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INTRODUCTION

Whenever a liquid is injected into an infinite reservoir containing liquid with the same
flow properties, the equations of flow are well known. The pressures in such a system vary
over time and distance (radius) in ways that depend on the formation and liquid flow proper-
ties. Such equations are well known -- they form the basis for the voluminous well-testing
literature in petroleum engineering and ground water hydrology.

In all these equations, the early time behavior depends on the characteristics in and near
the injection well. Later in time, assuming no leakage from the formation, all these equations
approach the well known log approximation, where the dimensionless pressure varies in a way
that is proportional to the log of a dimensionless time term which includes the square of the
radial distance away from the well. This log approximation is valid sooner near the active
wells, and requires a longer time at distances further away from them.

Sﬁppose there are two wells -- one an injector and one a producer -- with identical rates.
The behavior of this system can be calculated using superposition; which merely means that
the results can be added independently of each other. Whel: this is done, the remarkable result
is that after a period of time there is a region that approaches steady state flow. Thereafter,
the pressures and flow velocities in this region stay constant. The size of this region increases
with time.

This "steady state” characteristic can be used to solve a number of interesting and useful
problems, both in heat transfer and in fluid flow. The heat transfer problems can be addressed
because the equations are identical in form. A number of such problems are solved herein for
doublet systems. In addition, concepts are presented to help solve other cases that flow logi-
cally from the problems solved herein.

It is not necessary that only two wells be involved. It turns out that any time the total
injection and production are equal, the system approaches steady state. This idea is also
addressed in these notes. A number of useful multiwell cases are addressed to present the
flavor of such solutions. Various isolated patterns give interesting results that can be analyzed
exactly, and further, can be logically compared with each other.

The nomenclature and equations used here are expressed in common petroleum engineer-
ing terms. However, it should be clear that these ideas are equally valid for problems in
ground water hydrology. In fact, in general, they are more applicable to groundwater prob-
lems; for the assumption of unity mobility ratio is almost exactly correct for groundwater prob-
lems, while it is often not true in petroleum engineering problems.







1. SHAPES OF DOUBLET CONSTANT PRESSURE LINES AND FLOW LINES

In Muscat’s book, Flow of Homogeneous Fluids p. 178, can be seen the constant pres-
sure and flow lines around an injection/production well doublet pair. A reproduction of this
figure (doubled to show the entire pressure/fiow field) is attached. This figure appears to be
made up of interlocking circles of differing radii with differing locations for their centers. It
seems worthwhile to find whether the constant pressure lines are circles, and if so, to define
their equations, and to perform the same analysis on the flow lines. This is the goal of these
notes.

1.1. CONSTANT PRESSURE LINES
Let us consider a doublet system as shown on the sketch below.

A few words about this sketch would be appropriate. The vertical dashed line in the
center goes through the origin to orient us to the coordinate system. Well 1 is an injector at
distance C along the x-axis from the origin; and similarly Well 2 is a producer along the nega-
tive x-axis at distance C. The two wells are assumed to have the same rates, q; = —Q,.
Because these two wells are equally spaced away from the origin, and because their rates are
the same, the vertical dashed line through the origin always remains at the original pressure, p;.

The point x, y is any general point in the right half (positive x) plane. We will later
assume that this general point is at a fixed pressure and find the eguation for the locus of all
points at the same pressure. ‘
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In the sketch, the symbols, 1(x, y — 1) and r(x, y — 2), may be a bit confusing. The term
(X, y— 1) is meant t0 show the radial distance from point X,y to Well 1, and similarly
(X, y — 2) is the radial distance from x, y to Well 2. 1 refer to radial distance here because the
general solutions for pressure drop are in terms of radial distance as follows:

Pp(x, ¥) = —Ei[-tp/Ir(x, y — D]F] + Eil~tp/Irx, y - 2)}3] ¢))

In Eq. 1, pp. tp and rp can be put into dimensional terms, and after a period of time the expan-
tial integrals (Ei) can be written with the logarithmic approximation. These substitutions result
in the following equation.

2rkhip, y) Pl 1| kt o - kt ' 2a)
qu 2 oucdr(x, y) - 1] oucfr(x, y) - 2]

Since the terms, k, t, ¢, L, and ¢, are the same in both log terms, Eq. 2a simplifies to,

21tkh[P(;;LY) ~pil _ L [ln[r(x, y) - 2 - Infr(x, ) - 1]2] (2b)
or, on simplifying further,
Ankhip(x, y) = pil _ p | 1%y =2) : =K’ 3
qu (x,y—-1)

Equation 3 is a simplification of Eq. 2b, but in addition it is shown to be a constant, K".
This is in recognition that we are restraining the locus of these general radii to be at a constant
pressure. We need now to find the equation of the locus of these constant pressures.

We first note that if the logarithm of this ratio is constant, then the ratio itself is a con-
stant, which we will call K, and then we merely need to define these radii ratios from the
geometry of the system.

12 )2
iy -DF _ C-0*+y _g @
ix,y-2F (C+x0*+y
It is important to notice that the r ratio used in Eq. 4 has been inverted. This is for conveni-
ence. As defined, K” could range from O to e, while K, as defined here ranges from O to 1.
When K" =0, K=0and when K" =0, K = 1.

We can now cross multiply Eq. 4, and collect like terms. The result is,

xX*1-K)-2Cx(1+K +C¥ 1 -K)+y(1-K)=0 (53)
or
2 X1 +K) 2. 2
x 2c(1_K) +C2+y?*=0 (5b)
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The terms containing x on the left side can be made into a perfect square by adding the term,
C%1 + K)*(1 - K)? to both sides of the equation. The result is,

x1+K) | CU+K? o CU+KP

2 —
*-2C 1-K 1 - Ky 1 - K)?

(6a)

(6b)

[x_ C(1+K)] ryP= 4c

(1-K K)2

Equation 6b is the general equation of a circle. Thus it clearly states that any constant
pressure locus, that is, any constant K, produces a circle. Further, this equation tells us how
these circles behave at differing pressures (differing K’s). First we see that all the circles have
their centers along the x axis where y = 0. We should have expected this, for the wells are on
the x axis and thus the solution should be vertically symmetrical.

Second, we see that the locations of the centers of the circles will depend on the value of
the pressure, that is the value of K, as follows

= Cd+K)

1-K) @

where X. = the location of the center of any constant pressure circle

From Eq. 4 we see that K approaches 1.0 when the ratio of the radii approaches 1.0.
This happens when K” in Eq. 3 approaches zero; that is, when p(X, y) approaches p,. From
Eq. 7, at this condition, x. approaches infinity. Thus this condition approaches an infinite cir-
cle with its left side at x = 0, at pressure equal to p;.

At the other limit, K approaches zero, and K” approaches infinity. This condition defines
the pressure near the injection well.

The third important aspect of Eq. 6b is that the right hand side defines the radius of each
constant pressure circle, as follows

2:
2= 3CK 4C“K

8
¢ (1—K)2 ®)

where 1. = radius of circle defined by Eq. 6(b)

Again, the results are logical and consistent. As K approaches 1.0, the radius approaches
infinity, and as K approaches zero the radius becomes smaller, approaching the point source at
Well 1. This second idea can be carried further by looking at the equation at the injection well




wherer,; << C,x=C, and y = 0. From Eq. 4, we can write

2

K=—"_<<1 ©)
20
Equation 8 then simplifies as follows
4CK fi |
2. _4CK _yee B} _ o 10
and Eq. 7 simplifies to
_~(d+K) _ 11
Xc C——-—-—( - C an

Thus the equation for the constant pressure locus at the injection wellbore simplifies to the
equation of the wellbore circle,

x-CF+y =1y 12)
just as we would expect.

Since there are so many equations here, it may be that the story they are telling us has
been lost in the mathematics. So let’s summarize what these equations are saying. First, at the
injection well the pressure is high at a circle representing the wellbore, Eq. 12. Away from the
injection well, the pressures drop, and the shapes of the constant pressure loci are still circles
as defined by Eq. 6b.

As the pressure drops, these circles get larger, and their centers move to the right of the
well. Equation 6b defines the locations of these centers and the radii of the circles. They are
functions of K which in turn is a function of the pressure. Note that the radii of the circles,
from Eq. 8, are always smaller than the values of x for their centers, Eq. 7. Thus the circles
always remain in the positive x half-plane. As the pressure in these circles approaches p;, the
initial pressure of the system, the circle becomes infinite in size with the left edge at x = 0.

No mention has been made of the picture of the left half-plane of this system. It seems

obvious that no mention is needed; the left side will be an exact mirror image of the right side,
with the pressures lower than p; rather than higher.

1.2. FLOW LINES

Since we were right in assuming the constant pressure lines were circles, it seems likely
the fiow lines also are circles. To find out if they are, we will draw a general circle through
the well doublet system, and then determine whether that circle is a flow line. A sketch of this

system is as follows.

-5-




A few words about this sketch would be appropriate. A general circle of radius, R, has
been drawn through Wells 1 and 2 and through point x, y (three points define a circle). The
circle must be symmetrical around the y axis since the wells are equally spaced. The location
of the center of the circle is indicated along the y axis at —B.

If this circle is a flow line, the pressure gradient everywhere along the circle must be
tangent to it. This is the only condition required to prove the circle is a flow line.

In general, the velocity vectors can be written as follows,

Y% _ —(dp/ox) - ap/ox (13)
u, = ~@py) ~ dpiy

The perpendicular vector to the circle at x, y can be related to the velocity vector as follows,

.‘.;5. =Bty (Bx‘“ ) (14)

¥

If the circles are flow lines, then Eq. 14 is correct. If they are not, then the equality does not
exist. Equation 14 arises from the realization that in general the slope of any perpendicular
vector is the negative inverse of the slope of the original vector. In Eq. 14, B + y is propor-
tional to the vertical component, and x is proportional to the horizontal component.

The method we will use is to define a general velocity vector equation on the circle using
Eq. 13, and then find whether that equation satisfies Eq. 14. If it does, then the circle we
assumed is correct.

We start first with the general equation for the pressure in our doublet field.

AIP®, ) P _ _ jor(c = %02 + 21 + Inl(C + %02 + ¥ (15)

qu




We can differentiate Eq. 15 with respect to x and also with respect to y, as follows.

drkh 1op| __-2(C-% _ _2C+x)

@ (9x] C-x’+y CH+x’+y

_ =2(C - x)(C + %)% - 2y%C - x) - 2(C + X)(C - x)* - 2y*C + x)
(€ - %%+ YC + x)* +y]

(16)

and

Ankh 0p | _ 2y _ 2y

QL {9y] (@C-x2+y* (C+x)?+y?
_ __2y(C+x*-2y(C-x)° an
[(C —x)? + Y2JI(C + x)? + ¥

Equation 16 can be divided by Eq. 17 to find the ratio of the pressure gradients,

ap/ox _ _ (C—x}C+ x>+ (C-x)y’+(C+x)C-x+(C+xy

dp/dy y(C + x)? - y(C - x)?

__ (€ —x)C?+2Cx +x%) + (C+ x)(C? - 2Cx + x?) + 2Cy?
y[C? + 2Cx + x2 — C%2 + 2Cx - x%]
dp/dx __2C7-2Cx2+2Cy* _ CP-xP+y? a8

opidy 4Cxy 2xy
Equation 18 tells us the equation for the gradient ratio, Eq. 13.

Next, from geometric considerations we can write the equation of the circle through the
wells and through point x, y. The equation is,

¥ +B?+x*=C? + B2 (19)
Note that Eq. 19 has its center at location, —B, in the y axis and the radius squared is
C? + B?, as it should be. Equation 19 can be solved for x2,
x2=C?2+B?-(y+B)?
=C? - y? - 2By (20)
and this definition for x? can be substituted into Eq. 18
op/ax _  C*-(C*-y?-2By)+y*

op/dy 2xy
2
=_2By+2y" Bty @1

2xy X




Note that Eq. 21 is exactly the same as Eq. 14! Thus the flow line must be along the cir-
cle at all x, y values defined by that circle. This result has even broader significance.
Remember that we did not specify the value of B. Thus we can conclude that any circle that
can be drawn through the two wells will define a flow line between them.

One last point should be made about these circular flow lines. The one 1 drew showed a
short arc from the injector to the producer. It should be clear that the circle also can traverse
an arc 180 degrees from the one shown, going down and to the right from the injection well.
This flow line will eventually reach the producer after covering a large circular path, eventially
reaching the producer from below and from the left. All circular flow paths exhibit dual direc-
tionality, and some flow paths are extremely long. The flow path that moves horizontally to
the right of the injection well follows an infinite circle coming to the producer horizontally
from the Ieft. In this case, B = <o, and of course, dp/dy = 0.

To summarize our results, the flow lines on a double are circles defined by Eq. 19. Since
they are, it should be relatively easy to trace them analytically. We should be able to calculate
the exact location of the front as it radiates away from the injection well. Using this idea, we
should also be able to calculate the time to breakthrough of any flow line and thus calculate the
production history of the injected fluids using line integrals along these known flow lines.




2. AREAL SWEEP BEHAVIOR IN A DOUBLET SYSTEM

Since we have exactly defined the equations for the constant pressure lines and the flow
lines in a steady state doublet system (injection rate = production rate), it should be possible to
use this knowledge to predict the flooding behavior of the system when the mobility ratio is
uﬁity. Actually, the concepts involved will not be limited to the doublet problem alone, but I'll
start with this because it is simplér and thus the ideas are easier to visualize and compute.

The ideas involved in predicting displacement behavior are relatively simple. They are
based on combining Darcy’s Law with a material balance to keep track of the front locations.
Darcy’s Law in vector notation in the x direction is

qx ke | 0 ﬁ
T A i [axJ M
where T, = the Darcy velocity in the x-direction

The true velocity of an injected fluid, ¥,, is greater than the Darcy velocity by a factor depend-
ing on the porosity of the system, ¢, and the change in saturation that occurs when one fluid is
displacing another, AS ,

ki k
V=2 ___ = |0F @
GAS Lo AS | ox
In general, we can define the velocity as a time derivative of distance,
dax
3
A iairs 32)
Or, upon rearranging,
dx
t=|dt=| — 3b
Ja=[Z (3b)

We can substitute Eq. 2 into Eq. 3b to get,
t=- B ¢ AS

| o @)

Equation 4a is a line integral that defines the time required for a fluid particle to move a dis-
tance x under the influence of a known pressure field, (dp/9x), which is a function of x. I’'ve
shown this line integral in the x direction only, however, it can properly be shown in any gen-
eral direction, s, or in the y direction, as follows.

1o LOAS (G uesS [

(4b)

- _h ¢ AS f
(9p/ds) (ap/BX) (aplay)
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I will continue to show the equations in the x direction for convenience in this development,
but we should not forget that the coordinate systems are interchangeable, for we will use this
idea later to calculate numbers.

