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ABSTRACT

The study of vapor-liquid flow in porous media continued. Three aspects were addressed:

(i) The further development of percolation and pore network models for phase change (boiling)

in porous media; (ii) Visualization oi steam injection in Hele-Shaw cells: ,_,_d (iii) Macroscopic

modeling of countercurrent steam- water flow in porous media.

_Ve analyzed the liquid-to-vapor phrse change in single-component fluids in porous media at

low superheats. Conditions typical to steam in)ection in porous media were taken. We examined

nucleation, phase equilibria and their stability and the growth of vapor bubbles. Effects of pore

strm:ture were emphasized. It was shown that at low superheats, bubble growth can be described

as a percolation process. A modification was also proposed in the case of spatial temperature

gradients, when solid conduction predominates.

Visualization experiments on steam injection in Hele-Shaw cells continued. Both synthetic and

natural heavy oils were used under a variety of conditions, including effects of gravity. The ex-

periments were conducted at low pressures. The results demonstrate the intreplay between steam

injection, steam condensation, viscous fingering, heat transfer and steam distillation effects. The

experiments reveal that steam fronts are neither smooth nor flat, but undergo constant rearrange-

ment as a ree_llt of condensation and injection. These dynamics are substantially different from

a typical immiscible displacement. The injected steam was found to follow the path of condensed

water, which set. the general fingering pattern. A viscoelastic response of the displaced heavy oil

was also identified.

The macroscopic modeling of countercurrent vapor-liquid flow also continued. Based on a

continuum description, the effect of permeability heterogeneity was analyzed, lt was found that

the capillary heterogeneity induced acts as a body force that .nnances or diminishes gravity effects.

Selection rules that determine the particular steady states reached in homogeneous, gravity-driven

heat pipes were formulated. It is shown that the two-phase,, ne terminates only ira substantial

increase in permeability, in the direction of increasing depth, occurs somewhere in the medium.

Weak heterogeneity affects only slightly gravity-driven flows, bu_: strong variations in permeability

may give rise to substantial capillary effects.

S,,.bsta:,tiai efforts were made in the area of rese, rvoir heterog_.n_ity. These cart be classified irt

two categories: (i_ Studies related to fra.ctur_,d svst_>ms and !ii) Parallel flow in long and narrow

-.-'_ xr



reservoirs.

Experimental studies were conducted to classify the displacement behavior itr ntodel systern.-,.

We considered a glass micromodel taken to represent a fra._'ture separatiiLg two m_trix blo_l,:,.

. .o ,_,,_ simpl".While the ultimate gem is to study the effect of steam injection, it. was _.al ..... d that even

immiscible displacement in such systems is poorly understood. We carried o_1,: a series of grima.rv

imblbition, primary drainage and secondary imbibition experiments for a variety of rnobilitv ratio

and capillary number values. The flow mechanisms pertaining to the various conditions wer_

classified. Conditions for the penetration of the matrix block were der_w.,d.

In the same category, we investigated the numerical construction of fractal networks of fracturo_.

The method is based on the IFS technique and alIows for great flexibility in the development of

patterns. Numerical techniques were developed to simulate unsteady single-phase flow in tbe_c,

networks. It was found that the pressure transients behave according to the theoretical predictions

provided that there exists a power-law in the mass- radius relationship around the test well location.

Otherwise, finite size effects become significant and interfo_re severely with the identification of the

underlying fractal structure.

Regarding fluid flow in long and narrow reservoirs we performed a theoretical analysis of the

Ver_.ical Equilibrium assumption. The latter is often app'.led to the modeling and displacement.

of various flow processes in porous media. However, the existing methodology is rather intuitive.

In our work, we developed a rigorous asymptotic analysis, based on which a series of models are

obtained. In the absence of strong gravity effects, we generalized previous works on immiscible and

miscible msplac _ments When gravity is strong, such that fluids become fully se:g.regatod, conditions

%r flow segregation were proved and previous approximations were justified and generalized. Effec,._

of capillarity and transverse dispersion were also included.

Irt the second study related to paralle! flow, we considered the dynamics of motion of interfaces in

parallel flow when viscous forces predominate. The particular application involves immiscible fluids

in a Hele-Shaw cell. The evolution of disturbances on the interface was studied both experimentall_"

and theoretically. It was found that such interfaces support wave motion, the arnpIitude of which

for !on_ waves is governed by the celebrated KdV equation. The waves are dispersive provided that

the fluids have different viscosities. Experiments cond,Jcted in a lor)g and na.rrow I[ol_-Sha, w cell

appear to va.lidato t,he theory for bott_ th_ symmetric a_-,d the nor_-svrnrrtetri< oa.sos.
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Finally, work continued it: the area of additives for mobility control. This year, we completed tile

experimental study on foam propagation in porous media. A detailed report and a PhD Thesis were

published on this subject. Because of this availability, they will not be presented in this w, lume.

Work on foams currently continues. We aJso extended our previous study on non- Newtonian fluid

flow in porous media by using computer simulation to test theoretical predictions on the effective

permeability of power-law fluids, lt was found that the critical path analysis can be effectively used

to model the permeability provided that the power law exponent is not too small. Preliminary work

is also reported on the properties of the displacement of a Newtonian fluid by a non-Newtonian

fluid and the effects of rheology on the displacement. RheologicaJ effects are important on their own

right, but also because many heavy oils of interest to this work are likely to have a non-Newtonian

behavior.
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l INTRODUCTION

This report covers work performed in the area related to the physicochemical factors for the

improvement of the oil recovery efficiency in steamfloods. In this context, three general areas are

studied" (i) Tile understanding of vapor-liquid flow in porous media, whether the flow is internal

(boiling). external (steam injection) or countercurrent (as in vertical heat pipes). (ii) The effect of

reservoir heterogeneity, particularly as it ,,egards fractured systems and long and narrow reservoirs

(which are typical of oil reservoirs). (zzi) The flow properties of additives for the improvement of

recovery efficiency, in particular the properties of foams.

" The study of the mechanisms of vapor-liquid flow reported here involves all three research

tools, analysis, computation and experiments. We have focused on pore level modeling using

[] pore networks and on flow visualizatio;, using Hele-Shaw cells. Questions that need to be answered

include the following: to what degree the dynamics of steam-water or steam-oil interfaces differ from

a typical isothermal, immiscible, two-component displacement? and how do temperature gradients

and heat transfer affect the displacement pattern? Pore network simulation of moving interfaces

arm visualization experiments, as described in Chapters 2 and 3 of this report, help provide some

insight on these questions. Ultimately, we aim at scaling up pore network level phenomena to

model vapor-liquid flow at the macroscale. It is for this reason that the si,hplc theories of Chapter

2, such as percolation and gradier:t percolation or other variations, may be of great utility.

= Despite the apparent simplicity of the geometry, Hele-Shaw cells provide a great deal of infor-

mation on the dynamics of steam- liquid interfaces. Chapter g describes our efforts in this direction.

During the past year we experimented with a variety of fluids and conditions. An important, un-

expected result was found owing to the viscoelastic behavior of the various heavy oils used. We are

in the process of understanding this behavior. Current work also involves the use of glass beads in

a packed Hele-Shaw cell in order to examine effects of geometric disorder.

In parallel, we are studying macroscopic flows, particularly countercurrent steam-water flow.
z

_ Irt view of the potential of horizontal wells in thermal recovery, countercurrent steam-water flows

are likely to be of importance. Prototypes of such behavior are heat pipes. In fact. a heat pipe

description is typically used to represent boiling in i;_'rous media. Despite their significance, how-

ever. many important questions have not been answered By irltroducing permeability and capillary

gradients, we ]:av_ formulated a theory prese'._t.od ir_ (,iLapter 4 based on which various flows are

1



analyzed rigorously. _,_e classify the various emerging regimes and propose rules for the selection

of steady- states.

The second important area of 3tudy in this work is reservoir heterogeneity. We are particularly

interested in fractu-ed systems, as well as ill general, macroscopic (field) scale heterogeneity effects.

While our ultimate interest is on steam displacement, we have rea l_'.,zed that any meaningful progress

requires that simpler, immiscible, isothermal displacement be analyzed first, particularly as it

regards fractured systems. This is the reason that we proceeded with simple imbibition and drainage

studies in the micromodel fracture geometries described in Chapter 5. We should point out that

preliminary steam injection was indeed performed in these micromodels. However, a thorough

analysis must await the ..successful resolution of the isothermal immiscible displacement. Injection

of steam will commence soon after the successful completion of these experiments.

For large scale application the characterization of the fracture network in fractured systems is

also necessary. It is well known that typical double porosity systems, currently used routinely, suffer

from the inability to describe more than two scales of heterogeneity. Experimental observations

suggest that many naturally fractured reservoirs are multiply fractured and contain a cascade of

length scales. Using the novel tool of fractal geometry, we h_ve proposed the use of fractals for the

representation of networks of fractures. Chapter 6 describes our efforts in the past year. We have

developed a novel technique for the synthetic construction of such networks and for the numerical

simulation of single-phase flow. Based on the progress to be made in the fracture-block interaction.

as described in Chapter 5, we hope to be able to provide a simulation of steam injection in fractured

systems in the near future.

In relation to reservoir heterogeneity, we have also addressed the issue of flow in long and narrow

reservoirs. This configuration has been used often in practice for the development of pseudofunc-

tions, under the common assumption of Vertical Flow Equilibrium. Despite its success, however,

it has lacked a fundamental justification. We embarked in a study of this problem in order to

provide the formalism that will enable the extension of the approach to many EOR processes, such

as steam injection. Chapter 7 provides the details of this approach. In the same context, we have

completed our work on the parallel flow of two immiscibl,-, fluids. The work is both experimental

and theoretical. We have studied the dynamics of lateral interfaces and found that they support

way(, motion. Chapter 8 describ,.s tlte r(,sults obtainod. :'ks it addrosses primarily viscous cout)li]l g



effects, the analysis should be also of interest to fully developed viscous fingers.

