NL 

ACUM = 0. 
DO 88 J = NCONPl, L 

I F  (INCCK, J )  .EQ. 0 )  GO TO 88 
M = M +  1 
A C UM = A C U M  t A(I, ri) * R(J) 

88 CONTINUE 
KSUB = LPl + K 

M = M +  1 
IF (INC(K1 LPl) .EQ. 0) GO TO 9 0  

ACUM = ACUM + A(1, M) 
90 ACI, KSUB) = ACUM 
95 ACI, LNLZ) = R(1) 

C 
99 RETURN 

END 
C 

SUBROUTINE INITCL, NL, N, NMAX, LPP2, IV, T, W, ALF, ADA, ISEL, 
X IPRINTt A, INC, NCON, NCONPlr PHILP1, NOWATE) 

C 
C CHECK VALIDITY OF INPUT PARAMETERS, A N D  DETERMINE NUMBER O F  
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C CONSTANT FUNCTIONS. 
C 
C 
C 

.................................................................. 
DOUBLE P R E C I S I O N  ACNMAX, LPPZ) ,  ALFCNL),  T(NMAX1 I V ) ,  W(N), 

X DSQRT 
INTEGER OUTPUT, P, I N C ( 1 5 , 1 6 )  
LOGICAL NOWATE, P H I L P  1 
DATA OUTPUT / 6 /  

L P 1  = L + 1 
L N L 2  = L + 2 + NL 

I F  CL .GE. 0 .AND. NL  .GE. 0 .AND. L+NL .LT.  N .AND. L N L 2  .LE.  
CHECK FOR V A L I D  I N P U T  

X L P P 2  .AND. 2*NL + 3 .LE.  NMAX .AND. N . L E .  NMAX .AND. 
X I V  .GT .  0 .AND. .NOT. (NL  .EQ. 0 .AND. L .EQ. 0 ) )  GO TO 1 

I S E L  = -4 

GO TO 99  
CALL VARERR ( I P R I N T ,  I S E L ,  1 )  

C 
1 I F  ( L  .EQ. 0 . O R .  NL .EQ. 0) GO TO 3 

DO 2 J = 1, L P 1  
DO 2 K = 1, NL 

2 INCCK, J )  = 0 
C 

C 

C 

C 

c 
C 

3 CALL ADA ( L P 1 ,  NL, N, NMAX, LPP2,  I V ,  A ,  I N C ,  1, ALF,  I S E L )  

NOWATE = .TRUE. 
DO 9 I = 1 ,  N 

NOWATE = NOWATE .AND. (W(I)  . EQ. 1 . O )  
I F  ( W ( 1 )  .GE. 0.) GO TO 9 

I S E L  = - 6  

GO TO 9 9  

ERROR I N  WEIGHTS 

CALL VARERR ( I P R I N T ,  I S E L ,  I )  

9 W ( I )  = DSQRT(W(1) )  

NCON = L 
NCONPl = L P 1  
P H I L P l  = L .EQ. 0 
I F  ( P H I L P 1  .OR. NL .EQ. 0 )  GO TO 9 9  

CHECK I N C  M A T R I X  FOR V A L I D  I N P U T  AND 
DETERMINE NUMBER OF CONSTANT FCNS. 

P = 0  
DO 11 J = 1, L P 1  

I F  ( P  .EQ. 0) NCONPl = J 
DO 1 1  K = 1 ,  NL 

I N C K J  = INCCK, J) 
I F  ( I N C K J  .NE. 0 .AND. I N C K J  .NE. 1 )  GO TO 1 5  
I F  ( I N C K J  .EQ. 1 )  P = P + 1 

I 1  CONTINUE 

NCON = NCONP1 - 1 
I F  ( I P R I N T  .GE. 0 )  WRITE (OUTPUT, 2 1 0 )  NCON 
I F  ( L + P + 2  .EQ. L P P 2 )  GO TO 2 0  

I N P U T  ERROR I N  I N C  M A T R I X  
1 5  I S E L  = -5 

CALL VARERR ( I P R I N T ,  I S E L ,  1 )  
GO TO 99 

DETERMINE IF P H I < L + 1 )  IS I N  THE MODEL. 
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20 DO 25 K = 1, NL 
25 I F  < I N C ( K ,  L P I )  .EQ. 1 )  P H I L P I  = .TRUE. 

C 
9 9  RETURN 

END 
2 1 0  FORMAT (33HO NUMBER OF CONSTANT FUItCTIONS =, I 4  1 )  

SUBROUTINE BACSUB (NMAX, N t  A i  X )  
C 
C BACKSOLVE THE N X N UPPER TRIANGULAR SYSTEM A*X = B. 
C THE SOLUTION X OVERWRITES THE RIGHT S I D E  B .  
C 

C 
DOUBLE P R E C I S I O N  ACNMAX, N) ,  X ( N ) ,  ACUM 

X ( N )  = X(N)  1 A(N, N )  
I F  ( N  .EQ. 1 )  GO TO 30  
NP1 = N t 1 
DO 20 I B A C K  = 21 N 
I = NP1 - I B A C K  

I P l  = I t 1 
ACUM = X ( 1 )  
DO 10  J = I P 1 ,  N 

C I = N-1, N - 2 1  ..., 2 ,  1 

1 0  ACUM = ACUM - A ( I , J ) * X ( J )  
2 0  X ( 1 )  = ACUM A ( I , I )  

C 
30 RETURN 

END 
SUBROUTINE POSTPRCL, NL, N, NMAX, L N L 2 ,  EPS, RNORM, I P R I N T ,  ALF,  

X W ,  A,  Rc U, I E R R )  
C 
C CALCULATE RESIDUALS,  SANPLE VARIANCE, AND COVARIANCE M A T R I X .  
C ON INPUT,  U CONTAINS IHFOF',P?ATION AE3UT HDUSEHOLDER REFLECTIONS 
C FROM DPA.  O N  OUTPUT, I T  CONTAINS THE LSIiEAR PARAMETERS. 
C 

DOUBLE F R E C I S I O N  A(NPIAX, L N L 2 1 ,  ALFCNL) ,  R ( N ) ,  U ( L ) ,  W ( N ) ,  ACUM, 
X EPS, PRJRES, RNORM, SAVE, DADS 

INTEGER OUTPUT 
DATA OUTPUT / 6 /  

L P l  = L + 1 
LPNL = L N L 2  - 2 
L N L I  = LPNL + 1 
DO 1 0  I = 1, N 

1 0  U ( I )  = W(I)**2 

C 

C 
C UNWIND HOUSEHOLDER TRANSFORMATIONS TO GET RESIDUALS,  
C AND MOVE THE L I N E A R  PARAMETERS FROM R TO U. 
C 

I F  ( L  .EQ. 0) GO TO 30 

K = L P l  - KBACK 
K P l  = K + 1 
ACUM = 0. 

