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ABSTRACT

This study has been carried out in two related sections. In the first
section, exact analytic equations have been derived to define breakthrough
curves (displacing fluid cut versus pore volumes injected, oOr area swept
versus pore volume injected) for different developed flooding well patterns
for unit mobility ratio. In the derivation of equations, i1t was assumed that
the displacements were piston-like with no capillary and gravity effects. The
analytic solutions are various forms of elliptic integrals which differ
depending on the geometry of the pattern. The exact elliptic integral solu-
tions for the breakthrough curves have been correlated into a single curve by
defining a correlating parameter, we have called the dimensionless pore
volume.  Since breakthrough curves for the patterns considered in this study
(five—-spot, inverted seven-spot, direct line drive, and staggered line drive)
all correlate into a single curve, it is concluded that the breakthrough
curves for any other repeating patterns should also lie reasonably near this
same correlating curve.

The first section also includes an extension of an analytical definition of
pattern breakthrough curves for mobility ratio other than one. In the
derivations, it was assumed that the streamlines of a pattern did not change
with mobility ratio. The results of the analysis showed that the breakthrough
areal sweep efficiencies at various mobility ratios were nearly independent of
mobility ratios, while the post breakthrough data were different for each
mobility ratio.

The second part discusses flow of a tracer slug in various patterns. In each
system, the longitudinal mixing of the tracer slug in a general streamtube of
the pattern has been formulated mathematically. A line integral along a
streamtube was derived which represents the length of the mixed zone. When
this line integral was substituted into the mixing equation, an expression for
the concentration of tracer at any location within a streamtube resulted.
Furthermore, these expressions integrated over all the streamlines produced a
set of equations describing tracer production curves from homogeneous repeated
patterns. The study shows that the effluent tracer concentration depends upon
the pattern geometry and size, and the dispersion constant of the formation.

Tracer production curves for the different patterns considered have also been
correlated into a set of curves depending on a/¢, (a = distance between like
wells, a = dispersion constant). The correlation was achieved by deriving two
sets of correction factors, one for tracer peak concentration, and another for
a/a ratio. As a result of this correlation, a tracer response from any
repeated homogeneous pattern can be estimated from the response of an
equivalent five—spot system by utilizing the correction factors.

A computer program based on a non-linear optimization technique was developed
which decomposes a detected tracer breakthrough profile from a multilayered
system into responses from individual layers. The program computes porosity-
thickness and fractional permeability—thickness for each layer. The algorithm




utilizes the equations of the five-spot pattern in conjunction with the
developed correction factors. A five-spot field example which has been
successfully decomposed into eeveral layers 1s shown to illustrate the use of

this research.
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1. INTRODUCTION

Reservoir heterogeneities play an important role in oil recovery by improved
recovery techniques. In any fluid injection operation, high permeability
streaks divert substantial quantities of the injected fluid. This unequal
distribution of the injected fluid greatly reduces the volumetric sweep
efficiency of the reservoir and, hence, lowers the efficiency of the displace-
ment processes. Therefore, detection of high permeability zones and channels
would be helpful in the understanding, design, operation, and interpretation
of injection projects.

A means to follow fluid movement in a reservoir would be an important tool in
determining the characteristics of a formation directly. Radioactive and
chemical tracers provide the capability to achieve this purpose. Information
on reservoir heterogeneity supplied by flow of tracers In a reservoir 1is
invaluable in the design of assisted recovery operations and also useful in
reservoir simulation studies. This information, whether qualitative or
quantitative, is generally extracted from tracer breakthrough profiles
detected at the production wells. Often, tracer breakthrough profiles are a
summation of tracer responses from several layers which constitute the
formation. In practice, the number of the layers is unknown and only a tracer
breakthrough curve from a stratified system is available. This is a classic
inversion problem. To analyze tracer breakthrough profiles, results must be
deconvoluted into the constituent layer responses. From the constructed layer
responses, It would be possible to compute important parameters for the layers
such as permeability, porosity, and thickness.

Several works (Brigham and Smith, 1965; Baldwin, 1966; and Yuen et atr 1979)
have been published on tracer flow which have attempted to obtain quantitative
information about the nature of reservoirs. Each of these had limitations
which led to incorrectly defined reservoir parameters and also each of these
methods considered only fully developed five—spot patterns and unit mobility
ratio.

This study draws from these earlier works and was initiated to develop an
analysis for tracer tests which could be used for any repeated pattern within
the limitation of mobility ratio of one. To do this a mathematical descrip-
tion of tracer breakthrough curves for any developed homogeneous pattern is
required. For the breakthrough curves to be precise, the analysis must
include a rigorous treatment of the mixing of tracer in the patterns. Also, a
correlation of these tracer production curves into a single curve (or a single
set of curves) could simplify the analysis. Finally, a method which could
analyze tracer elution curves from stratified reservoirs without adopting
lengthy trial and error procedures could reduce the needed time for an
analysis.  With these points in mind, a new tracer analysis method has been
developed.



2. LITERATURE REVIEW

In the past several decades, both radioactive and chemical tracers have been
used as effective tools for evaluation of various subterranean formations such
as petroleum and geothermal reservoirs and underground aquifers. The tracer
tests conducted are usually of two types: 1) well-to—well (interwell) tests
in which a tracer 1is injected in an injection well and detected continuously
at a production well; or 2) single well tests in which the tracer is injected
into a well and 1is allowed to react with the formation fluid before being
produced from the same well. In this study, only the well-to-well tracer flow
tests are considered.

This chapter has been divided into four main parts. In the first, literature
related to qualitative interpretation of tracer tests is presented. The
second part discusses the mechanism of tracer flow in porous media. In this

part, dispersion (mixing) in linear and non-linear flow geometries is covered
at length. Quantitative analysis of tracer test data from various underground
reservoirs is presented in the third part. The last part provides a summary
to this chapter.

2.1 QUALITATIVE INTERPRETATION OF TRACER DATA

The results of interwell tracer tests usually have been interpreted on a
gualitative basis. Therefore, only general ideas about the characteristics of
the formation have been extracted from the tracer tests. Strum and Johnson
(1951) wverified the occurrence of crevices and joint-plane partings in the
Pennsylvanian Bradford Third Sand formation by qualitatively studying the
results of several tracer tests conducted in this sand. Three different
tracers were used: brine, fluorescein and a surface active compound. The
results verified the existence of directional permeabilities which had already
been measured from core samples. Based on this finding, subsequent waterflood
well patterns were designed to improve the swept volumes.

Carpenter et gt (1952) used boron in the form of Borax and boric acid as a
water soluble tracer to find the main features of three oil-bearing forma-
tions. They concluded that in two of the formations, several channels were
present instead of a single "pipe-line" channel, and the third formation did
not have channels or by-passing zones. Their conclusions were based upon the
concentration levels of boron detected at the producers, and the elapsed time
between the injection of the tracer and its appearance at the producing wells.

A comprehensive list of information obtainable from tracer tests weas presented
by Wagner (1977), who studied the results of twenty tracer programs conducted
in reservoirs undergoing waterfloods, gas drives and water—solvent injection
operations. His list included the following items:



1) Volumetric sweep—The volume of fluid injected at an injection well to
breakthrough of the tracer at an offset producer 1is indicative of the
volumetric sweep- efficiency between that pair of wells. A small break-
through sweep efficiency indicates the existence of a fracture or a thin, —.
high permeability streak between the two wells.

2) Identification of offending injectors—-With different tracers injected
into a formation, a comparison of arrival times of tracers at the
production wells can determine the injectors responsible for early break-
through in specific producers. Remedial treatment of the injectors would
normally be necessary.

3) Directional flow trends— When different tracers are injected into regular
patterns, the existing directional flow trends are identified by early
tracer breakthrough at the producers located along the preferential flow
direction.

4) Delineation of flow barriers— Lack of response to an injected tracer at a
production well indicates the existence of a barrier or a sealing fault
between the pair of wells.

5) Relative velocities of injected fluids— When different fluids tagged with
different: tracers are injected simultaneously or sequentially in the same
well, the individual arrival time of the tracers at the producers can be
used to measure the relative velocities of the injected fluids. This
information 1is useful in determining the appropriate fluid to use for
mobility control to achieve a more uniform sweep in tertiary oil recovery
operations.

6) Evaluation of sweep improvement treatments— The success or effectiveness
of sweep efficiency treatments can be evaluated by comparing the break-
through times of tracers before and after the treatment.

As an implementation of Wagner's work, D'Hooge BT &t (1981) simultaneously
injected four radioactive tracers (carbon-14, cobalt-57, cobalt-60 and
tritium) into the West Sumatra formation (Pennsylvanian age sandstone) to
track the movements of the injected fluids. A qualitative interpretation of
tracer concentration arrival curves at different production wells provided
valuable information on the direction of flow, reservoir discontinuities, and
probable areas of poor sweep efficiency. These investigators, however, did
not analyze the tracer elution curves in detail to obtain quantitative
information about formation heterogeneity.

2.2 MECHANISM OF TRACER FLOW

To perform detailed quantitative analysis on interwell tracer breakthrough
curves, one must have a thorough knowledge of the mechanism of tracer movement
in the formation. In general, the transport of tracer material in a porous
medium is subject to two phenomena--convection and hydrodynamic dispersion
(Bear, 1972).



2.2.1 Convection

Convection is used here to describe bulk movement of fluids as governed by
Darcy's law. This flow results from potential gradients imposed on the
system. In a reservoir, the potential differences are established either by
density differences between the flowing fluids, or by production and injection
wells drilled into a formation. Convection depends mainly on the well
arrangements and operating conditions, such as flow rates of the wells. A
comprehensive survey of the work done on convection for different well

patterns was provided by Craig (1971).

2.2.2 Hydrodynamic Dispersion

Hydrodynamic dispersion 1is composed of two parts— molecular diffusion and
mechanical dispersion. Molecular diffusion results from component concen-
tration gradients established between two miscible fluids, and is independent
of flow velocity. Mechanical dispersion, on the other hand, is the result of
movement of individual fluid particles in tortuous pore channels of a porous

medium. On a microscopic level, dispersion results from variations in
velocity of tracer material as it flows through the separating and rejoining
pore passages. In two dimensional flow, a distinction has been made between

mechanical dispersion occurring in the direction of flow (longitudinal
dispersion), and that occurring in a direction perpendicular to the mean flow
(transverse dispersion).

As a consequence of hydrodynamic dispersion, tracer material gradually spreads
and occupies an increasing portion of the flow domain beyond the region it
would occupy according to fluid convection alone. The amount of spreading (or
mixing) depends on the dispersivity of the porous medium and the geometry of
the flow system. Considerable work, both theoretical and experimental, has
been done to study the phenomenon of dispersion (mixing) in porous media for
various flow geometries.

2.2.2.1 Linear Flow

Aronofsky and Heller (1957) presented a mathematical analysis of mixing
(dispersion) that occurs between two miscible fluids as one fluid displaces
the other linearly through a porous medium. They solved the following
continuity equation for the fluid concentration:

2
3°C ac .99
Koz = V3 = 3t (2-1)

c(0,t) = C,

C(x,0) = O
C(=t) = O
-4 -



Where,
C = concentration of displacing fluid, mess fraction
K = effective mixing coefficient
v = microscopic velocity, q/A¢$

The Aronofsky-Heller solution 1is:

VX
c(zzt) --;—[erfc (x - vt) + oF erfe (x + vt)] (2-2)
o 2 VKt 2 Vit

The authors showed that the second term in the brackets was quite small except
at small values of x or large values of K

Aronofsky and Heller used this solution to analyze data from miscible flow
experiments that were available in the literature. They were able to match
the data reported by von Rosenburg (1956), as well as data provided by Koch
and Slobod (1957). From the analysis of von Rosenburg's data, they discovered
that the effective mixing coefficient, K, was a function of fluid velocity.
Furthermore, the K-values computed from von Rosenburg's data when graphed
against flow rate on log-log graph paper resulted in a straight line with a

slope equal to 1.2. From this observation, Aronofsky and Heller concluded
that the effective mixing coefficient was proportional to flow velocity to the
power 1.2.

Ogata and Banks (1961) independently solved the one-dimensional convective
diffusivity equation (Eq. 2-1) with the same boundary conditions considered by
Aronofsky and Heller, and obtained a solution identical in form to Eg. 2-2.
Ogata and Banks showed that the concentration profiles corresponding to Eq.
2-2 solution were not symmetrical about the plane of x = vt for small values
of vx/K. For vx/K » 500, a maximum error of 3%was introduced by neglecting
the second term in Eg. 2-2, and the corresponding concentration profiles
became symmetric about the X = vt plane. In ordinary experiments, errors of
the order of magnitude of experimental errors are introduced if a symmetrical
solution is assumed instead of the actual asymmetrical one. This implies that
the second term can be neglected for all practical purposes.

Raimondi e+ ad (1959) found that mixing between miscible fluids was con-
trolled by two parameters: coefficient of molecular diffusion, and a constant
determined by structure of the porous medium. They concluded that the
effective mixing coefficient was given by K = D' * av. In this relationship,
D' 1s the apparent coefficient of molecular diffusion within the porous
medium. It is less than the actual molecular diffusion coefficient by product
of formation resistivity factor and porosity. The term a is a constant which
depends on the structure, pore size and grain size distribution of the porous
medium.  For consolidated Berea sandstone cores, the experimental values of a
were between 0.15 and 0.25 cm, For packings of uniform size particlpﬁ, a was
equal to ede, where d IS the average grain diameter and € 1Is a
characteristic constant of the packs which was found to be equal to 0.68 for
uniform spheres. The experiments showed that molecular diffusion was the
dominating factor at low flow rates, and became negligible at high flow rates.
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Handy (1959) designed an experiment to study the effects of molecular

diffusion on the mixing-zone size for miscible displacements. He added
methanol and sucrose as double tracers to the displacing fluid. Methanol has
a higher molecular diffusion coefficient than sucrose. The methanol and

sucrose concentration profiles detected at the outlet end of the linear core
showed no appreciable differences at two displacement rates: 05 ft/day and
16,5 ft/day. This indicated that molecular diffusion was not an important
factor in the mixing of displacing and displaced fluids in the frontal
regions.

A thorough experimental investigation of hydrodynamic dispersion in linear
miscible displacements was carried out by Brigham e+ ad» (1961). They studied
the effects of fluid velocity, distance travelled, bead size (type of porous
medium), viscosity ratio of the fluids and pack diameter on the amount of
hydrodynamic dispersion which they called length of mixed zone. Their conclu-
sion was that mixing phenomenon in displacements with favorable viscosity
ratio could be explained by:

Cx,t) _ 1 orfe (_x__:_v_t) (2-3)
0 2 2 VKt

with an effective mixing coefficient of:
K = =— + awv (2-4)

The first term on the right hand side of Eq. 2-4 is the apparent molecular
diffusion, which is equal to the ratio of the molecular diffusion constant:
divided by the product of the formation resistivity factor and porosity of the
system. The second term 1is the mechanical dispersion. Constant a, known as
the dispersion constant, depends on the nature of porous medium as well as the
viscosity ratio of the fluids. For consolidated cores, values of a were found
to be 10 to 100 times greater than the values of a for unconsolidated cores.
This implied that substantial mixing had occurred in consolidated cores com-
pared to the packed beds. The authors also discovered that the effect of
molecular diffusion on mixing was negligible except at very low velocities.
Their Fig. 5 1is reproduced here as Fig. 21, and illustrates these points
clearly. Brigham et al., however, did not present the effects of lateral
(transverse) dispersion on mixing.

Blackwell (1962) studied both longitudinal and transverse dispersion in sand-
packed columns. He found that mixing in both directions was dominated by
molecular diffusion at low rates, and by mechanical dispersion at high rates.
However, mass transport by molecular diffusion was more important for trans-
verse mixing than for longitudinal mixing. At sufficiently high rates,
transverse mixing coefficients were found to be smaller by a factor of about
24 compared to those in the flow direction for both 20-30 mesh Ottawa sand and
40-400 mesh silica sand. Figure 7 of their paper is reproduced here as Fig.
22, and shows the mixing coefficients for various packs.
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Fig. 2.1: EFFECT OF RATE AND TYPE OF POROUS MEDIUM ON MIXING
COEFFICIENT (Brigham et al., 1961)
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Fig. 22: LONGITUDINAL AND LATERAL MIXING COEFFICIENTS
FOR VARIOUS SANDS (after Blackwell, 1962)
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Harleman and Rumer's (1963) expiri mental work showed that the longitudinal
mixing coeff%Fspnt was K o, v %, while the transverse mixing coefficient
was Ko = . liocity, v, 1s the microscopic average velocity along
the main f{ow dlrectlon " The ratio of the dispersion constants o /ap was
18.3. This was in good agreement with the value of 24 reported by BTackwell.
Although molecular diffusion was not reported in this study, the authors
speculated that the effects of molecular diffusion would be minimal.

Besides the diffusion model (error function type solutions) describing mixing
phenomenon, other models have also been presented to predict mixing In a
porous medium. The simplest one 1is the mixing cell, or stirred-tank model,
presented by Aris and Amundson (1957). In this model, the porous medium 1is
viewed as a series of cells or tanks connected to each other by tubes having
no volumes. Complete mixing 1is assumed within each cell, resulting in a
uniform composition in each cell. For a small number of such cells in series,
the calculated concentration profile 1is asymmetrical. However, for larger
numbers of cells, the concentration profile approaches the symmetrical normal
distribution curve computed from a diffusion model.

In some linear miscible flow experiments, especially those run with short
cores, a "talling” in the effluent concentration profile is observed and the
effluent profile is asymmetric. The degree of asymmetry is more pronounced in
consolidated porous media than in laboratory packed columns. Usually, the
deviation is not serious and the diffusivity equations provide a good approxi-
mation to actual observations. However, several investigators have attempted
to explain the asymmetrical concentration profiles quantitatively. Deans
(1963) considered the porous medium as a series of normal pores with frequent
dead—end passages, or stagnant zones distributed throughout the system. These
stagnant pockets store fluids, thereby elongate the mixing zone, and give a
tall to the concentration profile. To describe this phenomenon mathemati-
cally, Deans modified the mixing cell model to include mass transfer from the
flowing stream into the stagnant volumes. As a result, he produced a capaci-
tance model which has three parameters: number of mixing cells (equivalent to
dispersion coefficient); amount of stagnant volume (1-f), f being the flowing
volume as a fraction of total pore volume; and a rate constant for the mass
transfer into the stagnant volumes. Because of the existence of three degrees
of freedom (three constants), the capacitance model fits experimental data
better than does a diffusion model which contains only one constant (the
dispersion coefficient, X).

Coats and Smith (1964) augmented the diffusion equation with Deans® modified
mixing—cell model and produced a differential capacitance model. They used
the new model to match their data obtained from displacement of calcium
choloride solution by a sodium chloride solution in linear cores. The cores
were both consolidated and unconsolidated, and between 8 and 9 inches long.
The effluent concentration profiles from the consolidated cores exhibited
considerable asymmetry, while the unconsolidated cores yielded nearly sym-

metrical profiles. Coats and Smith demonstrated that the differential
capacitance model matched the data significantly better than a simple
diffusion model. This behavior was rationalized on the basis that the

capacitance model attributed a certain amount of mixing to dead end pore
volume effects, while the dispersion model considered only part of the mixing
generated in the experiments. The degree of contribution of capacitance
effects could be estimated from a dimensionless group defined as a = K,L/v,
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( — mass transfer rate, L = length of the system and v = velocity). For
their laboratory experiments, "a" was a small number which indicated a signi-
ficant contribution to the mixing by capacitance effects. However, for field
cases, where "a" is a large number (small v and large L), the capacitance
effects would be virtually absent and mixing would be controlled almost
entirely by a dispersion mechanism. Thus, danger arises from attributing the
total mixing observed in short laboratory cores to the dispersion mechanism
alone, and subsquently extrapolating the results to field scale. An easy
alternative would be to use longer cores in the experiments designed to study
dispersion characteristics of a specific porous medium. Because it IS often
impossible to retrieve long cores from a formation, the results of experiments
conducted with short cores should be interpreted with special considerations.

A specific study of mixing in short linear cores was performed by Brigham
(1974). For such systems, the boundary conditions used in solving the
convective diffusivity equation (Eq. 2-1), greatly affected the resultant
solutions. However, by differentiating between the in-situ concentration and
the flowing concentration, and allowing for this difference at the boundary
conditions as well, Brigham showed that the results computed from various
forms of solutions to the diffusivity equation were nearly identical. The
solution given by Aronofsky and Heller and Ogata and Banks (Eq. 2-2) was found
to generate values for concentrations which were in good agreement with other
solutions. The dead—end-pore models (capacitance and differential capacitance
models) were found to have been based on the in-situ concentrations, while
Coats and Smith had used them to match the flowing concentration data.
Although Coats and Smith obtained good matches to their experimental data, the
parameters computed from the differential capacitance model would not properly
represent the behavior of the same porous medium with longer lengths. Brigham
adjusted Coats and Smith's solution (Eq. 28 in their paper) to consider the
difference between flowing and in-situ concentrations. He showed that with
the new solution, the behavior of large systems might be computed correctly by
parameters obtained from small cores (Fig. 6 in Brigham's paper). Brigham
concluded that for large systems, the corrected capacitance model behaves like
the ordinary diffusion model with a somewhat greater effective dispersion
constant, and that the simple error function solution (Eqg. 2-3) to the diffu-
sivity equation yields satisfactory results.

2.2.2.2 Non-linear Flow

The preceeding considers mixing or dispersion in linear systems where the flow
is uniform and the average velocity is constant. For other geometries, fluid
velocity is a function of position, and correspondingly, the mixing coeffi-
cient varies from point to point. Therefore, any study of mixing in systems
that do not exhibit uniform flow must consider the dependence of dispersion on
velocity. The varing dispersion coefficient makes it very difficult, if not
impossible, to derive analytic equations to describe mixing in non-uniform
flow fields. Even for a simple geometry, such as a diverging radial flow, the
exact analytic solution to the convective diffusivity equation has not been
obtained in a wusable form, according to Bear (1972). However, several
approximate solutions are available which describe mixing in radial flow
systems with good accuracy. Raimondi &t al. (1959) derived an approximate
solution based on the assumption that the influence of dispersion becomes
small in comparison to local convection as the displacing fluid (or tracer)
moves away from the source (injection well). Raimondi's solution is:
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2
C(r,t) _ % erfec 0.5r ot (2-5)

o Co 8 -;)ion:3 + %'rl‘
where,
Q = q/2m¢h
g = injection rate
a = dispersion constant
D' = apparent molecular diffusion coefficient

In this solution, the initial condition ¢(r,0) = 0 is not satisfied. This
implies that the approximate solution assumes a finite amount of tracer mass
present initially in the porous medium. Although this error is large in the
immediate vicinity of the injection well, it is virtually negligible at larger
distances from the injection well.

Another appraximate solution for dispersion in a radially diverging flow was
obtained by Lau et al. (1959). The approach was based on the assumption that
the growth of the length of the mixed zone in a radial miscible displacement
was a linear sum of two effects: one due to distance travelled (longitudinal
dispersion), and the other due to the geometry of flow (divergence of stream-
lines). The distance effects were obtained from the mixing equation for a
linear system. The geometry effects were derived from consideration of
material balance, noting that the volume of the dispersed zone had to remain
constant at a given point regardless of the geometry of the system. The
solution presented by Lau et al. 1is:

C 1
C—o- =3 erfe (2-6)

where T is the average radius of the displacing fluid. Raimondi’s solution
(Eq. 2-5), also reduges to this equation by using the material balance rela-
tionship, Qt = 0.5 r~, neglecting the molecular diffusion term and assuming
that r ¥ = 2r in Eq. 2-5. For systems in which the size of mixed zone is
small, these assumptions are realistic.

Lau e+ al (1959) and Bentsen and Nielsen (1965) verified the applicability of
Eq. 2-6 experimentaly. Bentsen and Nielsen conducted their experiments in a
homogeneous slab of circular consolidated Berea sandstone which had a radius
of 924 c¢m and a thickness of 1.9 cm. The viscosity of the displacing fluid
was higher than the viscosity of the displaced fluid to avoid viscous
fingering. The concentrations were measured in-situ using the dielectric
constants of the fluids at each radius.

An extension of Lau &+ sd='s method was made by Baldwin (1966) to describe
mixing in convergent radial flow. Baldwin was primarily interested in com-
puting the tracer effluent concentration profile from a developed five-spot
pattern for a batch of tracer injected into the system. He divided the five-
spot flow domain into a series of radially divergent—convergent flow tubes and



computed the tracer concentrations entering the production well from each flow
tube. By this method, he matched the experimentally determined tracer break-
through curves reasonably well.

Gelhar and Collins (1971) developed a general approximate analytic solution
for longitudinal dispersion in steady flows with variations in velocity along
streamlines. Their solution contains two integrals related to velocity. When
this general solution was applied to a radial flow, it generated the same
approximate solution as proposed by Raimondi et at: (1959). A comparison of
results computed from Raimondi-type solutions with those obtained from numer-
ical simulation of a radial miscible flow was made to determine the accuracy

of the approximate solution. The comparison indicated that Raimondi's
solution would yield good results after the front had travelled a distance on
the order of 100 times the dispersivity of the porous medium (r/a 3> 100). In

reservoirs, this condition is easily met because the overall scale of the flow
iIs much larger than the dispersivity of the formation. This illustrates the
fact that in field applications the approximate solutions usually generate
acceptable results. Although the solution given by Gelhar and Collins is a
general one, for complicated velocity fields it becomes difficult to evaluate
the velocity integrals. Therefore, more simple approximate solutions would be
more desirable for practical applications.

Brigham (1973) derived simple equations to describe mixing in systems in which
the width of the flow passage varied linearly with the distance travelled.
Although this might impose some restrictions on the applicability of his
equations, Brigham showed that by breaking the flow system into segments in
which width was a linear function of distance, and by repeated use of his
solution, mixing could be computed for a variety of geometries. Despite the
fact that this method contains several approximations, it has a definite
advantage over numerical schemes and other complex solutions. The method is
simple, fast and produces reliable results.

The preceeding survey on hydrodynamic dispersion reveals the following facts.
Molecular diffusion and transverse dispersion play negligible roles in the
amount of mixing in miscible displacements. An equation similar to Eq. 26
can adequately describe mixing in linear and non-linear flow geometries for
practical purposes.

2.3  QUANTITATIVE ANALYSIS OF TRACER DATA

The rest of this section will focus on works which have dealt with quantita-
tive analysis of tracer breakthrough profiles from petroleum and geothermal
reservoirs and underground aquifers.

2.3.1 Petroleum Reservoirs

Perhaps Wallick and Jenkins (1954) were the earliest investigators who tried
to extract quantitative information about the characteristics of a formation
from tracer output data. They developed a theoretical method to compute the
results of a short-—time tracer test. In this, a pulse of tracer material was
injected under steady state flow conditions into one well and was detected at
a second well. In the analysis, the reservoir was assumed to be homogeneous
and infinitely large. The dispersion of tracer in the formation was ignored,
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meaning that the tracer material did not mix with fluids ahead or behind it.
The theoretical computation of tracer concentration profiles at the production
well was then achieved by computing the tracer travel times on various stream-
lines of this isolated source-sink system. Therefore, only convection was
considered. Wallick and Jenkins applied their method to analyze the results
of a field tracer test in which helium wes injected with air into a reservoir
undergoing in-situ combustion. The computed concentration profile was in
gualitative agreement with the observed data, and the average permeability and
porosity values computed for the formation were reasonably close to those
determined from core data.

Brigham and Smith (1965) performed a detailed quantitative analysis on tracer
elution curves for developed five-spot patterns. First, they derived an
equation to compute the tracer response curves for a homogeneous developed
five—spot pattern for a slug of tracer injected into the system. The deriva-
tion of this equation was accomplished by combining the tracer dispersion
effects with the areal sweep effects for this particular pattern. The disper-
sion effects were evaluated by approximating the flow field as radial flow to
the production well and using the simple mixing equation (Eq. 2-6) for radial
flow systems. This approximation, however, introduced errors in the computa-

tion of dispersion effects. Brigham and Smith extended the theoretical
analysis to developed five-spot patterns with vertical variations in the
permeability. They modeled this type of reservoir as a stack of non-

communicating homogeneous layers. The overall tracer breakthrough curve from
this composite model was computed by volumetrically adding the tracer arrival
curves from individual layers. The model was applied to analyze tracer
breakthrough curves from a field test conducted in a five-spot pattern. The
computed tracer curves had the same trends as the field data. To arrive at
these matched curves, Brigham and Smith used three layers, and had to vary the
permeability and thickness of the layers by a trial and error procedure. This
process was time consuming.

Baldwin (1966) also analyzed the field tracer data reported by Brigham and
Smith. He modeled the reservoir with twenty homogeneous, non-communicating
layers with permeability of layers ranging from 34 to 4200 md as determined
from core data. Based on his equations for radially convergent-divergent
flow, he calculated a tracer response curve from this layer—cake model.
Figure 8 of his paper is reproduced here as Fig. 2.3 to illustrate the
results. The match is good for the early portion of data, but it deviates
from the later data appreciably. Since the major portion of tracer flow is in
the high permeable zones, the low permeability values used by Baldwin are not
important. In reality, Baldwin's match is with fewer than 20 layers.

Yuen et al. (1979) revised Brigham and Smith's analytical solution to include
the effect of diverging-converging flow on dispersion. Based on the revised
solution, a computer program was developed which would decompose an overall
tracer curve from a multilayer developed five-spot pattern into the constitu-
ting layer responses, and compute ¢h and kh/Ikh of the layers. The algorithm
could handle four layers. As input, peak data (concentration and volume) of
tracer breakthrough curves from the layers were required. Yuen et al
demonstrated that peak locations in the overall tracer efflux curve did not
correspond exactly to peak locations in the individual layer responses.
Therefore, the peak data for the layers had to be determined by a trial-and-
error procedure.
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Yuen et al's work was modified by Brown and Brigham (1981) to handle larger
number of layers. This modified algorithm was used to analyze one of the
tracer breakthrough curves reported by Brigham and Smith (1965). Several
matches were obtained with different numbers of layers, the best match being
with ten layers. The method is useful but cumbersome as it requires many
trials to obtain the optimum match for any chosen number of layers.

2.3.2 Underground Aquifers

Besides petroleum engineers, hydrologists have also been interested in
defining aquifers in adequate detail. Halevy and Nir (1962) introduced a
pulse of radioactive o in the form of K3Co(CN)¢ into a fairly homogeneous
aquifer and continously recorded activity of the water at a pumped well
located 250 meters from the input well. This test differed from usual inter-
well tracer tests because the injected batch of tracer was not displaced by a
chase fluid. Instead, the tracer flowed towards the pumped well as a result
of regional pressure gradients established by the pumping action. Since the
flow field was essentially radial, i1t was assumed that produced tracer peak
concentration occurred after pumping a volume equal to the cylindrical pore
volume between the observation well and the pumped well. Porosity of the
aquifer was subsequently calculated from this peak tracer volume. This was
feasible because formation thickness had already been determined from
geological data. Halevy and Nir neglected dispersion of tracer. This
simplification detracted from the accuracy of their results.
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A similar test was conducted by Mercado and Halevy (1966) in a shallow
stratified aquifer. The same radioactive material was injected through a
dually completed observation well. The tracer arrival curve indicated that
the aquifer was composed of four distinct layers. The permeability—thickness
product of layers and average porosity of the formation were computed from an
analysis based on the method illustrated by Halevy and Nir (1962). Tracer
dispersion effects as well as interaction of tracer response curves from
individual layers were neglected. These assumptions are unrealistic, and
therefore reduce the accuracy of the results.

Zaghi (1977) extended Wallick and Jenkins' (1954) work for a case of nine
doublets (nine injectors and nine producers) unequally spaced in a direct
line—drive fashion. He assumed that the tracer dispersion was negligible and
as a result, the tracer had sharp interfaces with the contacted fluids ahead
and behind. He developed a computer program to calculate the breakthrough
curves both for the leading and the trailing edges of the tracer slug at the
production wells. The effluent tracer concentration curve at each production
well was then the difference of these two breakthrough curves at that well.
Although this analysis correctly included the convective effects in the
transport of tracer material, a neglect of the tracer mixing effects did not
generate accurate tracer concentration curves at the wells.

Ivanovich and Smith (1978) included dispersion effects in analyzing tracer
data from a pilot investigation of an underground aquifer. The procedure for
the test Wa58the same as the one reported by Halevy and Nir except the tracer
used was Br82. The tracer concentration profile detected at the pumped well
indicated that at least two different responses had been superimposed on each
other. A statistical model was used to fit the observed field data with two
one-dimensional dispersion equations. As a result of the analysis, the layers
had different dispersion constants, permeabilities, porosities and average
linear velocities. The velocities were considered to be along the line
joining the input and the pumped wells.

The main drawback in this analysis was the use of an unidirectional dispersion
equation in the statistical model. For a radial drawdown, such as this one,
the streamlines are not linear and the actual amount of dispersion caused by
non—uniform velocity field is different from that predicted by one—dimensional
models «

233 Geothermal Reservoirs

Geologic characteristics of geothermal reservoirs can also be revealed through
detailed analysis of tracer tests conducted in geothermal formations. Unlike
petroleum reservoirs, most geothermal reservoirs are highly fractured and the
fractures are connected to each other forming a network of channels (Horne,
1981). Short circuiting and early appearance of injected material at the
production wells are common. A response from an injected pulse of tracer is
generally detected in a matter of hours and the response curve usually has a
single peak with a long tail. Although methods developed to analyze geo-
thermal tracer data are somewhat different from those of sedimentary
formations, the basic ideas are the same.
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Tester et al. (1979) concluded that a tracer response curve from a hydraul-
ically fractured granitic geothermal reservoir was also a combination of
several responses, each arriving from a subzone of the formation. A field
test 155 conducted with a pair of injection and production wells using Br
and I as radioactive tracers. Tester et al proposed a mathematical model
in which the reservoir was assumed to be composed of several porous zones,
each zone being homogeneous but different in characteristics from others. In
this model, a two-dimensional convective diffusivity equation, with dispersion
coefficients being proportional to fluid velocity in each direction, wes
solved to compute the tracer response profile from a homogeneous layer. The
analysis of tracer field data was performed basically by curve fitting the
observed field data with those computed from the model. The curve fitting
process automatically generated the parameters of the zones.

Horne and Rodriguez (1981) derived an analytic expression to describe the flow
of tracers in a single fractured system. Based on Taylor's (1953) classic
work of convective dispersion in pipe flow, they obtained an effective longi-
tudinal dispersion coefficient for tracer flow in a fracture. Horne and
Rodriguez matched a tracer response curve from a geothermal field with their
model and computed the width and length of the fracture directly. Although
the match did not include the tail end of the data, it was postulated that a
multiple fracture model similar to Tester's (1979) multizone or Brigham and
Smith' (1965) multilayer model could be developed which would match all the
data closely.

24  3UIVVARY

From the preceding literature survey, it becomes evident that flow of tracers
in any formation—--whether it be a petroleum, a geothermal or an underground
aquifer-—can reveal detailed information about the reservoir which may other-
wise be unattainable. This information can generally be obtained from a
detailed mathematical analysis of a tracer breakthrough curve. In most of the
analyses, the convective diffusivity equation has been solved in some geometry
to include dispersion of a tracer and some flow pattern has been assumed to
take into consideration the areal movement of the tracer. The accuracy of the
methods depends on how well dispersion is defined and whether the assumed
flowlines are close to the true streamlines. However, in most of the previous
works, either dispersion has not been formulated correctly (even sometimes
neglected) or the flow field has been approximated by too simple and unrea-—
listic flow geometries.

Methods developed to analyze complex tracer breakthrough curves have only been
for bounded (repeated) five—spot patterns. These methods generally require a
direct and lengthy interaction with the computer in order to generate a good
match to the tracer production data from five-spot patterns. In these
methods, dispersion of tracer has not been formulated accurately. No studies
of tracer breakthrough curves for other patterns have been reported. It was
the purpose of thls study to develop a method which would adequately analyze
tracer breakthrough curves not only for developed five-spot patterns but also

for other common developed flooding patterns. It was also the goal of this
research that the analysis technique be free of cumbersome trial-and-error
procedures.
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3. METHOD CF SOLUTION

This section provides a mathematical analysis of tracer flow in several
bounded flooding patterns for a mobility ratio of unity. The section 1is
divided into three main parts. In the first, analytic equations are derived
to define the performance of the flooding patterns for immiscible displace-
ments with unit mobility ratio. In this part, an attempt has also been made
to extend the analytical analysis for mobility ratios other than one. The
second part covers the flow of a tracer slug in homogeneous reservoirs.
Tracer dispersion effects are mathematically superimposed on the immiscible
pattern breakthrough curves to generate tracer production curves. The
analytically defined tracer production curves are correlated into a single set
of curves which represents tracer flow in various patterns. The last part of
this section studies tracer breakthrough curves from non-communicating,
stratified reservoirs. A technique developed to analyze tracer response
curves for these systems is presented.

3.1 PATTERN PERFORMANCE

The areal movement of displacement fluids is the prime feature in the recovery
performance of a pattern. In general, this is characterized by a pattern
breakthrough curve, or areal sweep efficiency curve. This section illustrates
the analytical derivation and correlation of these curves for a variety of
repeated flooding patterns.

3.1.1 Steadv Multi-Well Flow Theorv

As was discussed in the literature review, the transport of tracer solutions
in any flow system IS subject to convection and dispersion. Convection
represents the gross movement of fluids in the system. Its effects are
obtained from displacements in which sharp fronts between the fluids are
preserved. To illustrate this point, consider a five-spot pattern initially
filled with fluid A Fluid B is injected into the pattern continuously to
displace fluid A with a sharp front. Figure 3.la shows the location of fluid
B in the system after injecting a definite volume of the fluid. The break-
through curve describing the fraction of fluid B in the producing stream at a
production well is given in Fig. 3.1b. As this figure shows, there 1is no
production of B until breakthrough, after which production of B rises steeply
and approaches 100%asymptotically. This situation corresponds to the fill-up
of the entire pattern by fluid B. The shape of the curve in Fig. 3.1b is a
function of two parameters: the geometry of the pattern, and the mobility
ratio of the fluids.

Consider another case in which a slug of fluid B is injected into the same
pattern and then followed by fluid A as shown in Fig. 3.2a, Because sharp

fronts are assumed between B/A and A/B, the breakthrough curve for A dis-
placing B is identical in shape to the curve in Fig. 3.1b except that it lags
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by an amount equal to the volume of slug B. Figure 3.2b shows the theoretical
breakthrough curves for B displacing A and for A displacing B The break-
through curve for fluid B is then the difference of these two curves. This is
illustrated as a shaded profile in Fig. 3.2b. The peak concentration (or
fraction) of B produced from this system is considerably less than the concen-
tration flowing in the reservoir which is 100 percent. The dilution of B is
the result of convection or areal sweep effects. For the case where B is
miscible with A, dispersion effects are imposed on the shaded curve, hence,
causing further dilution. The broken-line profile in the same figure shows
the breakthrough curve for fluid B from this pattern with dispersion
effects. To conserve a material balance, the areas under these two curves
must be equal.