The final area of our work described in this report pertains to the injection of cllemical additiv¢,._.

Over the past several years we have been studying the flow properties of t'oam. This elIi)rt ha._

culminated wi:th the completion of a Ph. D Thesis on experimental aspects of foam flow. Work

on foam flow continues in an effort to interpret and to extend the findings of the experimental

part. In parallel, we continued our research on the flow of non-Newtonian fluids in porous media.

In addition tr) their generic interest, non-Newtonian fluids are likelv to model heavy oils. Wo

have alluded above to the novel behavior displayed in the displacement of heavy oils. Chapter 9

describes our research of the past year on the permeability of power-law fluids and on methods for

its estimation. Also briefly discussed are the properties of a displacement, where both Newtonian

and non- Newtonian (power-law) fluids are involved.
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2 PERCOLATION MODELS FOR BOILING AND BUBBLE GROWTH IN POROUS

MEDIA AT LOW SUPERHEATS

C. Satik and Y. C. Yortsos

2.1 INTRODUCTION

The liquid-to-vapor phase change in porous media is a process fundamental to many phenomena,

such as drying and boiling, and it is common to diverse applications, such as geothermal, enhanced

oil recovery and nuclear waste disposal. Despite its demonstr,,ted significance, however, it is at:

present poorly understood. With few exceptions, most of the available studies are of a phenomeno-

logical nature, relying on the conventional extension of Darcy's law and on the use of relative

permeability and capillary pressure functions, typically borrowed from the literature on gas-liquid

displacement. Examples abound in the respective applications [119],[106],[37],[6]. Lacking, in par-

ticular, is the understanding of the interplay between phase equilibria and phase change, the degree

and rate of change of supersaturation, t,he heat transfer and the pore structure. The latter intro-

duces aspects different than for phase change in the bulk [121],[103],[102]. This is especially true

for porous media of moderate-to-low permeability, where capillary phenomena can be significant.

Although recent publications in the Russian literature peripherally touch on some of these

issues [123],[129],[70], concerted efforts to address various problems were made by Udell [135], who

attempted to describe vapor-liquid equilibria in porous media, and by Parlar and 't%rtsos [99],

who proposed a percolation model for steam-water relative permeabilities. Both approaches were

incomplete, however, in that the first largely ignored the pore structure, while the second neglected

any heat transfer or supersaturation considerations, lt must be pointed out that the model of

Parlar and Yortsos [99] for drainage did indeed corroborate tile experimental findings of Sanchez

and Schechter [116] for concurrent flow. Nevertheless, additional work is necessary to support their

findings and to describe the process for other flow configurations. Recently, Yortsos and Parlar [14S¢]

made significant advances on the related problem of solution gas-drive. The system conside.red was

two-conlponent, two-pllase, witll the bubble growth controlled bF' solubility, pressure decline ail¢l

mass transfer. The authors considered various aspects of the process including phase equilibria and

llucleation, and proposed a percolation model for bubble growth from many i_ucleation sites.

The work in [I-1£] is the first to analyze systematically the blll)ble growth process, alt hollgll

'1



sp,_cific solutions were derived only for rather special cases. Since the two problems share many

common aspects we ca:: apply a similar approach to describe the phase change and the subsequent

bubble growth of a single-component system driven by an imposed superheat. This forms the main

objective of this chap:er. In the context of boiling in porous media, we will address equilibria of

vapor-liquid interfaces, issues of heterogeneous nucleation, the subsequent bubble growth and effects

of superheat and heat transfer. The analysis is intended to probe the validity of the conventional

apt_roach, to derive constraints on its applicability and to illustrate growth patterns. A key element

in our models is the representation of the porous medium in terms of a connected (but uncorrelated)

network of pore throats and pore bodies of variable size. With the assumption of lack of spatial

correlations, we are in a position to take advantage of novel statistical tools, such as percolation

theory, to describe the growth process. This allows us to demonstrate clearly the difference between

bubble growth in a porous medium and that in the bulk.

Although a general analysis is attempted, specific results are obtained only for the case of low

superheats (slow growth). Under such conditions, expected to be valid for steam injection pro-

cesses in oil recovery or for geothermal reservoirs, temperature and pressure gradients are small,

thus relative permeabilities are only saturation (and history) dependent. As will become apparent,

nucleation effects significantly influence the macroscopic properties. We will illustrate two appli-

cations, one in which spatial temperature gradients are negligible and the heating is uniform, and

another in which heat conduction through the solid matrix dominates the distribution of phases.

Although prog,ess is made in both directions, significant work still remains to be done, as will be

pointed out below.

2.2 PHASE EQUILIBRIA IN POROUS MEDIA

We consider a vapor bubble in equilibrium with a liquid in a porous medium (Figure 1). We assume

that nucleation has ceased and that individual interface menisci in pores are spherical (although

macroscopic shapes are certainly not spherical). At conditions of equilibrium, temperature, liquid

and vapor pressures are ali spatially uniform. Thermodynamics dictate that the Laplace equation

is satisfied, thus relating fluid pressures to the radius oi" curvature of any vapor-liquid meniscus

2?
Pr- PL = (1)

7'
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Figure 1" Schematic of a "bubble" in a porous medium
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Figure 2" Schematic of equilibrium and supersaturations

where "), is the surface tension. For simplicity, we neglect Kelvin effects and assume that the

pressure in the vapor l)hase, Pr, is equal to tile saturation vapor pressure at TL, e.g., as given by

the Clausius-Clapeyron equation

Pv = Pro(Tc) (2)

It is worth pointing out that the importance of Kelvin effects has been exaggerated in the previous

literature (e.g. [135],[99]). In a recent study [118], using a conventional macroscopic description we

have shown that, except for very tight porous media (with permeability on the order of microdar-

ties), oi" for very low liquid saturation values, Kelvin effects are generally of s,<ondary significant('.

Phase change and phase equilibria in a porous medium may 1)e scl tematically illtoi'pr<,l,,d ;is i)_

l"i_4_Iro2. ]'l_e syslem, il_itially in the liquid state (point A), is sl()wly ll(,alod a_ c_)iislalll l)r,,s._,lr,'.

7 _



until tile equilibrium curve is reached (point B). IPurth,,'r increase in tenlt)_,ralure loa_ls to I1_,,

superheat AT= TL-T.,_t, whereT_t is tile saturation tem perat u re at t'i,. In aliquid in lhc bulk,

the appearance of the first bubble theoretically occurs at the onset of homogenous nucleation, whivll

requires substantial amounts of superheat. In a porous medium, on the other hand, the onset ot'

phase change is facilitated by heterogeneous nucleation. Given that a bubble has formed (point

C), the pressure in the vapor phase at equilibrium is given by (2). Mechanical e_luilit;rilim of file

vapor-liquid interfaces in the porous media "bubble" (Figure 1) requires spherical shape menisci of

constant mean curvature tto

Pvo(TL)- PL = 2"rH0 (a)

The RHS in the above is a measure of the capillary pressure and it is set by the porous medium.

Contrary to processes in the bulk, where unbounded growth ensues, pore walls in porous media

stabilize interfaces, thus vapor-liquid equilibria are possible. The stability of gas-liquid interfaces

in porous media for two-component, two-phase systems was summarized by Hirasaki ct. al. [57].

lt was shown that interfaces residing on converging pore geometries are stable, while these o,,

diverging geometries are unstable. Yortsos and Parlar [148] extended their analysis to account for

mass transfer by diffusion in the case of two-component, vapor-liquid systems. They found that the

stability of menisci on converging pore geometries is enhanced by ma_ss tr,,nsfer. Analogoils results

should ,,pply for the system under consideration here. In the following, we adapt the qualitative

part of their argument to show equivalent effects for the single-component, vapor-liquid system of

ii_terest to boiling. The mathematical details are similar, but generally complex, and we refer tl_e

reader to Appendix A of [148].

('onsi,ler a small perturbation in the curvature of a spherical, vapor-liquid interface locat_,d

ill a converging pore element (from pore body-to-pore throat, Figure 3). For this ii_terface to

advance, the mean cuvature must increase. For a constant liquid pressure, this requires an increase

ill the vapor pressure, or equivalently, in the interface temperature. This i_Lcrease sets, in turn, a

tc,mperat ilre gra_li¢'nt, ;_l_<ta c,_t_c,,i__mil anl ILeat flux away fx'onl the vapor towards tire li_luid, whicl_

results in condensatiolt, linus in a r_:,lra('tioll of the interface to its (,rigillal lmsiti()n. An equival_,ltt

argument applie.s if the iilitial l)_,rturt)ation is in tile oposite direction. ()lie is led to cc)_clude tl_,_;l,

the equilibri_ _f a val,or-li_l_id m¢,_is¢'_s in a co_veging p(_re geotnetry is addilio_ally' stabilize_l



Figure 3: Stability of a vapor-liquid interface in a converging geometry

by heat transfer and phase equilibria. This is not the case for a diverging geometry, where stable

equilibria are not possible, much like the case of vapor bubbles in the bulk. The existence of stable

interfaces in pore geometries is fundamental to heterogeneous nucleation, an issue to which we turn

next.