DO 25 KBACK = 1, L 

DO 2 0  I = KP1,  N 
20 ACUM = ACUM + A ( I ,  K )  * R ( I )  

SAVE = R ( K )  
R ( K )  = ACUM / ACK, K )  
ACUM = -ACUM 1 ( U ( K )  * A(K,  K ) )  
U ( K )  = SAVE 
DO 25 I = KP1,  N 

- 170 - 



COMPUTE MEAN ERROR 
25 R ( I )  = R ( I )  - A ( I ,  K)+ACUM 

C 
30 ACUM = 0. 

35 ACUM = ACUM + R ( 1 )  
DO 35 I = 1, N 

SAVE = ACUM 1 N 
C 
C THE F I R S T  L COLUMNS OF THE M A T R I X  HAVE BEEN REDUCED TO 
C UPPER TRIANGULAR FORM I N  DPA. F I N I S H  BY REDUCING ROlJS 
C L + 1  TO N AND COLUMNS L + 2  THROUGH L + N L + l  TO TRIANGULAR 
C FORM. THEN S H I F T  COLUMNS OF D E R I V A T I V E  M A T R I X  OVER ONE 
C TO THE LEFT T O  B E  ADJACENT TO THE F I R S T  L COLUMNS. 
C 

IF ( N L  .EQ. 0 )  GO TO 4 5  
CALL O R F A C l ( N L + l r  NMAX, N, L ,  I P R I N T ,  A ( 1 ,  L + 2 ) ,  PRJRES, 4 )  
DO 4 0  I = 1, N 

A ( 1 ,  L N L 2 )  = R ( I )  
DO 4 0  K = LPl, L N L l  

4 0  A ( I s  K )  = A ( I ,  K + l )  
C COMPUTE COVARIANCE M A T R I X  

4 5  A ( 1 ,  L N L 2 )  = RNORM 
ACUM = RNORM*RNORM/(N - L - N L )  
A(2, L N L 2 )  = ACUM 
CALL COV(NMAX, LFNL,  ACUM, A )  

C 
I F  ( I P R I N T  . L T .  0) GO TO 9 9  
WRITE (OUTPUT, 2 0 9 )  
I F  ( L  .GT. 0 )  WRITE (OUTPUT, 2 1 0 )  ( U C J ) ,  J = 1, L )  
I F  ( N L  .GT. 0) WRITE (OUTF'UT, 2 1 1 )  ( A L F ( K ) ,  K = 1, N L )  
WRITE (OUTPUT, 2 1 4 )  RNLIEM, SAVE, ACUfl 
I F  (DABSCSAVE) .GT. EFS)  WRITE (OUTPUT, 2 1 5 )  
N R I T E  (OUTPUT, 2 0 9 )  

9 9  RETURN 
C 

2 0 9  FORMAT ( l H O ,  5 0 ( 1 H ' ) )  
210 FORMAT (20HO L I N E A R  PARAMETERS / / ( 7 E 1 5 . 7 ) )  
2 1 1  FORMAT (23HO NONLINEAR PARAPlETEfiS // ( 7 E 1 5 . 7 ) )  
2 1 4  FORMAT (21HO NORN O F  RESIDUAL =, E 1 5 . 7 ,  331.1 EXPECTED ERROR OF OBS 

XERVATIONS = f  E 1 5 . 7 1  / 3 9 H  ESTINATED VARIANCE OF OBSERVATIONS =, 
X E 1 5 . 7  1 

X. COVARIANCE M A T R I X  MAY B E  MEANINGLESS. / I  
2 1 5  FORMAT ( 9 5 H  WARNING -- EXPECTED ERROR OF OBSERVATIONS IS NOT ZERO 

END 
SUBROUTINE COV(NMAX, N, SIGMA2, A )  

C 
C COMPUTE THE SCALED COVARIANCE M A T R I X  OF THE L + NL 
C PARAMEIERS. T H I S  INVOLVES CONPUTING 
C 
C 2 - 1  -T 
C SIGMA * T * T 
C 
C WHERE THE ( L + N L )  X ( L + N L )  UPPER TRIANGULAR M A T R I X  T IS 
C DESCRIBED I N  SUBROUTINE POSTPR. THE RESULT OVERWRITES THE 
C F I R S T  L+NL ROlJS AND COLUPlNS OF THE M A T R I X  A .  THE RESULTING 
C M A T R I X  IS SYMMETRIC. SEE REF. 7 1  PP. 6 7 - 7 0 ,  2 8 1 .  
C 
C .................................................................. 
C 

C 
DOUBLE P R E C I S I O N  A(NMAX, N) ,  SUM, S IGMA2 
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DO 1 0  J = 1, N 
t O  A(J, J) = l . / A ( J ,  J)  

C 
C I N V E R T  T UPON I T S E L F  
C 

I F  ( N  .EQ. 1 )  GO TO 7 0  
NM1 = N - 1 
DO 60 I = 1,  NM1 

I P 1  = I + 1 
DO 6 0  J = I P l t  N 

J N 1  = J - 1 
SUM = 0 .  
DO 5 0  M = 1 1  J M 1  

5 0  SUM = SUM + A ( I r  M I  * A(M, J )  
6 0  A C I ,  J )  = -SUM * A C J ,  J )  

C 
C NOW FORM THE M A T R I X  PRODUCT 
C 

7 0  DO 90 I = l r  N 
DO 9 0  J = 1, N 

SUM = 0 .  
DO 80 M = Jt  N 

80 SUM = SUM + A ( I ,  M I  * A(J, M )  
SUM = SUM * SIGMA2 
ACI, J )  = sur1  

9 0  A(J, 1) = SUM 
C 

RETURN 
END 
SUBROUTINE VARERR ( I P E I N T ,  I E E R ,  K )  

