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ABSTRACT

Thermal methods, and particularly steam injection, are currently recognized as the most promis-
ing for the efficient recovery of heavy oil. Despite significant progress, however, important technical
issues remain open. Specifically, still inadequate is our knowledge of the complex interaction be-
tween porous media and the various fluids of thermal recovery (steam, water, heavy oil, gases,
and chemicals). While, the interplay of heat transfer and fluid flow with pore- and macro-scale
heterogeneity is largely unexplored.

The objectives of this contract are to continue previous work and to carry out new fundamental
studies in the following areas of interest to thermal recovery: displacement and flow properties of
fluids involving phase change (condensation-evaporation) in porous media; flow properties of mobil-
ity control fluids (such as foam); and the effect of reservoir heterogeneity on thermal recovery. The
specific projects are motivated by and address the need to improve heavy oil recovery from typical
reservoirs as well as less conventional fractured reservoirs producing from vertical or horizontal
wells,

This report covers work performed in the past year in these three areas. In the area of vapor-
liquid flow, we present the continuation of work on the pore network modeling of bubble growth in
porous media driven by the application of a prescribed heat flux or superheat. The scaling of bubble
growth in porous media is also discussed. In another study we study the problem of steam injection
in fractured systems using visualization in micromodels. The interplay of drainage, imbibition and
bubble growth problems is discussed. Two aspects of effects of heterogeneity are analysed: One
pertains to the capillary properties of displacement in anisotropic media, where it is shown that
the capillary pressure curve in such systems also depends on the direction of displacement. The
other addresses a numerical problem in the simulation of unstable displa..cement processes. Finally,
the report concludes with two studies on non-Newtonian behavior in porous media. The first study
considers the displacement of a Bingham plastic, using both numerical simulation and experiments
in Hele-Shaw cells. The second study in this topic is a continuation of our work on foam flow in
porous media, where we discuss aspects of the solution of some recently proposed equations and

we also continue in the development of a pore network model.
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1 PORE NETWORK MODELS FOR BOILING AND BUBBLE GROWTH IN

POROUS MEDIA

C. Satik and Y. C. Yortsos

1.1 INTRODUCTION

Vapor-liquid flow in porous media, driven by temperature and pressure gradients, is involved in
a wide variety of processes, such as geothermal systems [8, 95, 102, 110], solution gas-drive oil
reservoirs [119], thermal oil recovery [86], nuclear waste disposal {11, 27, 105], porous heat pipes
[38, 81], boiling [18, 25, 29] and drying [99]. These processes share the common aspects of phase
change and its interplay with fluid flow, heat (or mass) transfer and capillarity.

As in other flow processes in porous media, vapor-liquid flows can be described at three different
levels: the pore level, where the emphasis is on the mechanisms of nucleation and local interface
growth; the pore network level, where the collective action of an ensemble of interacting pores is
considered; and the macroscopic or continuum level, where information of the average behavior
only is relevant. In the past, the overwhelming majority of theoretical and experimental studies
have addressed the continuum level. Continuum approaches make use of Darcy’s law extended to
multi-phase flow with saturation-dependent relative permeabilities and capillary pressure functions
(borrowed from isothermal, immiscible displacement processes) which assume capillary control at
the pore level (low Capillary and Bond numbers). These approaches ignore the underlying pore
microstructure and require restrictions on scale-dependent viscous and gravity forces. Due to these
limitations, continuum approaches may not be fully adequate to describe these vapor-liquid flows.
To obtain a better understanding of the process over a very large range of operating conditions, a
microscopic approach in which the pore microstructure is acknowledged must be used. A network
model approach, in which the porous medium is represented as a two- or three-dimensional network
of interconnected simple geometrical shapes of pores (pore bodies or throats), is one such approach.
Pore network models have emerged as very convenient and useful discrete alternatives that provide
a better understanding of microscopic pore level phenomena and have been frequently used to
simulate immiscible displacement processes in porous media [33, 53, 63, 100, 103]. In the context of

solution gas-drive, Li [69] recently studied the diffusion-driven isothermal bubble growth in porous



media and developed experimental and numerical pore network models. That study achieved
a significant improvement in understanding bubble growth processes. Heat transfer-driven and
diffusion-driven bubble growth have similarities although the heat transfer in the solid, the much
faster growth process and the possible importance of inertia are important differences.

Bubble growth begins with the onset of at least one nucleation event and is driven by a liquid-
to-vapor temperature gradient created by a superheat imposed in liquid. Depending on the pore
surface roughness, a number of nucleation centers may exist. Therefore, growth may occur from
a multitude of separate clusters. While the latter is important, the simpler problem of single-
bubble growth is poorly understood. Two important steps of bubble growth have been identified:
pressurization and pore filling steps. During a pressurization step, all interfaces reside in converging
pore geometries, where they are stable, due to the strong capillary barrier. Liquid and vapor
pressures are spatially uniform. Thus, the volume generated due to phase change contributes only
to increase of the vapor pressure (and temperature). This step continues until the capillary barrier
is exceeded at a point on the bubble perimeter. Then, pore filling step takes place. Simultaneous
penetration of multiple pore bodies is also possible depending on the parameter values. At the
moment of penetration, the pressure in the vapor phase relaxes to the adjacent liquid pressure due
to immediate expansion, thus the previous vapor phase volume is now redistributed among the old
vapor-occupied and the newly-penetrated pore bodies. This step ends when all newly-penetrated
pore bodies are completely filled by vapor.

Contrary to growth in the bulk [84, 97, 107], or in a Hele-Shaw cell [70], bubble growth patterns
in porous media are disordered and not compact. As in related immiscible displacement processes,
these patterns reflect the underlying pore micro structure. In external drive drainage processes
(displacement of a wetting fluid by a non-wetting fluid), the flow regimes depend on the parameter
values [63]. Flow regimes are of the percolation type when the viscous pressure drop across the
interface between the two fluids is smaller than the capillary pressure drop. In this regime, the
displacement follows the well known invasion percolation [111]. As viscous pressure drop increases,
viscous forces dominate over capillary forces and the displacement evolves to non-local regimes,
such as viscous fingering. We expect similar behavior in the case of bubble growth.

To understand key features of heat transfer-driven bubble growth in porous media, we developed

experimental and numerical pore level models. We have used glass micromodels to visualize pore




Table 1: Properties of the liquid used in the experiments.

T, = 178.5 °C

L, = 1.9496 + 10° J/kg

A = 0169 W/m-K

p = 787.3 kg/m®

p = 1.074%10~% N —s/m?
Cp, = 2.44%10° J/kg-K
M = 46.069 kmol/kg

¥y = 0.022 N/m

level mechanisms such as nucleation, phase change and phase growth during vapor-liquid flow
in porous media. Glass micromodels as alternative to other transparent models have been very
useful in the past and widely used in pore level visualization studies of fluid flow and immiscible
displacement in porous media [26, 54, 62, 63, 75]. Recently, Yousfi et al. [63], Danesh et al. [12]
and Li [69] used micromodels to study nucleation and bubble growth processes in solution gas-drive
systems, which have some similarities with our problem.

This chapter is organized as follows: First, we briefly describe our experimental apparatus and
the experimental results. Next, we describe the numerical pore network model and its application
to two different cases. Effects of various parameters on the growth patterns are discussed. The
boundary between percolation and non-percolation regimes, which we shall refer as the “percolation
boundary”, is analyzed. In particular, we investigate effects of solid conduction, liquid convection

and transient heat transfer.

1.2 EXPERIMENTAL

The experimental apparatus (details of which are given in [93]) consists of a glass micromodel, two
variant power controllers, a vacuum pump, a 12-channel temperature scanner, a video camera, a
microscope, a VCR and a monitor. Figure 1 shows a schematic of the apparatus. Ethyl alcohol was

used to study a bubble growth process. Typical properties of which are given in Table 1 [46]. In the
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Figure 1: Schematic of experimental apparatus.

Table, Ty, Ly, A, p, £, Cp, M and v denote boiling temperature, latent heat of evaporation, thermal
conductivity, density, viscosity, specific heat, molecular weight and interfacial tension, respectively
(at 25 °C).

The procedure for a typical experiment was as follows:

(1) Mix ethyl alcohol with a proper dye.

(2) Deaerate ethyl alcohol by vacuuming.

(3) Fill the micromodel with ethyl alcohol.

(4) Connect heaters to power controllers and thermocouples to temperature scanner.

(5) Start heating from the bottom heater to increase the system temperature.

(6) Start heating from the side heater to impose the desired heat flux.

(7) Turn on the recording system when the first bubble forms.

Visualization experiments for boiling and bubble growth in micromodels were carried out to
get a better understanding of the phenomena occurring at the microscopic pore level. Because a
heating process is involved, carrying out this type of experiments is by no means an easy task.

Micromodels fabricated for the experiments were made of ordinary glass. Provided that spatial

temperature gradients do not exist, they can withstand temperatures of as high as 100 °C. The




alternative solution of pyrex glasses, which can withstand very high temperatures, was not con-
sidered because of the difficulties in micromodel fabrication. Another alternative is to use liquids
which have sufficiently low boiling temperature. Ethyl alcohol, which has a boiling temperature of
78.5 °C, is a good candidate.

Removal of possible dissolved-air from the liquid ethyl alcohol is necessary to avoid any solution
gas coming out when the pressure of the system is lowered below the saturation pressure. Before
every experiment, the dissolved-air was removed by using a vacuum pump.

To control heating and heat losses, we use two heater mats: one at the bottom of the micromodel
provides a spatially uniform heating to the desired temperature; the other, placed at one of the
vertical sides closer to the inlet or outlet ports of the micromodel, provides a temperature gradient
along the micromodel. To eliminate heat losses, we covered all sides of the micromodel with silicon
rubber, except for the top surface to allow visualization of the pore network. This surface was

covered by a glass plate.

1.2.1 Nucleation

Nucleation is the first stage of bubble growth in porous media. Homogeneous nucleation can
be discarded because of its restrictive conditions of perfectly smooth and liquid wet surface, the
absence of trapped gases, and the unrealist\ica]ly high superheat requirements. Heterogeneous
nucleation, in which pore surface irregularities (cracks, scratches and pits etc.) that are not liquid
wet and contain pre-existing or trapped gases which act as nucleation sites, is the mechanism likely
to dominate. Recently, Li [69] reported visualization experiments for nucleation events following
bubble growth in porous media in the context of solution gas-drive systems. He also suggested
that the nucleation mechanism is heterogeneous, although nucleation events are not likely to be
reproducible experimentally.

During one of our visualization experiments, we observed vapor phase growth in a pore body,
following a nucleation event. Shown in _Figu re 2 are consecutive snapshots of this event spanning two
minutes and ten seconds. The vapor phase first formed on the pore wall at the onset of nucleation.
The shape of the evolving bubble is quite spherical (Figure Qa,b,c{and d) before it encounters the
effects of the constraining pore geometry. Then, the bubble elongates accordingly (Figure 2f,g and

h) until the complete filling of the pore body (Figure 2i).



Figure 2: Observation of vapor phase growth in a pore body, following a nucleation event.
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1.2.2 Bubble Growth

Following nucleation, the growth of the bubble continues until the pore body is completely filled with
vapor phase. When this is completed, the bubble cannot grow any larger because of the capillary
pressure barrier induced by the constraining pore walls. During this stage, the pressure in the
vapor phase increases due to the continuous phase change at the liquid-vapor interfaces. We refer
this stage as the “pressurization step”. It continues until the capillary pressure barrier is exceeded,
which occurs when the difference between the pressures in the vapor and the surrounding liquid
phases becomes equal to the capillary pressure. When this condition is achieved, an immediate
jump of the interface takes place from one pore body to another, and the existing vapor phase
volume is redistributed among the previously vapor-occupied and newly-penetrated pore bodies.
The bubble readjusts its shape by retreating its interfaces from all bonds (Figure 3). In typical
immiscible displacements, this event is known as a “rheon” Immediately following this stage, the
previously completely-occupied and newly-penetrated pore bodies become partially-occupied by
the vapor phase. The next stage is a “pore-filling step”, during which bubble growth continues
until full occupancy is achieved in all pore bodies. During a bubble growth process, these two
stages are repeated continuously.

It was also observed that the bubble growth process follows two different modes. The first one
is a “one-site-at-a-time” mode, where a pore-filling step strictly follows a pressurization step and
only one perimeter bond is penetrated at each time. Shown in Figure 4 are our experimental results
to illustrate “one-site-at-a-time” growth mode. In the second mode, instantaneously multiple bond
penetrations over the bubble perimeter are possible.

Figure 5 shows bubble growth patterns obtained during one experiment. As shown in this
figure, bubble growth patterns obtained are ramified and not compact, contrary to the growth in
the bulk. These patterns reflect the underlying pore microstructure. All these observations will be

used next to develop a pore network model that describes bubble growth in pore networks.

1.3 PORE NETWORK MODEL

To study bubble growth in a porous medium, we modelled the porous medium as an equivalent
two-dimensional network of interconnected pore bodies and pore throats randomly distributed. The

growth from a single vapor bubble in a horizontal sample of a finite size was studied.
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Illustration of “one-site-at-a-time” bubble growth mode.
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Figure 5: Bubble growth patterns.
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_To model bubble growth in porous media, we postulated the following:

(i) Pore bodies may contain both vapor and liquid phases, while interconnecting bonds contain
only one phase (either vapor or liquid).

(ii) Pressure drops occur only in the connections (bonds) between pore bodies, while the bulk
of the volume of either phase (vapor or liquid) is in a pore body only.

(iii) The vapor phase is non-viscous, no pressure gradients exist in the vapor-occupied pore
space.

(iv) The liquid phase is incompressible.

(v) The vapt;r phase is at saturated conditions while the liquid phase is superheated. The

pressure of the vapor phase is obtained by using the Clausius-Clapeyron equation

P'u = on(Tu) (1)

(vi) Ideal gas law applies, such that changes in the total mass of the vapor phase (Am) during

time increment At are calculated as

am=REav+ EL AL 2D ®
where,
AP = Pl _ pr, 3)
AT=TpH T, @
AV =V _yn (5)

and P,, T,, V, M and R denote vapor pressure, vapor temperature, vapor volume, molecular weight
and the ideal gas constant, respectively. Superscripts » and n + 1 indicate time levels separated
by an increment At. The change in the total mass of the vapor phase, Am, is related to the total
heat flow rate from liquid to vapor

_ 2@
Am = L. At, (6)

where @, L, and At are heat flow rate, latent heat of evaporation and time increment, respectively,

and the summation is over the perimeter of the vapor bubble.
(vii) The capillary pressure drop across interfaces between vapor and liquid phases in the pore

body is neglected (flat interface) when pore bodies are partially occupied by vapor and liquid, and
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are inversely proportional to the radii connecting pore bodies when they are completely occupied
by the vapor phase. Thus, the condition for an interface to move from a completely vapor-occupied
pore j to a neighboring completely liquid-occupied pore 7 is

Pi (P - —Z (T} - Td)) » 2L 7
b gr T -T2 2 U

where P,‘ , T,", p1, G%, g%, v and R{;‘. are liquid pressure, temperature, density, heat conductance, flow
conductance, surface tension and radius of the connection between pore bodies j and 7, respectively.
In the above equation, the second term on LHS represents liquid pressure at the interface, which
differs from PI‘ due to the mass transport towards the latter, induced by evaporation.

(viii) The liquid phase may be trapped. The volume of liquid in the trapped pores does not
change during bubble growth, since the ratio of liquid to vapor densities is large, but the heat flow
from the trapped liquid to the vapor bubble is included in the total heat flow when calculating the
total mass involved in phase change.

As observed in the experiments, we use two different steps during bubble growth: (a) Pressur-
ization step and (b) Pore body-filling step. In the first step, the capillary pressure is larger than
the viscous pressure drop, all menisci of the vapor bubble are static and the total vapor volume
is constant. All pores at the perimeter are completely filled, except for those containing trapped
liquid. The vapor pressure at the end of this step is calculated from equations (2) and (6). This
step continues until the capillary condition in (7) is satisfied across an interface. Then, the capillary
pressure difference is set to zero across such interfaces. The next step involves filling of the pore
body invaded, during which time liquid is displaced from the pore body, while the vapor phase
occupies it as dictated by the evaporation rate. During this step, both the total volume of the
vapor bubble and the pressure (and temperature) change. At the end of this step, the pore body is
completely filled with the vapor phase. If the capillary condition is not satisfied, the pressurization
step begins, otherwise menisci jump may occur elsewhere and other pore bodies are filled with
vapor.

The appropriate mass, momentum and energy balances and the numerical algorithm are de-
scribed in detail in Satik [93]. Here, we shall simply summarize important results obtained.

During bubble growth, two dimensionless numbers control the growth regime: The Jacob num-

ber, Ja, and the modified capillary number, C¢*. Ja is related to the initial imposed superheat.

13




For the bubble growth in a uniform initial superheat problem, it is defined as

_ PleIAT
Ja = —Pu L (8)
AT = Tim't - Tuo(I)init) (9)

where py, AT, Tinit and Tyo(Pini:) denote vapor density, initial superheat imposed, initial temper-
ature of liquid and saturation temperature of liquid at the initial pressure, respectively. For the

problem of bubble growth with a prescribed heat flux, the Jacob number is defined as

P1ICui Lvgh
Ja = ———— 10
PuLv/\I ( )
where g3 is prescribed heat flux. The modified capillary number is expressed as
A Ly
Ca* = ——=—-Ja 11
piICu Ry 1)

where R} is average bond radius.

1.4 RESULTS AND DISCUSSION

We used the simulator to examine two different cases: (i) Bubble growth with a uniform superheat
imposed initially, and (ii) Bubble growth with a prescribed heat flux at one boundary. In the
first case, the pore space is completely filled with a superheated liquid. Initial temperatures in
the liquid and solid of the porous medium are spatially constant. The geometry of the porous
medium is square and all four boundaries are open to a constant (atmospheric) pressure. The
pressure in the liquid-occupied pore space is initially constant and at atmospheric pressure. In
the second case, the geometry of the medium is rectangular. A heat flux is imposed on one side
of the medium. No-heat flux boundary conditions are imposed at the remaining boundaries. A
constant pressure (atmospheric) boundary condition is imposed on the left-hand side boundary,
while no-flux boundary conditions are imposed on all other boundaries of the medium. The initial
nucleation site is located at the center of the medium in the first case and at the center of the side
where the heat flux is imposed in the second case.

Depending on system parameters, bubble growth may reach two states. In the first state, the
bubble grows until it touches the outer boundaries. In the second state, the superheat in the

system is completely depleted so that the bubble cannot grow further. At this (steady) state,
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bubble growth stops and temperature and pressure in the network stabilize to a spatially constant
value. In our simulation results, the final growth stage is reached when the vapor bubble reaches

either of the two states.

1.4.1 Bubble Growth in a Uniform Initial Superheat

For this case, we used a square lattice (31x31). Throat (bond) sizes were randomly assigned from
a uniform distribution, while pore body (site) sizes were kept constant. Initial temperature and
pressure were set to 104.44 °C and 1.0133x10% N/m?, respectively, and the amount of the superheat
imposed was 4.4 °C. Other typical parameters used are shown in Table 2. In the table d*, i
R}, P..s and T,.s are dimensionless parameters for solid-to-liquid and solid-to-thin liquid film
heat transfer coupling, average pore body sizes and reference pressure and temperature values,
respectively. All parameters given in Table 2 are at reference conditions (B, 1+ Tref)-

Fluid distributions at three different stages of bubble growth for the typical parameters given
in Table 2 are shown in Figure 6. Corresponding time values for these stages are 2.45, 2.89 and
7.42 seconds, respectively. Many other simulation results with different parameter values and larger
network sizes showed that the time spend to reach the final stage is in fact very small (order of a few
seconds), implying that heat transfer driven bubble growth of this type is very fast. In the figure,
white or black colors represent liquid only or vapor only occupancy, respectively, while gray color
denotes partial liquid occupancy. The growth regimes for the first two stages are of the percolation
type, during which the two steps (pressurization and pore-filling steps) discussed above follow one
another and penetration of single interface occurs at the end of each pressurization step with no
further interface penetration. All three fluid distributions shown in the Figure are at the end of a
pore-filling step. Therefore, for the first two stages, pore bodies are occupied with vapor- or liquid-
only. However, in a regime other than percolation, penetration of multiple interfaces may occur
during both pressurization and pore filling steps, hence some of the pore bodies may be partially
liquid-occupied, as shown in Figure 6c.

