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Abstract

Large fractions of heavy oil reserves remain in shallow reservoirs, consisting of relatively thin sands separated
by nearly impermeable shales. A potential recovery method for heavy oil is in-situ combustion. Compared
to other methods, in situ combustion involves the added complexity of exothermic chemical reactions and
temperature-dependent kinetics. Previous theoretical work by the authors have focused on the process in a
single layer [7]. In this report we try to extend the approach to heterogeneous systems, by considering the
simpler case of in-situ combustion in layered porous media (and particularly to a two-layer model). Analytical
models are developed to delineate the combined effects of fluid flow, reaction and heat transfer on the dynamics
of combustion fronts in layered porous media, using as parameters the thermal coupling between the layers,
the heat transfer to the surroundings and the permeability contrast. We find that in layered systems, the
thermal coupling between layers leads to coherent traveling fronts, propagating at the same velocity. This
coupling retards greatly fronts in the more permeable layers and accelerates only slightly those in the less
permeable ones; until a common front velocity 1s attained. As in the single-layer case, there exists a unique
solution, under adiabatic conditions, and multiple steady-state solutions, under non-adiabatic conditions.
The latter lead to ignition and extinction conditions. We show that the layer thickness and the permeability
contrast between the layers play a crucial role. Importantly, for a sufficiently large permeability contrast,
relatively small layer thickness and under non-adiabatic conditions, steady-state propagation in the two layers
cannot be sustained, and the process becomes extinct, even though, under the same conditions, sustained
propagation would have been predicted for the equivalent single-layer problem with the average injection
velocity. Simple constraints are derived to delineate this case. The analysis is useful for the understanding

of the viability of in situ combustion in heterogeneous porous media.






1 INTRODUCTION

The sustained propagation of a combustion front is necessary for the recovery of oil using in
situ combustion. Compared to other methods, in situ combustion involves the complexity of
exothermic reactions and temperature-dependent reaction kinetics. The combustion dynam-
ics are influenced by the fluid flow of injected and produced gases, the heat transfer in the
porous medium and the surroundings, the rate of combustion reaction(s) and the heterogene-
ity of the porous medium. In the presence of heat losses, the possibility exists of extinction

(quenching) as well as the necessity of ignition for sustained propagation.

Combustion fronts in porous media have been studied extensively in the context of filtration
combustion. Analytical treatments of the combustion front dynamics is possible, by using
methods similar to the analysis of laminar flames (gaseous phase combustion in the absence of
porous medium). Using the property that the activation energy of the overall reaction is large
in comparison with the thermal enthalpy [1], Britten and Krantz [2, 3] provided an asymptotic
analysis in one-dimensional systems of reverse combustion in coal gasification. In detailed
works, Schult et al. [4, 5] investigated the adiabatic combustion of a homogeneous porous
medium, in the contexts of fire safety and the synthesis of compacted metal powders (SHS
processes). More recently, forward and reverse filtration combustion in a non-reacting porous
medium was studied using a pore-network model by Chuan and Yortsos [6]. In parallel,
a detailed analysis of the propagation of planar combustion fronts in porous media was
undertaken by the present authors [7]. They addressed the issue of steady-state propagation
under both adiabatic and non-adiabatic conditions, but emphasized the effect of heat losses to
the surroundings. The latter were modeled both by conduction (for subsurface applications)
and by convection (for laboratory applications). A number of important results were obtained,

which are briefly summarized in the next section.

In this report, we consider the use of the same type of approach in an attempt to answer
the important question of the effect of the porous medium heterogeneity on the sustained
propagation of combustion fronts. As in other contexts, a simple representation of hetero-

geneity is through the use of layers. For example, layered systems have been employed to



investigate heterogeneity effects on processes such as miscible and immiscible displacement
[8]. In the latter processes, the effect of heterogeneity typically enters through fluid mobility
(where the displacement in a more permeable layer is further accelerated in the case of unfa-
vorable mobility ratio, and conversely retarded in the case of a favorable mobility ratio). In
the combustion case of interest here, however, the coupling enters through the heat transfer
between the layers, to be expressed by a simple convective-type model. The assumption is
rigorously valid if the layers are sealed from one another, or if the fluid mobility remains con-
stant through the process, which is a good assumption, when the net rate of gas generation is
small. Then, the injection rate in each layer is constant in time, and proportional to the layer
permeability. The analysis will be conducted for two simple geometries, a two-layer system
and a symmetric three-layer system, under both adiabatic and non-adiabatic conditions. Our
emphasis is on understanding how the heat transfer coupling affects the front propagation
in the different layers, on whether or not a state of coherent traveling fronts develops and
on whether or not a sufficiently sharp permeability contrast can lead to the extinction of the
process. Throughout the report, we will use methods similar to the single-layer problem of [7].
Because of the relevance of those results to the present problem, they are briefly summarized

below.