2.3 NUCLEATION

Nucleation processes in porous media are quite complex and tbere are still several questions that

remain unanswered. However, some reasonable progress has been made. It is evident that in the

majority of cases we can discard homogeneous nucleation as a plausible mechanism because of

its restrictive conditions of perfectly smooth and liquid wet solid surfaces, the absence of trapped

gases, and the unrealistically high supersaturations (of the order of several thousand psi for the

solution gas-drive example of Yortsos and Parlar [148]). Ali these conditions are not likely to be

met in many instances. Instead, heterogeneous nucleation is the mechanism likely to dominate the

phase change process.

IIeterogeneous nucleation has been analyzed by ",%rtsos and Parlar [14,q]. wllo proposod a con-

vontional nucleation model, lt is based on the a.ssumplion tl_al there oxisl polo sllrtace irro_ulaIiti,:,s
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Figure 4: Schematic of a nucleation site in a pore body

(cracks, scratches, pits), which are not liquid wet and which contain pre-existing or trapped gases,

that act as nucleation sites. For convenience in calculations, the sites were assumed of a conical

shape (Figure 4). Because of the premise of heterogeneous mechanism, the issue of nucleation rates

does not arise. Instead, sites are activated and a pore body is allowed to be occupied by vapor

when the vapor-liquid meniscus in the cavity loses stability. As shown below, this occurs when the

interface reaches the cavity mouth.

To examine the nucleation mechanism, we consider a hydrophobic conical cavity and evaluate

the variation of the radius of curvature of the liquid-vapor interface with the volume of the vapor

(Figure 5). Calculations of such configurations were made by Forrest [47]. As previously pointed

out, stable interfaces correspond to configurations such that dr/dv < 0, i.e. the radius of curvature

decreases with an increase in tile volume of the gas phase. Note that a negative radius of curvature

implies an interface concave to tile liquid phase. /.From the schematic in Figure 5 it follows that

until the radius r reaches the pit mouth (and r = li'), the equilibrium state is stable, suggesting

that the vapor is confined in tile cavity. \.\:hel_ the cavity mouth is reached, however, a further

iltcrease in the supersaturation (superh(,al) renders the equlibrium state unstable. The bubbl(,

would grow in a noil-equ;librium fasllion, ntuch like in the t),llk, until its radius of curvature equals

1()



I
I
I
t
I

, rsI
I

,,
I
!

: I

,,
I r

a b
I
I

t lg
i _ ,i i i |li |

I
I
I

i V
I
I
I
I
I
I
I

!
- !

I
I
I

Figure 5" I}ubble radius-volu_l}e (,quilit)rium for the l_.vdrol)hc)l)i¢ cavil.v ¢_f I:'igure ,'1



the host pore body radiusr_. Due to the pore wMl constraints, further increase in the volume causes

a decremse in the radius of curvature. This step is Mso stable, Mthough it may not necessarily be

an equilibrium one at the particular supor_aturation (its radius may Le larger than W), in which

case the bubble may fllrther grow.

By contrast, a vapor bubble in the bulk liquid is in unstable mechanical equilibrium, that

enforces continuous growth or collapse. The fact that due to pore wall stabilization, a. vapor bubb{e

can e:dst in stable equilibrium with a superheated liquid, is a major difference between porous media

and bulk. With l_T d moting the cavity mouth radius, we conclude that the onset of nucleation of

a site occurs when

2_f

Pvo(2Z)- PL = W (':)

To express this condition in terms of the host pore body radius, we adopt from Yortsos and Parlar

[i48] the geometric factor 3 = W/rs, which is the ratio of cav'; O" mouth radius to pore body radius.

Given the latter, equation (4) expresses the condition for a pc,:e body of a given size to nucleate

(be occupied by vapor). If d is assumed constant, larger pores are more likely to nucleate first.

Of course this may not necessarily be the case and, in fact, it is more likely that L_ is randomly

distributed. However, the assumption, of constant 3 considerably facilitates the calculations, while

ir does no_ detract qualitatively from the conclusior,,.s to be reached, particul;-_:lv regarding the

growth pattern. Of course, other expressions can aXso be used (see Parlar and Y< :tsos [98]).

In the above, it was also assumed that no {:_ubble detachment due to gravity occur- A condition

for the validity of the latter was obtained bv balancing surface and gravity forces, [148]. For the

typical _"_.lues listed in Table l, we ca_lculate that gravity-induced detachment will not take place

in any pore _,'ith size smMler than 571.59 v/'Srpm.

2.4 BUBBLE, GROWTH

Having previously describea phase equilibria and nucleation, we may proceed to formula.tc b_bble

growr, h in the pore space. The latter is cor_trolled by s,.irface, inertia, pressure and vis(:_,ls forces.

the driving parameter being the externally imposed s,lf)erIteat in rh, _ li_tuid. [:'or simplicity, we

consider first, a single vapor "'b_.ibble'" in an infinitely large porous medium otherwise occupied

iO [iri_iid (Fiff_lro 1). [n a la,tor section, the model is extended to consider growth Dent ta,lll, ipie

i=2



cp- 1.059 Btu/Ibm/°F

Ho 1 = 15,urn

k - ldarcy

L. = 841.75 Btu/lbm

M = 181b/mol

PL = 202.819psi

TL = 383 °F

aL = 6.7113 * lO-3ft2/h

3' = 60.0 dynes/crn 2

2_n= 0.386Btu/h/ft/°F

_d= 1

PL = 54.31 Ibm/ft 3

¢ = 0.35

Table I" Typical values of parameters



"bubbles". In the present context, "'bubbles" are not spherical, although individual menisci have

locally spherical shape.

2.4.1 Dimensionless Parameters

To discuss the growth process, the dimensionless groups that control the growth regimes are, first,

introduced. We follow Szekely and Martins [130] who studied the growth of a spherical gas bubble

in a supersaturated bulk liquid. Typical parameter values correspond to a steam injection process

for oil recovery and the}, are listed in Table 1.

As in Yortsos and Parlar [148], the variable 4, expresses the importance of capillarity with

respect to supersaturation
2"_H0

_- AP (5)

where H0 is a reference mean curvature of the menisci. For the heat transfer problem of interest

here. we can Mternativelv use the imposed superheat AT to get

AT'"

O= =xr (6)

where

AT'" = 2-r_,o pL (7)

and

L_,3,I
n - R (8)

Here. L_,, 3/' and R are latent heat of vaporization, the molecular weight and the ideal gas constant,

respectively. For the values in Table !, AT*" = 0.5.3 °F. Depending upon the magnitude of AP

(or AT). growth is described by different regimes. At low superheat values, _ is O(1) or larger.

Capillary-controlled growth occurs at _.gO(1), in which case AP is of the order 2^tH0. The latter

can be significant for small permeabilities.

Another m_asure of bubble growth is the Jacob nTlrnber

.Ja = Pccr'-ST (9_
/)_"L,.

wher,_ tiL. % and Pr" are liquid density', liquid specific heat capacity and vapor densit.y, rospectively.

By using the ideal gas law and aftor som_, tt_a_il)_xlation, rh,..lacot_ Itumbor can ho rolated to tlL_,

I i



superheat
AT

Ja = (10)AT"

where

1 mPL
&T* = (11)

pgCp TL

and for the typical values of Table 1, zXT*=6.204 °F. This is also inversely proportional to a/,

da = -- (12)

where

T 3
L (13)

_* = (27Ho)(pLcp) (mpL)2

Clearly, important parameters which control the magnitudes of of .la and ¢ are liquid pressure and

temperature in the far field.

Finally, a measure of inertia forces is given by the growth rate parameter

Ja 2

where

R°2 AB (!5)
G = pLa2 L

and where Ro and aL are initial bubble radius and thermal diffusivity of the liquid, respectively.

Following Szekely and Martins [130], B << 1 would imply heat transfer-controlled growth, while

B >> 1 implies inertia-controlled growth. In our subsequent applications, da << 1, thus the growth

process is heat transfer-controlled only and inertia forces are, therefore, not considered. This is

certainly not the case in rapid bubble growth (flash boiling).

2.4.2 Governing Equations

To express the energy balance in the liquid-occupied space we use the dimensionless notation

TL _ Tsar
O= (IGLT '

c_LtJa

r= R---_ ' (17
.7".

= -=- (lS
- RO
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to find

08
Ja(-_r + U_L_L.V0) = V28 (19)

where

RouL
VL -- _ (20)

aLJa

In the above, UL,X_ and t are liquid velocity, spatial distance and time, respectively, while 7'.,,t

corresponds to the far-field liquid pressure. An energy balance at the vapor-liquid interface reads

08
_, = _ (21)

The energy balance in the solid obeys the heat conduction equation. In dimensionless form we

h av e

ja O0_- = gav2o (22)
where

Ts- That
0 = AT (123)

and Ts and ga are the solid temperature and the ratio of solid to liquid thermal diffusivities, respec-

tively. At the solid-liquid interface, continuity of thermal energy yields

a0 a0
a--_ = #_s (24)

where p is the ratio of solid to liquid conductivities.

At the vapor-liquid interface, and for low superheats, inertia and viscous forces are negligible

and tile momentum balance simply reads

n = ev (25)

where

Pr-PL

II = AP (26)

and
H

q = _ (27)
Ho

whore li is the mean curvature. Alternatively, II at the interface can be related to 0 l)y tile,

Clausius-Clapeyron equation. We note that at the low Re regime, fluid flow is described by Stokes

equation, which is commonly approximated for porous media by a Laplace equation,

V 2 p = 0 (2._)
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Appropriate boundary and initial conditions are

O= 1 at _--,ec or r = 0 (29)

and

vk = o at --, (30)

The problem is, in principle, completely specified by the above. However, a full solution will

not be attempted here. Instead, some special, and quite limiting, cases are considered that allow

for a simpler description. In all cases described below low superheats are assumed.