Fluid temperature and pressure and solid temperature distribufions corresponding to these are
shown in Figures 7, 8 and 9, respectively. In the Figures, black or white colors denote maximum
or minimum values, respectively. As described above, all pore bodies in the network are initially

filled with a superheated liquid and initial temperatures in both pore bodies and solid are spatially
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Table 2:

Typical parameter values.

pi
Chpi
Al
M
L,
7

Ly

Ry

R

Pinit
Too(Pinit)
F.¢

Trey

960.85 kg/m°>
4.2092%10° J/kg - K
0.6808 W/m - K
2.4799% 10~ N —s/m?
2.2568 x 106 J/kg
0.0584 N/m

0.5886 kg/m°>
2082.40 kg/m>
8.3732% 102 J/kg - K
6.808 W/m — K

1

0.01

18 kmol/kg

8.315 kJ/kmol — K
1320 pm

450 pm

601 pm

1.0133%10° N/m?
100 °C

1.0133 % 10> N/m?
100 °C

16




()

Figure 6: Fluid distributions at three stages of bubble growth in a uniform initial superheat.
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constant. At the com.pletion of a nucleation event, bubble growth process begins and a liquid-to-
vapor temperature gradient forms since the vapor is at the saturation temperature which is lower
than the surrounding liquid temperatures. With the existence of such a gradient, heat transfer
(both conduction and convection) takes place towards the bubble, which drives the phase change
process at all liquid-vapor interfaces. The fluid temperatures in Figure 7 show a good agreement
with the above argument. In the Figure, fluid temperatures are constant in the liquid-occupied
pore space except in a bdundary layer where a liquid-to-vapor temperature gradient exists. For
this particular parameter values, a very sharp gradient is observed.

Solid temperatures, shown in Figure 8, are coupled with liquid temperatures. The measure of

coupling between the two fields is provided by a dimensionless parameter d*, defined as

*

«_ &
d' = Vel (12)
Where
. _ Am(Rp)®
G = _—Lb (13)

and o* is a characteristic thermal conductance for heat transfer between liquid and solid phases.
The thermal interaction between solid and liquid increases as d* increases. We also allow for
another coupling between the solid and vapor-occupied pore space in order to account for possible
thin liquid films. The solid temperature fields shown in the Figure are almost uniform. Due to the
coupling with fluid temperatures, a very small gradient, similar to the liquid-to-vapor temperature
gradient in the pore space, is present.

Finally, fluid pressure distributions in Figure 9 show that the highest pressure is in the bubble,
the lower pressures being in the liquid, thus indicating displacement of liquid by vapor. This is
expected because the total increase in vapor volume due to phase change is significantly larger than

the actual volume of liquid evaporated, since the ratio of liquid and vapor densities is very large
(0(10%)).
1.4.2 Effect of Initial Superheat.

The initial superheat is the driving force for bubble growth. As the initial superheat increases,
evaporation rates will increase and more vapor will be generated in a given time. During growth,

the vapor displaces some liquid out of the pore bodies due to expansion. Liquid is displaced at
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Figure 7: Fluid temperature distributions at three stages of bubble growth in a uniform initial

superheat. Minimum and maximum values in °C are (a) 100.01 and 104.48, (b) 100.02 and 104.51,
and (c) 100.00 and 104.44, respectively.
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(6)

()

Figure 8: Solid temperature distributions at three stages of bubble growth in a uniform initial
superheat. Minimum and maximum values in °C are (a) 104.38 and 104.44, (b) 104.37 and 104.44,
and (c) 104.30 and 104.44, respectively.
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Figure 9: Fluid pressure distributions at three stages of bubble growth in a uniform initial superheat.
Minimum and maximum values in psi are (a) 14.696 and 14.7014, (b) 14.696 and 14.7041, and (c)
14.696 and 14.69609, respectively.
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Table 3: Ja, Ca* and t; values corresponding to the initial superheat values used in the sensitivity

analysis.
AT, °C | Ja Ca* g, 8
-0.28 0.8458 | 1.6923x10~% | 105.1
4.44 13.53 | 2.7072x10~3 | 15.92

21.10 64.28 | 1.2861x10~2 | 16.99
76.67 233.40 | 4.6701x1072 | 3.878

faster rates when the initial superheat increases. As a result, larger pressure drops will be induced,
which affect the competition between capillary and viscous forces. From equation (8), Ja and
Ca* are directly related to the initial superheat, AT, thus as AT increases both Ja and Ca™* will
increase. At sufficiently small initial superheats, both Ja and Ca* are small, such that capillary
forces are likely to dominate over the viscous forces, thus the growth pattern is expected to be of
the percolation type. On the other hand, as the initial superheat (and also Ja and Ca*) increases,
viscous forces become stronger and bubble growth patterns deviate from percolation. Eventually, at
sufficiently large initial superheats, both Ja and Ca* are large enough for viscous forces to dominate
the flow regime and the growth pattern will be more like viscous fingering, which is sensitive to
‘boundary conditions and the underlying lattice.

Figure 10 shows the final growth patterns obtained at four different initial superheats with
parameter values shown in Table 3. Here, t; denotes the time elapsed to reach the final growth
pattern. The growth pa.tterr.x is of the percolation type in Figure 102, but deviates from percolation
and takes different patterns when the initial superheat is increased (Figure 10b, c and d). As
seen from the Figure, the growth pattern at the fna.ximum AT value (76.7 °C), is not a purely
viscous fingering. We found that the initial superheat required to obtain a viscous fingering type
growth to be unrealisticly high for thesg simulations. On the other hand, by changing a parameter
value included in the Ca*, e.g. by increasing the liquid viscosity, viscous fingering patterns can be

obtained at a realistic initial superheat.
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Figure 10: Final growth patterns at four different initial superheat values; (a) AT= 0.28 °C, (b)
AT= 4.44 °C, (c) AT= 21.10 °C, (d) AT= 76.67 °C. ‘
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Table 4: Ja, Ca* and t; values corresponding to the liquid viscosity values used in the sensitivity

analysis.

p, N-s/m? | Ja Ca* tsys

2.4799x10~5 | 13.53 | 2.7072x10~* | 6.924
2.4799x10~* | 13.53 | 2.7072x10~3 | 15.92
2.4799x10~3 | 13.53 | 2.7072x10~2 | 56.46
2.4799x107! | 13.53 | 2.7072 30.89

1.4.3 Effect of Liquid Viscosity

The liquid viscosit); influences the liquid pressure field in the network, thus the competition be-
tween viscous and capillary forces are affected, the groxﬁvth regime changing from capillary control
(percolation pattern) to viscous control (viscous fingering pattern).

The final growth patterns obta;ined at four different liquid viscosity values are shown in Figure 11
with parameter values corresponding to each simulation given in Table 4. At y= 2.4799x10~% N-
8/m?, we obtain a percolation pattern (Figure 11a). As y increases the growth pattern deviates
from percolation (Figure 11b and c), and eventually reaches a viscous fingering type pattern at
= 2.4799x10~! N-s/m? (Figure 11d). These results are expected. Because the liquid viscosity
controls the rate at which liquid phase is being displaced the larger the liquid viscosity, the slower

the process (Table 4).

1.4.4 Effect of Interfacial Tension

Figure 12 shows the final growth patterns obtained at four different interfacial tension values
with parameter values shown in Table 5. The pattern is percolation for y= 5.9833x10~2 N/m
(Figure 12a). As this value decreases, the growth pattern deviates from percolation (Figure 12b
and c), and eventually reaches a viscous fingering type pattern (Figure 12d) at y= 5.9833x10~°
N/m.
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Figure 11: Final growth patterns at four different liquid viscosity values; () p= 2.4799x1075
N-s/m?, (b) = 2.4799x10~* N-s/m?, (c) = 2.4799x10~3 N-s/m?, (d) p= 2.4799x10~3 N-s/m?.
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Figure 12: Final growth patterns at four different interfacial tension values; (a) y= 5.9833x10~2

N/m, (b) y= 5.9833x10~3 N/m, (c) v= 5.9833x10~* N/m, (d) y= 5.9833x107% N/m.
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Table 5: Ja and Ca* values corresponding to the interfacial tension values used in the sensitivity

analysis.

v, N/m Ja Ca*

5.9833x10~2 | 13.53 | 2.7072x10~*
5.9833x10~3 | 13.53 | 2.7072x10~3
5.9833x10~4 | 13.53 | 2.7072x10~2
5.9833x107% | 13.53 | 2.7072

Table 6: Ja, Ca* and £y values corresponding to the liquid conductivity values used in the sensitivity

analysis.
AL, W/m-K | Ja Ca* t,s
0.06808 13.53 | 2.7072x10~* | 69.10
0.6808 | 13.53 | 2.7072x10~3 | 7.702
6.8080 13.53 | 2.7072x1072 | 5.443
680.80 13.53 | 2.7072 3.141

1.4.5 Effect of Liquid Conductivity

The liquid conductivity controls the rate by which heat conduction in liquid occurs. The larger
the liquid conductivity, the faster the heat conduction, thus the smaller the time required for a
given volume to be occupied by the vapor and the larger the viscous préssure drop needed, since
the same volume of liquid has to be displaced. Therefore, as the liquid conductivity increases, the
growth patterns will change from a percplation to a viscous fingering type.

Shown in Figure 13 are the final growth patterns obtained at four different liquid conductivity
values given in Table 6. At A\;= 0.06808 W/m-K, a percolation pattern is obtained (Figure 13a).
As ) increases, the growth pattern deviates from percolation (Figure 13b and c), and eventually
reaches a viscous fingering type pattern at \;= 680.8 W/m-K (Figure 13d). Also given in Table 6

are ty values obtained from each simulation. As seen from the table, ¢; decreases from 69.10 s to
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Figure 13: Final growth patterns at four different liquid conductivity values; (a) A\;= 0.06808
W/m-K, (b) A= 0.6808 W/m-K, (c) \;= 6.808 W/m-K, (d) \;= 680.8 W/m-K.
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Table 7: Ja, Ca* and t; values corresponding to the latent heat of evaporation values used in the

sensitivity analysis.

L,,J/kg Ja Ca* ts, s

2.2568x10'° | 0.01489 | 2.9793x10~3 | 2.176x10°
1.1283x10° | 0.2977 | 5.9567x10~2 | 1.389x108
2.2568x10% | 1.489 | 2.9793x10~! | 789.6
2.2568x10% | 148.90 | 2.9793x10! | 4.097

3.141 s when ), increases 10* times, indicating faster growth as ); increases.

1.4.6 Effect of Latent Heat

The latent heat of evaporation directly controls the rate by which energy is consumed for phase
change at liquid-vapor interfaces. The larger the latent heat, the more energy is required for a
given mass of vapor to be generated by phase change. Therefore, the process will be slower and
viscous pressure drops will be smaller.

In Figure 14, we show the final growth patterns obtained at four different latent heat of evap-
oration values. At L,= 2.2568x10'° J/kg, we obtain a percolation pattern (Figure 14a). As it
decreases, the growth pattern deviates from percolation (Figure 14b and c), and eventually reaches
a viscous fingering type pattern at L,= _2.2568x106 J/kg (Figure 14d).

As discussed above, the latent heat of evaporation affects evaporation rates at the interfaces
over the bubble perimeter. Hence, as it increases growth will be slower, implying an increase in t;.
ts values for the patterns shown in Figure 14 are given in Table 7. These results also show that ¢;

values decrease significantly when L, is decreased.

1.4.7 Effect of Solid Conductivity

Finally, we considered the effect of solid conductivity which controls the rate by which heat transfer
(conduction) takes place through the solid. Since solid and liquid temperature fields are coupled,
a change in the solid conductivity will also affect liquid temperature field.

Shown in Figure 15 are the final growth patterns obtained at four different solid conductivity
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Figure 14: Final growth patterns at four different latent heat of evaporation values; (a) L,=

2.2568x10° J /kg, (b) L,= 1.1283x10° J/kg, (c) L,= 2.2568x108 J/kg, (d) L,= 2.2568x106 J /kg.
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Figure 15: Final growth patterns at four different solid conductivity values; (a) A;= 0.06808 W/m-
K, (b) As= 0.6808 W/m-K, (c) A,= 6.808 W/m-K, (a) A,= 68.08 W/m-K.
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values (A,= 0.06808, 0.6808, 6.808 and 68.08 W/m-K). As seen from the Figure, the growth patterns
change and take different shapes as A, increases. However, neither percolation nor viscous fingering
type growth patterns are obtained, which indicates that effects of solid heat transfer on the growth

may be different than expected.

1.4.8 Bubble Growth with a Prescribed Heat Flux

The other case considered involved a prescribed heat flux. To model this process, we used a square
lattice (21x42) network with the same bond and site distributions as in the previous case. Now,
initial liquid and solid temperatures are the same, while a heat flux (gs) is imposed over the first
column of the network. Initial liquid temperature and pressure were set to 100 °C and 1.0133x10°
N/m2, respectively. The initial nucleation site was arbitrarily located at the node (11,1). Onset of
nucleation takes place when the temperature of the node (11,1) reaches the nucleation temperature.

Fluid distributions at three different stages of bubble growth for typical parameters given in
Table 2 are shown in Figure 16. For this particular run, the onset of nucleation took place at
39.673 seconds, while the corresponding times for the stages of Figure 16 are 42.37, 52.99 and 60.80
seconds, respectively. As in the previous case, fast growth dynamics are observed with partially
liquid-occupied pores present, since all three stages are at a regime other than percolation.

The corresponding solid temperature, fluid temperature and pressure fields are shown in Fig-
ures 17, 18 and 19. The important differences between this and the previous case are due to the
existence of a prescribed heat flux in the solid temperature field. This flux generates a temperature
gradient along the solid body of the porous medium, which also brings about a gradient in the
fluid temperature as both are coupled (Figures 17 and 18). As a result, the liquid phase in the
pore spaces becomes superheated, providing a driving force for bubble growth. Fluid pressure fields
(Figure 19) are similar to the ones obtained in the previous case.

We investigated effects of some important parameters on the bubble growth. The effect of 1,
v, A1, L, and ), is expected to be similar to the previous case. The present problem, however,

involves one additional parameter, the prescribed heat flux.
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Figure 16: Fluid distributions at three stages of bubble growth with a prescribed heat flux.
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Figure 17: Fluid temperature fields at three stages of bubble growth with a prescribed heat flux.
Minimum and maximum values in °C are (a) 91.56 and 127.35, (b) 99.78 and 107.77, and (c) 100.03

and 107.98, respectively.

34



Figure 18: Solid temperature fields at three stages of bubble growth with a prescribed heat flux.

Minimum and maximum values in °C are (a) 99.99 and 107.16, (b) 100.07 and 108.29, and (c)
100.25 and 108.69, respectively.
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Figure 19: Fluid pressure fields at three stages of bubble growth with a prescribed heat flux.
Minimum and maximum values in psi are (a) 14.696 and 14.701, (b) 14.696 and 14.70563, and (c)
14.696 and 14.7096, respectively.
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Figure 20: Final growth patterns at four different heat flux values; (a) g= 9.4607x102 W/m?, (b)
gh= 9.4607x10% W/m?, (c) gh= 9.4607x10% W/m?, (d) gr= 9.4607x10° W/m>.

1.4.9 Effect of Heat Flux

The prescribed heat flux controls both solid liquid temperatures. The larger the heat flux imposed,
the larger the superheat in liquid, and the driving force for bubble growth will be greater. As a
result, more vapor will form for a given time, thus more liquid will be displaced out of the pore
bodies, which will increase viscous pressure drops in the liquid.

Figure 20 shows the final growth patterns obtained at four different heat flux values (gr=
9.4607x102, 9.4607x103, 9.4607x10* and 9.4607x10° W/m?), for the parameter values given in
Table 2 with the nucleation parameter 8 equal to 0.1. The growth pattern in Figure 20a is of
the percolation type since g is sufficiently small. However, the pattern deviates from percolation
and takes various shapes as g3 is increased (Figure 20b,c and d). We have been unable to obtain
viscous fingering type growth at the largest g value used (Figure 20d), however, we conjecture that

at sufficiently large g, the growth will be viscous controlled, yielding viscous fingering patterns.
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1.4.10 Percolation Boundary

The previous sensitivity study shows that bubble growth pattern follows an invasion percolation
pattern when viscous forces are small compared to capillary forces (sufficiently small C'e*). During
this regime, perimeter bonds are penetrated “one-at-a-time”, such that the largest available bond
is always penetrated first and there exists only one partially vapor-occupied pore during any pore
filling step. These results are consistent with the experimental observations. The rules are the same
with invasion percolation in drainage, except that here invasion occurs from an internal, rather than
an external source. When viscous forces become dominant over capillary forces, the vapor pressure
will be sufficiently large for multiple bond penetration over the bubble perimeter to occur, thus
the bubble growth pattern deviates from percolation. At this stage, there may exist more than
one partially vapor-occupied pore bodies at any pore-filling step. The number of partially vapor-
occupied pore bodies determine whether the growth regime is of the percolation type or not. When
this limit is reached, we shall denote the size of the bubble as the percolation boundary. To quantify

the bubble size, we use the radius of gyration (R,) of the cluster [35)
1
B; = 533 ,Z,-:(ri —r;)? (14)

where N and (r; — r;) denote the number of vapor-occupied pore bodies and the distance between
pore bodies 7 and j, respectively. The radius of gyration (R,) is simply the root mean square radius
of the vapor bubble measured from its center of gravity.

A detailed scaling of the conditions to estimate the percolation boundary is given in the next
chapter. Here, we focus on the numerical sensitivity of the latter to various parameters, such as Ja,
Ca*, liquid heat convection, transient heat transfer and solid heat conduction. Figure 21 shows four
different vapor clusters at the percolation boundary for the same parameter values used to obtain the
patterns of Fi'gure 11 except that the liquid viscosity takes the values of 2.4799x10~5, 1.1408x10~4,
2.4799x10~* and 2.4799x10~3 N-s/m?, respectively. Ca* and R, values values corresponding to
the patterns shown in the Figure are.2.7076x107%, 1.2456x10~3, 2.7076x10~2 and 2.7076x1072,
and 7.88, 6.42, 5.0 and 1.82, respectively. As C'a* increases, R, decreases, which implies an earlier
deviation from percolation. This is expected because viscous forces becomes dominant over capillary
forces as C'a™ increases. Plotted in Figure 22 is a log-log plot of R, vs. Ca* at the percolation

boundary, for the same parameter values used in Figure 21. The plot shows that the flow regime is
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Figure 21: Bubble growth patterns at the percolation boundary.
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Figure 22: Percolation boundary obtained by varying liquid viscosity.
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percolation as long as R, and Ca* are sufficiently small (below the curve). For a given Ca* value,
the bubble growth pattern is percolation at sufficiently small radius and deviates from it as the
radius becomes large enough.

The effect of Ja is shown in Figure 23 (three different Ja values (0.1353, 1.353 and 13.53)). A
log-log plot of R, vs. Ca*/Ja shows that different percolation boundaries are obtained when Ja
changes (Figure 23a). However, all data collapse on the same curve when the log-log plot of R, vs.
Ca* is used (Figure 23b), implying that percolation boundaries are insensitive to the value of Ja.

Effects of liquid heat convection and transient terms in the energy balance on the percolation
boundary are illustrated in Figure 24. In the Figure, filled circles, squares and triangles denote
data points corresponding to growth under the following conditions: both transient and liquid heat
convection are neglected (quasi-static conditions), only liquid heat convection is neglected, and both
transient and liquid heat convection are included in the liquid energy balance, respectively. As seen
from the Figure, under quasi-static conditions, the percolation boundary is reached at values of
R, larger than in the other two cases. Under quasi-static conditions (Ja < 1), both transient
and convection terms are negligible compared to the heat conduction terms in the energy balance.
Here, the liquid temperature field, which is independent of time, is determined by solving the
Laplace equation. Since the times involved in bubble growth are quite small, larger liquid-to-vapor
temperature gradients form around the bubble, which in turn lead to an increase in evaporation
rates over the perimeter. Therefore, an earlier deviation from percolation is expected. When both
transient and convective terms.are included, the gradients in the temperature field becomes larger
than previously. As a result, an earlier deviation from percolation also occurs.

To examine effects of solid heat transfer, we show in Figures 25 and 26 percolation boundaries
obtained at three different values of the solid thermal conductivity (A\;= 0.6808, 6.808 and 68.08
W/m-K) and at three different values of the dimensionless parameter for heat transfer between
solid and liquid phases (d*= 19, 1900 and 19000), respectively. Our results suggest that the effect

of solid heat transfer on the percolation boundary is not very pronounced.