In early phases of this research, it was speculated that any theoretical
description of tracer flow in patterns must be related to the pattern
breakthrough curves such as the one shown in Fig. 3.1b. Therefore, an attempt
was made to describe the pattern breakthrough curves analytically for several
common, bounded, flooding patterns at a mobility ratio of unity.

3.1.2 Pattern Breakthrounh Curves

Any mathematical description of fluid movement in a flow system requires a
knowledge of a potential field for that system. For single-phase steady flow,
the potential field can usually be obtained either from a solution of the
Laplace equation with appropriate boundary conditions, or by application of
the superposition principle as indicated by Muskat (1949) and Prats et at
(1955). Generally, it is simpler to solve the problem in a complex plane and
derive an expression for the complex potential of the geometry. This expres-
sion can be decomposed into a real part and an imaginary part. The real part
is the equation for the potential distribution (proportional to pressures),
and the imaginary part is the stream function. Morel-Seytoux (1966) provides
the complex potentials for a variety of flooding patterns. Although he does
not give the pressure and stream functions for all patterns, they can be
generally derived from the complex potentials.

Since stream functions are available or can be constructed for a variety of
flow patterns, it is feasible to describe the displacement of two fluids in
different patterns mathematically. The displacements are assumed to be of
unit mobility ratio and piston-like. Fluids are assumed incompressible and
gravity and capillary effects are neglected. The following general procedure
is used to derive the analytic expressions for the breakthrough curve
(displacing fluid cut versus pore volumes injected) of any pattern:

1) Compute the time required for a particle to travel from the injection
well to a production well on a general streamline of a pattern. This is
the breakthrough time for that streamline.

2)  Multiply the breakthrough time by the injection rate and divide by the
pattern area to obtain the pore volumes injected at breakthrough of that
streamline.
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3) Compute the angle at which the considered streamline enters the produc-
tion well or leaves the injection well. Divide this angle by the total
angle subject to flow at either the production or injection well to
obtain the displacing fluid cut at the producing stream. This calcu-
lation is correct because for mobility ratio of one, the total flow rate
of each fluid is proportional to the total angle from which each fluid
enters .the production well. The calculated cut corresponds to the pore
volume determined in item 2.

The mathematical formulation of breakthrough curves for four bounded homo-
geneous patterns— -staggered line drive, five-spot, direct line drive and
inverted seven-spot—-are given in Appendices A 1, A2, A3, A.4, respec-
tively. Figure 3.3 shows breakthrough curves for these four patterns.
Staggered line drive and direct line drive patterns have different break-
through curves depending on their d/a ratios. The ratio d/a represents the
ratio of the distance between the unlike wells (an injector and a producer) to
the distance between like wells (two injectors or two producers).

These results are useful in computing oil recovery from displacement processes
wherein the assumption of unit mobility ratio can be justified. However, for
such calculations; areal sweep efficiency versus pore volume of displacing

10 L T
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2 / st a
g 04 | ’ S e Five Spot =
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0.2 / ) -
!
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! :.'
, '
0 1 i l 1 i 1 1 1 L A 1 1 1 d
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PORE VOLUMES INJECTED, VpD

Fig. 3.3: PATTERN BREAKTHROUGH CURVES FOR DEVELOPED SYSTEMS,
MOBILITY RATIO = 1




fluid injected would be more useful. Areal sweep efficiency may be computed
from the following (Craig, 1971):

3

\Y)
pD
E, -f (1= £5) av
0

(3-1)
VpD
= VpDbt + (1 - fD) vaD
Vprt
where,
E, = areal sweep efficiency
fp = displacing fluid cut in the production stream
Vprt = breakthrough pore volume or breakthrough areal sweep
efficiency
VpD = displacing pore volume corresponding to cut, fp,
This integral corresponds to the area above the curves in Fig. 33. It is
alternatively given by:
fD
E, = (1 - fD) VpD + VpD de (3-2)
0

The integrand is a function of f; and the functional relationships are given
in Appendix A for various patterns. The results of integration are shown in

Fig. 34

3.13 Correlation of Pattern Breakthroueh Curves

For patterns other than those included in this study, the same derivations
must be performed to obtain a breakthrough curve similar to the curves in Fig.
3.3. However, it would be desirable to relate all pattern breakthrough curves
and find a general correlation which would be applicable for all patterns.
Previously, Morgan (1977) in continuation of Morales' (1975) work concluded
that the breakthrough curves for different patterns could possibly be corre-

lated into a single curve for each mobility ratio of displacement. The
parameter that was used in the correlation was a dimensionless quantity
defined as:
V.=V
PVD - 1D- - pDbt (3-3)
pDbt

The PVp term will be referred to as dimensionless pore volume in this study.
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Since Morgan was working with limited experimental data, he could not confirm

the accuracy of the correlation, although it appeared to be reasonably
accurate. In this study, however, it IS demonstrated that by using the
dimensionless parameter defined by Egq. 3-3, all the analytically defined

pattern breakthrough curves collapse into virtually a single curve as shown in
Fig. 3.5. Staggered line drive and direct line drive patterns with various
d/a ratios are all included in this single correlation. A simple equation for
the curve in Fig. 3.5 is obtained by a non-linear curve-fitting method, as

follows :

0.792

10¢pv_)0+330 15(PV.)

f_ =1-0.5]e + e (3-4)

Equation 3-4 yields a maximum error of 2% in £y for all the curves, except for
very early parts of the curves where the error is large.

A comparison of the experimentally-measured data with the analytically
computed and correlated curve is illustrated in Fig. 3.6. The data for the
five-spot, direct line drive and the staggered line drive have been taken from
Dyes et at— (1954). The data for the inverted seven-spot pattern are from
Guckert (1961). Figure 3.7 shows a comparison of results for a repeated five-
spot pattern where several investigators have reported either numerical or
experimental data for the performance of this pattern (Fay and Prats, 1951;
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Dyes et ak, 1954; and Caudle and Witte, 1959). The dashed curve in this
figure has been obtained by differentiating the equation for the areal sweep
efficiencies reported by Craig et al. (1955). It 1s believed that the
deviations of data from the analytic curve are due to smearing of the
displacement fronts by capillary forces (immiscible displacements) or mixing
(miscible displacements). Experimental errors also contribute to the

deviations.

The curves in Fig. 3.4 can also be correlated into a single curve. This
requires defining another parameter, called dimensionless areal sweep

efficiency, as follows:
E, - E

Abt

where :

Espe = breakthrough areal sweep efficiency -+ pDbt

The correlation is shown in Fig. 3.8. The equation for this curve obtained by
a non-linear curve-fitting routine is:

-o.7413(wD>0-9273
g = | =~ e (3-6)
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From thes

modeling

e results, one could expect that the generalized curves of Figs. 35
and 38 or 39 would be valid for any balanced patterns. Thus,
correlated curves could be used as a basis for post-breakthrough calculation
of recovery versus volume injected for floods without

calculations.

Table 31

resorting

one of the

to complex

VALUES CF BREAKTHROUGH AND AREAL SAERP EFFICIENCY CURVES FOR
A DEVELOPED FIVE-SPOT, MOBILITY RATIO = 1

0.70
0.75
0.80
0.85
0.9
0.%

0.71777
0.71887
0.72222
0.72786
0.73589
0.74645
0.75976
0.77608
0.79576
0.81926
0.84720
0.88038
0.91993
0.96742
1.02514
1.09666
1.18789
1.30986
1.48714
1.79710

0.00391
0.01576
0.03573
0.06419
0.10164
0.14880
0.20661
0.27634
0.35961
0.45860
0.57617
0.71630
0.88456
1.08908
1.34248
1.66572
2.09791
2.72604
3.82430

0.71777
0.71884
0.72192
0.72684
0.73346
0.74164
0.75128
0.76228
0.77456
0.78806
0.80270
0.81844
0.83522
0.85299
0.87170
0.89130
0.91173
0.93291
0.95475
0.97709

0.00000
0.00378
0.01471
0.03215

0.05559
0.08457
0.11872
0.15700
0.20123
0.24905
0.30094
0.35671
0.41616
0.47912
0.54542
0.61486

0.68724
0.76230
0.83968

0.91883
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Table 3.2

VALUE OF BREAKTHROUGH AND AREAL SAMEEP EFFICIENCY CURVES FOR A
DEVELOPED INVERTED SEVEM-SPOT, MOBILITY RATIO = 1

fD VpD PVD EA EAD
0.00 0.74368 0.00000 0.74368 0.00000
0.05 0.74470 0.00390 0.74458 0.00350
0.10 0.74778 0.01592 0.74703 0.01305
0.15 0.75297 0.03616 0.75156 0.03072
0.20 0.76036 0.06499 0.75760 0.05447
0.25 0.77007 0.10290 0.76517 0.08382
0.30 0.78230 0.15061 0.77403 0.11838
0.35 0.79728 0.20905 0.78412 0.15775
0.40 0.81532 0.27942 0.79538 0.20168
0.45 0.83683 0.36337 0.80774 0.24990
0.50 0.86237 0.46299 0.82112 0.30214
0.55 0.89265 0.58116 0.83549 0.35818
0.60 0.92869 0.72175 0.85077 0.41781
0.65 0.97187 0.89025 0.86694 0.48087
0.70 1.02426 1.09467 0.88392 0.54713
0.75 1.08905 1.34744 0.90168 0.61642
0.80 1.17153 1.66927 0.92014 0.68843
0.85 1.28162 2.72209 0.93925 0.76301
0.90 1.44137 2.72209 0.95894 0.83981
0.95 1.72088 3.81263 0.97908 0.91838

3.1.4 Pattern Breakthrough Curves for Non-Unit Mobility Ratio

Displacement of fluids with unequal mobilities differs from single phase flow
(mobility ratio equal to one) for two reasons. First, the overall resistivity
to fluid flow depends on the location of displacement interface. This implies
that for a constant flow rate displacement, the pressure drop between an
injection well and a production well varies continually as the displacement
front advances towards the production well. For a favorable mobility ratio
(M < 1), the pressure drop increases while for an unfavorable mobility ratio
(M > 1) it decreases. Second, potential distributions in the displaced region
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and the non-invaded zone continuously change with the movement of the dis-
placement front. As a result of these variable pressure fields, streamlines
deviate from those of a single fluid flow. The amount and nature of deviation
depends on the location of the interface.

If the shift of streamlines from those corresponding to a single fluid flow is
assumed to be minor, calculations can be made to predict recovery performance
of patterns for different mobility ratios. Appendix B presents the derivation
of equations for recovery performance of a developed five-spot pattern for

various mobility ratios. The derivation is based on fixed streamlines and
piston-like displacements. Table 3.5 and Figs. 3.10 and 3.11 show the
results. As these figures illustrate, the breakthrough areal sweep effi-

ciencies calculated using these assumptions are nearly independent of mobility
ratio. This conclusion has also been reached by Morel-Seytoux (1965), whose
mathematical approach is different from the one taken in this study. The
independence of areal sweep efficiencies for different mobility ratios is in
direct conflict with experimental data which show that breakthrough areal
sweep efficiencies are functions of mobility ratio (Dyes et at, 1954).
Therefore, the assumption of no streamline change with mobility ratio 1is
unrealistic and calculations of piston-like displacements based on this
assumption generate erroneous results.

One of the methods that has been extensively used in approximate calculation
of waterflood and gas flood performances is Higgins and Leighton's (1962)
streamtube method.  This method is based on the assumption that streamlines
are independent of mobility ratio and that Buckley-Leverett theory can be
applied to calculate the fluid displacement in streamtubes comprising the flow
system. The principle justification of the method was the good agreement
between the recovery values computed from their method and the laboratory data
reported by Douglas et atr (1959) for a repeated five-spot waterflood in a

Table 35

VALUES OF BREAKTHROUGH AND AREAL SWHEP EFFICIENCY CURVES FOR A
DEVELOPED FIVE-SPOT PATTERN AT VARIOUS MOBILITY RATIOS

M= 05 M=1 Me3
% Vb E ) Vep Ex 2 VD Ex
0.0000 0.7232 0.7232 0.00 0.7178 0.7178 0.0000  0.7093 0.7093
0.1646 0.7403 0.7305 0.10 0.7222 0.7219 0.1690 0.7142 0.7137
0.3437 0.7946 0.7787 0.20 0.7359 0.733%5 0.3164 0.7306 0.7257
0.4329 0.03% 0.0063 0.0 0.7590 0.7513 0.4433 0.7611 0.7442
0.%410 0.9017 0.0301 0.40 0.7950 0.7746 0.5537 0.0106 0.7602
0.6473 0.9890 0.0734 0.50 0.0472 0.8027 0.6505 0.0063 0.7973
0.7591 1.1204 0.9133 0.60 0.9199 0.0352 0.7361 1.0002 0.0300
0.0767 1.3551 0.9556 0.70 1.0251 0.0717 0.8123 1.1752 0.0603
0.9253 1.5300 0.9732 0.80 1.1079 0.9117 0.8809 1.4619 0.90H4
0.9749 1.9093 0.9910 0.90 1.4071 0.9548 0.9430 2.0190 0.9537
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From the fractional flow curves

and the recovery data in Fig. 1.0
3.12, the breakthrough areal

sweep efficiency for each dis-
placement is calculated by
dividing the computed break- 0.8
through oil recovery value by
the corresponding breakthrough
displacement efficiency. Table
36 presents the results. As
this table shows, the computed
breakthrough areal sweep effi-
ciencies for viscosity ratios of
0.083 and 8.08 are practically
the same and close to that for
unit mobility ratio, while the
sweep values corresponding to 0.2 ,
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Table 3.6

BREAKTHROUGH AREAL SWEEP EFFICIENCIES EXTRACTED FROM HIGGINS AND
LEIGHTON MATCH.TO DATA REPORTED BY DOUGAS ET AlL. (1959)

Oil-water viscosity ratio 0.083 8.080 141 754

Irreducible water saturation 0.125 0.087 0.087 0.087
Average water saturation behind front 0.895 0.600 0.340 0.245
Breakthrough displacement efficiency 0.770 0.513 0.253 0.158

Pore volume oil produced at breakthrough 0.600 0.380 0.210 0.140

Breakthrough areal sweep efficiency 0.770 0.740 0.830 0.880

W (1964) investigated the accuracy of the Higgins and Leighton method both at
breakthrough and after breakthrough. He conducted several displacement exper-
iments on a quadrant of a five—spot sand model in which water displaced oil at
different viscosity ratios. The same computer program developed by Higgins
and Leighton was used to match the experimental recovery data. Fractional
flow curves needed for the program were prepared from the pre-determined
relative permeability curves on a linear core with the same sand. From the
analysis, Wi concluded that: 1) breakthrough areal sweep efficiencies com-
puted by the streamtube method at various mobility ratios were not different
from each other, in contrast to his experimental observations that confirmed a
strong variation of areal sweep efficiencies with mobility ratio; and 2) post-
breakthrough oil recoveries computed from the streamtube program closely
approximated the experimental data. No reasons for this were given.

Despite the fact that Higgins and Leighton's method generates nearly identical
values for breakthrough areal sweep efficiencies at all mobility ratios, the
method appears to adequately describe recovery performance of Buckley-
Leverett-type displacements. The main reason for this seems to be that the
effect of displacement efficiency on recovery calculations is more important
than the effect of areal sweep. On the other hand, in piston-Ilike displace-
ments, such as miscible displacements in which the displacement efficiency is
100 percent, calculation of pattern breakthrough curves based on fixed stream-

lines will not generate accurate results. Because of this conclusion, the
computation of tracer flow in this study was only performed for unit mobility
ratio.

3.2 TRACER FLOW IN HOMOGENEOUS SYSTEMS

Besides pattern sweep efficiency (areal effects), mixing due to dispersion
influences breakthrough history of a tracer from a pattern. A mathematical
description of mixing in a general flow passage is provided in the first part
of this section. The second part utilizes this mixing equation to derive
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expressions for tracer production curves from various systems. Lastly, a
technique Is presented which correlates tracer production curves into a single
set of curves.

~ .

3.2.1  Mixing Theory

When one fluid miscibly displaces another fluid in a porous medium, a transi-
tion zone (mixed region) is formed between them at the region of contact. The
establishment of the mixed zone IS due to a phenomenon known as hydrodynamic
dispersion. In general, hydrodynamic dispersion consists of two parts:
mechanical dispersion and molecular diffusion. Mechanical dispersion results
from the movement of individual fluid particles which travel at variable
velocities through tortuous pore channels of the porous medium. This random
fluid movement in irregular flow paths spreads the displacing fluid into the
displaced fluid, thereby generating a blended region between them. The amount
of spreading depends on the dispersive capability of the porous medium. The
property of porous medium that IS a measure of its capacity to cause
mechanical dispersion is called dispersivity. In general, dispersivity 1is
considered to have two components: one in the direction of mean flow
(longitudinal dispersion) and one perpendicular to the direction of mean flow
(transverse dispersion). For practical purposes, however, transverse
dispersion has a small effect on the amount of mixing between fluids compared
to longitudinal dispersion, as was illustrated by Blackwell (1962), Harleman
and Rumer (1963), and Sauty (1980).

The second component of hydrodynamic dispersion—-namely, molecular diffusion- -
occurs on a macroscopic level as a consequence of net concentration gradients
across surfaces perpendicular to the average flow direction. 1t is caused by
the random movement of the differing molecules. This molecular diffusion
contributes to the growth of the mixed region as well. However, it has been
verified that the effect of molecular diffusion on mixing is negligible unless
the displacement takes place at low velocities (Raimondi et at, 1959; Handy,
1959; Brigham et al., 1961; and Blackwell, 1962). Therefore, in most prac-
tical miscible fluid flow through porous media, longitudinal mechanical
dispersion is the major factor in creating a mixed zone between the fluids.

The concentration of each fluid in the mixed zone can be computed as a
function of position iFf the flow geometry and the dispersivity of porous
medium are known. For stable miscible displacements (in the absence of
viscous fingering), equations in closed form are available which describe
concentration of the fluids. These equations have been derived for non-
adsorbing, non-decaying and non-reactive miscible fluids. Aronofsky and
Heller (1957) and Ogata and Banks (1961) present exact solutions for linear
displacements (Eq. 2-2), while Ogata (1958) gives an exact equation for a
diverging radial flow. Ogata's solution involves a very difficult integral.
However, these exact solutions can be reduced to more simple forms, provided
that the physical dimensions of the flow systems are larger than the dis-
persion constant of a porous medium, and that the molecular diffusion effects
are negligible. The dimensionless group which characterizes this condition is
known as the Peclet number. It is defined as the ratio of the displacement
front position to the dispersion constant of the porous medium. For a linear
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uniform displacement with a Peclet number of x/a > 100 (Sauty, 1980), the
resulting equation is:

~- L . -%-erfc( ’_‘_"__’.‘.) (3-7)

where :

C = concentration at location X

Q
Il

initial concentration of displacing fluid

)

x = front location corresponding to C = 0.5 Co

a = longitudinal dispersion constant, length unit, same as x
erfc = complementary error function = 1 = erf

The corresponding approximate equation for radial flow is given by Lau et a+
(1959) and Raimondi et at (1959). = The solution is accurate when the Peclet
number is greater than 100 (;/a > |00), as was shown by Gelhar and Collins
(1971) and Sauty (1980):

L o Lo 2= (3-8)
C 2
o i -

For most field applications, the condition of Peclet number greater than 100
is usually achieved because of the distances involved. Therefore, the
following equation can be viewed as a general defining equation to describe
mixing in different flow geometries with practical accuracy (Brigham, 1973):

g = terfc (s -E_ (3-9)
o 2 V'Z:f
where :
s = location corresponding to concentration C
s = location of the front corresponding to C = 0.5C,
¢ = measure of the length of the mixed zone computed at s, This corre-

sponds 50 the standard deviation term, in statistics. For linear

flow, 0¢“ = 2ax and for radial flow, o= 2a;/3, as are deduced by
comparing Egs. 3-7 and 3-8 with EJ. 3-9, respectively.

If o IS known for a system, Eg. 3-9 can be used to compute the concentration
of the displacing fluid at various points in the system. Hence, it is only
necessary to derive an expression for o in a general flow geometry. This can
be accomplished by noting that in an arbitrary flow passage, such as Fig.
3.14, the growth of the length of the mixed zone is affected by two factors as
the fluid moves from point A to point B:

1) The movement of fluid through porous media (the longer the distance
travelled, the longer the mixed zone); and




-— >
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Fig. 3.14: A GENERAL FLOW PASSAGE

2) The change of geometry of the flow path (the wider the passage, the
narrower the mixed zone).

Therefore, the total change in a is (Lau et al , 1959; Baldwin, 1966; and
Brigham, 1973):

da = do_ * do (3-10)
8 g

where, do. Is the change due to movement along path s and da, is the change
due to the geometry of the passage. Equation 3-10 is simila? to the super-
position principle in which independently computed effects are added to each
other to produce a combined effect.

In computing either of the changes in a, the other must be treated as a
constant. In this manner, dogg is computed from the mixing equation for a
linear system for which ¢ = 2as. Differentiating this expression:

a_ds
dcts = (3-11)

The geometry effects are obtained by noting that the volume of the mixed zone
at any location must remain constant, regardless of the shape of the system at
that position. Since the, mixed zone is usually small compared to the flow
path, then ow = constant, where w is the width of the flow channel at that
position. Differentiating this relationship:

Wdag + odw = 0 (3-12)
then:
o = -oX (3-13)
g w



Since the width of the passage 1S inversely proportional to the velocity of
fluid at that point, Eq. 3-13 in terms of velocity becomes:

do, = UL (3-14)

Substituting Egs. 3-11 and 3-14 in Eq. 3-10, one gets:

do = —— + — (3-15)
Multiply both sides by Zo/v2 and rearrange:
20 do 202 dv - 2ads 3-16
2 3 —7 (3-16)
\Y \Y% \Y
Or:
2
d(&’_z_) - 2 45 (3-17)
e \Y%
Integrating between point A and point B
52 ;2 °B
2.2 . x ds (3-18)
2 2 vz(s)
Vs Va 8y
If there iIs no mixing at the entry initially, then o, =0 at s =0 and:
s
o2 = ;m v2(E) S (3-19)
ve(s)
0

This is the general equation for o which is applicable for flow passages of
any geometry. For example, in gadial flow in which ds = dr, v(s) = q/2rr, and
v(g) q/27mr, it fo;}ows that ¢° = 2ar/3. onr sphericazl flow, ds = dr, v(s) =
q/4nxr” , v(s) = q/4nr” , the expression for ¢ becomes ¢" = 2ar/5, This 1S the
same relationship as Gelhar and Collins (1971) reported, ifr * r = 2r is used
in their equation.

3.2.2 Tracer Production Curves

In this section, equations are derived which predict tracer breakthrough
curves from several homogeneous flooding patterns for a slug of tracer
injected into the patterns. In the development of the equations, the
following assumptions are made:
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1) Originally, there is only one mobile fluid in the system.
2) Tracer material is miscible with the fluids both ahead and behind.

3) Tracer slug has the same mobility as the displaced and the displacing
fluids (unit mobility ratio displacements).

4) Tracer does not adsorb on the formation rock nor does it react with
either the formation fluid or the formation matrix.

5) Dispersion of tracer can be described by the general approximate mixing
equation (Egs. 3-9 and 3-19).

6) Tracer slug size Is small compared to the volume of the pattern.

7) A steady-state flow condition is established prior to and during tracer
injection.

The flow of different fluids with the same mobility is essentially equivalent
to a single-phase flow. Because in single-phase steady-state flow only one
pressure field is imposed on the entire system, the streamlines and the
isopotential lines for the system are unaffected by the location of the dis-
placement fronts. Such flow systems can be divided into several unvarying
streamtubes and fluid flow in each can be studied. As an example, consider a
repeated flooding pattern such as a staggered line drive (as shown in Fig.
3.15).  Assume that a slug of tracer with an initial concentration C is

@ \

C Sy p——

(J\‘

Fig. 3.15: A STAGGERED LINE DRIVE PATTERN WITH TRACER
CONCENTRATION PROFILE IN A STREAMTUBE
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injected into the pattern, followed by a chase fluid to displace it through
the formation. The tracer slug will be distributed among the streamtubes that
comprise the pattern volume. In any streamtube, mixing will occur at both the
leading edge and the trailing edge of the slug, hence diluting the tracer slug
as it moves down the tube. The amount of mixing occurring at each edge can be
computed by assuming that the tracer slug behaves as though it was continuous
at that edge. Mathematically, the mixings at the edges are given by Eg. 3-9
with o defined by Eg. 3-19. At any point in the streamtube, the sum of three
concentrations— —tracer concentration, chase fluid concentration, and formation
fluid concentration--is equal to the initial tracer concentration, Co. Thus:

= - - 3-20
C=C_ ~-¢C -C, (3-20)
where:

C = concentration of tracer

C, = concentration of fluid ahead of the slug (formation fluid)

Cy, = concentration of fluid behind the slug (chase fluid)

From mixing equations, the concentration of fluid ahead of the slug is defined
as:

-Ci =1 - % erfe 1 (-21)
(0] 9 02
1
and behind the slug:
C § ~8
-C—b- = -;— erfc 2 (3-22)
(o]

Combining Egs. 3-20, 3-21 and 3-22, the concentration profile of the tracer
slug is expressed by:

8 -8 8 -8
€ olerse 1 - Lerfe 2 (3-23)
Co 2 2 2 2
2 dl 2 9,
where :
s = location corresponding to concentration C
31: location of the front at the leading edge
'52 = location of the front at the trailing edge

o; = standard deviation computed at the leading edge

o, = standard deviation computed at the trailing edge
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Since adsorption and reaction (or decay) of the tracer material are assumed
negligible, the volume of tracer slug within the streamtube remains constant
at any time during the injection process. However, the undiluted width of
tracer is a function of position; hence, the width is a function of the width
of the streamtube at that location. The undiluted width of tracer is defined
as:

As = 31 - '52 (3-24)

IT the tracer slug is small compared to the size of the streamtube (which is
usually the case), then Eg. 3-23 may be written as:

C As A dF
= . - 23y - +_§] - -2 3-25
g ﬁ?o [F(s ) ~ F(s T3 s o (3-25)
where, _
) 8 - 8
F(s) = 5 erfc ( (3-26)
2
20
Therefore,
-2
£ __1&s exp |- (s = 8) (3-27)
¢ 2 202
° 2nag

Equation 3-27 implies that maximum tracer concentration in a streamtube occurs
at point s, For small slug size, s can be viewed as the front location in an
immiscible displacement of the original formation fluid by the chase fluid
alone. The o 1Is computed at s and it is given by Eg. 3-19.

The computation of tracer
concentrations from Eq.
3-27 requires calcula-
tions involving distances
along the streamtubes.
However, it is more con-
venient to replace the
distance terms with their
equivalent volumetric
terms in Eq. 3-27. This
conversion  process is
accomplished by approxi-
mating the actual loca-
tion of the tracer slug
in the streamtube by a
rectangle as shown 1in
Fig. 3.16. The approxi-
mation 1is justified since Fig. 3.16: APPROXIMATE LOCATION OF A TRACER
the slug size is small. SLUG IN A STREAMTUBE

PRODUCTION WELL
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From Fig. 3.16, the equation relating the distance terms to volumes is:

~.

"(s - 8)wh 98, =V -V (3-28)

where,

w = width of the streamtube at volumetric location s

h = thickness of the streamtube

¢ = porosity

S, = displaced fluid saturation in the system

V = displaceable pore volume of streamtube up to location s

Vo= displaceable pore volume of streamtube up to location s

The width of the streamtube at s is related to the velocity of fluid at that
point by:

w = ’\74731“5_ (3-29)
w
where,
v = microscopic velocity, darcy velocity divided by porosity
g = injection rate into the streamtube

Substituting Eq. 3-29 into Eq. 3-28:
s-’s=-j-1<v-v> (3-30)

Similarly, the undiluted width of tracer, As, 1is related to the volume of the
tracer slug injected into the streamtube, V... This 1Is:

As = .‘ql vt‘l’.‘ (3"31)

Substitution of Egs. 3-19, 3-30 and 3-31 into Eq. 3-27 and further simpli-
fication results in:

v -2
%_ -t e |- L‘L_‘_z‘ll._ (3-32)
0 Zq\/naI boq1
where,
s
1= S (3-33)
o 7 (8)
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Equation 3-32 defines the tracer concentration at any location within the
streamtube in terms of volumes. At the production well, the concentration of
tracer is computed by substituting the total displaceable pore volume of the
streamtube for V. For this case, at any time, t:

V-Togt, -0 (3-34)
where t is the breakthrough time of the injected fluid in the streamtube.
The times, the and t, may be obtained from material balance considerations as
follows:
Vv
t = P (3-35)
e
\)
- _pbt _
toe q (3-36)
t
where,
v = total volume of chase fluid injected into the pattern at time t
p
Vpbt = volume of chase fluid necessary to inject into the pattern in order

to get breakthrough from the streamtube under study
q. = total injection rate into the pattern

Therefore,

v-v=L (v

-V 3-37
q, pbt % ( )

In terms of pattern displaceable pore volumes, Ej. 3-37 reduces to:

_ A¢hqu
V-V= T (vabt - VpD) (3-38)
where,
Vprt = displaceable pore volumes injected into the pattern at breakthrough

of the streamtube under study = Vpbt/A¢hSw
VpD = displaceable pore volumes injected into the pattern = VP/MhSw

A = area of the pattern
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Similarly, the amount of tracer injected into a streamtube is proportional to
flow rate in the tube. This means that:

- L -
V., a Vo (3-39)

where Vp,. is the total volume of tracer injected into the pattern. Tracer
volume in a streamtube can also be expressed in terms of displaceable pore
volume of the pattern:

- 9 _
vV, = . Aphs, F. (3-40)
where,
v
= JL -
Fr A¢hSw (3-41)

F. is the tracer slug volume injected into the pattern expressed as a fraction
of the displaceable pore volume of the pattern.

Since the flow around wellbores is essentially radial, the potentials in the
immediate vicinity of a wellbore can be expressed by 4 = c_. n(x) t ¢, where
¢y, and ¢, are constants. In general, the values of these constants can be
determined from the flow rate and the potential value at a wellbore. Because
absolute values of potentials and flow rates do not affect the nature of
tracer flow, for mathematical convenience, the constants ¢, and ¢, are chosen
to be equal to one and zero, respectively. Therefore, 4 = 2n(r) and conse-
quently, the streamlines are defined in accordance with this latter potential
equation as shown in Appendix A. From Darcy's Law:

k Kk
9@ =7 21rrh(ar)r -, = 2mh (3-42)

w

Using this expression for q, in Egs. 3-40 and 3-39 and substituting the
subsequent expressions into Eg. 3-32, the following result is obtained:

2
2.2.2 ,2
CH) s, AF_ W2e22 (v o - v )
c = exp| - 55 (3-43)
0 4ak v/mal(y) 167 k" al{y)

This is a general equation which describes tracer concentration in any
particular streamtube, (y), at a production well for any repeated pattern.
Equations for specific patterns can be deduced from this equation if
expressions for the I integral (Eq. 3-33) for these patterns are available.
Derivation of expressions for the I integral for the developed staggered line
drive, five-spot and direct Iline drive patterns has been provided in
Appendices C.I, C2 and C.3, respectively. With the aid of these appendices,
the following equations which define tracer concentration in a general stream-
tube, ($), of these specific patterns are obtained.
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Staggered Line Drive: Staggered line drive systems differ from each other by
their d/a ratios, where d is the distance between unlike wells (injector-
producer), and a is the distance between like wells (two injectors or two
producers). From Appendix C.I and Fig. C-1, the following relationships are

obtained :
A =2 da (3-44)
K'(m) d
2K(m)  a (3-45)
and,
ueS 2 d2
(V) = < ") e Y(¥) (3-46)
k 4 K(m) K'"(m)

Substitute Egs. 3-44, 3-45, 3-46 in Eq. 3-43, and rearrange:

2
' 12 a -
C(W) K(m) K'(m) J_ cexp |- K(m) K'"(m) P (Vprt(W)) VPD)
Co \/nYZw nzY(w)
(3-37)

The term Vv ... (¥) defines the pattern breakthrough curve and is given by Eq.
A-35 in Aﬂlpendlx A.l with n term in that equation related to the streamline
Y. The term Y(y) is obtained from Eq. C-21 in Appendix C.I.

Five—Spot: The five-spot is a special case of a staggered line drive pattern
when EIJ = 1/2, For the five-spot:
K(m) = K'(m) = 1.8540747

Equation 3-47 simplifies to:

2
C(y) _ 0.453384 [a F eex 0.645776 a _
= = eexp | - —r—— v W) v (3-48)
Co ) o r YWO) a ( pDbt pD)

For th_is pattern, Vprt(w) and Y(y) are given by Egs. A-49 and C-23,
respectively.

Direct Line Drive: Direct line drive systems are also characterized by their
d/a ratios. From Appendix C.3:
A =2 da (3-44)
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K'(m) d
X -4 (3-45)

K(m
and,
" ues 2 2
1) -( k“’) 2 vy (3-48)
4 R(m) K'"(m)
Therefore:
2
cw) VK@ r@yer, | K@ ktm & (v, w - v)
Co LIRVEST() L Y(‘JJ)
(3-47)
The Vprtw) term is given by Eq. A-73 and Y(¥) is given by Eg. C-58.
Note that for these patterns, exactly the O— -O

same form of equation describes tracer
concentrations in a streamtube at the pro-
duction well. Only the Y(y) term which is
related to tracer dispersion, and V pu.,
which represents the convection of tracer,
are different. Therefore, it is speculated
that other patterns will also have the same
form as Eq. 3-47 but with different expres-
sions for the Y and Vprt terms.

For any pore volume of displacing fluid,

injected into a pattern, there is
tEacer flow from all the streamtubes to the
production well. Therefore, the output
tracer concentration from the production
well of a homogeneous pattern is the sum of
concentrations from the streamtubes. At the
limit, the summation reduces to an integral Fig. 3.17:  ELEMENT CONSIDERED

and the streamtubes become streamlines. The IN COMPUTING TRACER
following presents evaluation of tracer pro- PRODUCTION CURVES
duction curves from the patterns considered FOR THE STAGGERED
in this study. LINE DRIVE PATTERN
Staggered Line Drive: Dwe to symmetry, only 1/8 of a staggered line drive

pattern Is considered, as shown in Fig. 3.17.

Effluent tracer concentration, C, from this system is then given by:

n/4
c(y)
g =¥ 4
‘/O‘ Co

c
£ - (3-49)
¢ I

8
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Because of unit mobility ratio displacement, flow rates in the streamtubes are
constant and equal to each other. At the limit, when the streamtubes approach
the streamlines:

q, = 2 7q (3-50)

Substitution for C(\P)/Cofrom Eg. 3-47 and g, from Eg. 3-50 and simplification

yields:
e [-m K@ Ay gy oy )
T = K@) K'(m) nypy O\ POBE il Y
D 2
LEACHEY A VI
(3-51)
where ED is a dimensionless quantity defined as:
T =—20C (3-52)

D a
AR

Five-Spot: For this pattern, Eq. 3-51 with K(m) = K'(m) = 1.854074 reduces
to:

/4 2
0.645776 a
_ N [Wa(vpnbt“‘” ~ o) ]
C. = 0.577266 dy (3-53)

D
0 Vi)

The term ?:'D is defined by 2q, 3-52.

Direct Line Drive: For a direct line drive, 1/4 of the pattern must be
considered, as shown in Fig. 3.18.

For this system, the effluent concentration integral is:

[
T - (3-54)

where ¢(y)/C_ is given by Eq. 3-47 and q, by Eq. 3-50. Therefore:

n/2 v 2
K(m) K'2(m) a

exp [" '&_(vabt(w) - VpD) ]
ﬂZY(w)

0 \IY(lP)

- 2 YK(m) K'(m)
C. = dy

“2‘,“—
(3-55)
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is due to the larger amount of mixing that
occurs for small values of Peclet numbers.
Another characteristic of these curves 1is
that they all exhibit tracer production at

values less than 0.85. This number is
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Fig. 3.19: DIMENSIONLESS TRACER CONCENTRATIONS VS PORE VOLUMES INJECTED,
DEVELOPED STAGGERED LINE DRIVE, d/a = 1.5
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Fig. 3.22: TRACER PRODUCTION CURVES FOR DIFFERENT DEVELOPED AND
HOMOGENEOUS PATTERNS, a/o = 500

the same general characteristics. A comparison of tracer production curves
from these three patterns for a/a = 500 is illustrated in Fig. 3.22. Again,
tracer production occurs before the theoretical breakthrough areal sweep
efficiency of the patterns; the curves spread as the result of dispersion.

3.2.3 Correlation of Tracer Production Curves

In the previous section, it was shown that the tracer production curve from a
pattern was a function of Peclet number, a/a. Therefore, for each pattern, a
set of tracer response curves was obtained with a/a as a parameter. In this
section, the sets of tracer profiles from various patterns are correlated into
a single set of curves (a/a being the parameter) which represents the tracer
production curves from repeated homogeneous patterns.