2.4.3 Low Superheats

At conditions of low superheats, then Ja << 1, and both balance equations above reduce to the

Laplace equation, (provided also that Ja << _,),

V28=0 (31)

V2® = 0 (32)

At such conditions, the temperature fields in both liquid and solid are quasi-static. This facilitates

considerably the analysis. Simple solutions are possible for two cases depending on the magnitude

of _.

(a) When _5,O(1), capillary forces solely control the growth and the process is of the percolation

(ordinary or i,nvasion) type, which has been well studied. The rules for the occupancy of pores by

the vapor phase given in Yortsos and Parlar [148] can be used with minor modifications. Percolation

(ordinary or invasion) growth patterns are applicable to quasi-static fields and the above are valid

only if the temperature increase rate is small, to allow for equilibrium to be established. Yortsos

and Parlar [148] developed a constraint for the case of pressure depletion in solution gas-drive

systems. It is straightforward to modify their result, for the case of boiling in porous media. We

obtain the following condition on the heating rate

AT"
Q << _Ja 3 (33)

T"

where

Oo L
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and _d,k and o are the dirnensionloss correlation length in the percolation process, permeability

and porosity, respectively. Taking .la --- 10.3 and substituting AT* = 6.204 °F in tile condition

above, gives Q << 32.497 °F/day for percolation growth patterns to be valid. This constraint is

likely to be violated tbr typical, laboratory scale boiling processes where heating rates are generally

high. On the other hand, it is well within the limits of applications involving steam injection for

oil recovery or geothermal systems, where processes are slow and equilibrium can be reached.

(b) When q) << 1, capillarity is not important, and in the absence of solid conduction, the process

is of the DLA (Diffusion-Limited-Aggregation) type. In this case, equilibrium states are not possible

and there is continous growth until full occupancy of the porous medium by vapor. Clearly, at least

for this case. classical concepts such as relative permeabilities need to be reexamined.

2.4.4 Moderate and Large Superheats

Before proceeding we should briefly comment on the case of larger superheats. Now Ja is 0(1) or

larger. Under the condition B << 1, inertia and viscous forces are still negligible. Therefore, the

growth process is heat transfer-controlled, but now the temperature field is no longer quasi-static.

This problem is quite complex, requiring for its solution the consideration of both convection and

unsteady state terms. FinMly, at very large superheat, Ja >> 1, while also B >> 1, implying that

inertia controlls growth. This is the case of explosive growth, which is outside the present scope.

The above pertained to growth of a single "'bubble" in porous media. In the remaining, we shall

consider grov,'th of "bubbles" from multiple sites, as a result of the activation of many nucleation

sites. Growth from multiple sites was studied by Yortsos and Parlar [148] who modified ordinary

percolation in infinite Bethe lattices. Their results are in closed-form expressions. Here, we present

numerical results for the boiling case by considering t}_e same percolation problem but in a square

lattice. The model in [148] was developed for infinite systems, where there is no depletion of

supersaturation. Here, we shall also consider the adiabatic case, where the available energy is

finite.

We should point out that an important (tifferez_ce with the solution gas-drive problem is the par-

ticipation of the solid matrix to transport. IIi g(,x_eral, thre(, different regimes can be (tisting_lishr, d

according to the ratio of conductivities ( # = A,/,\L )"

# << 1 --. where only tile liquid is conducting



# ,-, 1 ---, where both solid and liquid participate in the conduction

p >> 1 --+ where only the solid is conducting

Each of these three cases finds many applications. The solution gas-drive model in Yortsos anti

Parlar [148] pertains to the first limit, where the solid conductivity is small and its participation to

heat transfer is negligible. Many boiling applications in porous media lie closer to the third limit,

with the ratio p as high as 10. To account fm, this, a variant of gradient percolation is developed.

2.5 PERCOLATION MODELS

We consider bubble growth from multiple nucleation sites corresponding to low superheats (or to

(I) ,,- 1), where the growth process is of the percolation type. In this case, infinitesimally smM1 AT

steps corresponding to a slow heating rate are imposed, such that the supersaturation is always

balanced by capillary pressure. Three cases are considered: The first case is slow, uniform heating

at an increased superheat, the second corresponds to adiabatic expansion, although at spatially

uniform temperature and pressure, while the third involves static vapor-liquid distributions in the

presence of a temperature gradient. Main objectives are to find the distributions of the vapor and

liquid phases in the pore space, for each process, so that classical continuum concepts, such as

relative permeabilities, can be calculated. This is, by no means, a trivial exercise. As previously

implied, the present models mostly address effects of nucleation on these properties.

We use both bond and site distributions. The rules for the activation of the nucleation sites and

the occupancy' of pore space by the vapor are simple. Given a superheat AT = TL - T,=t, pores

with throat radius

27T_
rb >_ R" = (35)

pv'Lv_T

are occupied by the vapor phase if they are already connected to vapor-occupied sites or to nucle-

ation sites. New nucleation sites are activated if the host pore bodies have a large enough radius

R*

An important difference between this model and ordinary percolation is nucleation. Classi(:al

percolation is recovered in tt_e limit/3 = 1.

2.5.1 Ordinary Percolation with Nucleation

Simulation results are shown in Figuro 6, for square (30x30)lattice netw(Jrk ai l:liroo differ(,ni
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Figure 6' Bubblo Krowlh in porcolatin_ from _ucleation sit_,s in a sq_ar¢, lali('_, at tl_r,,,, ,lilt(,r_,i_l

_ta, ges of _rowt}_ (t_-=0.221. 0.55:') a_¢t ().99SR. rest)ectively )
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stages of growth corresponding to increasing superheats. Pore body and throat sizes were randomly

assigned from a uniform distribution. In Figure 6, gray denotes vapor-occupied sites, black denotes

nucleation sites and white denotes liquid-occupied sites, lt is apparent that all vapor-occupied

pores are connected to a nucleation site. In this model of unlimited supply of supersaturation,

more nucleation sites are activated as the supersaturation increases. However, not ali nucleation

sites have expanded, particularly at low superheats. Since no temperature gradients are considered,

no frontal structures (spatial gradients) develop. The predictions from this model are similar to

those from the analytical study of Yortsos and P_rlar [148]. In particular, a critical supersaturation

exists for the onset of bulk vapor flow, and relative permeabilities can be calculated as a function

of the nucleation parameter 8. We refer the reader to [148] for details. Figure 7 shows relative

permeability results reprinted from [148].

Since the process is of the percolation type, the onset of bulk vapor flow occurs when an

"infinite" cluster forms, corresponding to the supersaturation

2r
APe = -- (37)

rdc

where rdc solves

ab(r)dr = Pe (38)dc

Here, (_b(r) is the bond size distribution, and p_ is the percolation threshold. The critical vapor

saturation Sg_ is obtained by adding to the "infinite cluster" the contribution of vapor-occupied

sites that are connected to nucleation sites bu_t do not belong to the percolation cluster. It is

apparent that the latter value would increase as nucleation is more facilitated. Equivalently, the

relative permeability to vapor would decrease as the nucleation fraction increases. These features

are clearly evident in Figure 7. We should point out that when the ratio g = _ is not zero it is
'r _, TIrLQ._

possible that although sufficient superheat is available for bond percolation, vapo: occupancy has

not yet occured, because of lack of nucleation sil:es (/3 < _). Percolation then takes place when the

first site is nucleated, with superheat corresponding to the radius _r_,m_, thus resulting into large

values of _5'g_.Figure 8 taken from [148] shows l_his dependence.

Conditions for the v,_lidity of this model were developed above. As pointed out, this process

is a s]ow, spatially uniform heating of the liquid in the porous medium. Clearly, this is only an

approximation to the at'tual process. One possible modilication regards the depletion of superheat.
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"2?,



2.5.2 Percolation with Superhe.at Deph_tion

'Ib model this process, we h;tve simulated vapor growth by pressure reduction iii ali a.(liat)ati,_ syst,'lu.

Contrary to the previous, the available superheat here is finite. Since vapor expan<ts and (lisl)la.t:es

liquid which leaves tile system, the available amount of initial entall)hy is constantly reduced.

Further growth can thus occur only by further pressure depletion. We must note that adthough

supeerheat is depleted, competition for growth among the various bubbles is still absent, because

of the assumption of uniform temperatures. Results are shown in Figure 9 for conditions identical

to the previous. At the end of the process, tb. pressure has been reduced from 202.8 psi to 185 psi,

while the temperature reduction is somewhat less, from 383 °F to 375.9 °F. Although the amount

of supersa.turation or superheat changes, one can nevertheless show that the growth pattern still

remains identical to the previous percolation type. This is to be expected, since spatial gradients

are not included. One concludes that consideration of finite volume and adiabatic conditions does

not change the previous results as far as flow parameters (e.g. relative permeabilities, etc.) is

concerned.

Both of the above were modifications of ordinary percolation, corresponding to the case where

solid matrix participation is of no relevance. The last section considers gradient percolation which

involves mainly heat conduction by the solid.

2.5.3 Gradient Percolation with Nucleation

A final modification involves the case where a fixed temperature gradient is assumed across the

sample. The assumption is that solid conduction dominates the heat transfer (/_ >> 1), thus, a

spatial temperature gradient can be sustained, reg_rdless of pore space occupancy. We make use

of the previous rules for vapor occupancy of a site, for both nucleation and growth. Note, however,

that fluid flow, particularly countercurrent flow, is not considered. This is a substantial limitation:

A temperature gradient in the vapor phase requires a corresponding pressure gradient, thus vapor

flow. At steady state, this must be counterbalanced by liquid flow in the oi)posite direction. We

are currently investingating the effects of this approximation in a study of heat pil)es using l)ore

network models.