1.5 CONCLUSIONS

In this chapter, we discussed the visualization of boiling and bubble growth in pore networks and

presented a pore network model that describes bubble growth in porous media due to a temper-
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Figure 23: Percolation boundaries obtained by varying liquid viscosity at three different Ja values.
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Figure 25: Percolation boundaries obtained at three solid thermal conductivity values.
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ature supersaturation. Visualization experiments of boiling of ethyl alcohol in horizontal glass
micromodels were conducted. We observed the growth of a microscopic bubble formed at the onset
of a nucleation event. We found that, during bubble growth process, two stages are repeatedly
followed: pore-filling and pressurization stages. During the pore-filling stage, the vapor phase is
filling a pore body while the liquid is being displaced. During pressurization, the occupancy of all
vapor-occupied pore bodies is complete, the bubble volume does not change significantly, the vapor
pressure increases until the capillary pressure barrier is exceeded. Then, a sudden jump of the
interface occurs during which interfaces located at all bonds are retreated and the bubble readjusts
its shape. We identified two different modes of bubble growth. In the first mode, which is referred
as “one-site-at-a-time’ mode, a pore filling step strictly follows a pressurization step, while only
one of the perimeter bonds are penetrated at a time. Whereas, in the second mode, instantaneous
multiple bond penetrations over the bubble perimeter are possible.

The numerical model accounts for heat convection in the liquid and heat conduction in the
solid, in addition to heat conduction in the liquid. We have analyzed two different types of bubble
growth; (i) Bubble growth with a uniform superheat initially imposed, and (ii) Bubble growth with
a constant heat flux imposed. In both cases, the final stages of the growth are reached at very small
time values (order of a few second), indicating fast growth. During the bubble growth process, a
liquid-to-vapor temperature gradient exist in the fluid temperature fields and this gradient drives
the growth. Due to the coupling between liquid and solid temperatures, a similar gradient also
exists in the solid temperature fields.

Using the pore network model, we carried out a numerical sensitivity analysis to examine
effects of various parameters on the growth of vapor bubble. In bubble growth in a uniform
initial superheat, we examined effects of initial superheat, liquid viscosity, interfacial tension, liquid
conductivity, latent heat of evaporation and solid conductivity on the growth patterns. We showed
that, at parameter values yielding sufficiently small Ca*, the growth regime is capillary-controlled
and the growth pattern is percolation. The pattern deviates from percolation according to the
competition between capillary and viscous forces, as Ca* increases. At parameter values with
sufficiently large Ca*, the regime is viscous-controlled and the growth pattern becomes viscous
fingering. We identified the percolation boundary where the transition from a percolation to a non-

percolation regime takes place. We showed that the bubble growth regime will be percolation as long
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as the bubble size is sufficiently small not to exceed the percolation boundary. Our results suggest
that liquid heat convection and transient effects change the percolation boundary significantly,

while effects of solid heat transfer are minimal.
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2 SCALING OF BUBBLE GROWTH IN A POROUS MEDIUM

C. Satik, X. Li and Y.C. Yortsos

2.1 INTRODUCTION

Processes involving liquid-to-gas phase change in porous media are routinely encountered, for ex-
ample in the recovery of oil, geothermal processes, nuclear waste disposal or enhanced heat transfer
[23, 45, 102, 108]). They involve diffusion (and convection) in the pore space, driven by an im-.
posed supersaturation in pressure or temperature. Phase change proceeds by nucleation and phase
growth. Depending on pore surface roughness, a number of nucleation centers exist, thus phase
growth occurs from a multitude of clusters [121]). Contrary to growth in the bulk or in a Hele-Shaw
cell [70, 84, 97], however, growth patterns in porous media are disordered and not compact. As in
immiscible displacements {64, 111], they reflect the underlying pore microstructure. The compe-
tition between multiple clusters is also different from the bulk. For example, cluster growth may
be controlled by a combination of diffusion (e.g. Laplace equation in the quasi-static case) with
percolation. Novel growth patterns are expected from this competition [73].

While multiple cluster growth is important, the simpler problem of single-bubble growth is still
not well understood. In this section, we focus on the growth of a single bubble, subject to a fixed
far-field supersaturation (e.g. by lowering the pressure in a supersaturated solution or by raising
the temperature in a superheated liquid). Our emphasis is on deriving a scaling theory for growth
at conditions of quasi-static diffusion, guided by recent experimental observations.

Visualization of bubble growth in model porous media was recently conducted [71, 72] using 2-D
etched-glass micromodels. Fig. 27 shows a typical CO; cluster evolving from carbonated water,
initially saturated at 50 psi, the pressure of which was subsequently reduced to 14.7 psi. The
non-compact nature of the cluster is apparent. The cluster grows in a manner similar to external
drainage: gas-liquid interfaces are stable in the converging portion of a pore throat, but rapidly
move to occupy an adjacent pore (in an event known as a “rheon”), once the capillary pressure
barrier of that throat was exceeded. During the early stages, the growth occurs “one-site-at-a-time”,
which is a mode of interface advance typical of invasion percolation.

To model this problem, we developed a pore network simulation of multiple cluster growth (Li
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Figure 27: Experimental snapshots of gas cluster growth from carbonated water in a glass micro-

model: (a) Large scale; (b) Pore scale sequence.
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and Yortsos [73]) and a scaling theory for single-bubble growth when mass transfer is diffusion-
controlled. This quasi-static limit is described below. We consider the initial conditions C =
Co, P, = Py, and the far-field conditions C = Cpy, B, = Py < Pp = KCp, where C is solute
concentration, P, is liquid pressure and K is a solubility constant. Equivalently, the supersaturation
can be expressed with the Jacob number, Ja = &‘;Tfﬂ. At low supersaturations (Ja < 1) the
concentration field in the liquid is quasi-static and satisfies the Laplace equation DV2C = 0, where
D is the solute diffusivity. We consider a porous medium model in terms of an equivalent network
of bonds (throats) and sites (pores). The gas-liquid interface consists of menisci residing on the
cluster perimeter sites. We take the gas to be inviscid and ideal, such that P, is spatially uniform
and P,V = nRT, where n is the number of moles in cluster of volume V. For simplicity, we take
linear phase equilibria, P, = KC;, in all perimeter sites ¢ (¢ = 1, N). Bubble growth is dictated
by the net mass transfer rate, ‘fi—’t‘ = Y; ; Jij, where the sum is over all perimeter sites ¢ and the
liquid-occupied sites j adjacent to them. The diffusive flux is J;; = DA;J-Q%'Q, where the area A;;
and the length I;; pertain to pore throat 5. Mass influx (%’tl > 0) results into either pressurization
(dP, > 0) or bubble growth (dV > 0). Pressurization is necessary to overcome the capillary barrier
of a perimeter bond, which occurs when the capillary pressure is sufficiently large, P, — P ; > %,
where rp;; is the radius of the connecting bond and 7 the interfacial tension. Upon penetration,

the interface advances and occupies site j. A measure of the driving force is the.capillary number,

Ca = 232  yhere I* is a characteristic lattice spacing, k is permeability (which scales with the

~k
average throat size [49], r}, as k ~ r}%) and the characteristic velocity v* is based on diffusion,
vt = i‘%—':. Note the difference with the conventional Ca in external displacements [64, 111]. An

additional relevant parameter is the solubility constant @ = -M’%, where M, is the solute molecular

weight.

To characterize bubble growth requires that the cluster pattern and its rate of growth be
determined. Growth in the bulk or in an effective porous medium is compact and obeys the
scaling [70, 84, 97] R ~ t'/2. In a random porous medium we expect percolation at sufficiently

small sizes and viscous fingering at larger sizes.
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2.2 GROWTH PATTERNS
2.2.1 Percolation

The cluster will follow a percolation pattern, if perimeter bonds are invaded “one-at-a-time”, such
that the largest perimeter bond is always invaded first. These rules are the same with invasion
percolation, except that here invasion occurs from an internal, rather than an external source. The
following conditions must apply for percolation: (i) Immediately preceding and during pressuriza-
tion, all interfaces reside in converging pore geometries. (ii) During filling, only “one-site-at-a-time”
is invaded, the simultaneous penetration of another throat not béing possible. Condition (i) is al-
ways statisfied, since liquid and gas pressures are spatially uniform (no flow) during pressurization.
Condition (ii) depends on the viscous pressure drop. During filling of a partly occupied site m, the
capillary pressure in the site is small, P; ~ P ,,. Simultaneous penetration at another location !
is not possible if P, — Py < %, namely if the pressure difference between the two sites is small.
At the percolation boundary, the pattern ceases being pure percolation due to the viscous pressure
drop, which is in turn related to mass transfer. We shall denote by RP the cluster radius of gyration
when this is reached and proceed for its estimation as follows.

During percolation, growth occurs from one site only (say m) (although mass transfer to the
cluster is to all perimeter sites), thus the pressure field is set by the velocity of that site. The latter
can be estimated from mass balance, v, ~ b—’}—% Z,-,J- Ji; where b denotes a length, b = 27hr} in 2-D
and b = 47r*? in 3-D, where h is the thickness in 2-D and r?¥ a typical site radius. To calculate
the mass flux, we must solve a problem of quasi-static diffusion in a Euclidean space, bounded

internally by a fractal interface. Following Ref. [12], this flux equals the mean-field result

ocC 2rhD(Co — C;)
e~ p I~ - e~ — C\RP
E; ,-: Ji ~ 2mhDR? 52| ik or 2:- ,-: Ji; ~4rD(Co— )R (15)

in the two geometries, respectively, where R. denotes the outer boundary in 2-D. The velocity

follows directly,

o () g o e (22 ()

r¥ ln%,% r* r¥
in the two geometries, respectively. For a conservative estimate of the percolation limit we calculate

the pressure drop across a distance that scales with RP. To describe viscous flow in a pore, we
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take Poiseuille’s law. Then, the flow problem involves solving the Laplace equation subject to the
velocity at site m given from (16). As before, we will use a mean field approach (see also a related

study [63]). We obtain,

U Ty Ef vmﬂlr:2 (l _1_) UmfiTy
AP, — lnr: or AP, — =R % 17)

Then, substitution of (16) gives the final results

InE p
AP, ~ JoPou —% ot AP, ~ JaDoy B? (18)
ko Ings [

in the two geometries, respectively.

We next define the percolation limit by requesting [63] that variations, AS, in the gas saturation
due to penetration of more than one sites as a result of viscous forces are negligible: IA—;-I =eL1.
From percolation, this is equivalently expressed as I%‘Sl ~ (p—p.) " Ap, where p is the percolation
probability and p. the percolation threshold. In capillary-controlled displacements, p is related to
the pore throat size distribution o, (rp) via p = fr? ap(r)dr, hence Ap ~ ap(rp)Ary ~ %{f, where o
is a dimensionless measure of the variance of a,(rp). To relate Ar, to AP,, we note that variations
in liquid pressure equal those in capillary pressure, AP, ~ AP,. The latter can be related to
variations in the occupied pore sizes, AP, = Z‘Y_’.Agin. Next, we identify the cluster extent with the
cluster correlation length, thus % ~ & ~ (p—pc)~", where v is the correlation length exponent,

l to -g— in 2-D and to 0.88 in 3-D. Then, we replace variations in p by variations in rp, and

suvstitute the above to find the results

RP v lnf—; aryCa RP rag ar;Ca
~€ oOr ~€ (19)
I* Ink | ol* I* or*

in 2-D or 3-D geometries, respectively. Equation (19b) is analogous to the expression that delineates
the percolation limit in external displacements [63]. Clearly, the radius at the percolation limit
decreases as C'a increases, namely as Ja or D increase.

2.2.2 Viscous Fingering

As the cluster size increases, the pattern eventually departs from percolation. To infer its charac-

teristics, Li and Yortsos [70] performed a linear stability of the equivalent problem in an effective
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porous medium (or a Hele-Shaw cell). In the absence of capillarity, the growth posesses the Mullins-
Sekerka instability of solidification [59, 83], which here also happens to coincide with the viscous
fingering instability. As a result, we expect a limiting pattern of the DLA type at sufficiently large
sizes. This was confirmed with numerical simulations (see below). To delineate the pattern bound-
ary, R*/, we proceed as in the previous. Now, however, we request that variations in the capillary
pressure are small compared to the viscous pressure drop between adjacent sites, AP, < AP,. For

the latter, we take

* %
Il 1ng or AP, ~ 2mHTs (20)

AR, ~—¢ 2%k

and after substitution of v,,, we obtain

1 aCa _ RY\ (aCal* -
(ln—&—)(a)Nel or (l*)(ar*)Nel (21)

R

in the two geometries, respectively. Large values of Ca result in promoting a pure DLA growth
pattern at smaller cluster sizes. ‘

We used the numerical simulator in 2-D geometries (Li and Yortsos [73]), to test the validity of
the two limits. Simulations were performed in square lattices of variable sizes, but not larger than
50x50, due to computational limitations. First, the mean-field results for quasi-static mass transfer
were tested. Fig. 28 shows a plot of the total net mass flux to a percolation cluster as a function of
the cluster size. Good agreement with the theory is found provided that the computational domain
is large (here equal to 200x200) and the cluster size sufficiently large, but not too large for the
boundary to affect the radial symmetry. Plotted in Fig. 29 are numerical results for R? and R*/,
where only quasi-static diffusion was considered (the simulator can also account for convection and
transients [73]). The qualitative trend of the results is consistent with the theory. However, due
to the small size of the computational domain (50x50), which gives rise to substantial finite-size
effects, a quantitative agreement is difficult to be ascertained. The cluster must be large enough
for meaningful percolation statistics, yet small enough compared to the outer boundary for the
mean-field theories to be valid. We expect a better agreement as the size increases to at least
200x200 (compare with Fig. 28). The transition from percolation to DLA is illustrated in Fig. 30,
which illustrates cluster growth under conditions of percolation (Fig. 30a) or viscous (Fig. 30b)

control.
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Figure 28: Total net flux to a percolation cluster under quasi-static diffusion. The solid line is the

theoretical slope (eqn. 15).
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Figure 29: Percolation and viscous fingering boundaries from pore network simulations in a 50x50
square lattice. The solid line is a guide to the eye.
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Figure 30: Typical sequence of gas cluster growth under conditions of: (a) Capillary control (Ca=

0.00001); (b) Viscous control (Ca= 0.1).
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2.3 RATES OF GROWTH

From the above, rates of bubble growth can be calculated. If N, is the number of sites occupied

by the gas cluster and V; the average site volume, we have V,-‘%—"- = v, b, where N, is related to
D

the radius R, via Ny ~ (%1) "and D s is the fractal dimension of the cluster. Substitution from

(2) yields the results

R \P1 R.| obJaDDy (Rg)Df—l (Dj — 1) abl*JaD
(l*) [1+DflnRg] ~ Vot t or " ~ D; Vi t F22)

in the two geometries, respectively. The two scalings should be contrasted to the classical for
growth in the bulk, Rg ~ t. As a result of its ramified structure, the cluster grows faster than in
its effective medium analogue (for example, R, ~ tg, for the 3-D case in either the percolation or
the viscous fingering limits).

All these scalings rely on the assumption of quasi-static mass transfer. For growth in the bulk
this is egllli)valent to the condition Ja < 1. In the general case, however, this condition becomes
[73] JatPs~' « 1. Thus, contrary to the compact cluster (Dy = 3) the validity of the quasi-static
approximation in fractal patterns (Dy < 3) is time-dependent. To check its validity when RP and
R*f are r%a(igeg )we substitute in (19) and (21) the results from (22) to obtain J o~ 71D 1

and Ja©  Pf' <« 1, respectively. Since D ¢ ~ 2.5 in both patterns, the two conditions are still

equivalent to the condition for bulk growth, Ja < 1.

2.4 CONCLUSIONS

We conclude that during single bubble growth in a porous medium the following regimes develop
in succession: a short duration early-time regime, where finite size effects dominate, the growth is
still compact and the effective medium scaling applies; a percolation regime (R, < RP); a transition
to a viscous fingering regime (R? < R, < R*f); and a DLA regime (R*f < R,). In the absence of
convection, the corresponding rates of growth are different than the classical. Effects of convection

are under study.
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3 VISUALIZATION AND SIMULATION OF IMMISCIBLE DISPLACEMENT IN

FRACTURED SYSTEMS USING MICROMODELS: II. IMBIBITION

M. Haghighi and Y.C. Yortsos

3.1 Introduction

Steam injection is a potentially effective method for the recovery of heavy oil from reservoirs. There
are large accumulation of heavy crude and tar sands subject to steam injection in certain parts of
the world, especially in western Canada, central Venezuela and in California and Utah in U.S.[87].
Steam injection can also be used to recover light crude much more effectively than waterflooding
[87). Naturally fractured reservoir may contain 25-30% of the world supply of oil [92]. Thus, steam
injection in fractured reservoirs has a high potential importance in oil production.

Unfortunately, the understanding of steam injection in fractured systems is currently based
mostly on phenomenology and typically consists of applying a double porosity formalism to steam
simulators [16] [47] [61]. Most of these simulators use capillary imbibition as a mechanism for the
exchange of fluids between the matrix blocks and the fracture network. Such a purely numerical
approach offers little to further our insight into the process. A reasonable alternative is to con-
duct experiments in model geometries that mimic fractured systems. Glass micromodels can be
constructed to mimic there. In this research, steam injection experiments in these models was
conducted.

Since steam is non-wetting when in the vapor phase, but becomes wetting when condensed,
steam injection involves both drainage and imbibition mechanisms in addition to the temperatufe
effects on displacement and phase change. Therefore, to understand its effects the mechanisms
isothermal displacement in fractured systems must first be studied. For t‘;his, based on visualization
experiments we developed theories for both drainage and imbibition. A pore network simulator
was also used to compare the experimental results and confirm the theory. Previously, we reported
results on drainage processes [39]. In this report, we shall present our findings on imbibition. Steam

displacement will reported in future reports.
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3.1.1 Literature Review on Immiscible Displacement in Fractured Systems

Immiscible displacement in disordered porous media proceeds by different mechanisms, depend-
ing on the nature and history of the displacement (drainage or imbibition, primary or secondary
process). These mechanisms have been clearly elucidated in recent years, notably by Lenormand
who conducted careful experimental studies in micromodel geometries [65]. The local displacement
mechanics are not expected to change when a fracture-matrix system is considered. Thus, primary
displacements will proceed by a frontal advance of the menisci, the conditions for which vary de-
pending on whether the process is drainage or imbibition, the latter including the possibility of flow
along the surface roughness. Secondary imbibition will involve in addition film flow, film thickening
and snap-off, resulting at low rates in displacements different than frontal. In a fracture-matrix
system, or in a system containing a streak of high permeability, the presence of fractures (or high
permeability streaks) adds an element of large-scale correlation. These large scale features affect
the composite process and introduce important flow rate _effects.

Mattax and Kyte [77] who studied imbibition in fractured water-drive reservoirs, experimented
with a single matrix block and studied the effect of the matrix block size to predict the recovery
behavior for a reservoir matrix block from an imbibition test on a core sample. They introduced

the following scaling equation
k. o

ta =1 g[#ng]

They also introduced the concept of a “critical rate”, in connection with water advance in fractured-

(23)

matrix reservoirs. This was defined as the rate for which the water advance level in the fracture
is the same to the water level in the matrix. For rates less than the critical, the water level in the
matrix is above that in the fractures. Thus, all the recoverable oil will be displaced from the matrix
block before the water in the fractures reaches the top of the block. Inversely, at rates greater than
the critical, the water level in the fracture moves ahead of the water in the matrix and the matrix
block is completely surrounded by water before imbibition is completed.

Eka and Ershaghi [30] considered gas injection in naturally fractured reservoirs. This process
was simulated using a mathematical model that included both gravity and capillarity forces. They
concluded that recovery of oil from low permeability matrix block can be improved by temporarily

shutting in production wells when the gas-oil ratios are high. Labastie [58] discussed the capil-
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lary continuity between the matrix blocks during the gravity drainage in fractured reservoirs. He
showed bo.th experiﬁentally and numerically that the oil recovery by a gravity drainage process
in a naturally fractured reservoir strongly depends on the total height and capillary continuity.
Rossen and Shen [90] proposed pseudo-capillary pressure curves for both the matrix and fracture
to represent gravity drainage mechanism, which they used in a dual porosity simulator.

In theoretical studies on displacements in fractured systems, the main emphasis has been on
deriving some representation of the matrix imbibition rate, either by solving an appropriate initial
boundary value problem or by introducing various simplifying assuniptions. For example, Aronofsky
et al. [2] defined a simple exponential relation between recovery and time for a single matrix block
due to water invasion in fractured reservoirs. de Swaan [22] presented a theory in which the matrix
blocks downstream are exposed to a varying water saturation resulting from the water imbibition
upstream blocks. He used as a convolution integral a solution in terms of a known solution with a
unit-step boundary condition proposed by Aronofsky et al. [2].