2 PRELIMINARIES: COMBUSTION IN A SINGLE
LAYER

Under adiabatic conditions, it is found that there is always sustained propagation, where the

front temperature is given by

Qp%

efETf/Tozl‘l‘q, where qzm

(1)
we denoted the heat of reaction by (), the initially available fuel content per total volume by
p% and the volumetric heat capacity of the porous medium by (1 — ¢)c,p;. Clearly, equation

(1) shows that the front temperature is practically independent of the front velocity.



Under non-adiabatic conditions, however, front temperature and front velocity are coupled.
When the heat losses are modeled by heat conduction in semi-infinite surroundings, the

temperature of the front is obtained from the different equation
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and z is the positive root of the algebraic equation
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In (2), H is the thickness of the porous medium, v; the injection velocity, Vp = V/v; is the
dimensionless front velocity normalized with the injection velocity, and o, = A/(1 — ¢)c; is
the effective thermal diffusion coefficient. A similar equation applies for the convective heat

losses case.

In all cases, the front velocity is related to the front temperature through the following

equation

1—uVp
V2= Af _X) (A=A 4
b= feXp( (9]«) (1+1“9VD) @

where v = F/RT, is the Arrhenius number, F is the activation energy, R the universal gas
constant, ¢ and p, = pyp — ¢ are dimensionless stoichiometric coefficients for oxygen and

produced gas due to reaction, respectively (see [7] for more details), and

_ asaskoY;'pi _ 1 (1 - 77)
A= (L7 where [, = /0 o0 dn. (5)

In addition, in Equation (5), as is the specific surface area per unit volume, k, the pre-
exponential factor, p; the initial gas pressure, n = 1 — ps/p$ the extent of fuel conversion

depth and ¢ (n) is a dimensionless function representing the dependence of reaction on 7.

In the adiabatic case, there is always a solution for the front velocity as a function of the

injection velocity. This relation is plotted in Figure 1 for typical parameter values. It shows



that the front velocity is proportional to the injection velocity at sufficiently small injection
rates, and increases more slowly as the injection velocity becomes larger. In thermally decou-
pled layers, under adiabatic conditions, we should expect, therefore, that combustion fronts
in high permeability layers would travel faster, according to the dynamics portrayed in Figure

1, for example.

On the other hand, in the non-adiabatic case, the coupling between velocity and temperature
has significant implications. Figures 2 and 3 show results obtained for the front temperature
versus the injection velocity for a varying thickness of the porous medium. The corresponding
variation of the front velocity with the injection velocity is shown in Figure 4. For fixed
thickness and injection velocity, the system typically shows multiplicity in the solutions, and
for sufficiently thin layers, extinction and ignition points, E. and [., exist in temperature
(Figures 3, 2). As H decreases, the extinction threshold rapidly increases, namely it requires
an increasingly larger injection velocity for the reaction to be sustained, as shown in the
Figures. Between these thresholds, there exist three separate solutions for given injection
and reservoir parameters, consisting of a stable low temperature (and velocity) branch in
the vicinity of the initial conditions, a stable high temperature (and velocity) branch, where
rigorous combustion takes place, and an unstable intermediate branch connected to the latter.
Such behavior is typical of multiple solutions in other areas in reaction engineering. The upper
branch is the solution corresponding to a proper combustion front. It approaches and runs
parallel to the adiabatic solution. For a given H, the sensitivity of the front variables to the
injection velocity is very large near the threshold, but becomes almost negligible above it.
Likewise, the sensitivity of the extinction threshold E. to the reservoir thickness is significant
for values of H the order of 1 m or less, for the parameters assumed here. As H decreases,
the extinction threshold rapidly increases, namely it requires an increasingly larger injection
velocity for the reaction to be sustained, as shown in the Figures. Conversely, at larger H,

the threshold decreases, and for sufficiently large values, multiplicity disappears altogether.

Analogous results are obtained when the heat losses are of the convective type, which would
be appropriate for a laboratory application. In fact, in such cases, the system equations are

simpler. One can combine the two applications [7], to obtain an expression for the effective
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Figure 1: Steady-state front velocity versus injection velocity for different injected oxyen concentration for

a single layer porous medium under adiabatic conditions.