The following approach was taken to accomplish the correlation. The peak data
(maximum tracer concentrations and corresponding pore volumes) of tracer pro-
duction curves for different systems were plotted versus a/a. Figure 3.23 is
the graph of dimensionless maximum concentration, and Fig. 3.24 1s the graph
of peak dimensionless volume location where the maximum tracer concentration
occurs. The ordinate of the latter figure is the same dimensionless volume
parameter that was used to correlate the pattern breakthrough curves in
Section 3.1.3. In both of the figures, the data for every system yield a
straight line on log-log paper. A vertical shift of lines in Fig. 3.23 and a
horizontal shift of lines in Fig. 3.24 correlated the respective sets of lines
into a single line for each figure. The five-spot system was chosen as a
reference for correlation in both of the figures. The amount of shift of
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these lines with respect to the five-spot lines produced two sets of correc-
tion factors: one for maximum tracer concentration, and the other one for a/a

to calculate the peak, location. The correction factors, which are in the form
of multipliers, are shown'-in Figs. 3.25 and 3.26. The tabulated values of

these correction factors are provided in Table 3.7. If the correction factors
from these two figures are applied to the peak data of a tracer breakthrough

curve from a five-spot system, they produce the peak data for the pattern
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corresponding to the selected correction factors. The following relationships
may be used for the conversion:

C. ) =f (E ) (3-56)
( D,max/nattern @ Dymax /s cpot
where, £ is the correction factor on the peak concentration (Fig. 3.25).
6

1.2

fp, MULTIPL IR ON a/o

d
a

Fig. 3.26: CORRECTION FACTORS ON a/a TO CALCULATE PEAK LOCATIONS
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Table 37

CORRECTION FACTORS ON TRACER PEAK CONCENTRATION AND a/a FOR
STAGGERED LINE DRIVE AND DIRECT LINE DRIVE AT VARIOUS d/a RATIOS

STAGGERED LINE DRIVE DIRECT LINE DRIVE

-g_ fP fm fP fm
;.;0 —————— 1 —0-(-). S 1.00 0.036 1.28
0.75 1.13 1.09 0.092 1.06
1.00 1.36 1.22 0.173 1.03
1.25 1.76 1.37 0.280 1.07
1.50 2.26 1.52 0.410 1.17
1.75 2.76 1.68 0.536 1.27
2.00 3.26 1.83 0.665 1.39
2.25 3.78 1.99 0.790 1.50
2.50 4.28 2.14 0.915 1.62
2.75 4.79 2.30 1.040 1.74
3.00 5.30 2.46 1.165 1.85
3.25 5.81 2.63 1.294 1.95
3.50 6.12 2.78 1.420 2.06

Substituting for ED from Eq. 3-52 and simplifying:

—pattern (3-57)

5-spot ( a_ )
@ 5-spot

The correction factor on Peclet number, fP (Fig. 3.26), relates a/a values:

a a
= £ (T) (3-58)
pattern = P S5-spot

( c
max
pattern
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Finally:

£ JE (c ) 3-59)
(Cmax)pattern = B NVp max /s _spot ¢

Pore volumes corresponding to peak concentrations are also convertible,
because maximum concentrations occur at the same dimensionless pore volumes,
i.e.:

va,max - Vprt va,max - vabt
= (3‘60)

-V 1 -V
pDbt pattern pDbt 5-spot

1

Or, equivalently:

va max vaJt
(va,max = -y : (1 - vabt)
pattern pDbt S-spot pattern
+ ( Vprt) (3-61)
pattern

where, Vprt is the areal sweep efficiency expressed as a fraction.

Having been able to correlate one point from each curve--namely, the maximum
point of the tracer breakthrough profile from various systems-—-the analysis
was extended to correlate the tracer breakthrough curves over their entire
concentration versus volume range. To do this, first, the tracer breakthrough
profiles of systems were normalized by dividing the concentration values by
the maximum concentrations for each curve. An example of this for a developed
five—spot system is shown in Fig. 3.27. Second, the correction factors on a/a
in Fig. 326 were utilized to correlate the normalized curves of different
patterns into one curve. To accomplish this, the volume coordinate used on
the abscissa was the same dimensionless pore volume function that was found
useful in the correlation of pattern breakthrough curves discussed in Section
313 Figure 3.28 shows a particular correlation obtained when comparing a
five-spot with a/a = 700 to the equivalent direct line drive (d/a = 1, a/a =
120), and the equivalent staggered line drive (d/a = 2, a/a = 2280). The
values of a/a for the latter two patterns were computed using Eg. 3-58 with
f. = 0.17 and £ = 3.26, respectively, obtained from Fig. 3.5. The corre-
lation 1is exceI1Pent in the vicinity of the peak. At smaller and larger pore
volumes, it is somewhat poor, but still adequate as will be seen later. Due
to the low concentrations at each end of the correlation, the relative errors
by the correlation are small at the volume extremes.
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For any value of a/a and for different geometries, the actual curves can be
related to a five-spot system by using the parameters in the coordinates of
Fig. 3.28, and the correction factors on Fig. 3.25 and 3.26 as follows:

[¢ C
- 3-62
() (o) oo

pattern 5-gp0

Substitute for maximum concentrations from Ej. 3-59:

"pattem = fm pr CS—spot (3-63)

The pore volumes at which the concentrations in EJ. 3-63 occur are obtained
from the dimensionless pore volume abscissa coordinate of Fig. 3.28. The
relationship is similar to Eq. 3-61 and subsequently is given by:

v N
- YRt
Vo pattsin 5-spot’ ~ 'povt Jpattern { Vpovt Jpattern
1 = Vobbe

(3-64)

By using Eq. 3-58, different patterns can be correlated into an equivalent
five-spot pattern; thereafter, breakthrough curves can be computed from the
Tive-spot tracer breakthrough profile through Egs. 3-63 and 3-64 only.

3.3 TRACER FLOW IN HETEROGENEOUS SYTEMS

This section focuses on the mathematical description of tracer movement in
non-uniform reservoirs. The non-uniformity of a reservoir is represented with

a stratified model.

3.3.1 Concept of Multilayered Modeling

Reservoirs often are sedimentary deposits laid down in a body of water over a
long period of time. After deposition, they undergo further physical and
chemical changes. As a result of the non-uniform nature of deposition and
secondary alteration, heterogeneities develop within the reservoirs. The
severity of the heterogeneity depends on the lithology and the external forces
acting upon the system. In general, sandstone reservoirs tend to be more
uniform than limestone or carbonate reservoirs. Levorsen (1956) details
sedimentary basins including the origin of heterogeneities in each basin.
Hutchinson (1959) presents an excellent review on reservoir inhomogeneity.

Since the sediments are deposited areally, it is expected that some lateral
uniformity exists over wide ranges of a reservoir. However, a variation is
anticipated in the vertical direction due to differences in the depositional

.




time and environment. This scheme
of deposition indicates that the
sediments are generally laid down in
layers which are fairly uniform in

lateral direction but differ with
elevation. For many sandstone
reservoirs, this type of hetero-

geneity is a fair representation of
the reservoir. The fact that the
permeabilities measured in the ver—
tical direction are frequently a
small fraction of the horizontal
penneabilities emphasizes the
validity of this representation.
Figures 3.29a and b show outcrops of
sandstone reservoirs. These pic-
tures illustrate that formations are
often composed of layers. In some
cases, thin layers of shale or silt
are deposited between the sand
layers and prevent interlayer fluid
transport. However, in other cases
here 1s no barrier between the
ayers and hence, unrestricted or
partially restricted cross—-flow
occurs between the layers. Some-
times, cross-bedding, pinching out
and local non-uniformities within
the layers distort the homogeneity
and the continuity of the layers.

Despite physical limitations, reser—
voirs can often be simulated as
though they are composed of parallel
layers with no interlayer communica-
tion. Based on this model, several
reservoir engineering calculations
can be made. Dykstra and Parsons
(1950) presented a method for calcu-
lating reservoir vertical coverage
in waterflooding operations using
this concept. Their method has been
found to match the results of many
waterflood operations. Elkins and
Skov (1962) matched the performance
of two gas-condensate cycling pro-
jects and an enriched gas-drive
project with a multi-strata model.
Fitch and Griffith (1964) also
matched the performance of an LPG
slug miscible drive in an isolated
five-spot pilot test by using a
stratified model with no cross-flow

Fig. 3.29a Marine Sandstone Deposit

Fig. 3.29b

Fig. 3.29:
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between the layers. The strata description for the pilot was obtained from
core data. Based on a stratified model, Hearn (1971) developed theoretical
pseudo-relative-permeability curves for a reservoir which included vertical
permeability variation. The pseudo-relative—permeability curves converted the
stratified reservoir into a mathematically-equivalent, two-dimensional homo-
geneous system with pseudo properties. This model was shown to match the
performance .of a waterflooding operation conducted in a carbonate reservoir.
There was vertical communication among the layers of this reservoir.

Cross—flow between the layers occurs as a result of the establishment of a
vertical pressure gradient between the layers. One or more of three forces

may cause vertical pressure gradients to develop. These are gravity,
capillary and viscous forces. In miscible displacements, vertical dispersion
also contributes to the amount of cross—flow. In a miscible displacement of

fluids with equal densities, there are no gravity and capillary forces. If
the fluids also have the same viscosity (mobility ratio equal to one), no
viscous forces will be present across the layers. A miscible displacement in
which these forces are absent will theoretically produce similar results in a
stratified system with no barrier between the layers, and in a system in which
impermeable layers prevent cross—flow. However, the systems which exhibit
cross-flow can also be modeled by a hypothetical system with no cross—flow.
This was illustrated by Fitch and Griffith (1964), who matched the results of
a miscible test by a stratified model with no cross-flow. The test was con-
ducted in laboratory layered-prototypes without barriers between the layers at
a mobility ratio of about twenty. The success of stratified reservoir models
in matching performance of miscible and immiscible displacements indicates
that this concept of modeling is often reasonable.

Similarly, the flow of tracers in heterogeneous reservoirs can be modeled by a
stratified system. Since the tracer material is miscible with both the
displacing and displaced fluids, and has the same density and viscosity as
these fluids, cross-flow can occur only as a result of lateral dispersion.
However, the effects of lateral dispersion are much smaller than longitudinal
dispersion, as has been discussed earlier. Therefore, for practical purposes,
the results of tracer flow in a stratified reservoir, with or without barriers
between the layers, would be similar.

3.3.2 Tracer Production Curves from Layered Systems

To compute tracer response curves from layered systems, the following assump-
tions are made:

1) The individual layers are homogeneous (uniform porosity and permeability
throughout each layer);

2) There is no cross flow between the layers;

3) The dispersion constant, a, Is the same for each layer;

4) Water saturation is constant and iIs the same in each layer; and

5) The mobility ratio of the displacement is equal to unity.




The justification of the third assumption stems from two facts: 1) for the
formations with the same sedimentary deposit origins, dispersion constants do
not vary appreciably within the same producing zones of formations; and 2)
tracer breakthrough 'curvet do not depend strongly on dispersion constants.
This can be seen from either Fig. 3.19 or 3.23. The fifth assumption is valid
for the tracer tests run in gas reservoirs or watered—out reservoirs (prior to
tertiary operations) wherein the fluid flowing ahead of the tracer slug is
essentially water, and the chase fluid is also water. In secondary recovery
waterflooding in reservoirs with high connate—water saturation, the fluid bank
ahead of the tracer slug will be mainly water. Hence, the assumption of unit
mobility ratio would be applicable. In almost all gas cycling projects, the
assumption of unit mobility ratio is valid.

In a layered system, the overall tracer output curve IS a combination of
responses from the constituent layers. The individual layer responses are
predictable and correlatable by the analysis discussed in the previous
sections. However, the tracer arrival time at the production well and the
tracer concentration contributed from each layer are functions of the
porosity, permeability and thickness of each layer. Because of the unit-
mobility ratio assumption, any material injected into a multilayered system is
distributed among the layers in proportion to conductances, kh. If Vg is the
total volume (in barrels) of displacing fluid injected, then the pore volume
injected into layer j is:

(kh)i 5.615 Vo k 5.615 Vo

(Vv..) = - ——%—-—-——— (3-65)
pp’y " TIKR AGER) S 6y O T A S

At the producing wellbore, the tracer concentration is the volumetric sum of
tracer concentrations from the layers. This Is given by:

n
(kh)

-3 1 g _

C :,Zl Tkh Cj (3-66)

where:
n = number of layers

Cj = tracer concentration flowing from layer j into the wellbore, com-
puted at pore volume (va)j

From Eg. 3-52 for layer j:

- a -
¢ - ¢, ‘/; Fs Ty (3-67)

where F.., is the tracer slug size injected into layer j in terms of fraction
of the pgre volume of layer j. It is thus given by:

Cawy, Ve Ky Vg
Jry =T A G, 3, | & CNES

(3-68)
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and 'CD. is the dimensionless concentration from layer j calculated at VrD =
\’va)t'j'J This dimensionless concentration is given by one of the Egs. 3-51, 3-
53" or 3-55, depending on the type of pattern. IT thickness, porosity and
permeability of the layers are known, the tracer concentration profiles for
various patterns can be constructed. Conversely, the decomposition of a
tracer production curve from a multilayered system into the constituent layer
responses can yield the layer parameters. Yuen et ak (1979) presented a
method for the decomposition of overall tracer response curves from developed
five-spot systems.

To study the flow of tracer in layered systems, a hypothetical four-layered
staggered line drive with d/a = 1 was considered. The area of the system was
90,000 ft?, the Peclet number was a/a = 2000, and the total tracer injected
into the system was 10 ft>, Also, the system was considered to be of unit
thickness with a porosity of 0.2 and an initial water saturation of 60
percent. Table 38 shows the assumed parameters of the layers. The calcu-
lated tracer response from this system is presented in Fig. 3.3. There are
four distinct peaks in this figure which are widely separated from each
other. A computer algorithm, based on the Yuen et zt's (1979) method, was
prepared which would deconvolve the overall tracer profile into the consti-
tuent layer responses, and thus evaluate the porosity thickness and fractional
permeability thickness products of the individual layers from the input peak
data (concentration and wlure). The computer program would then regenerate
the entire tracer production profile based on the computed layer parameters.
This program will be referred to as "deconvolution routine™ in this study.
Table 3.8 shows the computed results using the deconvolution routine based on
exact equations for a staggered line drive system. The corresponding computed
tracer curve was close to the original profile.

Table 38

ASSUMED AND COMPUTED PARAMETERS OF THE LAYERS FOR THE THEORETICAL
STAGGERED LINE DRIVE, EXAMPLE 1

LAYER

LI fr on o
1T T 02850 0.2 0.2800  0.19750  0.27830  0.19630
2 1.0134 0.4 1.00601 0.39824 1.00197 0.39664
3 1.1403 0.3 1.13376 0.29921 1.13944 0.30071
4 0.5068 0.1 0.51094 0.101 13 0.52816 0.10454
SW . 2.0455 1.0  2.93071  0.99608  2.94787  0.99819
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Fig. 3.30: TRACER RESPONSE FROM A FOURHLAYERED STAGGERED
LINE DRIVE, d/a = 1, "FIRST EXAMPLE"

The correlating technique developed for tracer production curves was applied
to this multilayered system. The staggered line drive was converted into an
equivalent five-spot using E- 3-58 with fp = 13 obtained from Fig. 3.26.
This changed the value of a/a from 2000 to 1470. Next, the deconvolution
routine was modified to combine tracer concentration equations for the five-
spot system with the correlating Eqs. 3-63 and 3-64. This modified version of
the deconvolution routine was used, with appropriate multipliers and break-
through areal sweep efficiencies, to decompose the original tracer curve in
Fig. 3.30. The regenerated profile based on the correlation Is seen in Fig
331 The match is good with only slight divergence in the vicinity of the
local minima. This divergence was expected because the original correlation
was not perfect at larger and smaller values of pore volumes. The parameters
of the layers computed by the program are shown in Table 38 The calculated
values of ¢h and kh are close to the values used to generate the data.

In the second hypothetical example, the same four-layer staggered line drive
system was considered. This time the parameters of the layers were changed to
obtain peaks near each other. Table 39 presents the selected parameters of
the layers. The tracer response from this system is shown in Fig. 3.3. As
before, the deconvolution routine was used with the input observed peak data
to generate a match to this curve. The resulting match, shown In Fig. 3.32,
is not a satisfactory one. Yuen et ot (1979) have illustrated that when
peaks are near each other, the observed peak locations do not correspond to
the exact peak locations from the individual layer responses. The individual
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Fig. 3.31: MATCH OBTAINED USING THE DECONVOLUTION ROUTINE AND TRACER
CORRELATION PARAMETERS

Table 39

ASSUMED AND COMPUTED PARAMETERS OF THE LAYERS FOR THE THEORETICAL
STAGGERED LINE DRIVE, EXAMPLE 2

COMPUTED PARAMETERS USING

ASSUMED PARAMETERS OPTIMIZATION TECHNIQUE
LAYER
o Bk o & 0t om

1 0315 0.5 126 119.05 0.314996 0.149998 125  119.05
2 1.000 0.40 4.00 100.00 0.999957 0.399984 4.00  100.00
3 0.6875 0.25 2.75  90.91 0.687447 0.249983 2.75  90.91
4 0.6000 0.20 2.4 83.33 0.600065 0.200024 2.40  83.33
M 26m5 1o 2602466  0.099989
m;na h values in this table have been computed for ¢ = .25 and

Ckh = 1000 md- ft.
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(d/a = 1) AND THE MATCH OBTAINED USING THE DECONVOLUTION ROUTINE,

"'SECOND EXAMPLE"*

tracer response curves interfere with each other and, hence, shift the
location the observed peaks from their corresponding layer peaks. Brown
and Brigham (1981) have shown a method of handling this shift using a trial-
and-error procedure for each peak. This usually requires many trials to
achieve a desirable match and can be tedious for large systems. |n this
study, an attempt has been made to overcome this problem.

4.3.3 Optimization Technique

Non-linear optimization (or multiple regression analysis) is a powerful tech-
nique in fitting data by a set of variables. This procedure is also known as
a non-linear least-squares method for curve fitting. The idea is to minimize
the objective function F:

N
= 2
F = :E:(c - C,) (3-69)
i i
i=]
where :
* - -
c, = observed concentration at sample point 1
Ei = overall concentration computed at sample point i

number of data points or number of observed concentrations

an observation point

[
"
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For a multilayer system, the injected tracer and displacing fluid will be

divided into layers proportional to the kh of each layer. If (Vp)y is the
total volume (in barrels) injected at the time point i is observed, the pore
volumes injected into-layer j at this time from Eg. 3-65 are:

. 5.615 (VT)

= j . i -
(VpD)j’i 7, Ik is, (3-70)

The overall tracer concentration being produced at the time of observation
point 1 is the sum of tracer concentrations being supplied by each layer.
This concept is considered in EJ. 3-66 and is given by:

n (kh)
T, = —J g -
¢ 2 5,1 (3-71)
j=1
where € is the concentration flowing to the wellbore from layer j at the

time anjd’iinjection volume associated with point i. This concentration 1is
computed from Eq. 3-67 as follows:

Sy = ‘/_g_Frj (ED) (3-72)

where F.. is given by Eg. 3-68 and (ED). »~ dimensionless concentration in
layer j, "is calculated af V. = (VpD)j,i iﬁ’%he equation for tracer production
curves from homogeneous patterns.

From Egs. 3-51, or 3-53, or 3-55 (for the pattern of interest), and Egs. 3-68
and 3-70 through 3-72, it can be concluded that C, is only a function of

kg/(¢j2:kh), (kh)j/):kh, (VT)i’ and the number of layers. The functional form
is:
n k (kh) k
T =Y i 1 —i_, (v (3-73)
S Y Ikh  Ikh % Zkh ( T)i

where T IS a function given by combining Egs. 3-51, or 3-53, or 3-55 (for the
patterns) with BEg. 3-70 and 3-72. Denoting:

k
R -z, (3-74)
and,
ky (),
§; R IR Xy (3-75)
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Equation 3-73 becomes :

n
A jglxj r [zj , (V'r)

The subroutine VARRRO at the Stanford Center for Information Technology (CIT)
can minimize the function F given in Eq. 3-69 when C, is in the form of H-
3-76. This subroutine requires initial estimates on non-linear parameters, Z,,
with no requirements on initial estimates for linear parameters, X; .« In the
case of interest here, the initial estimates on z, can be obtained €asily from
Eq. 3-70 by assuming that the observed location gf peaks in the tracer break-
through curve correspond to the location of peaks from individual layer
responses. This is given by the following equation:

] (3-76)

AS
z = b v (3-77)
( j)est 5.615 (Vq nax) pD,max
h|

where :

(VT,max)j = volume corresponding to the jth peak in the observed tracer
profile, bbls
v = pore volume corresponding to the peak location in tracer
response from a homogeneous system. This can be obtained
from Fig. 3.24 combined with breakthrough areal sweep effi-
ciency equations provided in Appendix A for different
patterns

pD,max

A computer program has been developed which utilizes the subroutine VARPRO to
perform the optimization. The input data for this program are as follows: N
data points from the overall tracer profile, number of layers expected (n)
where n is smaller than N, and n location volumes corresponding to peaks in
the observed tracer breakthrough curve. The program computes n non-linear
parameters and n linear parameters with the least possible errors. From these
parameters, ¢h and kh/Zkh of each layer are computed as follows:

(kh), X

—Ckhj —J—Zj (3-78)
X

(¢h), = —— (3-79)
h Z§

Based on the above computed parameters, the program regenerates the entire
tracer breakthrough curve.

The tracer profile in Fig. 3.3 was analyzed using this optimization tech-
niqgue. Twenty data points and four layers were chosen. The result of this
optimization is shown in Fig. 3.33. There is virtually no difference between
the original profile and the matched curve. The important point here is that
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Fig. 3.33 was obtained in one run, and no trial runs were necessary. Table
3.9 shows the numerical values of the parameters of the layers computed by the
program. The results are virtually identical to the input data. If the
layers are assumed to have the same porosity, and if average conductance of
the system is known, the thicknesses and permeabilities of the layers can be
computed. Table 3.9 also shows the computed permeability and thickness of the
layers for uniform porosity of 0.25 and Ckh of 1000 md-ft.

To study the effect of assuming a smaller number of layers or a greater number
of layers on the analysis, the profile in Fig. 3.32 was optimized using three
and five layers. The results are shown in Figs. 3.34 and 3.35, respectively.
Both figures have the same area under the curve for the algorithm maintains a
material balance. For the five-layer case, the program produced two peak
locations that were very close to each other (19,394 bbls and 19,399 bbls),
implying that the two layers belonging to the peaks are actually only one
layer and, therefore, the system is composed of four layers. Figure 3.34
shows that with three layers the analysis did not produce a good match. This
indicates that more layers are required for a better match. Table 3.10 illus-
trates the results of the optimization with three and five layers. Also shown
in this table are the computed values of permeabilities and thicknesses for
equal values of porosity in the layers. Since two of the layers in Table 3.10
have virtually the same permeability, it is concluded that the system is
actually composed of only four layers. Again, the results of this analysis
are virtually identical with the input data.
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Table 3.10

COVRUTED PARAMETERS OF THE LAYERS USING THE OPTIMIZATION
TECHNIQUE WITH VARIOUS NUMBER OF LAYERS, EXAVPLE 2

COMPUTED PARAMETERS COMPUTED PARAMETERS
WITH THREE LAYERS WITH FIVE LAYERS
LAYER
kh h, k, Xkh h, k,
¢h Ckh ft md ¢h Ckh ft md
1 0.33817 0.16064 1.35 118.76 0.31499 0.15000 1.26 119.05
2 1.17024  0.46375  4.68 681.02  0.62362  0.24942 2.49 99.99
3 0.94361  0.32965 3.77 87.34  0.37630 0.15055 1.51  100.01
4 0.68738  0.24996  2.75 90.91
5 0.60014 0.20005  2.40 83.33
SUM 3.45202  0.95404 9.80 2.60243  0.99998 10.00

The k and h values in this table have been computed for ¢ = .25 and
Ckh = 1000 md-ft.

The optimization computer program developed in this study generated excellent
matches to theoretical tracer curves from multilayered patterns. The match
obtained with fewer than the actual number of layers was not good, while that
obtained with an excessive number of layers was excellent. The program also
produced the correct number of layers whenever more layers were used than
should have been. This proved that the program was capable of analyzing
theoretical tracer curves. However, it remains to test the practical use of

the method on field tracer response curves.
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4. FIELD EXAMPLE

After successful analysis of tracer responses from hypothetically constructed
multi-layered systems, the study was directed to the analysis of field data.
The following example was taken from the paper by Brigham and Smith (1965).

4.1 HISTORY AND DESIGN OF THE TEST

The system considered was an unbalanced, inverted five-spot pilot pattern
located in the Loco Field in Oklahoma. The reservoir had been under water-
flooding since early 1950. In 1959, hot water injection began. The pilot
location was selected in an area that had been depleted beyond the economic
limit by conventional waterflooding. Beside the pilot injection well, seven
other injectors had been also operating in the vicinity of the pilot area as
ghown in Fig. 4.1 Martin &t . (1968) present the geological data on the
structure of the reservoir and the pilot area in particular.

—

Fig. 4.1 - ISOPACH M OF LOCO WATERFLOOD PILOT AREA
(After Martin et al., 1968)
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A tracer program was initiated 2060 BYPD 160 BYWPD
in 1962 to measure travel

times and breakthrough char- A

acteristics for this pilot. ('\ .
Prior to the test, the injec- g
tion and production rates were
stable and remained constant
during most of the test. Flow
rates and information regard-—

ing the pattern and reservoir INJECTOR
are shown on Fig. 4.2. Be-
cause of operating problems,
the injection pump was shut
down on the 18th day of the
project through the )élst day. 600 BWPD
Water injection was then re-
sumed at 600 BAMD, equal to

the injection rate prior to
the shut down. Total produc- d
N

g

tion rate from the four wells ~

was 800 BWD, implying that

the production wells produced C D

200 BYPD from outside of the .

pattern area. This amount was 140 BWPD 240 BWPD
not enough to balance the

pattern completely. For an

isolated five—gpo'g pattern to PATTERN AREA
act as though it is confined,

it is necessary that the pro—  prgpancE BETWEEN PRODUCERS, a
duction rate from each well be

equal to the injection rate. TOTAL TRACER INJECTED = 200 Ibs

fl

2.5 acres

330 ft

Two hundred pounds of ammonium NET PAY THICKNESS - 12 ft
thiocyanate and 150 pounds of

solved in approximately ten

_barrels of water and injected AVERAGE POROSITY = 0726
into the formation as tracers.

The volume of tracers used was — ,\yepaGE WATER SATURATION = 0.5
chosen on the following basis.

A_nalytlc_al measuring tech- MIXING CONSTANT, o
niques imposed a requirement

of a minimum 25 ppom peak con-

centration to define the

tracer  breakthrough curves Fig. 4.2: PATTERN CONFIGURATION AND
adequately. This required peak RESERVOIR DATA FOR THE FIELD TEST
concentration was doubled as a

safety factor. Hence, the test

0.05 ft

was designed for a 50 ppm peak concentration. For design purposes, the
pattern was assumed to be a homogeneous, developed five-spot with h = 12 ft,
¢ = 026 and k = 1500 md. The dispersion constant, a, measured from

laboratory miscible displacements on linear cores from the formation was found
to be equal to 0.05 ft. Equation 23 in the paper by Brigham and Smith (1965)
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showed that the amount of tracer required was about 150 pounds. To compensate
for dilution caused by flow from outside the pattern, this amount was
increased by 800/600 which resulted in 200 pounds of tracer requirement.
Since laboratory analysis..for iodide was more precise, the dilution effects
for this tracer were neglected, and only 150 pounds of potassium iodide were
used. The four producing wells were sampled every three hours for nine days,
every four hours for eight days, every six hours for six days, and daily for
twelve days to define tracer breakthrough curves adequately. Detailed
information on the sampling procedure is provided in Smith and Brigham (1965).

The amount of tracer required to result in a 50 ppm peak concentration from a
homogeneous, developed five-spot pattern was also calculated wusing the
analysis developed in this study. The result was different from Brigham and
Smith's designed value of 150 pounds. This was expected since Brigham and
Smith had not formulated the tracer dispersion effects correctly. From Egs.
3-41 and 3-52:

I - Dax (4-1)

N
(9]
o]
vy
2]
Rim]

\Y
Tr
Fr "R ems. (4=2)
W
Mass of tracer is related to volume by:
m,=C V_ o (4-3

where,
mp = Mass of tracer, pounds
Vo, = volume of tracer solution
Co = initial tracer concentration, mass fraction
pr = density of tracer solution = density of water

From Egs. 4-1, 4-2, and 4-3, the expression for mp is:

C _ p. A¢hs
a = max T w (4_4)

T = a
CD, maxJT:-
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For A = 25 acres, the value of a is equal to 330-ft and hence, a/a = 330/0.05

= 6600. From Fig. 3.23 for this 5-spot pattern, CD e 0.07.  Therefore,

_ (50 x 107%)(62.4)(2.5 x 43560)(0.26)(12)(0.55)
T 0.07+/660¢

The time to appearance of the peak for the assumed homogeneous pilot is
computed from Fig. 3.24 for a/a = 6600 as follows:

m = 103 pounds

VpD, max Vprt

1- Vprt

= 0.043

For a developed five-spot pattern, Vprt = 0.7178.  Therefore,

VoD, max = 0.73

The volume of fluid injected into the system at the peak:

<
|

max A ¢hSw VpD, max

(2.5 x 43560)(0.26)(12)(0.55)(0.73)/5.615 = 24,300 bbls

Time to the peak:

Vmax - 24300

toh = Tnjection rate 600

40.5 JLays

If the system is stratified and the permeability of the most permeable layer
is known, the time at which this layer reaches a peak is estimated from:

k
ton = ton (Ef) (4-5)

where,
t., = time to peak of the most permeable layer

time to peak of the homogeneous system

t
x

j=
" "

permeability of the high permeable layer

=
=
n

permeability of the homogeneous system
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The core data from the wells located in the pilot area had revealed a possi-

bility of a thin, high-permeability streak with permeability of 5000 md.
Therefore,

1500
tPP = 40,5 (-3-0—06) = 12 days

The time of 12 days can be viewed as an approximate time for tracer break-
through from this pilot.

At the completion of the A
tracer test, there were 22|
unequal amounts of tracer o @
flow from Wells A, C and
D, with absolutely no :
tracer production from {
Well B during the test |
period. This implied i
that there was limited i
communication between the :
injector and Well B. This '
fact iIs substantiated |
further by a study of I
i
]
i
|
|
)
'
@

\"F

65
\

® 1-g——I00

150

200_ e

wellhead temperatures of

the wells during the hot

water injection period in

which the temperature of

Well B remained near

65°F. Figure 4.3 shows

the isotherms of average 240
sand temperature for the 100°F
pilot. This figure was C
taken from Martin et al,

(1968).

—— e iy S G - ana e S

Fig. 4.3: ISOTHERMS OF AVERAGE SAND TEMPERATURE
The tracer elution curves DURING HOT WATER INJECTION
for potassium iodide and (after Martin et al., 1968)
ammonium thiocyanate were
similar for each well, _ ) _ _
but not exactly the same. These are shown in Fig. 4.4. By integrating the
areas under these curves, Smith and Brigham (1965) concluded that 40 percent
of ammonium thiocyanate and 44 percent of potassium iodide were recovered from
the three producing wells. This observation suggested that either there was
little adsorption of the tracers in the formation or the adsorption of each
tracer wes nearly identical. The former alternative is the more likely. Fur-
thermore, there is an uncertainty in the iodide data due to presence of back-
ground iodide concentration in both the injected and the formation water.
Because of this uncertainty, only thiocyanate data is considered in this
study. Since the injection was down for about four days near the end of the
test, only early portions of the tracer breakthrough curves from Wells A and D
are analyzed in detail, For this period, Well C did not exhibit substantial
tracer production as is illustrated in Fig. 4.4b.
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4.2  ANALYSIS OF TRACER RESULTS

The theoretical model to analyze tracer breakthrough curves developed in this
study is based on developed patterns where a complete balance between the
amount of injection and production is established. In this pilot pattern,
however, the offset wells produced at unequal rates resulting in unequal dis-
tribution of injected fluids towards the producing wells. Furthermore, none
of the wells received 1/4 of the produced fluid from the central injector.
This indicated that the in-

jected material could have

taken low velocity routes q q
along streamlines “extending A B

beyond the bOUﬂdS Of the flve_ o-------—--------.o
spot. Figure 4.5 shows quali- !
tatively the streamlines for

Well D of the pilot. The area
drained by the well does not

correspond to one quarter of
the five-spot pattern.

The theoretical model can be
used to analyze this unbal-
anced pattern if assumptions
regarding the flow lines and
the amount of fluid injected

into each drainage area_can be
made. Because the main por-

tion of tracer flow is through
the shortest . streamtubes, 9
tracer concentrations from the
extended streamtubes are small

due to dilution by the time
fluids reach a production

well s« This infdicates } at
approximation 0 the ow
lines of the unbounded five-
spot pattern by those of a
developed one is reasonable.

Fig. 4.5: QUALITATIVE STREAMLINES FCR

Distribution of injected WHL D OF THE PILOT
fluids among the four pro-

ducers was calculated by the

following procedure. Since
Well C did not produce tracer, it was assumed that only 50 BAD was moving
towards this well. This assumption can be justified from a heat balance on

Fig. 4.3 from Martin et gt~ (1968). The remaining 550 BAD was divided among
the other three wells according to the production rates: Well A--225 BWPD,
Well C--120 BAMD, and Well D--205 BAMD  The injected tracer was distributed
among the drainage areas at a quantity proportional to the assumed rates flow-
ing towards the wells. For example, for Well A the amount of tracer was equal
to (225 BWPD) x (200 1bs)/(600 BWPD) = 75 pounds. The area drained by e%ch
well however, was assumed to be one quarter of the pattern area (27,225 ft).
Although this assumption introduces some error in the computation of absolute
values of the layer parameters, the relative values (to each other) of layer
parameters will remain virtually unchanged as will be demonstrated later.
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As a result of flow from outside the pattern, the tracer concentrations had
been diluted and the corresponding produced volumes had been increased.
Therefore, in the analysis of tracer data, the effect of flow from outside of
the pattern on the produced tracer concentration curves was considered. For

Well D, the observed concentrations were multiplied by 240/205, and the
volumes were divided by 240/205. For Well A, this factor was 260/225.

The optimization routine was used to analyze the tracer production curve from
Well D. Thirty four data points from the tracer curve were inputed into the

routine. Figure 4.6 shows the match when only five layers were used. The
input peak-volumes and the final peak-volumes computed by the routine are
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Fig. 4.6: ANALYSIS OF TRACER DATA FOR WELL D WITH FIVE LAYERS

shown on this figure. The shape of the computed curve shows that more layers

should improve the match. Figure 47 illustrates the new match using seven
layers. For this analysis, the peak volumes were chosen at the computed
locations in Fig. 46 and the additional two peaks were selected at 3050 bbls
and 2200 bbls. The match with seven layers shows an improvement over the

match with five layers. The analysis was continued with nine and ten layers,
each time utilizing the computed peak-locations from the previous match and
adding additional peaks in the positions where the greatest divergence was
observed between the field data and the match. Figures 48 and 49 are the
matches with nine and ten layers, respectively. The later portion of the
field data could not be matched very well as shown in these figures. This is
believed to be due to inaccuracy of the field data close to the shut-down
time. Table 41 shows ¢the results of the analysis with differing numbers of
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Table 4.1
COMPUTED LAYER PARAMETERS FOR FIELD TEST, WELL D, USING THE
OPTIMIZATION ROUTINE WITH DIFFERENT NUMBER OF LAYERS
FIVE LAYERS SEVEN LAYERS NINE LAYERS TEN LAYERS
LAYER Kh . Kkh Kh oh Kkh
$h ZKn ¢ Lkn $h Tkh Zknh
1 0.035312  0.033734 0.015658  0.016360 0.011562  0.012167 0.011410  0.012009
2 0.106529  0.092838 0.047419  0.043769 0.015575  0.015031 0.013782  0.013344
3 0.106198  0.082195 0.084410 - 0.072963 0.041926  0.038131 0.034880  0.031938
4 0.094516  0.066012 0.052945  0.041998 0.078987  0.068042 0.070605  0.061395
5 0.088629  0.055505 0.058256  0.043471 0.052492  0.041585 0.026728  0.022284
6 0.087285 0.060604 0.057068  0.042590 0.047820  0.037617
7 0.087122  0.054503 0.084869  0.058990 0.053306  0.039756
8 0.075888  0.047784 0.084649  0.058840
9 0.021086  0.012465 0.075661  0.047642
10 ‘ 0.021079  0.012466

s 0.431180  0.330280 0.433100 0.333670 0.439450  0.337060 0.439%20 0.337290
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Table 4.2

COMPUTED PERMEABILITIES AND THICKNESSES OF LAYERS FOR FIELD
TEST, WELL D, WITH DIFFERENT NUMBER OF LAYERS

FIVE LAYERS SEVEN LAYERS NINE LAYERS TEN LAYERS
LAYER
h,ft k,md h,ft k,md h,ft k,md h,ft k,md
101358 4471 00602 4890  0.0445 4925  0.0439 4926
2 0.4097 4078 0.1824 4320 0.0599 4516 0.0530 4531
3 0.4085 3622 0.3248 4044 0.1613 4257 0.1342 4285
4 0.3635 3267 0.2036 3712 0.3038 4032 0.2716 4070
5 0.3409 2931 0.2036 3843 0.2019 3708 0.1028 3902
6 0.3357 3249 0.2195 3493 0.1839 3682
7 0.3351 2928 0.3264 3253 0.2050 3490
8 0.2919 2947 0.3256 3253
9 0.0811 2767 0.2910 2947
10 0.0810 2768

*The k and h values in this table have been computed for ¢ = .26 and
Ckh = 18000 md-ft.

layers. In all the cases, the sum of ¢h and the sum of kh/IZkh are almost the
same. This is due to conservation of mass by material balance. 1If layers are
assumed to have the same porosity and if an average value for kh of the system
is known, the individual permeability and thickness of each layer can also be
computed. Table 4.2 presents the computed permeability and thickness of the
layers for an average porosity of 0.26, and average permeability thickness
product of 18,000 md-ft.

In order to improve the match as much as possible, an attempt was made to
optimize the data by using more than ten layers. FEach time this was tried,
the routine failed to converge. This was found to be due to failure in a
built—in matrix manipulation in the VARPRO routine. It appears that the data
cannot be matched with more than ten layers. In any case, the match with ten
layers, being the final match for Well D, is a satisfactory one. It 1S worth
mentioning that it rook only a small number of iterations in the optimization
routine to arrive at these matches with different number of layers. Usually,
the number of iterations decreased with an increase in the number of layers.
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For example, the match with ten layers was generated with only three itera-
tions. It was also found that the initial estimates required by the routine
(input peak volumes) sometimes were important in determining convergences.
This was more important with a higher number of layers.

