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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, express or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or

reflect those of the United States Government or any agency thereof.
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Abstract

The objective of the project is to examine how seismic and geologic data can be used to

improve characterization of small-scale heterogeneity and their parameterization in reservoir

models. The study is performed at West Coalinga Field in California.

We are currently in the process of determining the limits of current state-of-the-art inter-

pretation methods for poststack seismic data. We developed and applied three-dimensional

seismic attributes which estimate the statistics of seismic heterogeneity. We just formulated

an algorithm to infer parameters of object-based reservoir models from seismic data, and

now, we are testing the method with synthetic reservoir data. Lastly, we built models of

reservoir heterogeneity for two focus areas in Coalinga field using plentiful wireline data.
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Figure 1: Location map of the Coalinga area, California.

1 Introduction

The objective of the project is to examine how seismic data can be used to parameterize mod-

els of small-scale reservoir heterogeneity. Although these heterogeneities cannot be resolved

individually (deterministically) using seismic data, one can at least attempt to estimate their

statistical properties from seismic data.

Reservoir characterization is an essential step in delineation, development, and produc-

tion of hydrocarbon reserves. Our test area, the giant Coalinga field in California’s San

Joaquin Valley, is a good example. Large-scale steam-flood projects have been utilized for

many years in order to enhance recovery of heavier oil. Steam-floods are costly to oper-

ate due to the necessary infrastructure and their energy consumption. Optimally, injected

steam would spread evenly from the injection point and push the oil toward the producer

wells. In reality, the steam patterns are very complex. Reservoir characterization provides

an improved understanding of the reservoir and the movement of steam, which will help to

increase the profitability by reducing steam injection which decreases the environmental im-

pact of steam injection. Reservoir heterogeneity affects not only the steam flood, but also the

production. The Coalinga reservoirs are strongly compartmentalized which is aggravated by

the high oil viscosity. Reservoir characterization helps siting infill wells to produce bypassed

oil to increase ultimate recovery.
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Knowing the details of the reservoir allows simulation of different injection or production

scenarios. The problem, however, is to build an accurate and suitable reservoir model that

includes small-scale heterogeneity. Locally, boreholes yield an excellent description of the

vertical heterogeneity at different spatial scales ranging from centimeters to hundreds of

meters. Most of the time, the lateral heterogeneity cannot be derived from well data because

of the large distances between wells. The most abundant data are seismic data, but their

resolution is only on the order of tens of meters which is typically insufficient to resolve

geological heterogeneities. Features smaller than a seismic quarter wavelength cannot be

resolved with certainty. Yet the geology exhibits many small-scale features which may have

a pronounced effect on the reservoir. For example, a clay drape is invisible on the seismic data

but poses an impenetrable barrier to steam and oil. By combining seismic and well data, a

deterministic framework is traditionally constructed which contains the major stratigraphic

features. Small-scale features are filled in using statistical methods conditioned to well data

and outcrops. The parameters for the fill-in process are often provided by measurements of

analogous outcropping formations, analogous mature reservoirs with a dense well spacing,

horizontal wells, pressure and production tests, or simply by accepting the default parameters

of the modeling packet.

The objective of the project is to examine how seismic and geologic data can be used to

describe small-scale heterogeneity and parameterize the reservoir models. Although these

heterogeneities cannot be resolved individually (deterministically) using seismic data, we

attempt to estimate their statistics from seismic data. The Coalinga field contains more

than 2000 wells which provide the unusual luxury that even small-scale heterogeneity can

be characterized with well data. The site allows construction of reservoir models from either

seismic data or wireline logs and outcrops. Since these data are independent, the models

can be compared and validated against each other. Ultimately, integration of seismic and

geologic data and models will lead to a new level of understanding of the complex Coalinga

field.
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2 Executive Summary

The objective of the project is to examine how seismic data can be used to improve character-

ization of small-scale heterogeneity and their parameterization in reservoir models. During

the second year, we interpreted the seismic poststack data, developed a seismic 3-D attribute

which estimates seismic heterogeneity, developed an inversion algorithm to estimate the pa-

rameters of reservoir models based on geometric objects from seismic data, and performed

two geologic heterogeneity studies.

We tied the seismic data to wireline logs and mapped the four Temblor unconformities

seismically. Multiple generations of channel-like features are cut, deposited, and stacked

which render identification of unconformities difficult. Furthermore, we observed that the

middle unconformities are merging in portions of the field indicating an extended time period

of erosion. We expect that seismic volume visualization and geobody analysis will resolve

these delineation problems.

We developed a family of seismic attributes which estimate degree and orientation of local

heterogeneity in the seismic data. This seismic heterogeneity may be related to lithologic

heterogeneity in the reservoir. We observed that their statistics are highly variable within the

seismic focus area of 4, 400 × 1, 400 m. The characteristic lengths of seismic heterogeneities

range from 400 to 1, 000 m predominantely aligned in the north-south direction.

Object-based reservoir models build realizations by emplacing geometric objects corre-

sponding to channels, barriers, or sand sheets. We developed a new algorithm to estimate the

object parameters from seismic data. Tests with synthetic data were very encouraging. We

are just beginning preliminary application with seismic field data, although further testing

and validation will be necessary.

Finally, we used core descriptions, wireline logs, and outcrop data to develop 3-D reservoir

models for two focus sites. At each site, we applied four different modeling methods and

compared their results against each other, core descriptions, and wireline data. We concluded

that stochastic or conditioned models will be best suited for integration with seismic data.

In the third and final project year, we will perform geobody analysis based on volume vi-

sualization, apply the object-parameter inversion, and integrate seismic and geologic models

of reservoir heterogeneity.
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 A1 

HIGH-RESOLUTION DETERMINISTIC SEISMIC RESERVOIR 

CHARACTERIZATION 

S. Mahapatra and M. G. Imhof, Virginia Tech 
 

 
INTRODUCTION 

 

The process of Reservoir Characterization is a three-dimensional quantitative 

determination of a reservoir, including its limits, structural framework, volume, 

heterogeneity, and corresponding distribution of rock and fluid properties, to 

maximize production and minimize costs.  

 

The conventional seismic reservoir characterization involves integration of 

geologic and seismic data. The modeling is done with the help of lithological 

parameters, estimated from the well cuttings, core, and wireline data, but the 

estimation pertains to the well bore only. The inter-well gaps are filled either by 

geologic conceptual visualization or by applying geostatistical methods. In either 

case, the estimation of these key petrophysical parameters may be inconclusive 

and differ from reality.  

 

3D seismic data provides an image of reservoir heterogeneity. The current state-

of-the-art is volume visualization and geobody analysis. The major drawbacks 

are lithologic ambiguities, and yet too much detail for direct use in reservoir 

modeling. In this project, we intend to drive these approaches to their limit and 

investigate how to overcome these problems.  
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GEOLOGY 

Coalinga anticline is one of a series of an echelon folds that modify the generally 

homoclinal eastern flank of the Diablo range along the west side of the San Joaquin 

Basin of California. The field is part of a Kreyenhagen-Temblor petroleum system that 

derives oil from organic-rich shales of Middle Eocene Kreyenhagen Formation.  The 

Temblor Formation (Mid. Miocene sandstone) represents the inter play of shallow 

marine and non-marine depositional environments. The shallow unconsolidated sands 

of the Temblor formation are characterized as channel-cut sands, containing 

impermeable barriers. The Temblor formation is characterized by three different clastic 

subunits based on depositional environmental characteristics. The field is close to the 

San Andreas Fault and contains four unconformable surfaces (Basal Temblor, Button, 

Valv, and Top Temblor) representing incised-fill to sub-tidal depositional environments, 

which render the reservoir highly heterogeneous. In addition, cementation often masks 

original lithology and petrophysics.  

The following facies groups were identified by our collaborators at Clemson 

University: 

• Sands,  

• Burrowed sands,  

• Laminated sand,  

• Silt and Clay,  

• Fossiliferous Sand and Clay, 

• Burrowed Clay, 

• Limestone, and 

• Calcareous cemented sediment. 
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PROCEDURE 

The wireline logs (sonic and density) were correlated and the four unconformable surfaces 

identified based on the “base shale shifting” values. Aspect maps of these depth horizons were 

drawn to check the consistency in log correlation. The time equivalent of these unconformities 

were then transferred into the poststack 3D seismic data project and extended over the entire 

field. 

 

DISCUSSION & CONCLUSION 

The wire-log correlation and various aspect maps are attached (Fig. 2-8, 9-13). The strike of 

the area seems to be NNE-SSE. The highest structural relief is observed towards W-SW. The 

thickness of the Temblor formation is increasing downdip toward E with its maximum towards 

NNE. On the seismic data, offlap, reflector truncation, and onlap relationships are observed 

against the unconformities (Fig. 16-19). The 2-way time thickness of Temblor formation is 

about 240-260 ms; or 130-150, 30-40, and 35-40 ms for the three intervals bounded by the 

unconformities. As expected, the highest structural relief is observed towards W. The zone 

between Button and Basal Temblor contains a number of channel cuts (Fig. 14, 15, 17-19) 

which appear to be recut and restacked in the lower central part of the study area. This is most 

prominently observed in the strike direction. The depositional direction seems to be changing 

over the field as a function of geologic time of deposition. There is a mismatch when tracing 

reflector from N to S or vice versa. In addition, the Button and Valv surfaces appear to merge 

in the Western part indicating that portions of Button unconformity have been eroded by the 

overlaying Valv unconformity (Fig.17). 
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The exact geometry of these features is still being sorted out. Further data visualization and 

geobody analysis may help in delineating these bodies. 
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Seismic detailsSeismic details

33--DD survey carried out during 1996-2000 CDP Spacing 6060 ft
2,263,4832,263,483 seismic traces Both Prestack & poststack data

 

                                                                                                                               Figure 1 

 
 
 
 
 
 

STUDY AREA SHOWING WELL LOCATIONS AND 
CROSS SECTION PROFILES

 
                                                                                                                                Figure 2 
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LOG CHARACTERISTICS OF WELL—be90220 SHOWING
UNCONFORMITIES IN TEMBLOR FORMATION

--The unconformities are identified based on different Shale base lines

 
                                                                                                                                 Figure 3 

 
 
 
 
 