2.1. AREAL SWEEP AT BREAKTHROUGH
In general, the area covered by the injected fluid as a function of time can be calculated
by a simple material balance, assuming that no injected fluid has yet been produced,

=_9qt
AT oas ©)

and when Eq. 4b is substituted into Eq. 5, the result is,

- qu¢ASj dx
hk, ¢ AS ¢ (dp/ox)

©

which relates the total area covered by the injected fluid to the distance traveled for any
streamline of interest. In particular, we can see that if the breakthrough streamline is integrated
from the injection well to the producing well, it will be possible, from Eq. 6, to calculate the
areal sweep at breakthrough. Note that the ¢ AS terms cancel in Eq. 6 as we should have
expected.

Next we need to look at the pressure field for the doublet system. With the injection well
on the positive x-axis at x = C. This equation was shown in previous notes.

47 kh
qu

Equation 7 can be differentiated with respect to x, to get,

dnkb opx,y) . _2C-x) . _2C+x)
qup ox C-x2+y (C+x?+y

[p(x, ) — pjl = — In [(C - %)? + ¥ + In [(C + X)? + y] @

=1'(x, y) @®

In Eq. 8, I've shown the actual derivative, but have also shown it symbolically as f'(x, y).
Equation 8 can be substituted into Eq. 6, and if we assume that k is isotropic as we did in Eq.
7, the result is,

dx

%, y) ®

X
A=—41tf
0

I've shown Eq. 9 as a line integral in x, but remember it can be defined along any con-
venient coordinate as shown in Eq. 4b. Note also that to tie Eq. 8 to Eq. 6, it was necessary to
assume isotropic permeabilities, since Eq. 8 makes that assumption. We should remember,
however, that a system with simple anisotropy can be changed into an equivalent isotropic

- 10 -




system by coordinate transformation, as was discussed in my notes on injectivity. So this limi-
tation is not a serious practical problem for defining the fiow behavior.

The doublet system is shown on the sketch below.

|<-—X—->
O<— C—>0«—C—>d

It should be clear from this sketch that the pressure field will be completely symmetric, with
pressures greater than p; to the right of the origin, and pressures lower than p; to the left.
Because of this behavior, the time necessary for a particle of fluid to move to the center, at
x = 0, will be exactly half the time necessary for breakthrough to the production well. Also, it
should’ be clear that the breakthrough streamline will be along the horizontal line directly
between the two wells, at y = 0. With this knowledge, Eq. 8 simplifies to,

F(K, VBt = o + o = | (10)

-+ =
C-x C+x (C*-%x?
Notice that Eq. 10 defines x from the origin while the line integral of Eq. 9 defines x from the
injection well. This problem can be handled simply by reversing the definition of dx and by
changing the limits on the integral of Eq. 9. When these changes are made and when Eq. 10
is substituted in Eq. 9 the result is,

0
A=——‘}££(C2—x2)dx

4C
30 3
.4 X 8 C
=— = | Cx-2l=4+= |CP- =
c "' c[c 3

2

The area swept at breakthrough to the producing well is obviously twice this value. Thus the
area swept at breakthrough, Apr, is

2
ABT = 4n C 12)
3
where Apt = Area swept at breakthrough

C = Distance from a well to the center.
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22. BREAKTHROUGH HISTORY

Equation 12 defines the area swept for the breakthrough streamline, which is useful, but
we would like to compare this with the behavior of the other streamlines involved in this
flooding pattern. To do this, we need to define the general line integrals for all the streamlines.
This can be done through our knowledge of the equations for the streamlines and through the
use of line integrals. Let us repeat the general picture of the flooding pattern, that we used
earlier, defining the geometry used.

\J

Any streamline is a circle, as shown on the sketch above, and as defined in previous notes. Its
center is on the y axis at location, —~B. Since it is a circle, its radius, R, is defined as follows,

R? = B? + C? (13)
and the equation of the circle is,
(v +By¥ +x*=C?+B?=R? (14a)
or
x> =C? - 2By - y? (14b)

In earlier notes, we defined the general equation for the pressure gradient in this system,
as a function of y and x. The denominators of these pressure gradients were the same whether
we were defining dp/ox or dp/dy. They were,

Denominator = [(C — x)? + y*] [(C + x)* + ¥*] (152)

which simplifies to,




Denominator = (C? — x%)? + y?(2C? + 2x2 + ¥9) (15b)

To perform the line integral, we will put this expression in terms of y only, using Eq. 14b to
substitute for x? in Eq. 15b. When these substitutions are made, after considerable algebra, the
equation simplifies to, :

Denominator = 4y*(B? + C?) = 4R? y? 15¢)
The numerator for dp/dy was defined in earlier notes to be,
Numerator for dp/9y = 2y(C — x)? - 2y(C + x)*
= -8Cxy (16a)
and when Eq. 14b is substituted, it becomes
Numerator for dp/dy = — 8Cy m (16b)
To calculate the breakthrough behavior of any streamline we can integrate from the injec-

tion well to the center, and double it, since the left and right sides are mirror images. The line
integral we need to evaluate, in y coordinates, comes from Eqs. 15c and 16b. It is.

_:[ dy _ I 4R? y? dy (17a)
©p/9y) 3 scy VC? - 2By - y?

or, since R? = C? + B?, the equation simplifies to,

=I R’y dy (170)

2C VRZ- (B + y)

Equation 17b can be expressed in more convenient variables for easier integration. Let’s

define,

z=B+y dy = dz
and when,

y=0, z=.B

When these variable changes are made, Eq. 17b becomes,

(_dy _ 1 (Re-Ba
1[ (0p/dy) 2C VRZ - 72

Zz
1 { R®zdz 1 ¢ R°Bd

=2c -2 2XLRE-2

The integrals shown in Eq. 18 are common standard forms. When evaluated and combined

(18)
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they become,

¥ z

- R’ 2_ % in! | =
! Gy =~ 2C | (R? - 25" + B sin [R] IB
D 5o PR S S in! [ 2| —sin? | B
== l:(R z%) C+B[sm [R] sin [RH] 19

In general, we are performing this integral to the time when the fluid has reached the
center of the system at x = 0. At this time, y + B = R; thus z = R, and the first term in the
brackets of Eq. 19 disappears. Thus the integral of Eq. 19 to the midpoint between the wells
becomes,

R-B

- 1[ 55/%;)-—-1323 [1-% [s Q) - sin” [%m 20)

It would be well to check on whether Eq. 20 properly degenerates to Eq. 11 as the angie
of the streamline approaches zero; that is, as the value of B approaches infinity. In general
under this condition, we can define B as follows,

B=nC @2n

where n = a large number, approaching infinity
then, R? becomes,
R2=B2+C?=n?C*+C?=(@*+1) C? (22)

Also we can cast the arc sin terms as arc tangents, for there are convenient series expressions
available for arc tangents.

(Bl _ Bl _ .
sin [R] = tan [C] tan™ (n) (23a)
sin™! (1) = tan™! (o) = % (23b)

Thus Eq. 20, at a small angle where B approaches infinity, becomes

R-B
2
- & _R,_B T oan! 24
{(ap/ay) 2{ C |2 @ @4
The infinite series expression for arc tangent n when n is large is,
tan_l(n)_——-l+—-l————1—+ P . (25)

2 n 3 50
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Substituting Eq. 25 into Eq. 24 results in,

R-B ’
(% _R Bl 11
lg (@p/dyy 2 {1 C [n [l 3n2 + oo m | (262)

and when the definitions for R and B from Egs. 21 and 22 are substituted into Eq. 26a, it
becomes,

R-B

_ dy _@+1C |, _mCl1j_ 1 1 _ 2
l (@pidy) 2 [l C [n [l 3 st m @6
=_C_2.{1+i”1-—3-+---J=-%2—[1+i] (26¢)

Equation 26¢ clearly shows that the line integral approaches the value of C%/6 as the value of n
approaches infinity. Equation 9 shows the area swept at this time as a function of a line
integral in x. However, as indicated in Egs. 4b, this line integral can be cast in any convenient
coordinates. The variable used in Eq. 26c was y. Thus the value for area swept at the time
the injected fluid reaches the center of the system is,

A=4n [-%2-] = 2"3C2 (272)

and the area swept at the time the injected fluid reaches the production well is exactly double
that value,

2 2
Agr= [2"3‘3 ] = 4"3C = 13333 x C? (27b)

Note that Eq. 27b gives exactly the same result as Eq. 12 did. Thus we have shown that Eq.
19 is a valid expression for the behavior of the flow in a general streamline.

22.1. Area Swept at Times When Various Streamlines Break Through
In general, we've shown that the following line integral, Eq. 20 is proportional to the
injection volume necessary for the injected fluid to reach the center of the pattern,

R-B

Ayl

To break through to the producing well, this value must be dovbled. In addition, to change
this integral to account for the size of the system, from Eq. 9 we must multiply by 4n. So
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the equation relating the area of fluid injected to the breakthrough streamline of interest is,

canRZl1I_B R g1 |B
A g=4n R [l C[Z sin [R}H (28)

where A, equals the area of fluid injected (and is proportional to the volume injected since ¢,
k and AS are assumed constant) at the time the streamline ¢ breaks through.,

We will look at Eq. 28 at various breakthrough angles to calculate the production history
of this pattern, but first we need to define the fractional flow relationships. To this end, it
should be clear that the fraction of injected fluid that is being produced is exactly proportional
to the angle that has just broken through. Let me illustrate by an example: Suppose that the
30° streamline has just broken through to the producing well. Clearly all the fluid being pro-
duced from 0 to 30° is now injected fluid, while all the remaining produced fluid is original
in-place fluid up to an angle of 180°. Since the breakthrough streamlines are symmetric about
the x axis, this same statement holds true for the other half of the producing well. So in this
case we can state that the fractional fiow of injection fluid being produced is,

f=—- = —— =0.1667 29)

This same general concept will hold for any breakthrougyh streamline. With this thought in
mind, we are now in a position to calculate the production history of the injected fluid.

2.2.2. Breakthrough Angle 30°

When the 30° streamline breaks through, the fractional fiow will be 0.1667, as calculated
in Eq. 29. At this angle, the values for the geometric parameters of Eq. 28 are,

R=2C
B=V3C

=167 02[1 - fgﬂ] = 16 1 C¥0.09310)

= 14896 1 C? (30)
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Note that the constant in Eq. 30, 1.4896, is only slightly greater than the breakthrough con-
stant, 1.3333, from Eq. 27b. In brief, this result tells us that the fractional flow of produced
fluid increases rapidly shortly after breakthrough. This behavior cannot continue for the entire
flood life, for it should be clear from the pattern geometry that an infinite amount of fluid must
be injected before the produced fractional flow reaches 1.0.

2.2.3. Breakthrough Angle 60°
At this breakthrough angle, the fractional flow is,

f=—=—"-=0.3333 (B

=L _¥¢C
3 3
R=2B=2{§C

2
= 58—’9‘(3— (0.29540) = 2.1088 1 C2 (32)

Again, the areal volume injected to achieve f = 0.3333 is relatively modest. Only about 1.58
times the breakthrough volume increased the fractional flow to this level.

22.4. Breakthrough Angle 90°
At this breakthrough angle, the fractional flow is

= =2 =189 _ 5000 (33)
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This breakthrough angle is interesting; for it is the case where exactly half the produced finid
is original fluid in place, and half is injected fluid. Further, the breakthrough streamline lies on
a circle centered on the origin of the coordinate system, as indicated by the geometric parame-
ters. '

B=0
R=C

‘{-g— = sin™ (0) = 0°

and Eq. 28 becomes,
Ap=4n1C*(1-0)=4nC? (34)

This volume is three times the breakthrough value, thus the fractional flow is not rising as
rapidly as it was at first, as we anticipated. Because of this behavior, subsequent calculations
will be made using smaller intervals of fractional flow and angle.

2.2.5. Breakthrough Angle 105°
At this breakthrough angle, the fractional flow is,

(35)

This is an odd angle, so the relationships between the geometric parameters will not be as sim-
ple as before. A sketch of this system might help define the geometric parameters.




Note that this streamline subtends more than half a circle. With an angle of 105°, the right tri-
angle drawn in the sketch has an angle to the well of 15° (105 - 90 = 15). Also the value of
B is now negative as we have defined it. Thus the parameters can be defined as follows.

tan (15°) = 0.26795 = — %

B=-0.26795C

and,
o C
cos (15°) = 0.965932 = ®

or,
R =1.03528 C

Using these parameters in the breakthrough equation, Eq. 28, we get,

15(2n)
Ayos = 47(1.03528 C)2 |1+ 0.2 I 2

= 4.28722 ® C? [1 + 0.26795 (0.58333 7))

= 6.3924 n C? (36)

Notice, in Eq. 36, that since B/C is now negative, the bracket term at the right is now added to
1.00 rather than subtracted, as it was when Eq. 28 was used for angles less than 90°. Also
notice that the term, sin™! (B/R), is also added to /2, rather than subtracted, for the same rea-
son (the angle is greater than 90°). This combination of factors causes the volume injected
term to increase rapidly, as we might have suspected upon viewing the large circular segment
the injected fluid must traverse.

2.2.6. Breakthrough Angle 120°
At this angle, the fractional flow is,

f=-"—="—"=0.6667 37N
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At this angle, the parameters in the breakthrough equation are,

_p=C _¥c
V3 3
Reop=2BC

3
4 C?
R%=
3

= 11.7824 n C* 38)

Notice the volume is increasing rapidly, as expected.

2.2.7. Breakthrough Angle 135°
At this angle, the fractional flow becomes,

f=—""=2=—=0.7500 (39)

The appropriate geometric terms for Eq. 28 are,
R=V2C
R? = 2C?

B=-C

and the breakthrough equation becomes,

Ayss = 4T (2CD) {1 +1 {% + %”

= 26.8496 nC? 40)
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22.8. Breakthrough Angle 150°
At an angle of 150°, the fractional flow is,

150 _ 300
f=——==""2=0, 3 41
180 = 360 0.833 1)
The geometric parameters are,
R=2C
R? = 4C?
=-V3C
-1 B -1t '\,§ o (i
=\ = | =—-60°= - =
i [8] -7 [£5) -
and the breakthrough equation becomes,
Aqsp = 4T(4CD) {1 +V3 [% + %ﬂ
= 88.5520 n C? 42)

No further angles will be calculated, for the volume terms have already become excessive for
any practical purposes.

There were many calculations and results presented here. It would probably be best to
summarize them into a table for more close perusal, and also to graph the results to see the
breakthrough behavior. The following table summarizes those results, and the attached figure
shows them graphically.