The tracer breakthrough curve for Well A was also matched with ten layers
using the optimization routine. For this example, forty-four data points were
chosen from the tracer breakthrough curve. Figures 4.10, 411 and 412 show
the matches with five, seven, and ten layers, respectively. Again, the
quality of the matches between 4,000 and 4,500 bbls #s caused by the
inaccurate field data near or during the shut-down period. Table 43  shows
¢h and kh/Ikh for the layers, as determined by the program. For a uniform
porosity of 0 for the entire system and average kh of 18,000 md, the
calculated permeabilities and thicknesses of the layers are given in Table
44. Comparisons of Tables 41 and 43 or Tables 42 and 44 show that the
ten layers for each quadrant are somewhat: different for each quadrant. The
differences in the formation characteristics calculated are due to independent
modeling of each quadrant of the pattern. In other words, the behavior of
Well D corresponds to behavior of a well in a ten-layer stratified formation
with the parameters given in Table 4.1, while for Well A, the behavior will be
predicted by another ten layer formation with parameters of Table 4.3
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Table 4.3

COMPUTED LAYER PARAMETERS FOR FIELD TEST, WELL A, USING THE
OPTIMIZATION ROUTINE WITH DIFFERENT NUMBER OF LAYERS

FIVE LAYERS SEVEN LAYERS TEN LAYERS
LAYER
¢h I ¢h i oh =
"1 0059200 0048826 0032334 0027887  0.003501  0.003406
2 0.106992  0.079197 0.062602  0.049838 0.014466  0.012830
3 0.127590  0.086185 0.088567  0.064821 0.033026  0.027410
4 0.108782  0.067011 0.114285  0.077143 0.044046  0.035187
5 0.133239  0.073089 0.080341  0.050052 0.085634  0.062662
6 0.066540  0.038455 0.104723  0.070947
7 0.101029  0.054634 0.045561  0.029158
8 0.055029  0.033550
9 0.061547  0.035315
10 0.096968  0.052357
SM 0535732 0.354308 0545748 0.36283 0545301  0.362822
Table 44

COMPUTED PERMEABILITIES AND THICKNESSES OF LAYERS FOR FIELD TEST,
WELL A, WITH DIFFERENT NUMBER OF LAYERS

FIVE LAYERS SEVEN LAYERS TEN LAYERS

LAYER _— _—
h, ft k,md h, ft k,md h,ft k,md

—1— - _0257; T _3'8;0 ————— 0 -12_46— T 20;0 ————— 0 .—01_35_ T :5‘5-3-
2 0.4115 3464 0.2408 3726 0.0556 4151
3 0.4905 3163 0.3406 3425 0.1270 3884
4 0.4184 2883 0.4396 3159 0.1725 3672
5 0.5125 2567 0.3090 2916 0.3294 3425
6 0.2559 2704 0.4028 3171
7 0.3886 2530 0.1752 2995
8 0.2117 2853
9 0.2367 2685
10 0.3730 2527
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To investigate the effect of drainage areas on the analysis, the tracer dat
of Well A was recalcixlated using an estimated drained area of 40,800 f

rather than 27,225 £t as used before. This value was computed by dividing
the pattern area into segments proportional to the amounts of fluids moving
towards the wells, as has been suggested by Deppe (1961). The match based on
this drainage area and ten layers was virtually identical to Fig. 4.12. Table
45 presents the parameters of the layers computed from this match. The
permeability values all are greater than those in Table 43 by a factor of
40,800/27,225 = 15 (ratio of the assumed drainage areas); however, the
relative values of permeabilities in Tables 42 and 45 are identical.

In summary, the tracer interpretation method developed 1in this study can
provide valuable detailed information on reservoir characterization. Although
the method is for developed patterns, its application to an unbounded,

unbalanced five-spot pattern was illustrated in this section. The approxi-
mations made in analyzing the field data produced errors on the computed
values of reservoir parameters, However, a method similar to the one

presented in this study can be developed to incorporate the actual flow field
of the pilot pattern with the tracer mixing equations, and thereby generate
more precise results.

Table 4.5

COMPUTED PARAMETERS OF LAYERS FOR WELL A WITH TEN LAYERS
AND DRAINAGE AREA OF 40,800 FT?

LAYER h kh/Zkh h,ft k,md
E 0.00233  0.003406 0.0090 682
2 0.009530 0.012830 0.0371 6220
3 0.022038 0.027410 0.0848 5821
4 0.029925 0.035187 0.1151 5503
5 0.057142 0.062662 0.2198 5132
6 0.069879 0.070947 0.2688 4752
7 0.030402 0.029158 0.1169 4488
8 0.036720 0.033550 13.1412 4276
9 0.041069 0.035315 0.1580 4024
10 0.064705 0.052357 0.2489 3788
sm 0.363869 0.2
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5 a« CONCLUSIONS

Equations were derived which describe the concentration of a tracer slug
in a general streamtube for any flow system with mobility ratio of one.
In the derivation of these equations, the mixing coefficient was assumed
to be proportional to fluid velocity which was a function of location in
the streamtube. The proportionality constant 1is the Ilongitudinal
dispersion constant of the porous medium. Transverse dispersion and
molecular diffusion were assumed to be negligible.

By integrating individual streamtube—tracer concentration expressions over
several developed patterns, analytic expressions were obtained which
define the tracer breakthrough curves for each of these homogeneous
developed patterns.

The study shows that the tracer breakthrough curves from a homogeneous
system depend upon the geometry, pattern size, and dispersion constant of
the formation rock.

In the derivation of equations for effluent tracer concentrations from
patterns, it was also necessary to derive expressions for pattern break-
through curves from developed patterns. Exact analytical equations were
obtained in the form of elliptic integrals which describe several pattern
breakthrough curves for a mobility ratio of unity. Results for different
patterns were reduced into a single curve by defining a simple correlating
parameter, which we have called the dimensionless pore volume. Because
the breakthrough curves for various developed patterns considered in this
study correlate as a single curve, it is concluded that the breakthrough
curve for any repeating pattern should also lie on this same correlation.

An attempt was made to define analytically pattern breakthrough curves for
mobility ratios other than one. It was assumed that the streamlines were
independent of mobility ratio. For a developed five-spot, the analysis
generated nearly identical values for breakthrough areal sweep effi-
ciencies at any mobility ratio. This result is in direct conflict with
experimental observations. Hence, the assumption of no streamline change
with mobility ratio is.unrealistic.

Tracer breakthrough curves from several patterns were also correlated as a
single set of curves using the Peclet number, a/a, as a parameter. The
correlation was achieved by obtaining two sets of correction factors—-one
for a/a to determine peak-locations, and another for peak concentration.
These correction factors convert all the patterns studied into equivalent
five—-spot systems.

A computer program was developed which analyzes tracer breakthrough Curves
from stratified reservoirs, and computes porosity thicknesses and frac-
tional permeability thicknesses of the layers, The algorithm utilizes a
non—linear least—squares routine as an optimization technique to minimize
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the differences between observed tracer data and computed concentrations
and, hence, generates an optimum match for a given number of layers. Also
incorporated in the algorithm are the correction factors developed in
correlation of the tracer curves. As input, the program requires the
estimated number of layers, volume of the produced fluid corresponding to
each peak, and the type of pattern.

Tracer breakthrough curves from a field test on a five-spot pilot have
been matched closely using this optimization program with ten layers.
This example showed that tracer data furnish information about the high
permeability zones of the reservoir.

The method developed in this study can also be used in design of well-to-

well tracer tests. The amount of tracer required and tracer breakthrough
times may be computed from the method presented herein.
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6. RECOMMENDATIONS FOR FUTURE WORK

The method presented in this study considers only developed patterns. Because
streamlines of a system with any well arrangement for unit mobility ratio are
computable, the method can be extended to include analysis of tracer response

curves from isolated and irregular patterns. Therefore, the tracer curves
from the field example can be analyzed using actual flow lines of the system.
Comparison of the results with those computed in this study would illustrate

the accuracy of approximating an open system by a developed pattern.

Further work is necessary to compute tracer flow in systems where a contrast
between the mobility of tracer solution and the mobilities of formation fluid
and chase fluid exists. Because the pattern breakthrough curves at mobility
ratios other than one could not be generated accurately by the streamtube
procedure, it appears that numerical schemes should be adopted to compute
tracer breakthrough curves. However, numerical dispersion associated with
these schemes will likely mask the effects of physical tracer dispersion.
One possible solution would be to incorporate the tracer mixing equations
illustrated in this study with numerically pre-determined front locations to
generate tracer concentration profiles. Viscous fingering associated with
unstable displacement would further complicate the analysis.

Finally, tracer adsorption, reaction, and partitioning effects should be
incorporated in the development of rigorous tracer interpretation techniques
to generate precise results. Before these variables can be incorporated into
mathematical models, more laboratory work is necessary to increase the under-
standing of how each affects tracer flow.
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C, C(8)

max

ol

NOMENCLATURE

area, ft2
distance between like wells, L
initial tracer concentration, mass fraction

formation fluid concentration in the tracer dispersed zone,
mass fraction

chase fluid concentration in the trace dispersed zone, mass
fraction

tracer concentration in a streamtube, mass fraction

maximum tracer concentration in the tracer breakthrough curve
from a homogeneous pattern, mass fraction

effluent tracer concentration from a homogenenous or a
stratified pattern, mass fraction

dimensionless tracer Concentration from a homogeneous pattern
dimensionless tracer concentration from layer j

dimensionless tracer concentration from layer j at sample
point i

dimensionless maximum tracer concentration from a homogeneous
pattern

effluent tracer concentration from layer j, mass fraction

effluent tracer concentration from layer j at sample point i,
mass fraction

effluent tracer concentration from a multi-layered system,
computed at sample point i, mass fraction

effluent tracer concentration from a multi—layered system
observed at sample point i, mass fraction

molecular diffusion coefficient, L2/T
apparent molecular diffusion coefficient, 12/T

distance between unlike wells, L
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Babe
Eap

erfc (%)

erf (x)

E

average grain size diameter, L

differential change in standard deviation term used in mixing
equation

areal sweep efficiency, fraction of pattern area
breakthrough areal sweep efficiency, fraction of pattern area
dimensionless areal sweep efficiency, a correlating parameter

complementary error function = 1 = erf (x)

X _ p2
Lfezdi
Y JO

formation resistivity factor, dimensionless
displaclng fluid cut in the production stream, fraction

flowing volume of porous medium in the capacitance model,
fraction of total pore volume

stagnant or dead-end-pore volume, fraction of total pore
volume

multiplier on peak concentration for tracer breakthrough curves
from homogeneous systems

multiplier on a/a to convert patterns into equivalent developed
five-spot

tracer slug size injected into a homogeneous pattern in terms
of fraction of pattern displaceable pore volume, dimensionless

tracer slug size injected into layer j in terms of fraction of
layer displaceable pore volume, dimensionless

incomplete elliptic integral of the first kind

\YJ

[ dg_ '..[”' dt
0 VY1 - x“sin £ 0 \f(l - tz)(l - ncztvf)

where y = sin v

thickness, ft
thickness of layer j
mixing line integral for streamline ¢

permeability, =od
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K(m), K'(m)

m, ml

Dy

permeability of layer j, md

permeability of a homogeneous pattern, nd
permeability of the most permeable layer, md
effective mixing coefficient, L2/T

effective longitudinal mixing coefficient, 12/T

mass transfer coefficience in the capacitance model, 12/ T

effective transverse mixing coefficient, L2/T

complementary and incomplementary complete elliptic integrals
of the first kind

parameters of the Jacobian elliptic functions and elliptic
integrals, m + m; = 1

mass of tracer injected to a pattern, lbs

number of data points used in the optimization routine
number of layers in the multilayered model

pressure

dimensionless pore volume, a correlating parameter
flow rate in the sfreamtube, L3/T

total injection rate into a homogeneous pattern, L3/T
average grain diameter, L

radius, L

front location in radial flow, L

water saturation, fraction of pore volume

dfstance along the etreamline, L

distances along a streamline up to points A and B on the
streamline, L

front locations in the streamtubes, L
elementary Jacobian elliptic functions
injection time, T

breakthrough time of a streamline, T
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tph

PP

>

< <

<

pbt
Vprt(¢)

Vprt
VoD

(Vpp)

Von),

o1

VpD,max

vy,

(v )
T,max 1

injection time necessary to reach the peak in tracer break-
through curve from a homogeneous pattern, T

time to peak of the most permeable layer, T

microscopic (pore) velocity, darcy velocity divided by
porosity, L/T

microscopic velocity component in the x direction, L/T
microscopic velocity component in the y direction, L/T
displaceable pore volume of a streamtube, L3

displaceable pore volumg of a streamtube up to tracer front
location in the tube, L

volume corresponding to the jth peak in an observed (field)
tracer profile, bbls

volume of chase fluid injected into a homogeneous patte
corresponding to the peak location in tracer response, L

total volugne of chase fluid injected into a homogeneous
pattern, L

total volume of chase fluid injected
at a breakthrough of a streamline, L

3into a homogeneous pattern

displaceable pore volume of displacing fluid injected at break-
through of a streamline, $, dimensionless

breakthrough pore volume or breakthrough areal sweep efficiency
of a pattern, dimensionless

displaceable pore volume injected into a homogeneous pattern,
dimensionless

displaceable pore volume injected into layer j, dimensionless

displaceable pore volumes injected into layer j at sample
point i, dimensionless

displaceable pore volume corresponding to the peak location in
tracer response from homogeneous system, dimensionless

total volume injected into a pattern, bbls
total volume injected into the pattern at sample point 1, bbls
volume at the jthpeak in the observed tracer profile, bbls

atlg,er slug injected into either homogeneous or
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Y, (W)

b!

(zj'est

tracer volume injected into a streamtube, ft3

width of a streamtube, L

distance in a linear flow, L

front location in a linear displacement, L

jth linear parameter in the optimization program

the integral in the equation of line integral

jth non—linear parameter in the optimization program
initial estimate of non-linear parameters
hydrodynamic dispersion constant, L

longitudinal dispersion constant, L

transverse dispersion coefficient, L

characteristic constant of the laboratory core packs
undiluted width of tracer in a streamtube, L
porosity, fraction

porosity of layer j, fraction

density of tracer solution, 1b/£¢3

viscoslty, Cp

standard deviation, measure of the length of mixed zone, L
stream function or value of a streamline

potential function

modulus of an incomplete elliptic integral, where modulus 1is
equal to the square root of parameter

complex potential
argument of an incomplete elliptic integral

strength of a source or a sink
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APPEND ICES

There are four appendices in this section, most consisting of several sub-
appendices. The first set, Appendix A, provides derivations of the analytic
equations for several pattern breakthrough curves at a mobility ratio of
unity. An extension of the analysis to a developed five-spot pattern at an
arbitrary mobility ratio is provided in Appendix B, The third set, Appendix
C, illustrates evaluation of the line integral embodied in the equations of
tracer concentration profiles. The computer program developed to analyze
tracer breakthrough curves from stratified reservoirs is provided in Appendix
D. Also given in Appendix D are the programs to compute pattern breakthrough
curves of a developed, inverted seven-spot at unit mobility ratio and a
developed five-spot at any mobility ratio.

Appendix A

DERIVATION OF EQUATIONS FOR PATTERN BREAKTHROUGH CURVES
FOR MOBILITY RATIO OF ONE

This appendix consists of five sub-appendices. The first four present the
development of mathematical equations to define pattern breakthrough curves of
staggered line drive, five-spot, direct line drive and inverted seven-spot.
All the patterns are bounded and the mobility ratio of displacement is equal
to one. The last appendix of this section details derivation of some
equations used in Appendices Al and A.3.

When formulating the equations for fluid flow in any pattern, potential
equations or stream functions are required. A basic theory of potentials is
briefly presented in the following paragraphs. Application of the theory to
specific patterns is then illustrated in the pertinent sub—appendices.

From the theory of incompressible and irrotational fluid flow in two dimen-
sions, it follows that:

Q(z) = ¢(x,y) + 1 ¥(x,y) (a-1)
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where,

Q(z)

complex potential

¢(x,y) = velocity potential equation

¥(x,y) = stream function
z = x + 1y

Both ¢(x,y) and ¥(x,y) are harmonic functions; therefore, they satisfy the
Laplace equation. From the Cauchy—Riemann principle and Darcy's law, the
velocity components of fluid at any point are related to the potential
equation and the stream function as follows:

Vx(x,Y) m = W 3y (A~2)
and,
k 3% k 3
AR T = (=2

where, k is the permeability and » is the fluid viscosity.
The complex potential for a line source (injection well) in an infinite medium
under steady state condition is:

2z) = v 2z (A-4)

where, v is the strength of the source and z is the distance of a point from
the origin of a coordinate system positioned on the source. If the source is
located at a distance =z, from the origin of a specified coordinate
system, £(z) is given by:

Q(z) = v & (z - zo) (A-5)

The complex potential due to a sink (production well) is subsequently given by
the negative of either Eq. A-4 or Eq. Ab.

Since the complex potential defined by Eq. A-1 satisfies the Laplace equation,
the superposition principle can be used to obtain the complex potential for

any combination of injectors and producers. For a system of _nl1 injectors
located at points & (i =1, ..., n;) and n, producers positioned at bj
(3 =1, «e¢y my), the overall complex potential at any point, z, is:
" "2
Q = - - - -
(z) 1}-:1 vy 0 (z - ay) jz‘:l Vpg P (z bj) (A-6)
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The terms v  and Yy denote the strength of the injectors and producers,
respectively? Equatijon A6 can be used to derive Q(z) for any well arrange-
ment. However, for some particular well patterns, the use of conformal
mapping greatly eases the determination of complex potentials. This is
illustrated in Appendices A.1 and A.3,

Appendix A.l: STAGGERED LINE DRIVE

Consider a repeated staggered line drive pattern as shown in Fig. A-1

Z-PLANE
AY

PRODUCTION © O 0 0

INJECTION ’p’

Fig. A-1: A DEVELOPED STAGGERED LINE DRIVE IN Z-PLANE

Using the following conformal transformation (Spiegel, 1964):

v de
zZ = 0<m«<1] (A-7)
0 N1 - tH(1 -nt?
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the shaded segment in Fig. A-1 is transformed into the upper half-plane of the
w-plane as shown in Fig. A-2. The production wells are mapped at w = 1 and
w = -1, the "corners" of the pattern (B and F) are mapped at £ Y!/m , and the

injection well is mapped at infinity.
7///

Fige A-2: W-PLANE SHOWING THE TRANSFORMATION

W- PLANE

The integral in Ej- A-7 is the inverse of the Jacobian elliptic function,
sn(z,m), as defined by Byrd and Friedman (1954). Therefore:

z = sn_l(w;m) (A-8)
Correspondingly:
w = sn(z,m) (A-9)
Introducing a second transformation:
W= iw (A-10)
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the upper half of the w-plane
is mapped into the left half
of the w-plane as shown in Fig.
A-3.

<

W-PLANE

The_ production wells are now
atw=1iand w=-i and the
injection well is again at
infinity. The second transfor-

mation will only change the

values of the streamlines. The

v axis in Fig. A-3 is a no flow ,
boundary, hence it can be math- ) !

ematically removed by super-

imposing an image of the left \

half of the w-plane into the N —- U
right half of the w-plane. In

this way, the well system in o

the w-plane becomes equivalent
to two producers in an infinite
medium.  Since one quarter of a
production well in the z-plane
is mapped into one half of a

well in the w or w-plane, it is

concluded that the strength of \
a well in the w-plane is equal &

to one half of the strength of
a corresponding well in the z-
plane. For mathematical con-
venience, the strengths of the
wells in the z-plane are as-
sumed to be equal to one and
the complex potential in the
w-plane subsequently is ob-
tained from EJ. A-6 as follows:

2
Q@) = -2 @-1) -2 @+1) = -tn <;/G + 1) (A-11)

The wells at infinity do not contribute to the complex potential. From Egs.
A-0 and A-9:

7

Fig. A.3: WELL LOCATIONS FOR A DEVELOPED
STAGGERED LINE DRIVE IN W-PLANE

W = =i sn(z,m) (A-12)

Substitute Eg. A-12 in, Eq. A-11 and note that from the properties of Jacobian
elliptic functions, sn“(z,m) = 1~ cn“(z,m):

2(z) = = #n [en(z,m)] (A-13)
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Prats (1956) has reported the above expression (A-13) for the complex poten-
tial but with a positive sign because the injectors were assigned negative
potential in his formulation. From Byrd and Friedman (1954):

en(x) en(y) = i sn(x) dn(x) sn(y) dn(y)
1- snz(y) dnz(x)

en{z,m) = en(x + iy,m) =

(A-14)

where, sn(x) = sn(x,m), cn(x) = en(x,m), dn(x) = dn(x,m), sn(y) = sn(y,m;) and
en(y) = en(y,m,) are various Jacobian elliptic functions with parameters m and
m; where m + m; = 1. From complex variable theory:

n (x + iy) --% fn (x2 + yz) + .1 t:an-1 (%) (A-15)

Using Eqgs. A-14 and A-15 in Eq. A-13, it is concluded that:

! en2(x) cn’(y) +sn2(x) dn(x) sn(y) da’(y)
Q(z) = = > in { — 5 2 -
[1-=sn%(y) dn”(x)]
-1 sn(x) dn(x) sn(y) dn(y)
+ 1 tan [ ] (A-16)
cn(x) cen(y)
Comparing Eq. A-16 with E. A-1, it follows that:
¥(x,y) = tan’ [£(x,m) £(y,m,)] (A-17)
£(x,m) = sn(x,m) dn(x,m) (A-18)

cn(x,m)

Prats 8T aft (1955) had derived Eqgs. A-17 and A-18 for the streamlines by
applying Eq. A-6 to an infinite array of wells. Figure A-4 shows the coor-
dinate system and the values of streamlines computed from Eqs. A-17 and A-18.
The terms K(m) and K'(m) in this figure are complementary and incomplementary
complete elliptic integrals defined by Eq. A-7 with w = 1 and w = -1, respec-
tively. The relationship, K'(m)/2K(m) = d/a, relates the parameter m to the
geometry of the system. The quadrant shown in Fig. A-4 is used in derivation
of the equations for the pattern breakthrough curves.
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K'(m) - K(m),K'Q

"2

V=0
2
e /4

mmeg s e

P

K(n

A

Fig. A-4: COORDINATE SYSTEM FOR A DEVELOPED STAGGERED LINE DRIVE

The breakthrough time, ty., of a particle on a streamline ¥ is determined by a
line integral along that streamline. This is:

K(m)
dx
toe -f - (A-19)
0 b 4
where v, is the x component of the microscopic velocity. From Hj. A-2:
k 3
vV, m— —— (A-20)
X 3
ué y y = y(¥,x)
where ¢ is the porosity. From Ej. A-17 for the streamline y:
f(x,m) £'(y,m,)
- (A-21)

e

1+ [f(x,m) f(y,u:l)]2

- 102 =



where,

f'(y,ml) = Bf(y,ml)/ay and,
(A-22)
f(x)m) f(}’,ml) = tan (‘l))
Therefore,
k f(x,m) £'(y,m;)
v =X_, 5 (A-23)
x e 1 + tan™y
Substitute Eg. A-23 in K. A-19:
K(m) dx
—]— (1 + tan ﬂ))f fx,m) £ (y’m ) (A-24)

The pore volume injected into the system at the time of breakthrough of
streamline ¢ is:

£, q
vV = bt 't (A= 25)

PP 46h K(m) K'(m)

where q, 1is the injection rate and h is the thickness of the pattern. The
flow rate is given by:

-— o fdv (A-26)
where the integral is taken around any closed surface in the flow regime.

Because the flow in the vicinity of a wellbore is essentially radial, Eq. A-
26, with the values of streamline shown in Fig. A-4, reduces to:

kh 2nkh _
Q@ =5 Ay T (A-27)

Using this expressfon for q. and Eq. A-24 for t., Ej. A-25 simplifies to:

K(m)
v o m (1 +n) dx (A-28)
PP k@) k@) J, £x,m) £'(y,m))

where,

n = tan? ¥ (A-29)
and n iIs a constant for the streamline V.
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Equations A-149 and A-150, derived later, relate the derivatives to the func-
tions. The detailed derivation of these two relationships 1Is presented in
Appendix A.5.1. The equations for these derivatives are:

Fr(x,m) = AJ1 = 28£%(x,m) + f(x,m) (A-30)

and,

f'(y,ml) = \jl + Zsz(y,ml) + f4(y,m1) (A-31)

where 8 = m = mj. From Egs. A-17 and A-29, the y terms can be expressed in
terms of x terms as follows:

fz(y,ml) = ——2—-“—— (A-32)
£ (x,m)

Utilizing Egs. A-31 and A-32, Eq. A-28 becomes:

K(m)
y =-T (1 +n) f (oerm)dx (A-33)
pD  2K(m) K'(m) A 3 5

0y £4(x,m) + m8£2(x,m) +n

Introducing a change of variable z = fz(x,m) and using Egq. A-30 to substitute
for £'(x,m), the following equation is obtained:

7 (1 +n) dz

Vop ™ K@) K'(m) f (A=34)
0 \/z + 28nz +n2 '\/zz- 2z + 1

The integral term in Eq. A-34 is of the form of an incomplete elliptic
integral of first order. The roots of the quadratic equations under the
square roots all are complex. A closed-—form solution for this integral 1is
obtained from Byrd and Friedman (1954). The result is:

m (1 +n) - _
va = m [F(\’2 %) F(vl’K )] (A-35)

where F(v,,x) and F(v_,x) are incomplete elliptic integrals of the first kind
with mdu%us £ and arguments vy and Vo given by:

_ -8 a, g
V_ = tan! (—1-—l (A-36)
2 a, + Bgl
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v = tan! (——!I:—)

. g (A-37)

2
ay = 1 - 82 (A-38)

43% - (A - B)2

g = (A-39)
L+ m? -4

A=l +n (A-40)

B =y(1 =) + ing? (A-41)

2
e ) (A-42)
. 2B (A-43)
(A + B)

For a unit mobility ratio and a piston-Ilike displacement, the displacing fluid
cut in the producing stream at the production well, fp, is the ratio of the
angle at whlch the streamline ¢ enters the well to the entire angle available
for flow. From Fig. A-4, this is expressed by:

i
z-V 4y
£ o= =1 -

(A-44)

Equations A-35 and A44 jointly describe the pattern breakthrough curve of a
developed staggered line drive system.

eakthrough Areal Sweep Efficien

The breakthrough streamline is V = n/4 . ore at breakthrough, £ = 0
and n= 1, and Eq. A-34 1 to:
- S é -
Vopbt ™ 2 R(m) X' (m) f . % " (A-45)
0 =2+ 22 +1)(2% 262 +1)
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Due to symmetry of the breakthrough streamline around the polnt {K(m)/2,
K'(m)/2}, Eq. A-45 can be written as:

1
m dz
Vooot ™ (@) K (o) / > 5 (A-46)
0 \j(z + 282 4+1)(z° -28z +1)

The upper limit of the integral is calculated from z = fz[ K(m)/2 ,m] = 1.

The answer to this integral 1S obtained from the Byrd and Friedman handbook
(1954):

- 02
Yobbe = TR T K[(1 = 2m)“] (A-47)

Appendix A 2: FIVE-SPOT PATTERN

The five-spot is a staggered line drive pattern with d/a = 1/2. For this
special case:

m = ml = 05
g =m- ml =0
K(m) = K'(m) = 1.8540747

Equation A-34 then reduces to:

m (1 +n)

v - 5 / dz (A-48)
P
4 (1.8540747)°  J) \/ Zand . \f 22+ D

From a handbook of elliptic integrals (for example, Byrd and Friedman, 1954.

or Abramowitz, 1972), the integral in this equation is equal to K(I = n°),
hence:
Vpp = 0.228473 (1 +m) K(I ~ n2) (A-49)
where ,
n o= tan? v (A-50)
n
y=7 (1 -£) (A-51)
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ugh Areal Sweep Efficiency

Breakthrough areal sweep efficiency is readily computed from Eq. A-49 with
n = 1 for which K(0) =1n/2 :

YoDbe = 0.71777

Appendix A.3: DIRECT LINE DRIVE

The complex potential for this pattern 1S obtained in a manner similar to that
discussed in Appendix A.1. Equation AY is applied to transform the segment
in Fig. A-5 into the upper half-plane of the w-plane. The production well is
mapped at infinity and the injection well is mapped at the origin as was shown

in Fig., A2

Z-PLANE

INJECTION ',O’ pel 'b’ pe P

PRODUCTION O

-
)l

‘T o
i)
w)

o
o)
———
!

|
5
h i
|
|
L
o
o

S o5 5 s F

Fig. A-5 A DEVELOPED DIRECT LINE DRIVE IN Z-PLANE
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The complex potential in the w—plane for this pattern is:
Qw) = 2n w (A-52)

Substitute for w from K. A-9:

Q(z) = £n [en(z,m)] (A-53)

Equation A-1 can be used to obtain the stream functions. Hauber (1964) and
Morel-Seytoux (1966) obtained the following equation for the streamlines:

¥(x,y) = tan [£(x,m) g(y,m)] (a~54)
where,
£(x,m) = cn(x,m) dn(x,m) (A-55)
’ sn(x,m)

sn(y,ml) cn(y,ml)
g(Y’ml) = dﬁy,ml—)

(A-56)
Figure A-6 shows the values of streamlines and the element considered in
analyzing the direct line drive pattern.

The breakthrough time of a particle on a general streamline ¢ is computed by
using the y component; of the particle velocity as follows:

K'(m)
ty, - f _3_3_’_ (A-57)
0 y

From Eq. A-3, the y component of microscopic velocity is:

(A-58)

vV = -

k/u 3y
y ¢ 9x

x = x(¥,y)

From Eg.- A-54 on the streamline Q:

£'(x,m) g(y,m,)
= (A-59)

1+ [£Gm) gly,m)))?

B4

and,

f(x,m) S(Y.ml) = tan § (A-60)
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o) K’ (m) K(m),K' (m)g
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v ¥ e
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> > -

7"{ ir K (m) ’

Fig., A-6: COORDINATE SYSTEM FOR A DEVELOPED DIRECT LINE DRIVE

Substituting Eq. A-58 in Eq. A-57 and using Egs. A-59 and A-60:

K'(m)
¢ 2 dy

Pore volume injected up to this breakthrough time is given by:

t q
= bt it
pD % R K(m) K'(a) (A-62)

v

Flow rate q. is equal to 2wkh/u as was shown in Appendix A.l. Using this
value for q. and substituting for t,. from Eq. A-61, Egq. A-62 reduces to:

K'(m) dy
gy,m)) ECxm (A-63)

v =-" Q4+ tanzw)
pD 2 X(m) X'(m) J,




Since the streamlines are symmetric about y = K'(m)/2, the travel time from
y =0 to y = K'(m)/2 is equal to the travel time from y = K'(m)/2 to
y = K'(m). Therefore:

f@"’fﬂﬁ'
V_ ==1T (1 +1n) - dy (A-64)
0

pD K(m) K'(m) g(y,ml) £'(x,m)

In this equation, n = tanzw which is constant for a specified streamline.

Equations A-158 and A-166 in Appendix A.5.2 relate the derivatives to the
functions as follows:

f1(x,m) = - \/[ml - £5x,m)] ¢ + 4 £5(xam) (A—65)

g'(y,m;) = \[[1 +m, gz(y.ml)]2 -4 gz(y.ml) (A-66)

Using Eg. A-65 in conjunction with Egqs. A-29 and A-60 to eliminate £(x,m), Eq.
A-64 reduces to:

K'(m)
1 2 g(y,m.) dy
v (1 +n) 1 (A-67)

pD ~ K(m) K'(m)
0 \[['“1 g2(y,m) -n]2+ 4n g’(y,m,)

Introduce a change of variable, z = gz(y,ml) and use Eq. A-66 to replace the
g'(y,m|) term, Eq. A-67 is simplified to:

b
- m (1 +n) dt
P72 e k) 0@ / V@ =D - D =0 =D (A-68)
1 0
where ,

1

S (A-69)
(1 - VYa)?

1
b= A-70
(1 + Ya)? (A-70)
em———5=~-bn A-71
(1 + V)2 ( )
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d=—="0 _ «.an (A-T72)
(1 - vm)?2

From Byrd and Friedman's (1954) table of elliptic integrals, an analytic
expression for the integral in Eq. A-68 is obtained. This is:

- u . 1+n F(v ,x) (A-73)

n? K@) K'(m) (@ ¥ BB + an)

VpD

where, F(v,x) 1s an incomplete elliptic integral of the first kind with
argument v and modulus « given by the following two expressions:

v = Arcsin( %—}-%‘- ) (A-T4)

2 ab (1 +n)?

X TTETFTon® Fan)

(A-75)

The values of F(v,x) can either be obtained from a mathematical handbook or
computed directly using Ascending Landen transformation successively
(Abramowitz, 1972).

The displacing fluid cut, as before, is calculated from the angle at which the
streamline enters the well. From Fig. A6 it is:

fp= 1 - (A-76)
and thus, n is related to fD as follows:

n = tan? [ T (1 - £))] (A-TT)

Equations A-73 and A-77 jointly describe the breakthrough curve of a developed
direct line drive pattern.

Breakthrough Areal Sweep Efficiency

At breakthrough; fD = 0, hence n = =, Kz = 1 and Egs. A-73 through A-75 reduce

to:
v = arcsta ({2) (A-79)

v - m F(v,1)
pDbt m%_ K(m) K'(m)\"h

(A-79)
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However,
F(v,1) = 2n (tan v t sec v) (A-80)
From Eq. A-78:
sinv =% (A-81)

Therefore, Eq. A-79 becomes:

Vb = " 2n [‘5—*—‘5—] (A-82)
P od K(m) K'(m) Vab \a = b
Substitute for a and b from Eqs. A-69 and A-70 and simplify:
v ~ n_fn(m) (A-83)

pDbt 4 m, Om) K (@)

Appendix A4: INVERTED SEVEN-SPOT

The complex potential for this pattern is given by Morel-Seytoux (1966) as

follows:
Q(z) = &n £(2) (A-84)
where,
1 - cnz(z,m)][a + b cnz(z,m)]
f(z) = 7 5 (A-85)
[1 + en“(z,m)][a - b en“(z,m)]
a=2+7V3
b=2-V3
m= (2 - V3)/4
From Eq. A-14:
cn(x,m) cn(y,ml) sn(x,m) dn(x,m) sn(y,ml) dn(y,ml)
en(z,m) = 3 3 -1 3 2
1 - gn (y,ml) dn” (x,m) 1 - 8n (y,ml) dn“ (x,m)
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Let:

cn(x,m) cn(y,ml)

h = . . (A- 86)
1 - sn (y,ml) dn“(x,m)
sn{x,m) dn(x,m) sn(y,ml) dn(y,ml)
g - > > (A-87)
1 - sn (y,ml) dn“(x,m)
Therefore:
en(z,m) = h = ig (A-88)
Substitute Eg. A-88 in EJ. A-85:
(1 - (0% - g% +1 2ng){a + (% = ¢®) - i 2bhg)
£(z) = — — (A-89)
[1 +(h° -g% - i 2hg]la = b(h® - g°) *+ i 2bhg]
Equation A-89 can be simplified to:
AC - BD + B
£(z) AT iB g 2tiaT (A-90)
C iD = ¢t p
where,
A= at apu? - (a = b)YE - bt (A-91)
B = 2u(a = b t 2bvE) (A-92)
2 - -
C=at4u” + (a- b))Vt - bt (A-93)
D= 2u(a = b = 2bYt) (A=94)
and,
t = (h2 - gz)z (A-95)
u = hg (A-96)
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From Egqs. A-15, A-84 and A-90 the complex potential is:

2 2
- _]_._ (AC - BD)” + (AD + BC) ~1 | AD + BC
Q(z) 3 ln[ (cz N D2)2 ]+ i tan [——-—-——AC — BD] (A-97)

Comparing Eq. A-1 and A-97:

AD + BC ) (A-28)

voy) = it (g

Substitute for A, B, C, D from Eq. A-91 through A-94 in Eg. A-98 and
rearrange:

4u[(1 - b2y(a? +t) +a? - 1]
al { } (A-99)

Y = tan 2
8u>(2b%u? - 5+ b t) +a% +b%t? —14t

Streamlines given by this equation are shown in Fig. A-7.

ELEMENT

= K(m) > X

lef/r

Fig. A-7: COORDINATE SYSTEM FOR AN INVERTED DEVELOPED SEVEN-SPOT
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In the coordinate system of Fig. A-7, K'(m) = V3K(m). The element chosen for
the analysis is 1/12 of the pattern bounded between ¥ = 2n/3 and ¢ = 7.  Time
to breakthrough of streamline ¥ is:

2K "' (m)

3 d
= <L (A-100)
tbt: vY

0
and v,, is given by Eq. A-58. Making the following substitutions for the terms
iny gquation (A-99):

re (1-0%)(4u? +¢) +a2 -1 (A-101)
w o= 8u2(202u? = 5 + p2c) + a2 + 2% - 14t (A-102)
then:
v = taﬁl(i‘-v—) (A-103)
Therefore, from Egs. A-58 and A-103:
X A[W(ru' + r'u) - ruw']
V= - = (A-104)
y ue wz[l + tanZW]
x = x(¥,y)
Substitute Eq. A-104 in Eg. A-100 and rearrange:
2K' (m)
ue (1 + tanzgg) wzdy
tbt =T Fi' 4 w(ru’ T r'u) - ruw’ (A-105)
y
Pore volumes injected :
toe 4
= bt 't
va pattern pore volume (A-106)
Flow rate around the wellbores from Eq. A-26:
k k
a -3 Ay = 4w ” (A-107)
and,
pattern pore volume = 2V3 ¢ Kz(m) (A-108)
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Using Egs. A-105, A-107 and A-108, in the Eq. A-106, one obtains:

~ 2K (m)
-r(1 + tan?) w2ely |
VPD i 2Y3 Kz(m) o w(ru' T rlu) = ruw' (A-109)
o x = x(V,y)

From Egs. A-95 A-96, A-101 and A-102, the derivatives of various terms in
Eq. A-109 are:

ut = h'g 4 hg' (A-110)

r' e (1= b¥)(8uu' ") (A= 111)

W= 16uu'(6b?u® = 5+ pPe) 2% (4u? +e)et - Lae (A-112)
t = 4(n® - g2)(hh' - gg") (A-113)

From Egs. A-86, A-87 and A-141 through A-143 the following expressions for
h' = 9h/9x and g' = 3dg/dx are obtained:

> (A-114)

h' = ~ sn(x)dn(x)cn(y)[
R

R + 2m cn2<x)sn2(1)]

R[dnz(x) -m snz(x)] - n snz(y)dnz(x)snz(x)
g' = sn(y)dn(y)en(x) - 2 %
‘ R
(A-115)
where:

R = 1= sn’(y)dn>(x) (A-116)
and,
sn(x) = sn(x,m)
sn(y) = sn(y,m,)

In computing Vo values from H. A-109, the x terms in the integral should be
expressed as f\%nctions of y. Therefore, for a selected x value on a stream-
line $, the corresponding y value has to be evaluated. This was accomplished
numerically by applying a root-finding routine to Eq. A-99 with a constant ¢
value. The computed coordinate points on streamline ¢ were then substituted
into Bg. A-109 and the integral term in this equation was evaluated numer-
ically. Equations A-110 through A-116 were used in evaluating the necessary
terms in EH. A-109, The computer program developed to generate the break-
through curve of this pattern is given in Appendix D.2.
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Displacing fluid cut at breakthrough of streamline ¢ from Fig. A7 is:

£ =_’L_;'_L. 3 ..3_"Y (A-117)
3
where :
%E Sy <7

Equations A-109 and A-117 describe the breakthrough curve of a repeated
inverted seven spot pattern.