Allowing for a. spatial gradient gives rise to gradient percolation. This conceI)t has been in-

troduced in recent years as a variation ()f classical percolation. It is recalled that in ordinary
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percolation the probability for the occupation of a site is spatially uniform. For gradient percola-

tion, on the other hand, it is given by a specified function which is variable irl space. This difference

substantially changes the patt,'rn of growth from that of classical percolation. In particular, fronts

can be delineated.

Gouyet et al. [108] introduced gradient percolation in their study of diffusion in solids. They

used the complementary error function to describe the probability distribution in space, for two-

dimensional, square and triangular lattice networks. Using certain clustering and occupation rules,

they examined _,_e nature of the diffusion front created. They found out that this front is fractal L.

(with dimension 1.75), while the probability v@le at the mean position of this front is related to the

percolation threshold of ordinary percolation. In a subsequent study of 3-d cubic lattices, (Gouyet

et al. [109]) they observed significant differences between 2-d and 3-d simulations. In particular,

the shape of the density profile at th_: frontier ckanged. Furthermore, the probability density value

at the mean frontier position was different than Pe- Nevertheless, many scaling properties were

found (Rosso et al. [52]).

Concerning but, hie growth in porous media, when solid conductio,l predominates (# :>> 1).

the application of gradient percolatioi_ is appealing. At such conditions, the temperature field is

decoupled from the occupancy scheme, which it actually dictates. For application to boiling, we have

m,Jdified gradient percolation by adding bond statistics and nucleation effects. We consider uniform

size distributions for sites and bonds, and a linear temperature profile. The parameters affecting

the occupancy are pore and bond size distributions, the values of _3and the imposed gradient AT.

Growth patterns for modified gradient percolation models ar,: shown in Figure t0 for two different

values of the nucleation parameter 2. Gray denotes vapor-occupied sites, while black denotes the

interface which separates the infinite clusters of liquid-occupied sites and vapor-occupied sites. As

J increases, more nucleation sites are ,_,vailabIe and this results in higher occupancy of pores by

vapor. This increase in :2 shifts the interface toward the liquid side. Comparison between Figures 6

and 10 shows that the two patterns are quite different. A steam front is dearly distinguishable

in the gradient percolation case. Itowever, when spatia,l gradients are involved the definition of

continuum qr.antities becomes problematic. Further progress requires additional research which is

currently in progress ir_.our laboratory.
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2°6 CONCLUSIONS

In this chapter we applied the general methodology developed by Yortsos and Parlar [148] for so-

lution gas-drive processes, to the case of boiling in porous media. Phase equilibria and sta, bility,

nucleation, pore level microstructure and bubble growth were considered. At conditions of low su-

perheat where the temperature field is quasi-static, the growth problem was shown to be similar to

a drainage displacement process, with the addition of growth from activated nucleation sites. The

case of uniform heating was described using a percolation approach, under the constraint that tile

heating rate must be significantly lower than 32.49 °F/day. Field cases relevant to steam injection

or geothermal processes may obey this constraint. If such conditions prevail, relative permeability

functions and critical saturation values can be employed in a modified form to account for nu-

cleation. To account for temperature gradients in case where conduction in the solid dominates

the heat transfer, and in the absence of flow, we have modified gradient percolation. Although an

improvement over the uniform percolation model, these modifications are still tentative. We are

currently involved in an eftbrt to resolve many of the important issues left unanswered, including

the effect of the rate of superheat and the competition between nucleation sites for growth.
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3 VISUALIZATION EXPERIMENTS ON STEAM INJECTION IN HELE-SHAW CELLS

X. Kong, M. Haghighi and Y.C. Yortsos

3.1 INTRODUCTION

Flow visualization experiments have been successfully employed in reservoir engineering research

for many years [24, 33, 59, 137, 141]. Typically, they make use of transparent Hele-Shaw cells,

glass bead. packs and glass micromodels. Although such geometries lack important 3-D aspects and

particularly they do not accout for effects of gravity in the case of a horizontal arrangement, they are

nevertheless valuable for the insight they offer on the micromechanics of the displacement. This is

particularly important for displacement processes in constricted pore geometries, where an accurate

description of the dynamics of the moving interfaces is paramount to a proper understanding of

the process.

Most of the visualization work has been done on simple immiscible displacements (drainage or

imbibition). A great deal of valuable information has been obtained regarding the various regimes

that govern these processes, such as percolation, DLA (Diffusion-Limited-Aggregation), and other

aspects of viscous fingering [76]. Studies with micromodels have been instrumental in identifying the

pertinent flow mechanisms, particularly in secondary imbibition. Some visualization experiments

with glass micromodels have also been carried out to study more complex phenomena, such as

solution gas-drive, foam propagation, condensing-gas drive and other applications [2, 25, 31, 94, 80].

An excellent recent summary can be found in [19].

Surprisingly. visualization of steamfioods, which constitute a major part of current EOR meth-

ods for heavy oil, has not been attempted to date (although a preliminary investigation was indeed

conducted in our laboratory several years ago). Reasons for the lack of success in this direction

include the difficulties associated with an adequate control of the heat transfer and operational

problems at higher temperatures and pressures. In a some what related context, the application

of CT scanning to steamfloods in sandpacks was recently proposed with encouraging preliminary

results [34]. Flow imaging using CT scanning accounts for important a-D effects. However, the

scale of resolution is still too large to allow for a meaningful pore-level analysis, although impor-

t.ant laege scale heterogeneity effects can indeed be detected. At present, direct flow visualization

appears to remain an essential and inexpensive tool for studies at the pore-level.
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Even in tile absence of heat transfer control, steam displacement visualization can be very

val,lable. For example, while much work has been done oil steamfloods in laboratory cores and oll

partly scaled models [36, 122, 125], tbe results obtained are typically of the input-output type and

provide very limited understanding of the interactions at the pore-level. A thorough investigatio:

of the latter is important for the validation of many premises used in current theories, for the

refinement and improvement of models, for instance those pertaining to relative permeabilities and

capillary pressure, and for process simulation. It should be pointed out that the current state of the

art in thermal recovery relies on the direct application of two-phase flow concepts from immiscible

displacement analogues [99], the validity of which, however, for condensing-evaporating drives is

quite questionable.

Motivated by the above, we }lave undertaken experimental studies with a mMn objective the

visualization of steam injection processes in Hele-Sb.aw cells and in glass micromodels. The study

of Hele-Shaw geometries is expected to shed light on the displacement of heavy oils by steam in

planar geometries. To some degree, this geometry parallels that of a fracture, hence the study

would also ftud direct application to fractured systems. More generally, flow in Hele-Shaw cells

provides many clues about flow behavior in porous media. It should be recalled that flow in

Hele-Shaw cells at low Reynolds numbers is potential and can be approximated by Darcy's law,

which governs porous media flow, although in the absence of microstructure ("noise"). ttence,

Hele-Shaw studies of steamfloods offer a good approximation of condensing/evaporating flows in

"porous media" geometries. On the other hand, because of the lack of microstructure, which is

an integral part of porous media, tile analogy between Hele-Shaw and porous media displacement

is also tenuous. This deficiency can be partially remedied by studies in glass micromodels, which

allow for effects of pore structure to be iuvestigated in great detail. Such an investigation ,,,,'iii be

reported in a future communication.

This chapter is organized as follows: First, a brief description of the experimental procedure

is presented. Results of visualization experiments are subseaquently discussed. Two dift'erent

geometries are analvzed, one horizontal and another vertical, in order to isolate gravity effects.
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3.2 EXPERIMENTAL

The Hele-Shaw cell used for steam displacement was constructed from pyrex glass. The cell was of

dimensions 24.5in. x 12in. x.035in, and consisted of two glass plates of 1/2" thickness. Three types

of oil were used, a synthetic oil (Dutrex 739), taken as a representative of heavy oil. a mineral

oil, taken as a representative of light oil, and a Long Beach crude oil. Tile mineral oil used was

Newtonian, with a room temperature viscosity of 189 cp, while both the Long Beach crude oil and

the synthetic oil exhibited non-Newtonian behavior with a room temperature shear viscosity of

1.35 x 104cp and 10Scp, respectively. The shear viscosity for Dutrex 739 was significantly reduced

by an increase in temperature [36]. A similar sensitivity was expected, but it was not measured.

for the Long Beach crude. Non-Newtonian rheology, although complicating the interpretation oi

experiments, is certainly a prominent, although typically neglected, feature of heavy oils.

Variable water injection rates and temperatures were used, typically in the range 0.1-5 ce/rain.

Injection temperatures fluctuated to within a few °F around a mean value of 250 °F. In most runs,

the injected steam was superheated. The Hele-Shaw cell was not insulated or otherwise equipped

with heat loss control, which occured by heat conduction through the glass to the surroundings. The

lack of heat transfer control certainly presents important problems tha; may affect the quantitative,

although not the qualitative, analysis of our results. A separate, but equally important, problem

regards the low injection pressure typically used (in order to prevent fracturing of the glass). We

are currently experimenting with ways to resolve both these problems. More than 30 runs were

conducted. Most of the experiments were run with the cells in the horizontal position. Effects of

gravity were investigated by tilting the cell at various angeles and also by carrying injection in the

configuration of a planar vertical cross-section. A schematic of the experimental set up is shown in

Figure 11.

3.3 RESULTS AND DISCUSSION

We shall discuss in the following two sets of experimental results pertaining to: (i) Displacement

in horizontal lIele-Shaw cells and (ii) Effects of gravity.
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Figure 11" Schematic of the experime]:tal apparatus

3.4 DISPLACEMENT IN HORIZONTAL HELE-SHAW CELLS

We consider ms base case the displacement of Dutrex 739 by steam at the rate of 3 cc/min and

an injection temperature of 230 °F. In the subsequent pictures, taken from a still videotape,

displacement is from left to right. One injection and one production ports were used. In the

colored pictures, red is the color of the original oil, and brigb_ white is steam. Condensed water

typically flows between residual yellow oil films attached to the two glass plates and left behind

after water displacement.