CORRELATION ALONG STRIKE

Index Map

bk40140 On67420                       qb46050                           qb45940                         qb46640                       be90580
N S
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CORRELATION IN OBLIQUE 
DIRECTION OF THE STUDY AREA

Index Map

Be90220                                 qb46640                 qb46230                              bp73860
SW NE

 
                                                                                                                                 Figure 5 

 
 
 
 
 

CORRELATION IN THE DIP DIRECTION

Index Map

bs49090                                       qb46270           bp73660

W E
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CORRELATION IN DIP DIRECTION

Index Map

qb20190                                            qb46250      bp73860

N S SE

 
                                                                                                                                 Figure 7 

 
 
 
 
 

CROSS SECTION ALONG DIP DIRECTION

Index Map

Well be90550 is projected

be90220                                     be90550(P)                                            be90110

W ESE
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Depth Structure Contour Map on Top of 
Temblor Formation

-Shows  Strike NNE-SSW and dip towards E-SE
-The highest part is towards NW corner

 
                                                                                                                                 Figure 9 

 
 
 
 
 
 

Depth Structure Contour Map on Top of 
Valv Unconformity

-Shows  Strike NNE-SSW and dip towards E-SE
-The highest part is towards NW corner

 
                                                                                                                               Figure 10 
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Depth Structure Contour Map on Top of
Button Unconformity

-Shows  Strike NNE-SSW and dip towards E-SE
-The highest part is towards NW corner  

                                                                                                                               Figure 11 

 
 
 
 
 

Depth Structure Contour Map on Top of
Base Temblor

-The conspicuous contour merging in the bottom part is due to
lack of sufficient well data  

                                                                                                                               Figure 12 
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Isochore Map Between Top of Temblor
And Top of Base Temblor

The thickness decreases towards SW  suggesting higher 
depositional elevation. 

 
                                                                                                                               Figure 13 
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Seismic Heterogeneity Cubes and Corresponding Equiprobable

Simulations

M. G. Imhof, Virginia Tech

ABSTRACT

Seismic heterogeneity cubes are attributes which measure local second-order statistics of seismic

heterogeneity from 3-D datacubes. Seismic heterogeneity could relate to acquisition and processing

footprints, structural features such as fracture or fault zones, or stratigraphic and lithologic hetero-

geneity. Acquisition and processing footprints may be removable with techniques currently being

developed for the interpretation of similarity or amplitudes versus offsets (AVO).

Raw second-order statistics estimated from seismic data contain too many parameters to form

useful seismic attributes. Instead, model statistics with only six parameters are fitted to the raw

statistics. These six parameters contain three orthogonal correlation lengths and three orientations.

From the stratigraphic viewpoint, the seismic heterogeneity could denote average dimensions and

orientations of small sedimentary bodies, while the statistics might relate to average size, spacing,

and orientations of fractures and joints for the structural point of view.

The six parameters are seismic attributes which can be visualized and directly used for inter-

pretation. However, these attributes have a physical meaning because they can quantify local

second-order statistics, for example of sedimentary bodies. One can perform geostatistical simu-

lations using these parameters to obtain reservoir realizations which could be used for fluid flow

modeling, risk analysis, etc. Commercial tools for geostatistical simulation are often based on the
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assumption of stationarity, i.e., the statistics are invariant within a simulation volume. Heterogene-

ity cubes of different datasets show that this assumption is almost never justifiable. Hence, the

convolutional approach of geostatistical simulation is modified to take advantage of the instation-

ary statistics provided by the heterogeneity cubes. The resulting algorithm allows computation of

reservoir realizations with spatially variant statistics.

INTRODUCTION

Imhof and Toksöz (2000) presented a method to estimate seismic heterogeneity from seismic data.

This work has now been extended into a true 3-D seismic volume attribute which quantifies the

heterogeneity contained in the seismic data. This heterogeneity is described by a spatial auto-

correlation function. The parameters of these autocorrelation functions form the heterogeneity

cubes.

Seismic heterogeneity could relate to acquisition and processing footprints or stratigraphic and

lithologic heterogeneity. Clearly, the seismic heterogeneity could just be an artifact of the data

acquisition or the data processing. These footprints, however, are also encountered at other steps of

data processing (e.g., DMO and migration) and interpretation (e.g., similarity and other attributes).

Many algorithms are currently introduced to remove systematic amplitude distortions caused by

acquisition and processing (e.g., Marfurt et al., 1998; Canning and Gardner, 1998; Soubaras, 2002).

The same methods might suppress or remove seismic footprint heterogeneity. Seismic heterogeneity

could also be caused by stratigraphic or lithologic heterogenity. Each layer may contain numerous

short-scale variations of the material properties if the layer is a composite of smaller sedimentary

bodies. The seismic heterogeneity parameters may denote average dimensions and orientations of

these bodies.

The heterogeneity parameters will be estimated at every point of interest of a seismic data volume.

Typically, the seismic heterogeneity parameters will vary from point to point, but because the

parameters quantify second-order statistics of the data, it follows that these statistics will be insta-
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tionary. In addition to using the heterogeneity cubes as seismic attributes, they allow computation

of stochastic realizations compatible with these instationary statistics described by the heterogene-

ity cubes by using instationary simulation algorithms. Many simulation tools, however, cannot

handle instationary statistical models but only locally stationary ones, i.e., models composed of

compact regions with different uniform statistics. Hence, the popular convolutional algorithm of

geostatistical simulation (Frankel and Clayton, 1986; Kerner, 1992; Ikelle et al., 1993) is extended

to allow use of instationary input parameters.

METHOD

Imhof and Toksöz (2000) presented a method to estimate seismic heterogeneity from seismic data.

The method estimated one set of heterogeneity parameters from a large volume of data. In addition,

the results were only pseudo three-dimensional because the algorithm operated on data slices instead

of data volumes. Pseudo 3-D results could be obtained by applying the algorithm on orthogonal

slices of data (Imhof, 2001). This procedure was prone to yield inconsistent results. In addition,

only a very limited amount of data was used which forced the use of large data windows to obtain

reliable heterogeneity estimates. The result was spatial averaging and smearing which limited the

usefulness of the estimates. In this contribution, the algorithm is extended to yield truly 3-D seismic

volume attributes which are not hampered by these problems.

Estimation

The heterogeneity attributes are calculated at every point (x, y, z) of a seismic poststack datacube

d. A little probe volume v, centered at the current (x, y, z), is extracted from the full datacube

d. This probe v is then crosscorrelated with the datacube d to estimate the local crossvariance

function ρ̂(∆x,∆y,∆z;x, y, z) at point (x, y, z) for a number of different correlation lags ∆x, ∆y,
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and ∆z.

ρ̂(∆x,∆y,∆z;x, y, z) =
1

N(∆x,∆y,∆z)
×

∑

(δx,δy,δz)
∈

V (x,y,z)

v(x + δx, y + δy, z + δz) · d(x + δx + ∆x, y + δy + ∆y, z + δz + ∆z) (1)

The factor N(∆x,∆y,∆z) normalizes the result with the number of terms used in the summa-

tion (1). The averaging or summation volume V (x, y, z) for the current center point (x, y, z) is

arbitrary. Large volumes V provide more reliable statistics, but at the price of potentially aver-

aging instationary data. Small volumes reduce the effect of lumping instationary data, but they

degrade the resulting statistics due to the smaller amount of data used in the estimation. As a

compromise, we often use V (x, y, z) = v(x, y, z), i.e., the summation volume V equals the probe

v. The local crossvariance ρ̂ is normalized to unity for ∆x = ∆y = ∆z = 0 which yields the local

crosscorrelation function (LCCF ) R̂(∆x,∆y,∆z;x, y, z):

R̂(∆x,∆y,∆z;x, y, z) =
ρ̂(∆x,∆y,∆z;x, y, z)

ρ̂(0, 0, 0;x, y, z)
(2)

The LCCF R̂(∆x,∆y,∆z;x, y, z), however, contains too many values to be of direct use, even

if it is computed for only a few lags. To be useful as seismic attributes, the number of values

needs to be reduced. Instead of directly using the raw estimate R̂ of the LCCF , the number of

parameters is decimated by fitting the estimate R̂ with a model LCCF R̄ which contains only six

free parameters. This reduction not only makes the LCCF more manageable, but also improves

the statistics because less parameters are estimated with the same data volumes V and v.

Presently, the model LCCF R̄ is an anisotropic Gaussian function which allows rapid calculation

of LCCF models and equiprobable realizations. The method does not depend on this choice of

model LCCF , though. Any other 3-D autocorrelation function (or the related variogram) could

be used (e.g., Lantuéjoul, 2002). Each direction is scaled independently with a characteristic scale,
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the correlation length. The three orthogonal correlation lengths are ordered by size: a > b > c.

R̄(∆x,∆y,∆z; a, b, c, φx, φy, φz) = exp
(

−u2/a2
− v2/b2

− w2/c2
)

. (3)

For greater flexibility, the model LCCF R̄ is rotated with the Euler angles φx, φy, and φz around

the Cartesian x, y, and z axes. The parameters (u, v, w) are obtained from the lags (∆x,∆y,∆z)

by rotation with the rotation matrix S(φz, φy, φx) (e.g., Schwarz, 1989).















u

v

w















= S(φz, φy, φx) ·















∆x

∆y

∆z















(4)

S =















cos φy cos φz − cos φy sinφz − sinφy

− sinφx sinφy cosφz + cosφx sinφz sinφx sinφy sinφz + cosφx cosφz − sinφx cos φz

cos φx sinφy cos φz + sinφx sinφz − cos φx sinφy sinφz + sinφx cosφz cosφx cos φy















(5)

The angle φz denotes the dip orientation (or yaw) of the largest correlation length a, i.e., the di-

rection of maximal continuity. The orientation is limited to the range 0 ≤ φz < 360◦. The angle

0 ≤ φy < 90◦ specifies the dip (or pitch) of the LCCF at the direction of maximal continuity.

Finally, the tilt (or roll) φx indicates how much the LCCF has been rotated around the direction

of maximal continuity. The tilt angle is confined to the range of −90 < φx < +90◦. The orienta-

tion ambiguity is resolved by defining the orientation with the downward dip direction. Figure 1

illustrates these angles for the isosurface R̄ = 1/e for the characteristic lengths a = 5, b = 2.5, and

c = 0.75.