Breakthrough Areal Sweep Efficiency

The breakthrough streamline is ¢ = w. On this streamline, x = 0; therefore,
en(x,m) = 1, dn(x,m) = 1, and sn(x,m) = 0. AIll the parameters defined before
take simpler forms as follows:

1
g=0 (A-119)
h' = 0 (A-120)

sn(y,m,) dn(y,m,)

g' = 2 (A-121)
cn (Y:ml)
u=o (A-122)
t = 71_ (A-123)
cn (Ysml)
sn(y,m,) dn(y,m,)
u' = 3 (A-124)
en”(y,m;)
£t =0 (A-125)
(32 = l)cn4(y,m1) + (1 - b2)
= . (A-126)
cn (Y:ml)
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2 8 4 2
a“cn®(y,m,) = ldecn (y,m,) + b
W= 1 : 1 (A-127)
cn (y.ml)
= 0 (a-128)
w =20 (A-129)

Substitute Eqs. A-118 through A-129 into Eq. A-109 and rearrange:

2K'(m) . )
o 3 azcns(y,ml) - lé4cn (y,ml) +b a
v = 2 y
pDbt 2 _ 2 1-b
2V3 (a 1)K (m) sn(y,ml)dn(y,ml)cn(y,1)[cn (vim)) +5 1]
0 a -
(a~130)
To calculate the integral, let p = ¢n?(y,um)), then:
dy = - dp
y 2 cn(y,ml) sn(y,ml) dn(y’ml)
cn(y,ml) sn(y,ml) dn(y’ml)
= - dp
2 ca’(y,m) sn’(y,m) dn’(y,m,)
n(y,m,) sn(y,m,) dn(y,m,)
- - - cylzyl 12 dp (A-131)
2 en (y,ml)[l - ecn (y,ml)][m + m,cn (y,ml)]
At the limits:
p = cnz(O,ml) = ]
and,
p -+ cn2 [2EM@ ] - @2 - VB2«
Hence, Eq. A-130 becomes:
b
v - ul gzoé = 1402 + b2 > 4
pDbt 2 _ ' ‘ P
4W3 (a D m) p(l = p)(mp +m)(p + IFTl)
1 & -
(A-132)
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But :

m = (2 -V3)/4

my =1 -m = (2 + V3)/4

«l (A-133)
a

- -2 (A-134)
a

Using Egs. A-133 and A-134, E. A-132 further simplifies to:

(p + (-2
v - ra” P B & dp (A-135)
pOdt  ,y3 ml(a2 - l)Kz(m) p(p™ + )
1
The integral can now be calculated. This is:
b2 b
(p + D(p - —_=x2 )
7 D dp = b tan (b) - tan_l(‘g) (A—136)
p(p +3)
1
For :
a=2+7V3
b=2-7V3

m=(2+ V3)/4
m = (2 -ﬁ)/ll

K(m) = 1.59842
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;I'sh(? value of Vprt computed from Eq A-135 with the integral given by Eq. A-136

Vopbe = 0.743682

Appendix A5:  RELATING DERIVATIVES OF THE STREAM FUNCTIONS
TO_THE STREAM FUNCTIONS

This appendix is divided into two parts. The first part covers the staggered
line drive pattern and the second part discusses the direct line drive

pattern

Appendix A.5.1: STAGGERED LINE DRIVE

From Eq. A-18:
sn(y,ml) dn(y,ml)

f(Y.ml) = cn(y,ml) (A—137)
From Abramowitz (1972) or Byrd and Friedman (1954):
-g—; [sn(y,ml)] = cn(y,ml) dn(y,ml) (A-138)
%; [dn(y,ml)] =-m sn(y,ml) cn(y,ml) (A-139)
g—};- [cn(y,ml)] = - sn(y,ml) dn(y,ml) (A-140)
And :
2 2
sn (y,ml) = ] - cn (y,ml) (A-141)
2 2
dn (y,ml) =m cn (y,ml) + m (A-142)
2 2
dn (y,ml) =1 - m, sn (y,ml) (A-143)
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Therefore :

2
dnz(y,ml) - m snz(y,ml) cn (Y.ml)

f'(y,m,) =
' en’(y,m))
(A-144)
m cna(y m,) +m
o1 !
en’(y,m))
From EJ. A-137:
snz(y,m ) dnz(y,m )
2 1 1
cn”(y,m,;)
- 4(m)+(m-m)cn2(ym)+m
oM e e 1 ™
cnz(y,ml)
Or:
4 2 2 ~m=0 (A-145)
m, cn (y,m ) - [ (m1 -m) - £ (y,ml) ]cn (y,ml) m
Let:
Y=m Tm= fz(y,ml) (A-146)

The solution for the quadratic equation in A-145 is:

Y ¢ JYZ + 4m1m
(A-147)

Zm,

en’(y,m,) =

Tre negative sign is impossible, because m and m; both are positive numbers.
Substitute Eq. A-147 in Eq. A-144 and simplify:

2

£r(ym) = 7 + am (A-148)
Substitute back for ¥y from Eq. A-146:
! J 2(m - m,) fz( m,) + fl’(ym ) (A-149)
f(y,ml)- 1 + 2(m m, y.m, sy
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Similarly:

f'(x,m) = Jl + 2(tn1 = m) fz(x,m) + f4(x,m)

Appendix A.5.2: DIRECT LINE DRIVE

From Eq. A-55:

- en(x,m) dn(x,m)
£(x,m) sn(x,m)

Using the derivative of the Jacobian elliptic functions from Egs.

through A-143:

_ dnz(x,m) + m Snz(x,m) an(x,m)
f'(x,m) =

snz(x,m)

e m4sn(x,m) =1

snz(x,m)

From E). A-151:

an(x,m) dnz(x,m)

fz(x,m) = >
sn“(x,m)

= m4sn(x,m) -+ m)snz(x,m) + 1

Snz(x,m)

Or:
4 2 2
m sn'(x,m) - [(1 +m) + £°(x,m)] sn“(x,m) + 1 = 0

Let:

Yl =1 *tm+ f2(x,m)

The solution to Eq. A-153 is:

2 _
AR AL 4m

2m

snz(x,m) =

=122 =

(A-150)

(A-151)

A-138

(A-152)

(A-153)

(A-154)

(A-155)




Substitute Eq. A-155 in Eq. A-152 and simplify:
2
f'(x,m) = ¢ Yy - 4m (A-156)

Because m» 0 and -1 <€ sn(x,m) < 1, from Eq. A-152 it is concluded that
ft(x,m) € 0. Therefore:

£'(x,m) = - yf - 4 (A-157)

Substitute for y; from Eq. A-154 in Eq. A-157:

f'(x,m) = - J[(ml - fz(x,xn)]2 + 4f2(x,m) (A-158)

The above approach can also be used to relate g‘(y,ml) to g(y,ml). From
Eq, A-56:

sn(y,ml) cn(y,ml)
dn(y,m, )

gly,m ) = (A-159)
The derivative of this function is:

an?(y,m ) e’(y,m) - sn’(y,m)] + o) sn’(y,m)) ea’(y,m)

g'(y’m ) =
1 dnz(y,ml)

(A-160)

Using Eqs. A-141 through A-143 to express sn(y,m;) and cn(y,m;) in terms
of d“(y’ml) , Eq. A-160 reduces to:

dn4(y,m1) - m

g'(y,m,) = > (A-161)
1 m, dn“"(y,m,)
1 1
From Eq. A-159:
2 snz(y.ml) cnz(y.ml)
g (y,ml) ) an(Y,ml)

- dn4(y,m1) + (1 + m)dnz(y,ml) -m

m%. dna(y,ml)
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Or:

dna(y,ml) - +m - mf gz(y,ml)]dnz(y,ml) +m=0 (A-162)

Let:

Y2 = 1+m =02z Xy,m) (A-163)

The solution for dnz(y,ml) from Eg. A-162 is:

I2
2 ‘(2 t \‘IY2 - 4m
dn (y,m;) = 2 (A-164)

Substitute Eg. A-164 in Ey. A-161 and simplify:

- 1 2 _ _
g'(y,ml) = % -m—l- Y5 4m (A-165)
From Abramowitz (1972):
dn(O,tnl) =1
K’ Y,
dn[ ém),ml] = m 4
TN

dn[K' (m) ,ml)] = m

Therefore, From Eq. A-161 it is concluded that:

Kl
{ g'(ym) >0 for 0< vy« ———;m)

g'(y,ml) <0 for E—-(z-ﬂ< y € K'(m)

Substitute for v, from Bg. A-163 in A-165 and rearrange:

+ J[ 1+ mlgz(y.ml) ]2- 4g2(y.m1) 0<yc« X ém)
g'(y,m,) = .
- 1+n ey ] - ray By <@
(A-166)
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Appendix B

DERIVATION OF EQUATIONS FOR PATTERN RECOVERY CURVES
AT VARIOUS MOBILITY RATIOS

The location of the displacement front plays a major role in the analysis of
pattern performance when the mobility ratio is other than one. For such a
displacement: 1) the streamlines in the regions behind and ahead of front
deviate from those determined at mobility ratio of one; and 2) the total
resistance to flow continually changes as the location of the front varies.
This is iIn contrast to a unit mobility ratio displacement in which the
resistance to flow is constant and independent of the interface position. In
the following analysis, it is assumed that streamlines are the same for any
mobility ratio while the overall resistance to flow varies during the
displacement. Consequently, for a constant pressure drop between an injection
well and a production well, the total flow rate in the pattern as well as the
flow rates in the individual streamtubes will change as the front advances
towards the production well.  Furthermore, at any particular time, the flow
rates in the individual streamtubes will differ from each other. This is due
to establishment of different resistances in the streamtubes for the same
total pressure drop across them.

Consider a piston-like displacement of two fluids in a developed five-spot
pattern, as shown in Fig B-1.

Flow rate in a general streamtube $1 when the displacement front is at
location 8ol in the tube is:
- apa apb
qw(s) = )\a A(S) 3-5— = )xb A(S) -5;— (B"l)
where :

A :%- fluid mobility

A(s) cross sectional area of streamtube at location s

a,b = subscripts for displacing and displaced fluids respectively

pressure

©
]

(s) flow rate in the streamtube $1 as a function of front location

qual
front location, same as S

121
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K'(m)

s = Path Along A
Streamline

Fig. B=l: FRONT LOCATION IN A DEVELOPED FIVE-SPOT PATTERN
AT AN ARBITRARY MOBILITY RATIO
Integrate Eq. B-1 to obtain the pressure drops in each zone:
-, 8
(2v,) =¥ — 5 (B-2)
Vvl a_ 0
and,
q,,(5) (¥l
(20 ) - de (B-3)
b ¥1 b - A(s)
Swl
where :
By1 " total length of the streamtube $1
;wl = front location in the streamtube $1
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The total pressure drop across the streamtube is the sum of pressure drops in
the Lnvaded and the non-invaded zones. This total pressure drop iS the same
for all the tubes and will be assumed to be constant in this analysis. Add

Ege. B2 and B-3 and solve for q‘Pl(E):

_ Xa Ap
91(8) == (B-4)

s‘“ ds BM ds
0 Ai(sy *+ M Y 0))
s

vl

where Ap is the total pressure drop and M is the mobility ratio defined as:

A k u
a ab
M = — = — (B-5)
Ab l% Ya
The time required for the front in this streamtube to reach the production
well is:
s s
vl - vl -
t -f s ¢f As) 45 (B-6)
¥ 1bt 0 v(s) 0 q(s)
Substitute for qwl(E) from Eq. B-4:
1 _ .8 %1
-9 ds ds -\ 4= -
t\plbt )‘a p ACs) + M : O) A(s) ds (B-7)
- 0 8
s=0
At this time, the front location in the streamtube $2 is at s¥2’ which is
given by: -
sIPZ 8 s“J2
S ds ds - 4= _
t "~ bp As) + M -——A(s) A(s) ds (B-8)
Y2bt a -
g0 0 y

Equate Egqs. B—7 and B-8:

s -
P2 8 s ‘ vl 8
$2 ¥1
ds ds - - ds ds - -
U Gy * Mf m] As) ds = [ A “/ A(s) ] Ae) ds
0 0 s , 0 8
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Equation B-9 provides the front location in the streamtube $2 at the time when
the front in the streamtube $1 reaches the production well.

Areal sweep efficiency at the time of breakthrough in the streamtube $1 is the
sum of two areas: 1) the total area of the streamtubes that are completely
filled with the displacing fluid (broken—through streamtubes); and 2) the
total swept area in the unbroken streamtubes. Mathematically, the areal sweep
efficiency is given by:

/4 a8 W1 8
1] Y
f f A(s) ds dv +f [ A(s) ds dy
_Jv Jo o Jo (B-10)

Ea (pattern pore area)/8

For the developed five spot system in Fig. B=-l, the pattern pore area can be
calculated from the following equation:

pattern pore area = 4¢K2(0.5) = 4(1.8540746)2¢- 13.75036 ¢

Therefore, Eg. B-10 becomes:
n/h s‘p Y1 s
EA = 0,5818 ¢ A(s) ds dy + A(s) ds dy (B=11)
Pl 0 0 Y0

Pore volumes injected, V
are calculated from:

oD at the time of breakthrough in the streamtube ¢1

Vo " E, + (Vp)a (B-12)

where, (VpD)a is the pore volumes of displacing fluid produced at that time.
The term”™ (V D) is equal to the sum of the cumulative volumes of the
displacing frﬁraaproduced from each broken-through streamtube since the break-
through time in each individual tube. Because only one fluid is flowing in
the broken-through streamtubes, the flaw rates in such streamtubes are 'equal
and remain constant after breakthrough of the displacing fluid from the

pattern. Mathematically, the pore volumes of displacing fluid produced may be

computed trom:
n/4
qa[ (tlplbt - twbt) dy
¥

1bt
v = B-13
(PD)a (pattern pore volume)/8 ( )
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In this equation, three terms must be defined. First, q represents the flow
rate in the streamtubes that produce displacing fluid. #is term 1s the same

for all the streamtubes that have already broken-through. It is given by:
L e
9 3 (B-14)
ds
A(8)
0

The integral in the denominator of Egq. B-14 can be computed on any, streamtube
that is filled with the displacing fluid, a. The other two terms, 1bt and

t represent the breakthrough time from the streamline $1 and general
s??&amline, ¢ respectively. In analogy to Eq. B-/:

8y s 5 '
ds ds - -
t = _A_% [ f NO)) + Mf —A—(-S_). ] A(s) ds (B~15)
ybt a _ 0 s
s=0

Substitute Eqs. B-7, B-14 and B-15 into Eq. B-13 and simplify:

/4
s 8
¥l p — s v = s
0.5818 Wl v
ds ds — ds ds
~v_.) s +M S ] A(s)ds - S [ + MS ] A(S)ds } dy
D a js"/4 [g A(s) z A(s) (S) A(s) < A(s)
0 0
ds
A(s) vl

(B-16)

Displacing fluid cut, fp, #s the ratio of producing displacing fluid rate
divided by the total production rate. This is given by:

/4
q f dy
2 Ju

D" /4 V1
q f ay +f q, (¥) dv
a 1 0 b

where, q, is the flow rate in any streamtube that has not broken through. It
varies with time and is different for different streamtubes, as it is within

the integral sign.

(B-17)

f
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Substitute for qy from Eg. B4 and for q, from E. B-14:

1
£, = o (B-18)
S“M ds ;
1+ —O—'rr_i(—S)__ ) 'S, - 5
Z"‘bl j.wds +Mjwds
V=0 0 A(s) s A(s)

Equations B-11, B-12, B-16 and B-18 are written in general forms. The rest of
this appendix focusses on simplifing these equations.

Because of the assumption of no streamllne change with mobility ratio, the
area terms in the preceding equations can be calculated from the streamlines
determined at unit mobility ratio. That is:

q
A(s) = ——2=L (B-19)
¢ [V(s)]
M=1
where,
q = flow rate in the streamtube if the displacement was at M = 1

M=1

= microscopic velocity at location s iIf the displacement was at
[v(s)]M-l M= 1

From Egs. 3-42 and 3-50 with h = 1, it is concluded that:

¢ =k (8-20)
M=1
The term 5%23' which appears frequently in the preceeding equations becomes:
ds . ¢ gs [v(s)] (B-21)
A(s) ~ M=1

The following relationships facilitate evaluation of Eg. B-21:

ds = \l(dx)z + (dy)2 = dx 1+ ‘%’2 (8-22)

(B-23)




ol L+ O

2 2
ds_ ¢ (v")mq * (vy)M-I

A(s) X (v")u-x

Therefore:

dx (B-25)

From Bg. A-23:

5 f(x,m) f'(y,ml)

v - — (B-26)
( x)M=-1 1+ tany
and similarly:
(v ) Y £'(x,m) £(y,m;) (B-27)
y M=1 ¢ 1 + tanzw

where, f(x,m) and f(y,m;) are given by Eq. A-18. For a five-spot pattern,
m=m = 0.5 hence 8 = m = m, = O. Equations A-30 and A-31 reduce to:

1
£1(x,m) = ‘/1 + £4(x,m) (B-28)
£'(y,m,) = \/1 + iy (8-29)

Substitute Egs. B-26 through B-29 in B-25 and use Eq. A-32 to replace the
£(y,m)) terms by f(x,m) terms:

4
n+f (x,m)
ds_ dx (B-30)
A(s) 7%
f(x,m) "+ £7(x,m)
in which,
n = tany (B-31)

Introducing the same change of variable, z = fz(x,m), as proposed in Appendix
A.l:

2
r——2) dz (B-32)
2 2\/(1 + 29 (% + 22

ds -
A(s)
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From Gredshteyn and Ryzhik (1980):

2 2 2

(n + 22) dz l.g najz " +1 + \J;r +n
A(s) =2 5 3
\[(1 + zz)(ﬂ2 + 22) n\’z +1 + \’z +n

(B-33)

Let:

\j22+1 +\/z +n

G(z,n) = 2n (B-34)
\jzz +1 + \/z + n

At z = 0 and z = =, the term G(z,n) approaches infinity. These points corre-
spond to singularities at the injection and production wells. To avold the
singularitles in the calculations, a radius equal to d4/10000 is assigned to
the wells, where d is the distance between an injector and a producer.

Another term that can be simplified iIs the integral defined in Eqe B-8 and in
similar equations. Designate:

5y s 5
ds ds =y 1=
Hw = [f X(S—y + Mﬁ m‘s‘] A(S) ds (8—35)
5=0 0 s

The A(s)ds term in this equation can be reduced to the following by using Egs.
B-19, B-20, B-22, B-23 and B-24:

A dx

A(S) ds = W (B—36)

M=]1

Using Egs. B-33, B-34 and B-36 and noting that wellbores have definite radii,
the term in brackets in Eq. B-35 reduces to:

s
;‘, -
0 s
(B-37)
where ,
z " fz[(K - pr)sm] (B-38)
£2(
" xwi,m) (B-39)
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z = £ (;,E@ (B—40)

and,

.= i B-41
Xy i ® T, Sin v ( )

X =71 COSV (B-42)
wp w

X is the x component of front location, T, is the wellbore radius and ¥ is the
value of a general streamline shown in Fig. B-l.

Define :

P(n) = M G(zp,n) = 6(z,M) (B-43)

Using Eqs. B-36, B-37 and B-43, the H term defined in Egq. B-35 becomes:

x\p - x‘p -
B, = P(n)[ - dx s = M)[ G(z,n) __Td_’i__ (B-44)
2 Jy ( :'c) 2 X ( ;)M-l

wi M=] wi

where, X_ is the x coordinate of the front in the streamtube $. From Eqgs. A-
19, A—ZS%S A-27 and A-34 with 8 = 0, it is concluded that:

dx dz
(_f) - 1*0M (B-45)
v 2 5 3
- _ . -
X M=1 \/(z +0)z + 1)
From Byrd and Friedman (1954):
z
f dz - F(v.) (B-46)
0 \ﬁzz +t12)(z2 + 1)
where,
-1,z
v =tan () (B-47)
=1 -n? (B-48)
with the property that,
F(3,k) = K(K) (B-49)
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Substitute Eq. B-45 and B-46 in Eq. B-44 and rearrange:

1+ G(z,n) dz
H =——2 | P(n) F(v,x) + (1 - ¥) (B-50)
LA ) )
(z +02)@E + 1)
When the front in the streamtube $1 reaches the production well, =2z .
However, z is calculated at the production well and, hence, agproac es

infinity (gee Eg. B-38). Therefore, the argument of F(V,K) bgcomes equal
to n/2 and from Eq. B-49, F(n/2,x) = K(x). Thus, the front in any streamtube,
$2 defined by Eg. B-9, is reduced to:

G(z,n) dz
(1 +n) ] PMm) Fv,x) + (1 - M) v -

\/_2 2 2
(z +n7)(z + 1) P2

P G(z,n) dz

\/*_2 2, -2 ]
(z +09z + 1D v,

(1 +n) [P(n) K(x) + (1 - M)

(B-51)

where, 1b represents ¢l at breakthrough. Note that in Eg. B-51, the left
hand side fs computed at $2 and the right side at ‘“bt'

At the breakthrough of y1, substitution of Eq. B-36 in Eq. B=11 results in:

vl =
R(m) dx bt ~x dx
= 0.5818 dy + TY— dy (B-52)
Vi, 0 0 (“x M=1

Applying Eqs. B-45, B-46 and B-47 to Eg. B-52 and noting that z = = at the
production well:

w/4 bt
EA = 0.2909[[ (1 +1n) R(x) &y +[ (1 + n) F(v,k) dy (B-53)
0

Vi
where, v and K are defined by Egs. B-47 and B-48. Values of z are obtained

from the solution of Eg. B-51.
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The pore volumes of displacling fluid produced at breakthrough of the stream-

line ‘th are computed from Egs. B-16, B-33, B-34, B-35 and B-50. The result
is:
/4 H‘“ _ Hq,
(V,p) = 1-1636 bt bt & (B-54)
P%a vl G(z_,n) - G(z;,n)
bt P
where, an represents a streamline at breakthrough and is given by:
bt
z
f P - -
+ G(z,n) dz 1
Hpy, =22 [P k) + (1 - W) ’ (B-55)

_2 2 2
z, (z +n7)(z +1) ~

Displacing fluid cut is computed from Egs. B-18, B-33, B-34, B-37, and B-43 as
follows:

£ = a2~ ¥lpe
D P1 (B-56)
TVl + [0z -6z, [Pt a
o P +U-m G(z,n)

The computer program given in Appendix D3 utilizes Egs. B-12, B-53, B-54 and
B-56 to evaluate areal sweep efficiency and displacing fluid cut for various
mobility ratios.
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Appendix C

+ EVALUATION OF THE LINE INTEGRAL IN MIXING EQUATIONS

In this appendix, evaluation of the line integral in the mixing equations is
illustrated for developed staggered line drive, five-spot, and direct line
drive patterns. The appendix consists of three sub-appendices, each corre-
sponding to one of the above patterns.

Appendix C.l: STAGGERED LINE DRIVE

Consider a staggered line drive pattern with the dimensions shown in Fig. ¢-1,

- em e wn o ow ) = o s em
v=1%2

(X[

Fig. C-1: DIMENSIONS FOR A STAGGERED LINE DRIVE CONSIDERED
IN ME ANALYSIS OF MIXING LINE INTEGRAL

The stream functions for this system are given by analogy to Egs. A-17 and
A-18 as follows:

V(x,y) = tagl [f(w,m) f(z,ml)] (c-1)
sn(w,m) dn(w,m)
f(w,m) = en(w,m) (c-2)
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W q X (Cc-3)
zZ = 5:—(-‘2)— y (C-4)
d
5_'—(21-2 C-
2K(m) a (€=5)
0 ds
Using Egs. B-22, B-23 and B-24, the line integral, | = f 3 is
reduced to: o V(®
X
I = dX (C"6)
2 2
0 vX vx + vy

IT initial water saturation in the reservoir is § from Egs. A-2 and A-3 the
components of microscopic velocity are given by:

= __li._ 31]) C"7
Vx u¢Sw 3y ¢ )
y = y(¥,x)
k Y _
Vy = - W rx' (C 8)
x = x(¥ ’Y)

Differentiating Eg. C-1 with respect to y and x, the velocity equations

be come :
k  K'(m) f(w,m) f'(z,m,)
v = 5 3 5 (c-9)
X Heo w 1 + [£(w,m) f(z,ml)]
)
v e o k@ _FTOom HEmy) (c-10)
y Hes, a 1 + [£(w,m) f(z,ml)]2
On a general streamline, ¢ is a constant and Eg. C-1 yields:
f(v,m) f(z,m)) =Vn (C-11)
where,
n = tanzw = constant (C-12)
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Utilizing Egs. ¢-3, C-5, C-9, C-10 and c-11, the following expression for the
line integral is obtained:

u$S. \2 2 v dw
1-(k") (1 +n)2 —284 5 (c-13)
. 2K(m)K'“(m) 0 f(w,m) f'(z,ml)\lir

where,

R, = [£Gn,m) £'(z,m) ) + [£'(w,m) £(z,m))) (C-14)

Equations A-149 and A-150 relate the derivatives to the functions. These are:

£'(z,m)) = \/1 +t4z,m) + 28£2(z,m ) (C-15)
£1(w,m) = \/1 + £4w,m) - 28£2(w,m) (c-16)

where ,
B=m - m, (Cc~17)

Substitute for the derivatives in H. €-13 and C-14 from Egs. C-15 and C-16,
and eliminate f(z,m;) by Ej. C-11; then Ej. C-13 simplifies to:

3

HoS \2 2
I'(kw) (1+n)2;d2
2K(m)K' “(m)

v £2(w,m) du
0 \[[fA(w,m) +n][£* ,m) + 2nfl(w,m) +n?]

(C-18)

Introducing a variable change of f2(w,m) = t , and using HJ. c-16 to replace
the £'(w,m) terms, E. C-18 becomes:

uéS \2 2
1 .( ") ad y (C-19)

k) k(@)K 2(m)
where,
3 £2(w,m)
Y = (1+1) Ve dt (c-20)
Jo N2 = 28+ + 28ne +n0)(e? +n)
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A plot of Y versus w/K(m) or 2x/a for different streamlines (various n) is
illustrated in Fig. C-2. This figure shows that Y asymptotically approaches
constant values at the production well., Consequently, for w close to the
production well, the exact location of w in the streamtube does not affect the
values of Y significantly. On the other hand, since the tracer slug is small,

10 I ] 1
o o ]
¥ =720
s ]
¥ =716
X ar
I8 il W Km ]
¥y =mM12
=
> L _
—
é Vv=7/8
E st -
-
=
=] y=7l4
e T i
>
=l
>
. _
2 o n
L - —
0 | 1 ]
0 0.2 04 0.6 0.8 1.0

X-COMPONENT OF TRACER FRONT LOCATION, ;/K(m), 2x/a

Fig. C-2. VARIATION OF MIXING LINE INTEGRAL WITH TRACER FRONT LOCATION
FOR VARIOUS STREAMLINES OF A STAGGERED LINE DRIVE, d/a = 1
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the amount of tracer flow to the well is insignificant unless the tracer front
is close to the production well. Therefore, for all practical purposes, the

upper limit of the integral zi Eg. C 20 can always be computed at the produc-
tion well. For this case, f°[K(m),n] = = and Y
3r- e
Y = (1+n)zf ;dt — (c-21)
0 £ - 2t + (e 428t +n*)(t” +n)

All the roots of the quadratic equations in Ej. C-21 are complex. Therefore,
there 1s no singularity in the range of integration. However, for d/a 3 2,
m + 0, B *+ -1; hence, one of the roots approaches n. For this case, precau-
tions should be taken in the numerical integration around the point t = n.

Appendix C.2: FIVE_SPOT

For a five-spot system:

w)o
"
N =

B=m=-m, =0

K(m) = K'(m) = 1.854074

Equations C-19 and C-21 reduce to:

HeS \2 3
1 .( v w) a Y (Cc-22)
101.97678
where ,
% ® VT dt
Y = (1 +n) — (C-23)
0 \ﬁtz + 1)(t° +n7)(tT +n)
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Appendix C.3: DIRECT LINE DRIVE

Figure C-3 shows the coordinate system with the dimensions for this pattern:

Y
a
O 4 12’d) @)
™
? ‘h\r J o
0 " b
> > >
» «
.fﬁ T a ;X
2
K'(m) _4d
2K (m) a
Q

DIMENSIONS OF A DEVELOPED DIRECT LINE DRIVE CONSIDERED

Fig. C-3:
IN 'ME ANALYSIS OF MIXING LINE INTEGRAL

The stream functions for the above coordinate system are obtained by analogy
to Eqs. A-54, A-55 and A-56 as follows:

¥(x,y) = tan' [£Qw,m) gz,m))] (c-24)
£(w,m) = C“(W;‘:zw‘%"a‘“) (C-25)
sn(z,ml) cn(z,ml) .

g(z:ml) = dn(z,ml) (C- )
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w= 2Kgm)- X (C-27)

2 = K'ém) y (C-28)
K'(m) _d
TZ%T -2 (C-29)

8

. . - . d

The following equations facilitate evaluation of I = f 2
0

vz(s) .

ds = (a0 ? + (a? = ay [ (Z)+1 (C-30)

@ =vity? (c-31)
X Y
dx Vx _

Using these equations, the 1 integral becomes:

dy
I = (c-33)

The velocity components are related to stream functions by Egs. C-7 and C-8.

Performing the partial differention on ¥(x,y), the expressions for the
velocities become :

ok p@ _ few etep) (C-34)
Vx uéS d 2
w 1+ [f(w,m) glz,m))]
NP S (6 £'0w,m) g(zm)) (c-35)
Y ueSy a 1 + [f(w,m) g(z,ml)]2
For a general streamline, ¢ is constant and Eq. C-24 results in:
£f(w,m) 3(291“1) =Vn (C_36)

where, n 1Is given by Eq. C-12.
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Utilizing B C-28 and Egs. C-33 through C-36, the following expression for
the line integral, I, is obtained:

HeS N2 2 ad? z dz
I==(—0—) Q+0)° ——— (c-37)
(' ) 2K(m)K'2(m) 0 f'(w,m) g(z,ml) VRI

where,

R, = [£(v,0) g'(zm) ]2 + [£'(w,m) g(z,m)))? (C-38)

Equations A-158 and A-166 relate the derivatives to the functions:

£'(w,m) = - \ﬂml - £2w,m)] % + 4£2(w,m) (c-39)
and,
2 2 4 2( ) 0<z < K'(m)
+ [1 + m g (z,ml)] - 4g"(z,m, —
g'(zaml) =
- \/El +m gz(z,ml)]2 - 4g2(z,ml) K';m) < z < K'(m)
(C-40)

Substitute for the derivatives from Egs. C-39 and C-40 in EH. C-37 and
eliminate the f£(w,m) term by using Ej. C-36:

3 z 2
S \2 = 2 g (z,m.)
I -(E;—"i) (1 +n)? adz N S P (C-41)
2K(m)K"'“(m) 0 \ji;
R2 = [mlz gb(z,ml) + 2n(2 - ml)gz(z,ml) + nz][ml2 ga(z,ml) + n] (C-42)

Introducing a change of variable, t = gz(z,ml) :

dt
dz = dt -

2g(z,m;) g'(z,m,) t 2g(z,m)) \ﬁl + mlgz(z,ml)]2 - 4g2(z,m1)

(C=43)
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Substitute this new variable and Eg. C-43 into Eg. C-41 and utilize the ranges
given in Eq. C-40, the result of Eq. C-41 is:

1S \2 2
I= ( - ") ad — ¥ (c-44)
4R (m)K' “(m)
with :
3 g2(—z_"“l) vt dt
Y= +n)2f _ (C-45)
0 Vo
if 0<z < K—iz(ﬂl , Or equivalently, 0 < gz(;.ml) < —12
(1 + ym)
and,
s U+ VB g’ @m,)
Y= (14m)72 _Yrd Nede (C-46)
g , Vo
0 1/(1 +ym)
if K';m) <z < K'(m) or equivalently, —1———2- > 82(?,1!!1) >0
(1 + vm)
where,
0 = [mlztz - 22 - mt + 1][m12t2 +2m(2 -m) + T\2][11112t2 + ) (C-47)

At the production well, z = K'(m), and gz[K‘(m),ml] = 0; therefore, from Eq.

c-45 :
3 A1/Q1 + vi?
Yy = 201 +n)2f M de (c-48)
0

Ve

The roots of the quadratic equations in the expression for © in Eg. C-46 are:

m e - 22 -w)e t 1w (e = a)E T b) (C-49)
m 22 + 2n(2 - m)t + n? = m 2(c - e)(t - ) (c-50)
m %% +n = m 2t £ o) (C-51)
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where :

a =___i__7
(1 - VE)

bw—0 1
(1 +v@)?2

2

¢ =[-n (2—m1)+2nVi] /m1

d=[-n(2-m) - 2vaE] / mf

e=1i-=R = complex
M

Sincen»0, 0<m, €1, and 0O <mc 1, then, a>» b, c<0and d € 0.

(C-52)

(c-53)

(C-54)

(C-55)

(C-56)

There-

fore, the 1ntegrané contains a singularity at point t = b which corresponds to
the upper limit of the integral in Eq. C-48. To remove this singularity, let:

b-t =£2

Then :

3 Yo 5

Y=%—(1+n)2f L
1 172°3
0
where :
em2® = opn 2+ 2 - nm )E2 +b2m 2 + 2602 - m) + 12
T1 1 1 1 1 1

- 2
TZ-a b +¢

2.4 - 22
T, _m, £ " 2b m2 52+ b°m” tn
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Appendix D

COMPUTER PROGRAMS

This appendix consists of three sub-—appendices, each containing a computer
program. The first appendix provides a program to analyze tracer breakthrough
curves from stratified reservoirs. The second appendix gives an algorithm to
compute the pattern breakthrough curve of a developed inverted seven-spot for
mobility ratio of one. A program to calculate the pattern breakthrough curve
of a developed five-spot at any mobility ratio is the content of the last

appendix.

Appendix D.l:  PROGRAM TO ANALYZE A TRACER ELUTION CURVE

The algorithm provided in this section decomposes a tracer breathrough profile
from a stratified formation into several layer responses. From the con-
structed layer responses, the parameters of the layers are evaluated. The
decomposition process 1s carried out internally through a non-linear least-
squares routine (subroutine VARPRO). Since an inverse problem is being
solved, the number of layers should be determined by trial-and-error, each
time observing the improvement of the generated match with an increase in
number of layers. However, this program can be modified to perform this
iterative process internally and generate an optimum match in one run,
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/7 JOB (JE.MAD,104), 'MAGSUD®

/7 EXEC WATFIV

//60.SYSIN DD *

C

C HEERERKEREKREERNENAEEKERER KRN ERERN AN ANKERNRRNR AR ARNRERARXR
c 3 ;
C * THIS PROGRAM ANALYZES A TRACER BREAKTHROUGTH CURVE FROM A %
C STRATIFIED RESERVOIR FOR A GIVEN TYPE OF FLOODING PATTERN. *
C ;‘; THE PROGRAM GENERATES POROSITY THICKNESS PRODUCT, (PHI¥*H),

C % AND FRACTIONAL PERMEABILITY THICKNESS PRODUCT, (KH/SUN(KH),;‘;
C * FOR EACH LAYER AS WELL AS A MATCH TO THE INPUT TRACER %
C BREAKTHROUGH PROFILE FOR A SPECIFIED NUMBER OF LAYERS. *
C ;‘;THE PROGRAM CAN CURRENTLY HANDLE FIFTEEN LAYERS. %
C

C 636303696 366 6 96 3236 2636 36 36 I I I I I A I KM I I KK I I I K I I NI K I NI KWK
C

C PREPARED BY

C

C MAGHSOOD ABBASZADEH-DEHGHANI

C STANFORD UN WERSITY

C JULY 1982

C

C NOMENCLATURE:

C

C AALFAP = PECLET NUMBER FOR THE PATTERN

C AALFA5 = PECLET NUMBER FOR AN EQUIVALENT FIVE-SPOT

C AREA = DRAINAGE AREA OF A WELL WHOSE TRACER RESPONSE CURVE
C IS BEING ANALYZED, FT SQUARE

C CPHIHJ = TRACER COKCENTRATION FROM LAYER J, C/CO

C CSTAR = TRACER CONCENTRATIONS IN THE FIELD TRACER ELUTION

C CURVE, PPM. AN ARRAY CONTAINING NDATA POINTS

C CONCEN = TRACER CONCENTRATION M THE GENERATED MATCH, PPM

C EABTP = BREAKTHROUGH AREAL SWEEP EFFICIENCY OF A DEVELOPED
C PATTERN

C EABT5 = BREAKTHROUGH AREAL SWEEP EFFICIENCY OF A DEVELOPED
C F IVE-SPOT

C FACTOR = A CONVERSION FACTOR TO CONVERT TRACER CONCENTRATION
C (FROM USUALLY PPM) TO WERGHT HRACTION

C FM = CORRECTION FACTOR ON TRACER PEAK CONCENTRATION

C FP = CORRECTION FACTOR ON PECLET NUMBER

C FRAC = RATIO OF THE RATE OF FLUID FLOWING FROM THE INJECTOR
C OF THE PATTERN TOWARDS THE WELL, DIVIDED BY THE TOTAL
C PRODUCTION RATE FROM THE WELL. FOR EXAMPLE, IN A

C DEVELOPED FIVE-SPOT WHEN TRACER IS INJECTED INTO ONE
C OF THE WELLS ONLY, FRAC = 0.25

C K, KP = COMPLEMENTARY AND INCOMPLEMENTARY COMPLETE ELLIPTIC
C INTEGRALS OF THE FIRST KIND

C KHJ = FRACTIONAL CONDUCTANCE OF LAYER J, (KH)>J/SUM(KH)

C NDATA = NUMBER OF DATA POINTS INPUTED FROM A FIELD TRACER

C RESPONSE CURVE

C NLAYER = NUMBER OF LAYERS IN THE STRATIFIED MODEL

C NOTPUT = NUMBER OF POINTS DESIRED TO BE CALCULATED ON THE

C MATCH CURVE

C PHIHJ = POROSITY THICKNESS PRODUCT OF LAYER J

C PVDMX5 = CORRELATING DIMENSIONLESS PORE VOLUME FOR A DEVE-

C LOPED FIVE-SPOT.

C SW = INITIAL WATER SATURATION I N THE RESERVOIR

C T = VOLUMES CORRESPONDING TO SELECTED "“CSTAR"™ VALUES

C IN THE FIELD DATA, BBLS

C TR = TOTAL VOLUME OF TRACER SOLUTION INJECTED INTO A
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PATTERN, FT3.