325

]
0
o

Front Temperature (°C)
~
(4]

1 - I 1 1
o, 4 12

8
Injection Velocity (m/day)

Figure 2: Front temperature versus injection velocity for a single layer under non-adiabatic conditions.
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Figure 5: Schematic of the notation used for the propagation of combustion fronts in a two-layered porous

medium.

heat transfer coefficient / in a system controlled by heat conduction. In terms of the Nusselt
number, we have
1/3 32

HV

S

Nu

hH
A
Further details can be found in [7].

3 COMBUSTION IN A TWO-LAYERED POROUS
MEDIUM

Consider, now, the application of the same approach to a layered porous medium. The first

geometry to be considered is a two-layered system, as shown in the schematic of Figure 5.

The steady-state propagation of combustion in the two layers ¢ and j is considered. The layers
are homogeneous, but with different permeabilities (with layer j being more permeable), and
hence different injection velocities. In the absence of mobility variation effects, these are

proportional to the layer permeability. We assume only thermal coupling across the layers,



which will be expressed in terms of a convective-type heat model. Due to thermal coupling,
it is apparent that isolated front propagation in each layer with front velocities dictated, e.g.
by Figure 4, cannot take place. Indeed, we expect that the faster traveling front in layer j
will slow down due to heat losses to layer ¢ the front of which will accelerate until a coherent
state is reached and the front velocities are the same in each layer. In the moving coordinate
with respect to the combustion front, ¢ = z — Vpt , where « = %/, and t = #/t, are the
dimensionless space and time variables with [, = o /v; and t, = [,/v;, the dimensionless

thermal energy balances for the two layers read

AZ(% = (9;/ + 0'((9]‘ — (9,) - h,(@, - 1) (7)

A0, =074+ 0(0; —0;) — hi(; — 1) (8)

where prime denotes derivatives, and we have introduced

A =apv; — Vp = —Vp, Aj=apv; —Vp = —Vp (9)

The dimensionless parameter a < 1 represents the ratio of the volumetric heat capacity of
the gas to the solid matrix, o is the non-dimensional coefficient for the heat exchange between
the two neighboring points in the direction transverse to the propagation, and we have also

allowed for heat loss to the surroundings using the heat loss coefficients

2
o, \? o
h; =N 2 , h: =N u 1
h <szz) / " (H]"U]') ( 0)

The solution of this problem will be considered in the two different cases of adiabatic and

non-adiabatic conditions.



3.1 Adiabatic conditions

In the adiabatic case, equation (8) simplifies to

6= 0, + %(Aja; o). (11)
Inserted into equation (7) this gives the following differential equation

0" — B + DO + o BY. =0, (12)

J

where we defined

B=A,+ A, D=AA; -2 (13)
Its solution is readily obtained,

0; = &, + e 4 Gpe  Ezet (14)
where r; > 0, ry, 73 < 0 are the real roots of

r* — Br’+ Dr+0B=0 (15)
The solution for §; follows using equation (11), namely

0, = G, + 616 + Ere"¢ + E4e™¢

1 N . - . . N
4= (Aj (clrle“é + Eyree’? + 63T3€r3£) — clrfe”g — czrge’"2£ — c3r§er3£) ) (16)
o

Because of the jump conditions at the two combustion fronts, it is convenient to consider

three different regions, as shown in Figure 5. Using the far-field boundary conditions

§—>—oo : (92'2(%:91, §—>oo : (92'2(%‘:1 (17)



we then have

I. Region I
rié 1 r1ig 2,m1€
0; =0; 4+ c1e™ -|——<Ajclrle B —criet ) (18)
o)
(9]' =0;+ Cler15 (19)

II. Region II

0; = c, + c2€" + c3e™ 4 cue”?t

1
+— (Aj (czrle’"lé + e3r9e™t + C4T3€r3£) — czrfe”g — c;w%e”g — c4r§er3£) (20)
o

6, =c,+ co€"€ + i€t 4 cqe™é (21)
III. Region III

0; =1+ cse™ + g™t + % (Aj <C5T26r2£ + cergersg) — csraet — 06r§er35> (22)
0; =1+ c5e™ + ce™. (23)

To complete the problem requires formulating jump conditions across the combustion fronts.