C 
C P R I N T  ERROR MESSAGES 
C 

INTEGER ERRNO, OUTPUT 
DATA OUTPUT / 6 /  

I F  ( I P R I N T  . L T .  0 )  GO TO 99 
ERREIO = I A B S ( I E R R 1  

C 

GO TO ( 1 ,  2, 99, 4, 5 ,  6, 7, 8 ) s  ERRNO 
C 

1 WRITE (OUTPUT, 1 0 1 )  
GO TO 9 9  

GO TO 9 9  

GO TO 99 

GO TO 9 9  

GO TO 9 9  

GO TO 9 9  

2 WRITE (OUTPUT, 1 0 2 )  

4 WRITE (OUTPUT, 1 0 4 )  

5 WRITE (OUTPUT, 1 0 5 )  

6 WRITE (OUTPUT, 106) K 

7 WRITE (OUTPUT, 1 0 7 )  K 

8 WRITE (OUTPUT, 108) K 
C 

9 9  RETURN 
1 0 1  FORMAT (46HO PROBLEM TERMINATED FOR EXCESSIVE I T E R A T I O N S  / / I  
1 0 2  FORPlAT ( 4 9 H O  PROBLEM TERPlINATED BECAUSE OF I L L- C O N D I T I O N I N G  / I )  
1 0 4  FORMAT (1 50H I N P U T  ERROR I N  PARAMETER L ,  NL,  N, LPP2,  OR NMAX. 1 )  
1 0 5  FORMAT (68HO ERROR -- I N C  N A T R I X  IMPROPERLY S P E C I F I E D ,  OR DISAGRE 

XES WITH LPP2.  / I  
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1 0 6  FORMAT (19HO ERROR -- WEIGHT(, 1 4 ,  1 4 H )  I S  NEGATIVE.  1 )  
1 0 7  FORMAT (28HO ERROR -- CONSTANT COLUMN , 1 3 ,  3 7 H  MUST BE COMPUTED 

XONLY WHEN I S E L  = 1. 1 )  

XE DOCUMENTATION. 1 )  
1 0 8  FORMAT (33HO CATASTROPHIC F A I L U R E  -- COLUMN p 14, 2 8 H  I S  ZERO, SE 

END 
DOUBLE P R E C I S I O N  FUNCTION XNORMCN, X )  

C 
C COMPUTE THE L 2  ( E U C L I D E A N )  NORM OF A VECTOR, MAKING SURE TO 
C AVOID UNNECESSARY UNDERFLOWS. NO ATTEMPT I S  MADE TO SUPPRESS 
C OVERFLOWS. 
C 

C 
C F I N D  LARGEST ( I N  ABSOLUTE VALUE) ELEMENT 

DOUBLE P R E C I S I O N  X ( N ) ,  RMAX, SUM, TERM, DABS, DSQRT 

RMAX = 0 .  
DO 1 0  I = 1, N 

I F  ( D A B S ( X ( 1 ) )  .GT. RMAX) RMAX = D A B S ( X ( 1 ) )  
10  CONTINUE 

SUM = 0 .  
I F  (RMAX .EQ. 0 . 1  GO TO 3 0  

C 

DO 2 0  I = 1, N 
TERM = 0 .  
I F  (RMAX t D A B S ( X ( 1 ) )  .NE. RMAX) TERM = X ( I ) / R M A X  

2 0  sum = SUM t TERWTERM 
C 

3 0  XNORM = RMAXsDSQRT(SUP1) 
9 9  RETURN 

END 
$DATA 
. 8 5 4 1 6 7 6 , 1 . D - 6 , 3 4 , 7  
.55,27225.,6600.,1.093753 
. 7 1 7 7 7 8 3 , 1 . , 1 .  
2 0 0 0 ~ ~ 4 0 0 0 . ~ 1 5  
2 2 0 0 .  
2 3 9 0 .  
2 6 1 0 .  
2 9 3 0 .  
3 0 5 0 .  
3 2 7 0 .  
3 6 4 0 .  
2 0 4 0 . ,  1 . 5  
2 0 7 0 .  , - 8  
2 2 0 0 .  , 4 . 5  
2 2 8 0 . r 4 . 7 5  
2 3 4 0 .  , 8 .  
2 4 0 0 . , 1 0 .  
2 5 0 0  , 2 0 .  
2 5 4 0 . , 2 1 . 5  
2 6 0 0 . 9 3 1 .  
2 6 6 0 . s 2 7 . 6  
2 7 0 0 . p 2 9 . 2  
2 8 0 0 . , 2 5 .  
2 8 7 0 .  , 2 8 .  
3 0 0 0 .  p28. 
3 0 4 0 .  , 3 0 .  
3 0 7 0 . , 2 a . 2 5  
3 1 2 0 .  ,28 .  
3 1 6 0 . , 2 6 .  
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3200. 132. 
3260.132. 
3360.126. 
3400.125.9 
3460. 125. 
3520.125. 
3580. 1 28. 
3620. 1 28. 
3700. 124. 
3720.n25.6 
3800.r20. 
3860. p21.5 
3900.121 - 7 5  
3925.119.25 
3960.119.5 
4000. 1 12. 
/* 
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OUTPUT FROM PROGRAM 

NUMBER OF CONSTANT FUNCTIONS = 0 

0 NORM OF RESIDUAL = 0.1442714D-04 
NU = 0.1000000D 01 

ITERATION 1 NONLINEAR PARAMETERS 
0.1042649D 01 0.9485506D 00 0.8722263D 00 0.78373878 00 0.74415011) 00 0.695689’ 

1 NORM OF RESIDUAL = 0.1334315D-04 
NU = 0.5000000D 00 
NORMCDELTA-ALF) / NORMCALF) = 0.500D-02 

ITERATION 2 NONLIN E A R  PARAMETERS 
0.1046405D 01 0.94177720 00 0.8712702D 00 0.7916243D 00 0.7472037D 00 0,694535’ 