Figure 12 shows the initial part of the displacement. Due to the rapid heat losses and the contact

with the initially' cold oil, steam is shown to condense rapidly. Thus, the original displacement of

oil is by condensed water only. Because of the unfavorable mobility contrast, this displacement

is unstable [145] and produces viscous fingers in a manner very similar to the case of isothermal

displacement, although the overall pattern is slightly different. Nonetheless, repeated tip splitting

was observed, as is common with highly unstable displacement [58]. We point out that the pattern

laid by the advancing condensed water is of crucial importance, because it dictates the paths to

be followed by til(, iIljo('t,,(t stoarn. After a certaill [.)(,rio(t ()f i_lj(,('tir)rl, ;, rath(,r irro_iuiar steaI_l
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Figure 12: Initial stage of displacement

zone is established near the injection port (Figure 13). Vapor and liquid phases can be visually

separated. Upon displacement of oil, liquid water is covered on both sides by yellow, residual

oil films which coat tile glass plates. Upon contact with vapor, these films rapidly diminish in

thickness and eventually disappear, perhaps as a rest:lt of a steam distillation mechanism. A close,

up of the stf:am zone is shown in Figure 14. One can distinguish traces of what appear to be light

oil components. Even after the glass plates are clean, vapor and liquid can be visually separated

by the meniscus, the motion of which can be clearly followed.

Most interesting are the shape and properties of the steam front. V_re recall ttLat in a typical

immiscible displacement in a t-Iele-Shaw cell, interfaces advance smoothly, provided that tl,e plates

are smooth. This was indeed the case for the displacement of oil by tho advancing cond_,P, sed water

(Figure 15). The thin films of oil left behind are predicted from Bretherton's theory for displacenient

[49], which postulates that their thickness increase with an increas in the capillary numbor N_,(--

qp/_). The dynamics of vapor-liq,lid interfaces are quite different, howover. Typically, ,wo kilids

(_t"water vapor-liquid int¢,rfaces wero observed, a st¢_an,-,)il and a st,an,-wate_r il,terfaco ( l:i_uI', 15).

The steam-oil froi,t was almost statie,nary a,id _novod vel'v slc,wlv (if al all). I)iscr_,,noc*od and

lrapped steam bubl, les w,:r_, fr¢,(t,l,'I,tlv observod, t_v conlrast, the stoaI_l-walor il_l_,raco wa:_ iI_ a
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Figure 13: A typical steam displacement snapshot

Figure 14" Close-up of st,,am front
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Figure 15: Snapshot after water breakthrough

state of perpetua] fluctuation, which eventually resulted into a net but slow advancement. This

was explained as follows:

The advancement of the steam front led to a rapid condensation of a sizeable part of the steam

zone, as a result of heat losses. Shortly therafter, this was followed by a rapid burst of vapor-

influx, which essentially' restored to vapor occupation the previously condensed part. This cycle of

advancement-vapor condensation-vapor replacement was repeated continuously and appeared to be

the general mechanism for the growth of the steam zone. In no instance did we observe a smooth

frontal displacement of the typical water-oil intersace. Also, iii contrast to what typically assumed,

steanl fronts were neither smooth nor "fiat", but they had a finger-like appearence, as they followed

the flow l)atl_s of the condensed water. This complex process is of course controlled by heat transfer,

vicosity reduction, in.jection rates and pressure, the end result being quite different than ordinary

lI,:,le-Shaw displacements. Indeed, it is possible that condensation and vapor growl h phenomena iii

tlq_, above cycles are rapid enough for in,,rtia effects not to be negligible. This complex mechanism

is curr,'ntly under iilvestigation.

\Vat_,r breakthrougtt ()(:curs when the faslost alilOllg the colnI)eting fillgel's reaches llle prodll(:-

l i(:,zl(,_ld. Inlt)_)rtanl observalions (luring !his period w(,re tlle following: St_mrn fiowr, d mostly aloilg_
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Figure 16: Evidence of emulsification of oil

the paths connected to tile production weil. \¥a.ter linkers connected to the steam zone that did n_t

t_reaktllrough, occasionally became disconnected from the steam zone due to cond(,nsalion evollt, s.

1.'low of stealn was not snmoth but involved the condensation -advancement cycle, l)uring t.his

process, substantial emulsificalion of tlm oil also occured (Figure 16). After br¢,aktllroug;h, a larg_,

fraction of the oil produced was ixl l,he form of water enlulsion. We SUSlmCt. 1]lat, mulllsilical.ion

was ,',nhanced by the followillg ratl,er unusual rlteological rt,sponse of l),ltrex. ,Soon afl¢,r w_-tl,or

i_reakthIOug;h, lll_, ¢'ollnocted fiiiger started to continuously lllill, until it _,w,ntually fra.g_l_ent._,d at

one, or s_,v_,ral poinls a11d lost <,onllectiolt to t.tz_' pr_(lllcinff, porl (l"ig;llr_' 17). A dill_,r_,lll fillg;r,r

111_I1 sl;tl'lt'd gl't)Willg followi1_g a _lsl_al ¢lisl)lac¢'_ent l_roc¢'ss, unlil I)reakll_r_,_g;t_ ¢_f l. ll;ll I_al[I was

r<_ut(' u_lil disco_I,('ctioI_ a_d so on. 'l'ltes_' [)hf'IIt)lll('lla al'O I1()1. (]11_' 1,()S|.O_,tlll il_,i_'('li()l_, t)_ll. 1,[1_'\'

are attril)uted to tl_¢' particular oil. as riley were _lso obs(,rv('d <lurin_ an or(li_ar.v wat_,rtl¢_<l.

iX possible exl_lanation f_r finis b_,havior can b_, provided ii" w_, ass_' l.l_al l)_llr(,x 73.9 is vis-

c¢_¢,laslic, li(,foI'¢' wat¢!r I)r_,akll_rough, tl_¢, fluid l)rVssur_ ' is r¢,la!iw,ly l_igl_ ¢lu_, I._ t l_¢, t_i,_l_vis¢:¢)sily.

1 po_ wat(,r t_r_,akt h i'o_gl_, t 1_('oil r(_sponds to t l_e r¢,s!_ll i _g pr¢,ssu r,' ¢t¢,cr_as¢, I_.v_'xl_a_<ti_g t'_)11¢)wiI_
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Figure 17: Finger thinning after breakthrough

water finger until total disconnection occurs. The process is then repeated. This rough qualitative

argument explains the gross behavior observed, although for a more convincing interpretation, a

model is necessary.

A comparison between steam and cold water displacement is shown in Figure 18 for the same

mass injection rates. Typical finger patterns before breakthrough show the characteristic tip-

splitting. Upon breakthrough, the same response previously described sets irL. Significant dif-

ferences with the steam injection runs involved the presence of residual oil films and the lack of

emulsification in the case of water injection. Effects of injection rate were also considered, by

carrying a steam injection run at the lower rate of 1 cc/min. As anticipated, the decrease in the

rate results into a smaller steam zone area, which did not propagate significantly far into the cell.

Otherwise, phenomena qualitatively similar to the previous were observed.

For comparison, the results of steam displacement of light (mineral) oil at tile same rate: of :_

cc/min and a temperature of 230°F are shown irt Figure 19. Several significant differencos wit}_ the

heavv oil were noted: The degree of tip splittiilg was considerably less, as anticipatr, d (t,_, to th_;

lesser viscosity contrast in the light oil case. No significant residual oil films w,_re dot_,et_.,d in lh,,

displace_Inent by either waler liquid or by st_:atil. This observation was v_,rified by the cold wat,I
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m
Figure 18: Typical fingering pattern for oil displacement by water

Figure 19: Snapshot of mineral oil displacement by steam
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injection experiments also. In (:ontrast to the heavy oil case, th(' steam front (lid not necessarily

follow lhc path of tile condensed water fingers. Instead, the steam zone expanded almost uniformly.

This behavior can be attributed to tile higher mobility of the light oil, and it is consistent with

currently available theories. The behavior of the mineral oil was Newtonian throughout the process.

Upon breakthrough, the water finger width remained essentially constant and provided tlm nlain

flow path for the injected steam.

Steam displacement of the Long Beach crude oil resulted into a behavior qualitatively similar to

the displacement of Dutrex 739. Severe fingering by condensed water (Figure 20), residual oil films

after waterflood (Figure 21), steam front oscillation, propagation of steam zone along the condensed

water path (Figure 21) and finger thining after breakthrough were all observed. It appeared that

the crude oil shared with Dutrex 739 a similar non-Newtonian rheology. A significant difference

was noted, however, regarding water vapor-oil interaction. The almost instantaneous removal of

the residual oil film upon steam contact, observed during displacement of Dutrex 739, did not

occur in the case of crude oil. Instead, a process resembling extraction of light ends (perhaps

steam distillation) set in at the vapor-oil interface (Figure 22). The extracted components did

not partition in the water phase, but were instead convected Mong with the fllowing vapor. The

extraction process, continued for the duration of the experiments and appeared to be a primary

mechanism for the recovery of the crude oil.

3.4.1 Gravity Effects

The next set of experiments investigated effects of gravity following two different geometricM con-

figurations, one with the ttele-Shaw cell tilted at a small angle with respect to horizontal, and

another with the cell rotated parallel to the gravity vector (vertical cross-section).