Breakthrough Behavior of the Doublet System

Angle Fractional Injected Volume
Degrees Flow, f RIC B/C Constant
0 0 oo o 1.3333
30 0.1667 2.0 V3 1.4896
60 0.3333 2373 V313 2.1088
90 0.5000 1.0 0 40000
105 0.5833 1.03528  -0.26795 6.3924
120 0.6667 2373 313 11,7824
135 0.7500 2 -1.0 26.8496
150 0.8333 2.0 -3 88.5520
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These results clearly show that the fraction of injected fluid being produced rises quite
rapidly immediately after breakthrough, up to a fractional flow of about 30% to 50%.
Thereafter, the fractional flow rises at a rapidly declining rate such that more than 20 break-
through pore volumes are required to increase the fractional flow to 75%, and of course,
f = 1.0 requires an infinite injection volume.

23. FLOODFRONT LOCATIONS

We’ve developed equations for a doublet, which define the volume that must be injected
for breakthrough of any designated streamline. Another useful exercise would be to define the
locations of the flood fronts of the streamlines at any time (that is, at any given injection
volume). This is a general probiem that could be solved at any time, but for illustrative pur-
poses let us look at flood front locations for other streamlines at a time when the first stream-
line breaks through.

To perform this task we realize that, when the first streamline has broken through to the
production well, some of the streamlines will have gone past the center of the system at x = 0.
These will be the streamlines at small angles. Meanwhile those at large angles will not yet
have reached the center of the pattern. The angle at which this difference in behavior occurs
will peed to be defined, for the equations defining their motion will be different. So first we
will define this limiting angle.

In general, the line integral to the center of the pattern is Eq. 20,

R-B
-1 o -5 {1 "C [sm - [%H} e

and the line integral for first breakthrough, from Eq. 9 or Eq. 27b, is,
c2?
— 47 J‘ _X_ = (47) [ } (12) or (27b)

To define the streamline that has just reached the center, we set the two line integrals equal to
each other, eliminating the 47 term from Eq. 27b, since it is not included in Eq. 20,

c? R? E . _1’ . -1 _B_
—3— > {1- C [sm (1) — sin [RH} (43a)

2 .
_2|€|'_B |z _4n|B
1 3 {R} C [2 sin [RH (43b)
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There are three ratios shown in Egq. 43b, C/R, B/C and B/R. It would be convenient if we
could put all these into terms of a single ratio. This can be done easily if we recognize some
simple geometric relationships,

RZ=B%+C? (13)

and,
il | Bl = an? [ B
sin [R} tan [C} (23a)
Now Eq. 43b can be written in terms of B/C only, after a bit of simple algebra,

B 1_|B||B x_,-1|B
C2+3_{C} [C2+1] [2 tan Cﬂ (43c)

Now Eq. 43c can be solved for B/C. Since it contains the arc tangent term, the solution must
be made by trial and error. The result is,

= =0300945 - (442)
which also results in,

R

—(—:- = 1.046047 (44b)

and, the angle of this limiting streamline is,

Angle = 72.94° = 1.27298 Radians (44¢c)

2.3.1. Angle Less Than 72.94°

Streamlines for an angle less than 72.94° go beyond the center of the pattern. Thus to
calculate their line integrals it is easier if two integrations are performed. One is from the
injection well to the center. The other is the mirror image from the center to the final location.
This is done as follows.

The line integral to the center has been defined already. It is Eq. 20,

R-B
(9% __Rj, _Blx_gua|B
2[ @pdy) 2 {1 C [2 sin {RH} (20)

In the first section of these notes, this integral has been evaluated for many angles.

To calculate tiae line integral beyond the center we should recognize that it is the same as
" if we were integrating from the mirror image point to the center in the right half plane; that is,
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from the final value of y to the center. Mathematically this is the same as integrating to the
center and subtracting the integral from zero to y. The integration to the center is again Eq.
20, and the integration to y is the same as performed before, Eq. 17b.

Yy
1[ dy ___ Rydy A7)

ap/dy  2C VR - (B + y)

With the coordinate change, z = B + y, this integral has already been evaluated in Eq. 19.

y
- (a;ay) T 2c {(Rz Hi-CeB {Sﬁﬂ {%} e [%ﬂ} @

Thus, we merely subtract Eq. 19 from Eq. 20 to evalute the line integral beyond the centerline.
After canceling like terms, the result is,

2_2%_g|lE _gin?! | Z
I (ap/ay) 2C {(R " -B {2 Sin [RH} “3)

In general we’ve already shown the integral for the breakthrough streamline. For exam-
ple from Eqgs. 9 and 27b (with the 47 term removed), the integral is,

2
- (as/’;x) = % (12) or (27b)
1]

Thus, for any of the streamlines that go past the center of the system, we can now write,

2C R-B R-B
j - S z[ 9y [ 9 (462)
@o0er ~ | @ev. T ) @pova

or,
Equation 12 = Equation 20 + Equation 45 (46b)

Notice that in Eq. 46a I have subscripted the dp/dx term with BT to indicate the breakthrough
integral, and the dp/dy terms are subscripted with o to indicate they are for the angle of
interest. Equations 46a or 46b merely state, with the limits and subscripts shown, that we are
looking at these integrals at the same time. At any particular angle, in general, Egs. 12 and 20
have already been solved, so only Eq. 45 must be solved. But it would be more convenient to
write it in terms of y rather than z. With this change in variable, Eq. 45 becomes,

2 2% _pll -1 | Y+ B
j (ap/ay) el {[R -(y+B)1”*-B sin [ R H} @7

Thus the heart of the remaining calculations will be to evaluate Eq. 47 at various angles, up to

an angle of 72.9°.

- 25 -




232, Streamline Angle 15°

Definition of the fiood front shape requires accurate detail near the front where there will
be a sharp point. So I will first calculate the 15° streamline. This angle was not addressed
before, so in addition to evaluation Eq. 45 at 15° we will also need to evaluate Eq. 20 at 15°.
That will be done next.

tan 15° = % = 0.267949
B =3732051C
sin15° =< =0258819
R
R =3863703 C
1| B o_ ST
sin {R} 75 12

Thus Eq. 20 evaluated at 15° becomes,

R-B
B dy _ (3863703 C? || 5 -350s1 | B _ 52
g B0 > 1-3.73205 2T

=0.171311 C? : 48)

So for an angle of 15°, Eq. 46 becomes
¢ _omuc=X R*-(@y+BY%-B |Z —sip? | XIB 49
3 2C 2 R

Equation 49 must be solved by trial and error for y/C, remembering that R/C and B/C have
been defined already by the geometry of the system. The trial and error result is,

JCL = 0.04663 (50a)
which, from the geometry of the circular system means,

-(-’;- = 0.80609 (50b)

This same trial and error procedure can be used to solve for the locations of the fronts on
any streamlines up to 72.9°. T’ll not detail the equations and calculations involved, for they are
rather tedious if straight forward. I will, however, summarize the results in the following table.
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Calculation of Locations of Flood Fronts
at Breakthrough of a Doublet System;

Angles Less than 72.9°
Angle Integral to
, R/C B/C . y/C x/C
(degrees) Center ( X C%)
0 oo oo 0.166667 0.00000  -1.00000
15 3.863703  3.732051 0.171311 0.04663  -0.80609
30 2.000000 3 0.186201 0.17125 -0.61437
45 2 1.000000 0.214602 0.35009 -0.42102
60 213 V33 0.263600 0.55802 -0.21038

Notice in this table that I’ve labeled the x/C values with negative signs to remind us that the
fronts along these streamlines have moved beyond the center of the system. As defined in Eq.
50b, for example, x/C was positive.

23.3. Angle Greater than 72.9°

When the angle away from the injection well is greater than 72.9° the streamline remains
at the right half plane of the system, so the equation that needs to be solved is merely the fact
that Eq. 19 equals Egs. 12 or 27b (with the term, 4 =, removed) as follows,

C2 R2 2 214 .1 +B . 11B
—=—-—4[R*-(y-B -C+B|s —sin™ | — 51
3 °C {[ y-By1*-C in L——R R &)
This equation also must be solved by trail and error for y when the values of B and R are
specified for any given angle. Later, I will show the results of these calculations, but first I

need to show the line integral for the streamline that moves directly to the right of the injector
along the positive x axis away from the producer.

The flow along the horizontal line to the right is defined by a line integral in the x direc-
tion just as the breakthrough streamline was defined in Eq. 11. This equation was a line
integral defining the time to the centerline. The time to breakthrough is double that integral.
We merely need to set that time to be the same as for the fluid moving to the right, as follows,

(4} C+x
-2 £ (C? - x})dx = ! (C? - x¥)dx (52a)
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which, when integrated, becomes;

The solution to Eq. 52b is,
(53)

Equation 53 is for the distance beyond the injection well. The distance from the center is
x/C = 2.00000.

Now we can list the results of the calculations for all angles greater than 72.9°. For all
but the 180° angle, the calculations were made by trial and error using Eq. 51. To make this
presentation more complete, I'll list the results for all angles calculated from 0 to 180°.

Calculations for Locations of Flood Fronts
at Breakthrough of a Doublet System;
Angles From 0 to 180°

Integral to
B/C 2 y/C x/C
Center ( X C%)

oo o 0.166667 0.00000  -1.00000
3.863703  3.732051 0.171311 0.04663  -0.80609
2.000000 V3 0.186201 0.17125  -0.61437

2 1.000000 0.214602 0.35009 -0.42102
213 V313 0.263600 0.55802  -0.21038
1.03528  0.26795 0.76667  0.03691
1.000000 O 0.94281  0.33333
1.03528  -0.26795 1.05051  0.67779
2/\3 -V3/3 1.05775  1.05002
2 -1.00000 0.94497 141314
2.000000 -V3 0.71250  1.72061
3.863703  -3.732053 : 0.38328  1.93870
00 o 0.00 2.00000




Notice, from this table, that there is a symmetry in the values of R/C and B/C around the
90° angle as we might have expected. There are positive values for B/C below 90° and nega-
tive values above 90° due to the way we defined B. Notice that the greatest movement in the
y direction is along a streamline that lies between 105° and 120°. This is an interesting result
that one probably wouldn’t have anticipated without making the calculations.

These results are graphed in the attached figure. This figure looks a great deal like a cir-
cle with tapering wedge attached to it at the left. Although I've not done the calculations here,
it would also be interesting and instructive to look at the shapes of swept areas after break-
through. This calculation would be straight forward to accomplish. It would merely require
solving equations similar to Eqs. 46a and 51 for later times that are defined by the break-
through streamline of interest.
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Breakthrough Sweep for a Doublet
Area = 41C2/3
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3. PROBLEMS IN THE DOUBLET HALF PLANE

We’ve looked at the doublet system in some detail to see the nature of the flow lines and
constant pressure lines. We found they were circles whose equations could be defined analyti-
cally. This knowledge can be used to solve many interesting and useful flow problems related
to circles and constant pressure boundaries. In these notes, I will concentrate on problems of
interest in the half-plane. Both fluid flow and heat flow problems of interest to a petroleum
engineer are addressed.

These problems start with a very simple case which only involves a well and a constant
pressure surface. The geometries are gradually increased in complexity with a resulting
increase in complexity of the equations to be solved. The results are compared to forms com-
monly seen in the literature; and when there are differences, these differences are explained.

3.1. WELL NEAR A CONSTANT PRESSURE BOUNDARY

The simplest of these systems that we will look at, is for a well producing from a semi-
infinite system when there is a linear constant pressure boundary near the well. This problem
is exactly the same as the general injection production doublet problem discussed in earlier
notes, for that problem automatically sets up a linear constant pressure boundary halfway
between the wells. A sketch of the system is repeated below.

As stated in earlier notes, after a period of time, the pressure at any general point x, y can be
written as follows.

¢))

4mkhlp Y -p) _ [rxy =)
qu x,y -2
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In Eq. 1, the log term is inverted compared to earlier notes because the locations of the injector
and producer have been reversed. Let us look at this equation at Well 1 to calculate its pres-

sure

2
4nkh@as—p) _ 1| 2a)
qu 2C

_ 2nkh(p; — Pwr)

- 2b
9= i) (20)

You will note that this equation is exactly the same as in Craft and Hawkins’ book, "Applied
Petroleum Reservoir Engineering,” Eq. 6.40, page 299, with a slight change in nomenclature.
The figure above that equation, however, is not correct in shape. It is clear, from Muskat’s
figure and our previous notes, that the flow lines to the well must be circular segments as
shown in the figure below, repeated again from Muskat (Flow of Homogeneous Fluids
Through Porous Media,” p. 178).
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This equation is particularly useful to handle flow in a system where there is natural water
influx, or where there is a line drive water injection pattern.

Sometimes in groundwater systems, the aquifers connect directly with the sea bed or lake.
The aquifers near San Jose, California, are a case in point, where they connect with San Fran-
cisco Bay. In cases like this, Eq. 2b is an exact representation of the pressure and flow field of
the systems.

It is also clear that the breakthrough history of such systems can be calculated using ideas
similar to those in the previous section. The starting point will be the constant pressure boun-
dary at the bottom of this figure.

32. LARGE WELL RADIUS NEAR A CONSTANT PRESSURE BOUNDARY

Obviously, almost all real wells will have quite a small radius compared to the normal
spacing seen in oil and gas fields. So the large well problem, at first glance, seems unimpor-
tant. But instead, let’s consider a buried pipeline near a constant temperature surface and con-
sider the heat loss from that pipeline. Since the heat flow equation is identical in form to the
diffusivity equation we use for fluid flow, we should be able to solve this problem exactly
from our knowledge of doublet systems. First, let us show a sketch of the system using
nomenclature similar to the nomenclature we used before,

Ground Surface
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The heat flow equivalent to the steady state fluid flow equation for this system is,

, 2
27k L cr,*rg:%m[% =—-21-1nK=1n«ll_@ 3)

I

In Eq. 3, I’ve inverted the log term compared to Eq. 1 since T, is greater than T;, and the ima-
ginary well at C is an injector. Further I've changed the distance variables to y rather than x,
for the symmetry direction is reversed. The terms in the figure and the equation are,

ky = Thermal conductivity of the earth

G, = Steady state rate of heat flow from the constant temperature circle to
the constant temperature earth surface ‘

L = Length of pipeline

1,1, = Radii from the imaginary wells to the constant temperature circle

T, = Temperature of the constant temperature circle (the pipeline)

T; = Initial earth temperature -- surface temperature

Yo = Average depth of burial of the pipeline

C = Spacing of doublet point source and point sink

d = Distance from point source to center of constant temperature circle,
Yo=C

K = Constant equal to the ratio r2/tZ, defined along the constant temperature

circle. K ranges from O to 1, depending on the depth of burial.