1 NORM OF RESIDUAL = 0.12526860-04 
NU  = 0.2500000D 00 
NORMCDELTA-ALF) 1 NORMCALF) = 0.528D-02 

ITERATION 3 NONLIN E A R  PARAMETERS 
0.1046952D 01 0.9342167D 00 0.8697866D 00 0.7954584D 00 0.7468173D 00 0.6944111 

1 NORM OF RESIDUAL = 0.1207254D-04 
NU = 0.1250000D 00 
NORMCDELTA-ALF) / NORMCALF) = 0.394D-02 

ITERATION 4 NONLINEAR PARAMETERS 
0.1046302D 01 0.9272034D 00 0.86719413) 00 0.7954597D 00 0.7468120D 00 0.6944090 

1 NORM OF RESIDUAL = 0.1174424D-04 
N U  = 0.6250000D-01 
NORM(DE1TA-ALF) / NORM(ALF1 = 0.344D-02 

ITERATION 5 NONLIN E A R  PARAMETERS 
0.1045457D 01 0.9239122D 00 0,86486391) 00 0.7940712D 00 0.74646163) 00 0.6943551 

1 NORM OF RESIDUAL = 0.1162343D-04 
N U  = 0.3125000D-01 
NORMCDELTA-ALF) 1 NORMCALF) = 0.200D-02 

ITERATION 6 NONLINEAR PARAMETERS 
0.1044500D 01 0.9230081D 00 0.8640470D 00 0.7932118D 00 0.7462077D 00 0.6943202 

1 NORM OF RESIDUAL = 0.1160925D-04 
N U  = 0.1562500D-01 
NORMCDELTA-ALF) / NORMCALF) = 0.821D-03 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
LINEAR PARAMETERS 

0.1705885D-01 0.40428030-01 0.6303247D-01 0.3332297D-01 0.324272lD-01 0.420784QI’ 
NONLINEAR PARAMETERS 

0.1044500D 01 0.9230081D 00 0.864047013 00 0.79321183) 00 0.7462077D 00 0.69432029 
NORM OF RESIDUAL = 0.1160925D-04 EXPECTED ERROR OF OBSERVATIONS = 0.1398237D-06 
ESTIMATED VARIANCE OF OBSERVATIONS = 0.6738738D-11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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LAYER NO. POROSITY.THICKNESS KH/SUM(KH) 

1 0.015636 
2 0.047454 
3 0.084429 
4 0.052962 
5 0.058236 
6 0.087285 
7 0.087129 

VOLUME PRODUCED, BBLS CONCENTRATIONt 

2000.00 
2133.33 
2266.67 
2400.00 
2533.33 
2666.67 
2800.00 
2933.33 
3066.67 
3200.03 
3333.33 
3466.67 
3600.00 
3733.33 
3866.67 
4000.00 

SELECTED PEAK VOLUME 

2200.0 
2390.0 
2610.0 
2930.0 
3050.0 
3270.0 
3640.0 

0.037696 
4.600 928 
4.167477 
11.495150 
21.593647 
29.679569 
25.71 I356 
27.380659 
28.569303 
30.307478 
29.44766 1 
23.823376 
28.6 22558 
24.487 164 
18.975435 
15.983867 

COMPUTED PEAK VOLUME 

2181.1 
2468.2 
2636.7 
2872.1 
3053.0 
3281.2 
3641.6 

0.016332 
0.043800 
0.072950 
0.0420 10 
0.043456 
0.060604 
0.054508 

PPM 

STATEMENTS EXECUTED= 2576626 

DIAGNOSTICS NUMBER OF ERRORS= 0 ,  NUPlBER OF WARNINGS= 0, NUPlBER OF E 
COMPILE TIME= 0.37 SECpEXECUTION TIME= 27.20 SEC, 16.00.30 MONDAY 

CORE USAGE OBJECT CODE= 42368 BYTESPARRAY AREA= 19416 BYTESnTOTAL AREA AVAIL 

CSSTOP 

- 176 - 



Appendix D.2: PROGRAM TO COMPUTE PATTERN BREAKTHROUGH CURVE OF A 
DEVELOPED INVESTED SEVEN-SPOT FOR UNIT MOBILITY RATIO 

This program calculates the curve of displacing fluid cut versus displaceable 
pore volume Injected for a developed inverted seven-spot at unit mobility 
ratio. As was mentioned In the text, for every selected y coordinate of a 
point on a general streamline, a corresponding value for the x coordinate of 
the point must be evaluated. Subroutine "ROOT" performs this evaluation. The 
routine uses the "bisection method." However, a more efficient root-finding 
method can reduce the computation time . 
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// JOB (JE.PlAD, 104,2), 'MAGSUD' 
/ /  EXEC WATFIV 
//GO.SYSIN DD * 
C 
C 

C w * 
C * T H I S  FROGRAM COPIPUTES PATTERN BRRAKTIiRDUGH CURVE ( D I S P L A C I N G  * 
C * F L U I D  CUT VS DISPLACEAULE FORE VOLUPlES I N J E C T E D )  F O R  A DEVEL-  * 
C * LOPED INVERTED S E V E N - S r O T  A T  f I O U I L I T Y  KIZTIO OF ONE. * 
C * )i 

C 
C 
C OUTFUTS FROM THE PROGRt$M ARE: 
C FW = D I S P L A C I N G  F L U I D  CUT AT THE PRODUCIND STREAM 
C P V ( 1 )  = C ISPLACEADLE PORE VOLUMES I N J E C T E D  CORRESFONDING TO F1J 
C DPV = D I ~ l E N S I O N L E S S  PORE VOLUME USED I N  THE CORRELATION 
C 
C 

C * ~ X t f t t n * t f * t f * W Y W X X * f * * * ~ * ~ ~ * ~ * t ~ . ~ ~ ~ * ~ t * * t ~ K ~ ~ . ~ ~ K f ~ t ~ ~ ~ ~ f t ~ * K f ~ ~  

C " * ~ f X K t W K * t X f K t f # * * # * * * ~ * f ~ t Y ~ * ~ ~ * t ~ ~ ~ X ~ K ~ . ~ ~ * * K ) i ~ W , ~ ~ K * * * * * ~ K ~ ~ * f K  

I P l F L I C I T  REAL*8  (A-Iit O-2) 

DIPlEt iSION F( 20 0 1 9 PV ( 30  1 
EEALHS P i , M l  , K  

F I = ' 1 .  fDATA:i( 1 .  DO 1 
AA=DSQAT(3.EO) 
B U = 1  . /An 

c o r i r m  A A  , R I! , p i ,  ri 1 , P 

K = ( Z . - A A ) / 4 . D O  

t i=50  
"=N+ 1 
F l , I = .  5D- 1 
00 35  L = 1 , 9  
S IGt l=PI+ : (  1 . - f l * J /3 )  
P=DTAI l (  S I G H )  
CALL K f ! ( A A  tZ,K) 
)'Z=2.2:KuBB 
Il=Y2/N 
F(l)=O.OOO 
DO 1 0  I = 2 , N N  
Y = ( I - l ) f H  

r i i  = 1 . - P I  

C 
C FOR A Y-CODRDINATE OF A P O I N T  ON A G L N E R A L  STREAPILIHE, A 
C COORESPOEDXNG VALUE F O E  THE X-COORDINATE I S  COflI'UTED. 
C 