In the first contiguration we probed effects of formation dip. Steam was injected from the

bottom (updip) or from the top (downdip). For updip injection, steam displacement occured

along a rather narrow strip, the density difference acting to destabilize the front. The oscillation

phenomena of the front were well pronounced and steam zone breakthrough occured in a short

time (Figure 23). In direct contrast, a ttat and stable steam fi'ont was observed in the case of

downdip injection (from top). This front advanced very slowly, due to the heat loss, lnost of the

displacement occuring by _he cozldensed water (Figure 24). Both these observations are generally
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Fi¢ure 20" Stearin zone during displacement bv steam of a Long Beach crude

Fig_lre '2[: A :_..ifferent snapshot of steam zone displacement of Long Beach crud,._ oil
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Figure 22: Close-up of steam zone during steam displacement

consistent with conventional theories oil the effect of gr3.vity on displacement fronts.

In the second configuration we probed effects of gravity ,.,verride, for both Dutrex 739 and Long

Beach crude oil steamfloods. The most significant difference with the prevrious involved the in-

terplay between gravity, condensation and heat transfer. Typically, the injected steam migrated

upwards to form a rather stationary steam zone. Condensed water flowed downwards in the di-

rection of a water finger at the bottom of the steam zone, which developed at the onset of the

experiment and displaced oil towards the production well (Figure 25). Most of the oil displacement

occured as a result of this mechanism, Mti_ough the extraction process was also very much evident

(Figure 26). After water finger breakthough, steam flow ensued along the finger path, much like

in the case of horizontal displacement (Figure 27). _ks in the previous case, the non-Newtoniar,

response of the heavy oils eventuMly resulted into finger thinning• New, however, when the con-

nection to th_ production part is lost, the steam zone at the top starts growing. Condensed water

creates a finger originating frorJt the upper part of the steam zone. r0sultirtg into a displacerne,ut

....... :C_, '),_) After this finger rear:bcsalong the top. in arnechar_ism similar to the horizontalca;o (Ft .... re_..

breakthrough, the cycle sets on again and a different branch rnav be selected. The procos.s cc_nt.ir,._i_s

' _ ,-:orved tr_a rho :-::cam zc,n, vo[,_ruo depends si_r_ifi,ar, t,',:.rtr.ii thr _i_spfacemont is cor,._pwte_. \_,'_ or., .....
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Figure 23" Updip steam injection

Figl:re24 Downdipsteam injoction
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Figure 25: Steam displacement in a vertical cross-section

on whether it is connected to a finger that has already reached breakthrough or not. In the former

case. due to the prevailing lower pressure, steam zone volume is much larger than when the water

finger is not at breakthrough conditions.

3.5 CONCLUSIONS

Tile preliminary experiments reported above have probed a part of the complicated process of

steam displacement. One of the most interesting results, common to all runs, was the unsteady,

almost flickering state of the steam front, and the mode of advancement by the cycle penetration-

condensation-restoration. This is certainly to be affected by injection rate, heat transfer and flow

mobilities. Our current work is aimed at tile understanding of this process.

For the low pressure, relatively high rate conditions of our experiments, injected steam was

found to follow the path of the condensed water. The latter set the general displacement pattern.

which in the case of heavv oil was highly fingered, lt should be evident, that this res,Jlt is a

consequence of the particular combination of fluid flow and heat transfer in our experime,_ts, thus

aa; extrapolation must be done with cautio:_. \Vo id_?ntifi_d a rather unusual non-Newt_nian

be,havior for Dutrox 7:_9. a ch-micat taker: to repr<!sent heavv oil.and for l.ong Beach crll(te oil.



Figure 26" Close-up of steam zone during displacement in a vertical cross-section

Figure 27" Snapshot after water breakthroagh
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Figure 28: Steam gravity override

Regardless of tile particular aspects of the response observed, one may reason_.b]y conclude that

the non-Newtonian rheology of many heavy oils is likely to lead to similarly complex behavior. This

subject is further to be explored.

We have observed direct evidence of a steam extraction of oil components from a crude oil, a

process that has direct relevance to the oil recovery. Effects of gravity were also examined. While

tile mode of injection (updip or downdip) was found consistent with currently available theories on

frontal displacement, the detailed visualization of frontal motion revealed additional aspects. In

particular, tile growth of the steam zone in a vertical cross-section displacement was found to be

affected significantly from the condensation and flow phenomena ahead of it. Much of this behavior

is novel and requires further investigation.
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4 EFFECTS OF HETEROGENEITY ON VAPOR-LIQUID COUNTERFLOW IN POROUS

MEDIA

A. K. Stubos, C. Satik and Y. C. Yortsos

4.1 INTRODUCTION

Countercurrent vapor-liquid flows in porous media have been the subject of many recent studies due

to their relevance to geothermal processes, boiling, thermal methods for oil recovery and nuclear

waste disposal [l'26],[12rl,[la6],[106],[as].of particular interest are steady state heat pipes driven

by gravity. The theoretical anMysis shows that when the system is homogeneous, an infinitely long

two-phase zone of nearly constant saturation develops if the heating rate is low enough (below a

critical value). Furthermore, under the same operating conditions, two such states are predicted, one

coresponding to low liquid saturation (vapor-dominated, VD) and one corresponding to high liquid

saturation (liquid-dominated, LD). In a recent note [128], using the detailed analysis described in a

previous paper [118], we have proposed that the selection of the particular solution only depends on

the past history of the system. For instance, in boiling apl)lications which involve bottom heating,

it is the LD 1)ranch that is followed. While, in the case of condensation of a superheated vapor (top

cooling), it is the VD branch that is selected. In either of the two cases, capillarity is necessary to

connect the constant saturation profiles to the subcooled or dry regions, respectively.

In practice, of course, all systems are finite and heterogeneous. The two-phase zone must

terminate at a finite location, thus, the "infinite" extent predictions of the heat pipe formalisn_

cannot hold indefinitely. Termination of the two-phase zone must be obtained by smoothly merging

the two-phase region with a subcooled liquid or a dry region, in the LD or VI) cases_ respectively

(otherwise, non-zero vapor and liquid fluxes would exist at the impermeable boundary of the

medium [128]). Although the various studies conveniently avoid further elaboration on this iss_l,,,

the implicit assumption is that this can be accomplished with the use of heterogeneities. Analogous

problems arise in the gravitational stability of counterflow val)or-liquid systems, when a vapor-ricl_

region underlies a subcooled liquid layer. Even if we accept the suitability of the various base states

used in the analysis [120],[107] (the validity of which is questior_abl(:), the present consensus is tidal

unconditional stability is possible only if a heterogeneity is present somewhere in rho t_wo-l)hase

region.
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Ileal pipe instability, but in a much differenl context, and more precisely as it regards the

sensitivity of steady, lD profiles to tile boundary conditions, was considered iii a recent study [91].

lt was suggested that, under certain conditions, a VD solution is unconditionally "unstable" and

musl revert to a "stable" LD configuration, or ",'ice versa, if the boundary conditions are reversed.

While not immediately apparent, this problem is really related to heterogeneity, as shown below.

"VVerecall that boundary end effects in immiscible displacement can be considered as special cases

of heterogeneity, when the change in permeability is abrupt and very large [147].

Effects of heterogeneity on vapor-liquid concurrent flow were studied in [100]. These authors

generalized previous works on the steady state, two-phase flow of non-condensing fluids [147]. With

the exception of a rather preliminary analysis [27], however, heterogeneity effects on countercurrent

vapor-liquid flows have not been addressed in much detail and they are currently poorly under-

stood. Cases in point are the previously mentioned questions on the termination of the theoretically

"infinite" two-phase zone, on the gravitational instability and on the sensitivity to boundary con-

ditions. This chapter alms at resolving some of these issues. We theoreticaJly investigate effects

of heterogeneity under various configurations. We find that permeability (capilla.-y) heterogeneity

acts in reality as a body force (e.g. gravity), with the important additional property that it is also

spatially varying. Iteterogeneity may thus enhance or counterbalance gravity effects, depending on

magnitude, form and direction of change.

The chapter is organized as follows: We first study the simpler, but quite useful, horizontal

case, which allows for an exact solution to be developed. Then, we apply the results obtained to

interpret effects of gravity when the heat flux is below critical. Next, we address problems involving

both heterogeneity and gravity at conditions of slow and fast permeability variation. In all these

cases, heat conduction is not significant, and it is not considered. Throughout the chapter, the

formalism of [118] is followed. The description is thus traditional, based on continuum assumptions,

and employs the concepts of equilibrium, saturation-dependent only, relative permeability and

capillary pressure functions. _,Vhether this formalism is adequate for rapidly varying permeabilities,

is not questioned in tltis chapter, the conclusions of which are therefore subject to this important

hypothesis. II is co_ceivable that, at least in the case of sharp heterogeneities, some of (he results

mar need furtl_er support, e.g. fronl more detailed pore network-level analysis.
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4.2 FORMULATION

We proceed with the assumt)tion that the n_ain heterogeneous variable is permeability [147],[100].

Contrary to 2D flows, where viscous effects dominate, an important parameter wlfich is affected irl

the present case of li) counterflow is capillary pressure. This is a result of the Leverett J-function

representation"

Pc = crJ( S)
,/-%

The function J (as well as the relative permeabilities) may also be taken as weakly varying, although

it is the dimensional v/k-dependence that basically controls the capillary variation (see also [147]

for a more detailed discussion).