The optimal set of parameters (a, b, c, φx, φy, φz) minimizes the root-mean-square (RMS) difference

ε between the model LCCF R̄(∆x,∆y,∆z) and the data LCCF R̂(∆x,∆y,∆z).

ε2 =
∑

∆x,∆y,∆z

(

R̂(∆x,∆y,∆z;x, y, z) − R̄(∆x,∆y,∆z; a, b, c, φx, φy, φz)
)2

(6)

By repeating averaging and optimization at every point (x, y, z) of the dataset, one obtains the
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heterogeneity cubes for the characteristic lengths a, b, and c, the orientation angles φx, φy, and

φz, and the minimization error ε2. The original scheme (Imhof and Toksöz, 2000) determined the

optimal set of parameters by systematic search. In three dimensions, however, systematic search

is impractical. Either the parameters are resolved too coarsely, or the number of cases to examine

becomes enormous. If only ten cases are examined for each parameter, then one million cases need

to the tested for every point of the dataset! As a more practical alternative, we use a nonlinear

optimization algorithm which allows placing bounds on the parameters (Zhu et al., 1997). For

example, the orientation φz is periodic and bound between 0 and 360◦, or the correlation lengths

a, b, and c are ordered by size a > b > c.

The main problems with nonlinear optimization are non-convergence and trapping in local min-

ima. Because the optimal set of parameters is not only estimated at one point but in the entire

data volume, suboptimal estimates can be identified as outliers by visual or automatic inspection.

Suboptimal estimates can be removed by, for example, (periodic) median filtering.

Simulation

Random realizations m(x) with a prescribed autocorrelation function (ACF ) are often computed

using a convolutional model (Frankel and Clayton, 1986; Kerner, 1992; Ikelle et al., 1993). The

powerspectrum S(k) is the spatial Fourier transform of the autocorrelation R(x).

S(k) =
1

(2π)3

∫∫∫

R(x)e−ik·x dx (7)

All models with this ACF R have the same amplitude spectrum A(k) =
√

S(k). The differences

between these models are their phase spectra. Random realizations r(x) can be simulated by inverse

Fourier transformation back to the space domain of the amplitude spectrum A(k) with randomized

phase spectra.

r(x) =

∫∫∫

A(x)e2πi uniform[0 ,1 ]eik·x dk (8)

B6



If the zero-phase realization r0(x) is computable analytically, one can also convolve r0(x) with a

realization of white noise n(x):

r(x)stationary = r0(x) ∗ n(x) (9)

with

r0(x) ≡

∫∫∫

A(x)eik·x dk (10)

and

n(x) ≡

∫∫∫

e2πi uniform[0 ,1 ]eik·x dk . (11)

The Fourier approach (8) is typically much faster than convolution in the space domain (11).

The autocorrelation described by the heterogeneity cubes, however, varies spatially. To compute

realizations based on the heterogeneity cubes, the convolutional approach is modified:

r(x)instationary = rx

(

a(x), b(x), c(x), φx(x), φy(x), φz(x);x′

)

∗ n(x′)
∣

∣

∣

x=x′

(12)

The same white noise field n(x′) is used to compute the realization rinstationary(x) at every point. For

every point x, however, the zero-phase realization rx, which is compatible with the heterogeneity

parameters at this point, is used in the convolution with the white noise. The convolution coordinate

x
′ has been tagged to distinguish it clearly from the current point x where a numerical value of the

realization is computed. The convolution (12) is evaluated only at the current point x. The Fourier

approach (8) could also be modified to compute these instationary realizations. However, the

inverse Fourier transformation needs to be performed for every point anew because the heterogeneity

parameters, and hence the Fourier kernel, differ. The entire realization with the exception of the

current point x will be discarded, which makes the convolutional approach (12) more efficient when

the zero-phase realization r0 can be calculated analytically. For our Gaussian model LCCF (3),

the analytical zero-phase realization is:

rx(x, y, z; a, b, c, φx, φy, φz) =

√

8

a b c π3
e−2(u2/a2+v2/b2+w2/c2) , (13)
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where the parameters u, v, and w are obtained by rotation (5) of x, y, and z.

EXAMPLE

The example is from the giant Coalinga oil field in the San Joaquin Valley in California (Figure 2).

The Coalinga field parallels the upturned, monoclinal west margin of the San Joaquin basin. Clark

et al. (2001) presented the 3-D seismic dataset used in this contribution and discussed the extremely

complex subsurface stratigraphy in detail. For completeness, some key data are repeated here.

Lower to Middle Miocene strata are prolific hydrocarbon reservoirs in several San Joaquin Valley

oil fields. One of the largest fields, Coalinga, has produced 850 million barrels of oil since 1887.

Currently, 90% of the production is from nearshore to nonmarine, Middle Miocene sandstones of

the Temblor Formation at depths of 500 − 4500 ft. Porosity averages 34% and permeability is

20 − 4000md. The maximum thickness of the Temblor is around 700 ft. Wide variations in oil

gravity and complex stratigraphy result in most wells producing only a few barrels per day of

heavy crude (10− 12 ◦API gravity). To enhance recovery, steam is injected to reduce viscosity and

drive the oil toward production wells.

The lower Temblor sequence in the subsurface contains numerous thin (5−10 ft) and discontinuous

sandstones which are interpreted as tidal channels that truncate sandy to muddy tidal flat facies.

Onlap relations and mixed nonmarine and tide-dominated nearshore facies in outcrop indicate

estuarine deposition. Although the tidal channel sandstones tend to be laterally discontinuous and

interbedded with lower-permeability sandstones and impermeable mudstones, stacked tidal channel

sandstones in a few wells create thick (20 − 30 ft), amalgamated, high-permeability reservoirs with

high oil saturations. The stacked reservoirs of the lower Temblor are characterized by discontinuous

positive amplitudes, which onlap the basal Temblor unconformity.

The middle Temblor sequence contains thick (50− 100 ft), laterally continuous, coarsening-upward

sandstones that represent prograding units deposited along a wave- and tide-influenced shoreline
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with a north-south trend in a deeper marine setting than the basal sequence. Permeabilities and oil

saturations tend to be higher than in the lower Temblor. The middle Temblor is characterized by

continuous positive amplitude reflections which onlap the Buttonbed unconformity and truncate

the basal Temblor sequence.

The upper Temblor contains stacks of thin, laterally continuous, and coarsening-upward sandstones

with carbonate cement. They are interpreted as prograding shoreline deposits, oriented with a

north-south trend, which represent a slightly deeper marine setting than the middle sequence

with less tidal influence. Heavy cementation can obscure all sedimentary structures. Despite

cementation, permeability and saturation are large enough to form economic pools. The upper

Temblor is characterized by fairly continuous positive amplitude reflections, which onlap the Valv

unconformity. In summary, the Temblor sequences contain rapid facies changes in vertical and

lateral directions which are overprinted by cementation and multiple unconformities with complex

onlap and truncation geometries.

Figure 3 presents a subset of the seismic datacube for a focus area with 221 inlines and 71 crosslines.

Each CDP box is 60×60 ft (20×20m) with a temporal sampling interval of 4ms. The top Temblor

horizon at 400ms has been used to flatten the dataset. The Temblor formations consist of the

strong amplitude events below 400ms with a thickness of up to 200ms. In this study, we will con-

centrate on a timeslice at 440ms, or 40ms below the top Temblor horizon. At this depth, we expect

the upward-coarsening sand bars of the middle Temblor with north-south orientation deposited in

a subtidal environment. Figure 4 presents seismic amplitude, instantaneous amplitude, instanta-

neous frequency, and similarity. Bright instantaneous amplitudes correlate with high similarities

and reduced instantaneous frequencies. The effect could be caused by steam which often increases

amplitudes by increasing impedance contrasts (Tague et al., 1999). Steam can also reduce instan-

taneous frequencies by attenuation (Hedlin et al., 2001). Lower frequencies may increase similarity

because shifts in phase or time have a lesser effect on the wavelet. The figures also show a distinct

difference between the northern (upper) and southern (lower) halfs of the area. The northern part

exhibits higher instantaneous frequencies, lower instantaneous amplitudes, and lower similarities

than the southern part.
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Figure 5 presents slices through the heterogeneity cubes for the long correlation parameter a at

440ms as functions of probe volume size. Four different probe volumes were tested: 5 × 5 × 5,

9 × 9 × 9, 13 × 13 × 13, and 17 × 17 × 17. Small volumes may provide better localized statistical

estimates, but are also based on less data which increases estimation errors. Furthermore, long

correlation lengths are ill-constrained by small probe volumes. Large volumes average over more

data which provides more reliable estimates, but may mix different statistical facies which might

render the estimates ambiguous and decrease prognostic power. Furthermore, we found that large

volumes tend to bias the estimates toward shorter correlation lengths. Independent of probe-

volume size, we find that the northern half is basically bimodal with correlation lengths around

5 and 40 cdp. Small volumes yield predominantly 40 cdp correlations, while large volumes yield

more short, 5 cdp correlations. The southern half contains a broad variety of correlation lengths

which often fluctuate rapidly. One recognizes a trend of long correlation lengths which blurs with

increasing size of the probe volume. Numerical experiments indicate that the vertical dimension

of the probe volume has a stronger effect on the estimation results than the lateral dimensions.

The number of time samples predominantly affects spatial patterns, while the number of spatial

samples relates to smoothing, and hence, pattern continuity. Nevertheless, the similarity slice of

Figure 4(b) and the heterogeneity slices of Figure 5 for the long-correlation length a correlate to

large degrees.

Figure 6 shows the intermediate correlation length b and the angles of orientation, dip, and tilt

for a probe volume of 9 × 9 × 9 samples. The intermediate correlation length b basically mimics

the long-range estimates a, but with shorter correlation lengths. Heterogeneity is mostly oriented

in the north-south direction with minor dips and tilts. Large tilts often appear to be edge effects

caused by an incomplete distribution of correlation lags. Since the seismic dataset has only been

time migrated, dip and tilt are pseudo angles and would need to be mapped to real angles.