C 
C THE IHTEGRANE I N  EQ. A- 1 0 9  I S  EVALUATED 
C 

CALL R O O T ( Y , X )  

C A L L 
F ( I 1 =Id* W/ ( Id* ( t? * U P + R f t U 1 - R 3 U WJP ) 

CO N T  I NU E 

\'A L U E ( X 8 Y 8 U t UP P R v f?P , W v WP > 

10  
C 
C POKE VOLURES I N J E C T E D  ARE COPlFUTED 
C 

CALL INTGRL ( N  t H ,  F SUPI) 
C = - P I * ( l + P t P ) / ( Z . * A A * ~ ~ K )  

DPV=(PV(L)-.743682)/(1.-.743682) 
rv( L )=c*suri 

L!R I T E ( 6 e2 0 0 1 F W p P V ( L 1 , DP V 
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2 0 0  
35 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 

FO!?Mb\T( l X ,  3 (  F 1 5 . 5 )  1 
FlJ=FW+. 1 0  
STOP 
END 

SUBROUTINE VALUE(X,Y, JP) 

T H I S  SUBROUTIRE COlPUTES THE FOLLOLJING FUNCTIONS THAT ARE 
NEEDED F O R  THE PROGRAM. TI IE FUI4CTIONS ARE: 

THESE FUNCTIONS HAVE BEEN ASSIGNED THE SAME NOTATIONS AS I N  
AFFENDIX A- 4.  
I N F U T :  X,Y = COORDINATES OF A POINT ON A STREAMLINE 

H ,  G I  U t  U ' r  1, 1 ' 9  R s  R ' ,  W c  W '  

OUTPUT: FUNCTIONS U, U ' ,  R, R ' ,  Id, Id '  

SUEROUTINE R O O T ( Y t 2 )  

T H I S  S U t R O U T I N E  CALCULATES T I iE  R O O T  OF F ( X , Y )  = 0 FOR A G I V E N  Y .  
THE FUNCTION F ( X , Y )  IS S l l F r L I E D  E Y  EQ. A - 1 0 3  IN AFPENDIX A-4. 
THE SUBCOUTINE USES T I IE  " B I S E C T I O N"  PIETHOD. 

OUTFUT: 2 = X-COORDINATE CORRESPONDING T O  Y 
I N F U T :  Y = Y-COORDIf iATE OF A P O I N T  O N  STKCAMLINE, S I G H  

I M r L I C I T  R E A L 3 8  (A-H, f l -Z )  
EEAL-:~P,  r:,ni 
C O l i l l O t 4  A A  , BB , Mpt.11 t P 
TOL=5.  D-4 
D=F/4 .  DO 
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Xl=l .D-5 
X 2 = .  5D-3 

F l=R*U/Lcl-D 

F 2 = R S U/l*!- D 
IF(FlXFZ.LT.O.)GO TO 2 0  
x 2 =  1.5#);? 
GO T O  I O  

C A  L L V A L  UE ( X 1 t Y p U p UP, R s RP W t LJP 1 

10 CALL VALUE ( X 2  t Y t Ut UP t R t RP 8 14 ,IdP 1 

2 0  1=1 
3 0  Z=(Xl+X2)/2.DO 

C A L L  VALUECZ ,Y t U , UP t R p RP p Wtk'P 1 
FZ=R*U/W-D 
IF(Fl+FZ.LT.O.) GO TO 4 0  
x1=z 
IF(DABS(XZ-Z).LT.TOL)RETURN 
1=1+1 
GO TO 30 

IF(DABS(Xl-Z).LT.TOL)RETURN 
1=1+1 
GO T O  3 0  
END 

4 0  XZ=Z  

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 

1 0  

C 
C 
C 

C 
C 
C 

SUBROUTINE KFl(KPOK,Q,K) 

THIS SUBROUTINE COMT'UTES COPlFLEFIEI~TARY OR INCDMPLEMENTARY COMFLETE 
ELLIPTIC INTEGRAL FUtiCION K ( N )  OR K ( M 1  ) = K * ( M ) .  THE ROUTHINE 
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C 
C 

3 0  

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 

5 0  

U T I L I Z E S  THE EXFANSION PRESEKTED I N  ABRi'trlOWITZ ( 1 9 7 2 )  

I M P L I C I T  REALX8 ( A-H , 0-Z 1 
REA L *8  K Pl 9 KP 0 K 
P I = 4 . * D A T A N ( l . D O )  
Q=DEXf'( -PI*EPOY,) 
su:1=0. 
00 30  I = 1 , 1 0  
Sl lM=SUM+Q**I / (  1 . + Q * * ( Z . * I ) )  

RETURN 
END 

K=PI/~. *( 1. t 4 ,  *suri) 

SUBROUTINE IHTGRL(N,N,F,\ 'OL) 

T H I S  SUBROUTINE CCIPlFUTES VALUE OF AN INTEGRAL U S I N G  SIFIPSON'S 
RULE O F  INTEGRATION.  
I N P U T :  N = NUMBER OF INTERVALS,  AN EVEN INTEGER NLJMDER 

H = INTERVAL S I Z E  
F = VALUES O F  FUttCTIONS COPlrUTED AT I N T E R V A L S ,  AN ARRAY 

OUTFUT: V O L  = VALUE OF THE INTEGRAL 

I PIP L I C I T R EA L * 8 ( A-H s 0-Z 1 
DIPlENSION F(91 1 
sur1 1 = o  
sum=o 
t4 1 =N/2- 1 
DO 50 1=1,t41 
S UP1 1 = S UP1 1 + F ( 2 I 1 
s u r i ? = s i i r i 2  t F ( : * I t i )  
sur i i=sur : i tF( t : )  
V 0 L =ti/ 3 * ( F ( 1 1 t F ( 11 t 1 1 t 4 . *iSlIM 1 + 2 . * 5  UP12 1 
F: E T  I J f f  t4 
E l l D  

SDATA 
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Appendix D.3: PROGRAM TO COMPUTE PATTERN BREAKTHROUGH CURVE OF A 
DEVELOPED FIVE- SPOT AT AN ARBITRARY MOBILITY RATIO 