These read as follows:

—ot + —ot ,

£ =0 ¢ IS =0 =0, 100 = —aven (0] =0 (24)
=Cox * =j- 5_5*

£ = & BISE=BITE =0 BIZE =0, (8]0 = —aVo, (25)

Because the fronts travel with the same speed (V; = V}), both the front and the distance
£.between them must be determined. In essence, these constants are the eigenvalues of this
system of ten equations (seven integration constants, &, Vp, and €r). In general, the system is
non-linear, due to the intricate dependence between front velocity and heat transfer. The ten
equations required for its solution consist of the 8 jump conditions, and the application of the
expression (4) for the front velocity twice (note that this equation remains valid, regardless
of the coupling between the two layers). Details for the solution are given in [9]. Numerical

results will be discussed in a later section.

10



3.2 Non-adiabatic conditions

Working likewise, we can formulate the problem in the presence of heat losses. Now, additional
terms describing the interaction with the surroundings must be included. Using equation (8)
to substitute §; in terms of ;, we have

h; 1

0:= (14 =)0, + = (4,05 — 07 — hj) (26)

g

inserting into (7) and re-arranging we get

(rv) i " / —
0 — B0V + B0+ PO, + GO — G =0 (27)
where
E = AZ'A]'—QO'—(hi-l-hj)
G == hzh] —I-O'(hz—l-h])

the general solution of equation (27) is

0; = 1+ e + &pe™t 4 E3e™¢ + Egem (29)
where we have identified the real roots ry, r, >0 and rs, ry <0 of

r* —Br*4+ Er*4+ Fr+G=0. (30)

Again, we have to distinguish different expressions in different regimes, which are as follows:

I. Region [

h; 1
6, =1+ (1 + —J) (cre™ +eae™) + = (Aj (clrlerl£ + c2rger25> —cyrient — cyrierat — hj)(?)l)
o o

11



6, =1+ c1€ 4 cpe™t (32)
II. Region II

b
0, =1+ (1 + —J) (cae™® 4 c4€™% 4 c5emC + cee“g)
o

1
+— (A]' (c;),rle'“g + caree™C + csrae”E + c6r4e“5>
o

—c;),rfe’"lé — c4r§er2g — c5r§er3g — cwie“g — h]-) (33)
0; = 1+ cse™ + 4™ + c5e™ + cge™ (34)

I11. Region 11
hj raé rqé 1 rsé r4& 2 _rsé 2 _ra&

O; =14+ [1+ — | (cre™ + cge™*)— (Aj (C7r36 3% 4 cgrye™ ) — crryet + cgriett — hj) (35)
% o

0; =14 cre™® + cge™. (36)

Application of the same jump conditions as before gives rise to a set of ten equations in terms
of the ten unknowns (integration constants, the distance between the fronts and the front

velocity). Details of the solution are found in [9].

3.3 Non-adiabatic, symmetric, three-layered porous medium

The same approach can be applied to the solution of a symmetric three-layered medium,
when the two outer layers have the same properties. This type of geometry is useful in the
investigation of the effect of a middle layer that plays the role of a permeable thief zone.
Because of the symmetry assumed, velocity and temperature of the outer reaction fronts are

taken to be identical, as shown in Figure 6.

Then, the governing energy balances become
AZ(% = (9;/ + O'Z'((gj' - (92) — hl((‘)l — 1) (37)

12
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Figure 6: Schematic of the notation used for the propagation of combustion fronts in a two-layered porous

medium.

AJG; = (9;/ + 0']'(02' - HJ) (38)
Working as before, equation (38) gives 0;,

1
0 =0, + —(A0. — 07). (39)

oj
Inserted into (37) gives
0\") — BOY + E0" + FO, + ohif; — oh; = 0 (40)
where

E = AZ'AJ'—O'Z'—O'J‘—hi
F = BO'J'-I-AJ'hZ'

the solution of which is obtained as before, in terms of a combination of exponentials, with

exponents the real roots ry, r, >0 and r3, ry <0 of the characteristic equation
r4—Br3—|—Er2—|—FT—I—0]~h,~ =0. (41)

The mathematical procedure is similar to the previous and will not be repeated (see [9] for

more details).

13



4 RESULTS

The numerical solution was studied using typical in situ combustion data [7, 9]. Results
were obtained for the temperature Ty and velocity V' of the fronts as well as their distance
. = & x I, in terms of the velocity (hence, permeability) ratio R = v;/v;, the thermal
coupling coefficient o, the velocity of the layers, and, in the non-adiabatic cases, the layer
thicknesses H; and H;. We considered two velocity cases, one in which the larger velocity is
fixed to v;=100m/day (case j), and another in which lower velocity v; is fixed to v;=100m/day

(case i). In either case R was varied between its limits 0 and 1.