The short correlation length c is not shown because it is fairly constant around 1.5∆t. Data pro-

cessing, especially deconvolution, tends to reduce the vertical or temporal autocorrelation function

toward a spike. All heterogeneity attributes are only presented as time or horizon slices, although

they are true volume attributes. But their rapid variation in the vertical direction makes recogni-
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tion of patterns very difficult. In addition, interpretation of orientation, dip, and tilt from cross

sections is typically more difficult than from map views (Imhof, 2001).

Finally, Figure 7 presents four equiprobable realizations based on the estimated heterogeneity cubes

a, b, c, φx, φy, and φz. To ease comparison with the heterogeneity cubes presented in Figures 5

and 6, the realizations are shown as slices at 440ms depth, or 40ms below Top Temblor. Each

realization is an instationary random field with zero mean and unit variance which yields stochastic

volumes with values roughly between −3 and 3 which could be interpreted as some kind of nor-

malized impedance. All realizations were simulated using algorithm (12). Their only differences

are the initial white-noise volumes passed through the instationary filter. Comparison of the real-

izations 7 and the heterogeneity cubes 5 and 6 shows that the simulated heterogeneity follows the

orientations prescribed by the heterogeneity orientation φz. Similarly, long correlation lengths coin-

cide with smoother realizations. As one may expect, the realizations in the northern and southern

halves of the study area are rather different. In the northern half, we find long-scale heterogeneity

with predominant north-south orientation. In the southern half, we obtain mixtures of long and

short-scale heterogeneity with more directional variability which allows nonlinear connectivity over

large areas.

DISCUSSION AND CONCLUSIONS

We presented an algorithm for estimating instationary second-order statistics from seismic data,

which we termed seismic heterogeneity cubes because these statistics attempt to quantify 3-D

seismic heterogeneity. The seismic heterogeneity could either relate to structure, stratigraphy and

lithology, or acquisition and processing. For the present example, we believe that the seismic

heterogeneity is caused by lithologic heterogeneity because we attempted to remove gross structure

by flattening the data on the Top Temblor horizon. Fractures and faults could result in seismic

heterogeneity, but neither fractures nor faults have been reported in the study area. Our results

may be biased by acquisition and processing footprints as we did not attempt to remove such

artifacts. Algorithms for footprint removal are currently developed for a range of other seismic
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applications and could be used to precondition the data before estimating seismic heterogeneity

(e.g. Marfurt et al., 1998; Canning and Gardner, 1998; Soubaras, 2002). We believe that for our

dataset from Coalinga field, acquisition or processing footprints are secondary to stratigraphic and

lithologic heterogeneity because we did not detect obvious footprints on either amplitudes or on

other seismic attributes.

We attempt to estimate instationary statistics from seismic data. Ideally, one would derive these

statistics from ensemble averages, i.e., by averaging over different realizations of the reservoir.

Obviously, ensemble averaging is impractical because only one Coalinga field exists. Hence, we

have to substitute spatial averages for ensemble averages which imposes a tradeoff between reli-

ability and spatial contamination (or resolution). Using a small seismic data volume to estimate

local correlation minimizes spatial contamination, but yields large estimation errors which cause

increased spatial variability of the statistical estimates. Furthermore, long correlation lengths are

ill-constrained by small probe volumes and short correlation lags which increases estimation er-

rors for long correlation lengths. Unfortunately, larger volumes increase the likelihood of mixing

different statistical facies which, in the limit, may render the resulting statistics meaningless. We

observed that larger volumes are biased toward shorter correlation lengths. We also found that ex-

tending the probe volume in time or depth has a great effect on the resulting patterns of correlation

parameters. Increasing the spatial size of the probe volume causes smearing and smoothing of the

correlation patterns which increases the pattern continuity. In the presented example, we compro-

mised with a probe volume of 9× 9× 9 samples (32ms× 480 ft× 480 ft, or 32ms× 160m× 160m).

The temporal probe extent of 32ms is similar to the observed seismic wavelet with its bandwidth

of 10 − 60Hz.

In the Coalinga field, we observed that second-order statistics are highly variable within the study

area of 13, 200 × 4, 200 ft (or 4, 400 × 1, 400m). Clearly, the common assumption of stationary

statistics is invalid not only for the entire field, but even within smaller patches. Unfortunately,

commercially available technology for geostatistical simulation is often also based on the assumption

of stationarity. To take advantage of our estimates of instationary statistics, we adapted the convo-

lution based simulation method by using instationary filters to compute instationary realizations.
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These realizations are equiprobable which allows exploration of their variations, commonalities,

and differences to better understand risks and opportunities. In a future step, we will attempt

to condition the instationary realizations to wireline and seismic data to obtain not just possible

realizations, but optimal realizations which are compatible with all available data.
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Figure 1: Isosurface R̄(∆x,∆y,∆z; a, b, c) = exp
(

−∆x2/a2
− ∆y2/b2

− ∆z2/c2
)

= 1/e for a = 5,
b = 2.5, and c = 0.75: (a) φx = φy = φz = 0, (b) orientation rotation around z by φz = 30◦, (c)
dip rotation around y by φy = −15◦, and (d) tilt rotation around x by φx = 30◦.
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Figure 2: Location map of the Coalinga giant oilfield. The blocks denote one square mile. The
hashed area outlines the seismic data volume used in this example.
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Figure 3: Time-migrated seismic datacube from the Coalinga field. The volume has been flattened
at the 400ms reflector. Red (blue) denotes negative (positive) amplitudes.
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Figure 4: Seismic attribute slices 40ms below the Top Temblor.
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Figure 5: Long correlation heterogeneity parameter a at a depth of 40ms below Top Temblor for
different probe volumes.
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Figure 6: Heterogeneity parameters 40ms below Top Temblor. Orientation φz is indicated both by
color and arrow direction. A missing arrow denotes vanishing dip.
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Figure 7: Different realizations which are compatible with the heterogeneity cubes.
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Object-Based Stochastic Facies Inversion: 
Theory and Application to Hydrocarbon Reservoirs 

 
E. Nowak and M. G. Imhof, Virginia Tech 

 

Introduction 
 
Reservoir models are a necessary tool during the exploitation of hydrocarbon reservoirs.  
Such realizations may be generated by defining the model and its parameters that dictate 
the composition and internal structure of a reservoir.   
 
Core and wireline log data provide a detailed account of the lithologic composition of a 
reservoir and are capable of identifying small-scale heterogeneities at the well locations.  
Because these data are incapable of resolving features that deviate from the well path, log 
correlation and deterministic seismic interpretations are often used to interpolate between 
wells.  The seismic reflection interpretations provide a means of resolving lateral and 
vertical heterogeneity between wells, but are subject to a ¼ wavelength resolution limit.  
Due to resolution limits of deterministic seismic interpretations and the one dimensional 
nature of core and wireline log data, conventional techniques of generating reservoir 
models rely on geologic intuition and modern or outcrop analogs to further characterize a 
reservoir.  For example, to characterize a reservoir exhibiting channelized features, 
geologic intuition and analogs aid in defining the sinuosity of small-scale channels, 
width-to-depth ratios of associated facies, and how these associated facies are positioned 
spatially with respect to one another.      
 
Object-based reservoir models build a realization by emplacing channels, barriers, and 
other objects using parameters such as sinuosity and aspect ratios.  The purpose of the 
object-based stochastic facies inversion is to reduce the dependence on geologic intuition 
and analogs when generating realizations of hydrocarbon reservoirs.  We are working on 
an object-based stochastic facies inversion, which determines model parameters and their 
ranges from all available data, including seismics.  The inversion process begins with an 
initial reservoir realization, which is converted to seismic velocity and density and used 
to calculate synthetic seismic data.  The synthetic seismic data is compared to the 
observed seismic data.  Based on this comparison, a new set of parameters is chosen 
which are consistent with all other data.  The new set of parameters is used in the object-
based reservoir simulation to generate a new realization, which is conditioned to the well 
logs.  This iterative process continues until an acceptable match between the realization 
and data is attained.             
 
We believe that a more quantitative approach to defining these parameters will generate 
reservoir models with improved correlation between predicted and recorded production 
histories. 
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Methodology 
 

Object-Based Stochastic Reservoir Modeling 
 
The process of generating a reservoir realization through an object-based stochastic 
process is a function of several statistical parameters.  These parameters typically include, 
but are not limited to: mean width, thickness, and length of the included objects, standard 
deviations associated with these aspect ratios, volumetric proportions of the included 
objects, mean amplitudes and sinuosity of channels, and rules governing how these 
objects are positioned spatially with respect to one another.  The objects included in the 
modeling process can be of arbitrary or geologically significant shapes, such as half 
elipsoids, domes, prisms, and rectangular cubes representing channels, bars or dunes, 
splays, and barriers (respectively). 
 
The stochastic process initiates by pseudo-randomly emplacing the objects based on their 
respective statistical parameters (mean and variance values) within a model space.  If this 
realization honors the volumetric proportions of the included objects within some degree 
of tolerance and predefined interval facies logs, the realization is accepted.  However, if 
the realization does not honor these parameters, which are derived solely on core and 
wireline log interpretation, subsequent realizations are generated until the geologic 
criterion is achieved.    
 
The volumetric proportion of objects can be determined from the core and wireline log 
data, however the remaining statistical parameters (mean and variance of the aspect ratios 
associated with the objects, mean amplitudes and sinuosity of channel systems, and the 
location rules) need to be defined.  To emphasize the significance of accurately defining 
these statistical parameters, consider the three reservoir realizations depicted in Fig. 1a, 
1b, and 1c in the Appendix.  Each of these realizations was generated with different 
statistical parameters and location rules but conditioned to the same volumetric 
proportion of objects and interval facies logs (i.e. the geologic criterion).  The differences 
with respect to the placement of the channel and barrier objects is apparent among these 
three realizations, thus well planning would have to be equally variable to successfully 
produce hydrocarbons from reservoirs that mimic these realizations. 

Inversion 
 
In principle, the statistics of the architectural objects and the location rules can be 
determined from observed seismic data by nonlinear inversion, however the 
nonlinearities are strong enough that a linearized least-squares inversion would probably 
not find the optimum model.  In this study we employ a guided search technique for 
nonlinear inversion, simulated annealing (SA), to determine the optimal solution for the 
model parameters.  
 