This program computes both the displacing fluid cut and areal sweep efficiency 
curves of a developed five-spot pattern for any mobility ratio. The assump- 
tion made in the derivation of the equations is that the streamlines are 
independent of mobility ratio; hence, they can be calculated from single-phase 
fluid flow (mobility ratio equal to one). 
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/ I  JOB (JE.MAD, 1 0 4  'MAGHSOOD' 
/ /  EXEC b!ATFIV 
/ fGO.SYSIN DD * 
C 
C 
C * * * t * * F W S E * * t W * I X * * X ~ ~ * * x ~ ~ ~ ~ ~ * x ~ * ~ ~ ~ ~ ~ ~ * ~ ~ S . ~ ~ ~ W ~ X ~ * ~ ~ . ~ * x ~ ~ ~ ~ ~ ~ * ~ ~  

C * T I I I S  F R O G R A M  COPlPUTES PATTERN UAE~1KTliROUGIt CURVES ( D I S P L A C I N G  * 
C * F L U I D  CUT VS DISPLACEADLE FORE VOLUFlE) AND A R E A L  SIdEEP E F F I C I -  * 
C )r: ENCY CURVES (FRACTIONAL AREA SLJEPT V S  C I S P L 4 C E A U L E  PORE VOLWlE * 
C * I N J E C T E D )  FOR A DEVEL@?ED F I V E- S P O T  PATTEEN A T  VARIUUS f l O B I L I 1 Y x  
C * R A T I O S .  THE PROGEArl ASSLvIlES TtIAT THE STREAFlLINES DO NOT CtIANGE * 
C * WITH l l O D I L I l Y  R A T I O .  * 
C ~ * ~ * * ~ t * * * * * S # * * * # * * * ~ * * ~ * ~ * ~ * * ~ * * * ~ ~ * * * * ~ ~ * * * * * ~ * * * * * ~ * * * * ~ * * * ~ ~ * *  

C 
C 
C THE LOCATION OF THE FRONT I N  THE SYSTEM I S  CONTINUOUSLY 
C COP'IFUTED AS THE STREAPlLINES DREAKTIIROUGH. 
C THE I N P U T  AND OUTPUT FROM THE PROGRAM ARE AS FOLLOLJS: 
C I N P U T :  PiOBLTY = M O B I L I T Y  R A T I O  
C OUTPUT: PV = DISPLACEAELE FORE VOLUPlCS I N J E C T E D  
C S'JEEP = AREAL SlJCEP E F F I C I E I I C Y ,  FRACTION 
C FA, D I S P L A C I N G  F L U I D  CUT I N  THE F'RODLICING STREAM, FEACTIOIJ 
C 
C 

I I I F L I C I T  REAL * 8 ( A - t l f O - Z )  
REAL X Q  FiOSLTY, LEFT,  F F (  9 1 1 ,  GG( 9 1 ) .  FSIJEPC 9 1 )  
G l ( Z ) = D S 3 R l ( Z ' Z + l )  
G2 ( Z , E T A =I) S C ET ( Z sZ+ ET A X  ET A ) 
G ~ Z ~ E T A ~ ~ D L O C ~ ~ Z ~ E T A ' ( G I o , G : ~ Z ~ E T ~ , ~ ~ / ~ E T A ~ G l ~ ~ ~ ~ G ~ ~ ~ ~ E l A ~ ~ ~  
R E k  D , K O  3 L TY 
F I r 4 .  x D A T A I : (  1.00 
A K = 1  . S 5 4 @ 7 6 6 ? 7 3 @  13721)O 
R I 4 =  A K 2: D 5 "? 2 T ( 2 . D 0 1 f 1 @ @ 0 0 . 

C 
C Ol lE E IGI ITH OF A F I V E - S r O T  I S  D I V I D E D  I N T O  "Kr" STEEAHTUDES. 
C TIIESE NF STEEhi'lTUBCS UREAKTt1F;OUG!I OIiE P Y  O N E .  
C 

w-ia 
H=PIf4 ./NP 
DO 1 J = l , N P  

C 
C I N  THE FOLLOWING, TETUT = STREAPlLIt tE TtIAT IS CONSIDERED TO 
C BREAKTHKOUGH. RIGHT H A N D  S I D E  OF EQ.. B - 5 1  IS COl l rUTED FOR T H I S  
C STREAKLINE AttD IS STORED I N  " RIGI IT" .  
C 

T E T B T = H $ ( N P + l - J )  
E l = D T A N ( T E T G T ) * * Z  
X I ~ I I D T = R l J ~ D S I N  (TETBT 1 
XI,!PBT=AK-RW*DCOS( TETRT 1 
CALL FU::CT( 1 ,FZPBT,XCFDT) 
CALL F U N C T ( l , F 2 I B T p X W I @ T )  
C n L L  GhUSS( 1 , F Z I B T  FZFBT p E l ,  VAL 1 
PlEl=~lODLTY~G(F2PBT~El)-G(F2IBT,El) 
E P = 1 - E 1 *.E 1 
P P = P I / 2 .  
CALL ELLEP(PP,EP,AKEl )  
R I G H T = ( 1 + E 1 ) X-( F 1 E 1 * AK E 1 + ( 1 . -MI U L T Y * V A L 1 

. c  
C STREANLINES BETWEEN ZERO AND BROEENTHROUGM ( T E T B T )  ARE D I V I D E D  
c INTO w t  STREAMTUUES AND THE FRONT LOCATION IN mat O F  Tt{Eri 
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15 

10  

IS CALCULATED GY EQ. B - 5 1 .  F I R S T  A LOIJCF! AND At: Ufl 'ER VALUE FOR 
Z B A R  I N  T H I S  EQUATION ARE COPirlJTED I t {  cJlJC11 A NAY l t ! h T  T H E  EXACT 

U T I L I Z E D  TO DETERPlINE THE EXACT VALUE OF T l l E  Z FAR. 
Z PAR VALUE L I E S  BETP!EEN THEll .  THEN, A ROOT F l I d D I N G  R C U T I N E  I S  

N=90 
NH=N- 1 
STEP=TETBT/N 

TET=ST E P S I  
DO 10 I = l . N N  

XW I =F: 14 S DS 114 ( T ET 1 
Xl*!r=RltlfDCOS ( T E T  1 
E=DTAN(TET)* *Z  
Z Z =  1. -EsE 
X 1 ZAK-XWP 
CALL FUNCT( 1 t F 2 P , X 1 )  
CALL FUNCTC l , F 2 I , X l J I )  
PlE=MOBLTY*G(F2P,E)-G(F2I~E) 
A = F 2 I  
B=5. S F 2 1  
A INTZO.  0 

A I  NT=A I H T + V A L U E  
F M l = D A T A N ( D / E )  