VCAL = CALCULATED PEAK VOLUMES OF THE LAYERS, IF THE
SYSTEM WAS DEVELOPED AND THE WELL WAS RECEIVING
TRACER FROM ALL THE INJECTORS SURRONDING IT, BDLS

VMXCAL = CALCULATED PEAK VOLUMES OF THE LAYERS IN THE MATCH
CURVE TO THE FIELD DATA, BBLS

VOBSRV = VOLUMES IN THE MATCH CURVE (X- AXIS), BBLS

VPDBT = X-COGRDINATE OF THE PATTERN BREAKTHROUGH CURVE OF A

DEVELOPED FIVE-SPOT (DISPLACING FLUID CUT VS PORE
VOLUMES) , DIMENSIONLESS
VPDMXP = PORE VOLUMES CORRESPONDING TO THE PEAK CONCENTRATION
IN A TRACER BREAKTHROUGH CURVE FROM A HOMOGENEOUS
PATTERN, DIMENSIONLESS
VTMAX = UPPER VALUE OF THE RANGE AT WHICH A MATCH TO THE
FIELD TRACER ELUTION CURVE IS SOUGHT, BBLS
LOWER VALUE OF THE RANGE, BBLS
VOLUMES CORRESPONDING TO THE PEAK CONCENTRATIONS I N
THE FIELD TRACER RESPONSE CURVE, BBLS. THESE WILL BE
USED AS INITIAL ESTIMATES IN THE OPTIMIZATION ROUTINE
YSIGH = "Y* VALUE IN THE MIXING LINE INTEGRAL, FUNCTION OF
STREAMLINE
Y(J) = J TH NONLINEAR PARAMETER IN THE OPTIMIZATION ROUTINE
- KJ/(PHI®SUM(KH))
XY(J) = J TH LINEAR PARAMETER IN THE OPTIMIZATION ROUTINE
= KJ/ (PHI*SUMCKH) ) *¥KHJ/SUM(KH)

VTMIN
VTMAXP

n o

OO_OOOOOOOOOOOOOOOOOOOOOOOOOO

IMPLICIT REAL¥8 (A-ti, 0-2)

REAL*8 K ,KP ,M ,M 1,KHJ ,KETA

DIMENSION VYPDBTC110),YSIGH(110),T(50,1),CSTAR(50)

DIMENSION W(50),AA(50,32),Y(15),XY(15),CPHIH(15),VIMAXP(15)
EXTERNAL ADA

COMMON /PAR/YSIGH,VPDBT

COMMON /PARK/K,KP,VTMAXP, VPDMXP,EABT5, EABTP,FM,FP

COMMON /FORM/AREA ,SW ,AALFA5, TR, N, NM ,H1 ,H2

@]

C INPUT PARAMETERS

READ, FRAC, FACTOR,NDATA,NLAYER
READ,SW, AREA,AALFAP, TR
READ,EABTP,FM, FP
READ,VTMIN,VTMAX,NOTPUT
DO 10 J=1,NLAYER
READ,VITMAXP(J)

10 VTMAXP (JJ=VTMAXP(J)*FRAC
DO 20 I=1,NDATA
READ,T(I,1),CSTAR(I)
T(I,1)=T(I,1)*%FRAC

20 CSTAR(CI)=CSTAR(I)/FRAC¥FACTOR
C
C IN THE ABOVE, VALUES OF VTMAXP, T, AND CSTAR WERE CONVERETED TO
C THOSE CORRESPONDING TO A DEVELOPED PATTERN
C
C
EABT5=.7177783
C
C AN EQUIVALENT FIVE-SPOT IS DETERMINED
C

AALFAS=AALFAP/FP
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DIMENSIONLESS CORRELATING PORE VOLUME IS COMPUTED FROM THE
EQUATION OF THE FIVE-SPOT LINE IN FIG. 3.24

OOO0

PUDMX5=2.5032%AALFAS¥%(-0.464)

PORE VOLUME CORRESPONDING TO A PEAK FROM A HOMOGENEOUS
PATTERN IS COMPUTED

OOOO0O

VPDMXP=EABTP+(1 ,-EABTP)¥PVDMX5
PI=4.%DATAN(1.D0)
K=1.8540746773D0

KP=K

M=0.5D0

Mi=M

PATTERN BREAKTHROUGH CURVE, *veBD", AND MIXING LINE INTEGRAL,
"Y(SIGHY" FOR A DEVELOPED FIVE-SPOT ARE COMPUTED. IN THE
FOLLOWING, THE STREAMLINES BETWEEN ZERO AND 10 DEGREES ARE
DIVIDED INTO *N=50* STREAMTUBES AND THOSE BETWEEN 10 DEGRRES
AND 45 DEGREES ARE ALSO DIVIDED INTO "N=50" TUBES. THIS IS
DONE TO OBTAIN HIGHER ACCURACY FOR THE EXTREME STREAMTUBES

OOOOODOOOOOO

UPPER=1.D+4
TET1=0.D0
TETL=PI*10.0/ 180.
N=50

NN=N+1

NNN=2%NN-1

NM=2 N
H2=(PI/4.~-TETL)/N
H1=TETL/N

DO 50 1I=2,NNN

IF ¢I.LE.NN)GO TO 30
TET=TETL+H2%(I-N-1)
GO TO 40

30 TET=H1%(I-1)

40 ETA=DTAN(CTET)*¥2
C=PI/6G.*¥(1+ETA)/K/KP
Z2Z=1.-ETA%*¥*2
CALL KVALUE(2Z,KETA)
VPDBT(I-1)=CXKETA
CALL GAUSS(UPPER,ETA,SIGMA)

0 YSIGH(I-1)=SIGMA

""IPRINT"* CONTROLS THE TYPE OF THE OUTPUT FROM THE OPTIMIZATION
ROUTINE. SEE SUBROUTINE "vARPRC™ FOR INFORMATION

OO Ooum

IPRINT=1

THE WEGHTING FACTORS FOR THE FUNCTION NEEDED IN ""VARPRO"* ARE
EVALUATED

OOO0O

DO 60 LMK=1,NDATA
60 WLMKY =1,
LENGTH=2*NLAYER+2
CALL VARPRO(NLAYER,NLAYER,NDATA,NDATA,LENGTH,1,T,CSTAR,W,
& ADA,AA,IPRINT,Y,XY,1ERR)
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WRITE(6,70)
70 FORMATC(*1',2X, 'LAYER ND.',7X, *POROSITY.THICKNESS®, 12X,
% 'KH/SUM(KH)Y',/)

C
C CALCULATE THE PARAMETRES OF THE LAYERS FROM THE COMPUTED LINEAR
C AND NON-LINEAR PARAMETERS
C
DO 90 IOPT=1,NLAYER
KHJ =XY(IOPT)/Y(IOPT)
FRHIHJ=XY(IOPT)/Y(IOPT)/Y(IOPT)
WRITE(6,80 )IOPT,PHIKHJ,KHJ
IF (PHIHJ.LT.0.)3G0O TO 204
80 FORMAT(6X,I2,14X,F10.6,16X,F10.6)
90 CONTINUE
WRITE(6,100)
100 FORMATC(*1', 1X, *VOLUME PRODUCED, BBLS', 9X,'(CONCENTR TION, PPM',/ !
C
C A MATCH TO THE FIELD DATA WITHIN THE SPECIFIED RANGE OF VOLUMES
C AND DESIRED NUMBER OF POINTS | S GENERATED
C
DELTAP=(VIMAX-VTMIN)/NOTPUT
NOTPT=NOTPUT+1
DO 180 IK=1,NOTPT
VOBSRV=(IK~1)*DELTAP+VTMIN
VPATT=VOBSRV¥FRAC
CALL FUNCCY,VPATT ,CPHIH,NLAYER)
SUMC=0.
DO 110 ML=1,NLAYER
110 SUMC=SUMC+XY(ML)XCPHIH(ML)
CONCEN=FEAC/ FACTOR¥SUMC
WRITE(6,120)VOBSRV, CONCEN
120 FORMAT(5X,F9.2,20X,F10.6)
183 CONTINUE
C
C "NLAYER" VOLUMES CORRESPONDING TO THE PEAK VOLUNES FROM THE
C COKSTITUTING LAYERS ARE COMPUTED. THE DIFFERENCE BETWEER THE
C INPUTED PEAK VOLUMES AND THE COMPUTED PEAK VOLUMES IS THE
C AMOUNT OF SHIFT GENERATED UPON ADDING THE LAYER RESPONSES TO
C FRODUCE AN OVERAL TRACER BREAKTHROUGH CURVE
C
WRITE(6,200)
200 FORMAT(//,1X,'SELECTED PEAK VOLUME',5X, 'COMPUTED PEAK VOLUME',/)
DO 201 IJI=1,NLAYER
VTMAXP(IJI)Y=VTMAXP(IJI)/FRAC
VCAL=AREA*SH*VPDMXP #5.615/Y(IJI)
VMXCAL=VCAL/FRAC
201 WRITE (6,202)VTMAXP(IJI), VMXCAL
202 FORMAT(7X ,F7.1 ,18X ,F7.1)
GO TO 300
204 WRITE(6,205)
205 FORMAT(//,2X,'A LAYER PARAMETER | S NEGATIVE,',/,2X, 'PROBABLY THE
& SELECTED PEAK VOLUMES ARE NOT GOOD',//)
300 STOP
END
C
C
C
SUBROUTINE FUNC(VARBLE,VT,GAMA,NLAYER)
C
C THIS SUBROUTINE COMPUTES THE GAMA(J,I) FOR A GIVEN TOTAL VOLUME
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INJECTED. WHERE, GAMMA CORRESPOND TO THE PHICJ,I> FUNCTION IN
SUBROUTINE *varRPRO". THE ROUTINE USES THE EQUATIONS OF TACER
BREAKTHROUGH CURVE FROM A DEVELOPED FIVE-SPOT IN CONJUCTION
WITH THE CQRRECTION FACTORS TO EVALUATE THE TRACER BREAKTHROUGH
FROM A PATTERN.

INPUT:  VARBLE
A

KJ7(PHI)J*SUM(KH), THE NON-LINEAR PARAMETERS
TOTAL PORE VOLUMES INJECTED INTO THE PATTERN
AT WHICH GAMA WILL BE CALCULATED

NUMDER OF LAYERS

VALUE OF GAMA AT VT. IF THIS VALUE IS MULTI-
PLIED BY tHE J TH NON-LINEAR PARAMETER, TRACER
CONCENTRATION FOR LAYER J AT TOTAL VOLUME OF
VT, 1S OBTAINED.

NLAYER
OQUTPUT: GAMA

1" ou

OO OO

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 K,KP

DIMENSION YSIGH(110),VPDBT(110),VARBLE(NLAYER),GAMA(15)
DIMENSION FSC101),VIMAXP(15)

COMMON /PAR/YSIGH,VPDBT

COMMON /PARK/K,KP,VTMAXP,VPDMXP,EABTS, EABTP,FM, FP
COMMON /FOEM/AREA, Si4 ,AALFA5,TR ,N ,NM,H1 ,H2
PI=4.%¥DATAN(1.D0)

DO 55 IJ=1,NLAYER

VPDPAT=5.6 15%VI*VARBLE(IJ)/ (AREA¥SW)

PORE voLUMES INJECTED INTO AN EQUIVALENT FIVE-SPOT ARE CALCULATED
FROM THE PORE VOLUMES INJECTED INTO A PATTERN

OOOO

VPDS=(VPDPAT-EABTP)/(1-EABTP)I¥(1-EABTS5)+EABTS

DIMENSIONLESS TRACER CONCENTRATIONS, ¢D, FROM A DEVELOPED
KOMOGENEOUS FIVE-SPOT ARE COMFUTED

OO0

FSCl1)=0.
DO 80 J=1,N
PVYDIFF=(VPDBT(J)-VPD5)¥¥2
EX=-KXKP¥KP¥AALFAS®PVDIFF/(PIXPI®YSIGH(J))
IF(EX.LT.-170.D0)G0 TO 40
FS(J+1)=DEXP(EX)/DSQRT(YSIGH(J))
GO TO 80

40 FS(J+1)=0.D0

80 CONTINUE
CALL INTGRL(N,H1,FS,VOL1)
DO 90 J=N,NM
PVYDIFF=(VPDBT(J)-VPD5)%%2
EX==K¥KP*KPXAALFASXPVDIFF/(PIXPI¥YSIGH(J))
IF(EX.LT.-170.D03G0 TO 50
FSC(J+1-N)=DEXP(EX)/DSQRT(YSIGH(J))
GO TO 90

50 FS(J+1-N>=0.D0

90 CONTINUE
CALL INTGRL(N,H2,FS,V0L2)
VOoL=VOL1+VOL2
IF(VOL.GT.1.D~70)60 TO 115
GAMACIJ)=0.DQ
GO TO 55
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C VALUES OF "GAMA™ FOR A FIVE-SPOT AXE EVALUATED

115 FR=DSQRT(AALFAS)*¥TR/(AREA¥SW)
GAMA(IJ) =6, ¥KP*DSQRT(K/PI)*¥VOL/(PI*¥PI)*FR

C
C THE COMPUTED "GAMA"™ VALUES FOR THE FIVE-SPOT ARE CONVERTED
C TO THOSE CORRESPONDING TO A PATTERN BY USING THE CORRECTION
C FACTORS, FM AND FP

C

GAMA(IJ)=GAMA(IJ)*FM*DSQRT(FP)

55 GONINUE
RETURN
END
C
C
C
SUBROUTINE DFUNC(VARBLE,VT,DGAMA,NLAYER)
C
C THIS SUBROUTINE COMPUTES DERIVATIVE OF THE GAMA FUNCTION WITH
C RESPECT TO NON-LINEAR PARAKETERS FOR EACH LAYER
C
C INPUT: VARBLE = KJ/(PHI)J¥SUM(KH), THE NON-LINEAR PARAMETERS
C VT = TOTAL PORE VOLUMES INJECTED INTO THE PATTERN
C AT WHICH GAMA WILL BE CALCULATED
C NLAYER = KUMBER OF LAYERS
C OUTPUT : DGAMA = DERIVATIVE OF THE GAMA FUNCTION WITH RESPECT
C TO THE NON-LINER PARAMETER COMPUTED AT TOTAL
C VOLUME INJECTED, VT.
C
C
C
IMPLICIT REALX8 (A-H,0-2Z)
REAL*8 K,KP
DIMENSION YSIGH(110),VPDBT(110),VARBLE(NLAYER),DGAMA(15)
DIMENSION FS(101),VIMAXP(15)
COMIICN /PAR/YSIGH,VPDDT
COMMON /PARK/K,KP,VTMAXP,VPDMXP, EABTS5, EABTP,FM, FP
COMMON /FORM/AREA,SW,AALFAS,TR,N,NM,H1,H2
PI=6¢ . ¥DATAN(C!.DO)
DO 55 IJ=1,NLAYER
VPDPAT=5.6 I5¥VT*¥VARBLE(IJ)/ (AREAXSW)
C
C PORE VOLUMES INJECTED INTO A PATTERN ARE CONVERTED INTO THOSE
C FROM AN EQUIVALENT DEVELOPED FIVE-SPOT
C
VPD5=(VPDPAT-EABTP)/ (1-EABTP)*(1-EABT5)+EABTS
C
C DEIVATIVES OF DIMENSIOKLESS TRACER BREAKTHROUGH CURVE FROM A
C HOMOGENEOUS FIVE-SPOT ARE COMPUTED
C
FSC(1)=0.
DO 80 J=1,N
PVDIFF=(VPDBT(J)-VPD5)*%2
EX=-K¥KP*KPX¥AALFASXPVDIFF/(PI*PI*YSIGH(J))
IFCEX.LT.~150.D03G0 TO 40
FS(J+1)=DEXP(EX)/DSQRT(YSIGH(J))*(VPDBT(J)X=-VPD5)/YSIGHK(J)
GO TO 80
40 FS(J+12=0.D0
80 CONTINUE

CALL INTGRL(N,R1,FS,vOL1)
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DO 90 J=N,NM

PVDIFF=(VPDBT(J)-VPD5) ¥¥2

EX=-K*KPXKP*AALFAS¥PVDIFF/ (PI*PI*YSIGH(J))
IF(EX.LT.-150.D0)G0 TO 50
FS(J+1-N)=DEXP(EX)/DSQRT(YSIGH(J)I*¥(VPDBT(J)-VPD5)/YSIGH(J)

GO TO 90
50 FS(J+1-N)>=0.D0
90 CONTINUE

CALL INTGRL(N,H2,FS,V0L2)
voL=voL1i+voL2
IF(DABS(VOL).GT.1.D~-70)G0 TO 115
DGAMACI1J)=0.D0

GO TO 55

DERIVATIVES OF GAMA FUNCTION FOR A DEVELOPED FIVE-SPOT ARE
CALCULATED

OO0

15 FR=DSQRT(AALFAS)¥TR/(AREA¥SW)
DGAMA(IJ)Y=6, ¥KP*¥DSQRT(K/PI)*VOL/(PIXPI)¥FR
DGAMA(TIJ)=DGAMA(IJ)X2XKXKP¥X2¥AALFA5%5,615%VT/PI/P1/7AREA/SW

DERIVATIVES OF GAMA FUNCTION ARE CONVERTED TO THOSE CORRESPONDING
TO THE PATTERN

OOOO

DGAMACTIJ)=DGAMACIJ)I*({-EABT5)/(1-EABTP)¥FMXDSQRT(FP)
55 CONTINUE

RETURN

END

OO0

SUBROUTINE ADACLP,NLAYER,NMAXA,NDATA,LENGTH,IP1,A,INC,T,ALF
& LISEL)

THIS SUBROUTINE SUPPLIES THE REQUIRED PARAMETRES FOR SUBROUTINE
"VARPRO"

OOOOO

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 K,KP

DINENSION YSIGHC110),VPDBT(110),INCC15,16),T(NDATA, 1)
DIMENSION ACNDATA,LENGTH),VTMAXP(15),C(15),DC(15),ALF(NLAYER)
COMMON /PAR/YSIGH,VPDBT

COMMON s/PARK/ K,KP,VTMAXP,VPDMXP,EABTS,EABTP,FM,FP

COMMON /FORM/AREA,SW, AALFA5,TR,N,NM,H1,H2

IF(ISEL.EQ.1)60 TO 10
IF(ISEL.EQ.2)G60 TO 20
DO 30 I=1,NDATA
VI=T(I, 1)
CALL DFUNCCALF,VT,DC,NLAYER)
DO 30 J=1,NLAYER
30 ACI,NLAYER+1+J)=DC(J)
GO 1O 100
10 DO 6 I=1,NLAYER
6 INC(I,I)=1
DO 7 I=1,NLAYER
7 ALFC(I)=AREA*SW*VPDMXP/5.615/VTMAXP(I)
DO 9 I=1,NDATA
VT=T(I, 1)
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CALL FUNCCALF,VT,C,NLAYER)
CALL DFUNCCALF,VT,DC,NLAYER)
DO 9 J=1,NLAYER

ACTI,J)=C0J)

9 ACI,NLAYER+1+J)=DC(J)
GO TO 100

20 DO 12 I=1,NDATA
VT=T(I, 1)

CALL FUNCCALF,VT,C,NLAYER)
DO 12 J=1,NLAYER

12 ACl,Jy=C(d)
100 RETURN
END
c
C
SUBROUTINE INTGRL(N,H,F,vOL)
c
c THIS SUBROUTINE COMPUTES VALUE OF AN INTEGRAL USING SIMPSON®S
c RULE OF INTEGRATION.
c INPUT: N = NUMBER OF INTERVALS, AN EVEN INTEGER NUMBER
c H = INTERVAL SIZE
¢ F = VALUES OF FUNCTIONS CCMPUTED AT INTERVALS, AN ARRAY
¢ OUTPUT: voL = VALUE OF THE INTEGRAL
C
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION F(S1)
SUN1=0
SUM2=0
Ni=Ns2-1
DO 50 1=1,M1
SUNt=SUMI+F(2%*1)
590 SUM2=SUM2 +F(2¥%I+1)
SUMI=SUMI+F(N)
VOL=H/3%(FC1)tF(NT1) t4. ¥SUM1+2, ¥SUM2)
RETURN
END
C
C
C
SUBROUTINE GAUSS(UPPER,E,SIGMA)
C
C THIS SUBROUTINE COMPUTES THE *y" TERM IN THE MIXING LINE
C INTEGRAL. THE ROUTINE UTILIZES 8-POINT GAUSSIAN QUDRATURE METHOD
C APPLIED SUCCESSIVELY TO A SERIES OF BROKEN INTERVALS.
C
C INPUT: UPPER = UPPER LIMIT OF THE INTEGRAL
C E = PARAPIETERS OF THE INTEGRAL = TAN(SIGH)¥#¥2
C OUTPUT: SIGMA = VALUE OF THE INTEGRAL WHICH CORRESPONDS TO
C Y(SIGH)
C
C

IMPLICIT REAL%8 (A-H,0-2Z)

DIMENSION W(15),X(15)
FOY)=SDSQRTCY/ZC(YRY+]  IX(YRYHE2I¥(YRYHE)))
E2=E¥E

N=8

X(1)=,1834364642495650D0
X(2)=.525532409916329D0
X(3)=.796664774136272D0
X(4)=.960289856497536D0
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OOOOO

20

10

50

30

(@ Ne)

OOOOOO

X(5)=-X(1)

X(6)=-X(2)

X(7)=-X(3)

X(8)=-X(6)
W(1)=.362683783378362D0
W(2)=.313706645877887D0
W(3)=.222381034453374D0
W(4)=.101228536290376D0
W(5)=WC1)

W6 =K(2)

WC7)=W(3)

W(8)=W(4)

AINT=0 .DO

FOR VERY SMALL VALUES OF "'E'" (THE EXTREME STRRAMTUBES),
T=0 APPROACHES A SINGULARITY. THEREFORE, SMALL INTERVAL
SIZES ARE CHOSEN AROUND THE LOWER LIMIT OF THE INTEGRAL.

A=0 .DO

B=.01%E

IFCUPPER.LE.B) B=UPPER
suM=0 .D0

DO 10 I=1,N
Y=.5DO¥((B+A)+(B-A)Y¥X(I))
SUM=SUM+N( I ¥F(Y)
VALUE=.5D0¥(B~A)*SUM
AINT=AINT+VALUE
IF(UPPER.EQ.BYGO TO 30
A=B

IF(B.GT.1.0) GO To 50
B=2.0D0¥B

GO TO 20

B=5.D0%*B

GO TO 20
SIGMA=C(1.DO+E)*¥1 5¥AINT
RETURN

END

SUBROUTINE KVALUE(M,KM)

THIS SUBROUTINE COMPUTES THE VALUES OF K(M)
K{M)=COMPLEMENTARY COMPLETE ELLIPTIC INTEGRAL OF FIRST KIND
M=INPUT » KM=0UTPUT

IMPLICIT REAL*8 (A-H,0-2)

REAL¥8 M,Mi,KM

M1=1 .DO-M

AD=1.38629436112D0

A1=,09666344259D0

A2=.03590092383D0

A3=.03762563713D0

A¢=.01451196212D0

B0=.5D0

B1=.12498593597D0

B2=.06880248576D0

B3=.03328355346D0

B4=.00441787012D0
X=AQHAIXMIFA2XMIXR2+AIRMIRRTHAGRM ¥ AG
Y=BO+B1%*M1+B2XMIXX2+BIXMI XXI+BGAM] ¥4
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KM=X+Y#*DLOG(1./M1)
RETURN
END

(@ Ne]

SUBROUTINE ELLEP(Y,Z,A)

THIS SUBROUTINE COMPUTES INCOMPLETE ELLIPTIC INTEGRALN F¢(PHI,k)
PHI 1S THE ARGUMENT AND k IS THE MODULUS. THE MODULUS IS EQUAL
TO THE, sQUARE ROOT OF THE PARAMETER.
INPUT: Y = ARGUMENT OF THE ELLIPTIC FUNCTION

Z = PARAMETER OF THE ELLIPTIC INTEGRAL

A = VALUE OF THE ELLIPTIC INTEGRAL
THE ROUTINE USES LANDENS DECENDING TRANSFORMATION. FOR REFERENCE
SEE ABRAMOWITZ, PAGE

OO OO OOOOOO

IMPLICIT REAL*8 (A-H,0-2)
REAL*8 K,K1,KP
ToL=t.D-4
PI=4 . ¥DATAN(1.D0)
W=1.D0
X=Y
K=DSQRT(Z)

15 K1=2.%¥DSQRT(K)I/(14K)
X= . 5% (X4DARSIN(K¥DSIN(X)))
QE=DARSIN(K1)
QE=QE*180./P1
W=2. ¥/ (1+K)
IFC(90.-QE).LE.TOL)GO TO 30
K=K1
GO 10 15

30 A=WXDLOG(DTAN(PI/Z6G+X/2))
RETURN
END

SUEROUTINE VARPRO (L, NL, N, NMAX, LPP2, IV, T, Y, W, ADA, A,
X IPRINT, ALF, BETA, IERR)

GIVEN A SET OF N OBSERVATIONS, CONSISTING OF VALUES Y(1),
Y(23, ..., YC(N) OF A DEPENDENT VARIABLE Y, WHERE Y(I)
CORRESPONDS 1O THE IV INDEPENDENT VARIABLE(S) T(I,1), T(I,2),
«e.» TCI,IV), VARPEO ATTEMPTS TO COMPUTE A WEIGHTED LEAST
SQUARES FIT 1O A FUNCTION ETA (THE "MODEL") WHICH IS A LINEAR
COMBINATION

"wcocr

ETACALF, BETA: T)> = SUM BETA * PHI CALF; T) + PHI  (ALF: T)
J=1

J J L+1]

OF NONLINEAR FUNCTIONS PHI(J) (E.G., A SUN OF EXPONENTIALS AND/
OR GAUSSIANS). THAT IS, DETERMINE THE LINEAR PARAMETERS
BETA(J) AND THE VECTOR OF NONLINEAR PARAMETERS ALF BY MINIMIZ-
ING

2 N 2

NORM(RESIDUAL) = SUN w * (Y - ETACALF, BETA; T
I=1 | I |

THE ¢(L+1)>-ST TERN IS OPTIONAL, AND IS USED WHEN IT IS DESIRED
TO FIX ONE OR MORE OF THE BETA*'S (RATHER THAN LET THEM BE

OO OO OOOOOOOOOOn
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DETERMINED). VARPRO REQUIRES FIRST DERIVATIVES OF THE PHI'S.
NOTES :

A) THE ABOVE PROBLEM IS ALSO REFERRED TO AS 'MULTIPLE
NONLINEAR REGRESSION'. FOR USE IN STATISTICAL ESTIMATION,
VARPRO RETURNS THE RESIDUALS, THE COVARIANCE MATRIX OF THE
LINEAR AND NONLINFAR PARAPIETERS, AND THE ESTIMATED VARIANCE OF
THE OBSERVATIONS.

B> 'AN ETA OF THE ABOVE FORM | S CALLED 'SEPARABLE'. THE
CASE OF A NONSEPARABLE ETA CAN BE HANDLED BY SETTING L = 0
AND USING PHI(L+1).

€) VARPRO MAY ALSO BE USED TO SOLVE LINEAR LEAST SQUARES
PROBLEMS (IN THAT CASE NO ITERATIONS ARE PERFORMED). SET
NL = 0.

D) THE MAIN ADVANTAGE OF VARPRO OVER OTHER LEAST SQUARES
PROGRAMS |S THAT NO INITIAL GUESSES ARE NEEDED FOR THE LINEAR
PARAMETERS. NOT ONLY DOES THIS MAKE I T EASIER TO USE, BUT IT
OFTEN LEADS TO FASTER CONVERGENCE.

DESCRIPTION OF PARAMETERS

L NUMBER OF LINEAR PARAMETERS BETA (MUST BE .GE. 0.
NL NUMBER OF NONLINEAR PARAMETERS ALF (MUST BE .GE. 0).
N NUMBER OF OBSERVATIONS. N MUST BE GREATER THAN L + NL

(I.E., THE NUMBER OF OBSERVATIONS MUST EXCEED THE
NUMBER OF PARAPIETERS) .

IV NUMBER OF INDEFENDENT VARIABLES T.

T REAL N BY IV MATRIX OF INDEPENDENT VARIABLES. T(I, J}
CONTAINS THE VALUE OF THE |- TH OBSERVATION OF THE J-TH
KDEFENRDENT VAL RELE.

Y N-VECTOR OF OBSERVATIONS, ONE FOR EACH ROW OF T.

W N-VECTOR OF NONNEGATIVE WEIGHTS. SHOULD BE SET TO 1'S
| F WEIGHTS ARE NOT DESIRED. | F VAEIANCES OF THE
INDIVIDUAL OBSERVATIONS ARE KNOWH, W(I) SHOULD BE SET
TO 1./VARIANCE(ID.

INC NL X (L+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF
NON-LINEAR PARAMETER ALF(K) APPEARS IN THE J-TH
FUNCTION PHI(J). (THE PROGRAM SETS ALL OTHER INC(K, J)
TO ZERO.) | F PHIC(L+!) IS INCLUDED I N THE MODEL,

THE APPROPRIATE ELEMENTS OF THE (L+1)-ST COLUMN SHOULD
BE SET TO 1'S. INC IS NOT NEEDED WHEN L = 0 OR NL = 0.
CAUTION: THE DECLARED ROW DIMENSION OF INC (IN ADA)

MUST CURRENTLY BE SET TO 12. SEE 'RESTRICTIONS' BELOW.

HMAX THE DECLARED ROW DIMENSION OF THE MATRICES A AND T.
| T MUST BE AT LEAST MAX(N, 2¥KL+3).

LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC.
THE DECLARED COLUMN DIEMENSEON OF A MUST BE AT LEAST
LPP2. (IF L = 0, SET LPP2 = NL+2. IF NL = 0, SET LPPZ
L+2.3

A REAL MATRIX OF SIZE MAX(N, 2%NL+3) BY L+P+2. ON INPUT
I T CONTAINS THE PHI(J)'S AND THEIR DERIVATIVES (SEE
BELOW). ON OUTPUT, THE FIRST L+KL ROWS AND COLUMNS OF
A WILL CONTAIN AN APFROXIMATION TO THE (WEIGHTED)
COVARIANCE MATRIX AT THE SOLUTION (THE FIRST L ROWS
CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE

0000000000000 000000000000000000000000000000000000000000DO00OO0
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NONLINEAR ONES), COLUMN L+NL+1 WILL CONTAIN THE
WEIGHTED RESIDUALS (Y = ETA), A(C1, L+NL+2) WILL CONTAIN
THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND

A(2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED)
VARIANCE OF THE OBSERVATIONS, HORM(RESIDUAL)¥¥2/

(N = L = NL).

IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. I F IPRINT IS
POSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE
RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT
EVERY IPRINT-TH ITERATION (AND INITIALLY, AND AT THE
FINAL ITERATION). THE LINEAR PARAMETERS WILL BE
PRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES
WILL ALSO BE PRINTED. (IPRINT = 1 IS RECOMMENDED AT
FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL
BE PRINTED, AS WELL AS ANY ERROR MESSAGES. | F IPRINT =
-1 NO PRINTING WILL BE DONE. THE USER IS THEN
RESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.

ALF NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS
(INPUT). ON OUTFUT I T WILL CONTAIN OPTIMAL VALUES OF
THE NONLINEAR PARAMETERS.

BETA L-VECTOR OF LINEAR PARAMETERS (OUTPUT ONLY).

IERR INTEGER ERROR FLAG (OUTPUT):

.6T. 0 T SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF
ITERATIOKS TAKEN.

-1 TERMINATED FOR TOO MANY ITERATIONS.

-2 TERMINATED FOX ILL-CONDITIONING (MARQUARDT
PARAMETER TOO LARGE.) ALSO SEE IERR = -8 BELOW.

-4 INPUT ERROR I N PARAMETER N, L, NL, LPF2, OR NMAX.

=5 INC MATRIX IMFROPERLY SPECIFIED, OR P DISAGREES
WITH LPF2.

-6 A WEIGHT KAS NEGATIVE.

-7 'CONSTANT' COLUMN WAS COMPUTED MORE THAN ONCE.

-8 CATASTROPHIC FAILURE - A COLUMN OF THE A MATRIX HAS
BECOME ZERO. SEE 'CONVERGENCE FAILURES' BELOW.

(IF IERR .LE. =~64, THE LINEAR PARAMETERS, COVARIANCE
MATRIX, ETC. ARE NOT RETURNED.)

SUBROUTINES REQUIRED

NINE SUBROUTINES, DFA, ORFAC!, ORFAC2, BACSUB, POSTPR, COV,
XNORM, INIT, AND VARERR ARE PROVIDED. IN ADDITION, THE USER
MUST PROVIDE A SUBROUTINE (CORRESPONDING TO THE ARGUMENT ADA)
WHICH, GIVEN ALF, WILL EVALUATE THE FUNCTIONS PHIC(J) AND THEIR
PARTIAL DERIVATIVES D PHI(J)/D ALF(K), AT THE SAMPLE POINTS
TCI). THIS ROUTINE MUST BE DECLARED 'EXTERNAL' I N THE CALLING
PROGRAM. ITS CALLING SEQUENCE 1S

SUBROUTINE ADA (L+1, NL, N, NMAX, LPP2, IV, A, INC, T, ALF,
ISEL)

THE USER SHOULD MODIFY THE EXAMPLE SUBROUTINE 'ADA' (GIVEN
ELSEWHERE) FOR HIS OWN FUNCTIONS.

THE VECTOR SAMPLED FUNCTIONS PHI(J) SHOULD BE STORED | N THE
FIRST N ROWS AND FIRST L+t COLUMNS OF THE MATRIX A, I1.E.,
ACI, J) SHOULD COKTAIN PHICJ, ALF; TC(I,1), TCI,2), ...,
TCI,IV)), B=14, ..., N; J =1, ..., L (OR L+1). THE (L+1)-ST
COLUMN OF A CONTAINS PHI(L+1) | F PHICL+1) |S |IN THE MODEL,
OTHERLJISE I T IS RESERVED FOR WORKSPACE. THE 'CONSTANT' FUNC~-

sEsNoReReReRe oo Re e s e Ns e NesNeEeResNesNeNesEs e NN NeNeNoNoNeNoNsNoNoNoNoNoNoNoNoNoNoNoNoNoNO N NoNoNoNoNo NN N NoNoNoNe)
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TIONS (THESE ARE FUNCTIONS PHICJ) WHICH DO NOT DEPEND UPON ANY
NONLINEAR PARAMETERS ALF, E.G., T(I)¥#J) (IF ANY) MUST APPEAR
FIRST, STARTING IN COLUMN 1. THE COLU!MNN N-VECTORS OF NONZERO
PARTIAL DERIVATIVES D PHI(J) / D ALF(K) SHOULD BE STORED
SEQUENTIALLY I N THE MATRIX A IN COLUMNS L+2 THROUGH L+P+1.

THE ORDER 1S

D PHIC1) D PHI(2) D PHI(L) D PHICL+1) D PHIC(1)
""""" y TTETETTTY v e TTETEEST) TTmUmsssses, swessssess

D ALF(1)Y D ALF(1) D ALF(1) D ALFC(1) D ALF(2)

D PHI(2) D PHICL+1) D PHI(Y) D PHICL+1)
"""" P e T T de ) T T ) de ey TETTEETETER,
D ALF(2) D ALF(2) D ALF(NL) D ALF(NL)

OMITTING COLUMNS OF DERIVATIVES WHICH ARE Z2ERO, AND OMITTING
PHI(L+1) COLUMNS | F PHICL+1) IS NOT IN THE MODEL. NOTE THAT
THE LINEAR PARAMETERS BETA ARE NOT USED IN THE MATRIX A.
COLUMN L+P+2 | S RESERVED FOR WORKSPACE.

THE CODING OF ADA SHOULD BE ARRANGED SO THAT:

ISEL

"
AN

(WHICH OCCURS THE FIRST TIME ADA IS CALLED) MEANS:

A. FILL IN THE INCIDENCE MATRIX INC

B. STORE ANY CONSTANT PHI'S IN A.

C. COMPUTE NONCOHSTANT PHI'S AND PARTIAL DERIVA-
TIVES.

2 MEANS COMPUTE ONLY THE NONCONSTANT FUNCTIONS PHI

3 MEANS COMPUTE ONLY TtiE DERIVATIVES

"nn

(WHEN THE PROBLEM IS LINEAR (NL = 0) ONLY ISEL = 1 IS USED, AND
DERIVATIVES ARE NOT NEEDED.)

RESTRICT 10ONS

THE SUBROUTINES DPA, INIT (AND ADA) CONTAIN THE LOCALLY
DIMENSIONED MATRIX INC, WHDOSE DIMENSIONS ARE CURRENTLY SET FOE
MAXIMA OF Ltl =16, NL = 15. THEY MUST BE CHANGED FOR LARGER
PROBLEMS. DATA PLACED I N ARRAY A IS OVERWRITTEN ('DESTROYED").
DATA PLACED IN ARRAYS T, Y AND INC IS LEFT INTACT. THE PROGRAM
RUNS | N WATFIV, EXCEPT WHEN L = 0 OR NL = 0.

IT I'S ASSUMED THAT THE MATRIX PHI(J, ALF; T(I)) HAS FULL
COLUMN RANK. THIS MEANS THAT THE FIRST L COLUMNS OF THE MATRIX
A MUST BE LINEARLY INDEPENDENT.

OPTIONAL NOTE: AS WILL BE NOTED FROM THE SAMPLE SUBPROGRAM
ADA, THE DERIVATIVES D PHI(J)/D ALF(K) (ISEL = 3) MUST BE
COMPUTED INDEPENDENTLY OF THE FUNCTIONS PHI(J) (ISEL = 2),
SINCE THE FUNCTION VALUES ARE OVERWRITTEN AFTER ADA | S CALLED
WITH ISEL = 2. THIS IS DONE TO MINIMIZE STORAGE, AT THE POS-
SIBLE EXPENSE OF SOME RECOMPUTATION (SINCE THE FUNCTIONS AND
DER BVAT BVES FREQUENTLY HAVE SOME COMMON SUBEXPRESSIONS). TO
REDUCE THE AMOUNT OF COMPUTATION AT THE EXPENSE OF SOME
STORAGE, CREATE A MATRIX B OF DIMENSION NMAX BY L+%1 IN ADA, AND
AFTER THE COMPUTATION OF THE PHI'S (ISEL = 2), COPY THE VALUES
INTO B. THESE VALUES CAN THEN BE USED TO CALCULATE THE DERIV-
ATIVES (ISEL = 3). (THIS MAKES USE OF THE FACT THAT WHEN A
CALL TO ADA WITH ISEL = 3 FOLLOWS A CALL WITH ISEL = 2, THE
ALFS ARE THE SAME.)

el ReNeReNeoRe K1 NeNeRe RN N NeEeEeNeNesNes N EeEes NN NeNe R EcNoNoNoNoNoNoNoNoNoNeNoNoNoNoN s HoNoNoNoNoNoNoNoNoNeoNoNeNe)
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TO CONVERT TO OTHER MACHINES, CHANGE THE OUTPUT UNIT IN THE
DATA STATEMENTS I N VARPRO, DPA, POSTPR, AND VARERR. THE
PROGRAM HAS BEEN CHECKED FOR PORTABILITY BY THE BELL LABS PFORT
VERIFIER. FOR MACHINES WITHOUT DOUBLE PRECISION HARDWARE, |IT
MAY BE DESIRABLE TO CONVERT TO SINGLE PRECISION. THIS CAN DE
DONE BY CHANGING (A) THE DECLARATIONS 'DOUBLE PRECISION' TO
'REAL', (B) THE PATTERN *.D' TO '.E' IN THE 'DATA' STATEMENT IN
VARPRO, (C) DSIGN, DSQRT AND DABS TO SIGN, SQRT AND ABS,
RESPECTIVELY, AND (D) DEXP TO EXP IN THE SAMPLE PROGRAMS ONLY.