The simulated annealing algorithm is employed to find a model m that minimizes a 
normalized error-energy function E or maximizes a cross correlation between observed 



   C3   

and synthesized data.  For the purposes of this study the model space mrs is populated 
with the statistical parameters necessary to generate a reservoir realization, equ. (1) 
modified from (Sen et al.,1992). 
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where each row (1 through S) corresponds to a particular statistical parameter and each 
column (1 through R) corresponds to a possible value that the respective parameter can 
attain.  For instance m1→R,1 may correspond to R possible values for mean channel widths, 
m1→R,2  may correspond to the R possible standard deviations associated with the mean 
channel widths, etc.    
 
An initial model m1,1→S is selected and used to parameterize the generation of a realization 
in the same fashion as stated above.  Subsequent to forward modeling, which is discussed 
in a later section, an energy function E is evaluated via a normalized cross-correlation 
between each synthesized us and observed uo seismic traces, equ. (2) modified from (Sen 
et al.,1992). 
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where ‘⊗’ denotes cross-correlation and ‘*’ denotes the complex conjugate.  The model 
attains the mean energy value after all us and uo have been evaluated.  This process 
repeats for all R values of the current parameter maintaining constant values for m1,2→S.  A 
probability distribution P is evaluated, via equ (3) (Sen et al.,1992), which calculates the 
likelihood that any one of the R values of the current parameter is correct based on the 
energy function E.   
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A new value for the current parameter is retained based on this probability distribution 
and the process continues to the next parameter maintaining constant values for 
parameters mr,1 and m1,3→S.  An iteration i in the annealing process constitutes the 
completion of evaluating the Sth parameter, the temperature T is lowered, and the cycle 
repeats until an acceptable match between the observed and synthesized data is attained.  
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To establish a computationally efficient cooling process, experimental trials are often 
performed before selecting the initial temperature T0.       

Forward Modeling 
 
For the purposes of this study, fourier synthesis of seismic data provides a 
computationally efficient means of generating synthetic seismic data.  A convolution 
model has been adopted to generate the synthetic post-stack (zero offset) seismic data.  
Each realization is converted to an impedance volume based solely on the occurrence of 
the architectural objects and associated impedance values.  On a trace by trace basis, the 
impedance volume is converted to reflectivity R, via equ (4). 
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                                                      (4) 

 
The synthetic seismic data results from the convolution of the reflectivity series and a 
standard 60 Hz Ricker wavelet.  When this operation is performed in the fourier domain 
it simplifies to a mere multiplication.  Because the necessary calculations during the 
inversion process (ie energy function) can be performed in the fourier domain, the 
synthesized seismic data need not be transformed back to the time domain.          

Synthetic Experiments 
 
In order validate the potential success of our object-based stochastic facies inversion the 
technique was applied to synthetic geologic scenarios.  If the results were favorable when 
applied to synthetic data, which is devoid of interpretation errors and data noise, then the 
technique has the potential to be successful when applied to field data.   
 
A reservoir model was generated through the object-based simulation process and 
deemed observed.  A two-parameter by five-value model space, consisting of mean 
channel widths and thicknesses, was generated symmetrically around the true values for 
these parameters.  Each model parameter value was allowed to vary ±20% and ±40% the 
true value.  As shown on Fig. 2a in the Appendix, the inversion process converged on the 
optimum solution of model parameters (i.e. energy value = -1) value by the 9th iteration.  
Also shown on the suite of graphs, Fig. 2b, the parameter value selection process became 
highly focused by the 8th and 9th iteration, causing the inversion process to converge on 
the correct model parameter values. 
 
A second suite of synthetic experiments involved modeling a channelized reservoir with 
objects of arbitrary geometries (ie. rectangular prisms).  As opposed to the previously 
described experiment the inversion process did not converge to a perfect cross 
correlation.  However, these experiments did attain an E=-0.307.  Even with this 
diminished cross correlation between the model deemed observed and resulting 
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realization many similarities can be observed between these two models as shown in Fig. 
2c and 2d.                            

Coalinga Heavy Oil Field 
 
Our method of generating reservoir realizations is applied to Chevron’s Coalinga heavy 
oil field in southwestern California.  The Coalinga field is a mature field with an 
abundance of core and wireline log data. The relative abundance of geologic and 
petrophysical data makes this a suitable reservoir to assess the results of our realizations 
since wells can be excluded and be used for control.   

Temblor Formation 
 
The Coalinga field has been oil and gas productive from the Temblor formation since the 
early 1900’s.  This unconformity-bounded reservoir can be subdivided into three main 
depositional zones, refer to Fig. 3a in the Appendix. The basal zone is bounded at the 
base by a major erosional surface, Base Temblor, and at the top by an unconformity 
designated #2. Unconformity #2 marks the transition to tide and wave dominated 
shoreline facies, which is in turn capped by an unconformity, designated #1.  This 
unconformity defines the transition to subtidal dominated facies, which is bounded at the 
top by the Top Temblor.   
 
Currently, production is focused in the basal zone of the Temblor formation and is aided 
by steam injection.  Two marginally conflicting interpretations of the depositional 
environment associated with this basal zone have been observed in literature.  Bate, 1984, 
characterized this basal zone as channel-cut sands containing impermeable barriers.  It 
was suggested that these impermeable barriers are a result of shale drapes bounding the 
channels of an ancient braided river system.  These impermeable barriers 
compartmentalize the reservoir hence hindering production.  Bridges et al., 2002, 
describes two dominate facies types within this basal zone, incised valley facies overlain 
by estuarine facies.  Incised valley facies types were characterized by stacked channel 
deposits associated with incisions exhibiting high topographic relief.  A general fining 
upward succession of sediment from the fluvial channel deposits to estuarine channel 
deposition conforms to a relative sea level rise during the Miocene.  

Well Data 
 
Based on the interpretation of core data, the Temblor formation is composed primarily of 
seven lithotypes.  These lithotypes include: sands, burrowed sands, laminated sand, silt 
and clay, fossiliferous sand and clay, burrowed clay, limestone, and calcareous cemented 
sediment.  From these core interpretations the volumetric proportions of the seven 
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lithotypes were determined and interval facies logs were generated and used as the 
geologic control during the simulation process.  Where the core data was accompanied by 
sonic and density logs, the distribution of acoustic impedance as a function of lithotype 
was determined as shown on Fig. 4a through 4g.  These distributions are necessary to 
convert the realization to an impedance volume during the forward modeling stage of the 
inversion process. 
 

Seismic Attribute Analysis 
 
Regardless of the geologic interpretation of this basal zone of the Temblor formation, 
there is evidence of sinuous features.  These sinuous features, either channel sands 
resulting from a braided river environment (Bate, 1984) or amalgamated fluvial channels 
overlain by estuarine channel deposits (Bridges, et al., 2002), can be observed in the form 
of seismic attributes. 
 
Seismic attributes provide a means of interpreting data from different points of view, 
which often results in new insight not otherwise evident.  These attributes are the result of 
transformations or calculations performed solely on the time series seismic data.  Fig. 3b 
represents a seismic time slice extracted 108 ms below the Top Temblor horizon, refer to 
Fig. 3a.  Fig. 3c and 3d display the results of two seismic attributes, coherency and 
instantaneous amplitude (respectively), which were calculated directly from the seismic 
data and correspond to the same time slice depicted in Fig 3a.   
 
Coherency, as an attribute, has recently received much attention for identifying lateral 
changes in acoustic impedance caused by faulting and meandering channels (Marfurt, et 
al., 1998).  It is a measure of similarity or dissimilarity, via a cross-correlation similar to 
equ. (2), between isolated intervals of adjacent seismic traces.  As observed on Fig. 3c in 
the Appendix, the dark blue zones, corresponding to high coherence values, represent 
areas of seismically similar material.  The green and red zones correspond to reduced 
coherency values, representing transition zones of seismically dissimilar material.  
 
Instantaneous amplitude is a continuous measure of reflectivity strength, which is also 
governed by impedance contrasts, along a single seismic trace.  The vector length of 
amplitude values and their corresponding quadrature amplitude values along the recorded 
seismic trace result in the instantaneous amplitude assessment, based on (Yilmaz, 1987) 
and (Taner, et al., 1979).  Fig. 3d in the Appendix displays an instantaneous amplitude 
time slice corresponding to the seismic time slice depicted in Fig 3b.   
 
The extent of the steam injection (shown in red on Fig. 3d) is observed by elevated 
amplitude values on the instantaneous amplitude time slice.  These same areas are 
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coincident with very coherent areas (shown in dark blue on Fig. 3c) on the coherency 
time slice.   The presence of stream (ie. high amplitude anomalies) in a seismically 
coherent zone suggests that this area is somewhat homogeneous and permeable; however 
the steam front does appear to be abruptly truncated against some rather sinuous features.   
These sinuous features can be observed on both the coherency (in green) and 
instantaneous amplitude (in dark blue) time slices, Fig. 3c and 3d (respectively).  
 
The two realizations, shown on Fig. 3e and 3f, correspond to the same time slice as the 
aforementioned attribute figures.  These realizations were forced to honor the same 
lithology logs and volumetric proportions of facies using arbitrary geometric shapes.  As 
can be seen on Fig. 3f there is a rough correlation between the sand and burrowed sand 
lithotypes and the moderately incoherent areas on Fig. 3c.  
 
These features are expected to contribute to the heterogeneity indigenous to the basal 
zone of the Temblor formation and a cause for production inefficiencies.  Based on the 
relative abundance of geologic and the petrophysical control and predominant sinuous 
features associated with the basal zone of the Temblor formation, the Coalinga heavy oil 
field is deemed a suitable candidate to assess our technique of generating reservoir 
realizations.                 

Discussion 
 
Based on the results of the preliminary synthetic experiments, the object-based stochastic 
facies inversion has the potential to be successful when applied to hydrocarbon 
reservoirs.  By incorporating the seismic waveform inversion as a proxy to geologic 
intuition and analogs, the optimum solution for the model parameters was attained via the 
simulated annealing guided search technique for nonlinear inversion.  However, there is 
one main underlying assumption bestowed in this experiment.  The reservoir model, 
deemed observed, was generated by the object-based simulation process.  This implies 
that natural reservoirs can be modeled by an optimum set or sets of statistical parameters.  
Addressing this assumption is the focus of the proposed work: the object-based stochastic 
facies inversion will be applied to the Coalinga heavy oil field.  
 