L E F T = ( l . + E ) * ( P l E ~ ' T l + ( l . - R O D L T Y ) r A I N T )  
I F (  L E F T .  G T .  R1SHT)GO 10 1 5  

B=5. SA 

S t I V E l = L E F T  
G O  T O  20 
P @ L !I= A I !:T - \!A L U E 
SAVE?=LEFT 
CALL 

C A I  L GAUSS( 2, A t  B t  E t  VALUE) 

CALL E L I E P ( P H I , Z Z , T l )  

r l = B  

KOOTCA, 5, SAVE1 t SAVE2 t POLD,  RIGHT vP1OPLTY s EPZZ, P 1 E ,  T , X I  

AFTER DETEEMI!JING THE FRONT LOCATIONS FROil  7 H E  SUDAOUTJNE ROOT, 
CALCULATION D I S F L A C I N G  F L U I D  CUT STARTS: 

Q A  = PRODUCING FLOLJ RATE OF D I S P L A C I N G  F L U I D  
QB = PRODUCING FLOW RATE OF DISPLACEI! F L U I D  
FA = D I S P L A C I N G  F L U I D  CUT I N  THE T'RODUCTION STREAN 

CALL 114TGRL(N,STEP,GG,QD) 
Q A = G G ( N + l ) * ( F I / 4 - T E T D T )  
FA=QA/(QA+QB 

CALCULATION OF AREAL SWEEP E F F I C I E N C Y  AND I N J E C T E D  DISPLACEADLE 

ARE COMPUTED. T H I S  I S  STORED I N  "VP". 
PORE VOLUPIES START. F I K S T ,  THE PORE VOLUFIES O F  WhTER PRODUCED 
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1 1  
C 
C 

1 0 0  
1 

N l = N + l  

T E T = T  ETBT+ HBT *( L -  1 1 
E T = D T A t i (  TET If*? 
P P = P I / 2 .  
Z=l-ET+'ET 
C A L L  
F S W E P ( L ) = ( 1 + ET 1 9 E K 
XI*! I = R1.J :: DS I N ( T ET 1 

DO 1 1  L = l , N l  

E L L  EP ( P P  , Z ,  E K )  

XWP=AK-RLdSDCOS ( T E T )  
C A L L  FUNCT( 1 ,ZP,>II*!P) 
C A L L  FU:;CT( 1 , Z I , S I J I )  
PE=MODLTY*G(ZP,  E T ) - G ( Z I  , ET 1 
C A L L  G A U S S ( l , Z I , Z P , E T , V A L )  
H T E T A = (  1 +ET  ) / 4 * (  F E * E K t  ( l - M O B L T Y ) * V A L  1 

CON1 I NUE 
G G ( L ) = ( H T E T B T - H T E T A ) / ( G ( t P , E T ) - G ( Z I . E T ) )  

C A L L  I t l T G R L  ( N ,  I tDT,  GG, VP)  

111 THE FOLLOld I f jG  C A L C U L A T I O N S  OF AREAL SWEEP E F F I C I E N C Y  A K D  
PORE VOLUPIES I N J E C T E D ,  THE TldO SYPlDOLS S l  AND S2 ARE USED T O  
DESIC-:.ItIl E:  
S 1 = AREA ENCO"1PASED RElC!EEN THE BROKEN-TIIROUGII S l C C A M L I N E  ( T E T D T  1 

At:D THE S T E E A r l L I N E  PI14 
S2 = SKEPT AKEA EIICCIII 'ASED CETldEEN S T R E A N L I N E .  TETDT,  AND 

S T E E f . l l L I N E  ZERO. 

C 
C 
C 

SUBROUTINE S tt ( X , SNX ) 

1 0  

T H I S  SUDROUTINE CALCULATES THE J A C O D I A N  E L L I P T I C  FU1:CTION S N ( X , O . 5 )  
THE R O U T I t l E  USES F O U R I E R  S E C I E S  EXP:INSIO:4 OF S t l ( X ,  0 . 5 ) .  
I i i F U T :  X ,  ARGUMENT O F  T l f E  J l Z C O B I A N  E L L I P T I C  F U N C T I O N  
OUTPUT: SNX, VALUE OF T I IE  J A C O D I A t l  E L L I f T I C  FUNCTIOt4 

I N r L I C I T  R E A L * 8  (A-Ht0-Z) 
A K = l . S 5 4 0 7 4 6 7 7 3 0 1 3 7 2 D O  
A N = .  5 
F I = 4 . * D A T A N ( l . D O )  
Q = D E X P ( - P I )  
SUM=O.  DO 
V = P I * X / ? . / A K  
EO 1 0  I = 1 , 9  
1 1 = 1 - 1  
C l = I I + .  3 
c 2 = 2 . * 1 1 + 1  
S U i l = S U M + Q ~ * C l ~ D S I N ( C 2 ~ V ) / ( l . - Q u x C Z )  
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S l i X = 2  . ~ P I * S U M / A K / D S Q R T ( A M )  
RETURN 
END 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

1 0  

2 0  

S U 3 R O U T l N E  F U t i C T ( 1 K D I C p  F 2 , X )  

T H I S  SUBROUTINE CONFUTES F 2  FOR A G I V E N  X O R  COFlFUTES X FOR A 
G I V E N  FZ. 
F?=F*F AND F I S  T l t E  EQUATION FOR THE D E F I N I T I O N  OF S T R E A M L I N E  
ldHICI-1 I S  G I V E I I  BY EQ. A-18 l d I l H  iii = 0 . 5 .  