In earlier notes I derived the equation for the constant pressure circle. It was written for
wells that were along the x axis with zero y. A similar equation can be written for the verti-
cally symmetric system sketched above. It is,

2 2
y - CaA+K)| 2 _49__K_2 @)
(1-K) 1-K
From Eq. 4, the location of the center of the circle, y,,, is defined as follows:
Y%w=C1+K)/(1-K) (5a)

and the radius of the pipeline, 1., is defined in Eq. 4 as,

12 = 4C%K/(1 - K)?

or

1, = 2CVK/(1 - K) (6)




If we can find a way to relate K to r, and yp, then Eq. 3 can be put into useful terms to
calculate the heat loss rate from the pipeline. This can be done by relating d to the variables.
From Eq. 5a,

Vw=C+d=C1 + Kyl -K) (5b)

and upon rearranging Eq. 5b, we get,

_CU+K) _.__2KC ;
=0-% a-K @

Now we can divide Eq. 6 by Eq. 7 to get,

I _ 20K (1-K) _
d (1-K 2KC = 1K (8a)

or,

2
% =K (8b)
re

which relates K to r, and d in the figure.

Equation 8 relates d and 1, to K. But since, from the geometry of the system, we can
relate d to y, and C, we can write '

a_»_C_g ©)

The ratio C/r, is known from Eq. 6, and when this definition is substituted into Eq. 9, we get,

» (A-K _x
—-_—a =~K 10a
I, 2K (102
which when rearranged becomes,
1 2%
— +1=0 10b
K~ 1K (1o0)

Equation 10b is a quadratic in VI/K, which from Eq. 3, is exactly the term we need to solve
for. Its solution is :

1 ¥b Y
—_— — ‘ybll' -1 11
VK 1 J an
and when Eq. 11 is substituted into Eq. 3 and the equation is rearranged, the result is,
2k, L (T, - T;
.= T (12)

q.h =
In [%b— + \j()’b/r,)z - l]

€
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which defines the steady state heat loss from a buried pipeline as a function of the important
parameters.

‘We would expect that, if the depth of buriel was great compared to the pipeline radius,
then the log resistance term would look like the well problem solved earlier in these notes.
And it does. At this condition yy/r, would be considerably greater than 1, so the log term of
Eq. 12 wouid simplify to, '

In 2y /re) - 13)
which is identical in form to Eq. 2b of these notes.

It should be of interest to determine when Eq. 12 is necessary and when Eq. 13 is ade-
quate. This can be calculated from the log terms, as shown in the following table.

Accuracy of Eq. 13 Compared to Eq. 12

2
1.5 2.618034 30 | 146 0.962424 . | 1098612 | 142
20 3.732051 4.0 72 1.316958 1.386294 5.3
25 4.791288 50 44 1.566799 1.609438 27
3.0 5.828427 6.0 29 1.762747 1.791759 1.6
4.0 7.872983 8.0 1.6 2.063437 2079442 | 08

Notice that the approximate equation (Eq. 13) is surprisingly accurate even at modest
burial depths. This result may not be too surprising when we consider how rapidly the pres-
sures from the point source solution approach those of a finite radius solution as we move
away from the wellbore. Of course, these are not quite the same problems, but the distance
relations should be expected to behave similarly.

33. WELL OFF CENTER IN A CONSTANT PRESSURE CIRCLE

When a constant rate well is being produced from a constant pressure circle, this is the
same as a steady state doublet system if we were to look only at the well and one of the con-
stant pressure circles in that system. So a sketch of the system can be shown as follows, with
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the important variables shown on the sketch.
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The careful reader will notice that the geometry of this system is identical to that of the buried
pipeline (with x and y interchanged). However, the emphasis is different, for we are interested
in the pressure drop from the well to the circle rather than from the circle to the constant, p;, as
we were in the pipeline problem.

To solve this problem, we can write the equaﬁon for the pressure drop from the well to
the center at p;, write the equation for the pressure drop from the circle to p;, and subtract them
from each other. The equation for the pressure drop from the well (at C) to p; is Eq. 2a of
these notes, where below I've divided both sides of the equation by two.

2k h(Des — D) [rwi]
=In

20)

qu 2C

The pressure drop from the constant pressure circle to the constant pressure, p;, is the
same in form as Eq. 3, but it must be written in fluid flow terms, and with the signs reversed,
since the flow direction is reversed.

2rkh@.-p) _ 1

— InK =InVK (3a)
qp 2
Subtracting Eq. 2c from Eq. 3a, we get,
.
2nkh 2C
@ —pwp) = VK +1n | ==
qu o Pt ‘rwi
= | 20K 14)
Twi J
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Earlier in these notes, we showed that C could be related to 1, and K by Eq. 6.

1, = 2CVK/(1 - K) (6)
or
(1 - K)
2C = " (62)
VK
Thus upon substituting Eq. 6a, the log term in Eq. 14 becomes,
T
In [ZCFK] ——In [—?- a- K)] (15a)
Tof Taf .

and K was defined in Eq. 8b in terms of d and r,. When this definition is substituted into Eq.

15a it becomes,
I .re d2
In|—Q-K)=Ih|— 1--—7 (15b)
Tt Twt I,

So the pressure drop equation, from Eq. 14, becomes,

T
In|{— |1~ = :
Twf I;

Compare Eg. 16 with Eq. 6.39, p. 299 of Craft and Hawkins (Applied Petroleum Reser-
voir Engineering). At first glance, they look the same, but they are not. When one looks at
the productivity ratio (PR) equation you can see that they treated their equivalent of Eq. 16 as
thought the term 1 — d%r? was outside the log rather than inside it. Muskat (Flow of Homo-
geneous Fluids Through Porous Media,” p. 172, Eq. 11) derived the equation and wrote it
correctly.

The productivity ratio (PR) as shown by Craft and Hawkins is,

2

T,
PR = — : > an
;- d
1t should be,
1 Tw
PR = — (M) (18)
I, d?
In|l— |1- ——2' .
) I,

In the sentence below their Eq. 6.39, Craft and Hawkins point out that the effect of having a
well off center from the circle is minor. A well 100 ft. off center in a 660 ft. radius circle
will have a PR of 1.023 by their calculation using Eq. 17. Actually, that off center effect is

- 38 -




even less than they calculate. From Eq. 18, it is clear that the PR depends on the r/r,, ratio.
The PR will range from 1.005 to 1.0025 as the r./r,, ratio ranges from 100 to 10,000.

The off center effect is really negligible for practical purposes. This is both good and
bad news. It means that simple equations can be used to calculate production rates even when
wells are not centered in the system. That’s good news. Unfortunately, it also means that from
productivity alone, it is hard to distinguish whether the well is producing from a nonsymmetric
system. Thus other means are necessary; geologic data, or transient welltesting are the most
useful.

3.4. HEAT LOSS FROM A STEAM INJECTION WELL

Typically in steam injection wells, the steam is injected down tubing. The annular space
between the tubing and casing is often filled with an insulating material to reduce the heat loss
rate, and also to protect the casing from the great forces caused by a rise in casing temperature.
These forces arise because the hot casing wants to elongate from thermal expansion, and can’t
be allowed to. There are many documented cases of unprotected thermal wellheads "growing”
5 to 10 feet out of the ground.

Unless special precautions are taken, the tubing will not necessarily hang directly in the
center of the casing; thus the heat transfer rate between two off-center cylinders is a problem
of practical interest to petroleum engineers. This, t0o, is a doublet problem as can be seen in
the sketch below.

O= C
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A procedure that can be used to write the equation for the heat flow rate between these
two circles is similar to that used before, except now there are two circles at the temperature
boundaries of interest. We can write two equations which include the important parameters of
these circles. First, let’s write the heat flow equations from an imaginary injection point to the
circles. They will be identical in form to Eq. 16 of these notes using heat flow nomenclature
and reversing the sign since I've shown an injection well at x = C rather than a producer, as I
did in Eq. 16. For Circle 1, the equation is

2nk,L I af
- =1n |- |1 -— 19
@ Ty -T)=In l:rwi [ 2 (19)
and for Circle 2, it is
2nk, L T a?
b o -Ty)=m {—‘2- [1 - —g—H (20)
qb rWi rez

The temperatures of interest are T,; and T.,, which we can solve for by subtracting Eq. 19
from Eq. 20, as follows,

27k, L fro (1 — d2a)]
2 (Tel - eﬁ =In =2 22 2
Gn [re; (1 —di/r5)]
[rel - d%)}

=In |- =2

2 2
I (re; — di)

(21)

Equation 21 gives temperature drop as a function of the important parameters. But it
contains two variables, d, and d,, and it is only one equation. Another equation is needed.
The obvious one to consider is the equation for the temperature drop from the circles to the
center of the system, which will be the same form as Eq. 3 of these notes. When Eq. 3 is writ-
ten in heat transfer terms for the two circles of this system, it becomes

Tl Ty =T =In [—Z‘i} 22)
1
and
2L o, Ty = T, = In [%2-] 23)
2

Note that, in Egs. 22 and 23, I have invoked the fact that VK = d/r,, from Eq. 8 of these notes.
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Now we can solve for the temperature drop between the circles by subtracting Eg. 23
from Eg. 22, as seen below.

2nk, L d;

(T -To) = {—’i-——] =In {“—’ 3] 4)

d 1 I 4

Note that the left-hand sides of Egs. 21 and 24 are identical. Thus the log terms must also be
identical. This leads to,

In |2 Lol | |2t %2 (252)
n T, 2 _q2t| r, @
e2 | To1 —dj 2 U
or,
2 42
rezL_diz ) (25b)
th~-df G

Thus we have an equation that directly relates d; to d,. A further relation comes from defining
the distance off center for the tubing inside the casing, which we would expect to be an impor-
tant parameter in the heat transfer process. Calling this distance, 1., from the sketch of the
system, it is obvious that,

dz =Toc + dl (26)

This definition can be substituted into Eq. 25b resulting in an equation for d; as a function of

the important parameters, I, I; and 1. After considerable algebra, the equation becomes,
2 _ .2 _ .2
Ty —Ta1 =T,
az - 2 ~ 5 ~ Too) d; +13=0 @7

Toc

This is a quadratic equation in d,. For the parameters of interest to us, the negative square
root term is the one to use. So the solution is,

2 _ 2 _ 2 y N A v NIy N
(@ =15 =15 = NS — T — T — 41 15,

d = 2l ° (282)
0C
_ 1513 —12 —\Nth+1d + 13 - 2515 - A% (5 +12) 280)
21,
From Eq. 26 we get,

4 - _ 2r2
z—rx+d1——+d1 (293)

21,
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and when substituting Eq. 28b into Eq. 29a we get,

2 2 r: ST S |
d, = (fez =T+ rgc) = VreZ + T +To — e22re21 = 2r§c(re21 + fezz)
2 2roc

(29b)

Notice that the only difference between Eq. 29b and 28b is the sign on the r2 term outside the
square root.

Equations 28b and 29b can be substituted into the argument of the log term in Eq. 24 to
get,

(30

2 2 2 4 4 4 L .4 L tnl 2
Terdy _ {ﬁ] Te — Tei + Toc = VI3 + Top + To— 20eaTey — 205 (1 + Tp)

Te2d; 2

2 2 4 4 4 2 o4 p3 Z iy 2R
T2} |18 =~ 18 — T — ‘erz + Ty + Toe — 20 Tey — 20 (T + 1gh)

For calculational convenience, Eq. 30 can be divided top and bottom by r,zz , as follows,

Rokolual)
J 2 e e2 (1a)

Equation 31b is the log term for the heat flow equation, Eq. 21 or 24. So the heat flow rate is,
2nk, L(Te) = Te))

(32)

= T, 12 T, 1° T, : T, T, < T, <
SO e R - Y DR I O R - O POV (Il 3
81 Te2 | Te2 | _Te2 Te2 | Te2 Te2
tn T ) [ree]? T T ] [,
1= =2 === o D= =] | =22 {242 SL ===
Tea ] {Te2, | Te2 Te2 (Te2] [Te2

3.4.1. Limits at Boundaries

It is important to find out whether Egs. 31b and 32 properly degenerate to the correct
equation at the limits as r,, ranges from zero to 1y — T;. When 1 is zero, the log term (Eq.
31b) should degenerate to r../r,;, the resistance term when the tubing is in the center of the
casing. At the other limit, when r =1, = 1;, the tubing is touching the casing, and there is
no resistance to heat flow; so the log term should be exactly equal to 1.0.




Let’s first look at the log term when . = 0. Equation 31b then simplifies to,
‘ 2
o B2E I | PO RO 8 I I
Tey dz _ [rd] Teo Te2

To & (T2 {1-[21]2— N ECY N
Te2 Ie2
Te1 0
=11 1Y . 33

Thus Eq. 31b becomes indeterminate. But it can be solved by looking at the terms in Eq. 31b
as r,J/r.; approaches zero. First we will look at the square root term in both the numerator and

denominator. At the limit, the ratio 1 /r.; is small compared to 1 - (r/r;)>. Thus we can

rearrange the square root term as follows,

T e ar e | P ]
Rl EREINE T

Since (1o/fe2)? is small compared to 1.0, this square root term can be treated as follows,
Vica=z1-an2 35)

0 o = O s 2
-l (2]

Since (ro/Tep)” is small compared to the other two terms, in the numerator bracket on the
right-hand side, ES 36a simplifies to,

ol ol O = = R

to become,

Tei1 Te1

1-|= 1-|=2

T2 T2

Equation 36b can be substituted into Eq. 34 and that, in turn, can be substituted into Eq.
31b to get,

= 2+ T | L[z L oDt + e
Tel d2 Te1 Te2 Te2 Te2 [1 - (rel/ re2)2]2
— =1 ) 3 ) 3 (373)
e2d2 S5 PR ROF N 0 I PR 0.1 I | PO (Toc/Te2)[ 14 (Ter/1e2) ]
Tez Te2 Te2 [1 - (re/rep)’F
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which simplifies to,

el Jy [zl Loi’nﬂrel/rezﬁ}
fe1dz _ | I T2 te) | (Te) O-Gafa)]
- ’“}2 1| ! +[f_oc_]2 llﬂrelfraf]}

T
I T [~ /r)’]

AR ol il Gl

T2d; T2

2
Toc Tey + Toc

|2 (1=

Ie2 I Ie2

2 £°_E.
T2

I2d;

Ly dZ [rel

T2 | | Te2

Thus Eq. 31b properly degenerates to the ratio, r./f;, as it should when 1, = 0; that is, when
the tubing is in the center of the casing.

Now let’s consider Eq. 31b when the tubing lies against the casing. Under that cir-
cumstance, the following equation holds,

Ioc =T —I4 (383)

2 2
I 2r I
oc =1= el + el
Te2 I Te2

We can substitute Eq. 38c into the square root terms of Eq. 31b, as follows,

el bl e el Tl bl 22

bl




Equation 39c shows that the square root terms in Eq. 31b are zero when the tubing lays along
the casing. Thus Eq. 31b simplifies to,

Eodc)
Taady T | Te | Ty
EaCIR e
| Te2 | T2
and when Eq. 38c is substituted into Eq. 40a, it becomes,
e et
LGy _ [rel] L L%, o] [fe

=] L (40b)
fety 5 U M It
i reZJ I Ie2

E[ff‘_] 1_ =1 (40c)

(40a)

T2

Thus the equation properly approaches the limit of 1.0 as the tubing approaches the casing
wall.