In the first visualization study in fractured systems, Handy and Datta [41] provided visual
evidence of water imbibing in an artificially-fractured sandstones and in a heterogeneous sand pack.
In the case of fractured sandstone, they observed that the water moves preferentially through the
fracture, due to the low capillary pressure, while in the heterogeneous sand pack water imbibes into
the fine sand because of capillary forces stronger than in the coarse sand. As rates increased, the
water was seen to move preferentially through the more permeable regions. Handy [40] proposed
a rate equation for imbibition and discussed the validity of the use of the diffusion equation with
a nonlinear diffusion coefficient as a model for imbibition. Babadagli [3] conducted a series of
forced imbibition experiments in model fractured sandstones, visualized by CT scanning, which
demonstrated that effective relative permeabilities of the composite system (fracture and matrix)
are strong functions of flow rate and the properties of the matrix and fracture, such as matrix

permeability and fracture aperture.

3.2 Imbibition

Imbibition is among the processes that may be involved in steam displacement in fractured systems.
Imbibition mechanisms in the presence of fractures have not adequately been studied in the past.

Previous work was concentrated on experiments with core or on simulation using a double porosity
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simulator. Notably lacking are flow visualization using transparent 2-D micromodels and simulation
of the matrix-fracture interaction. In this chapter, our objective is to provide a better insight on
the recovery mechanisms in fractured systems during forced and free imbibition (both primary and
secondary). To achieve this goal, pore level and larger scale visualization were first performed in
a glass micromodel of a fracture-like structure, and a parametric experimental study of the effects
of capillary number, mobility ratio, and gravity was undertaken. Next, we developed a simplified
theory to predict the observed mechanisms. Subsequently, a pore network simulation of primary
and secondary imbibition was used in order to compare the experimental results with the numerical

output, and provide more details of the process.

3.2.1 Experiments

The experimental set-up in this chapter is the same as that for drainage. We used both triangular
and square pattern micromodels. The values of the network and fracture parameters are shown in

Table 8.

Table 8: Micromodel characteristics

Network Square || Triangular
Length 11.2 cm 12.5 cm
Width 5.7 cm 7.5 cm
Number of squares 51x26 75x45

Maximum bond width | 0.1 cm 0.04 cm
Minimum bond width | 0.04 cm 0.04 cm
Average bond width 0.07 cm 0.04 cm

Fracture width 0.2 cm 0.2 cm
- Fracture depth 0.018 cm 0.01 cm
Network depth 0.009 cm 0.01 cm

Forced experiments were carried out at constant rate by the use of a syringe pump. A video
camera with a close-up kit provided the desired visualization. The front movement were also

recorded under a microscope for clearer visualization. The following four fluid pairs were used in
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the experiments:
1. Distilled water-air.

2. Distilled water-kerosene.

4
3. Distilled water-heavy mineral oil.

4. Distilled water-Dutrex 2621 (a synthetic oil, product of Shell Company with a measured
viscosity of 10000 cP at 25°C).

In all experiments, kerosene and mineral oil were dyed with Fat Red 7B, and water was dyed
with either Methylene Blue or Fluorescein. We used the measured value of 70 dynes/cm for the

interfacial tension of water-air, and the approximate value of 35 dynes/cm for all water-oil systems.

3.2.2 Forced Primary Imbibition

Primary imbibition is the displacement of a non-wetting fluid by a wetting fluid in the absence of
prewetting. Systematic primary imbibition experiments were carried out for each fluid pair at four
different capillary numbers (Table 9).

In this set of experiments, we used the micromodel with triangular pore pattern, of coordination
number 6. It was found that in experiments with water displacing air, and for a capillary number
2 x 1076 and lower, the water invaded the matrix first. At the pore level, both in the inlet of
the model and in the matrix, two different and simultaneous mechanisms were clearly observed: 1-
Water flow along the roughness of the walls (Figures 31-36); 2- Meniscus movement (Figures 37-39).
The flow of water along the surface roughness causes accumulation of water on the walls (Figures
31 and 32). When sufficient accumulation on one wall only, the radius of curvature of the interface
increases, until it touches the opposite wall pore and adjacent channel are invaded instantaneously.
When there is sufficient accumulation of water on walls, only the channel is filled. At capillary
numbers below 2 x 10~8, both mechanisms were at work (Figure 33 and 34), resulting into a rough
shaped front (Figure 35). However, at capillary numbers above 2 x 10~7, only the first mechanism
was operating and no channel filling was observed; thus, the water invaded the network in a frontal
movement that proceed line by line (Figure 36). Both these mechanisms are in agreement with

earlier studies [65]. At the capillary number of 2 x 1075, water invaded the fracture at the same
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Table 9: Conditions for forced primary imbibition experiments

Fluid Displacing Fluid | Mobility | Volumetric Capillary

Pair Viscosity (cP) Ratio | Rate (cc/min) | Number
Water-Air 1 0.018 0.00052 2x10°8

“ » “ 0.0052 2 x 107

« » “ 0.052 2x 107

“ » “ 0.52 2 x 107
Water-Kerosene 1 “ 0.00052 4x 1078
« K 1.50 | 0.0052 4x1077

« » « 0.052 4x 1076

« " « 0.52 4x10"°
Water-Mineral oil 1 100 0.00052 4x 1078
« " “ 0.0052 4x1077

« » “ 0.052 4x 108

“ » « 0.52 4x 1075
Water-Dutrex 1 10000 | 0.00052 4x10°8
« » “ 0.0052 4x 1077

« ” « 0.052 4x10°¢

« » « 0.52 4x107°
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time that invaded the matrix. In this regime, we observed meniscus movement only in which the
viscous forces domma,te the capillary forces. It follows, therefore, that a critical capillary number
exists, where viscous forces are equal to capillary forces. In such cases, fracture and matrix are
invaded at the same time. In our experiment, this critical capillary number lies between 2 x 10~°
and 2 X 1078 for a water-air system (Figure 37).

While the water-air experiments showed indeed that the wetting phase preferentially invades
the matrix block, this was not observed for a water-oil primary imbibition. At a capillary number
lower than 4 x 107, only the fracture was invaded. At higher values of the capillary number,
water started to also invade the matrix similarly to drainage processes. Figures 38 and 39 show
water-kerosene and water-Dutrex at a capillary number of 4 x 1076. At these experiments, water
moves through the fracture only. We believe that this is due to the change of wettability in the
micromodel. When the glass is first exposed to the it, the micromodel is contaminated with polar
compounds existing in oil [19]. These components tend to adsorb on the micromodel roughness
and render them oil-wet and the process turns out to be like drainage. For future work, it is
recommended, as a solution of this problem, to use non-oil fluids such as air-mercury, or to perform

imbibition tests using an oi l-wet model.

3.2.3 Secondary Forced Imbibition

Next, we considered secondary imbibition, in which the wettability was preserved by preventing
any oil contact with the surface of the micromodel because of prewetted conditions. In secondary
imbibition, the model was first saturated with water. Then, the non-wetting phase was injected
at capillary number values greater than 10™° (in excess of the critical value) in order to displace
most of the wetting phase. This regime causes the least amount of trapping although trapped
wetting phase still remains. Obviously, the precise way drainage has taken place substantially
affect the subsequent mechanism of secondary imbibition. This set of experiments pertained to an
initial drainage at relatively high capillary numbers. Here, the resulting residual water films were
not interconnected. This has significant effects on the secondary imbibition. Table 10 shows the
various parameter values used in the different runs.

During the experiments involving the fluid pair water-air, water invades the matrix block fol-

lowing a mechanism different than for the case of primary imbibition. Now, the displacement is
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Figure 32: Primary imbibition (water-air) Ca = 2 x 10~8, showing discontinuous invasion of the

model through roughness flow.
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Figure 33: Primary imbibition (water-air) at Ca = 2 x 1078, showing both pore invasion and

channel filling (snapshot 1).
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Figure 34: Primary imbibition (water-air) at Ca = 2 x 10~8, showing both pore invasion and

channel filling (snapshot 2).
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Figure 36: Primary imbibition (water-air) at Ca =2 X 10-7.

66



v
=
..
g::“l‘.? "l.‘:':l?:v"q'-:t'.'.'.'.:|‘- e ,;,'. 3l 2
ey
o --
CrrIps r‘l‘ X
AL X
IARLE KX

i
T

(4]
ll!§?

CLYED
1z

Figure 37: Primary imbibition (water-air) at Ca = 2 x 10~°, showing simultaneous invasion of the

fracture and the matrix.

Figure 38: Primary imbibition (water-kerosene) at Ca

L

through the fracture only.
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‘Table 10: Conditions for secondary imbibition experiments

_ Fluid Displacing Fluid | Mobility | Volumetric | Capillary
Pair Viscosity (cP) Ratio | Rate (cc/min) | Number
Water-Air 1 0.018 | 0.00052 2x10°8

“ » “ 0.0052 2x 10~7

“ » “ 0.052 2x 108

« » “ 0.52 2 x 10-8
Water-Kerosene 1 “ 0.00052 4x 108
“ » 1.50 | 0.0052 4x1077

« » « 0.052 4x%10°

« " “ 0.52- 4x107°
Water-Mineral oil 1 100 0.00052 4x10°8
“ ” “ 0.0052 4x 10”7

« » « 0.052 4 x 10~

“ » “ 0.52 4x 105
Water-Dutrex 2621 1 10000 | 0.00052 4x10°8
“ » “ 0.0052 4x 1077

“ » “ 0.052 4x10°8

« » « 0.52 4%10°°
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Figure 39: Close-up of primary imbibition (water-Dutrex) at Ca = 4 x 10~%, showing that water

moves through the fracture only.

a succession of rapid invasion jumps that occur along the existing water films, left behind at the
conclusion of primary drainage (Figures 40 and 41). This mechanism operates at low capillary
numbers. At higher values, the typical meniscus displacement of the previous process was also
observed. .

For the experiments involving the fluid pair water-kerosene, secondary imbibition mechanism
similar to the water-air system was observed at the capillary number 4 x 108 (Figures 42 and 43).
Water was found to enter the fracture first. Then, the matrix block was invaded with a chain of
rapid jumps as soon as the injecting water started to communicate with the previous water film
along the roughness of the network. Qil was trapped in the pores, while adjacent channels were
occupied with water at the conclusion of the snap-off process. At capillary number values lower
than 10~® this mechanism was not observed. Rather all water were found to enter the fracture
first, and then pores adjacent to the fracture started to be invaded slowly (Figures 44 and 45). We

attribute this lack of spontaneous imbibition to the lack of connectivity between the residual water

films.
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In the experiments with heavy oil, where the mobility ratio was higher than 100, water moves to
the fracture first. However, before water breakthrough in the fracture, it also invaded the matrix.
We will analyze this process later in theory section. The mechanism of displacement both in the
pore throat and in the fracture is a slow, uniform meniscus movement. In these experiments, we
observed that if a relatively heavy oil is used for drainage, the water film left behind is apparently
very thin, such that spontaneous imbibition will not take place. However, as it is shown in Figures
(46-49), secondary imbibition is a very slow process. For example, in water displacing heavy mineral
oil, the complete imbibition requires about 100 pore volumes of water injection. Also, as shown in
Figures 47-49, because of the slowness of the process, at lower capillary numbers, we experience a

higher displacement efficiency.

Figure 40: Secondary imbibition (water-air) at Ca = 2 x 10~8 (snapshot 1).
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Figure 44: Secondary imbibition (water-kerosene) at Ca = 4 X 10-7.
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Figure 48: Secondary imbibition (water-heavy oil) at Ca =4 x 107°.
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3.2.4 Free Imbibition

Free imbibition was experimented with water-air system. Dyed water was introduced to the clean
and dry micromodel through a plastic tubing connected to a pipette. To prevent any gravity force
resulting from the water column in the pipette at the beginning of the experiment, the plastic tubing
was closed, and the water vertical level in pipette was balanced with the level of the micromodel.
Then, the tubing was opened and water moved into the model. Since the inlet of the model is
connected to the fracture, water movement was stopped at the inlet due to the capillarity of the
fracture (Fig.50). Thus, it was necessary to raise the water level in the pipette by a few millimeters
to provide a small gravity force to overcome the capillary pressure at the inlet and to start invasion
into the network. After invasion started, the pipette was lowered to its original level. Water invaded
the network by the capillary forces only. The Fracture was also invaded; however, the water front
in the network was always a head of that in the fracture (Figures 51-53).

At the beginning, this test was observed to occur rapidly, but later it becomes a slow displace-
ment. The mechanism is similar to the exponential decay of water saturation versus time proposed
by Aronofsky et al. [2]. "

Later in this chapter, the numerical simulation of this process will be compared with the ex-

periment.
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Figure 51: Free imbibition (water-air) (snapshot 2).
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3.2.5 Gravity Effects

The next set of experiments investigated effects of gravity in water displacing kerosene following two
different geometrical configurations, one with the micromodel tilted at a small angle with respect
to horizontal, and another with the model rotated to the gravity vector (vertical cross-section).
The water was not dyed in this set of experiments. All experiments were carried out at a capillary
number of 4 x 10~¢.

In the first configuration we probed effects of formation dip. Water was injected from the
bottom (updip) or from the top (dewndip). For updip injectiori, a flat and stable displacement
front with small size oil entrapments were observed (Figure 54). In contrast, for downdip injection,
the density difference acted to destablize the front resulting into an unstable fingering mechanism
with large size oil entrapments (Figure 55). Fingers in the fracture was more developed than in the
matrix.

In the second configuration we examined effects of gravity override. The injected water flowed

downwards towards the bottom of the model. Figure 56 shows the process at steady state.
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Figure 56: Water injection in a vertical cross-section.
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3.2.6 Theory

In the previous section, we experimentally visualized forced primary imbibition with water displac-
ing air (mobility ratio of 0.018). If the capillary number is sufficiently small , all injected fluid
initially flows along the roughness of walls of the pore network. At higher injection rates, the
wetting fluid flows at the bulk of pore network without any fracture penetration. At higher rates,
the fracture is also invaded, but the front in the network is ahead of that in the fracture. Finally,
when the injection rate is raised above to a critical value, the front of the wetting fluid in the
fracture travels faster than that of the network. For the case of water displacing oil at any capillary
number, both fracture and matrix are invaded provided that the mobility ratio is greater than one.
Therefore, it seems that there exist two critical capillary numbers, one for the start of penetration
in the fracture (M < 1), and another for which the wetting fluid in the fracture is the same to that
in the matrix (any mobility ratio).

To calculate the first critical capillary number for the start of penetration in the fracture (M <«

" 1), the pressure drop at the inlet must be equal to the capillary pressure in the fracture (Fig. 57),

A

Figure 57: Schematic of fluids distribution after fracture penetration.
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P.-P,=— (24)

where o is interfacial tension and r; is the fracture radius. Application of Darcy’s law for both

wetting and non-wetting phases in the matrix gives

qpwli
P,—P,; = 25
YT bk (2)
and
L-1
inf - Pe = q“}:u (k 1) (26)
mivrnw

where ¢ is fluid velocity, u is viscosity, k, is matrix permeability, k. is relative permeability and
we used subscripts w, nw and f to denote wetting, non-wetting and front. In addition, at the

displacement front in the network, the capillary pressure relationship exists

20
ow—inf = —— (27)

Tm

where r,, is the average pore radius of matrix. By combining equations (25),(26), (27) and substi-

tution into the condition for the critical capillary number, P, — P, = %’-, we obtain
1 1 q (L — ll)ﬂnw llll'w
20(— = —) = — + . 28
(rm 7~.f) km[ krnw krw ] ’ ( )

Since M < 1, finw can be neglected compared to p., and using the capillary number definition

Ca = £, equation (28) gives the critical value
Ca" = —(—-—) (29)
By assumption, ry is much greater than ry,, thus % can be neglected compared to #, hence

2k,
Lrm
Equation (30) suggests that for M < 1, the fracture penetration depends on the geometric prop-

(Ca™)r = (30)

erties of matrix, more permeable and shorter matrix block causing earlier fracture penetration for
the same fluids and injection rate.
To calculate the critical capillary number for which the displacement front in the matrix is the

same as that in the fracture, the pressure drop in the fracture should be equal to pressure drop in
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the matrix. The pressure drop in the matrix is

Qinw(L ~ ) _ 2_0

_ qHwl
Py =P = S 4 S o (31)
while the pressure drop in the fracture is
_p _ Wl | gpau(L-1) 20
P,—-P. = y + k; e (32)
At the entrance (I = 0) equating the right side of equations (31) and (32) gives
1 1
Lqpiny _ 2 oo ;)
=71 iy° (33)
o (&0 — %)

By substitution of the capillary number Ca = 2 and the viscosity ratio M = E“"'-‘f into (33) and
making the assumption that Zl;- and % can be neglected compared to g and ;L-, respectively, the
second critical capillary number will be obtained

2k,

(Ca®)z = ML

(34)

Thus, this critical capillary number depends on the geometric properties of matrix and the viscosity
ratio. For capillary number less than the above value, the wetting fluid front in the matrix is ahead
of that in the fracture; inversely, at capillary numbers greater than the critical value, the wetting
fluid moves ahead of the wetting fluid in the matrix. We compared the above critical capillary
number with the Mattax and Kyte [77] experiments, they carried out a water-drive on a fracture-
matrix system and found the critical rate to be 3“/day. Their experiment was performed on a
1.9-md sandstone with a porosity of 9.1 percent, viscosity of water 0.9 cP, viscosity of oil 2.7 ¢P,
and interfacial tension of 35 dynes/cm. The length of the sample was 3 inches. Based on the above
data, the capillary number is calculated to be 2.3 x 1078, In turn, the critical capillary number
from equation (34) using the Katz and Thompson formula [50] for the permeabil{ity calculation is
computed to be 0.5 x 1078, Although both numbers are in the same order of magnitude, we should
note that in deriving the theoretical formula, gravity was not considered, while in Mattax and
Kyte experiment, the water was injected at the bottom of the sample. Thus, the actual capillary
number is higher than the theoretical. Comparison of the theoretical expressions with our network

simulation and the micromodel experiments are discussed in the following section.

‘
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3.2.7 Simulation

To compare experimental and theoretical results with a numerical simulation, we used two different
pore network simulation for imbibition developed by Xu in Ref. [15]; one for primary imbibition
which does not consider film flow or snap-off mechanisms, and another for secondary imbibition
which accounts for film flow and snap-off which are two mechanisms that occur in secondary
imbibition. In the absence of film flow simulation of imbibition is similar to drainage with the
exception that the capillary pressure is calculated based on the pore instead of the bond radius,
and the condition for invading the adjacent bond is p; + psi; > pj, where pg; is the capillary
pressure between adjacent bonds i and j. We recall that the corresponding condition for drainage
is p;i > peij + p;- We used both constant flow rate and constant pressure boundary conditions.
With a constant flow rate boundary, we were able to compare the numerical simulation with the
forced primary imbibition experim ents. The constant pressure boundary, free imbibition can be
simulated. In simulation of imbibition with film flow, which simulates secondary imbibition, Xu in
Ref. [15] modified the conditions used by Lenormand [66]. The pressure field is calculated based
on Poiseuille’s law using an SOR method for both the bulk zone and the film region. According to
Lenormand et al. [66], when there is corner flow in non-circular cross-section channel, an unstable
state of interface is reached when the meniscus at the two adjacent corners join and snap-off occurs.
For a rectangular throat with side = and y, snap-off will happen when p, = 22,(r = min(z,y)). In
our simulation, it is assumed that snap-off develops when the film covers the circle, in a condition
similar to a square shape throat. Fore pore filling, Lenormand et al. [66] categorized Z — 1
mechanisms for a network with coordination number of Z. For example, they defined mechanism
I1 as that when pore is surrounded by Z — 1 filled bonds, I2 when a pore is surrounded by Z — 2

filled bonds, etc.. The pore filling conditions for the circular bonds and spherical pores are as

follows:
20
Pn=pnw — Pw=""" (35)
Tp
and
0.15 1
PI2 = Prw = Puw = 0(— + —) (36)
Tt Tp

Only one event occurs based on the pressure condition at any time step. If more than one event

can happen, the pore which takes less time, first starts to fill and the time step increment is set

84



accordingly. At high flow rates, the rate of fluid injected into the system is more than that by
which films which can absorb; therefore, a frontal drive will prevail similar to drainage. Further
details on the simulator are available in [114].