4.1 Adiabatic Two-layer Case

The procedure applied during the calculations is explained in detail in [9]. Figures 7 and 8
show the effect of R on the temperature profiles and the front velocity for constant o, and
case j. We note the following: The system recovers the single-layer solution (with V'=1.7346
m/day) in the single-layer case R = 1 (Figure 7). Here the two fronts collapse, and their
distance is nil. When R = 0.5 (Figure 8), the separation between the fronts is clear. The
front in layer j has slowed down, and has a lower temperature than that of layer ¢, which
has accelerated to a common velocity (equal to V=1.0033 m/day). The temperature profile
is more diffuse than in the single-layer case, with heat being transferred from layer j to
layer 7 downstream and from i to j upstream. Interestingly, the temperature profile in
the lower-permeability layer has a peak, which is not present in the single-layer problem.
Nonetheless, the far-field temperature upstream is equal to the adiabatic temperature. The
common front velocity is much closer to the single-layer velocity for the lower-permeability
layer (corresponding to an injection velocity of 50m/day, rather than the arithmetic average
injection velocity of 75m/day). This reflects strong non-linear coupling effects. The effect
of the thermal coupling parameter o is shown in Figure 9. Interestingly, as o decreases the
coupling is not weakened, but rather enhanced. Clearly, the front separation has increases,

the temperature peaks increased, while the common front velocity has further increased

(V=1.0161 m/day).

14
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While these results point out to an important effect of R, the latter also depends on the actual
velocity values. Figures 10-12 show two sets of the front temperatures, front velocities and
front distance, as a function of R for 0=0.01 and the two cases j and i, respectively. Recall
that case j corresponds to fixed v;=100 m/day, while case i to fixed v;=100 m/day. Of course,
ideally one would like to have a three-dimensional plot with v; and v; as the independent
variables. However, these computations can be time consuming and in the present we will

restrict ourselves to only a few slices of this diagram.

It is clear from Figure 10 that the effect of the actual velocity levels is not great on the front
temperatures (except for that of the leading front at small values of R). In fact, the far-field
temperature behind the two fronts is not influenced at all by the variations in R or o as
its value is always the adiabatic temperature, as pointed out above. Thus, for the adiabatic
case, the temperature is roughly only a function of R. However, the effect is significant on
the front velocities and the front distance. In case j, where it is the larger injection velocity
which is kept fixed, the front velocity decreases as the smaller injection velocity decreases,
almost proportionally to it, while in case i, where the smallest velocity is fixed, the variation

is insignificant. Analogous is the effect on the front distance.

These results suggest that essentially the behavior of the system is controlled by the layer with
the smallest injection velocity, with the front velocity in particular almost being a slave of that
variable. The implications of this finding are important. For the adiabatic case they simply
affect the rate of front propagation. However, for the non-adiabatic case, discussed below,

they may have more dramatic consequences, regarding the possibility of process extinction.

4.2 Non-adiabatic Two-layer Case

Using the formulation described in the previous sections, numerical results were obtained
for the non-adiabatic case in the two-layer system. Now, in addition to the previous, an
important additional parameter is the layer thickness, which was taken in all simulations

shown as the same for the two layers.

When the layer thickness is sufficiently large (approximately 2m, for the parameters shown

16
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here) the solution of the problem and its sensitivity to R and the velocities is qualitatively
the same as in the adiabatic case. Unique solutions exist and the main difference is that
the temperature profile is more spread out, has somewhat more structure and, of course,
asymptotically tends to the initial value. Characteristic examples are shown in Figures 13-
15. The observed similarity of the non-adiabatic model results when H=2m to the results
of the adiabatic case is consistent with the results of single layer analysis — the combustion
fronts propagate as if the system is in the adiabatic mode, given that sufficient gas is injected

into the layers.