3.4.2. Final Heat Transfer Results

Clearly, Eq. 32 gives the correct expression for the heat transfer rate between the two off
center cylinders. It would be useful to find out how the log resistance term varies as the tub-
ing moves off center in the casing. To look at this in detail, I will consider two cases; one
will be for r,/r,; = 4.0 and the other for r,/r,; = 2.0. ' This is about as broad a range as we
would normally see in steam injection wells. 1’1l not bother to detail the calculations involved.
They are straightforward, though a bit tedious. The results are shown in the following table
and graph. Additional approximate results, which will be discussed later, are also included in
this table.
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Equivalent Radius Ratios
Exact Values and Approximate Values from Eq. 41

Teoffe; = 2.0 . Ieoffe; = 4.0
Equiv. r ratio % Error Equiv. r ratio % Error
Tod/Te2 Tod/Te
Ee/fer)eq, Eq. 41 (Cer/Ter)eq. Eq. 41
0 2.0000 0.00 0.00 4.0000 0.00
0.0625 1.9896 -0.11 0.10 3.9573 -0.24
0.1250 1.9580 -0.16 0.20 3.8288 -0.38
0.1875 1.9047 -0.09 0.30 3.6132 -0.30
0.2500 1.8279 0.08 0.40 3.3077 -0.02
0.3125 1.7250 0.30 0.50 2.9059 041
0.3750 1.5897 0.48 0.60 2.3919 081
0.4375 1.4059 0.40 0.70 ‘ 1.7027 0.45
0.46875 1.2782 0.06 0.725 1.4860 -0.14
0.484375 1.1914 -028 | 0.7375 1.3124 -0.65
0.4921875 1.1325 -0.52 0.74375 1.2128 -0.97
0.5000 1.0000 0.00 0.75 1.0000 0.00

Notice the ends of the columns in this table. There are more values listed as the tubing
approaches the casing wall. These are there to better define the drop in resistance under this
circumstance. It is clear from the results in this table, and the attached graph, that the
offcenter effect is quite modest until the tubing has moved approximately halfway toward the
wall. Thereafter the resistance drops rapidly, particularly during the last fifteen percent, or so,
of its total possible movement.

The message these results give us is that the offcenter tubing effect can be serious if the
twbing is lying on or very near the casing, but it is not necessary that it be exactly centered in
the system. Clearly, however, some means should be used to keep the tubing away from the
casing inner surface.
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3.43. Approximation to Equations 31 and 32

Equations 31 and 32 give us the means to calculate heat transfer between tubing and cas-
ing when the tubing is not centered. It is clear, from the table on the last page, that the
equivalent radius ratio ranges from the actual value of rp/ro; to 1.00 as the tubing moves off
center. Equation 31, which is the argument of the log term in Eq. 32, is rather complex, how-
ever; it is a pain to solve. Realizing this, I have developed an empirical equation to approxi-
mate Eq. 31, the argument of the log term, for the equivalent I,/T,;, denoted (L,3/Tey)eq in the
equation. It too, is a bit complex, but is considerably simpler than Eqgs. 31 and 32. Itis,

70.568

[ 14 14 ' 0.568
[r_eZ_} - {—rez i“:z_ -1- &E.
Le1 el Tei Te1
€q - € 3
Ni/a - 1_ -~ N (41)
1- L2 2 -1
rel‘ | Te1

I have tested this equation for r,,/r,; ranging from 1.5 to 5.0, and for 1, ranging from 0
to r,, —I,;. This is a broader range than we would generally expect to see in Wells, but the
equation seems to hold well over this entire range. The maximum error calculated in (f.2/Te)eqs
using this equation was less than 1%. In the table on the previous page, I've shown a listing
of these errors for r.y/r,; equal to 2.0 and 4.0. To use this equation (Eq. 41), the calculated
value of (T/T1)eq. replaces Eq. 31 and is substituted into the log term of Eq. 32.

3.5. ADDITIONAL WELLS IN A CONSTANT PRESSURE CIRCLE

If there are two or more wells injecting into, or producing from, a constant pressure Cir-
cle, the pressure at each well is a simple superposition of the effect of that well plus the
interference effect of the offset wells. Thus it is important to determine that interference effect.
It turns out that the geometry and mathematics of this interference effect is similar to the
offcenter radial heat flow problem we just solved. Let me show this idea in the following
diagrams.




In the above sketch, I've shown Well a off center in the large circle whose radius is 1.
Well b is another well in that circle which is also off center. We are interested in the pressure
effect of Well b on Well a. As far as Well b is concerned, Well a could be anywhere in the
circle defined by d; and r.;. The interference effect will be the same anywhere on that circle,
so we need to define the pressure there. For our equivalent heat transfer problem, we had
defined the temperature drops in terms of the two radii and the distance off center. For this
problem, we need to define the pressure drops in terms of the distance between the wells and
their distances from the center of Circle 2. Thus, although the problem is the same, the terms
that we need to solve for have changed. An enlarged sketch of this idea is shown below, with
the important variables labeled.

!‘_J_,l Center of Circle
Radius =r_,
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Notice that I've shown Well a at any general angle, 8, on the circle whose radius is ;.
The important distance variables between the wells are d,, dy, and 1y, SO our pressure drop

should be stated in terms of these variables plus the overall radius of our constant pressure sys-
tem, Iy '

The distance relations, however, contain the general angle, 6. This term can be elim-
inated as follows. First we write the general equation that relates r,,, d, G, and angle 6 on
the larger triangle of the second sketch, ‘

13 =d2+d? - 2d,d,cos® (42a)
or
d? +d2 ~13
= — 4
cos© 2d.0, 42b)

We can also write the equation for the inner triangle in the second sketch,
13 = (dy — dp)? + 42 — 2(dy, — d;) (d,) cos® (432)
and substitute Eq. 42b,

(A, — ) (@2 +dZ - 1d)
d

_ (G- d)?dy + a2y - (dy — A (@] + & — 1)
d,

13 =(d - dp*+d? -

(43b)

In my earlier notes on the off center radial heat transfer problem, I calculated the radial
resistance factors two different ways so that 1, rep, d; and d; could be related to each other.
The result was,

= (25b)
th-df 4
I will now rearrange this equation in a different way to solve for (r,lldl)z,
2 2 2
L T~ &3
— — - 44
[ 4, dd; )

or,

d

d;d,

2 2 2
T, 5> —dy +d,d
{el] - e2 2 102 (||b)




and since d, = &,

|’ oA+ @40)
g9 4,0y
Equation 43b can also be put in terms of (I./d;)?,
T’ _ @y —d)’dy+dldy - (& - d) (&7 + 05 - 1) @30
d d, df
2 2 2 2 2
= dadl_dbd1+dbdlz+dbrab-d1rab (43d)
dy di

Now Eqgs. 44¢ and 43d can be set equal to each other, with the following result,

d2d, - d2d; + d, 07 + dp13 — di13

15— d2 +dyd; = 3 (452)
1
or, upon rearranging,

15d; - 62d; + dydf = d2d; —d7d; + dy0f + dp1d - i1, (45b)

or,
@3 - d2+13) = dp13 (45¢)

or,

2.2
T.

d,d, = % fap (45d)

2 2. .2
ro—dy +15

Thus we have written an equation which relates d;, the unwanted term, to variables we
do want in our final equation. Now Eq. 45d can be substituted into Eq. 44c with the following
result,

2
La| _ Gh-d)@h-d+)+ sa)
g, &l
or,
2
Ta|'_ rh-dlth+rhth - 6irh +dle 46b)
4, &gt
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The argument of the log resistance term shown in Eq. 24 is r,; dy/r2 d; , but it would be more
convenient to square the term inside the log, and substitute Eq. 46b directly,

wP(a)_[a) rzz—azrzﬁrzbrzz-azrzﬁaza&] o
d; T2 753 dgrazb
B -Grrd .
2.2
Te2Tab

Equation 47b is the argument of the log term defining the interference effect of Well b on Well
a.

Thus the total pressure increase at Well a due to injection into both Well a and Well b
becomes the sum of the effects from both wells, as follows.

2
KD (pya =P = Guln [:ﬁ [l - %‘H

n wa Te2

% [da%dg + 1505 - d2 - df + fazb)}

Te2Tab _
The first term on the right of Eq. 48 is Eq. 16; the effect of Well a alone. The second term is
the effect of Well b on Well a from Egs. 24 and 47b. Note that the multiplier on the second

log term is %. This is because I squared the distance terms in Egs. 46 and 47.

It is interesting that Eq. 48 is not the same as stated by Muskat (Flow of Homogeneous
Fluids Through Porous Media, p. 513, Eq. 3). Muskat’s equation, slightly changed to fit the
nomenclature used here and including differing rates in the wells, is,

2nkh
11

(Pwa = P = g, In [:e ] +gpln {-r——] “9)

wa Ib

What Muskat assumed to derive this equation was that the outer boundary pressure at 1, did
not vary much over its perimeter, so an average pressure could be used. This assumption
becomes more valid as the outer boundary becomes further removed from the wells. Thus
when the distances d,, d;, and r,, are small compared to r.,, his assumption becomes more
correct. It is also clear that Eq. 48 degenerates to Eq. 49 under these conditions.

It should be of interest to see what effect Muskat’s assumption has on the resulting pres-
sure drop calculation using his Eq. 49 compared to the much more complex log terms of Eq.
48. The effect of errors in the first log term has already been discussed previously, immedi-
ately following Eq. 18 of these notes. The effect v'as found to be modest.




We need also to look at the effect of the second compléx log term compared to Muskat’s
simple expression. To test this, I have looked at two wells that are a distance 0.2r, from the
center of the constant pressure circle. They will be at varying angles from each other as
shown in the sketch below, at angles of 45°, 90°, 135° and 180°. The resulting fixed

geometric relations are as follows,

d,=d,=02r, (50
d2dZ = 0.0016 2 51

and the following table shows the magnitude of the errors.

Exact Equation Compared to Muscat’s Values

d2+d2—3 Eq. 47 Equivalent Error in
Angle 1- 222
2 ultiplyer - Radius Ratio uskat Eq.
3 ™M R Muskat Eq
oIl ) (t/tapdeq %
45° 0.943431 0.945031 0.972127 +2.87%
90° 1.000000 1.001600 1.000800 -0.08%
135° 1.056569 1.058169 1.028673 -2.79%
180° 1.080000 1.081600 1.040000 -3.85%

This table shows that the wells can be rather widely spaced away from the center of the
circle, and Muskat’s formula is reasonably accurate. Remember aiso that the actual error in
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pressure depends on the log of the terms — not the terms themselves; so the effect of the slight
errors is even smaller than this table indicates. Further, it should be remembered that the
interference effect is always modest compared to the effect of the well itself. Thus the first
term on the right hand side of Eqs. 48 and 49 is always considerably greater than the second
term.

3.5.1. Pressure Fields

It might be of interest to see how the superposed pressure fields look on a graph. Such a
graph can only be conveniently drawn if the wells lic along the common diameter at zero y
and the resulting pressures are graphed along that same diameter. Such a series of sketches is
shown below.

First, let us draw the pressure field for one well and its image as we scan in x along the
y axis. Note the horizontal dashed line in this sketch which indicates the pressure on the cir-
cumference of the circle. It is labeled, (p,),.

I
I
O<«— C1—>+—C1

!
l
!
l
l
I
!
l
I
l
l




Next we’ll draw the second well (Well b) and its image. I've made this well nearer to the

right edge of the circle, on the other side of it. Again, the constant pressure circle is shown as
a horizontal dashed line labeled, (p.)p.

Pi
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When the effects of the two wells are added together (superposition), the result is as shown on
the sketch below.

Pi

(Pe)b

Notice that the resulting pressure field calculation is very complex indeed; but that doesn’t
matter. The important point is that the circle of interest labeled, p,, retains constant pressure at
its circumference. Thus the pressure field inside the circle has its correct shape.

Clearly, Eq. 48 or alternatively Eq. 49, can be easily expanded to handle superposition
whenever there are more than two wells in a circle. The equations also will handle any combi-

nation of injectors and producers, at any rates and at any locations.
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4. ISOLATED PATTERNS

We have been discussing the doublet system, at a mobility ratio of unity, in some detail:
the shapes of the constant pressure and flow lines, the areal sweep and breakthrough behavior,
the locations of the flood fronts as the displacing fluid moves in the reservoir, and various
practical heat and fluid flow problems that can be solved using doublet geometry. The analytic
solutions we have been using are not limited to a two-well system. They can be invoked any
time the total injection and production rates are equal--as will be seen in the material presented
herein. A number of interesting multiple well patterns will be addressed.

4.1. PILOT FLOODING PATTERNS

Here, I'm going to look at several isolated patterns whose total injection and production
are equal. We will find that there is a sequence of results from those patterns that makes it
obvious what can happen when the number of wells is increased. First we will look again at
the two-spot (the doublet) in a slightly different way than before.

4.1.1. The Isolated Two-Spot (Doublet)

I’ve already shown the behavior of the two-spot in earlier notes. Here I'll change the
distance definitions slightly for reasons that will become clear when the later, more complex,
patterns are addressed. A sketch of the system is shown below.




Notice, in this sketch, that the injector is shown at the origin. The distance between the injec-
tor and producer is labeled C rather than 2C as it was in the earlier notes.

From the sketch above, the general pressure field at any x and y, using the log approxi-
mation which we have already shown is valid after a short period of time, becomes,
4nkhip(x,y) - p
qu

The pressure gradient along the x axis is,

4nkh 9p(x,0) ___ 2
qu ox C-x

=1n [(C - x)? + ¥] - In[x? + ¥ @

@

where I've also shown Eq. 2 as a general differential, £'(x), as I did before in earlier notes.

From Eq. 9 of the notes titled, Area Sweep Behavior in a Doublet System, we know that
the area swept at breakthrough is,

dx

o (€))

ABT =47 J

When substituting Eq. 2, and showing the integral to breakthrough, it becomes,

(4a)

3= 3 (4b)

3

c c3} _nc?

Notice that the constant in Eq. 4b is n/3, while it was 4n/3 in the earlier areal sweep notes.
This is because C was defined to be twice as long here as it was in those earlier notes. The
equations are the same.