In the event that the results are not favorable when this technique is applied to the 
Temblor formation, meaning there is a low correlation between the recorded and 
synthesized seismic data, an alternative does exist.  The adaptation manifests itself in the 
forward modeling algorithm.  In the previous sections post-stack seismic wavefields 
provided the means of assessing the correlation between the observed reservoir and the 
synthesized realization.  By altering the forward modeling algorithm to accommodate 
source-receiver offsets, pre-stack seismic wavefields can be used for the assessment.  Pre-
stack seismic data has the advantage of increased ray coverage, minimal processing 
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artifacts, and no waveform averaging effects due to stacking.  However, these advantages 
exist at the cost of increased computation time and decreased signal-to-noise ratio.         
 
Efforts will also be made to test the robustness of our methodology, through the use of 
additional synthetic experiments, in a variety of geologic scenarios.  For example, it is 
possible that a sand interval observed in a well can be interpreted as a channel or sheet 
sand facies type.  For example, during the inversion process the sand interval is assumed 
to correspond to a channel facies type, and the mean channel width is included as a model 
parameter. The inversion process may yield a channel whose width extends past the 
limits of the model space, hence a sheet sand, or a narrower feature, may be interpreted as 
a channel facies type. 
 
To reiterate the importance of quantitatively defining the statistical parameters that 
dictate the internal distribution of facies within a reservoir refer to Fig. 3e and 3f.  The 
variability between these two realizations is apparent, however the rough correlation 
between the sand and burrowed sand lithotypes with the moderately incoherent areas on 
Fig. 3c would not have been possible if the average length and width of the objects were 
not increased from those used in Fig. 3e.  Hence, it is the aim of the object-based 
stochastic facies inversion to refine these statistical parameters to maximize the 
correlation between the realization and the recorded seismic and well data. 

Conclusion 
 
If successful, the results of our adaptation to conventional techniques of generating 
reservoir models will reduce the cost of extracting hydrocarbons during the production 
stage of a reservoir.  This cost reduction would be observed through improved injection 
and extraction well planning resulting from reservoir models that more closing mimic the 
producing reservoir.     
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Fig. 1a: A realization generated with the 
following parameters: 
 
Mean channel thickness:  10 
Channel thickness variance: 2 
Mean Channel width:  500 
Width-thickness correlation: 0.25 
Mean channel amplitude:  2000  
Channel amplitude variance: 400 
Channel sinuosity:  1.25 

Fig. 1b: A realization generated with the 
following parameters: 
 
Mean channel thickness:  6 
Channel thickness variance: 2 
Mean Channel width:  600 
Width-thickness correlation: 0.25 
Mean channel amplitude:  2000  
Channel amplitude variance: 400 
Channel sinuosity:  1.25 

Fig. 1c: A realization generated with the 
following parameters: 
 
Mean channel thickness:  6 
Channel thickness variance: 2 
Mean Channel width:  800 
Width-thickness correlation: 0.75 
Mean channel amplitude:  2000  
Channel amplitude variance: 400 
Channel sinuosity:  1.25 
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Fig. 3a: Seismic cross-section displaying the three main zones of the 
Temblor formation. 

Top Temblor 
 
Unconformity #1 
 
Unconformity #2 
 
Base Temblor 

Fig. 2c: Reservoir model deemed 
observed 

Fig. 2d: Realization of Fig. 2c 
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Fig 3d: Instantaneous Amplitude 
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Fig 3b: Seismic Fig 3c: Coherency 
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Fig. 3e: Realization  
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Fig. 3f: Realization  
50.0 x 50.0 x 1.0 aspect ratio 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

10

20

30

40

Fig. 4e: Impedance Distribution: Fossiliferous SC Fig. 4f: Impedance Distribution: Limestone 

O
cc

ur
re

nc
e 

O
cc

ur
re

nc
e 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

25

50

75

100

125

150

O
cc

ur
re

nc
e 

Fig. 4g: Impedance Distribution: Calcareous 
Fig. 4a-4g: Represent the impedance distribution as a 
function of the lithotypes observed in the core. Please 
note that:  
 
SC: sand and clay 
SSC: sand, silt, and clay 
Minimum Impedance: 5000 
Maximum Impedance: 25000 
Binning Interval: 500 
 
 



 

 D1 

 
Geologic Heterogeneity Models 

 
J. Castle, Clemson University 

 
SCOPE OF GEOLOGICAL WORK 

 
 

During the second year of the project, reservoir characterization of the 

Temblor Formation at West Coalinga Field was performed by investigators at 

Clemson University. Core descriptions and wireline logs, in addition to core 

descriptions and outcrop data from a previous related project funded by USDOE 

(Bridges, 2001; Castle et al., 2002), were used throughout the course of reservoir 

characterization. This information was applied to developing four types of three-

dimensional geologic computer models: deterministic, stochastic lithofacies, 

stochastic petrophysical, and conditioned.  The models were compared to each other 

and to core descriptions and log data.  The results were assessed to determine which 

of the modeling methods is best suited for integration with seismic data. Additional 

information on this phase of the project can be found in Mize (2002). 

Two field areas from the southern portion of West Coalinga Field were studied 

(Figure 1).  One area is in the north-central portion of section 36D, and contains 28 

wells. The other area is located in the northeast portion of section 25D, and contains 

66 wells. The two areas were chosen based on their well and four-dimensional (4-D) 

seismic coverage. Four dimensional seismic is three-dimensional (3-D) seismic data 

acquired at different times over the same area to assess changes in a producing 

hydrocarbon reservoir with time.  The use of 4-D vs. 3-D seismic allows for the 

observation of changes in fluid location, fluid saturation, pressure, and temperature. 
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Figure 1. Location of model areas in Sections 25D and 36D. 
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CORES AND GEOPHYSICAL LOGS 
 

Lithofacies and Lithofacies Groups 
 
 

ChevronTexaco Production Company in Bakersfield, CA, supplied wireline log 

data for 94 wells within the study areas and granted access to four cores used in this 

study.  Cores were described at the Chevron Core Warehouse in Richmond, CA, 

during August 2001. Core descriptions can be found in Mize (2002).   

Fourteen lithofacies were identified in core, which were subsequently arranged 

into 7 lithofacies groups by similarities in grain size, degree of bioturbation, degree of 

cementation, sedimentary structures, and sorting (Table 1).  Lithofacies groups were 

identified on wireline logs, based on the criteria developed from the logs of from the 

four cored wells.  The sand lithofacies group (1) is characterized by values of 0 to 

30% on the scaled gamma ray log (see section on Modeling Methods).  The scaled 

gamma ray signature for this lithofacies group is relatively consistent with small 

variability.  The log signature of the thinly laminated sand, silt, and clay lithofacies 

group (2) is highly variable with values between 20% and 75%.  The scaled gamma 

ray spikes within the thinly laminated sections are thin in comparison to other spikes.  

The burrowed clay lithofacies group (3) ranges from 30% to 50% scaled gamma ray 

and contains one to three consistent spikes with a smooth, not irregular, signature.  

The burrowed sand lithofacies group (4) has a highly variable (irregular) log signature 

with several small spikes, and typically ranges from 10 to 40% scaled gamma ray, 

with scaled gamma ray values near the top of the Temblor ranging from 70% to 

100%.  Fossiliferous sand and clays (5) are characterized by their location just above  



 

 D4 

Table 1. Lithofacies Groups. 

Lithofacies Group 
(and Number) 

Lithofacies Deposition 

Sand (1) Clean Sand 
Crossbedded Sand 

Pebbly Sand 

Barrier/Bar, tidal 
flat, tidal bars or 
scour surfaces 

Thinly laminated 
sand, silt, and clay 

(2) 

Clay 
Silt 

Interlaminated 
Sand and Clay 

Sandy Clay 

Wave-dominated, 
offshore 

Burrowed Clay (3) Burrowed Clay Tidal flat 

Burrowed Sand (4) Burrowed Sand Barrier/bar, tidal 
flat, tidal bars or 

subtidal 

Fossiliferous Sand 
and Clay (5) 

Fossiliferous Sand 
Fossiliferous Clay 

Lagoon or low 
energy interval 

Limestone (6) Fossiliferous 
Limestone 

Low energy 
interval, or 

marine flooding 

Calcareous 
Cemented Sand 

(7) 

Calcareous 
Cemented Sand 

Calcareous Pebbly 
Sand 

Scour surface, 
lag, or diagenetic 

processes 

 
 

the base of the Temblor Formation and consist of a large spike (70 to 100%) capped 

by a smaller spike in scaled gamma ray value.   The limestone lithofacies group (6) 
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occurs generally at the base of the Temblor and has a thickness of 3 to 6 feet.  A 

spike in the density log and a low value in scaled gamma ray are characteristic of the 

limestone. The carbonate-cemented sands (7) are generally found at the top 

estuarine and top tide- to wave-dominated shoreline surfaces based on core.  Scaled 

gamma ray values range up to 50%, with a scaled gamma ray spike and common 

resistivity and density kicks. 

 

Depositional Environments 
 
 
 

Based on the core descriptions, three depositional environments are 

interpreted for the Temblor Formation in the southern part of West Coalinga Field: 

estuarine; tide- to wave-dominated shoreline; and subtidal (Table 2; see Mize, 2002, 

for additional discussion of the depositional environment interpretations).  The incised 

valley deposits interpreted by Bridges (2001) and Bridges and Castle (2002) as 

occurring below the estuarine interval north of the present study area were not 

observed in core from the southern portion of the field. They also described a 

separate facies tract between the tide- to wave- dominated shoreline and subtidal 

facies tracts.  This diatomite facies tract consists of diatomaceous clay which grades 

laterally into burrowed clay towards the southern end of the field.  In the northern part 

of the section 25D study area, thin (3 to 10 feet thick) burrowed clays beds occur 

immediately below the subtidal lithofacies group.  These burrowed clay beds were 

not separated into a separate depositional environment due to the lack of spatial 

coverage of the burrowed clays within logs and cores.     



 

 D6 

Table 2:  Physical and biological features of depositional environment intervals in the 
cores studied. 
 