On the other hand, when the thickness becomes small, the qualitative picture changes. As
in the single-layer case, the possibility of multiplicity arises. Figures 16 and 17 show features
very similar to the single layer. Thus, for case j, where the lower injection velocity can become
sufficiently small in magnitude, extinction and ignition limits arise. The multiplicity arises
simultaneously in both fronts, and both fronts ignite and get extinct simultaneously. The
corresponding curves for case j are similar both qualitatively and quantitatively to the single
layer case. The results for case i are somewhat different. Here, because the lowest velocity
remains fixed (at 100 m/day), multiplicity does not arise until the layer thickness is sufficiently
small (contrast Figures 16 and 17). By comparing with the single-layer results, this effect is
somewhat unexpected. If we were to assume that the front basically follows the front velocity
corresponding to the lower injection velocity, the curves corresponding to case i1 could be
interpreted from the single-layer results as those corresponding to the upper branch. This
would mean that intermediate and lower branches would also exist. These do not appear in
Figure 16, although they do in Figure 17, which corresponds to a smaller thickness layer. One
infers that when the velocities are sufficiently large, the composite, two-layer system behaves
as one with an effectively larger thickness, compared to the case when the layer velocities
are relatively small. This interpretation is also supported in the velocity and front distance
curves shown in Figures 18 and 19. However, and contrary to the adiabatic case, another
effect is also present here, namely, an intrinsic heterogeneity effect through the parameter R.
For example, the above figures illustrate through case 1, that by increasing the heterogeneity

of the layers, extinction will eventually set in, even though the lower-permeability layer has
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a fixed injection velocity. This effect is non-trivial and unexpected. For completeness, we
examined the sensitivity of these results to the thermal parameter o. Very small differences

were found as o was decreased by a factor of 10.

The implications of these results are important. They point out that increasing the permeabil-
ity contrast between the layers can have dramatic effects on the propagation of a combustion
front. Namely, given an overall injection rate, and for sufficiently small layer thickness, there
is a sufficiently large permeability contrast, such that the process becomes extinct. Depend-
ing on the parameters, this contrast can be as low as 10. Strongly layered (and by extension,
strongly heterogeneous) systems may thus be not good candidates for in-situ combustion.
The above results gave only one indication of the ballpark values for this to occur. A more
systematic analysis would require the development of 3-D plots using the two velocities as

coordinates and the resulting identification of extinction and ignition limits.

4.3 Non-adiabatic Three-layer Case

For completeness, we also analyzed the symmetric, three-layer geometry. Now, the middle
layer is shielded and does not lose heat directly to the surroundings. The results obtained were
qualitatively similar to the previous non-adiabatic problem. In this geometry, we investigated
the sensitivity of the results to the ratio of the thickness of the two layer, which here were
taken unequal. In the calculations, we also kept the injection velocity of the surrounding
layers fixed, and varied v; (case i). Front temperature results are shown in Figure 20. It is
shown that when the shielding layers are thick enough (dashed lines in Figure 20) the behavior
approaches the adiabatic case, where there exists a unique solution. If the layer thickness

decreases, then multiplicity sets in, with characteristics similar to the ones discussed above.
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5 CONCLUDING REMARKS

In this report we extended the approach of [7] to heterogeneous systems, by considering the
simpler case of in-situ combustion in layered porous media. Two simple geometries were
considered, a two-layer model and a symmetric three-layer model. Analytical models were
developed to delineate the combined effects of fluid flow, reaction and heat transfer on the
dynamics of combustion fronts in the layers, using as parameters the thermal coupling between

the layers, the heat transfer to the surroundings and the permeability contrast.

We find that in layered systems, the thermal coupling between layers leads to coherent trav-
eling fronts, propagating at the same velocity. This coupling retards greatly fronts in the
more permeable layer and accelerates only slightly those in the less permeable one, until a
common front velocity is attained. In essence, the problem becomes slave to the injection
velocity in the lower permeability layer. As in the single-layer case, there exists a unique so-
lution, under adiabatic conditions, and multiple steady-state solutions, under non-adiabatic
conditions. The latter lead to ignition and extinction conditions. Importantly, for a suffi-
ciently large permeability contrast, relatively small layer thickness and under non-adiabatic
conditions, steady-state propagation in the two layers cannot be sustained, and the process
becomes extinct, even though, under the same conditions, sustained propagation would have
been predicted for the equivalent single-layer problem with the average injection velocity. In
a sense, the problem becomes controlled by the extremes of the permeability distribution.
Such behavior can be detrimental to the success of in-situ combustion in highly heteroge-
neous layered media. In addition, it raises serious questions on the ability of conventional
reservoir simulators to capture it. Conventional models average flow and kinetic behavior
over substantially large distances, where effects, such as the above, which are dominated by
the extremes of the permeability field, cannot be adequately represented. Precise conditions
for the delineation of the above behavior need to be further developed. We anticipate that
similar conclusions will hold in the case of heterogeneous media. Work in this direction is

currently in progress.
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