We also should be interested in calculating the distance moved in the opposite direction,
away from the producer along the —x axis. The equation for the pressure gradient is the same
as before (Eq. 2), only the integration limits are changed. Further, since the time is the same,
we can set this integral equal to the breakthrough integral, from Eg. 4,

+x C

z! (C + x)xdx =£(c - x)xdx




e

X 1
22 Se
c =3 (5e)

or

Thus we have shown that, at breakthrough, the injected fluid moves half as far to the left as it
did to the right. This result is the same as we calculated in previous notes. ‘

We will be looking at a number of isolated patterns, and for these patterns we will
reverse the injection and producing wells. This idea is important for the more complex pat-
terns, but is not for the doublet system. In the doublet, when the wells are reversed, obviously

the solution is unchanged.

4.1.2. The Isolated Inverted Three-Spot

Suppose we have three wells on a line with injection at rate q in the center, and with two
producers at rate ¢/2 at distance C along the positive and negative x axis, as shown on the
sketch below,

/2
q2 cI

(3) (2)

The exponential integral solution to this problem can be written as follows,
2 : 2 2
r5(x, y-1 5 (X, y-2 5 (x, y-3 -
4nkh 5 X,y )} lEi{— DX,y )] 1 Ei[— b (X, y )J ©)

2 2

.Y)—-pl=-Ei |- = =
an px,.y)-pil 1[ ) ™

Here the nomenclature, for example, rp(x,y — 1), is meant to show the radial distance from a
general X,y point to Well 1, and the same idea holds for the other wells.
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As we already know, after a short period of tilhe the exponential integrals approach a log
form, as follows,

—Ei(-x) = In(l/x) - 0.5772 (7a)

or, for our case

Ei 15 2
- [—- —tl—)- =]n (tD) -In (I'D) - 0.5772 (7b)

Notice that when Eq. 7b is substituted into Eq. 6, the t terms all cancel; there is one +1t, term
and two —tp/2 terms. Also the constant, 0.5772, cancels for the same reason. This means that
only the log radius terms are needed to define the pressure in the system. We used this idea
earlier when developing the doublet equations, but that was only for two wells. The ideas
stated here are far more general. It is obvious that, whenever the total production and total
injection are equal, the pressure field becomes a simple summation of log radius terms, no
matter how many wells are involved. This is a powerful concept that will be used repeatedly
in these notes.

We now know, from Egs. 6 and 7, that we can immediately write the pressure equation
for this system. Writing this equation along the x axis between the injector and the right hand
producer (Well 2), we get,

dnkh[px,0)-p] = 5 1 a2y Ll 2
™ =-In(x) + I C-x*+ - W(C+x) ®

and when Eq. 8 is differentiated, with respect to x, we get,

4nkh[§p_]=_g_ 1, 1

gqu |ox x C-x C+x

and, after a bit of algebra,

2nkh |3p|__ -C?
qu [ax] x(C? - x%) o)

Again, as we have done before for the doublet, from Eq. 9b after invoking the material
balance, we can write an equation for the areal sweep,

C

Apr = 2n ! (C? - x¥)xdx

c?

2n | C%2
cz 2

21 C?
4




Equation 10b can be further simplified by dividing top and bottom by 2, but I'll leave it in this
form for reasons that will become apparent later.

From the sketch of this system, it is clear that one streamline will move vertically away
from the origin at zero x in the +y direction. We will calculate this distance inoved by writing
the pressure equation for this streamline, as follows,

4rnkh
qu
Note that there are two identical terms on the right hand side, because there are two wells of
equal strength at equal distances from the vertical centerline. When Eq. 11 is differentiated,
with respect to y, it becomes,

2
4nkh dp _ _2 22Y - -220 . (12)
qu ody Y Ci+y:  y(C*+yd)

PO.Y) Pl =-In ¥+ 2 In(C* +y) + 2 W + ) an

Now we can integrate Eq. 12 and compare it with the integral in Eq. 10a to find how far
the fluids move in the y direction,

C y
1[ (C*-xY)xdx = l[ (C? + y)ydy (13a)
or
4
SeSff
or
1 2
USSR
or
4 2
[%’—] +2 [JC_] -1=0 (13d)
Equation 13d is a quadratic in (y/C)®>. As such, its solution is,
2
[_g_] =—2+2‘J4+4=\5_1 (14a)
or
[%} T T = 064359 (140
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Thus, Eq. 14b tells us that, at breakthrough, the injected fluid for an inverted isolated three-
spot has moved 64% as far in the y direction as it moved in the x direction.

4.13. The Normal Isolated Three-Spot

Let us now invert our three-spot pattern to a normal isolated three-spot. There is produc-
tion at rate q in the center, and injection at rate g/2 at two equally spaced wells along the x
axis, as indicated on the attached sketch.

Notice, in this 'system, that the area sweep shapes look like two tear drops centered on the
injection wells. I’ve labeled general distances, x, from the right-hand injector, both toward the
producer and away from the producer.

In a manner similar to Eq. 8, we can write the equation for the pressure along the x axis
where x is defined as the distance from the right-hand injector toward the producer,

2rkhlpx)-pl _ 1. 1 _ _
m _-zlnx 2_1n(2c x) + In(C -~ x) (15)

and upon differentiating,

2rkh 3p(x) _ _
qu  dx

which after some algebra becomes,

2nkh op _ -
qu 9x (2C?2-3Cx+xHx

The breakthrough sweep calculation becomes,

C
Agr = % t[ (2C2 - 3Cx + xHx dx




or,

4

2n 2.2 3, X
Apt = | - + = 17
BT C2 Cex Cx 4 ( )

o—0

21 C?
PR LA 17¢c
4 (17¢)

Note that Eq. 17c is identical to Eq. 10b. We should have expected this result, for the pressure
fields must be exact mirror images of each other. This behavior will be true for all patterns, so
in the notes to follow, only one breakthrough sweep calculation will be made when more com-
plex patterns are addressed.

We can also calculate how far the injected fluid moves beyond Well 2 at breakthrough
into Well 1. This can be calculated as before by equating the line integrals, since the times are
the same. The pressure equation beyond Well 2 becomes,

2rkh - D
PO Bl _ 1y, Ll pacen+mEC+x (18)
qu 2 2
which, upon differentiating is,
2nkh op __ 1 _ 1 1 (192)

+
qu ox 2x 22C+x) C+x
and, when simplified is,

2nkh dp -c?
= 19
gr  9x  (2C*+3Cx+xH)x (19%)

We can now integrate Eq. 19b and set it equal to the integral in Egs. 17, with the follow-
ing result,

X

2rC? _ 21

2 = (2C?%x + 3Cx% + ) dx (20a)

(=,

o1,

4
—%4— =Cx*+Cx* + XT (20b)
or,
4 [ 33 2
X X X
Zl a|2] +4|X| =1 20

SRR R

or,




Equation 204 is a perfect square, so its square root can be taken with the result,

gz
& ++[g)--

Equation 21b is a quadratic in x/C. Iis solution is,

o1,

X _=2+v4+4 5 _,
C 2
= (041421

(21a)

(21v)

(22a)

(22b)

Notice that Eq. 22a, which gives the distance moved away from the outer well in this
three well pattern, has numbers similar to Eq. 14a, which was for the inverted pattern. The
final constant is not the same, of course, but the ¥2 — 1 term is in both expressions. It will be

interesting to see if some structural similarities of this sort will be seen in the more complex

patterns, which we will address next.

4.1.4. The Isolated Inverted Four-Spot

If we have one injector at the center at rate q and three producing wells at rates ¢/3

equally spaced at distance, C, around the injector, a sketch of the system would look as fol-

lows.

93 (3)

~ 64 -




Notice in this system, that the angles between the wells are 120°. So the distances along the x
axis are now a bit more complex to calculate, for they involve the cosines of the angles.

We can write the general pressure equation along the x axis in radius nomenclature, and
then show how to evaluate these radii. The equatior is,

4xkh[p(x)-pi]
qu

The nomenclature in Eq. 23 is as follows. For example, the term, [r2 (4 — x)], is meant to indi-

cate the radial distance squared bet§veen Well 4 and a general point x that lies on the direct

streamline between the injection well (Well 1) and Well 2. Similarly for the other radii. The

radii from Wells 1 and 2 are obvious and require no further comment, but calculating the radii

from Wells 3 and 4 is a bit more complex. From simple trigonometry, these radii are,

=-In[r1-x)]+ %m [ 2-x) +%ln PG-x}+ -;-m 2 @4-x)] (23)

2@ - x) =123 —x) = C? + x% — 2Cx cos (120°)

=C?+x*+Cx 24

So we can substitute Eq. 24 and the other definitives for the radial distances into Eq. 23,
to get,
4nkh[p(x) - p
qu
Note in Eq. 25 that I have combined Wells 3 and 4 into a single term with the constant 2/3 in
cat of the logarithm. Equation 25 can now be differentiated to get,

=—lnx2+—;—1n(C-x)2+—§—ln(C2+ x2 + Cx) 25)

2nkh () _ 1 __ 1 22x+c 263)
gu  ox x 3(€C-x 3C*+x*+Cx)

which simplifies to,

-C° (26b)
T x (')
By analogy with Eq. 10a, the areal sweep at breakthfough will be,
c ,
Apr = % 1[ (€ - Pyxdx 27a)
2 Cx2 X f_2nC O
c? 2 50 |2 5
s 2
=2 |3C ) _ 3nC (27b)
c |10 5
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Looking at the sketch above, from the symmetry of the system, it is clear the one stream-
line will move horizontally to the left of the injector along the —x axis. Two other similar

straight streamlines will move at £60° away from the injector; however, the one along the
minus x axis is easier to calculate, so we will concentrate on it.

To define this streamline it will be necessary to define its distance from Wells 3 and 4.
The angle involved is 60°, so the equation is,

2@ -x)=r’(3 -x)=C?+ x> - 2Cx 005 60° = C* + x> - Cx (28)
where the terms, r2(4 — x) and r2(3 — X), mean the distance from Wells 3 and 4 to the
streamline along the —x axis.

The equation for the pressure along this ~x axis then becomes,

-——-4’;*‘ [p(x.0) — pil = —Inx + % In(C + x? + —i— In [C? + x* ~ Cx] 29)

When Eq. 29 is differentiated, it becomes,

2rnkh op _ 1 1, 2x-C
QL 9x x  3(C+x)  3(C?+x%2-Cx)

which, after considerable algebra, simplifies to,

2zkh 3p _ _ -C

- 30b
Qu 9x  x(C3+x%) (300)

We can now use Eq. 30b to set up a line integral and set it equal to the integral in Eq. 27
since we are looking at these integrals at the same time. The result is,

X
3":5(:2 = -é—’; ! (C3 + x3)x dx

<+ —

cx? | x°
5




Equation 31d cannot be solved analytically, so it must be solved by trial and error. Its solution
is,

[-"—] =-0.72212 : (32)
c BT

The minus sign was inserted into the equation to remind us it indicates movement to the left.
As the equation was written, the solution to Eq. 31d is + 0.72212. Notice that, at break-
through, the injected fluid has moved roughly % as far to the left as it did to the right. In fact
it has moved considerably beyond the vertical straight line between Wells 3 and 4. Their dis-
tances are only 0.5C to the left.

4.1.5. The Isolated Normal Four-Spot

~ The regular isolated four-spot will have three injectors evenly spaced at rates ¢/3 and a
center producer at rate q as indicated in the sketch below.

As we’ve seen in the other patterns, the area swept at breakthrough will be the same for this
pattern as it was for the inverted four-spot. So I will only address the question of movement
in the tear-drop shape beyond the injection wells, as indicated in the figure on the right-hand
well.
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By now it should be clear how to formulate this problem. The effects of all the wells are

added, as follows,

4nkh [p(x)-pi]=——;—lnx2—%ln [C2+(C+%)%+C(C+x)] +1n(C+x)? (33a)

(1)

Zrkh px)-pl=— % lnx-——%— In(3C2+ 3Cx+x2)'+ln(C+x)

When Eq. 33b is differentiated, it becomes,
2nkh dp(x) =___1___ 3C+ 2x + 1
qQu  ox 3  33C*+3Cx+x%) C+x
-3

= (34b)
x(3C% + 6C%x + 4Cx2 + x3)

(34a)

As before we can integrate Eq. 34b over x and set it equal to the integral in Eq. 27, with
the following result,

2 X
3"5C = % t[ (3C% + 6C2x + 4Cx2 + x%) x dx

X

l[ (3C3x + 6C2x% + 4C x3 + xH dx

3C? 2 | 3C3x? 2.3 4, X
s T [ 3 +2C“x’+Cx 5

2 3 2
1 ix X X X
— =1 |12|=| +10{=| +20|=|+15|=1
Equation 35d must be solved by trial and error for x/C. Its solution is,

X
— =0.35721 36
C : (36)

We can compare Eq. 35d for the regular pattern, with Eq. 31c for the inverted pattern. I
had hoped some simple relationship could be found between them as we found for the three-
spot. Unfortunately, I could not find one.




4.1.6. Isolated Inverted Five-Spot

Let us look at an isolated inverted five-spot pattern with rate, q at a central injector and
rate, ¢/4 at each of four producers, as shown on the sketch below.

It is clear from this sketch, that the two wells above and below the injector are exactly the
same distance from the breakthrough streamline directly along the x axis. As a result, the log
approximation to the pressure field along the x axis, between the injector and the right-hand
producer, is as follows,

Ak () — pil = -Inx2 + -i—log C+ %) + —i—ln (C - x)? + %m €2+ x?) @7

qu

Notice in Eq. 37, that the two producing wells above and below the injector are shown
together by using Y in front of the log term rather than % as was used for the single right and
left producers.

To calculate the pressure gradient, Eq. 37 can be differentiated, with the following result,

Ankh px) __2 1 ___1 X 38
gL  ox x T 2C+x) 2C-x) C%2+x° 382)

which simplifies to,

2nkh opx) _ _ -C* (38b)

Qe ox  x(C*-x%




By analogy with Eq. 10a, as we have done before, the areal sweep at breakthrough will be,

C
Agr = %’{- t[ (€ - xhxdx (39a)

6
= %’% [—22—} = - (39%)

Obviously, the fraction in Eq. 39b can be further simplified from 4/6 to 2/3, but I will leave it
in this form for reasons that will become clear next.

4.1.7. - Recurrance Relations for Breakthrough Sweep

Let us look at all the breakthrough integrals we have solved so far--from the doublet to
the five-spot. The table below summarizes these calculations.

Breakthrough Integrals for Isolated Patterns

Breakthrough Areal Sweep
Integral At Breakthrough, At

Pattern

C-x)xdx

C
1[(CZ— 2y x dx

C
j(c3— 3y x dx
[V]

C

[ - xHxax anC’
[¢]

5 Spot
po 6

c

There is a remarkable family resemblance between all these results. The integrals were all
derived from the superposition of the effects of the wells; and when there are a large number
of wells, the pressure equation becomes quite lengthy. See Eq. 37, for example. However,




when the equation is differentiated it always reduces into the simple functions shown in the
table. For example, notice how Eq. 38a simplifies to Eq. 38b.