Well Number 132A 258A 5-7T1  4-15 
Chevron Number IR85310 IO06270 IN50250 IO95320 
Section 36D 36D 25D 24D 
Subtidal Abundant horizontal 

to vertical burrow 
structures, rare thin 
clay and limestone 
beds, mottled 
appearance 

Abundant horizontal 
to vertical burrow 
structures, rare thin 
clay beds and 
calcareous intervals, 
mottled appearance 

Abundant horizontal 
to vertical burrow 
structures, rare thin 
clay beds, mottled 
appearance 

Abundant horizontal 
to vertical burrow 
structures, rare thin 
clay beds, mottled 
appearance 

Tide- to Wave-
Dominated 
Shoreline 

Minor fining upward 
sequences (4-8 ft.), 
minor coarsening 
upward sequence 
(3-6 ft.), abundant 
low angle planar 
cross-bedding, rare 
ripple cross-
lamination, minor 
clay drapes, rare lag 
beds with common 
mud rip-ups and 
pebbles, faint 
parallel bedding, 
abundant burrow 
structures 

Common fining 
upward sequences 
(3-6 ft.), minor 
coarsening upward 
sequences (3-20 ft.), 
rare low angle planar 
cross bedding, rare 
lag beds with mud 
rip-ups, common 
burrow structures 

Minor coarsening 
upward sequences 
(3-6 ft.), rare low 
angle planar cross-
bedding, rare ripple 
cross-lamination, 
minor clay drapes, 
rare lag beds with 
common mud rip-
ups and pebbles, 
rare faint parallel 
bedding, abundant 
burrow structures  

Minor fining upward 
sequences (2-6 ft.), 
rare coarsening 
upward sequences 
(2-5 ft.), rare to 
common low angle 
planar cross-
bedding, rare ripple 
cross-lamination, 
minor clay drapes, 
rare lag beds with 
common mud rip-
ups and pebbles, 
rare faint parallel 
bedding, common 
burrow structures 

Estuarine Rare fining upward 
sequences, common 
scour surfaces with 
mud rip-ups and 
pebbles, rare ripple 
cross-laminations, 
common to 
abundant tabular 
cross bedding, rare 
to common clay 
drapes, rare flaser 
bedding, abundant 
shell fragments (clay 
and sand near base 
Temblor), rare 
coarsening upward 
sequences, rare 
burrow structures 

Rare fining upward 
sequences, rare 
scour surfaces with 
mud rip-ups and 
pebbles, abundant 
shell fragments (clay 
and sand near base 
Temblor), rare large 
coarsening upward 
sequences, rare to 
common burrow 
structures 

Rare fining upward 
sequences, common 
scour surfaces with 
mud rip-ups and 
pebbles, rare ripple 
cross-laminations, 
common tabular 
cross bedding, rare 
clay drapes, 
Abundant shell 
fragments (clay and 
sand near base 
Temblor), Rare 
coarsening upward 
sequences, common 
burrow structures 

Common fining 
upward sequences, 
common scour 
surfaces with mud 
rip-ups, rare tabular 
cross bedding, rare 
clay drapes, 
abundant shell 
fragments (clay and 
sand near base 
Temblor), abundant 
burrow structures   
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Well-to-Well Correlations 

 
 

Core descriptions were compared with gamma ray and density logs to identify 

the following bounding surfaces for modeling purposes: base Temblor, clay 

concentration, top estuarine, top tide- to wave-dominated shoreline, and top Temblor 

(Figure 2).  The base Temblor surface occurs below a thick (70 to 100 ft) coarsening 

upward sequence and coincides with a spike in the density log, which is also just 

below a decrease in gamma ray values.  This density spike is correlative with the 

limestone found at the base of the Temblor Formation.  The clay concentration 

surface is placed at the inflection point above a clay concentration at the top of a 

large fining upward sequence on the scaled gamma ray log.  The top estuarine 

surface corresponds to the inflection point on the top of a large gamma kick at the top 

of a fining upward sequence, which dominates the upper part of the estuarine 

interval.  The top of the tide- to wave-dominated shoreline surface is at the lower 

inflection point of a large gamma spike at the base of a coarsening upward sequence 

of the subtidal interval.  This spike generally is the highest gamma ray value within 

the Temblor Formation, with few exceptions.  The subtidal zone has two sets of large 

gamma spikes (Figure 2; elevation of -710 to -730 feet and -683 to -705 feet).   The 

top Temblor surface is placed above these two sets at the top inflection point of a 

coarsening upward sequence.   
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Figure 2. Depositional environments, bounding surfaces, and lithofacies groups listed 
by number to left of gamma log curve. Well BE90530, Section 25D. 
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GEOLOGICAL MODELS  
 

Methods 
 
 

This investigation uses IRAP Reservoir Modeling Software (RMS) for three-

dimensional geologic modeling. IRAP RMS was developed by Roxar, Inc. (formerly 

Smedvig Technologies), for creating three-dimensional models and visualization of  

reservoirs in the oil and gas industry. The choice of IRAP RMS was based on its 

ability to integrate multiple data types combined with the high degree of user control.  

Geologic properties, imported by the user, can be up-scaled and introduced into a 

flow simulator for enhanced modeling. In addition to the uses in this study, IRAP 

RMS can also be used to create fault models, lithofacies models, and petrophysical 

models.   Nine major steps were followed for the three-dimensional modeling (Mize, 

2002): 

1. Collecting, formatting, and sorting data; 

2. Loading well data and contouring reference horizons; 

3. Generating the reservoir zones and selecting the model resolution by 

defining the grid structure for each zone; 

4. Upscaling (block) the well data to the appropriate resolution for the three-

dimensional grid; 

5. Creating deterministic models; 

6. Defining and modeling the stochastic lithofacies body distributions in each 

generated zone; 
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7. Defining and modeling the stochastic petrophysical parameters in each 

zone and relevant lithofacies; 

8.  Creating conditioned models; 

9. Analyzing the modeling results to determine the types of models best 

suited for integration with seismic data. 

 
Data formatting included scaling of the raw gamma ray values.  This process 

eliminates calibration differences between logged wells. The resulting scaled gamma 

ray values are a percentage calculated by the formula: 

100*
)MinMax(
)MinGR(SCGR

−
−=                                                                 (1) 

where 

 SCGR  = the percent of gamma radiation, 

 GR   = the original gamma-ray value for each increment, 

 Max  = the base line for maximum gamma-ray values, 

 Min  = the base line for minimum gamma-ray values.  

The minimum value was determined by locating the minimum value for a given 

gamma-ray log within the interpreted Temblor Formation. The maximum gamma ray 

value was the highest gamma value within the Temblor Formation, which occurs 

most often at the base of the subtidal environment. 

The process of upscaling wireline log data for this study involves two 

significant steps: blocking and upscaling. The blocking process identifies every grid 

block that a well passes through, whereas the upscaling process takes into account 

the parameter settings and gives each cell a single value.  Most wireline log data 
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have measurements every 0.25 to 1.00 foot.  When a grid cell is larger than these 

increments, the data have to be upscaled or averaged to give each grid cell a single 

value.  

When upscaling discrete logs, each value was assigned a weight or priority, 

and the lithofacies group value, or score, for each cell was calculated by a weight 

function: 

 UW*GWScore =                                                                    (2)           

where 

 GW=Geometric Weight 

 UW=User Weight 

The geometric weight is represented by the total length of the well path of the given 

log type inside the cell in question.  The user weight is defined as an integer for each 

lithofacies group by the investigator.  The values are typed in directly by the user.  An 

integer value of 1 would have the greatest weight and would be the dominant 

lithofacies group. If two or more lithofacies groups have the same score, the 

lithofacies group with the user determined higher priority would be chosen as the 

value for that cell.  For this investigation, the lithofacies groups that appeared thinner 

and more continuous in wireline log and core were given the higher priorities.  

Structure contour maps were created in RMS for each of the four bounding 

surfaces: base Temblor, top estuarine, top tide- to wave-dominated shoreline, and 

top Temblor.  A contour map was also created for the clay concentration surface in 

each section, because it is used for stochastic, deterministic, and conditioned 

models, though it is not a structural bounding surface.  Eight contour maps were 
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made, four for each study area, using the bounding surfaces that were imported into 

IRAP RMS as points to create surfaces.  The surfaces generally have the same 

attitude, dipping towards the east-southeast, though this general dip most likely is the 

result of post-depositional tectonics.  Small variations in localized dip direction occur 

on different bounding surfaces.   

Isopach maps were created in RMS for each depositional interval using the 

isopach gridding function.  The isopach maps were created within the software by 

establishing a top and bottom surface.  The software then contours a map of the 

interval thickness between these two surfaces.   

Deterministic models refer to those that use only continuous well data and 

distribute well properties throughout the model using a weighted moving average to 

produce a single realization.  Deterministic models were created for the scaled 

gamma ray logs in both study areas.  Influence radii of 900 feet in the X and Y 

directions were used for section 25D, and 25 feet in the Z direction for the estuarine 

and tide- to wave-dominated shoreline intervals while the subtidal required an 

influence radius of 800 feet in the X and Y directions, and 20 feet in the Z direction.  

Influence radii of 1000 feet (X and Y directions) and 75 feet (Z direction) were used in 

the estuarine and tide- to wave-dominated shoreline for section 36D.  The larger Z 

direction influence radii were used in section 36D to enable the software to 

interpolate the entire model between the data points.  The subtidal zone model was 

created with an X and Y influence radii of 650 feet and a Z influence radius of 25 feet.  

The influence radii were established so that the model would be interpolated for all 

areas not covered by wells.    
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Stochastic models retain the ability to produce equally probable realizations of 

subsurface heterogeneity. Two types of stochastic models were created: lithofacies 

models and petrophysical models.  Lithofacies models use upscaled discrete logs 

(lithofacies groups), and represent the distribution of the different lithofacies types in 

each zone.  A lithofacies model illustrates the spatial relationships among lithofacies 

bodies and is required before petrophysical or conditioned models can be created.     

Petrophysical modeling is used to produce models of a parameter (for 

example, scaled gamma ray, porosity, permeability, etc.) according to a chosen 

stochastic lithofacies model using the upscaled well data and lithofacies group 

parameters.  Petrophysical modeling uses the results from lithofacies modeling and 

produces a set of probabilistic outcomes of parameter distribution (scaled gamma ray 

in this case) that can be compared in order to evaluate the uncertainty associated 

with the reservoir description.  The two steps involved in creating a petrophysical 

stochastic model are defining the model job, which establishes the premises for the 

stochastic simulation, and performing the simulation to obtain the modeling results.  