We first run the simulator to simulate forced imbibition (absence of film flow) with the same
pore structure and flow parameters used in the experiments. The simulations with the results from
the corresponding ex;;eriments are shown in Figures 58-60. In this set, we used the square pattern
micromodel in order to compare results with network simulations.

Figure 58 shows water displacing air in the micromodel and corresponding simulations for a
capillary number 1.8 x 1073, In this experiment, water moves only in the matrix and no penetration
in the fracture is observed (the corresponding capillary number is below the critical capillary number
for the start of penetration in the fracture). The network simulation of the experiment show a that
except for a few pores, the fracture is also not penetrated, and a generally good match with the
experiments is obtained. In Figure 59, the water injection rate is increased for to a capillary number
of 5.4 x 1075, As shown on the left side of Figure 59, the fracture is now penetrated; however,
the water front in the fracture is always behind the water front in the matrix. The simulation of
this experiment, shown on the right side, also indicates fracture penetration as well. The critical
capillary number for the start of invasion in the fracture was calculated to be 1.08 x 10~5. From
both simulation and experiment, this number must be between 1.8 x 107° and. 5.4 x 10~% which
was the same order of magnitude as the calculated. Figure 60 shows experiment and corresponding
simulation for a capillary number of 5.4 x 1074, In this experiment fracture and matrix were
penetrated at the same time showing that the capillary number has exceeded its second critical
value. Recall that the latter was define

d as that dictating competition between the front in the fracture and that in the matrix, and
for our experiment was calculated as 5.4 x 10™%. The interactions between fracture and matrix in
the experiment and the simulation were generally well matched, and it is shown that the critical
capillary number derived is applicable both for experiments and simulations.

Subsequently, we run simulations for secondary imbibition namely by considering film flow and
snap-off mechanisms. Figures 61-64 show the simulation results. In this set of figures, the left
side shows the beginning of the process, the right side shows the steady state condition reached;

invaded pores are shown with open circles, filled bonds following snap-off events are shown with

85

—— -

RN T i e 2 o CARIL AR T 52 et SR it v TR B Lo s e S M Ve b= i i e v S SN PG AN 7 i bl P e is” e e W ) e P A 10 3 g



Iﬁ

Figure 58: Comparison between experimental and numerical results for water-air, Ca = 1.8 X 10-5.
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Figure 59: Comparison between experimental and numerical results for water-air, Ca = 5.4 x 10~°
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Figure 60: Comparison between experimental and numerical results for water-air, Ca = 5.4 x 10™*
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dashes. First we examined the low capillary number 5.4 x 10~8. Film flow and snap-off are the
dominant mechanisms under this condition (Figure 61). The capillary number was next increased
to 1.8 x 1076, and the results are shown in Figure 62. Now, in addition to film flow, we have pore
filling mechanisms as well; however, the fracture is practically not invaded. Then, the simulation
was run at Ca = 5.4 x 107° (Figure 63). In this case, the fracture starts to be invaded; however,
at steady state, the full fracture penetration was arrested. This result is comparable to a previous
set (Figure 59) at Ca =54 X% 10~° where film flow did not take place. Because of the order of
magnitude difference between the two results, this is supporting the fact that in the experiments a
film flow mechanism did not exist. The final run is at a capillary number of 5.4 x 107, At these
conditions, pore filling is the dominant mechanism. This is similar to a previous set (Figure 60) at
Ca = 5.4 x 10~4. Comparison between the two indicates that if there is film flow, the start of the
fracture invasion, and the competition between displacement fronts in the fracture and the matrix
occur sooner.

In another set of simulations, the imbibition in the water-oil pair was studied. A network of size
60 x 20, with fractures in the side of the model is considered. Here, injection is through the entire
inlet-face. The viscosity ratio is 100, while bond and pore radii of the fracture are five times larger
to those in the matrix. The pore radius is ten times the bond radius. No film flow is assumed.
The critical capillary number (when the front in the matrix and the fracture are the same) was
0.67x10~* (Figure 65). The calculated value from equation (34) is 0.12x 10~#, which is a relatively
good match despite the simplifications in deriving the formula. Then, the simulator was run for
the same network, but with a bond radius one half of the previous. Now, the resulting critical
capillary number becomes 0.75 x 10~ (which is 11—6 smaller of the previous). This is expected from
Eq. (34), which shows that both cross section area and matrix permeability are proportional to the
second power of the bond radius. This indicates that the critical capillary number is proportional to
matrix permeability. We also run the simulator for different lengths and viscosity ratios and found
the critical capillary number to be inversely proportional to the length and viscosity ratio. This
set of simulations confirmed the proposed relationship (Eq. 34) for the critical capillary number.
Finally, simulator was run for a different mobility ratio. Figure 66 shows the effect of viscosity ratio
on the critical capillary number. At mobility ratio values higher than one, the slope obtained is

close to 1. At mobility ratio values smaller than one, on the other hand, the effect of the mobility
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Figure 61: Numerical simulation of secondary imbibition (water-air) Ca = 5.4 x 108 (left: early
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Figure 63: Numerical simulation of secondary imbibition (water-air) Ca = 5.4 x 107¢ (left: early

time, right: steady state).
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Figure 64: Numerical simulation of secondary imbibition (water-air) Ca = 5.4 X 105 (left: early

time, right: steady state).
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Figure 65: Numerical simulation of primary imbibition (water-air) Ca = 0.67 x 10~%, M = 100.

94



ratio on the critical capillary number is relatively émall. This figure actually confirms the inverse
proportioria,lity of tile first critical capillary number on mobility ratio, and shows that the second
capillary number is almost independent of the mobility ratio.

Finally, we simulate water-air free imbibition experiment. Now, the boundary condition was
changed from constant flow rate to constant pressure, and we set both inlet and outlet pressure to
be atmospheric. The primary imbibition simulator was used. Figure 67 shows four snapshots of the
results obtained. Similar to the experiment, water moves into the matrix first and no substantial
trapping is observed. When substantial matrix invasion develops, water starts to invade the fracture
as well. We note that the water saturation versus time curve for this simulation is linear. Aronofsy
et al. [2] findings predict an exponential curve. The two, of course, are consistent at early times.
Possible reasons for discrepancy are the assumption of no film flow and snap-off mechanisms in this

simulation.
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Figure 66: Dependence of the critical capillary number (open circles) on viscosity ratio for primary

imbibition (the solid line is a guide to the eye). Theoretical predictions are shown as dashed curves.
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Figure 67: Numerical simulation of free imbibition (water-air). Four consecutive snapshots.
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4 CAPILLARY PRESSURE OF ANISOTROPIC POROUS MEDIA

B. Xu and Y. C. Yortsos

4.1 INTRODUCTION

Anisotropy is the dependence of the magnitude of certain properties of a substance on the direction
of measurement. In the case of crystals and fluids, anisotropy is an intrinsic property. In the case of
porous media, the anisotropy of permeability has been studied thoroughly in terms of tensors [28].
But by the same reasoning, the capillary pressure function which is closely related to permeability
should also have direction-dependence in anisotropic media. As far as can know, this problem has
not been studied so far. It is the objective of this chapter to study the effects of anisotropy on
capillarity by using percolation approach in network modeling [34].

Percolation in anisotropic networks has been studied by some researchers with emphasis on per-
colation characteristics, such as the universality of critical exponents. These works have been done
using ordinary percolation, in which different occupancy probabilities are used in different direc-
tions, their ratio specified as anisotropic ratio (p;/py). Yoon and Lee [117] studied the conductivity
exponent (t) as a function of the anisotropic ratio in the range from 0.1 to 10. The exponent ¢

relates the conductivity to probability p by the power-law relation

g~ (p - pc)t (37)

These authors found that in the above range t varies from 1.67 to 1.08, compared to the isotropic
value of 1.30. Other researchers have done some work on the scaling of conductivity [42]){101], while
some others studied the properties of the infinite cluster at anisotropic conditions [51]. However,
no work has been published using invasion percolation with emphasis on the capillary behavior. In
this chapter, we report preliminary results on this subject.

To model the process we consider an anisotropic network, consisting of two (2-D) or three (3-D)
different pore (or bond) size distributions in the anisotropic directions (low (L) and high (H)),
respectively. We recall that the pore size is related to the permeability by the relation r ~ Vk.
These distributions can be selected solely as to overlap or not to overlap with one another. In the
case of overlap, we can further differentiate as wide, narrow or very narrow overlap, depending on

the overlap range. In all cases, the (L) size distributions are the same, and uniform (in the range
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of [0.6, 1.4]). The (H) distributions vary for different overlap conditions: in the case of no overlap,
it it in the range [1.8, 4.4]; for wide overlap, in the range [0.9, 2.1]; for narrow overlap, in the range
[1.29, 3.01] and for very narrow overlap, in the range [1.38, 3.22]. Trapping rules are included in

the simulations which are based on standard invasion percolation.

4.2 RESULTS AND DISCUSSION

In the analysis, we discuss 2D and 3D network simulations, with or without overlap in the different

directions.

4.2.1 2D Networks Without Overlap

We consider drainage in square networks where the displacing phase is injected from the sides
facing high or low permeabilities (k), respectively. Injection at an angles with respect to the main
direction was also considered. Figures 68 (a) to (e) give the capillary pressure curves corresponding
to injection at 0° (high % direction (H,L)), 30°, 45°, 60° and 90° (low k direction (L,H)) angles.
The curves are different depending on the injection angle. They suggest the existence of anisotropy
in capillarity, which should be contrasted to the common practice of using a single P. curve in
anisotropic porous media. Injecting along the high k direction (0°) produces a low P, curve, while
injecting along the low k direction (90°) gives a high P, curve, as expected. Injecting at an angle
other than 0° or 90° gives a composite P, curve, similar to the P, curve in a composite medium
with two permeability values suggested by Yortsos et al [120]. The jump links the low P, curve
plateau corresponding to 0° to the higher plateau corresponding to 90°. The jump varies with the
angle, from 0° (no jump) to 30° (jump at Sy, ~ 40%) to 45° (jump at Spy ~ 20%), 60° (jump at
Snw ~ 8%) to 90° (jump at Sy, ~ 0%). This will be analyzed next.

Figure 69 shows the displacement patterns for different injection angles. What is obvious is that
the patterns are qualitatively different, especially for 0° and 90°, the intermediate angles possessing
some similarities in the general shapes but different in size. For 0° angle injection (Figure 69(a)),
the injection direction (from top to bottom) coincides with the large bond direction (high % in
vertical). Since all bonds in the high & direction are larger than those in the low & direction,
the invading phase proceeds along the large bond columns (connected to the outlet) only, with

no interaction between different columns taking place. This is like a percolation in a 2D network
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Figure 68: Capillary pressure curves for 2D, without size overlap for injection at different angles

(a) 0°, (H,L) (b) 30° (c) 45° (d) 60° (e) 90°, (L,H).
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with coordination number Z = 2, resulting in a percolation threshold p. = f[™** a(r)dr = 1 and
¢ = T'Hmin, Which means that the capillary pressure plateau Peplgtean = r:min. Injecting at angle
of 90° (from top to bottom) (Figure 69(e)), the nw phase first needs to penetrate a bond in the
small k distribution (vertical). This first step raises the P, to a value corresponding to the largest
bond in the low permeability direction (rpmaz). Once one node in this row is occupied, the large
bonds in the transverse direction makes it easy to fill that entire row immediately. This process is
repeated in the next row, thus the process advances row by row. This is a percolation process in a
2D network with Z = oo or NY for finite network and resulting in a p. = 0 and r; = rrmaz, Which
means that Pelateau = %3; When injecting at an angle to the high k direction (from top left
corner), the situation is more complicated. As Figures 69(b), (c) and (d) show, the invading front
first advances horizontally (the high k direction) from the inlet line, resulting into a low P, plateau
corresponding to the one in 0° angle injection. When the columns connected to the inlet are either
filled or trapped, the non-wetting phase must move downwards, which is the low k direction, thus
raising P, to a high plateau corresponding to the one in 90° angle injection during which there is
only one pore-filling. This results in the P, jump. As long as rgmin > "Lmaz, @ F. jump appears.
Looking at the occupancy pattern, it can be seen that the saturation S;,, at which the jump
happens has some dependence on the number of sites that are connected to the inlet through
large horizontal bonds. There is one critical row where the non-wetting phase starts to proceed
downwards through a vertical, small size bond. This is the lowest row connected to the injection
line. Two situations can be identified: (a) injection angle § < w/4 and (b) § > n/4. For § < 7 /4,
we can divide the range connected to the injection line into two regions, A and B, as shown in
Figure 70. When 8 > 7 /4, only one region of rows that are connected to inlet is present and it
acts like region A. Before the invading phase is forced into the small vertical bonds, region B is
always completely filled, however region A is not and may contain trapped phase, once the row

that separates regions A and B is filled completely. An analysis reveals that the saturation of the

invading phase before the P, jump given by

1- %(2 — Snwa)tanf 0 < w/4
%SnwACOto 6>n/4

* —
Snw -

(38)

where Sy.,4 is the invading phase saturation in range A when it traps all the remaining wetting
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Figure 69: Invasion patterns corresponding to Figure 68.
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Figure 70: Schematic of the invasion regions for 2D injecting at an angle, without overlap.

phase. If we take Sp,,4 to be constant for different angles 0, then S;;, is monotonically decreasing
with 8. This was confirmed in our simulations.

What is the property of the maximum saturation in range A, Spwa? Is it size-dependent?
Repeated runs with different realizations suggested that S,,4 may be distributed for finite size
networks. So Monte Carlo simulations with a large number of realizations were carried out at
6 = 30° for different sizes of square networks (N = 100, 200, 300,400) to study its statistics.
Figure 71 shows the distribution. Analysis of these data for different network sizes shows that as the
network size increases, the standard deviation of the distribution of Sp,,4 decreases monotonically,
and so does its mean, as plotted in Figure 72 and Figure 73. We may infer that when network size
is large enough, S,,,4 will converge to a small value, in which case P, curves are reproducible.

The irreducible (trapped) wetting phase saturation (Sy;) at the end of displacement was found
to be zero for § = 0° and 90°. Invasion occurs by rows (piston-like) or by columns, but finally it
displaces all initial fluid. On the other hand, for 6 = 30° and 60°, Sy, is in the range of 35 ~ 40%

while for 8 = 45°, S;, is about 30%. Thus, injection at an angle leaves a trapped wetting phase.
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Figure 71: Statistics of Sn4 for injection at 30°, without overlap.
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Figure 72: Mean of S, 4 as defined above vs network size.
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Figure 73: Standard deviation of S, 4 Vs network size.

4.2.2 2D Networks With Overlap

When bond sizes in the two directions overlap, the effect can be significant in 2D. To make the
overlap effects clear, three levels of overlap were studied, wide overlap, narrow overlap and very
narrow overlap. Figures 74, 75 and 76 show the capillary curves for different overlap conditions at
different injection angles. What is clear is that in all P, curves, regardless of degree of overlap, the
F, jump observed in the non-overlapping cases disappears completely. All P, curves for a given
overlap condition have the same P, plateau value. The only difference is in the irreducible wetting
phase saturation. S,;- has the same trend as in the no-overlap cases, i.e., 0° and 90° injections
have the lowest Sy, 45° injection has a little higher, and 30° and 60° injections have the highest
Sw"r.

Further examining the plateau P, values, we found that for wide overlap, the P, plateau corre-
sponds to a bond radius around r = 1.2, which is the middle value of the overlap range [0.9, 1.4]
of the two distributions [0.6, 1.4] and [0.9, 2.1]. For the other two overlap conditions (narrow and
very narrow), the P, plateaus correspond to to their overlap ranges, respectively. With an increase
in the overlap degree, the irreducible wetting phase saturations increase.

Figures 77, 78 and 79 show the different angle occupancy patterns for the three different overlap

conditions. Comparing with the no-overlap Figure 69, it is clear that with overlap degree increases,
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Figure 74: Capillary pressure curves for 2D, with wide size overlap; (a)-(e) refer to Figure 68.
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Figure 75: Capillary pressure curves for 2D, with narrow size overlap; (2)-(e) refer to Figure 68.
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Figure 76: Capillary pressure curves for 2D, with very narrow size overlap; (a)-(e) refer to Figure 68.
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the invasion branching increases. These can be explained as follows. With no overlap, each column
advances independently. If there is overlap, at some point, the available to the front bonds in the
high direction could be smaller than a transverse bond. Then branching occurs. This is what we see
on the occupancy patterns for very narrow overlap. This branching causes more sites to be trapped
and eliminates the P, jump. From the no-overlap analysis, we already know that the high P, plateau
corresponds t0 rL;q,, While the low P, plateau corresponds to rgrmin. Since rimaz < FHmin in the
no-overlap situation, we have the P, jump. Now, with overlap, rLmar > rHmin and the jump
disappears. We note that these invasion patterns are very different from the isotropic ones. Their
behaviors need to be analyzed further.

For comparison, we also show the use of equal size distributions and for different injection
angles. Figure 80 shows the curve observed for 2D square network. Here we also obtained different
curves, with main difference in the irreducible saturation but little difference in P, plateau values,
as obtained in the wide overlap cases. Figure 81 shows occupancy patterns. Injecting at an angle
not coinciding with principal directions (or bond directions) caused more trapping. This is of course

a result of the 2D square lattice which is an isotropic.

4.2.3 3D Networks Without Overlap

We consider, next, a 3-D and simple cubic network. We take the injection direction always parallel
to an anisotropic (L,H) surf:«.mce, the third direction having a distribution equal to one of the others
(either high or low).

When no overlap exists, the capillary pressure results are similar to 2D. Figure 82 shows P,
curves for a (L,H,L) distribution, while Figure 83 shows P, curves for a (L,H,H) distribution, with
the first two directions in the plane parallel to the injection direction. It is clear that distinct P;
curves appear for different injection angles and jumps in P, are involved, just as in 2D. The third
direction does not contribute to the capillary pressure curve of the invading fluid. Take injection at
an angle as an example. No matter what the permeability in the third direction is (L or H), before
the invading phase can penetrate the low permeability bond at the lowest row connecting the inlet
(refer in Figure 69 to the line separating ranges A (or B) and C), P, has to be raised to a higher
value. This is the same situation as in 2D where a P. jump occurs. .

The difference with 2D geometries lies in the fact that the irreducible wetting saturation at the
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Figure 77: Invasion patterns corresponding to Figure 74, with wide overlap; (a)-(e) refer to Fig-

ure 68.
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Figure 78: Invasion patterns corresponding to Figure 75, with narrow overlap; (a)-(e) refer to

Figure 68.
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Figure 79: Invasion patterns corresponding to Figure 76, with very narrow overlap; (2)-(e) refer to

Figure 68.
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Figure 80: Capillary pressure curves for 2D, full overlap; (a)-(e) refer to Figure 68.




Figure 81: Invasion patterns corresponding to Figure 80; (2)-(e) refer to Figure 68

114



0.6 0.6
g 0.4 & 0.4
0.2 TN 0.2
0
0o 0.5 0 0.5 i
Sw Sw
(a) (b)
0.6 0.6
£ 0.4 & 0.4
0.2 0.2
0 0
0 0.5 0 0.5 1
Sw Sw
(c) (d)
0.6
& 0.4
0.2
0o 0.5
Sw
(e)

Figure 82: Capillary pressure curves for 3D (L,H,L) without overlap; (a)-(e) refer to Figure 68.
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Figure 83: Capillary pressure curves for 3D (L,H,H) without overlap; (a)-(e) refer to Figure 68.
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90° injection (LHL or LHH) is no longer zero, as in 2D, as the third direction introduces some

trapping.

4.2.4 3D Networks With Overlap

When overlap in the two kinds of distribution (L and H) exists, we expect, according to 2D results,
the step-like P, phenomena should disappear and the P. curves at different injection angles to
make much less difference. We report on P, curves of the type (LHL) and (LHH). Figures 84 and
85 show the corresponding P, curves for different angles of each case, respectively. We can see
that the (LHL) case agrees with the 2D results: the step disappears and the P curves at different
angles become much alike, except for the long transition part before the plateaus. This transition
part shortens as the rotation angle increases, just like the jump position varies with the angle of
injection.

In the (LHH) case, on the other hand, we observe the step-like P, curves. The various curves
for different angle injection look quite similar to the ones with no overlap at all (refer to Figure 68
for 2D, Figure 83 for 3D), and even the jump positions obey the rule of no-overlap, namely that as
the angle increases, the jump occurs earlier. What happens if we increase the overlap range? Could
the jump disappear? Several simulations were run with different overlap ranges for § = 30°, as
shown in Figure 86. It is clear from this Figure that as overlap range increases, the jump amplitude
gradually decreases, but stays non-zero for a wide range of overlap. We explain this behavior below.