Notice the logical sequence in the table of integrals. From this table, one would presume
that the integral for, for example, the isolated seven-spot would be,

C
ABT (7—Sp0t) = —2C£6 j (C6 - X6) xdx (40a)
0

and without solving the integral, we would expect its solution to be,

2
Agr (7-Spot) = 6"8C : (40b)

and if we were to work out the problem, we would find that we were right.

Another important idea can be gleaned from the results in the table above. We can write
a general equation for the areal sweep in terms of the number of wells, n, as follows

_ @m-1=nC?
(Apphp = @+ 41)

Notice what happens to Eq. 41 as the number of wells increases toward infinity. The result is
that it degenerates to the area of the circle on which the outer wells lie. We might have antici-
pated this, but it is interesting that the breakthrough "peaks” that we see when only a few wells
are present, gradually disappear as more wells are added. Or conversely, the "tear drops” we
sec in a regular pattern, with few wells, no longer move outside the pattern as the number of
wells approaches infinity.

4.1.8. Distance Away from Producers

We should also be interested in the linear distances moved away from the breakthrough
wells at the time of breakthrough. Looking again at the sketch of the inverted five-spot patiern
and considering the symmetry of the system, it should be clear that the only streamlines that
will be straight are those that lie at 45°, 135°, 225° and 315° around the injector. Actually, it
may be easier to visualize these, and the corresponding streamlines in all the patterns, by
recognizing that these streamlines are always exactly halfway between adjacent producers.
This makes good sense from a consideration of the pressure and flow fields that must develop.
These streamlines divide the areas of influence of the producing wells, and they extend as
straight lines out to infinity.

It would be a bit tedious to calculate the straight line distance for the inverted five-spot,
for the line integral is not along a convenient coordinate. Instead, let us see if we can glean
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some information from the integrals for the previous patterns, as summarized in the following
table.

Integrals Defining Distance Moved in Inverted Patterns
Along Linear Streamlines Away From Injection Wells

System Straight Line Equation for
Integral away from Injector Distances Moved

Eq. Sa Eq. 5d

2-Spot (Doublet) %’L 'z © + ) xdx [%]2[3 v [%H -
Eq. 13a Eq. 13c

S S SO R
Eq. 31a | Eg. 31c

Inverted 4-Spot %I(C3+x3)xdx % [%]2 {:5+2 {_é_r] =1

In the second column, this table shows the form of the integrals to breakthrough for the
first three patterns. Notice that these integrals all have the same general format, with the
power functions increasing with each increase in the number of wells. Using the obvious
recursion relationship, the breakthrough integral for the inverted 5-spot would be expected to
be as follows,

2 z
4nC” _ 2n 1[(c‘brz‘*)zaz “2)

6 ct

Is Eq. 42 correct? I've not proven it is; but I'll Wager it is--at very high odds. We could
integrate Eq. 42 to show a calculation for the distance moved, z. But this, too, seems unneces-
sary. By analogy with the equations in the third column in the table above, we would expect
the equation for the distance moved to be,

(g Ll

Again I've not proven Eq. 43 is correct; but all logic says it must be.
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Based on these results we can look at the general form of the distance equations along
the linear dividing streamline at breakthrough of any inverted pattern. By analogy with Egs.
5d, 13c, 31c and 43, the equation should be, ‘

2T n-1
1 z Z =
[n — 1] [-C—} -(D+ D+2 [EJ J =1 (44a)

@+1) _z_’2+ 2 £m=1 (44b)
@-1) |C| n-1||C

or

As n approaches infinity, it is clear from Eq. 44b that z/C approaches 1.0. Thus the behavior
of these streamlines again is logical from our knowledge of the system. The system becomes a
circle and the flow within it is purely radii.

4.19. Isolated Normal Five-Spot

The geometry of an isolated normal five-spot pattern, with rate q at the center producer
and rates g/4 at the exterior injectors, is shown below in a sketch which includes the break-
through pattern.




Of course the breakthrough sweep efficiency for this pattern will be exactly the same as for the
inverted pattern, so the only term we need to calculate is the distance moved along the "tear-
drop™ at the time of breakthrough into the center well. This distance is labled, x to the right
on the figure.
The general pressure field to the right of the right-hand injector is defined as follows.
4nkh
qu '
Notice that the last term in Eq. 45 is multiplied by %2 rather than % because there are two
wells at this distance. When Eq. 45 is differentiated with respect to x, it becomes,

[p(x)—pi1=1n(c+x)2—% lnxz—i—ln(2C+x)2——%-ln [C2+C+x)3]  (45)

4nkh op(x) 2 1 1 C+x
= S - > (463)
g ox C+x 2x 22C+x) 2C*+2Cx+x
which, after considerable algebra, simplifies to,
2rkh 9p(x) _ -c! (46b)

gL  ox x(C + x) (2C + x) (2C% + 2Cx + x?)

As we have done before, we can set the time for the movement along the streamline of
Eq. 46b equal to the time for breakthrough. The resulting equation will be,

2 X
4"6(3 = % J @2C? + 2Cx + x3) (2C + %) (C + ) x dx 47a)
or,
X
= -264’-? £ (@4C*x + 10C3 x% + 10C%x® + 5Cx* + x%) dx (47b)

or, after integration and some algebra,

2 4 3 2

1 |x X X X X _

> {C} HC} +6[C] +15[C] +20[C}+12}-1 @47c)
Equation 47c¢ must be solved by trial and error for x/C. It’s solution is,

X
— = 0.31607
C 0.3160 | (48)

4.1.10. Distance Moved in Normal Patterns

Recalling that the equations for area and distance f.r the inverted patterns showed a logi-
cal sequence, it seems likely that the equations similar to Eqs. 4548 would also reveal some
symmetry for the various patterns. If so, they could be extended to a greater number of wells.
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To test this possibility, the equations and results from all the normal isolated patterns tested
thus far are listed in the following table.

Line Integral for Movement in Opposite
Direction -- Normal Isolated Pattern

Isolated Integral for x/C
Pattern Opposite Streamline at Breakthrough
X
Doublet 2-Spot [c+xxax 0.50000
0
X
Normal 3-Spot £ @2C + x)(C + x)xdx 041421
X
Normal 4-Spot ! (3C% + 3Cx + x3)(C + x) x dx 0.35721
X
Normal 5-Spot [ (2C% + 2Cx + x%) (2C + x)(C + x)xdx 0.31607
0

At first glance, no recurrence relation jumps out at the casual observer, but upon more
careful reflection, there is some logical progression in these integrals. The first integral for the
two-spot contains two terms which define the distances the line integral location is from each
well. These distances are multiplied together in the integral.

The second integral is for the three-spot pattern. It contains three terms multiplied
together, and each term is the distance from the line integral location, x , to each well. It is
interesting that we get this result. Logically we might have expected the center well to be
counted twice (that is, squared), because it is at double the rate of the other wells.

The normal four-spot does not appear to be in any logical sequence at first glance. Par-
ticularly notice that there are only three terms, while there are four wells. However, consider
the term, 3C2 + 3Cx + x% This is the square of the distance to the wells that are at angles of
+120° from the streamline of interest. There are two wells, and they a-e equally spaced, so the
effect is to multiply their distances. So again, the distances from each well are multiplied
together inside the integral. '
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Finally, we look at the five-spot. We see that there are three terms which correspond to
the three wells which lie along the x axis; the right-hand injector, the middle producer and the
left-hand injector. The additional term, 2C? + 2Cx + x2, is the square of the distance to each
well on the y axis above and below the producer. So again, in this integral, the distances from
each well are multiplied together to form the integral which defines the distance moved away
from the injectors.

These concepts can be generalized for any number of wells in a balanced pattern. We

can write an equation similar to Eq. 47a to define the distance moved away from any normal
n-spot, as follows,

2 x n
(n(; i) 11t)C - Cz“’_‘ 1 z[1;1 fr(n ~ x)] dx (49)

where the term r(n — Xx) is meant to indicate the radial distance from well n to the general loca-
tion, x, along the line integral. The symbol IT, is commonly used to indicate that all the terms
in the series are multiplied together. There is no convenient way to simplify the integral of Eq.
49 further to show how it behaves as more wells are added, however, another approach shows

some merit, as indicated next.

As formulated in Eq. 49, each pattern requires extensive multiplication and then integra-
tion. However, there is another way to formulate these distance equations. Suppose that,
instead of putting the variables in terms of x, the distance beyond the external injectors, we
were to define the variable from the center of the system. We will call this variable z, for con-
venience. Then we define,

z=C+x (50a)

dz = dx (50b)
The limits of integration then will become,

x=0 z=C (50c)

X=X z=C+x (50d)

When these definitions are substituted into the breakthrough equations for the two-spot (Eq.
5a), the normal three-spot (Eq. 20a), the normal four-spot (Eq. 35a) and the normal five-spot
(Eq. 47a), the following table results.




Line Integral for Movement in Opposite
Direction - Normal Isolated Patterns

Isolated Integral for Opposite
Pattern Streamline
Cix
Doublet (2-Spot) %" i (z-C)zdz = %
> C+x ’ Cz
Normal 3-Spot _C'12£ 2[ @ - C¥Hzdz = ==
2 Cix 3 C2
Normal 4-Spot C—’3‘ l - CHzdz = -—"5—
> C+x 4 C2
Normal 5-Spot i @ - CHzdz = 2L
ct 6
where z=C+x

This table clarifies the nature of the behavior of the flow from the injectors in the direc-
tion opposite to the producers, and further it clarifies the behavior of the patterns as more wells
are added. The general equation now becomes simply,

(n — 1)wC?
n+1)

Cax
= Cz,fx i(z““—C“‘l)zdz 51

The general integral format can be easily evaluated at any finite n, and also as n approaches
infinity. It is clear that, for the integral to be bounded as n approaches infinity, the limit C + x
must approach C. This result is as we should have anticipated.

Although these integrals are easy to perform, their evaluation still requires a trial and
error procedure. However, since the integrals are fairly simple in form, it appears they will be
easier to evaluate then Eq. 47 was, for example.
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4.1.11. Isolated Inverted Six-Spot Pattern

Since we have generalized the behavior of the patterns from the results of the two-spot
through the five-spot, it doesn’t seem necessary to look at any other patterns. But one concept
may be a bit worrisome. Remember that the distances involved included the general length of
the side of a triangle, which includes the cosine of the angle in its formulation. For example,
look at Eq. 24 of these notes. So far, all the angles used have had simple algebraic forms for
their cosines, but in general, this is not true. The six-spot is a case in point.

We will not calculate all the six-spot terms, but we will see whether the log summation
terms simplify for this system the way they did for all the other patterns. Let’s first picture the
inverted isolated six-spot.

(o) Q/ 5

a/5 o\ C

pd C

q/5O » \

O

q/5
By analogy with the patterns we have looked at before (for example, consider Eq. 25), we can
write the general pressure equation for this system as follows,

ATERIPOO =B _ s Lo - xp?
qu >

+ % In[C2 + x% — 2Cx cos (72°)]

+ % In[C? + x? — 2Cx cos (144°)] (52)




Notice the 2/5 multiplier on the terms that relate to two wells. When Eq. 52 is differentiated, it

becomes,

2rnkh dp(x) __1__ 1 + (2x-2C cos 72°) + (22x -22C cos 144°) (53)
qu  ox X 5(C-x) 5(C2+x%-2Cxc0s72°) 5(C*+x*—2Cxcos 144°)

Equation 53 is so complex that, from now on I'll discuss its numerator and denominator

separately. Its numerator is,
Eq. 53 numerator = — 5(C - x) (C? + x> - 2Cx c0s 72°)(C? + x% — 2Cx cos 144°)
— x(C? + x* - 2Cx c0s 72°) (C? + x* — 2Cx cos 144°)
+x(C = x) (2x — 2Ccos 72°)(C% + x* — 2Cx cos 144°)
+ x(C - x)(2x — 2C cos 144°) (C*+ x% — 2Cx cos 72°) (54a)
After considerable multiplication and combination of terms, Eq. 54a simplifies to,
Eq. 53 numerator = — 5C? + 4C*x — 6C%x* + 4C2x* - Cx*
~ (-8C*x + 6C%x* — 4C?x3 + 2Cx% (cos 144° + cos 72°%)
— (12C*x% - 8C?x%) (cos 72° cos 144°) (54b)
It’s clear that if we are to evaluate Eq. 54b, we need some trigonometric relationships

between cos 72° and cos 144°. One such useful relationship is,
cos 144° = 2 c0s?72° — 1 (55a)

Thus,
cos 144° + cos 72° = cos 72° + 2cos*72° - 1 (55b)

Another useful relationship is,

cos 144°cos72° = cos(l442° =729 . 008(14420 +72%) (56a)
-3 O

_ cos(272) + Los (;44) (56b)

_ cos(272 ) 4 cos3(72°) — % (56¢)

Note that in Eq. 56b, I've used the fact that cos (216°) = cos (144°). When Egs. 55b and 56¢
are substituted into Eq. 54b, it simplifies to,
Eq. 53 numerator = — 5C° — (4C*x—6C> x> +4C% x> - Cx* (1-2¢c0s72°-4c0s?72°)  (54¢)
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But it is possible to prove that,
1-2cos 72°—4cos* 12°=0 'e1)

Equation 57 is not generally true for all angles, but it is true for 72° , that is, 2n/5. Thus Eq.
54¢ simplifies to,

Eq. 53 numerator = — 5C° (54d)
just as we would have predicted.

The denominator for Eq. 53 is,

Eq. 53 denominator
5x

=(C-x) (C2+x%-2Cx c0s72°) (C*+x*~2Cxcos 144°)  (58a)

After considerable multiplication and simplification, Eq. 58a becomes,

£4. 33 GEROWIBAIOE 05— x¥ - Cx + 2C%4% - 2C2 x° + Cx*
X

— (cos 72° + cos 144°)(2C*x — 2C3x% + 2C2x3 - 2CxY

+ (cos 72° cos 144%) (4C3x2 — 4C2 x7] ' (58b)

Again we can substitute Eqgs. 55b and 56¢ into Eq. 58b, and after considerable simplification
and combining of terms, we get,

Eq. 53 denominator

— =C - %7+ C% - 2C3x% + 2C2%® - x*

+ (-2C*x + 4C3x% - 4C2%x3 + 2Cx*) (cos 72°)
+ (—4C*x + 8C3x2 — 8C2x? + 4Cx%) (c0s?72°) (58¢)

Again we can invoke Eq. 57 to eliminate most of this equation, with the result,

Eq. 53 dgr;ominator =CS_ 45

(58d)

or
Eq. 53 denominator = (C° - x°) (5x) (58¢)

Thus we can see that the equation for the pressure gradient, Eq. 53, has reduced to the expres-
sion we expected, vis.,

2rkh op(x) __ -5C° _ _ -C° _

gt 9x  5x(C-x) ([ -x«

(53b)
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To be complete, I probably ought to show the distances moved along the straight stream-
lines for both the inverted and normal isolated six-spot patterns, as we did for the other pat-
terns. [t is clear from the previous pages that the algebra would be quite tedious; and it also
seems logical that the recurrence relations we have anticipated are very likely to be correct.
That is, we should expect that the resulting cosign terms will cancel as they did in Eqgs. 54 and
58 due to the identity of Eq. 57. I've not gone through the tedious algebra to prove these
statements are correct; but again, I’ll wager they are, at very large odds.