Defining the model job involves transforming the scaled gamma ray data into a 

Gaussian or normal distribution for each zone.  After transformations are performed, 

variograms are created.  

Conditioned reservoir models are models in which continuous scaled gamma 

ray data is interpolated by a weighted moving average for each body modeled in the 

stochastic lithofacies model.  By creating a conditioned model, both the discrete and 

continuous data are incorporated into the model.  Conditioned models are built by 
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creating a stochastic lithofacies model and deterministically modeling the scaled 

gamma ray data for each body of the stochastic lithofacies realization.   

 
Modeling Results 

 
 

Important differences in resolution and accuracy were observed among the 

four types of models constructed (deterministic, stochastic lithofacies, stochastic 

petrophysical, and conditioned). These results are summarized in Table 3.  Examples 

of the models are shown in Figures 3 through 10. 

The tide- to wave-dominated shoreline interval on all three models of scaled 

gamma ray (deterministic, petrophysical, and conditioned) has a similar appearance, 

but the petrophysical and conditioned models are the most similar.  There are only a 

few slight differences at the top of the interval.  The estuarine interval of the 

petrophysical model has scaled gamma ray values that are much lower than those of 

both the deterministic and conditioned models, which is likely due to the 

transformation of scaled gamma ray values using the variograms.  No major 

differences are apparent in the subtidal interval of the conditioned model and 

deterministic models.  The estuarine interval is also similar in these two models, 

except for a few instances where the values of the lithofacies group bodies can be 

seen.  An example of the difference in the models is a single cell layer of low values, 

roughly 5%, in the estuarine interval of the conditioned model, where there is a layer 

of moderate values (40 to 55%), just above the –1026 foot elevation line.  Similar 

characteristics are seen in the models and fence diagrams from the section 36D 

study area. 
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Table 3: Comparison of the four types of 3D geologic models used in this project.  

Model Type 
Information/ 
Observations Resolution Advantages for Use 

Disadvantages for 
Use 

Deterministic Continuous (scaled 
gamma ray) log 
distribution.  Shows 
truncation of layers 
at unconformities.  
Not beneficial to 
integration with 
seismic using scaled 
gamma ray data 
because it does not 
incorporate 
geological 
interpretation. 

Resolution is 
based on size of 
the model, usually 
a few to tens of 
feet.  

Gradational 
appearance, values 
more continuous on a 
large scale compared 
to petrophysical and 
conditioned models, 
models continuous 
data, would be a 
sufficient general 
representation of 
basic fluid saturation 
with different data. 
Different radiation 
signature in subtidal 
more evident. 

Does not incorporate 
heterogeneities of 
lithofacies bodies. 
Continuity is not 
realistic. Does not 
incorporate geologic 
features, just values 
represented by logs, 
Models continuous 
data only. Continuous 
distribution is not 
necessarily accurate. 

Stochastic 
Lithofacies  

Shows 
interconnectivity, 
size and shape, and 
lateral and vertical 
distribution of 
lithofacies group 
bodies as defined by 
input parameters.  

Resolution is more 
detailed than 
seismic data, but 
still on the order of 
5 to tens of feet 
within the study 
areas.  Tends to be 
less detailed when 
lithofacies bodies 
are larger.   

Incorporates 
geological aspects of 
investigation from 
cores and logs. Takes 
into account all scales 
of heterogeneity. 
Allows several 
realizations of geology 
to be observed.  
Realizations do not 
vary greatly.  Useful 
tool for prediction of 
geology.  Acceptable 
model for integration 
with seismic data. 

Model output based 
solely on input 
parameters and 
random insertion. 
Sharp appearance. 
Building of models is 
limited by hardware 
capabilities (based on 
size, shape, orientation 
of bodies, and grid 
resolution). 

Stochastic 
Petrophysical  

Distribution of 
lithofacies bodies 
can be seen with 
assigned continuous 
well log values 
assigned to them.  

Models do not give 
an acceptable 
distribution of 
scaled gamma ray 
values given the 
resolution of this 
2000+ x 2000+ foot 
model.  A smaller 
area might be 
more acceptable 
for a petrophysical 
model. 

Uses geostatistical 
techniques to 
incorporate discrete 
and continuous data 
into one model. With 
different petrophysical 
data (sonic or 
density), this model 
could be beneficial to 
a reservoir 
characterization. 

Does not predict 
geology, but needs 
accurate lithofacies 
model for modeling of 
petrophysical 
parameters. Values 
tend to be far (very 
low) removed from the 
original continuous log 
values. Some 
lithofacies group 
bodies had scaled 
gamma ray values that 
were not correct based 
on well and core data.  
Problems in 
transformation of data. 
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Table 3 (continued). 
 

Model Type 
Information/ 
Observations Resolution 

Advantages for 
Use 

Disadvantages for 
Use 

Conditioned Distribution of 
lithofacies bodies 
can be seen with 
assigned continuous 
well log values. 
Values in between 
bodies, where the 
background 
lithofacies group 
occurs,  are same as 
deterministic model. 

Resolution is similar 
to that of 
deterministic models 
and is based on the 
model area and grid 
structure. Greater 
variability in scaled 
gamma ray values is 
better for 
representing 
distribution of 
values.  

Incorporates both 
deterministic and 
stochastic models.  
Models appear more 
realistic than strict 
deterministic models 
by incorporating the 
lithofacies group 
bodies. Shows 
distribution of 
petrophysical 
parameters within 
lithofacies groups. 

Values in 
background 
lithofacies group 
average tend to be 
lower than real 
scaled gamma ray 
values.  Dependent 
on accurate 
lithofacies realization 
for geological 
background 
information.  
Realizations vary 
slightly based on 
lithofacies group 
realizations.  

 
 

The lithofacies group objects are used in building the lithofacies, petrophysical, 

and conditioned models. The lithofacies models clearly show the vertical 

heterogeneity of lithofacies groups in the study areas.  The lithofacies group shapes 

are apparent in the lithofacies group models, as expected, and are reflected in the 

petrophysical models.  The conditioned model of section 36D shows an abrupt, 

variable character that does not completely reflect the shapes of the lithofacies group 

bodies.  The estuarine interval has several grid blocks that are of a slightly different 

value than expected, but do not reflect the shape of a body.  Some of the same 

characteristics of bodies occur in both the petrophysical and conditioned models near 

the base of the estuarine interval where there is a large area of background 

lithofacies group (burrowed sand, in this case), whose value is reflected in its shape 

on the lithofacies group model.   
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Subtidal

TWDS

Estuarine

Figure 3: Deterministic model and cross sections for study area in section 25D.
TWDS=tide- to wave-dominated shoreline.
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N

Figure 4: Deterministic scaled gamma ray model and cross sections for
study area in section 36D. TWDS=tide- to wave-dominated shoreline.
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Subtidal

TWDS

Estuarine

Figure 5: Stochastic lithofacies model and cross sections for study area in section 25D.
TWDS=tide- to wave-dominated shoreline.
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Subtidal
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N

Figure 6: Stochastic lithofacies model and cross sections for study area in
section 36D. TWDS=tide- to wave-dominated shoreline.
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Estuarine

Subtidal

TWDS

Figure 7: Petrophysical model and cross sections for study area in section 25D.
TWDS=tide- to wave-dominated shoreline.
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Figure 8: Petrophysical model and cross sections for study area in
section 36D. TWDS=tide- to wave-dominated shoreline.
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Subtidal

TWDS

Estuarine

Figure 9: Conditioned model and cross sections for study area in section 25D.
TWDS=tide- to wave-dominated shoreline.

N

N

0%

100%

303500
304000

304500
305000

305500
306000

303500
304000

 

 



 

 D24 

 

N

Figure 10: Conditioned scaled gamma ray model and cross sections for study
area in section 36D. TWDS=tide- to wave-dominated shoreline.
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CONCLUSIONS 
 
 

The stochastic lithofacies models and conditioned models are the most 

suitable types of models (of the 4 methods tested) for integration with seismic data. 

Deterministic models exhibit a smooth interpolation of the continuous scaled gamma 

ray values, which may not be an accurate depiction of the subsurface geology 

because of heterogeneity.  There is not a high degree of lateral continuity in the two 

study areas, so a strict interpolation technique as used in the deterministic models is 

not the best method to use for the discrete data.  Stochastic models use the data to 

statistically define the spatial parameters, whether they are geological or 

petrophysical.    

The stochastic lithofacies models incorporate the geologic characteristics of 

the subsurface as revealed in core and interpreted from wireline logs by creating 

multiple realizations, which statistically have the same likelihood of occurring.  The 

lateral and vertical heterogeneity of the Temblor Formation is depicted by the 

distribution of lithofacies group bodies in realizations of the stochastic lithofacies, 

which is supported by cores and wireline logs.  There are some small areas, usually 

near the margins of the study areas, which may be less accurate due to the random 

placement of objects caused by the lack of data.   

Petrophysical models are strongly influenced by distribution of the lithofacies 

group objects.  The calculations of scaled gamma ray values are performed in each 

of the individual lithofacies group bodies to simulate small-scale variations in scaled 

gamma ray values.  The method allows a representation of scaled gamma ray values 
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in between the wells.  The incorporation of geology is a good reason for using 

petrophysical models with seismic data. However, the values in the final 

petrophysical models do not always correspond with the expected values of the 

lithofacies bodies as determined from wireline logs.  With the use of petrophysical 

parameters such as oil saturation, grain size, porosity, and/or permeability, a more 

useful model could probably be created.   

The conditioned models combine the information from both the lithofacies 

models and the deterministic scaled gamma ray models.  The incorporation of 

discrete geologic parameters and the continuous petrophysical parameters show the 

distribution of the continuous scaled gamma ray parameter based on geological 

realizations.  The values assigned to the lithofacies group bodies and the background 

parameters are consistent with the original continuous log values.  This method is 

useful when modeled with scaled gamma ray logs, but could possibly become even 

more useful if other logs, such as density, were incorporated.   
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