Denote the high k direction.in the anisotropic surface as z, the low k direction as y and the
third direction as z (L or H). Each zy plane would look like the one in Figure 69. The flow will
tend to move preferably in the z direction. In the (LHL) cases, the invasion along the z direction
proceeds by columns and eventually will meet the low end of the high k distribution which is
smaller than the high end of the low k distribution in y and z; thus it will branch into y and z
bonds. This makes for a high P, and no jumps. In (LHH) cases, however, though we have (LH)
anisotropy in the zy plane, the plane in zz is isotropic, and both directions have high permeability.
According to 2D bond percolation, each zz plane can percolate at the mean bond size (for narrow
overlap, rHmeam = 2.15). This is the low P, plateau before a P, jump. When regions A and B
(Figure 70 corresponding to zy plane) are completely filled or trapped, a y direction small bond

must be penetrated, which raises the P. to a value corresponding to ryma.; = 1.4. Thus, a P, jump
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Figure 84: Capillary pressure curves for 3D (L,H,L) with narrow size overlap; (a)-(e) refer to

Figure 68.
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Figure 85: Capillary pressure curves for 3D (L,H,H) with narrow size overlap; (a)-(e) refer to

Figure 68.
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Figure 86: Capillary pressure curves for 3D (L,H,H) at 30° angle injection with different size overlap.
High k size ranges are: (a) [1.2, 2.8] (b) [1.29, 3.01], narrow overlap (c) [1.05, 2.45] (d) [1.38, 3.22],
very narrow overlap (e) [0.9, 2.10]
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Figure 87: Capillary pressure curves for 2D layered system: (a) injection parallel to the layers (b)

injection perpendicular to the layers.

is observed. This jump decreases as the overlap range increases or as rLmqe; approaches rgmean.
When TLmaez = THmean, and for large enough networks (to avoid finite size effect), the jump will

disappear.

4.2.5 2D Layered System

We also studied another anisotropic configuration — a 2D layered system. Each row is a layer with
one different and randomly distributed mean, with the two direction bonds on this layer having
the same mean. We inject from a direction perpendicular or parallel to the layers. Figure 87 shows
corresponding P, curves. The two are different from each other, with the one corresponding to
injection perpendicular to the layers having many small steps (jumps), while the one at injection

parallel to the layers having a smooth S shape.

121

s G g 59
O R AN LI G A A P DL 2 oE jon'ie Jip e M P LA L Ry B A A Va2 ol M IR e S e A AN Tt e £ AR e



4.3 CONCLUSIONS

1

The above study of capillary invasion in 2D and 3D anisotropic porous media shows that anisotropic
porous media do have distinct anisotropic capillary pressure curves. The following conclusions can

be stated:

1. Without size distribution overlap in different directions, P, curves are intrinsically different

with a jump varying with the injection angle.

2. With size overlap for either 2D or 3D (LHL) cases, the only major difference is in the irre-
ducible wetting phase saturation. Even porous media with identical size distributions in the

two directions exhibit this property when injecting at different angles.

3. With-size overlap for 3D (LHH) cases, the P, step-like jumps still persist. This shows that

even with overlap, the anisotropic capillary pressure difference still holds strong.

4. Invasion percolation patterns under different overlap conditions need to be studied further.
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5 BOUNDARY EFFECTS IN THE NUMERICAL SIMULATION OF MISCIBLE

DISPLACEMENT

Z.M. Yang and Y.C. Yortsos

5.1 INTRODUCTION

Miscible displacements are common in enhanced oil recovery processes. The corresponding flow
regimes can be viscous fingering, dispersion, gravity bypassing or channelling depending on the
dominance of the particular controling factors.

Viscous fingering is mainly present under conditions of unfavourable mobility ratio and weakly
heterogeneous porous media. Dispersion usually sets in very heterogeneous permeable media but
without long-range correlations. Gravity bypassing is due to the significant density difference be-
tween displaced and displacing fluids. Channelling is mainly due to the result of fluid displacement
in media with long-range correlations and strong heterogeneity arising from geological deposition
and diagenesis.

Vertical flow equilibrium (VFE) is an asymptotic condition for fluid displacement [115]. Un-
der the VFE concept, the total potential difference in the transverse direction can be ignored
and the pressure only changes in the longitudinal direction. Using the VFE concept, the math-
ematical description can be greatly simplified to facilitate analysis and application. The factor
Ry, = (L/H)+\/k,/[ky, is a measure of the VFE condition [48],[118),[115], with Ry, > 1 leading to
VFE being good approximation.

In this section, we present numerical solution of the mathematical models of miscible displace-
ment, both for the full model (pressure and concentration) and for the VFE model (concentration
only). The major difficulty in solving the convective-dispersive equations of predominantly con-
vective behaviour is numerical dispersion and numerical oscillation. The use of stable low-order
difference scheme causes large amounts of numerical dispersion, which may smear out the physical
front. While the use of conventional high-order difference schemes may cause numerical oscillation
near the concentration front. These problems can be solved by using the Total Variation Dimin-
ishing (TVD) method with flux limiter, which is a dynamic weighting between lower and higher

order difference schemes, depending on the local flow condition. As a result, high accuracy can be
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reached without causing numerical oscillation at the concentration fronts.

- Flow regimes can be identified by plotting mixing zone length vs. time or by plotting transver-
sally averaged concentration vs. appropriate time-spatial coordinates (z/t or (z — ut)/vt). It was
found in our simulations that the use of the physically reasonable no-flow boundary condition at
the top and bottom boundaries may result in finger-like flow near the boundaries when the system
approach vertical flow equilibrium (VFE) condition. We call this a “boundary effect”. It is essen-
tially due to the use of Darcy’s law at the boundaries and becomes significant when the system
approaches the VFE condition and the porous media have no strong heterogeneity. Due to the
contamination caused by this problem, it may limit the use of no-flow boundary condition when
the system approaches VFE. The use of periodic boundary conditions may eliminate this problem.

The viscous instability problem of both miscible and immiscible displacements have been nu-
merically simulated by many researchers at conditions far away from VFE [31],[17],{10]. In their
results, the boundary effect is not clear. Some authors use periodic boundary conditions, thereby
avoiding this problem [88],[122]. Miscible displacement at VFE condition has also been simulated
[57). However, the results are available for strong heterogeneity condition (Vpp > 0.5) and do not
show this boundary effect either. Waggoner et al show results at VFE condition [48], where a clear
boundary effect can be observed, although the problem is not discussed.

In this section, the condition and reason of this effect are discussed. It is shown that this effect
will be severe when the system approaches VFE, viscous forces are dominant and the porous media

are weakly heterogeneous.

5.2 MATHEMATICAL MODEL AND NUMERICAL SOLUTION

Under the assumption of first-contact miscible displacement and incompressible fluids, the full
model of the process can be described by a mass conservation equation of solvent along with the

total volumetric conservation equation and Darcy’s law. The dimensionless form of the model is as

follows:
oc -
¢~ + V-(VC) = V-(DVC) (39)
- K
V= —;(VP - p9) (40)
vV =0 (41)
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The shape factor Ry, is an indicator of the approximation to VFE condition [48],[118],{115]. As
long as Ry, is greater than a certain value, VFE will be a good approximation to the displacement
process from a practical point of view. When the asymptotic analysis is applied, a much simplified

mathematical model can be derived as shown below in dimensionless form

aC  0(uC) , 9(wC) _ *C
o T oy Nrp 3y (42)
where:
KA
== 43
“ J3 kAdy (43)
v Ju
w=- A (T?;dy (44)
Initial and boundary conditions are as follows:
C(z,y,0)=0 (45)
C(0,y,t)=1 (46)
ocC
a—$|x=1 =0 47)
Fly=o0 = Fly=1=10 (48)

where F = wC — NTD% is the total flux including convection and dispersion. F = 0 for no-
flow or closed boundary condition, but F' # 0 for periodic boundary condition. Under the VFE
condition. the pressure term in.Eq.(42) has been cancelled. As a result, Eq.( 42) is much simpler
than the complete miscible displacement model (Eq.(39) to Eq.(41) ), which will be appropriate
for simulating viscous fingering details at much less computational costs.

As mentioned, the major numerical problem for solving the convective-dispersive equation of
dominating convective nature (Eq.(39) and Eq.(42)) is numerical dispersion and oscillations near
concentration fronts [60],[32]. First order difference schemes for the convective term will give stable
results, but, unfortunately, with large numerical dispersion. The increase of gridblock resolution
will decrease numerical dispersion. However it is not feasible to decrease it to an acceptable level
from a practical point of view. Higher order difference schemes often result in oscillations near the
concentration fronts although numerical dispersion problem can be ignored. At the present stage,

the most appropriate numerical method is the TVD flux Limiter scheme, which is the dynamic
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weighting between lower and higher order difference schemes depending on the local flow conditions
[9],[106]. By means of this method, a high accuracy can be reached without causing numerical
oscillations at concentration fronts. The difference schemes are as follows:

For the time derivative, a first-order implicit scheme is applied

oc . cmi_cn

— = 4
o At (49)
For the convective term, the explicit TVD flux limiter scheme is defined
o(uC) . “?+1/2C?+1/2 - "‘?—1/20?—1/2 50
oz Az (50)
T n 1 (g n
/e = CT + 59(r) (Clya = CT) (51)
where, the gradient ratio is given as
.o GG (52)
- C

Various flux limiters are used by different authors, but all of them are located in the second-order
region [116). Van Leer’s flux limiter is applied here, where the flux limiter function can be difined
as:

o(r;) = maz { 0, min(2, %l:'l)} (53)

The diffusion terms in Eq.(39) and Eq.(42) are discretized by standard central difference scheme.
The difference equations obtained are solved simultaneously by an LSOR method. The results
prove to be accurate when comparing numerical solutions with analytical solutions of a rectangular

wave and a Buckley-Leverett problem (Figure 88 and Figure 89).

5.3 RESULTS AND DISCUSSIONS

5.3.1 Boundary Disturbance Problem

.
K

(4

Viscous fingering is a flow instability which occurs when a less mobile oil is displaced by a more
mobile agent (M > 1), mainly in porous media without long-range correlations and strong het-
erogeneity. Otherwise, dispersion and channelling dominate. Due to viscous fingering, the sweep
efficiency is low and oil production is poor. The detail of viscous fingering flow can be traced by
means of high resolution numerical modelling in which the ﬁngeriﬁg is triggered by disturbing the

injection condition or the permeability field. The fingering that develops depends on the strength
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Figure 88: Comparison of numerical and analytical solutions for a rectangular wave.

of viscous instability. It was observed that the enforcement of no-flow boundary condition at top
and bottom boundaries causes finger-like disturbance near the boundaries when the process ap-
proaches VFE. This disturbance is not significant when the system is far away from VFE, but
becomes severe when the system approaches VFE. The possible factors influencing the boundary
disturbance problems are shape factor Ry, (the scale of the problem and the strength of transverse
mixing), mobility ratio M (fhe strength of viscous instability) and the reservoir heterogeneity factor
Vpp (the relative importance of viscous force and dispersion due to heterogeneity). The numerical
simulation results obtained are discussed below.

Figure 90 shows the effect of the shape factor on this boundary effect. All concentration profiles
are at time 0.3PV of injection, correspond to an unstable mobility ratio (M = 10), both for the
full model and the VFE model. Clear viscous fingers are obtained and evident boundary effects are
observed. When Ry, is small (R;<10), the boundary effect is not significant. However, when the
system approaches VFE condition (R, > 10), the ﬁnger-l:ike boundary effect becomes severe.

Figure 91 and Figure 92 show the ratio of transverse velocity to transmissibility for Ry = 1
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Figure 89: Comparison of numerical and analytical solutions for the Buckley-Leverett problem.

and Ry, = 10, respectively. It is clear that there are zones with gradually increasing transverse
velocity near the top and bottom boundaries if the no-flow boundary conditions are enforced. In
a viscous finger, the transverse pressure gradients (and the transverse velocity) at the main part
of the finger are closed to zero, flow into and out of a finger mainly occuring at the tip and base
parts of the finger [109]. This no-flow condition prevents the finger from disapearing due to the
mixing between the inner region (high concentration) and outside region (low concentration) [109].
Thus, the low transverse velocity zone near the boundaries is similar to a finger zone. Due to
this similarity, the mathematical model automatically treats this boundary region as a finger-like
region, thus causing a boundary disturbance problem. In other words, the boundary effect is due to
the development of a viscous instability. When the system is away from VFE condition (Rp, small),
the contrast of transverse velocity values are small and this boundary problem is not significant
(see Figure 91). This may be the reason why no publication mentions this problem, as most
publications on numerical simulation of viscous fingering are for the systems away from VFE. On

the other hand, when the system approaches VFE condition (R, large), the increasing mixing in
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the transverse direction gives rise to a strong contrast of the transverse velocity, a strong boundary.
disturbance, therefore an inscreasing boundary effect (see Figure 92).

Figure 93 shows the influence of mobility ratio on this boundary effect, with mobility ratios of
3, 10 and 50. When Ry, is small, the boundary disturbance is not significant as mentioned before.
When Ry, is large, the boundary disturbance effect gets severe. It is evident that for the same
shape factor, the boundary disturbance increases with an increase in the mobility ratio. This is the
result of the stronger viscous instability at high mobility ratios.

All of the a.})ove results are for weak heterogeneity (Vpp = 0.05), where viscous forces domi-
nate. Figure 94 shows the effect of increasing heterogeneity. When the heterogeneity is increased
(Vpp = 0.5), the relative importance of viscous force decrease and dispersion due to heterogeneity
increases. As a result, both viscous fingering and finger-like boundary disturbance shrink. Because
the boundary effect is similar to the viscous fingering, it mainly appears at conditions of dominat-
ing viscous force. On the other hand, when the system is at strong heterogeneity, the influence of
viscous force decrease, both fingering and boundary disturbance decrease and dispersion will get
stronger.

Although both mobility ratio and reservoir heterogeneity contribute to the degree of boundary
effect, the shape factor Ry is the fundamental controling factor to the problem. It is only when

the system approaches VFE conditions that the boundary effect becomes significant.

5.8.2 Periodic Boundary Conditions

Because of the profile contamination caused by the boundary effect, the viscous fingering char-
acterization when a system approaches VFE could not be appropriately obtained from numerical
simulation results with no-flow boundary condition. To overcome this problem, we may use peri-
odic boundary conditions. The use of periodic boundary condition implies that in a representative
part of a reservoir, the flow into (or out of) the top boundary is equal to the flow out of (or into)
the bottom boundary. With a periodic boundary condition, there is no evident boundary as the
boundary region is not different from the inner region. As a result, the boundary disturbance
problem can be avoided. With the use of a periodic boundary condition, the transverse velocity w

can be expressed as )
vou, | Joux S Gdy'dy

= - —d d 54
w /oamy+‘f01:&_dy y (54)
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Figure 93

: Effect of mobility ratio on boundary effect (Vpp = 0.05).
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Figure 94: Effect of heterogeneity on boundary effect (M = 10).
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Figure 95 shows the concentration profile obta.ineci for a periodic boundary condition. It is evident
that the 'boundar); disturbance problem (Figure 90) does not occur here. Figure 96 shows a plot
of the transverse velocity. Compared with the no-flow boundary condition, there is not a gradual
increasing zone of transverse velocity. As a result, the use of periodic boundary condition allow us
to avoid the boundary disturbance problem. By this method, the viscous fingering behaviour at

VFE condition can be studied and applied to field simulation.

5.4 CONCLUSIONS

Based on the numerical simulation results obtained, it is observed that when the viscous force is
dominating and the system approaches VFE condition, the enforcement of no-flow condition at
the top and bottom boundaries gives rise to a boundary effect, which limits the application of
numerical simulation at the above said condition. This effect is caused by the development of
viscous instability. It can be remedied when periodic boundary conditions are applied. This will
help the application of numerical simulation when viscous force is dominating and the system is at

VFE conditions.




:

RL = VFE

Figure 95. Results of a periodic boundary condition (M=10, VDP=0.05.)
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6 ASPECTS OF BINGHAM PLASTICS DISPLACEMENT IN POROUS MEDIA

C. B. Shah and Y. C. Yortsos

6.1 INTRODUCTION

Heavy crude oils and tar sands are becoming important energy sources as conventional oil deposits
become depleted. Heavy crude oils are found worldwide, but predominantly in USA, Canada,
Russia and Venezuela. These are typically petroleum and petroleum-like liquids or semi-solids
naturally occurring in porous media [83]. At reservoir flow conditions, heavy crudes have a gas-
free viscosity in the range of 100-10000 cp and they often behave as Bingham plastics. Heavy oils
are traditionally characterized by a low Hydrogen-to-Carbon ratio and consist of mixtures of oils,
resins and asphaltenes [96]. They also generally contain high level of contaminants, such as sulfur,
nitrogen and various metals, which tend to accumulate in the heavy asphaltene fraction.

Laboratory tests and rheological studies have indicated that some heavy oils at reservoir condi-
tions display non-Newtonian flow behavior. Based on his studies on bitumen and heavy oil Dealy
[24] indicated that there was a mild degree of intramolecular and intermolecular aggregation be-
tween longer asphaltene molecules, with a reversible de-aggregation at low shear rates resulting in a
viscosity decrease. Recently, Poon and Kisman [86] indicated that mixtures of heavy oil and water
with a small amount of sand behave as non—Newtonié.n and offered possible ex'pla.na.tions for shear
thinning and shear thickening. Bitumen and heavy oils were found [24, 86] to be pseudoplastic,
dilatant or Newtonian depending on temperatures and shear rates. However, a definitive explana-
tion for the non-Newtonian rheology of some heavy oils is not available in the literature. In many
heavy oil reservoirs in the Soviet Union it has been reported that their rheological behavior may be
approximated as a Bingham fluid, possessing a nonzero yield stress [5]. In such fluids, flow takes
place only after the applied pressure gradient exceeds a certain minimum value. Other examples
of such flow in porous media include foam, ground water flow in certain clayey soils, drilling and
hydraulic-fracturing fluids, which can also be approximated as Bingham plastics [113].

Despite their importance, there is a limited understanding of single- and multi-phase flow of
Bingham plastics in porous media. Most of the existing studies are phenomenological and consist

of solving effective continuum equations. For example, Wu et al. [112, 113] have investigated the
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transient flow of Bingham fluids in porous media, inéluding single- and multi-phase flow, using an
ad-hoc extrapolation of the single-capillary expressions for Bingham flow. The immiscible displace-
ment of Bingham plastics by a Newtonian fluid (for example in relation to heavy oil production by
waterflooding) is another process of practical interest. Nonetheless, not many studies have been
undertaken to explore the micromechanics of such processes at a more fundamental level and to
relate flow phenomena at different scales. Such studies are necessary not only for single-phase but
also for multi-phase flow problems. The single-phase flow of Bingham plastics was discussed in
earlier DOE report [98].

To provide a better insight on this problem, we present in this section a pore level simulation
of immiscible displacement of Bingham plastics. We have used a network model tb represent
the porous media and simulated the displacement of Bingham plastics by a Newtonian fluid in a
drainage process. Flow patterns were obtained for different values of the yield stress and injection
rates and characterized in relation to that of Newtonian displacement [68]. Throughout the analysis,
the important assumption is made that the fluid rheology corresponds to flow in capillaries of
uniform cross-section. We expect this assumption to be valid at very low flow rates, but to become
progressively restrictive at higher rates when the converging-diverging geometry of the porous media
dominates the macroscopic characteristics of the flow. In subsequent, we also present immiscible

displacement experiments involving Bingham plastics in Hele-Shaw cells and glass bead packs.