I'll turn now to some other patterns that might be of interest to petroleum and groundwa- '
ter engineers.

4.2. THE DOUBLE DOUBLET

First 1 should define what I mean by the term "The Double Doublet.” Suppose we have
four wells on a line: two injectors and two producers. There will be an inner
injector/producer pair at one rate and an outer injector/producer pair at another rate. And the
spacing will be the same between the pairs of injectors and producers. A sketch of this idea is

shown below.
7 ' N
-Op /-qG i ac N 9D
O | 0e— C —>»=—2C >53' ;5
- X
\ D i D
\ ; /
\ ; /
~ ; _ 7

This system has interesting properties. You'll note that I have drawn a "rugby ball”
shaped dashed line on the figure. This line is there to indicate that this four well system
automatically sets up two regions. All the fluid injected at location C on the right must be pro-
duced at the inner well at distance C on the left. Also all the injected fluid at the well at dis-
tance D on the right eventually is produced at its corresponding well at distance D on the left.
Thus the inner wells carve out an impermeable barrier as far as the outer wells are concerned.
This idea was used a few years ago in the San Jose area to help limit salt wate; intrusion into
a fresh water aquifer.




This idea of a "carved out" area is so startling that it may be hard to believe, so I'll try to
prove it logically. Suppose my statement was wrong. In that case, some of the fluid from the
well at C on the right would have to eventually end up in the well at D on the left. If this
occurred, then it would be necessary that some of the fluid from the well at D on the right
would be produced at the well at C on the left. But if these two statements were true, then it
would be necessary for some of the flow lines to cross each other. And, of course, that is
impossible. Thus the carved-out zone must exist, as I’ve pictured it in the sketch above.

To date, I have not worked out the equation for this carved out zone. One might guess
that it is an elipse, but I don’t know. It is relatively easy, however to locate the stagnation
point between the wells at the distance x indicated on the diagram. We merely write the gen-
eral pressure equation and differentiate it. Then we set the derivative equal to zero to define
the no-flow distance, x, as a function of the other distance variables and the rates in the wells.

The pressure equation for this system along the x axis, is,

4nkhip(x, 0)—p;
T [pﬁ‘ )R o inC+Rt+ap D —geln (x=CY—gpIn DX (54)

and its derivative is,

2nkh op(x) _ _9c +_ 9o qc dn

L dx  C+x D+x x-C D-x (552)
and after cross multiplying,
_ 9c@*-x) x-O)+gp &’ -CH D -¥)
x2-CH@*-xh

- 2_x%(C 2__
qcD x)g +:)+30(X2 CH(D +x) (555)

& =CH (D -x9)

2D gp(x*— C? ~2Cq(D? - x2
2nkh dp(x) _ 2Dgp(x ) ~2Cq(D*~x%) (550)

u ox (X2 _ CZ) (D2 - X2)
We need to evaluate Eq. 55c, with the gradient zero, to find the stagnation point; so we set the
numerator equal to zero, as follows,

2D gp(x® - C%) = 2CqcD? - x®) (56a)
and we can solve for x,

2= CD(Dgc + Cqp)
(Cqc + Dqp)

(56b)
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It is of interest to find out how Eq. 56b behaves under various conditions. For example,
if the rates in all wells are equal, Eq. 56b degenerates to,

x? =CD (56¢)

Thus the stagnation point is at the geometric mean distance to the wells — not the arithmetic
mean, that we might have guessed. When the rate is very high in the outside wells (qp>>qc),
the stagnation point moves closer to the inner wells as we might have anticipated; and when
the rate is high in the inner wells, the stagnation point moves closer to D.

4.3. UNEQUAL WELL RATES (INVERTED THREE-WELL SYSTEM)

When the rates at the wells all differ from each other, with the total rate still equal to
zero, the idea of a steady state system still holds true, for all the terms but the log radii will
still cancel. Clearly there are a huge variety of such well arrays that could be addressed. I'll
only show two three-well systems to show how the mathematics behaves for such unbalanced
patterns. The math is considerably more complex. Consider the inverted pattern sketched
below.

-29/3

-g/3
O-= 2C 3

e ®

q
é"k— °3

For this system, it is clear that the breakthrough streamlines will lie along the x axis at zero y.
The pressure equation along the positive x axis is,

4nkh[p(x) — p;
W =Pl _ 11 c-%?+ 2Im@C + %2 - In()® 7
qu 3 3
Notice in Eq. 57 that the multipliers on the log terms indicate their individual rates. This con-
cept is always true, and has been true for all the problems addressed in this section. But it was
not emphasized before.

To get the flow rates from the injector toward the right-hand producer, we need to
differentiate Eq. 57 with respect to x as we have done before. The result is,

4nkh op ____ 2 . 4 _2
qQu dx 3(C-x) 3Q2C+x) x

(58a)

o1,

2rnkh dp - —x(2C+x)+2x(C—x)-3(C—xS(ZC+x) (58b)

qQu 9dx 3x(C-x)2C+x)
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which, after considerable simplification becomes,

2nkh 3p ___-C@C-x __ -C2C-x) (58¢)
gt 9x x(C-xQ2C+x) (x*-Cx%+2C*x)

As we have done before, we can perform a line integral to define the swept area at the time the
right-hand well breaks through. It is,

C
21 ¢ (=x% - Cx? + 2Ck)dx

o=l (59a)
After considerable algebra, Eq. 59a simplifies to,
2 C C C C dx
_ 4K 2 2 3
E-sign = o £x dx+3C£xdx+4C z[dx+8c {x-—ZC (59b)
Equation 78b, when evaluated at the limits, becomes,
o [ 3¢
(Eoright = TS5t AC3 - 8C3ln2]
= %’i % - smz] C? = 2nC? (0.288156)
= 0.576312 1 C? (59¢)

It is interesting to compare the area swept for this system to that for a balanced three-spot
and a balanced four-spot. We would expect the area swept to be greater than it is for a bal-
anced three-spot since the other well is further away and since only 1/3 of the injected fluid
moves toward the right-hand producer.

A balanced four-spot also has only 1/3 of the total fluid moving toward the right-hand
producer, but its left-hand geometry differs from this figure. In this figure, the right-hand pro-
ducer is closer to the injection well than the left-hand producer. Because of this difference in

geometry, we would expect this breakthrough to be a bit sooner than it is for a balanced four-
spot pattern.

These expectations are borne out. A balanced three-spot pattern has a breakthrough
sweep of 0.50000C?, which is smaller than Eq. 59¢ as expected. A balanced four-spot has a
breakthrough sweep of 0.60000%C? which is slightly larger than Eq. 59¢ as we thought it

might be. It is surprising that the balanced four-spot area sweep is so close to that of this pat-
tern.
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A further idea may occur to the more thoughtful reader. Since 1/3 of the total injection
moves to the right, and 2/3 to the left, it might seem that a straight line at 60° would act as
dividing streamline for this system. This idea is quite logical--but incorrect. It is correct very
close to the injeétion well but veres away from a straight line as x or y become larger. I have
not shown the mathematical proof of this statement here. The interested reader can work out
the math for himself to see if I am correct.

Next let us consider the movement to the left in an unbalanced inverted three-spot pat-
tern. We will now define x to be the distance to the left of the injector. The pressure equation
is,

Ankh 1ox,0) - pil = —In(x)? + —-ln C+x?+ -§-m @C - x)? (60)

and when differentiated with respect to x, Eq. 60 becomes,
2rkh dp _ 1 + 1 2

- (61a)
gu dx x 3(C+x) 3QC-x
— =3(C+x)(2C - x) + x(2C ~ x) — 2x(C + x) (61b)
3x(C +x)(2C —-x)
which after some algebra, becomes,
2nkh dp . —C2C+x) _ -CQC+x) (61¢c)

g x x(C+xQC-x) (-x3+Cx®+2C2x)

As before, we can now define the breakthrough sweep to the left as a line integral. It is,

2C
2% (=x3 + Cx? + 2C%x) dx

ey = — 62a
Eaer = -5 2C + x) ©22)
After considerable algebraic manipulation, Eq. 67a becomes,
5 2C 2C 2C
T x2 2 3
=<0 —x 2
Eer = 22 £ dx+3cjxdx 4C jdx+sc j (2C+x) (62b)
which, when integrated becomes,
2
(E,)_,eﬁ_—--l _X —3%1‘—-4c2x+8c31n(2c+x)f (62¢)
[ o3
EDosett = —zc':l - §§-+ 6C3 - 8C3 + 8C* In 2J
=2C£ - —1541+81n2JC = 1.757022 © C*- (624d)
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Notice that the left-hand producer breaks through far later than the right-hand producer. It
doesn’t take four times as long, as we might have first guessed since the distance is twice as
far. It actually takes about three times as long to break through.

44. UNEQUAL RATES (NORMAL THREE-WELL SYSTEM)

We can also look at exactly the same geometry as previously, but with the well rates
inverted. That is, we can have injection rates of 2q/3 and g/3 at the two outer wells, and pro-
duction rate at —q at the center well, as shown in this attached sketch.

2q/3

X <« 2C

There is no need to calculate the areas swept at breakthrough for this system. They will
be the same as they were for the inverted pattern we just discussed. We can, however, calcu-
late the distances moved to the right of the right-hand injector and to the left of the left-hand
injector along the horizontal tear drops. |

For the right-hand injector, the pressures to the right beyond the well can be written as
follows, '

4nkh[px,0) - p;
P& P _ 17 - 21GC + 0 + In(C + X (63)

qu 3 3
When Eq. 63 is differentiated with respect to x to define the velocity function, it becomes,

2nkh QB(X) =___L o 2 + 1 (642)

qu ox 3x 33C+x) C+x
which simplifies to,
2nkh 9px) _ __ -3Ct+3Cx __ -C(C-x

= 64b
qQu  ox 33C*x +4Cx +x3) X(C+x)(3C+x) (640)

Equation 64b can be integrated and its time set equal to the time to breakthrough of the
right-hand well, Eq. 59c. The result is,

X 3 2
21 C2(0.288156) = 2% ! > + 4Cx? + 3C) dx (652)
C (C - x) ,_
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which after considerable algebra, simplifies to

X X X X
0.288156 C2 = - |—[ x2dx - 5C [ xdx - 8C2 | dx + 8C3 t[ dx (65b)
C C-x
which, when integrated, becomes,
3 2
2.1 | X _5CxX° g2y _goim [E=X 65¢
0.288156C* = C { 3 ) 8C°x - 8C n[ C (65¢)
which, after further algebra, becomes,
2
1 |x X X 1
02 =—— |= | +15|=|+48; +8In 65d
=T [CJ [2 [C] [C] } 1-£ @0
Equation 65d must be solved by trial and error. Its solution is,
X
— =(0.33388 66
o (66)

It is interesting to compare this distance moved to breakthrough to the distances moved in the
tear drop shapes of the isolated normal three-spot and four-spot patterns. For the three-spot,
the distance moved is 0.41421, from Eq. 22b. For the four-spot, the distance moved is
0.35721, from Eq. 36. Note that both these results are larger than the value of 0.33388 from
Eq. 66. This result is interesting, for in the isolated four-spot, the area swept is also slightly
greater than it is for the unbalanced pattern we’ve been discussing here. Thus their shapes are
quite similar. These differences are rather modes--they differ by considerably less than 10 per-
cent. So, as a first approximation, one can assume the simpler inverted four-spot equation is
approximately correct.

Finally, we would like to look at the distance moved to the left of the left-hand injector
at the time it breaks through. This concept is illustrated by the x on the left in the sketch of
the system. The pressure equation for this x location is as follows,

4rkh [p;’;’ O-pd __ % In(x)? - %ln (3C + %% + n(2C + x)? 67)
When Eq. 67 is differentiated with respect to x, it becomes,
2% %x(i) =T '32? - 3(3c1+ D 2cl+ X (682)
which simplifies to,
2rkh 9p(x) _ _ -4C*-Cx _ _ -C@AC+X) (68b)

qu  ox 6C2x + 5Cx +x3  x(2C+x)(3C +X)
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As we have done before, we can write a line integral for the movement along this stream-
line, and set the time equal to the breakthrough time to this well, Eq. 62d. The resulting equa-
tion is,

x

1757002 w2 = 28 [ (& +5Cx* + 6C%x) dx
. =z i’

x+40)

(69a)

which, after some algebra, becomes,

x

X X X
0.878511C% = L |[x2 dx + C [ x dx + 2C2 [ dx - 8C3 | —&
C x + 4C

which, when integrated becomes,

2_1|x  Cx 2 gcdyy |XE4C
O.878511C—C[3 + 5 +2C“x - 8C ln[ aC H

and, after further algebra, the equation becomes,

] 2 4+_)£.
X X X C
A = e | e— — — -— ]
0.878511 5 [C} {2 [C] +3 [C}+12} 8In

Equation 69d must be solved by trial and error. Its solution is,

% = 092552 (70)
We should find it interesting to compare this distance to the distances moved for a two-spot
(double) and a balanced three-spot pattern. From the geometry and rates in the system, we
would expect that behavior to lie between these two patterns. Further, we should expect the
result of Eq. 70 to lie nearer to the two-spot than the three-spot, since the right-hand well
would be expected to have a minor effect. This supposition is found to be correct. In Eq. 5e
of these notes the value of x/C was 0.5000. But remember that the spacing between the wells
was only C rather than 2C as it is here. So the equivalent distance is 1.0000, slightly greater
than Eq. 70, as we speculated.

For the balanced three-spot the distance, from Eq. 22b , is x/C = 0.41421. Again we
should double this number for the doubled spacing, with the result that the constant is 0.82843,
smaller than Eq. 70 as we speculated. Further, as we speculated, the behavior of the left hand
side of this pattern is somewhat closer to the doublet behavior than it is to the three-spot.




4.5. CONCLUDING REMARKS

We have looked at a host of balanced patterns at unity mobility ratio in this set of notes.
The geometries and rates ranged broadly. But we found that, whenever total production and
injection are equal, we can gain considerable insight on the flow equations and the fluid move-
ment. It is common to treat problems of this type using finite difference computer calculations.
Often this is not necessary; and also, often such calculations have been found to be in error
because of the sizes of grid blocks necessary. The insight these analytic expressions give us
can be useful, in themselves, to solve real problems; and they also can be used as checks to
assess the accuracy of finite difference calculations.
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