NOTE ON INTERPRETATION OF COVARIANCE MATRIX

FOR USE IN STATISTICAL ESTIMATION (MULTIPLE NONLINEAR
REGRESSION) VARPRO RETURNS THE COVARIANCE MATRIX OF THE LINEAR
AND NONLINEAR PARAMETERS. THIS MATRIX WILL BE USEFUL ONLY | F
THE USUAL STATISTICAL ASSUMPTIONS HOLD: AFTER WEIGHTING, THE
ERRORS I N THE OBSERVATIONS ARE INDEPENDENT AND NORMALLY DISTRI-
BUTED, WITH MEAN ZERO AND THE SAME VARIANCE. I F THE ERRORS DO
NOT HAVE MEAN ZERO (OR ARE UNKNOWN), THE PROGRAM WILL ISSUE A
WARNING MESSAGE (UNLESS IPRINT .LT. 0) AND THE COVARIANCE
MATRIX WILL NOT BE VALID. IN THAT CASE, THE MODEL SHOULD BE
ALTERED TO INCLUDE A CONSTANT TERM (SET PHIC1) = 1.).

NOTE ALSO THAT, IN ORDER FOR TtiE USUAL ASSUMPTIONS TO HOLD,
THE OBSERVATIONS MUST ALL BE OF APPROXIMATELY THE SAME
MAGNITUDE (IN THE ABSENCE OF INFORMATION ABOUT THE ERROR OF
EACH OBSERVATION) , OTHERWISE TIIE VARIANCES WILL NOT BE THE
SAME. | F THE OBSERVATIONS ARE NOT THE SAME SIZE, THIS CAN BE
CURED BY WEIGHTING.

| F TtiE USUAL ASSUMFTIONS HOLD, THE SQUARE ROOTS OF THE
DIAGONALS OF THE COVARIANCE MATRIX A GIVE THE STANDARD ERROR
S(I) OF EACH PARAMETER. DIVIDING A(CI,J) BY SC(I)X%¥S(J) YIELDS
THE CORRELATION MATRIX OF THE PARANETERS. PRINCIPAL AXES AND
CONFIDENCE ELLIPSOIDS CAN BE OBTAINED BY PERFORMING AN EIGEN=-
VALUE/EIGENVECTOR ANALYSIS ON A. ONE SHOULD CALL THE EISPACK
PROGRAM TRED2, FOLLOWED BY TQL2 (OR USE THE EISPAC CONTROL
PROGRAM).

CONVERGENCE FAILURES

| F CONVERGENCE FAILURES OCCUR, FIRST CHECK FOR INCORRECT
CODING OF THE SUBROUTINE ADA. CHECK ESPECIALLY THE ACTION OF
ISEL, AND THE COMPUTATION OF THE PARTIAL DERIVATIVES. | F THESE
ARE CORRECT, TRY SEVERAL STARTING GUESSES FOR ALF. | F ADA
I S CODED CORRECTLY, AND | F ERROR RETURNS |IERR = -2 OR -8
PERSISTENTLY OCCUR, THIS IS A SIGN OF ILL-CONDITIONING, WHICH
MAY BE CAUSED BY SEVERAL THINGS. ONE IS POOR SCALING OF THE
PARAMETERS; ANOTHER 1S AN UNFORTUNATE INITIAL GUESS FOR THE
PARAMETERS, STILL ANOTHER IS A POOR CHOICE OF THE MODEL.

ALGOR I THM

THE RESIDUAL R IS MODIFIED TO INCORPORATE, FOR ANY FIXED
ALF, THE OPTIMAL LINEAR PARAMETERS FOR THAT ALF. IT IS THEN
POSSIBLE TO MINIMIZE ONLY ON THE NONLINEAR PARAMETERS. AFTER
THE OPTIMAL VALUES OF THE NONLINEAR PARAMETERS HAVE BEEN DETER-
MINED, THE LINEAR PARAMETERS CAN BE RECOVERED BY LINEAR LEAST
SQUARES TECHNIQUES (SEE REF. 1).

sloRsNeReReReReRecReoRe oo e ReReReReRs o Re RN Ee s NsE o No o s oo No s NoNoNoNoNoNoNoNoNONoNoNo N NoNoNoNoNoNoNo NN NN NONe!
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TtiE MINIMIZATION IS BY A MODIFICATION OF OSBORNE'S (REF. 3)
MODIFICATION OF THE LEVENBERG-MARQUARDT ALGORITHM. INSTEAD OF
SOLVING THE NORMAL EQUATIONS WITH MATRIX

T 2
(J J+ NU * D), WHERE J = D(ETA)/DC(ALF),

STABLE ORTHOGONAL (HOUSEHOLDER) REFLECTIONS ARE USED ON A
MODIFICATION OF THE MATRIX

( NU¥D )

WHERE D 1S A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF THE
COLUMNS OF J. THIS MARQUARDT STABILIZATION ALLOWS THE ROUTINE
TO RECOVER FROM SOME RANK DEFICIENCIES I N THE JACOBIAN.
OSBORNE'S EMPIRICAL STRATEGY FOR CHOOSING THE MARQUARDT PARAM-
ETER HAS PROVEN REASONABLY SUCCESSFUL I N PRACTICE. (GAUSS~-
NEWTON WITH STEP CONTROL CAN BE OBTAINED BY MAKING THE CHANGE
INDICATED BEFORE THE INSTRUCTION LABELED 5). A DESCRIPTION CAN
BE FOUND IN REF. (3), AND A FLOW CHART IN (2), P. 22.

FOR REFERENCE, SEE

GENE H. GOLUB AND V. PEREYRA, 'THE DIFFERENTIATION OF
PSEUDO-INVERSES AND NONLINEAR LEAST SQUARES PROBLEMS WHOSE
VARIABLES SEPARATE,” SIAM J. NUMER., ANAL. 10, 413-432
(158733,

2. ==m=ems , SAME TITLE, STANFORD C.S. REPORT 72-261t, FEB. 1972.
3. OSBORNE, MICHAEL R., 'SOME ASFECTS OF RON-LINEAE LEAST
SQUARES CALCULATIONS,” IN LOOTSMA, ED., *NUMERICAL METHODS
FOE Noli-LINEAR OPTIMIZATION,* ACADEMIC PRESS, LONDON, 1972.
4. KROGH, FRED, 'EFFICIENT IMPLEMENTATION OF A VARIABLE FRO-
JECTION ALGORITHM FOR NONLIMEAR LEAST SQUARES PROBLEMS, '
COMM. ACM 17, PP. 167-169% (MARCH, 1974).

5. KAUFMAN, LINDA, 'A VARIABLE PROJECTION METHOD FOR SOLVING
SEPARABLE NONLINEAR LEAST SQUARES PROBLEMS', B.I.T. 15,
49-57 (1975).

6. DRAPER, N., AND SMITH, H., APPLIED REGRESSION ANALYSIS,
WILEY, N.Y., 1966 (FOR STATISTICAL INFORMATION ONLY).

7. C. LAWSON AND R, HANSON, SOLVING LEAST SQUARES PROBLEMS,
PRENTICE-HALL, ENGLEWOOD CLIFFS, N, J., 1974.

JOHN BOLSTAD

COXPUTER SCIENCE DEPT., SERRA HOUSE
STANFORD UNIVERSITY

JANUARY, 1977
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DOUBLE PRECISION A(NMAX, LPP2), BETA(L), ALF(NL), T(NMAX, 1IV),
2 WIN), Y(N), ACUM, EPS1, GNSTEP, NU, PRJRES, R, RNEW, XNORM
INTEGER B!, OUTPUT

LOGICAL SKIP

EXTERNAL ADA

DATA EPSI #1.D-67, ITMAX 728/, OUTPUT /6/

C
C THE FOLLOWING TWO PARAMETERS ARE USED I N THE CONVERGENCE
C TEST: EPSI IS AN ABSOLUTE AND RELATIVE TOLERANCE FOR THE
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C NORM OF THE PROJECTION OF THE RESIDUAL ONTO THE RANGE OF THE
C JACOBIAN OF THE VARIABLE PROJECTION FUNCTIONAL.

C ITMAX IS THE MAXIMUM NUMBER OF FUNCTION AND DERIVATIVE

C EVALUATIONS ALLOWED. CAUTION: EPSI MUST NOT BE

C SET SMALLER THAN 10 TIMES THE UNIT ROUND-OFF OF THE MACHINE.
C

C —————————————————————————————————————————————————————————————————

CALL LIB MONITOR FROM VARPRO, MAINTENANCE NUMBER 509, DATE 77178
C*%¥XPLEASE DON'T REMOVE OR CHANGE THE ABOVE CALL. IT IS YOUR ONLY
C¥*¥PROTECTION AGAINST YOUR USING AN OUT-OF-DATE OR INCORRECT
C*¥¥¥VERSION OF THE ROUTINE. THE LIBRARY MONITOR REMOVES THIS CALL,
Cx¥¥S50 | T ONLY OCCURS ONCE, ON THE FIRST ENTRY TO THIS ROUTINE.

+ 2

L+ NL + 2

NL + 1

.FALSE.

10DIT = IPRINT

IF (IPRINT .LE. @) MODIT = ITMAX + 2
NU = 0.

'_
=
—
N

LI [N | I ae

(e

| F GAUSS-NEWTON | S DESIRED REMOVE THE NEXT STATEMENT.
NU = 1.

BEGIN OUTER ITERATION LOOP TO UPDATE ALF.

CALCULATE THE NORM OF THE RESIDUAL AND THE DERIVATIVE OF
THE MODIFIED RESIDUAL THE FIRST TIME, BUT ONLY THE
DERIVATIVE I N SUBSEQUENT ITERATIONS.

OO0 0 ¢

5 CALL DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, ALF, ADA, IERR,
X IPRINT, A, BETA, A(Y, LP1), R)
GNSTEP = 1.0
ITERIN = 0
IF (ITER .GT. 6) GO TO 10
IF (NL (EQ. 0) GO TO 90
IF (IERR .NE. 1) GO TO 99

IF (IPRINT .LE. 02 GO TO 10
WRITE (OUTPUT, 2087) ITERIN, R
WRETE (OUTPUT, 200) HNU
C BEGIN TWO-STAGE ORTHOGONAL FACTORIZATION
10 CALL ORFACI(NLPY, NMAX, N, L, IPRINT, AC1, B1), PRJRES, I|ERR)

I F (IERR .LT. 0) GO TO 99

IERR = 2

IF (NU .EQ. 0.) GO TO 30

C
C BEGIN INNER ITERATION LOOP FOR GENERATING NEW ALF AND
C TESTING I T FOR ACCEPTANCE.
C

25 CALL ORFACZ2(NLP1, NMAX, NU, ACt, B1))
C
C SOLVE A NL X NL UFPER TRIANGULAR SYSTEM FOR DELTA-ALF.
C THE TRANSFORMED RESIDUAL (IN €OL. LNLP DF A) IS OVER-
C WRITTEN BY THE RESULT DELTA-ALF.
C

30 CALL BACSUB (NMAX, NL, A(), B1), AC1, LNL2))
DO 35 K = 1, NL
35 A(K, B1) = ALF(K) + A(K, LNL2)
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NEW ALF(K) = ALF(K) + DELTA ALF(X)

STEP TO THE NEW POINT NEW ALF, AND COMPUTE THE NEW
NORM OF RESIDUAL. NEW ALF IS STORED IN COLUMN Bt OF A

O0O0O0OO0

40 CALL DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, AC1, B1), ADA
X  1ERR, IPRINT, A, BETA, AC1, LP1), RNEW)
|E (IERR .NE. 2) 60 TO 99
ITER = ITER + 1
ITERIN = ITERIN + 1
SKIP = MOD(ITER, MODIT) .NE. 0
IF (SKIP) GO TO 45
WRITE (OUTPUT, 203) ITER
WRITE (OUTPUT, 216) (AC(K, B1), K = 1, NL)
WRITE (OUTPUT, 207) ITERIN, RNEW

c
45 |F (ITER .LT. ITMAX) GO TO 50
IERR = -1
CALL VARERR (IPRINT, IERR, 1)
G) TO 95
50 IF (RNEW = R .LT. EPS1¥(R + 1.D0)) GO TO 75
c
c RETRACT THE STEP JUST TAKEN
c

IF (NU .NE. 0.) GO TO 60
c GAUSS-NEWTON OPTION ONLY
GNSTEP = 0.5%GNSTEP
| F (GNSTEP .LT. EPS1) GO TO 95
DO 55 K = 1, NL
55 ACK, B1) = ALF(K) + CONSTEP¥A(K, LNL2)
GO TO 40
C ENLARGE THE MARQUARDT PARAMETER
60 NU = 1.5%NU
I F (.NOT. SKIP) WRITE (OUTPUT, 206> NU
IF (NU .LE. 100.) GO TO 65

IERR = -2
CALL VARERR (IPRINT, IERR, 1)
GO TO 95
C RETRIEVE UPPER TRIANGULAR FORM
C ARD RESIDUAL OF FIRST STAGE.
65 DO 70 K = 1, NL
KSuB = LP1 + K
DO 70 J = K, NLPI
JSUB = LP1 + J
JSUB = NLPI + J
70 ACK, JSUB) = ACISUB, KSUB)
GO TO 25
C END OF INNER ITERATION LOOP
C ACCEPT THE STEP JUST TAKEN
C
75 R = RNEW
DO 80 K = 1, NL
80 ALF(K) = A(K, B2
C CALC. NORM(DELTA ALF)/NORM(ALF)
ACUM = GNSTEP*XNORM(NL, AC1, LNL2)>)/XNORM(NL, ALF)
C
C IF ITERIN IS GREATER THAN 1, A STEP WAS RETRACTED DURING
C THIS OUTER ITERATION.
C

IF (ITERIN .EQ. 1) NU = 0.5¥%NU
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IF (SKIP) 6o TO 85
WRITE (OUTPUT, 200> NU
WRITE (OUTPUT, 208) ACUM
85 IERR = 3
IF (PRJRES .GT. EPSI%(R + 1.D0)) GO T0 5
END OF OUTER ITERATION LOOP

CALCULATE FINAL QUANTITIES -- LINEAR PARAMETERS, RESIDUALS,
COVARIANCE MATRIX, ETC.

OO0 O

90 IERR = ITER
95 IF (NL .G6T. 8) CALL DPACL, NL, N, NMAX, LPP2, IV, T, Y, W. ALF,
X ADA, &, IPRINT, A, BETA, ACt1, LP1), R)
CALL POSTPR(L, NL, N, NMAX, LNL2, EPSt, R, IPRINT, ALF, W, A,
X ac1, LP1), BETA, IERR)
99 RETURN

200 FORMAT ¢9H NU =, E15.7)
203 FORMAT (12H0 ITERATION, 14, 24H NONLINEAR PARAMETERS)
206 FORMAT (25H STEP RETRACTED, NU =, E15.7)
207 FORMAT ¢tHo, 15, 20H NORM OF RESIDUAL =, E15.7)
208 FORMAT (34H NORMCDELTA-ALF) ~ NORMCALF) =, E12.3)
216 FORMAT C1HO, 7E15.7)
END

(@]

SUBROUTINE ORFACY(NLP1, NMAX, N, L, IPRINT, B, PRJRES, IERR)
STAGE 1: HOUSEHOLDER REDUCTION OF

( ) ¢ DE'. R3) NL
¢ DR .R2)> TO (----. ==,
¢ ) ¢ ¢ . R4 ) N-L-NL

NL 1 NL 1

WHERE DR = -DtQ2)%xy IS THE DERIVATIVE OF THE MCDIFIED RESIDUAL
PRODUCED BY pPA, R2 IS THE TRANSFORMED RESIDUAL FRoM DPA, AND
DR* IS IN UPPER TRIANGULAR FoRM (AS IN REF. (2>, P. 18).

DR IS STORED IN ROWS L+1 TO N AND COLUMNS L+2 TO L + NL + 1 OF
THE MATRIX A ¢1.E., COLUMNS 1 TO NL OF THE MATRIX B>. R2 IS
STORED IN COLUMN L + NL + 2 OF THE MATRIX A (COLUM& NL + 1 OF
B>. FORK =1, 2, ..., NL, FIND REFLECTION I - U ™ u* ~» BETA
WHICH ZEROES B(I, K), | = L+K+1, ..., N,

OO OO OO

DOUBLE PRECISION ACUM, ALPHA, B(NMAX, NLP1), BETA, DSIGN, PRJRES,
X U, XNORM

NL = NLPI =1
NL23 = 2%¥NL + 3
LPt = L + !

DO 30 K = 1, NL
LPK = L + K
ALPHA = DSIGN(XNORM(N+1-LPK, BC(LPK, K)), B(LPK, K))
U = B(LPK, K) *+ ALPHA
B(LPK, K) = U
BETA = ALPHA % U
IF (ALPHA .NE. 0.0) GO TO 13
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IERR = -8

CALL VARERR (IPRINT,

COLUMN WAS ZERO

I[ERR, LP1 + K)

GO TO 99

(@]

13 KP1 = K
DO 25 J

ACUM

1" " o+

APPLY REFLECTIONS TO REMAINING COLUMNS
OF B AND TO RESIDUAL VECTOR.
1
KP1,
0.0

NLPI

DO 20 1 = LPK, N

20
ACum =
DO 25
25
30

B(LPK, K}

(@]

PRJRES =

OO0

| F (IERR

DO 50 K = 1,

LPK = L +

DO 40 J =

JSUB =

B(K,

40

50 B(NL23,

99 RETURN
END

(@]

SUBROUTINE ORFAC2(MNLP1,

STAGE 2:

OO0 OO0 OO0 OO0

DOUBLE PRECISION ACUM, ALPHA

X XNORM

NL =
NL2 =
NL23 =
DO 30 K =

2¥NL

1,

ACUM

B(I,

XNORM(NL,

SAVE UPPER TRIANGULAR FORM AND TRANSFORMED RESIDUAL,
IN CASE A STEP 1S RETRACTED

.EQ.

J)
B(JSUB,
K>

WHERE DR?,
PARAMETER,
THE COLUMNS OF DR',
DETAILS IN €13,
ZEROES, AND R%,

NLPI = 1

= ACUM + B(I, K) ¥ BC(I, &)
ACUM 7 BETA

I= LPK, N

J) = B(I, J)

= _ALPHA

= B(I, K) * ACUM

B(LP1, NLP1))
FOR USE
ALSO COMFUTE COLUMN LENGTHS

4) GO TO 99
NL

K
K» NLPI

NLPI + J

= B(LPK, J)
K) = B(LPK,
= XNORM(K,

J)

B(LP1, KJ)

NMAX, NU, B)

SPECIAL HOUSEHOLDER REDUCTIOH OF

NL (DR'' . R5

R4

R6

R4

« 0

)

)
N-L-NL t 0 y 10 € o0
I
)

L

NL (NUXD

NL 1 NL 1

R3, AND R4 ARE AS |N ORFACY, NU IS THE MARQUARDT

D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF
AND DR'* IS IN UPPER TRIANGULAR FORM.

PP. 423-6424, NOTE THAT THE (N-L-NL) BAND OF
ARE OMITTED IN STORAGE

B(NMAX, NLPt), BETA, DSIGK, NU, U,

NL2 + 3

NL
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KP1 = K + |
NLPK = NL + K
NLPKM1 = NLPK = |
BCNLPK, K) = NU ™ B(NL23, K)
B(NL, K) = B(K, K)
ALPHA = DSIGNCXNORM(K+1, B(NL, K)), B(K, K))
U = BCK, K) + ALPHA
BETA = ALPHA * U
B(K, K) = —ALPHA
C THE K-TH REFLECTION MODIFIES ONLY ROWS K.,
c NL+1, NL+2, ..., NL+K, AND COLUMNS K TO NL*1.
DO 30 J = KP1, NLPI
BINLPK, J) = 0.
ACUM = U ™ BEK, )
DO 20 I = NLP1, NLPKMI
20 ACUM = ACUM + BCI,K) * BCI,J)
ACUM = ACUM + BETA
BCK,J) = B(K,Jd) - U * ACUM
DO 30 | = NLP1, NLPK
30 BCI,J) = BCI,J) - BCI,K) % ACUM
c
RETURN
END
c
SUBROUTINE DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, ALF, ADA, ISEL,
X IPRINT, A, U, R, RNORM)
c
c COMPUTE THE NORM OF THE RESIDUAL (IF ISEL = 1 OR 2), OR THE
c (N-L) x NL DERIVATIVE OF THE MODIFIED RESIDUAL (N-L) VECTOR
C Q2%Y (IF ISEL = | OR 3). HERE Q * PHI = S, I.E.,
C
c L ¢ Q1) . ) (S .RU. Fl )
c (====) C PHI . Y . DCPHI) ) = (=== , == . ==== )
c N-L (@2 ) ¢ ) (0 .R2. F2 )
C
C N L1 P L 1 P
C
c WHERE Q IS N X N ORTHOGONAL, AND S IS L X L UPPER TRIANGULAR.
C THE NORM OF THE RESIDUAL = NORM(R2), AND THE DESIRED DERIVATIVE
c ACCORDING TO REF. (53, 1S
c -1
C D(Q2 % Y) = -Q2 ¥ D(PHI)* S % Ql* Y.
c
o
C
DOUBLE PRECISION ACNMAX, LPP2), ALF(NL), TCNMAX, IV), W(N), Y(N),
X ACUM, ALPHA, BETA, RNORM, DSIGN, DSQRT, SAVE, RCN), UCL), XNORM
INTEGER FIRSTC, FIRSTR, INCC15,16)
LOGICAL NOWATE, PHILPI
EXTERNAL ADA
c
IF (1SEL .NE. 1) GO TO 3
LP1 = L + 1
INL2Z = L+ 2+ NL
LP2 = L + 2
LPPI = LPPZ = 1
FIRSTC = 1
LASTC = LPP1
FIRSTR = LP1
CALL INITCL, NL, N, NMAX, LPP2, IV, T, W, ALF, ADA, ISEL,
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X

IPRINT, A, INC, NCON, NCONP!, PHILP!, HOWATE)D
IF (ISEL .NE. 1) GO TO 99
GO TO 30

3 CALL ADA (LP!, NL, N, NMAX, LPP2, IV, A, INC, T, ALF, MINOCISEL,
X 3

30

35

40
45

50

55

58

66

I F

(ISEL .EQ. 21 GO TO 6

ISEL 3 0R 4

FIRSTC = LP2
LASTC = LPPI
FIRSTR = (4 = ISEL)*L + 1

GO

TO 50
ISEL

H
N

FIRSTC = NCONP
LASTC = LP{

I F
I F

DO

I F
DO

(NCON .EQ. 01 GO TO 30
(AC1, NCON) .EQ. SAVE) GO TO 30
ISEL = -7
CALL VARERR (IPRINT, ISEL, NCON)
GO TO 99
ISEL = 1 OR 2
(PHILP1) GO TO 40
DO 35 b= 1, N
RC(I> = Y(I)
GO TO 50
DO 45 |
RCID

1> N
Y(I) = R(D)

st

WEIGHT APPROPRIATE COLUMNS
(NOWATE) GO TO 58
55 1 = 1, N
ACUM = W(I)
DG 55 J = FIRSTC, LASTC
ACI, J) = ACI, J) ¥ ACUM

COMPUTE ORTHOGONAL FACTORIZATIONS BY HOUSEHOLDER
REFLECTIONS. | F ISEL = 1 OR 2, REDUCE PHI (STORED IN THE
FIRST L COLUMNS OF THE MATRIX A) TO UPPER TRIANGULAR FORM
(Q*PHI = S), AND TRANSFDRM Y (STORED IN COLUMN L+1), GETTING
Q%Y = R, IF ISEL = t, ALSO TRANSFORM J = D PHI (STORED IN
COLUMNS L+2 THROUGH L+P+1 OF THE MATRIX Al, GETTING Q% = F.
IF ISEL = 3 OR 4, PHI HAS ALREADY BEEN REDUCED, TRANSFORM
ONLY J. S, R, AND F OVERWRITE PHI, Y, AND J, RESPECTIVELY,
AND A FACTORED FORM OF Q IS SAVED IN U AND THE LOLJER
TRIANGLE OF PHI.

(L .EQ. 01 GO TO 75
70 K =1, L
KP1 = K+ 1
| F (ISEL .GE. 3 .OR. (ISEL .EQ. 2 .AND. K .LT.NCONP1)) GO TO 66
ALPHA = DSIGN(XNORM(N+1-K, A(K, K)), A(K, K))
UCK) = A(K, K) + ALPHA
A(K, K) = -ALPHA
FIRSTC = KP1
| F (ALPHA .NE. 0.0) GO TO 66
ISEL = -8
CALL VARERR (IPRINT, ISEL, K>
GO TO 99
APPLY REFLECTIONS TO COLUMNS

FIRSTC TO LASTC
BETA = —-A(K, K} % U(K)
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DO 70 J FIRSTC, LASTC
ACUM UCKI *¥A(K, J)
DO 68 | = kPt, N
IF(DABS(A(CI,K)).LT.1.D-30.0R.DABS(A(CI,J)).LT.1.D-30)G0 TO 68
ACUM = ACUM + ACI, K)¥A(CI, J)
68 CONTINUE

ACUM = ACUM ~» BETA

ACK,J) = A(K,J) ~ UCK)¥*ACUM

DO 70 I = KPt1, N

70 ACI, J) = A(I, J) = A(I, K)¥ACUM

75 IF (ISEL .GE. 3) GO TO 85
RNORM = XNORM(N-L, R(LP1))
IF (ISEL .EQ. 2) GO TO 99
IF (NCON .6T. 0) SAVE = AC1, NCON)

F2 1S NOW CONTAINED IN ROWS L+l TO N AND COLUMNS t+2 TO
L+P+1 OF THE MATRIX A. NOW SOLVE THE L X L UPPER TRIANGULAR
SYSTEM S%BETA = Rt FOR THE LINEAR PARAMETERS BETA. BETA
OVERWRITES Rt.

OOOOOO

85 IF (L .6T. 0) CALL BACSUB (NMAX, L, A, R)

MAJOR PART OF kaurMAN'S SIMPLIFICATION OCCURS HERE. COMPUTE
THE DERIVATIVE OF ETA WITH RESPECT TO THE NONLINEAR
PARAMETERS

T D ETA T 1 D PHICJ) D PHI(L+1)
Q % "TTTmoms = o % (SUM eTacyy =7=7=""" + mTmmmme ) = F2¥BETA

D ALF(K) J=1 D ALF(K) D ALF(K)

AND STORE THE RESULT IN COLUMNS t+2 TO L+NL+t. IF ISEL NOT
= 4, THE FIRST L Rows ARE OMITTED. THIS IS -D¢q2)*y. |IF
ISEL NOT = 4 THE RESIDUAL R2 = 2%y (IN COL. L+t> IS COPIED
TO COLUMN L+NL+2. OTHERWISE ALL OF coLumN L+l 1S COPIED.

ODOOOOOO OO OO OO0

DO 95 1 = FIRSTR, N
IF (L .EQ. NCON) GO TO 95
M= LP1
DO 90 K 1,
ACUM 0.
DO 88 J = NCONPI, L
IF CINC(K, J) .EQ. 0) GO TO 88
M=M+ |
ACUM = ACUM t ACI, M) ¥ RCU)
88 CONTINUE
KSUB = LPt + K
IF CINC(K, LP1) .EQ. 0) GO TO 90
M=M+
ACUM = ACUM + A(I, M)
90 ACI, KSUB) = ACUM
95  ACI, LNL2) = RCI)

NL

99 RETURN
END

SUBROUTINE INITC(L, NL, N, NMAX, LPP2, IV, T, W, ALF, ADA, ISEL,
X IPRINT, A, INC, NCON, NCONP1, PHILP1, NOWATE)

OO

CHECK VALIDITY OF INPUT PARAMETERS, AND DETERMINE NUMBER OF
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OO 00

15

CONSTANT FUNCTIONS.

DOUBLE PRECISION A(NMAX, LPP2), ALF(NL), T(NMAX, IV), W(N),
X DSQRT

INTEGER OUTPUT, P, INC(15,16)

LOGICAL NOWATE, PHILP1

DATA OUTPUT /67

LPt =L + 1
LNL2 = L + 2 + NL

CHECK FOR VALID INPUT
IF (L .GE. 0 .AND. NL .GE. O .AND. L+NL .LT. N .AND. LNL2 .LE.
X LPP2 .AND. 2*NL + 3 .LE. NMAX .AND. N .LE. NMAX .AND.
X IV .6T. 0 .AND. .NOT. (NL .EQ. 0 .AND. L .EQ. 0)) GO TO 1

ISEL = -4
CALL VARERR (IPRINT, ISEL, 1)
GO TO 99

IF (L .EQ. 0 .OR. NL .EQ. 0) GO TO 3
DO 2 J =1, LPt
DO 2 K = 1, NL
INC(K, J) =0

CALL ADA (iLPt, NL, N, NMAX, LPP2, IV, A, INC, T, ALF, ISEL)

NOWATE = .TRUE.

DO 9 I =1, N
NOWATE = NOWATE .AND. (W(I) .EQ. 1.0)
I F (WC(I) .GE. 0.) GO TO 9

ERROR | N WEIGHTS
ISEL = -6
CALL VARERR (IPRINT, ISEL, 1)
GO TO 99
W(I) = DSQRT(W(IN)

NCON = L

NCONPI = LP1

PHILPI = L .EQ. O

| F (PHILP1 OR. NL .EQ. 0) GO TO 99
CHECK INC MATRIX FOR VALID INPUT AND
DETERMINE NUMBER OF CONSTANT FCNS.

P 0
DO 11 J = t, LP1
IF (P .EQ. 0) NCONPI = J
DO 11 K = 1, NL
INCKJ = INC(K, J)
IF (INCKJ .NE. 0 .AND. INCKJ .NE. 1) GO TO 15
I F (INCKJ .EQ. V) P =P + 1
CONTINUE

NCON = NCOWNP? = 1
IF (IPRINT .GE. 0) WRITE (OUTPUT, 210) NCON
| F (L+P+2 .EQ. LPP2) GO TO 20
INPUT ERROR IN INC MATRIX

ISEL = -5
CALL VARERR (IPRINT, ISEL, 1)
GO TO 99

DETERMINE IF PHICL+1) IS IN THE MODEL.
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20 DO 25 K = 1, NL

25 I F CINCCK, LP1) .EQ. 1) PHILPV = ,[TRUE.
C
99 RETURN
210 FORMAT (33H0 NUMBER OF CONSTANT FUNCTIONS =, 14 /)
END
SUBROUTINE BACSUB (NMAX, N, A, X)
C
C BACKSOLVE THE N X N UPPER TRIANGULAR SYSTEM A¥X = B,
C THE SOLUTION X OVERWRITES THE RIGHT SIDE B.
C
DOUBLE PRECISION A(CNMAX, NJ, X(N), ACUM
C
X{N) = X(N) 7 A(N, ND
IF (N EQ. 1) GO TO 30
NP1 = Nt 1
DO 20 IBACK = 2, N
1= NP1 = IBACK
C B= N-1, N-2, ...» 2, 1
IPt = 1 + 1
ACUM = X(I)
DO 10 J = IP1, N
10 ACUM = ACUM = A(I,J)*¥X(J)
20 X(I) = ACUM 7 A(I,I)
C
30 RETURN
END
SUBROUTINE POSTPR(L, NL, N, NMAX, LNL2, EPS, RNORM, IPRINT, ALF,
X W, A, R, U, IERR)
C
C CALCULATE RESIDUALS, SAMPLE VARIANCE, AND COVARIANCE MATRIX
C ON INPUT, U CONTAINS INFORMATION ABOUT HOUSEHOLDER REFLECTIONS
C FROM DPA. ON OUTPUT, IT CONTAINS THE LINEAR PARAMETERS
C
DOUBLE FRECISION A(NMAX, LKNLZ2), ALF(NL), R(N), UCL), W(H), ACUM,
X EPS, PRJRES, RNORM, SAVE, DADS
INTEGER OUTPUT
DATA OUTPUT v6/
C
LP1 =L + 1
LPNL = LNL2 = 2
LNLY = LPNL + 1
po 10 I =1, N
10 WCI) = W(I)**2
C
C UNWIND HOUSEHOLDER TRANSFORMATIONS TO GET RESIDUALS
C AND MOVE THE LINEAR PARAMETERS FROM R TO U.
C

IF (L .EQ. 0) GO TO 30
DO 25 KBACK = 1, L
K = LPt = KBACK

KP1 = K + 1
ACUM = 0.
Do 20 | = kP11, N "
20 ACUM = ACUM + ACI, K) RCID
SAVE = R(K)
R(K) = ACUM 7 A(K, K)
ACUM = =ACUM 7/ (U(K) * A(K, K))
U(K) = SAVE
DO 25 | = KP1, N
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25 R(I) = R(I) = A(I, K)¥ACUM

COMPUTE MEAN ERROR
30 ACUM = 0.
DO 35 | = 1, N
35 ACUM = ACUM + R(I)
SAVE = ACUM 7/ N
THE FIRST L COLUMNS OF THE MATRIX HAVE BEEN REDUCED TO
UPPER TRIANGULAR FORM I N DPA. FINISH BY REDUCING ROWS
L+1 TO N AND COLUMNS L+2 THROUGH L+NL+1 TO TRIANGULAR
FORM. THEN S$HIFT COLUMNS OF DERIVATIVE MATRIX OVER ONE
TO THE LEFT TO BE ADJACENT TO THE FIRST L COLUMNS
IF (NL .EQ. 0) GO TO 45
CALL ORFACI(NL+1, NMAX, N, L, IPRINT, ACt, L+2), PRJRES, %)
po 40 I =1, N
ACI, LNL2) = R(I)
DO 40 K = LP1, LNL1
40 ACI, K) = ACI, K+1)
COMPUTE COVARIANCE MATRIX
45 AC1, LNL2) = RNORM
ACUM = RNORM¥RNORM/(N = L - NL)
AC2, LNL2) = ACUM
CALL COV(NMAX, LPNL, ACUM, A)
I F (IPRINT .LT. 0 GO TO 99
WRITE (OUTPUT, 209)
[F (L .GT. 0) WRITE (QUTPUT, 210) (U(J), J = 1, L)
I F (NL .GT. 0) WRITE (OQUTPUT, 211) (ALF(K), K = 1, NL)
WRITE (OUTPUT, 214) RKORM, SAVE, ACUNM
| F (DABS(SAVE) .GT. EFS) WRITE (OUTPUT, 215)
WRITE (OUTPUT, 209)
99 RETURN
209 FORMAT C(1HO, S0C1H'))
210 FORMAT (20H0 LINEAR PARAMETERS // (7E15.7))
211 FORMAT (23H0 NONLINEAR PARAMETERS /7 (7E15.7))
214 FORMAT (21H0 NORM OF RESIDUAL =, Et15.7, 33H EXPECTED ERROR OF OBS
XERVATIONS =, E15.7, ~ 39H  ESTIMATED VARIANCE OF OBSERVATIONS =,
X E15.7 )
215 FORMAT (95H WARNING == EXPECTED ERROR OF OBSERVATIONS IS NOT ZERO
X. COVARIANCE MATRIX MAY BE MEANINGLESS. /)
END
SUBROUTINE COV(HMAX, N, SIGMA2, A)
COMPUTE THE SCALED COVARIANCE MATRIX OF THE L + NL
PARAMETERS. THIS INVOLVES COMPUTING
2 -1, T
SIGMA % T T
WHERE THE (L#NL) X (L+NL) UPPER TRIANGULAR MATRIX T IS
DESCRIBED I N SUBROUTINE POSTPR. THE RESULT OVERWRITES THE
FIRST L+NL ROWS AND COLUMNS OF THE MATRIX A. THE RESULTING
MATRIX 1S SYMMETRIC. SEE REF. 7, PP. 67-70, 281.
DOUBLE PRECISION A(NMAX, N), SUM, SIGMA2

- 171 -




DO 10 J = 1, N
10 ACY, J) = 1.7A00, J)

o
C INVERT T UPON ITSELF
C
|F (N .EQ. 1) GO TO 70
NM1 = N = 1
DO 60 m= 1, NMI
IPt = 1+ 1
DO 60 J = IP1, N
JMY = 0 - 1
SUM = 0.
DO 50 M = I, JMt
50 SUM = SUM + ACI, MI * ACM, J)
60 ACI, J) = -SUM * A(J, J)
o
C NOW FORM THE MATRIX PRODUCT
o
70 DO 90 | = 1r N
DO 90 J = I, N
SUM = 0.
DO 80 M = J, N
80 SUM = SUM + ACI, MI * ACJ, M)
SUM = SUM % SIGMA2
ACI, J) = SUM
90 ACJ, I) = SUM
C
RETURN
END
SUBROUTINE VARERR (IPRINT, IERR, K)
C
C PRINT ERROR MESSAGES
o
INTEGER ERRNO, OUTPUT
DATA OUTPUT /67
C
| F (IPRINT .LT. 0) GO TO 99
ERRNO = ITABS(IERR)
GO TO (1, 2, 99, 4, 5, 6, 7, 8), ERRNO
C
1 WRITE (OUTPUT, 101
GO TO 99
2 WRITE (OUTPUT, 102
GO TO 99
4 WRITE (OUTPUT, 104)
GO TO 99
5 WRITE (OUTPUT, 105)
GO TO 99
6 WRITE (OUTPUT, 106) K
GO TO 99
7 WRITE (OUTPUT, 107) K
GO TO 99
8 WRITE (OUTPUT, 108) K
o

99 RETURN

101 FORMAT (46H0 PROBLEM TERMINATED FOR EXCESSIVE ITERATIONS //)

102 FORMAT (49HO0 PROBLEM TERMINATED BECAUSE OF ILL- CONDITIONING 7/7)

104 FORMAT €/ 50H INPUT ERROR | N PARAMETER L, NL, N, LPP2, OR NMAX. /)

105 FORMAT (68H0 ERROR == INC MATRIX IMPROPERLY SPECIFIED, OR DISAGRE
XES WITH LPP2. /)
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106 FORMAT (19H0 ERROR == WEIGHT(, I4, 14H) | S NEGATIVE. /)

107 FORMAT (28H0 ERROR == CONSTANT COLUMN , I3, 37H MUST BE COMPUTED
XONLY WHEN ISEL = 1. /)

108 FORMAT (33H0 CATASTROPHIC FAILURE == COLUMN , 14, 28H |S ZERO, SE
XE DOCUMENTATION. /)
END
DOUBLE PRECISION FUNCTION XNORM(N, X)

COMPUTE THE L2 (EUCLIDEAN) NORM OF A VECTOR, MAKING SURE TO
AVOID UNNECESSARY UNDERFLOWS. NO ATTEMPT IS MADE TO SUPPRESS
OVERFLOWS.