6.2 RHEOLOGICAL ASPECTS

The production of heavy crude oil is also sometimes associated with a small amount of suspended
sand [86] particles and other solids like asphaltene. The rheology of such fluids does not follow
simple Newton’s law of viscosity and is much more complicated. These characteristics of heavy oil
or bitumen suspensions and ‘emulsions can play a significant role in the design of pumps, pipelines
and other processing and production equipments. There have been numerous studies on the rhe-
ological behaviour of such fluids both in petroleum and in the chemical engineering literature. A
recent review on the rheology of heavy oil and bitumen was presented by Poon and Kisman [86).
It was generally found that these fluids follow either pseudoplastic or dilatant behavior depending
on the temperatures and shear rates. The extent of water emulsion and sand affect the rheological

characteristics. In general, a mixture of heavy oil (or bitumen) and water with a small amount of
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Figure 97: Classification of Bingham Plastics Based on Shear Stress-Shear Rate Behavior.

suspended sand particles behaves as a non-Newtonian fluid at low temperatures. Dealy [24] studied
the effect of asphaltene content on the rheological behavior of bitumen. The high-molecular-weight
asphaltene fraction in bitumen and heavy oil is responsible for non-Newtonian rheological béhav-
ior. The molecular interpretation of such non-Newtonian behavior, as described in [24], is mainly
attributed to the intramolecular and intermolecular aggregation and deaggregation of asphaltene
molecules. Some heavy oils also exhibit the rheology of Bingham plastics [5]. The mobilization
of such fluids requires application of sufficient pressure gradient such that the characteristic yield
stress of the fluid is exceeded. The efficient recovery of such fluids from underground reservoirs is
generally difficult.

Chaffey [13] reported on the rheology of suspensions, such that Brownian motion and van der
Waals steric and electrostatic interactions are negligible at high shear rates, while inertial and de-
formation, elastic or by surface tension, are negligible at low rates. The rheology of suspensions
is influenced by factors like the volume fraction of solid in liquid, the particle arrangements, the
distribution of particle sizes and the interparticle forces governing the microstructure [13]. A de-
tailed review on the applications of computer simulations to dense suspension rheology is presented

by Barnes et al. [6]. The rheological behavior of non-Newtonian suspensions is system-dependent,
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where the liquid is subject to effects due to repulsive forces between the particles, shear-rate de-
pendent osmotic pressure, shear-induced inhomogeneities and particle migration [6]. These effects
would make a general rheogram for a suspension somewhat doubtful. Recent computer simulations
based on non-equilibrium molecular dynamics (NEMD) are being developed in order to accom-
modate all the above mentioned effects [80]. NEMD was originally introduced for calculations of
Newtonian viscosity, but recently it has been applied to non-Newtonian material, such as polymer
melts, slurries etc. [80].

A Bingham plastic is a special type of non-Newtonian fluid which exhibit a finite yield stress at
zero shear rate. Also Bingham plastics can be characterized as the extreme case of pseudoplasticity.
They are distinguished from Newtonian, and other types of non-Newtonian fluids, by the fact that it
requires a finite value of shear stress to initiate flow. Figure 97 shows a schematic of the rheological
behavior of Bingham and generalized plastics. Bingham plastics can be represented by following

Bingham model [7]

T =To— fp (55)
where 7 and ¥ are shear stress and shear rate respectively and 7, and p, are two Bingham model
parameters, the yield stress and the plastic viscosity respectively. The plastic viscosity is defined as
the shear stress in excess of the yield stress that will induce unit rate of shear. For values of shear
stress larger than 7,, the resistance to the shear caused by the tendency for the particles to build a
structure fails completely, facilitating shearing flow to begin. For some practical applications with
fluids with yield stress, the plastic viscosity, yp, is dependent on shear rate. Such fluids are known

as generalized plastics and can be characterized by the Herschel-Bulkley model [1].
6.3 BINGHAM PLASTIC DISPLACEMENT

6.3.1 NUMERICAL SIMULATION

An important practical application of Bingham plastic displacement in porous media is in the case
of the recovery of heavy oil by waterflooding. The physics of displacement of such fluids at pore
level are not well understood. For an insight, we carried out network calculations at the pore level

and obtained displacement patterns under different conditions. A network model of randomly sized
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bonds connected by randomly sized nodes was used to model such immiscible displacement in a
drainage process. We have used the following standard assumptions for the simulation purpose [68]:
(i) Volume calculations apply to pore bodies only, the pressure drop occurring in pore throats. (ii)
Throats are filled by either invading or displaced fluids, while bodies may contain bqth fluids. (iii)
The capillary pressure in a throat is inversely proportional to the tube radius, while the capillary
pressure drop in a node is negligible. (iv) Inertial and gravity effects are neglected.

In the simulations, we considered the drainage of a wetting Bingham plastic by injecting a non-
wetting Newtonian fluid through a face of the network, at a constant injection rate with no-flow
boundary conditions applied on the lateral boundaries. The pressure at the outlet face in kept
constant. Initially, the network is occupied by a Bingham plastic and the expression for the flow

of Bingham plastic in each bond connecting adjacent nodes i and j of the network is given by [7]

7rRt'j4 4 To 1 To 4
.-=—1—— — AP--: ..P‘._P. h . , 56
qt.’l 8#Olij( 3 TR‘J) + 3 (TR'J) ) t7 ggj( J) when TR‘ > TO ( )
and by
gi = 0 when 7p,<7, (57)

where F; is the nodal pressure, R;; and I;; denoting radius and length of the capillary respectively.

The pressure field in the network is calculated by applying mass balances at each node as
described in the simulation of the single-phase flow [98]. The non-wetting fluid cannot enter a bond
unless the pressure difference across that bond exceeds a threshold pressure P., given by Laplace

law

2y
F, = 58
= 2 (58)
where 7 is the interfacial tension. Hence, a particular bond is invaded if there is no trapping and
the capillary pressure condition is satisfied. Once the bond is invaded by a Newtonian fluid, the

governing flow equation in the bond changes to Poisseuille’s law

TRE(P; — F;)

Qij = uli 9i;(F; — F;) (59)
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where p is the viscosity of the Newtonian fluid. In the subsequent steps for pressure calculation, the
same iterative method is applied, except that we use a combination of the flow equations (56), (57)
and (59) depending on the type of the fluid present in each bond of the network. For maintaining
a constant injection rate through the network, the following mass balance at the inlet face must be

solved

M
> 9(Pn—P)=@Q (60)

k=1
where P, is the pressure at the inlet face, P is the pressure at the nodes-adjacent to the inlet

nodes and @ is the prescribed constant flow rate. B, is calculated iteratively until convergence
is reached. The node saturation is updated at each timestep using (59). In time At the node

saturation S;(t) increases as follows

S,'(t + At) = S; + AtV; Z Q,‘j (61)
J

where V; is the volume of node i. The time interval Af is taken such that only one node is filled
at each time step. During the next time step, the calculations are repeated and the pressure fields

determined. We typically used a network of small size 25-x 25.

6.3.2 RESULTS AND DISCUSSIONS

Computer simulation of immiscible displacement in a drainage process was carried out in network-
like porous media of a wide bond size distribution [0.01-1.99]. This process is characterized by the

two dimensionless numbers [68], the capillary number Ca

qp
Ca=-"— 62
- (62)
and the mobility ratio M
7
= — . 63
2 (63)

In the present problem, however, there exists an additional dimensionless number, which we define

as the Bingham number

qu
NB == W (64)
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Figure 98: Snapshots of Immiscible Displacement for 7,=0 dyne/cm? (Np= co) in the Absence of

Capillarity.
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Figure 100: Snapshots of Immiscible Displacement for 7,=300 dyne/cm? (Ng= 0.01) in the Absence
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where k is the single-phase permeability. We shall characterize all the patterns to be obtained
below in terms of these three numbers.

The first set of simulations probed the high Ca region, where effects of capillarity are negligible.
Here we studied the effect of yield stress (Né). Figure 98 shows displacement patterns at four
different times for the case of two Newtonian fluids (7, = 0), for a unit mobility ratio (M=1).
Because of the disorder in the porous media, a small degree of dispersion is expected. As we
increase the value of yield stress to 175 dyne/cm?, (N = 0.018), however, a somewhat different
pattern emerges as shown in Figure 100. The pattern resembles, although it is not identical to,
a viscous fingering pattern. We identify a greater degree of dispel“sion that is similar to viscous
fingering and the bypassing of a sizable portion of the initial fluid in place. Figure 99 shows
displacement patterns at a higher value of 7, (=300 dyne/cm?, Ng = 0.01). The displacement
has all the characteristics of an unstable displacement at large M, with pronounced fingering and
large stagnant regions. The flow pattern, however, is not identical to a DLA pattern. Here the
mechanism is somewhat different. Because of the distribution of pore sizes, the Bingham plastic
flows only in such pores, where the yield stress value can be exceeded and flow can take place.
Bonds that cannot flow due to large yield stress requirements behave effectively as having infinitely
large viscosity, while those that contain flowing fluid have an effective viscosity that decreases as
the flow rate through them increases, thereby moderating somewhat the “fingering” tendency.

The second set of simulations was conducted to investigate the sensitivity of the displacement
to regions where capillarity dominates. Figure 101 shows patterns obtained at a value of Ca equal
to 2.0 x 10~° for a unit mobility ratio and for different values of the Bingham number. The first
pattern at zero yield stress (infinite Ng) has many of the characteristics of a percolation pattern,
namely the existence of trapped regions and a ramified structure as expected. As the yield stress
increases, however, additional trapping is observed (Figure 102, where Ng = 1.0 x 10~%). This
pattern is certainly not the same with percolation, as in addition to capillarity the yield stress
requirement needs to be exceeded for the occupancy of any bond. Here, the important difference
from the typical percolation problem is that regardless of how small Ca is, viscous effects enter the
problem de facto, as certain bonds behave with effectively an infinite viscosity. The analysis of this
interesting regime is currently in progress. Although we have not examined the sensitivity to the

viscosity ratio M, we expect a sensitivity similar to that for the Newtonian case.
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Figure 101: Snapshots of Immiscibie Displacement for 7,=0 (Ng= co and Ca=2.0 x 107°).
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Figure 102: Snapshots of Immiscible Displacement for 7,=300 (Np= 1.0x10~* and Ca=2.0x10"%).
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Figure 103: Phase Diagram for Bingham Plastic Displacement.
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The behavior of the overall process can be summarized in a phase diagram similar to tha.
Newtonian displacements, as described by Lenormand et al. [68]. Now, however, a third coordinate
expressing variations in the Bingham number, Np, needs to be introduced (Figure 103). In our
study we have only probed the case M = 1. In such a diagram (Figure 103), we expect the following:
For large Np, a compact pattern at large Ca and a percolation pattern at low Ca. For small N B,
we expect a viscous-fingering-like pattern at large Ca and a new percolation type pattern at small
Ca. The particular patterns, their limiting boundaries and the effect of M are currently under
study. However, the general result can be stated that the eﬂiciency of the displacement decreases

as the yield stress increases.

6.4 FLOW VISUALIZATION
6.4.1 BACKGROUND

The randomness and complicated geometry of the porous media make the problem of flow com-
plicated and mathematically difficult in some cases. Experiments with real porous media are also
not very illustrative in terms of understanding the pore level phenomena, particularly in the case
of immiscible fluids. To overcome this difficulty, flow visualization experiments, using transpar-
ent Hele-Shaw cells, glass bead packs and glass micromodels have been successfully emnlaved in
reservoir engineering for many years [53). Such geometries have been traditionally used
two-dimensional flow in a porous medium, thus they lack important 3-D aspects. Nev

they are of fundamental interest for establishing mechanisms.

A large amount of the visualization work has been done on simple immiscible displacements
involving fluids which generally follow Newtonian rheology. A great deal of valuable information
has been obtained regarding the various regimes, portrayed in the form of phase diagram using two
dimensionless numbers, capillary number, and viscosity ratio [68]. Studies with micromodels, also
for Newtonian fluids, have been very useful for researchers to understand pore-level flow processes
in porous media. An excellent recent summary can be found in [44].

On the contrary, very little visualization work has been done where one or both the fluids are of
non-Newtonian type. Nittmann et al. [81] reported immiscible displacement of non-Newtonian
polysaccharide solution by water in a Hele-Shaw cell to characterize the structure of a viscous

finger. Daccord et al. [20] carried out similar types of experiments using radial Hele-Shaw cells
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Figure 104: Schematic of the Experimental Unit

in order to avoid effects of boundary conditions. Stoneberger and Claridge [104] recently carried
out miscible displacements involving shear-thinning fluids in a Hele-Shaw cell. In their study, they
used two types of polymers (Xanflood and Pusher 1000) for making polymer solutions and carried
out five experimental runs: (1) Newtonian fluids displacing Newtonian fluids with varying mobility
ratio, M; (2) pseudoplastic fluids displacing Newtonian fluids; (3) pseudoplastic fluids displacing
pseudoplastic fluids; (4) Newtonian fluids displacing pseudoplastic fluids; and (5) pseudoplastic
graded banks displacing a Newtonian fluid. The purpose of the study was to device a method for
the design of graded viscosity banks of pseudoplastic fluids in five-spot patterns for EOR processes.
To the best of our knowledge there is no study reported where visualization experiments have been
carried out using Bingham plastics in immiscible displacements. This has been undertaken here,
with main objective of the visualization in Hele-Shaw cells and glass bead pack models. The study
is expected to shed light on the displacement of heavy oils with finite yield stress.

6.4.2 EXPERIMENTAL APPARATUS

The Hele-Shaw cell was of dimensions 18 ¢cm x 7.6 cm x 0.05 cm and consisted of two glass plates

of 1/2 inch thickness. The pyrex glass plates were separated by a silicon rubber spacer. Two ports
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Figure 105: Displacement of Mineral Oil by Water at the rate of 2.3 cc/min in the Hele-Shaw Cell:

Snapshot I

Figure 106: Displacement of Mineral Oil by Water at the rate of 2.3 cc/min in the Hele-Shaw Cell:
Snapshot II
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Figure 107: Displacement of Bingham Plastic (BP1) by Air at the rate of 3.08 cc/min in the
Hele-Shaw Cell: Snapshot I

were provided on the top plate, one for injection, the other for production. A schematic of the
experiment set up is shown in Figure 104 for both the Hele-Shaw cell and the glass bead pack. A
syringe pump was used to provide constant displacement rate du.ring the experimental runs. In the
glass bead pack models, one layer of closely packed glass beads was sandwiched between two flat

plates of same dimensions as used for Hele-Shaw cells.

6.4.3 EXPERIMENTAL FLUIDS

Two types of water-based mud were used for representing Bingham plastic rheology. They were
supplied by Drilling Specialties Company, Oklahoma and their characteristic Bingham model pa-
rameters are reported subsequently. The Newtonian fluids consisted of kerosene, high viscosity
mineral oil or air. Red dye was added to the kerosene and the mineral oil in order to visualize the
interface movement clearly during the course of the experiments.

Actual flow conditions are not kn ighout the path of water- based muds, but virtually
all water-based muds that contain c. in a quasi-Bingham plastic manner [21]. The slope

of the straight-line portion of the stress-strain curve represents plastic viscosity and the intercept
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Figure 108: Displacement of Bingham Plastic (BP1) by Air at the rate of 3.08 cc/min in the
Hele-Shaw Cell: Snapshot II

value at zero shear is the yiéld point. In a given mud system, a change in plastic viscosity usually
represents a change in the solid content. Similarly, the yield point is an indication of interparticle
attraction while the mud is moving. The water-based mud system will fairly represent the class
of heavy oils which follow Bingham plastic rheology as these heavy oils contain suspended solid

particles in terms of sand and asphaltene.

6.4.4 RESULTS AND DISCUSSIONS

We present some of the interesting experimental results for immiscible displacement of Bingham
plastics both in the Hele-Shaw cell and the glass bead packs. We take as base case the displacement
of heavy mineral oil (21CP) by water at the rate of 2.3 cc/min in the Hele-Shaw cell. In the
subsequent pictures, taken from a still videotape, displacement is from left to right. As shown in
Figures 105 and 106, water injection into high viscosity mineral oil leads into viscous fingering and
tip splitting, as expected and reported in Newtonian displacement. In the colored pictures, red is
the color of original oil, and bright white is water.

Figure 107 shows the initial part of the displacement for one Bingham plastic, BP1 (1, =
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Figure 109: Displacement of Bingham Plastic (BP2) by Air at the rate of 3.08 cc/min in the
Hele-Shaw Cell: Snapshot 1

Figure 110: Displacement of Bingham Plastic (BP2) by Air at the rate of 3.08 cc/min in the
Hele-Shaw Cell: Snapshot II
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Figure 111: Displacement of Bingham Plastic (BP2) by Kerosene at the rate of 3.08 cc/min in the
Hele-Shaw Cell: Snapshot I

121b/100 ft%, po = 13cp) by air at 3.08 cc/min. In this Figure, brown is the color of BP1 and white
is air. The air penetrates through BP1 as a finger and breaks through as shown in Figure 108.
Figures 109 and 110 indicate the initial part of the displacement and breakthrough for the other
Bingham plastic, BP2 (7, = 25b/100ft?, 1, = 19¢cp) by air at the same flow rate as above. The
fingering tendency not only remains but also this finger is smaller and sharper compared to that
in the BP1 displacement. The finger penetrates through BP2 and rapidly breaks through leaving
a large portion of the initial fluid in place. The displacement of BP2 was also carried out with
kerosene and heavy mineral oil at the same flow rate of 3.08 cc/min. Figures 111 and 112 show
colored pictures of the displacement patterns with kerosene injection, where we also observe one
sharp finger flowing through BP2 and quickly breaking through. Similar results are also obtained
from the immiscible displacement of BP2 by heavy mineral oil (Figures 113 and 114). The initial
yield stress of Bingham plastic makes this displacement difficult even when viscosity ratio is almost
unity.

The next set of results was obtained using glass bead-pack models for both BP1 and BP2 at

the flow rate of 3.08 cc/min. In all subsequent colored pictures, brown represents the Bingham
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Figure 112: Displacement of Bingham Plastic (BP2) by Kerosene at the rate of 3.08 cc/min in the
Hele-Shaw Cell: Snapshot II

plastics, and red the kerosene. Figure 115 shows the initial stage of the displacement of fluid BP1
where kerosene is advancing slowly through glass bead pack model. The pattern is developing quite
similar to viscous fingering. The subsequent stages as shown in Figure 116 and 117 show such trend
until breakthrough. The overall pattern as shown in Figure 117 resembles viscous fingering and the
displacement is unstable. The interesting displacement results are obtained for fluid BP2 under
the same displacement conditions. Figures 118 - 120 indicate such displacement at four different
stages. As shown, a single sharp finger emerges right from the beginning of the initial displacement
and penetrates through the high yield stress fluid BP2, leaving most of the initial fluids in place.
Figure 120 shows one thin finger from the injection port to the production port through fluid BP2.
The value of higher yield stress, 7, makes the displacement difficult and the unrecoverable region

in the glass bead-pack model is large in such cases [5].

6.4.5 COMPARISON WITH SIMULATIONS

To compare the experimental results for fluids BP1 and BP2 in the glass bead pack models. numer-

ical simulations were subsequently carried out. The network model was used to represent the glass
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Figure 113: Displacement of Bingham Plastic (BP2) by Mineral Oil at the rate of 3.08 cc/min in
the Hele-Shaw Cell: Snapshot I

AvY

Figure 114: Displacement of Bingham Plastic (BP2) by Mineral Oil at the r
the Hele-Shaw Cell: Snapshot II

ate of 3.08 cc/min in




Figure 115: Displacement of Bingham Plastic (BP1) by Kerosene at the rate of 3.08 cc/min in the
Glass Bead-Pack: Snapshot [

Figure 116: Displacement of Bingham Plastic (BP1) by Kerosene at the rate of 3.08 cc/min in the
Glass Bead-Pack: Snapshot II
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Figure 117: Displacement of Bingham Plastic (BP1) by Kerosene at the rate of 3.08 cc/min in the
Glass Bead-Pack: Overall Pattern

bead-pack model, which is a simplification adopted to carry out the simulations. The simulation of
immiscible displacement of Bingham plastics was carried out by injecting a Newtonian fluid using
drainage process as described earlier in detail. The network size used for the simulation was 45
x 100 corresponding to the aspect ratio of glass bead pack models employed in the experimental
work.

The comparison between experimental and numerical simulation results leads to a good agree-
ment for both types of Bingham plastic fluids. Figure 121shows snapshots of numerical simulation
results at two different stages for BP1. The patterns match quite well with the experimental results
as shown in Figures 115 and 116. There is a tendency of trapping, bypassing and fingering in both
cases. Similarly, Figure 122 indicates snapshots at two stages for fluid BP2. There is a relatively
higher tendency of fingering and early breakthrough leaving large amounts of fluid BP2 in the
network. These simulation results are in relatively good agreement with the experiments shown in
Figures 118 to 120.