I W D I C = l ,  COMPUTE F2 FOR G I V E N  X 
I N D I C = 2 ,  CONFUTE X FOR G I V E N  F2 

C 
C 
C 

S U B R D U T I t i E  E L L E P  CY , 2. A )  
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

15 

3 0  

T I t I S  SUEROUTINE COMPUTES I N C O N P L E T E  E L L I P T I C  ItITEGR!.LN F(Pl.11 , k )  
P H I  I S  T I iE  AGGL':IEHT hY{D k IS THE KODULUS.  T l l E  PlOPLILUS I S  EQUAL 

I N P U T :  Y = AKGUXENT OF TI!E E L L I P T I C  TLINCTION 
TO T H E  SCUJ??E: ROOT O r  T l tE  FAF:PtPiETER. 

z = r t 8 " I j r I E T E x  OF THE E L L I P T I C  JNTCGRhl .  
A = V t ILUE OF T I i E  E L L I P T I C  I N T E G R A L  

THE R O U T I N E  USES LAI4DEt:S DECENDING T R A ~ ~ S F O R M A T I O N .  FOR REFERENCE 
SEE ABRAPlOlc'ITZ, PAGE 

IP iF L I C I T  REALE.8 ( A - t l ,  0-2 1 

T O L = l  . D - 4  
P I = 4 . * D A T A N ( l  .DO) 
W = l  . D @  
x = Y  
KZDSQRTCZ) 
K l = P . * D S Q R T ( K ) / ( I + K )  
X=.5*(XtDARSIN(KIDSIN(X))) 
Q E = D A R S I N C K l )  
Q E = Q E f l E O . / P I  
W=2 . X W  ( 1 + K 1 
I F ( ( 9 0 . - Q E ) . L E . T O L ) G O  TO 30  
K = K  1 
GO TO 15 
A = W x D L O G ( D T A N ( P I / 4 + X / 2 ) )  

REAL*S  K p K 1 , K P  
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RETURN 
END 

C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

1 0  

15 
1 7  

1 2  

S U B R O U T I N E  G A U S S ( L , A L O W E S , U r r E R , E , V A L U E )  

T H I S  S U P R O U T I N E  CONFUTES V A L U E  O F  A N  I N T E G C A L  U S I t 4 G  E I G H T  P O I N T  
G A U S S I A N  QUDRATURE N E T H O D .  
I l t r U T :  ALCIJER = LOb!CR L I r l I T  OF T H E  I N T E G R A L  

' UPPER = UPPEP, L I P 1 1 1  O F  T t i E  I N T C G R A L  
I F  L = 1,  P A L I G A A M  CO!';F'UTES T t i E  I N T E G E A L  5 Y  D I V I D I N G  T I I E  
I N T E R V A L  I N T O  S E V E R A L  SEGFlENTS ON A LOGARITt I I .1 IC S C A L E  
( B A S E  1 0 )  
I F  L # 1,  T H E  PROGRAM USES @ N L Y  ONE I N T E R V A L  
E = E T A  T E E N  D E F I N E D  

OUTPUT:  V A L U E  = V A L U E  OF T H E  
B Y  EQ. 9 - 3 1  
I N T E G R A L  

F Y *F? CY 
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1 0 0  

C 
C 
C 

GO T O  1 7  
RETURII 
END 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

5 

1 0  

20 

T H I S  SUBROUTINE COtlPUTES T I iE  ROOTS OF EO. D- 5 1  
THE I N F U T  TO Tl tE ROUTINE ARE: 
X 1  = VAL l lE  OF Z BAR A T  k ' l t I C t t  THE LEFT S I D E  I N  Ec). 1)-51 IS 

X2 = VALUE OF 2 BAR AT WHICH THE RIG! tT S I D E  OF EQ. B - 5 1  IS 

F 1  = VALUE OF T l tE  L E F T  S I D E  COFlrUTED AT X l  

P I  = VALUE OF THE INTEGRAL I N  THE L E F T  S I D E  OF EQ. B - 5 1  COMPUTED 

AM = P 1 0 3 I L I T Y  R A T I O  
E = VA.LUE O F  ETA DEFINED D Y  EQ. 0- 31 

P I E  = T I iE  P TERFl I N  LEFT S I D E  OF EQ. 6- 51 
R I G l I T  = VALUE OF THE RIGHT I i A l j D  S I D E  OF EQ. D- 5 1  COMPUTED AT 

T C T D T 
THE OUTfUT F i l K l  THE ROVTINE A R E :  

T = VALUE O F  TI iE  INTEGPAL I N  1 H E  LEFT S I D E  OF LQ. B- 5 1  C0P:PUTED 

SKALLER THAN THE R I G H T  SIDE 

LARGER THAN THE R I G H T  SIDE 

F2 = VALUE OF T l l E  LEFT SIDE COrl rUTED AT X? 

AT X 1  

2 = PsRGUt.lENT C F  E L L I P T I C  INTEGRAL F(11,k)  

A I! i; 3 I; E'i T I iT: 0 U G !  t S 1 R E b,11 L I N E, 

x = E X A C T  V A L U E  OF z F A R  (SOLUTIO!.( T O  EQ.  D - 5 1 )  

AT X 1  

I t l F ' L  I C I T  REAL X S  (A -H 9 0-Z) 
TOL=:  .D- 4  
F l = F  1 - R I C - I I T  
F 2 = F  2-  E1 G! t T 
x = ( x  1 + N 2  )/2. 
CALL G/IUCJCJ(2,Xl , X , E , V )  
A I ! ; T = V +  P 1 
PI! I = D A T A t4 ( X/  E ) 

A L E F T = (  1 . + E ) * ( P l E * T + (  1 . - A i l ) * A I t i T )  
FX=A L EFT-R 1 C. t iT 
I F ( F l * F X . L T . O . D O ) G O  TO 1 0  
x1=x 
F l = F X  
P l z A I N T  
IF(DA!IS(Xt-X).LT.DABS(TOLSX))GO TO 2 0  
GO TO 5 
x2=x 
IF(DADS(Xl-X).LT.DtIPS(TOL~X))GO T O  20 
GO T O  5 
RETURN 
END 

CALL E L L E F ( P t I 1  ,Z ,T )  

C 
C 

SUBROL~TINE INTGRL(N,H,F,VOL) 

TI iYS SUBROUTINE COPIPUTES VALUE OF AN INTEGRAL U S I N G  SIMPSOI4'S 

I t i P U T :  N = NUrlDER OF I N I E R V A L S ,  AN EVEN INTEGER NUPIRER 
RULE OF I N T E G 2 A T I O N .  

H = INTERVAL S I Z E  
F VnLUES OF FUNCTIOt iS CONPUTED AT INTERVALS,  AN ARRAY 
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C OUTPUT: V O L  = VALUE OF THE INTEGRAL 
C 

I KP 1 IC I T R E A L  38 ( A-H , 0-2 ) 
DIME t1510N F (  9 1 )  
SUP11 = o  
S U X  = 0 
N 1 = w 2 -  1 
CO 50 I=l,N1 
surii=surii+F(~~I) 

50 ~UFl?=SUFl? tF(?*It 1 )  
SUtll=SUTll+F(I4) 
V O L  H/ 3* ( F ( 1 1 + F ( K t  1 1 4  4 .  *SUM 1 +2. *SUM2 ) 
RETURN 
END 

S D A T A  
0.5DO 
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