OO0O0O00

DOUBLE PRECISION X(N), RMAX, SUM, TERM, DABS, DSQRT

@]

C FIND LARGEST (IN ABSOLUTE VALUE) ELEMENT
RMAX = 0.
DO 10 B= t, N
| F (DABS(X(I)) .GT. RMAX) RMAX = DABS(X(I))
10 CONTINUE

SUM = 0.
| F (RMAX .EQ. 0.) GO TO 30
DO 20 ®B= 1, N
TERM = 0.
| F (RMAX + DABS(X(I)) .NE. RMAX) TERM = X(I)/RMAX
20 SUm = SUM + TERMXTERM

30 XNORM = RMAX¥DSQRT(SUM)
99 RETURN

END

$DATA

.8541676,1.D-6,36,7

.55,27225.,6600.,1.093753

7177783, 1., 1.

2000.,4000.,15

2200

2390

2610

2930

3050

3270

3640

2040., 1.5

2070. ,.8

2200. ,4.5

2280.14.75

2340.,8.

2400.,10.

2500.,20.

2540.,21.5

2600.,31,

2660.,27.6

2700.,29.2

2800.,25.

2870.,28,

3000.,28.

3040. ,30.

3070.,28.25

3120.,28.

3160.,26.
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3200
3260

3360.
3400.
3460.
3520,
3580.
3620.

3700

3720.
3800.
3860.

3900

3925,

3960

4000.

/7%

. 132.
.132.
226,
»25.9
125,

» 28.
»28.

. 124.
»25.6
»20.
»21.5
.121 .75
»19.25
.119.5

» 12.
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1 FROM ROGRAM

NUMBER OF CONSTANT FUNCTIONS = O

O NORM OF RESIDUAL = 0.1442714D-06
NU = 0.1000000D 01
ITERATION 1 NONLINEAR PARAMETERS
0.1042649D 01 0.9485506D 00 0.8722263D 00 0.78373878 00 0.74415011) 00 0.695689”
1 NORM OF RESIDUAL = 0.1334315D-04
NU = ©.5000000D 00
NORMCDELTA-ALF) «~ NORMCALF) = 0.500D-02
ITERATION 2 NONLINEAR PARAMETERS
0.1046405D 01 0.94177720 00 0.8712702D 00 ©06.7916243D 00 0.76472037?D 00 0.69453%¢
1 NORM OF RESIDUAL = 0.1252686D-04
NU = 0.2500000D 00
NORMCDELTA-ALF) » NORMCALF) = 0.528D-02
ITERATION 3 NONLINEAR PARAMETERS
0.1046952D 01 0.9342167D 00 0.8697866D 00 0.7954584D 00 0.7468173D 00 0.6944111
1 NORM OF RESIDUAL = 0.1207254D-04
NU = 0.1250000D 00
NORM(DELTA-ALF) ~» NORMCALF) = 0.394D-02
ITERATION 4 NONLINEAR PARAMETERS
0.1046302D 01 0.9272034D 00 0.8671941D 00 0.7954597D 00 ©0.7468120D 00 0.6944090
1 NORM OF RESIDUAL = 0.11764424D-04
NU = 0.6250000D-01
NORM(DELTA-ALF) 7 NORM(ALF) = 0.344D-02
ITERATION 5 NONLINEAR PARAMETERS
0.1045457D 01 0.9239122D 00 0.864863%D 00 0.7940712D 00 0.7464616D 00 0.6943551
1 NORM OF RESIDUAL = 0.1162343D-04
NU = 0.3125000D-01
NORMCDELTA-ALF) ~» NORMCALF) = 0.200D-02
ITERATION 6 NONLINEAR PARAMETERS
0.1044500D 01 0.9230081D 00 0.8640470D 00 0.7932118D 00 ©0.7462077D 00 0.6943202
1 NORM OF RESIDUAL = ©0.1160925D-04
NU = 0.1562500D-01
NORMCDELTA-ALF) + NORMCALF) = 0.821D~03

1Tt PRRRRRREYRRRERRYREROECR R R RROY RO R R RRRRR SR OERE R YRR RR OO YC®E

LINEAR PARAMETERS

0.1705885D-01 0.40428030-01 0.6303247D-01 0.3332297D-01 0.3242721D-01 0.4207849"
NONLINEAR PARAMETERS

0.1044500D 01 0.9230081D 00 0.864047013 00 0.79321183) 00 ©6.7462077D 00 0.69432029

NORM OF RESIDUAL = 0.1160925D-04 EXPECTED ERROR OF OBSERVATIONS = 0.1398237D-06
ESTIMATED VARIANCE OF OBSERVATIONS = 0.6738738D-11

TR PO EITRRNERRROPOTEReE RReE I e R OEOlR OEYRERR R R RO QOCROEROCEY
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LAYER NO. POROSITY.THICKNESS KH/SUM(KH)

| 0.015636 0.016332
2 0.047454 0.043800
3 0.084429 0.072950
4 0.052962 0.0420 10
5 0.058236 0.043456
6 0.087285 0.060604
7 0.087129 0.054508
VOLUME PRODUCED, BBLS CONCENTRATION, PPM
2000.00 0.037696
2133.33 4.600 928
2266.67 4.167477
2400.00 11.495150
2533.33 21.593647
2666.67 29.679569
2800.00 25.71 1356
2933.33 27.380659
3066.67 28.569303
3200.00 30.307478
3333.33 29.44766 1
3466.67 23.823376
3600.00 28.622558
3733.33 24 487164
3866.67 18.975435
4000.00 15.983867
SELECTED PEAK VOLUME COMPUTED PEAK VOLUME
2200.0 2181.1
2390.0 2468.2
2610.0 2636.7
2930.0 2872.1
3050.0 3053.0
3270.0 3281.2
3640.0 3641.6
STATEMENTS EXECUTED= 2576626
CORE USAGE OBJECT cODE= 42368 BYTES,ARRAY AREA= 19416 BYTES,TOTAL AREA AVAIL
DIAGNOSTICS NUMBER OF ERRORS= 0, NUMBER OF WARNINGS= 0, NUMBER OF E
COMPILE Tégg;op 0.37 SEC,EXECUTION TIME= 27.20 SEC, 16.00.30 MONDAY
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Appendix D.2:  PROGRAM TO COMPUTE PATTERN BREAKTHROUGH CURVE OF A
DEVELOPED INVESTED SEVEN-SPOT FOR UNIT MOBILITY RATIO

This program calculates the curve of displacing fluid cut versus displaceable
pore volume Injected for a developed inverted seven—spot at unit mobility
ratio. As was mentioned in the text, for every selected y coordinate of a
point on a general streamline, a corresponding value for the x coordinate of
the point must be evaluated. Subroutine "'ROOT" performs this evaluation. The
routine uses the "bisection method."  However, a more efficient root-finding

method can reduce the computation time .
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/7 JOB (JE.MAD,104,2), "MAGSUD'
7/ EXEC WATFIV
//G0.SYSIN DD

***x***x*******************x*****x&*x******xxx**xx******x**x*x**i

*

% THIS FROGRAM COMPUTES PATTERN BRRAKTHROUGH CURVE (DISPLACING

¥ FLUID CUT VS DISPLACEAULE FORE VOLUMES INJECTED) FOR A DEVEL-
LOPED INVERTED SEVEN-SMOT AT MOBILITY RATIO OF ONE. ¥

* X

RN RN AR RR R ER NN NN R AR R RN LR MK RN AR AR RN KX RER KRN ANN

*
*

OUTFUTS FROM THE PROGRAM ARE

DISPLACING FLUID CUT AT THE PRODUCIND STREAM
CISPLACEADLE PORE VOLUMES INJECTED CORRESFONDING TO FW
DIMENSICNLESS PORE VOLUME USED IN THE CORRELATION

PV(ID
DPV

OO0 OO0 0O 000

IMFLICIT REAL*8 (A-lit O-2)
DIMENSION F(200),PV(30)
REAL®8 M,M1,K
CONMON AA BB M,M1 P
FI=4.XDATAN(L1. DO)
AA=DSQRT(3.DO0)
BB=1./AA
M=(2.-AAY/6.D0
M1=1.-M

N=50

NN=N+1

Fil=.5D-1

00 35 L=1,9
SIGH=PI¥X(1.-FW/3)
P=DTAR(SIGH)

CALL KN(AA,Z.K)
Y2=2.*¥KXBB

H=Y2/H

FC1)=0.000

DO 10 I=2,KNN
Y=(I-1)%H

FOR A Y-CODRDINATE OF A POINT ON A GENERAL STREAMLINE, A
COORESPOEDXNG VALUE FOE THE X-COORDINATE IS COMPUTED.

OO 00

CALL ROOT(Y,X)

O o0

THE IHTEGRANE IN EQ. A-109 IS EVALUATED
CALL \'ALUE(X;Y;{U»UP,R;RP ’N,NP)
FC D =WXN/ (W%¥CRTUP+RP ¥U) -R¥USWP)

0 CONT INUE

POKE VQLUMES INJECTED ARE COMPUTED

OO0k

CALL INTGRL{N,H, F,SUM)
C=-PIN(1+PXP)/ (2, ¥AAXKXK)
PVLY=CxsUM
DPV=(PV(L)-.7643682)/(1.-.763682)
WR WTEC6,200) Fw,PV(L) ,DPV
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200 FORMATC(IX,3(F15.5))
35 FH=FW+. 10

STOP

END

OO0

SUBROUTINE VALUECX,Y,U,UP,R,RP,W,WP)

THIS SUBROUTINE COMPUTES THE FOLLOLJING FUNCTIONS THAT ARE
NEEDED FOR THE PROGRAM. THE FUNCTIONS ARE:

H, 6, U, U', 7T, 7', R, R', W, W'

THESE FUNCTIONS HAVE BEEN ASSIGNED THE SAME NOTATIONS AS IN
APFENDIX A-4.

INFUT: X,Y = COORDINATES OF A POINT ON A STREAMLINE
OUTPUT: FUNCTIONS U, U*', R, R', W, W!'

OO0 OOOOOOO

IMPLICIT REAL¥8 (A-H,0-2)

REAL*8 M,M1

CoMiiot AA,BB,M,M1,P

A2z(2.+AA)EX2

B2=(2.-AA)*X2

CALL JACODR(X,M,AA,SHX,CNX,DNX)

CALL JACOB(Y,I1,BB,SKY,CKRY,DNY)
DERNUM=1 . -SHYXSHY¥DNX¥DHX

H=CHXXCNY/DENUM

G=SNX¥DHXXSNY¥DNY/DENUM

HP=- (DERUNM 2 ¥XSHYXSRYXCHX¥CHYX) XSNXXDRX¥CNY/Z (DENUMNDENUM)
GP=SHYXDHYXCHXF( (DRX®¥2-MEGNNYR2)¥DENUM-2 XM (SHXXDRNXESRY ) ¥X2)/
$ (DENUNMEDERUIMD

U=HXG

T=(H¥H-GXG) ¥%2

UP=HPXG+GP¥H

TP=6 ¥ (HEUP~CGXGP )X {H¥H-G%G)

uu=uxuy

R=(1-B2IX(4¥UU+TI+A2-1,
WS¥UUX(2¥P2¥UU-5.+B2XT)+A2+D2¥TXT-16¥T
RP=(1-B2)¥(S¥UXUF+TP)

WP=16XUXUP%(4 .  XB2XUU-5.+B2#TI+2XR2RTPR(GXUU+T)I-14%TP
RETURN

END

OO0

SUEROUTINE ROOT(Y,2Z)

THIS SULROUTINE CALCULATES THE ROOT OF F(X,¥) = 0 FOR A GIVEN Y.
THE FUNCTION F(X,Y) IS SUFFLIED BY EQ. A-103 IN APPENDIX A-4
THE SUBCOUTINE USES THE " BISECTION™ METHOD.

INFUT: Y = Y-COORDINATE OF A POINT ON STRCAMLINE, SIGH

OUTFUT: Z = X-COORDINATE CORRESPONDING TO Y

OO0 OOO0OO0OO0

IMPLICIT REAL¥8 (A-H,0-2)
REAL®S M, M1

COMMON AA ,BB,M,Mt,P
T0L=5.D-4

D=P/4.DO
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10

20
30

40

OO0

DOOOODOOOOOOO

10

OO0

(@ XP)]

X{=1.D-5

X2=,5D-3

CALL VALUE(X1,Y,U,ur,R,&P,W,1P)
FlzR*U/W-D

CALL VALUE¢xz,Y,u,UP,r,RP,W,pP)
F2=rxusn-D

IFCFIXF2.LT.0.)60 TO 20

X2=1.5%X2
GO 10 190
I=1

2=(X14X2)/2.D0

CALL vaLuE(Z,Y,U,UP,R,RP,W,WP)
FZzR¥U/W-D

IF(FI%¥FZ.LT,0.) GO TO 40
X)=z
IF(DABS(X2-Z).LT.TOL)YRETURN
I1=1+1

GO TO 30

X2=2z
IF(DABS(X1-2).LT.TOL)IRETURN
I=I+1

GO 710 30

END

SUBROUTINE JACOB(U,M,KFCK,SN,CN,DH)

THIS SUBROUTINE EVALUATES THE ELLIPTIC FUNCTIONS OF

SNOX, M), CHOX,M), DN(X,M), SH(Y,MI), CHCY,M1), DN(Y,M!1)

THE ROUTINE USES THE FOURIER EXFANSION OF THE ELLIPTIC FUCTION
SN(U), COMDINED WITH RELATIONSHIFS BETWEEN THE TUNCTIONS.

KFOK IN THIS SUBROUTIHE IS K'(MY/K(I) WHEN THE PARAMETER IS I,
AND IS EQUAL 70 K(MI/K'(M) = K'(MI)/ZK(M1) WHEN THE PARAMETER
15 M1

IMFLICIT REAL¥8 (A-1,0-2)
REAL*3 K,M,KPCK

PI=6 . ¥DATAN(C1.D0)

CALL KM(KPOK,Q,K)
V=PIXU/ (2., %K)

SuMi=0.

PO 10 I=1,8

A=(I-1)+.5

R=2.%(I-1)+1,
SUMI=SUMI+Q¥*XA/ (] . -QXXB)¥DSIN(B*V)
SN=2.¥PI*SUM!I/ (K¥DSQRT(M))
CN=DSQRT(DABS(1.-SN%¥2))
DN=DSQRT(DABS(1.-MXSH*%2))
RETURN

END

SUBROUTINE KM(KPOK,Q,K)

THIS SUBROUTINE ¢coMruUTES COMPLEMENTARY OR INcOMPLEMENTARY COMFLETE
ELLIPTIC INTEGRAL fFUMCIOM K(M) OR K(M{)=K'(M). THE ROUTHINE
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30

OO0

OO0 0O0O0

50

SDATA

UTILIZES THE EXFANSION PRESEKTED I N ABRAMOWITZ (1972)

IMPLICIT REAL¥8 (A-H 0-2Z)
REAL*3 K,M,KPOK
PI=4.XDATARC1.D0)
Q=DEXP(-PIXKPOK)

SuM=0.

Do 30 I=t,10
SUM=SUM+Q¥¥T/ (1. +Q¥*%(2.*]))
K=PIz2.%(1.+4 %SUM)

RETURN

END

SUBROUTINE INTGRL(N,H,F,VvOL)

THIS SUBROUTINE COMPUTES VALUE OF AN INTEGRAL USING SIMPSON'S
RULE OF INTEGRATION.

INPUT: N = NUMBER OF INTERVALS, AN EVEN INTEGER NUMDER
H = INTERVAL SIZE
F = VALUES OF FUNCTIONS COMPUTED AT INTERVALS, AN ARRAY

OUTFUT: VOL = VALUE OF THE INTEGRAL

IMFLICIT REAL%8 (A-H.0-2)
DIMENSION F(91)

SUMtI=¢

sSuM2=0

N1=Ns2-1

DO 50 I=1,H1

SUM1=sSUPLI+ F(2% D
SUM2=SUM2 +F(2%I+1)
SUME=SUNT+F(N)
VOL=H/3*(F(1)tF(Nt1)+4.*SUM1+2.*SUPQ)
RETURN

END
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Appendix D.3: PROGRAM TO COMPUTE PATTERN BREAKTHROUGH CURVE OF A
DEVELOPED FIVE—-SPOT AT AN ARBITRARY MOBILITY RATIO

This program computes both the displacing fluid cut and areal sweep efficiency
curves of a developed five-spot pattern for any mobility ratio. The assump-
tion made in the derivation of the equations is that the streamlines are
independent of mobility ratio; hence, they can be calculated from single—phase
fluid flow (mobility ratio equal to oe).
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s/ JOB (JE.MAD,104), 'MAGHSOOD'
/7 EXEC WATFIV
//G0.SYSIN DD ¥

C

OO0 O0O0OOO0O0O OO0

eNeNeoNe]

OO0 OO0

OO0

HER RN R AN RN AN LR RN AN ENENRR MR ARRRRNEF RN RARRANEX RS AN AN

THIS FROGRAM COMPUTES PATTERN BREAKTHROUGH CURVES (DISPLACING *
FLUID CUT VS DISPLACEADLE FORE VOLUME) AND AREAL SWEEP EFFICI-
ENCY CURVES (FRACTIONAL AREA SWEPT VS DISPLACEABLE PORE VOLUME
INJECTED) FOR A DEVELQPED FIVE-SPOT PATTERN AT VARIOUS MOBILITY*®

RATIOS. THE PROGRA!l ASSUMES THAT THE STREAMLINES DO NOT CHANGE
WITH MOBILITY RATIO.

MEURRNERRRANRNNERENENERARARARKRRHENAERNRAXARHRRRKR KX KRERRRRAANRRNKNR

Stk

* kK k

*

THE LOCATION OF THE FRONT IN THE SYSTEM IS CONTINUOUSLY
COMFUTED AS THE STREAMLINES BREAKTHROUGH.
THE INPUT AND OUTPUT FROM THE PROGRAM ARE AS FOLLOLJS:
INPUT: MOBLTY = MOBILITY RATIO
OUTPUT: PV = DISPLACEADLE FORE VOLUMES INJECTED
SWEEP = AREAL SWCEP EFFICIENCY, FRACTION
FA, DISPLACING FLUID CUT IN THE PRODUCING STREAM, FRACTION

IMPFLICIT REAL ¥8(A-H,0-2)

REAL¥8 MOBLTY,LEFT, FF(91),GG(91),FSWEP(91)

G1(2Z)=DSART(ZXZ+1)

62(Z ,ETA)=DSCRT(Z®Z+ETA¥XETA)
G(Z,ETA)=DLOGC(ZYETAX(GI(2I+G2(Z,ETA)) )/ (ETA¥GI(Z)4G2(Z,ETA)))
READ,MO3LTY

PI-4,%¥DATAN(1.00)

AK=1.8564074677301372D0

RI=AKDSQRT(2.D0)/ 10000.

OHE EIGHTH OF A FIVE-SFOT IS DIVIDED INTO "NP™ STREAMTUBES.
THESE NP STREAMTUBES BREAKTHROUGH OWE RY ONE

NP=10
H=PI/4./NP
DO 1 J=1,NP

IN THE FOLLOWING, TETUT = STREAMLINE THAT IS CONSIDERED TO
BREAKTHROUGH. RIGHT HAND SIDE OF EQ. B-51 IS CONPUTED FOR THIS
STREAMLINE AND IS STORED IN "RIGIHT™.

TETBT=H#(NP+1-J)

E1=DTANCTETLT) ¥%2
XWIBT=RWRDSINCTETBT)
XWPBT=AK-RW*DCOS(TETRT)

CALL FUNCT(1,F2PBT,XWFDT)

CALL FUNCT(1,F2IBT,XNIBT)

CALL GAUSSC(1,F2IBTY,FZFBT,EI, VAL)
P1EV1=MOBLTYXG(F2PBT,E1)-G(F2IBT,E")
EP=1-E1¥E1

PP=PIs2.

CALL ELLEP(PP,EP,AKE1)
RIGHT=C1+ELI*(F1EI¥AKE1+( 1 .-MOBLTY)HVAL)

STREAMLINES BETWEEN ZERO AND BROKENTHROUGH (TETBT) ARE DIVIDED
I NTO "N" STREAMTUBES AND THE FRONT LOCATION M EACH OF THEM
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c IS CALCULATED BY EQ. B-51., FIRST A LOWCR AND AN UPPER VALUL FOR
c Z BAR IN THIS EQUATION ARE COMPUTED IN SUCH A WAY THAT THE EXACT
¢ Z PAR VALUE LIES BETHEEN THEM. THEN, A ROOT FINDING ROUTINE IS
C UTILIZED TO DETERMINE THE EXACT VALUE OF TIIE Z FAR.
c

N=90

NN=N-1

STEF=TETBT/N

DO 10 I=1.,NN

TET=STEP*I

XW FRIXDSINCTET)

XIHP=RWXDCOS(TET)

E=DTANCTET) #%2

2Z=1. -E¥E

X 1= AK~-XWP

CALL FUNCT(1,F2P,X1)

CALL FUNCT(1,F2I,XNID

P1E=MOBLTY®G(F2P,E)-G(F2I,E)

A=F21

B=5.¥F21I

AINT=0.0
20 CALL GAUSS(2,AtBtEtVALUE)

AINT=AINT+VALUE
FHI=DATAN(D/E)
CALL ELLEP(PHI,Z2Z,T1)
LEFT=C1 +EDR(PIESTH+(1.-MOBLTY)*AINT)
IF(LEFT.GT. RIGHTIGO 10 15
A=B
B=5.%A
SAVE!=ZLEFT
GO0 TO 290
15 POLD=AINT-VALUE
SAVE2=zLEFT
CALL ROOTC(A,B,SAVE!, SAVE2,POLD, RIGHT,MORLTY,E,2Z,P 18, T,X)

AFTER DETERMINING THE FRONT LOCATIONS FROM THE SUBROUTINE ROOT
CALCULATION DISPLACIHNG FLUID CUT STARTS

OOOOO0

GG(I+1)=2./(P1E+(1-MOBLTY)IXG(X,E1))
IF(I.EQ.1)FF(12=T
FFCI+1)=(1.+E)XT

10 CONTINUE
GG(1)=6G6(2)
FF(N+1)=(1+E1)*AKE1
GG(N+1)=2./(G(F2PBT,E1)~-G(F2IBT,E1))

c
¢ QA = PRODUCING FLOLJ RATE OF DISPLACING FLUID
C QB = PRODUCING FLOW RATE OF DISPLACED FLUID
c FA = DISPLACING FLUID CUT IN THE TRODUCTION STREAM
c
CALL IRTGRL(N,STEP,GG,QB)
QA=GG(N+1)*(PI/4~-TETBT)
FA=QA/(QA+QB)
c
¢ CALCULATION OF AREAL SWEEP EFFICIENCY AND INJECTED DISPLACEADLE
¢ PORE VOLUMES START. FIRST, THE PORE VOLUMES OF WATER PRODUCED
c ARE COMPUTED. THIS IS STORED IN *"vp",
c

HTETBT=RIGHT/4.
HBT=(PI/4.~TETBT)/N
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N1=N+1

DO 11 L=1,N1

TET=TETBT+HBT*(L-1)

ET=DTAN(TET)*%2

PP=PI’s2.

Z=1-ET¥ET

CALL ELLEP(PP,Z,EK)

FSWEPC(L)=( 1+ET)¥EK

X =RI%DS INCTET)

XWP=AK-RW*DCOS(TET)

CALL FUNCT(1,2P,XWP)

CALL FUNCTC(1,Z1,XKI}

PE=MOBLTYXG(ZP,ET)-G(ZI ,ET)

CALL GAUSS(1,21,ZP,ET,VAL)

HTETASCI4ET)/4¥(PEXEK+(1-MOBLTY)XVAL)

GG(L)=(HTETBT-HTETA)/(G(ZP,ET)-G(ZI.ET))
11 CONT KUE

C
C
CALL INTGRL(N,HBT,GG,VP)
c
c IN THE FOLLOWING CALCULATIONS OF AREAL SWEEP EFFICIENCY AND
c PORE VOLUMES INJECTED, THE TWO SYMBOLS S| AND S2 ARE USED TO
c DESIGHATE:
c S1 = AREA ENCOMPASED RETWEEN THE BROKEN-THROUGH STRCAMULINE (TETBT)
C AND THE STREAMLINE PI/¢
c S2 = SWEPT AREA ENCOMPASED BETWEEN STREAMLINE, TETDT, AND
c STREAMLINE ZERO.
c

CALL INTCRL(N,STEP,FF,S1)
CALL INTCRL(M,UDT,FSMER,S2)
SHEEP=(S1+82)/7AK/AK
PV=SHEEP+4 XV /7AK/AK
WRITE(6,100)PV,SUEEP,FA
100 FORMAT (X, '"PORE VOLUIE="',F8.5,64X, 'EABT=',F8.5,3X,'CUT=",F06.4)

1 CONTINUE
STOP
END

C

C

C

SUBROUTINE SH(X ,SNX)

THIS SUBROUTIHE CALCULATES THE JACOBIAN ELLIPTIC FURCTION SN(X,0.5)
THE ROGUTINE USES FOURIER SERIES EXPANSION OFF SH(X,0.5).

INPUT: X, ARGUMENT OF THE JACOBIAN ELLIPTIC FUNCTION

OUTPUT: SNX, VALUE OF THE JACOBIAN ELLIFTIC FUNCTION

OO0 OO0

IMPLICIT REAL#8 (A-H,0-2)
AK=1.8564074677301372D0
AM=.5
PI=6 . *¥DATANC1.D0)
Q=DEXP(-PI1)
SUM=0.DO0
V=pPI¥X/s2./7AK
po 10 I=1,9
I1=1~1
C1=II+.5
C2=2.¥II+1
10 SUM=SUM+QXXCIXDSIN(C2XV)/(1.-Q¥%x(C2)
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SHX=2 . ®¥PI¥SUM/AK/DSQRT (AM)

RETURN
END
C
C
C
SURROUTINE FUNCTC(INDIC,F2,X)
C
c THIS SUBROUTINE CONFUTES F2 FOR A GIVEN X OR COMFUTES X FOR A
C GIVEN F2.
C F2=F%F AND F IS TItE EQUATION FOR THE DEFINITION OF STREAMLINE
C WHICH 1S GIVEH BY EQ. A-18 WITH m = 0.5.
C
C
C INDIC=1, COMPUTE F2 FOR GIVEN X
C INDIC=2, CONFUTE X FOR GIVEN F2
C

IMPLICIT REAL*8 (A-H,0-2)
IFCINDIC.EQ.1)GO TO 10
SHX=DSQRT(1.4F2-DSQRT(1.+F2%F2))
ANGLE=DARSIN(SHX)

Z2=.5
CALL ELLEP(ANGLE,Z,X)
GO0 70 20

10 CALL SN(X,SNX)
SHINX=SNXHSNX
F2aSNaX¥(1.-,5%5R2X)/(1.-8N2X)
20 RETURN

END
C
C
C
SUBROUTINE ELLEP(Y ,Z.A)
C
C THIS SUEROUTINE COMPUTES INCOMPLETE ELLIPTIC INTEGRALN F(PHI, k)
C PHI IS THE ARGUMENT AND k IS THE MobuLus. TIHE MODULUS 1S EQUAL
C TO THE SQUARE ROOT OF TItE FARAMETER.
C INPUT: Y = ARCGUMENT OF THE ELLIPTIC FUNCTION
C Z = PARANLCTER OF THE ELLIPTIC INTEGRAL
C A = VALUE OF TIiE ELLIPTIC INTEGRAL
C THE ROUTINE USES LANDLCNS DECENDING TRANSFORMATION. FOR REFERENCE
C SEE ABRAMOWITZ, PAGE
C
C

INFLICIT REAL%8 (A-H,0-2)
REAL#*8 K,K!1,KP

T0L=1.D-4

PI=4 .%¥DATANC1.DD)

W=1.D0

X=Y

K=DSQRT(Z)

15 K1=2.%¥DSQRT(K)/Z7 (1+K)
X=.5%(X+DARSIN(KXDSIN(X)))
QE=DARSIN(K1)
QE=QEX180./PI
W=2 . ¥/ (14K)
IF((90.-QE).LE.TOL)GO TO 30
K=K1
GO TO 15

30 A=WXDLOG(DTAN(PIZ4+X/2))
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RETURN

END
o
o
o
SUBROUTINE GAUSS(L,ALOWER,UPPER,E,VALUE)
C
C THIS SUPROUTINE CONFUTES VALUE OF AN INTEGRAL USING EIGHT POINT
o GAUSSIAN QUDRATURE METHOD.
C INPUT:  ALCWER = LOWER LINIT OF THE INTEGRAL
o - UPPER = UPPER LIMIT OF THE INTCGRAL
C IF L = t, PROGRAM COMNPUTES TtiE INTEGRAL BY DIVIDING THE
C INTERVAL INTO SEVERAL SEGMENTS ON A LOGARITHMIC SCALE
C (BASE 10)
C IF L # t, THE PROGRAM USES ONLY ONE INTERVAL
o E = ETA TERM DEFINED BY EQ. 9- 31
o OUTPUT: VALUE = VALUE OF THE INTEGRAL
o

IMFLICIT REAL*8 (A-H,0-2)

DIMENSION W(10),X(10)

FICY)=DSQRT(1.+YXY)

F2(Y)=DSQRT(EXE+YXY)
FOY)=DLOGCEXY®(FI(Y)+F2(Y)I/ZCEXFI(YI+F2(Y)))/7(FI(Y)I¥F2(Y )
H=8

X(1)=.183434662995650D0

X(2)=.52553240%916323D0

X(3)=.7966064774136272D¢C

X(4)=.960289350497536D0

X(5)==-X(1)
X(6)=-X(2)
X(7)==-X(3)
X(8)=-X(49)

W(1)=.362683783378362D0
H(2)=.31370664587788700
W(3)=.2223610349953374D0
H(4)=.101228536290376D0
W(5)=H(1)

W{6I=W(2)

WE7)=H(3)

H(8)=li(4)

A=ALOWER

IF(L.EQ.1)G0 TO 15
B=UPPER

SuUM=0.D0

PO 10 I=1,N
Y=.5DO*¥((B+A)+(B-A)*X(I))

10 SUNMN=SUMIWC(IIXF(Y)
VALUE=.5DO0%(B-A)¥SUNM
GO TO 100

15 VALUE=D.

17 B=10. %A
IF(B.GE.UPPER)IB=UPPER
SUM=0.D0
PO 12 I=1,N
Y=.5DO¥((B+AI+(B-AI*XX(1))

12 SUM=SUM+WC(I)IXF(Y)
VAL=.5D0¥(B-A)¥SUM
IF(VAL.EQ.0)GOTO 1090
VALUE=VALUE+VAL
A=B
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20

O o

OO OO0O0

GO TO 17
RETURN
END

SUBROUTINE ROOT(X1t,X2,F1,F2,PY,RIGHT.AM,E,Z,PIE,T,X)

THIS SUBROUTINE COMPUTES TIiE ROOTS OF EQ. D-51

THE INFUT TO TItE ROUTINE ARE:

X1 = VALUE OF 7 BAR AT WHICH THE LEFT SIDE IN EQ. 1)-51 IS
SMALLER THAN THE RIGHT S$IDE

X2 = VALUE OF Z BAR AT WHICH THE RIGHT SIDE OF EQ. B-51 IS
LARGER THAN THE RIGHT SIDE

F1 = VALUE OF TItE LEFT SIDE COMPUTED AT Xi

F2 = VALUE OF TIIE LEFT SIDE CONTUTED AT X2

P! = VALUE OF THE INTEGRAL IN THE LEFT SIDE OF EQ. B-51 COMPUTED
AT X1

AM = MORILITY RATIO

E = VALUE OF ETA DEFINED BY EQ. 0-31

2 = ARGUMENT OF ELLIPTIC INTEGRAL F(n,k)

PYE = THE P TERM IN LEFT SIDE OF EQ. 6-51
RIGHT = VALUE OF THE RIGHT HAND SIDE OF EQR. D-51 COMPUTED AT
A BR3KEMTHROUGH STREAMLINE, TETRT
THE QUTPFUT FROIY THE ROUTINE ARE
X = EXACT VALUE OF Z FAR (SOLUTION TO EQ. DB-51)
T = VALUE OF THE INTEGRAL IN THE LEFT SIDE OF EQ. B-51 COMPUTED
AT X1

IMPLICIT REAL¥*8S (A-H,0-2)
10L=1.D-4

F1=F1-RIGHT

F2=F2-RIGUT

Xz (X 14X2)s2,

CALL GAUSS(2,X1,X,E,V)

AINT=VIP L

PIII=DATANCX/E)

CALL ELLEF(PHI,Z,T)
ALEFT=(1.+E)¥(PI1EXTH+( 1. -AMY¥AIRT)
FX=ALEFT-RIGHT
IF(FI¥FX.LT.0.D0YGO TO 10

X1=X

F1=FX

P1=AINT
IF(DABS(X2-X).LT.DABS(TOL*X))G0 TO 20
GO TO 5

X2:=Xx
IF(DABS(X1-X).LT.DARS(TOL¥X))GO TO 20
GO TO 5

RETURN

END

SUBROUTINE INTGRL(N,H,F,VvOL)

THIS SUBROUTINE COMPUTES VALUE OF AN INTEGRAL USING SIMPSON'S
RULE OF INTEGRATION.
INPUT: N = HUMBER OF INIERVALS, AN EVEN INTEGER NUMBER

H INTERVAL SIZE

F VALUES OF FUNCTIONS COMPUTED AT INTERVALS, AN ARRAY
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C OUTPUT: VOL = VALUE OF THE INTEGRAL

IMPLICIT REAL¥*8 (A-H,0-2)
DIMENSION F(91)

SUMI=0

SUMZ =0

Nizkra-1

CO 50 I=1,Nt

SUMI=SUMI+F(2%])

50 SUMZ=SUM2 +F(2%I+1)
SUNT=SUMI+F(N)
VOL=H/73¥(FC1)+F(N+1)44 XSUML+2_4SUM2)
RETURN
END

SDATA

0.5D0
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Table 1

ASSUMED AND COMPUTED PARAMETERS OF THE LAYERS
FOR EXAMPLE 1

COMPUTED PARAMETERS

ASSUMED USING MOC>A_ IONS FOR womwmw.mmwcwg. ION mﬁﬁOﬂ%

PARAMETERS mH>OON”MWHFMZW DRIVE, EQUIVALENT 5~SPOT SYSTEM
LAYER

kh kh kh

¢h Tkh ¢h Tkh ¢h Tkh
1 0.2850 0.2 0.2800 0.19750 0.27830 0 12630
2 1 0034 04 1 00601 O 39824 1 0012 0 32664
3 1 1403 03 1 13306 0 22924 1 12944 0 30001
4 0.5068 0.1 0.51094  0.10113 0.52816 0.10454

e e e Wmm e e emmw eew me . orme A R e eem e wmy mam e e v mme mmm i e e e = —— — — - o— — —

SUM 2.9455 1.0 2.93071 0.99608 2.94787 0.99819




Table 2

ASSUMED AND COMPUTED VALUES oﬂ"ﬁ><mx PARAMETERS
. FOR EXAMPLE 2

COMPUTED P \RAMETERS USING

AS 'UMED PARAMETERS OPTIMIZA' ION TECHNIQUE

LAYER — —
I T TR S U
L0315 005 126 11905 oosmiees 3 15998 1.26  119.05
2 1000 040 0200 10000 o 922257 0 323284 040 100 00
3 O 6875 0:z5 2z 75 90 21 0 687447 0 243283 2 )5 20 21
4 0.6000 0.20 2.4 83.33  0.600065 0.200024 2.40 83.33
s 2.6025 1.00 T 2.600466 o acsame T T

»:mzmsa:<mhcmmunnrwmnmvum:m<m been computed for ¢ = .25 and
Ikh = 1000 md-ft. .




Table 3

COMPUTED VALUES OF LAYER PARAMETERS USING OPTIMIZATION
TECHNIQUE WITH VARIOUS NUMBER OF LAYERS™

COMPUTED PARAMETERS COMPUTED PARAMETERS
WITH THREE LAYERS WITH FIVE LAYERS
LAYER —

L L T T
|~. o mwu.mpﬂ O 1=064 B M.Mm\ Iplp.m:.aum - MMwM@M - M 15000 1 le lea.o%o.ml
2 0 17024 O 46375 O 68 6E1 02 0 62362 0 Ziz4lZ 2 43 2z 22
2 O zuz61 0 32965 3 77 87 34 0 37630 0 15055 151 100 01
4 O 68238 0 24326 275 20 =0
5 0.60014 0.20005 2.40 83.33
S L5202 0.95404  2.60243  0.99998
xe:m k and h values in this table have been computed for ¢ = .25 and

Ikh = 1000 md-ft.




Table 4

LURPULED LAYER PARAMETERS FOR FIELD TEST USING THE Ol TIMI TION
ROUTINE WITH DIFFERENT NUMBER OF LAYERS

——

Cave LALRKD SEVEN LAYERS NINE LAYERS TEN LAYERS
ek A i -
1 003512 noas oomsess  o.otese 0.011562 0012167 0.011410  5.01200%

2 0 10652z 0 022838 O 04741z 0 043J6= 0 015535 0 01503] 0 013282 0 013344
3 0 1061=8 0 082125 0 084410 0 07Zz63 O 041226 0 0=813. O 034880 0 031238
4 0 024516 0 066012 0 052245 0 041328 0 03828> 0 068042 0 030605 0 061395
5 0 O886z= 0 055505 0 058256 0 0434 1 O 052422 0 041585 0 026728 0 022284
6 O 08285 0 060604 O 053068 0 042590 0 042820 0 032617

. 0 083222 0O 054503 0 08486 0 058220 0 053306 0 0322356

8 0 035888 0 042284 0 OE464= 0 058540
9 0 0z1086 0 012465 0 035661 0 042612
10 0.021079  0.012466

-I'll‘ll'l['l"Il:llll'il.l‘lllllll.."llll.l[ll|||||I||I'I¢l|||l|l||||l.|-|l

SUM 0.431180 0.330280 0.433100 0.333670 0.439456 u.33/U60 0.439920 0.337290
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Fig. 1: A STAGGERED-LINE-DRIVE WITH TRACER PROFILE IN A STREAMTUBE
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Fig. 2: TRACER BREAKTHROUGH CURVES FOR HOMOGENEOUS STAGGERED-LINE-DRIVE, d/a = 1.5
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