The important conclusion of this study is that with the higher yield stress of a Bingham plastic,

there is a larger tendency of fingering and bypassing making the displacement difficult. Another
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Figure 118: Displacement of Bingham Plastic (BP2) by Kerosene at the rate of 3.08 cc/min in the
Glass Bead-Pack: Snapshot I

conclusion is that the relatively good agreement between the experiments and the simulations con-
firms the microscopic rules used in the network simulation. [However, it is important to mention
here that the rheological Bingham model used for drilling fluids may be simplé and a more rigorous
rheological model will be required to use for better agreement and understanding. Experiments
involving actual heavy oils which follow Bingham plastic rheology will be more realistic and repre-

sentative.
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Figure 119: Displacement of Bingham Plastic (BP2) by I erosene at the rate of 3.08 cc/min in the
Glass Bead-Pack: Snapshot II

Figure 120: Displacement of Bingham Plastic (BP2) by Kerosene at the rate of 3.08 cc/min in the

Glass-Bead Pack: Overall Pattern
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Figure 121: Numerical Simulations for the Displacement of Bingham Plastic (BP1) at the rate of
3.08 cc/min.

Zurst

Figure 122: Numerical Simulation for the Displacement of Bingham Plastic (BP2) at the rate of
3.08 cc/min.
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7 TRANSIENT AND STEADY STATE FOAM FLOW IN POROUS MEDIA

H. Kharabaf and Y. C. Yortsos

7.1 INTRODUCTION

Successful application of foam in EOR requires efficient numerical models, in addition to
experimental data. Investigators working at different conditions, proposed various patterns for the
foam flow. Mahmood and Brigham [76], summarized the behaviors to seven types: (1) Bubble
flow, (2) Intermittent flow, (3) Plug flow, (4) Trapped-Gas flow, (5) Segregated flow, (6) Membrane
flow, and (7) Tubular -Channel flow. Disagreements among the investigators shows the necessity

of microscopic studies, for foam flow mechanism.

Laboratory data for the transient displacement of foam injection are not as many. Baghdikian
and Handy [4] studied the transient behavior of simultaneous flow of gas and surfactant solution
_in consolidated porous media. Several of the factors that contribute to the foam generation were
described. A systematic study of foaming with different fluid velocities and foam qualities provided
extensive data for foam flow conditions. Two foam flow regimes, weak and strong foam were
identified. Results indicated that in some cases an excessively large number of pore volumes of
foam injection would be necessary to propagate foam deep into the reservoir. Higher gas injection
velocities reduced the foam “incubation time” in their experiments. Ma.ny of these findings cannot

be explained by existing theories.

Two main models of foam generation, the population balance and mechanistic model, have been
suggested in the literature. Kovscek and Radke [55], recently presented a mechanistic foam simula-
tor which incorporates a foam-bubble population balance with the traditional reservoir simulation
equations, and solves for both transient and steady states. The proposed model depends heavily
upon the foam texture. Kinetic expressions for lamellae generation and coalescence are saturation-
dependent and trapping is a function of foam texture. The latter also affects the foam apparent

viscosity. Relative simplicity and accuracy of the results in Kovscek and Radke’s model can be
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improved by more realistically determining the functional dependence of trapped-foam fraction.

In this work, two results are presented in transient foam flow behavior. First, we show a
simple method to solve Kovscek and Radke’s model. It provides an efficient way for simulating
the displacement. Second, we use a network model to study the transient behavior of foam flow in

porous media.

7.2 SIMPLE METHOD FOR SOLVING TRANSIENT FOAM FLOW

7.2.1 Model and Assumptions

Kovscek and Radke [55] developed the following model to describe transient foam flow in porous

media. The model is based on standard form of equations for the mass balance of liquid and gas

phase,
IPpwSw) | 0(pwiw) _
& T 8z 0, (65)
. and
O($p4Sy) , 9(pgug) _
a1 os o 0. (66)

where, Sj, u; and p; represent the saturation, Darcy’s velocity and, density of phase (2), respectively,
and ¢ is the porosity of the medium. The gas phase is assumed to be nitrogen. Ideal gas law is

considered. Gravitational and capillary effects are neglected.

Foam bubble density mainly controls the foam mobility. To include this effective parameter in
the model, rates of convection, trapping, accumulation, generation and coalescence of the bubbles
are included into the simulator by the following equation,

Olp(nsSs + n4S1)) + O(nsuy)
ot Oz

= ¢Sg(rg —1e) (67)

where ny is the bubble density (bubBle number per unit volume of the medium), ¢t and f denote
trapping and flowing fractions of foam and, ry and r. refer to the generation and coalescence rates
of the bubbles per unit volume of the porous medium. The accumulation term embodies two terms

corresponding to the rate of accumulation of flowing foam and the rate of trapping foam. Trapping
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Table 11: Values of the parameters for transient foam injection model.

Reservoir Simulation Population Balance
parameter value parameter value

K 1.3 um? ky 5.13E + 5 s/3.em—13
¢ 0.25 °1 1.5 E-3cm™!

g 3.0 Sa 0.26

k2, 0.7 a 1/3

h 3.0 b 1.0

k2, 1.0 « 1.80 E — 6 mPa.s.s~1/3.cm*%/3

Swe 0.25 c 1/3

P 1.0 mPa.s Xfeq 0.1

g 0.018 mPa.s B 1.0 E-3,cm3,1.25

and flowing foam are assumed in equilibrium, where n; equals to nys, which in turn simplifies the

equation (67) to

O(¢nsSy)  O(nguy) _
ot + oz $Sg(rg —rc) - (68)
Darcy’s law applies for the velocity of either phase,
kk.i, OF;
ut h I-Li (— ax) b (69)

where £, is the absolute permeability of the medium, and ki, g, and P; are the relative permeability,
viscosity, and pressure of the phase i, respectively. In gas phase, y; is the effective viscosity of the

foam given by,

an
Bf=Hyg + c! (70)

Vs
o and c are pa.rameteré given in Table 11. The properties of shear thinning and texture dependence

of foam viscosity are included in equation(70) by Friedmann et al. [36].

Snap-off is the dominant mechanism of foam generation in this model (although at higher

gas velocities, Hirasaki [43] conjectures that lamellae division is more important). For snap-off,
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the aqueous phase needs to be accumulated at the pore throat, while the number density of the

bubbles depends on the gas velocity. Thus, the rate of generation is written as
rg = kool , (71)
where v; represents the interstitial velocity of phase ¢ (v; = 4;/$S;), @ and b are power indices and

ky is the generation rate constant (values are given in Table 11).

For the rate.of coalescence the model takes
re = k_1(Sw)vsvy , (72)
where k_;(Sy) is a coalescence rate constant given by

1 - Sw
k_1(Sw) =k

18, ~ 82"’

(73)

Se, corresponds to critical capillary pressure P; , and k2, is a constant. Finally, standard Corey

exponent models are utilized for relative permeabilities,

krw = k:wg-u—zg ' (74)

Because the majority of the gas phase is present as a trapped foam, its relative permeability

is modified by the fraction of flowing foam (X[) to be,

kep = kpg[X1(1- S, (75)

where in equations (74) and (75), k2, k74, g and h are constants.

A most important parameter in this model is the trapped foam fraction that controls the
propagation and mobility of the foam, by affecting apparent viscosity and relative permeability of

the gas phase. The trapped fraction of the foam X, is given by

Xg='—' (Xf=1—X¢=_). (76)
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X: is an unknown function of capillary pressure, aqueous phase saturation, pore geometry and
pressure gradient. Thus far, X; has only been measured experimentally [36, 37]. The flowing

fraction of the foam is given by the following equation [56]

Xf=1- Xt,maz(%fn—t (77)

where f is another parameter and X¢maz is the maximum trapped foam fraction. Table 11, lists

all the constants and parameters needed for the above equations (from Ref. [56]).

Using a standard finite difference IMPES (Implicit Pressure Explicit Saturation) simulat’
method and upstream weighting of the phase mobilities, the above equations may be solved for
three variables of pressure, saturation and bubble density. Howewver, several numrical difficulties
were encountered. To avoid unnecessary complications, we elected instead to proceed with a semi-

analytical solution.

It is expected that because of the particular form of the model equations, a shock develops.
We expect that following this shock a steady state solution develops. This will be used along with
the front velocity to find the transient behavior of the foam flow in a one-dimensional core. This is

a computationally efficient way to solve the equations without imposing any limitation.

At steady-state, the mass conservation and population balance equations reduce to

auw o __
B = 0 or u,=u,=constant, (78)
d(pgg) _
dz 0 (79)

or by employing the ideal gas law for the gas phase
Pujy = constant (80)

and

2 (nrun) = 95,y =70) - &)
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Darcy’s law gives two more equations (for either phase) that can be solved along with equations

(80) and (81) to find the four unknowns P, Sg, us and ns at any position at steady state.

In the unsteady state, the equations can be written in dimensionless form as

0S, Ouy _

ot Tz -0
a(PSg) B(Pu,) _

ot + oz 0

and
O(nsSg) + O(nsuy)
ot oz

Given that a shock develops we shall have

d ur —ut
S W | T k)

= Sg(rg —rc) -

dt ~ [S,] S;-S¥

_dzpy [Puy] _ P'u}' —P+u'}'

Vg =

dt ~ [PS,]  P-S; - P+Sf

SR
dzps _ [njuf]  npuy —npu;

VEs =

dt "~ [nsS,]  nyS; - n}SF

(82)

(83)

(84)

(85)

(86)

(87)

where the brackets indicate difference between the values of the variables just before and right after

the shock. Because of the particular initial conditions,

+ ot - ot
u!—nf—Sg =0

We shall have
Vir = oL
F1 = Sy
P-u7 U
Vip = L4 %
F2=p-s- ~ 55
_rpup Uy
P n7sy ~ S;

For the shock condition to be satisfied we must have,

VR =Vr=Vrs=
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dzr
dt

(88)

(89)

(%0)

(91)

(92)



Here, u} and S will be determined by the steady state solution of the problem. If equation
(80) is introduced into equation (92) at steady state reads

dzp _ U}
it = Pr (2)Syala)

(93)

where subscript s, denotes the steady state values. Then, the time required for the front to reach

position z can be determined by the simple result

_ [*55:(z)P; (=)
t = /0 RZEASILER (94)

ug

The results of the simulation using the above simple method for the Kovscek and Radke’s
model [55] have been plotted in Figures 123 and 124. Figure 123 shows the history of pressure,
saturation, foam number density and foam velocity variations, while figure 124 shows the profile of
the same variables. Comparison between these figures and those of Kovscek and Radke (Figure 125)

shows very good agreement.

Next, the simulator was used to check if it is possible to model Baghdikian and Handy’s
experiments [4]. These authors used two cores with dimensions (1" x4") and (2" x 10"), porosities
0.27 and 0.25, and absolute permeabilites 0.7 and 0.5 darcies, respectively. The Chevron chaser
SD-1000 was used as surfactant, which is expected to have different generation or coalescence
rates than the ones used in the simulation. A back pressure of about 790[kPa] was used in the
experiments. Gas and liquid velocities were much higher than in Kovscek and Radke’s experiments

(about 100 times).

Figure 126 shows the pressure history according to the experiment and the simulation. Gas and
liquid velocities are 117 and 11.8 (ft/d), respectively. To obtain the needed order of magnitudes,
rates of foam generation and coalescence were taken as 0.035 times lower and 10 times higher than

the previous one, respectively.

It is apparent that, the predicted response cannot be adequately matched. Figure 127 shows
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Figure 123: History of transient behavior of foam injection, using the semi-analytical solution.
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Figure 124: Profile of transient behavior of foam injection, using the semi-analytical solution.
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that u; does not change drastically with respect to S, as the foam density number increases from
0.1 to 1. Hence, the front velocity given by eq.(92) is almost constant. On the other hand in the
experiments, gas and foam generation fronts have two different velocities, so that foam generation

and propagation occur much later after the gas front has passed.

To attempt to simulate these experiments, it is necessary to introduce another parameter in
the equations. Mathematically this may be done by employing a parameter A in the population
balance equation

d(nsS d(nsu
A (8jt 2 4 (afzf)=sg(rg~rc) (95)

This will cause the foam generation front to propagate with a velocity other than the gas advance-

ment front,

d:va u;
—_— = 96
dt A8y (%9)

Particularly, in order to make the foam generation front much slower than the gas front we will
request
AD> —=— (97)

By introducing this parameter the previous simpler method cannot be applied any longer. Nonethe-
less, we can distinguish in case Vry < Vg, three different regions: (a) z < Vj st, where variables
have reached steady state, (b) Vrst < z < Vp,t, a transition region, and (c) = > Vg, the initial
state.

Figure 128 shows the gas saturation and foam number density profiles at different pore volumes
of injection for A = 1, 2 and 3. The three different regions have been specified in Fig. 129. Obviously,
because of the continuity equation, the area under the saturation curve for the same pore volume

of injection is equal for any value of \.

Figure 130 shows the results for A=200 along with the experimental data of Baghdikian and
Handy. For this particular case, it is shown that there is relatively a good match. This propmt
us to search for a physical meaning of the parameter A. It certainly could not be as a result of

surfactant adsorption, since adsorption requirement were satisfied (40 pore volume of surfactant
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Figure 128: (a) Gas saturation and (b) Foam density profiles, for different values of .
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solution was injected to establish adsorption equilibrium) before the conduct of the experiment. It

appears that there must be a different interpretation which needs to be considered.

It is possible that some of the assumptions made need to be changed. For example, if in

simplifying eq.(67), one does not assume ny = ny, but take, instead,
Sy + 1S =npSeXs+ 1:Sy(1 — Xy) = Sg(ng Xys + ne(1 - Xy) (98)
then, A satisfies
anf+nt(1—Xj)=)\nf (99)
For any X, the desired A, would follow from
¢
A:Xf+(1—Xf)n—- (100)
f

In other words, only by assuming different foam number density ratio of flowing and trapped foam
it is possible to generate a value of A which in turn, would have a significant effect on the results.

To be able to proceed in this direction, a network model is necessary.

7.3 PORE NETWORK MODEL

In this section, pore network models will be employed to study transient foam flow in porous

materials.

In these models, porous media are represented as two- and three-dimensional lattices of coor-
dination number 4 and 6, respectively, with bonds and nodes representing pore throats and sites.
For size distribution of either throats or sites, a Rayleigh distribution with different average radii

7;) has been used: \
() = 5 Xl ] (10)
where i denotes either throat or site, and 7; = 1.5 7. Periodic boundary conditions are employed

to reduce boundary effects.
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The system is initially occupied by a surfactant solution. By injecting gas from one end, liquid
can be displaced. As the pressure in the non-wetting fluid increases gradually, the largest accessible
bond which has the lowest resistance and the following site are invaded first. Here, we shall neglect
viscous or gravitational forces. However, trapping will be considered for liquid phase in either sites
or bonds. In this way, lamellae can be generated by the Leave-behind mechanism. Snap-off is also
possible during invasion. For simplicity, however, we neglect Lamellae-division. A Leave-behind
mechanism occurs whenever pore throat trapping is permitted. Snap-off, which is only a function
of pore geometry [14], occurs even in the absence of any surfactant, although the surfactant is
stabilizing the generated thin liquid films. Snap-off is driven by the curvature difference between
pore throats and pore bodies, which provides higher capillary pressure or lower liquid pressure at
the throats, assuming uniform pressure over the gas phase. This draws more liquid towards the
throat (via solid corners) and eventually generates a liquid film at the throat location. For this
mechanism, the pore body-to-pore throat size ratio, called the aspect ratio, needs to be higher than

some specific value, which is believed to be between 1.5-2.5, [68, 74, 78, 89].

In case there are sufficient lamellae generated by snap-off, the gas phase can become discon-
tinuous. Continuing the displacement in such a case, may require to mobilize some lamellae first.
For this, the pressure difference across the lamella needs to be higher than 4v/r;, [91], where 7 is
the interfacial tension between wetting and non-wetting phases and ry,;, is considered to be equal
to the pore throat radius, (r;). This is almost twice the pressure difference between invading and

defending phases for the same throat size.

By increasing the pressure of the injecting phase it is possible that before the next invasion
can take place, one or more of the lamellae generated by either mechanism are mobilized. In such
a case, it will be assumed that stretching will cause a lamella to break as soon as it moves out of
the throat and reaches the next pore body. This allows a certain path which has the minimum
resistance to open and invasion to take place. After this step, it is assumed that the surfactant
solution can generate new lamella at the same throat. This process continues until foam breaks

through.
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7.3.1 Results and discussion

Results obtained from the pore network modeling are discussed in the following. Figure 131
shows schematically how invasion takes place in a 60 x 100 network, at different displacement times.
Here, snap-off was assumed whenever the aspect ratio is greater than 1.5. One may notice three
regions in the model. First, an invaded, stabilized region, which does not change as invasion takes
place. Second, a transient section. This region does not grow and it keeps almost the same width

as the displacement proceeds. And a third uninvaded region.

The intensity of pressure at each pore at a fixed time is depicted by increased brightness,
the lightest color representing the highest pressure. Because liquid is interconnected all over the
network, via corners and channels, but viscous forces have been neglected, the darkest regions show
trapped or not-yet displaced liquid. This schematic is also a good representation of the system’s

saturation.

In this case, at breakthrough 76.6% of the throats contain lamellae (23% by snap-off and
53.6% by leave-behind). Notice, that in order for the gas path to be discontinuous, only snap-off is
needed. However, after the path becomes disconnected, the lamellae generated by both mechanisms
are important and it would be possible for each of them to be a part of the path which has the

minimum resistance.

Figures 132 and 133 show the same simulation for the case when the condition for snap-off is
that the aspect ratio exceeds 2 and 2.5, respectively. One of the differences between these figures
is in the width of the transient front, which becomes wider as the critical aspect ratio becomes
larger (less lamellae in the system). Also more trapping can be observed with similar trend. These
result from a less frequent snap-off events. The total percentage of lamellae at breakthrough are
about 35.2% and 21.7% where 25.8% and 11.5% of those are generated by snap-off, respectively.
Even Leave-behind lamellae are less than in the previous case. It needs to be mentioned that the
critical aspect ratio has only been used to generate different percentage of lamella in the system.

Practically, the foam density can be a function of injection velocity, saturation, fractional flow of
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Figure 132: Displacement in a 60 X 100 network. Average front advancement at (a¢) = = 0.5, and

(b) breakthrough. (Critical aspect ratio for snap-off, 2).
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(b)

Figure 133: Displacement in a 60 x 100 network. Average front advancement at (¢) z = 0.5, and
(b) breakthrough. (Critical aspect ratio for snap-off, 2.5).
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phases, etc.

Figure 134 shows the gas saturation, lamellae number density, (L, generated either by snap-off
or both mechanisms), and pressure profiles in a 3-D (20 x 50 x 20) network with critical aspect ratio
equal to 2. Ly has been normalized by the total number of throats on the same volume fraction
of the system. For determining the pressure gradient, it is assumed that the average throat radius
of the network is equal to 50(um) and the bond length is 150(um). The IFT was taken to be
30(mN/m).

Those results have a qualitative resemblance to other experimental and theoretical works.
Figure 135 shows similar results for the case when the aspect ratio criterion for snap-off is 2.5.

Further work is continuing on this problem.

7.3.2 Heterogeneous porous media

For simulating heterogeneous media, the pore network has been divided into two portions (of
higher and lower permeability), with the top portion assigned to have a higher permeability (the

average throats and sites of the top portion are two times larger than the bottom).

Figures 136 and 137 show schematically foam displacement within such media for two different
critical aspect ratios. As the possibility of snap-off increases, the sweep efficiency in the lower
permeability region increases. By contrast, when there is no snap-off, the sweep efficiency in the

less permeable region is almost zero (Figure 138).

The network model proposed is capable of simulating some aspects of transient and steady

state foam flow in porous media.
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Figure 134: Profiles of (a) Gas saturation, (b) Pressure gradient, (c) Snap-off lamellae, and (d)
Total lamellae at different times. Network size: 20 x 50 x 20. (Critical aspect ratio, 1.5).
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Figure 135: Profiles of (a) Gas saturation, (b) Pressure gradient, (c) Snap-off lamellae, and (d)
Total lamellae at different times. Network size: 20 x 50 x 20. (Critical aspect ratio, 2.5).
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Figure 136: Displacement in a 60 x 100 network with the top part having a higher permeability.
Average front advancement at (a) z = 0.5, (b) breakthrough. (Critical aspect ratio for snap-off,
1.5).
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Figure 137: Displacement in a 60 x 100 network with the top part having a higher permeability.

Average front advancement at (a) z = 0.5, (b) breakthrough. (Critical aspect ratio for snap-off,
2.5).
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Figure 138: Displacement in a 60 x 100 network with the top part having a higher permeability.
Average front advancement at (a) = = 0.5, (§) breakthrough. No snap-off lamellae.
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