The importance of conduction is expressed through the following dimensionless group [118]'

h'Rm = kL_M,_,Pop,:

For large values of the latter, conduction is negligible. This is the case typically in heat pipes,

where KRm is large (equal to 5184 for the conditions in [136]). Conduction must be retained in

systems with low k or very high A values, although, such cases may be of limited practical interest

(although see [128]). When the flow configuration is different, conduction may be important, e.g.

in the geothermal systems of the type disc_lssed by Schubert ft, .qtraus [119], where its consideration

is necessary in order to sustain counterltow. Regardless of the application, however, l t_o relevance

of conduction to a study of heterogeneity should be small. "Indeed, for the former to have some

impact requires substantially large variations i_ t l_e vapor prossure[12.q].[ll8]. Such are not likely 1¢,

occur if the regions of continuous permeability increase (or decrease) are not very long. Therefore,

capillarity is likely to predonlinate over conduction, the etl'ects of which we shall neglect henceforth.

In the absence of Ileal: conduction, we can formulate the problem in a straightforward fashion,

because saturation and temperature are decoupled from each other and the solution is obtained

bv simple means. Following [118], a straiglllforward Inanipulation of nlass, rnomentunl and energy

balances yields the simple equation:

, d5' dr ( k,.e + _k_,, ) r2

tlere r = V:_/k" is the heterogeneity variable wllich is spatially varying, k" denotes a constant

reference t_oI'moability and superscript ' ill(licalos d_'rivativ(,s witt: r_,spect to S. The n(_talioli is
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Figure 29" Schematic of a special heterogeneity profile" (a) Permeability increase; (b) Permeability

decrease

identical to [118] except for r, which here does not denote temperature. The coordinate ( increases

in the direction from the liquid to the vapor, such that the liquid velocity is positive, while the

dimensionless heat flux w = q#v/k'L_,gApp_, is normalized with a reference permeability'. In this

notation, therefore, different permeability' regions have the same value of w, but not tile same

critical'values (see also below). Equation (39) must be generally solved numerically. Prelimir, ary

insight can be obtained by an analytical solution, wtlich is possible for a speci'M case in horizontal

counterflow.

A. Horizontal Counterflow

Iri a horizontal system (0 = 0) counterflow is driven by capillarity only [38]. Tl_,2n (39) yi_..lds:

, d3' (lcre +/3k-,._.) dr

(_oI_si(t_,r, witl_(,,ll los_. _ > 0. V,.ry Ilsoful r_'s,llts are ob_ailir!d ii_ tlL_,sp_cial (:as,. v.l_-i_ r i.

f_i,.,owi_:,, lirl,ar (Vi_u;, 29)



1 ; _<0

r= ag_+l ; O<{<d (,li)

r+ ; d<_ ¢

where r+ - ad + 1. tiere, the spatial extent of tile heterogeneity is denoted by d > O, w)tile a

indicates tile direction of change (a > 0 for an increase, a < 0 for a decrease of r in the _ directio)l).

Outside this region, _¢< 0 or d < _¢,the system is honlogeneous and tile solution is a continuously

decreasing saturation profile, 5'(_¢), of the general form:

s k_tk,.J'dS = w_ or + con_t.
( + ) 77+

Inside the heterogeneity, 0 < _¢< d, the saturation satisfies:

k_tk_vJ'dS d_
= (42)

w(k_e + _k_) + k_ek_a J a_ + 1

This can be readily integrated. Because of the qualitatively different responses, two different cases

are separately considered:

1. a > 0 (Figure 29a)

flere, the permeability is increasing, and from (42) we obtain the straightforward result:

Is s k_ekr_J'dS = ll,(a_ + 1) (,13)o w(k,.e +/3k,.,_) + k_ek,.,,a J a

where S'o is the saturation at 0 (presently unknown). Because of a > 0, the saturation decreases

steadily also within the region of heterogeneity (Figure 30). The downstream value .5'1satisfies:

& k,-tk,.vJ'dS 1
= -lhr+ (44)

o w(k_t + _k_) + k,.ek,.va J a

provided that a solution to the latter exists. This requires"

jfo1 k_ek_,_(-J')dS > lint+ (4.5)w( k_e +/3k_) + krek_a J - a

Otherwise, single-phase flow conditions develop inside the heterogeneity region. The l)arti('ular

saturation profile depends on the conditions imposed away from the heterogeneity. If the location

of the subcooled liquid boundary on tho left is known, th(,n integration occurs from lef! to rigl_t.

;_l,d 5'o,3'1 etc. can be determined sequentially.. The i("v(.rs,o ai)plies if ii. is rh(, location of the dry

region on the right which is known.

5O
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Figure 30: Schematic of saturation response for the profile of Figure 29a

Of special interest is the case of a sharp discontinuity (a >> 1). Then, (44) yields:

J(S,) r+ = (48)
J(So)

which is nothing else but the condition of constant capillary pressure, implying a saturation jump

across the discontinuity. This is the static (no flow) condition, which differs from the case a < 0,

as shown below, as well as from the case of concurrent flow [147]. In the latter, a build-up of the

wetting phase saturation is necessary before a high permeability region is entered.

2. a < 0 (Figure 29b)

\Vhile the previous are straightforward, non-trivial effects arise irl the case of a permeability

decrease. When a < 0, the denominator in (43) ma)' vanish, if ez is small enough. For this to occur,

the following equation must admit a real solution:

k_tk_,
w = -a J (47)

"i'},,_RH,S" of (47) is schematically plotted in Figure 31. We note that there exists acritical value,

_"cr.J/ -- (--a } FflaX " " (4Ni
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Figure 31" The capillary heterogeneity function .2(S)
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above which a real solution to (47) does not exist. In dimensional notation we obtain:

(qh cx #,, dx ,} (4!))

Thus, sharper changes in permeability result into larger critical flux values. The system responae

depends on the relative value of w: (i) For w > _oc,,H, equation (47) has no solution. Then, the effect

of heterogeneity is identical to the previous (a > 0), the solution being described by (42), (43) and

(44), as schematically plotted in Figure 30. (ii) For w < wc_,H, on the other hand, equation (47) has

two roots, denoted by SvH and SLH (0 <_ SVH "( S rjH < 1), in very close analogy with the vapor-

dominated and liquid-dominated regimes, respectively, of gravity-driven heat pipes. The similarity

with the latter is very interesting. Indeed, as in heat pipes, the saturation integral diverges at tile

two saturations, thus nearly flat saturation profiles (either VD or LD) develop to span tile region

of heterogeneity. Here, however, it is capillary heterogeneity, with the permeability decreasing in

the direction of liquid flow, and not gravity, that sustains the constant saturatio.I profiles.

In retrospect, the analogy between capillary heterogeneity and gravity is not unexpected. In

capillary-controlled displacements in pore networks, effects of either gravity or pore size hetero-

geneity can both be successfully described by the gradient percolation approach of [117]. In terms

of continuum models, the analogy between capillary heterogeneity and gravity was noted in the

concurrent flow study of [147]. In the latter case, however, the curve corresponding to co(S) (which

represented an augmented fractional flow curve) admits only one root, therefore there was stable

attraction to a single root only. In [147], steady state saturation profiles were obtained by back-

wards integration starting from the outlet end (opposite to the flow direction), since the solution

is ill-posed and rapidly diverges if integration started from the opposite end. In the present case

of countercurrent flow, both sides can be used as starting points for the integration. As shown

below, howe,',_r, which end is taken is decisive on the selection of the particular solution. This was

implicitly contained also in [91].

Consider, tirst, integration from the vapor side (Figure 32). Thi_" requires that superheated

vapor exists somewhere on the right so that we may start integrating from the location S = 0 in the

negative ( direction. The saturation, $1, reached when the heterogeneity is entered,/;" = d, dictal_es

how the solution behaw.,s inside the heterogeneity: - If $1 < £'VH, then d,9/d_ < 0, and the solution

is rapidly attracted to tile asymptotic value ,5"vt! (compare wittR (43)) as shown in I:'igure 32a. This

is a vapor-donlinated regime as in gravity-driven heat l)ipes. Oulside the heterogeneily,(< 0, the
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integrationisstrMghtforward:

/ s krek'r_.J' d5 (50)

This solution applies until conditions of subcooled liquid are reached (S - 1). - If SvH < $1 < SLH,

then ctS/d_ > 0. and the solution is a_gain asymptotic to SVH. except that the saturation is now

decreasing in the short region before the asymptote is reached (Figure 32b). - Finally, if SLH < $1,

then dS/cl_ < 0. but the sc',ution cannot be now attracted to a flat profile. The tatter does not

devetop, instead the _aturation is described with the previous equations (43)-(451. much li[e the

case A. 1 (Figure 32c ).

Consider. next, integration from the liquid side. We assume that subcooled liquid exists some-

where on the left. such that we can proceed integrating from the location S = 1 in the positive

d_rectiort. If we denote by So the saturation at _ = 0, the following cptions are possible: - If

SLH < So, then ciS/d_ < 0, and the solution is attracted to the liquid-dominated regime with value

StH (Figure 33a). After exiting the b.eter6geneity, further integration proceeds normally, much like

in (50) until superhea.ted vapor conditions are eventually reached (S - 0). - If SvH < So < SLH,

then dS/d_ > 0. and the solution is attracted to the same liquid-dominated asymptote, except that

now the saturation increases in the short region before this asymptote is reached (Figure 33b). -

Finally. if J,: < S_H. then dS/d_ < 0. but the solution is not attracted to a flat profile. Instead. it

decreases relat_veiy fast. much like in the homogeneous case (Figure 33c).

Thus. depending on the direction of integration, two different solutions (a VD and an LD) are

found to satisfy the system. This feature is particular to vapor-liquid steady state counterflow.

We contend that the selection of the particular paths f for example, whether it is the profiles in

Fi,fure 32 or those in Figure 331_is strictly determined from the past history of the system, which

therefore attributes a hysteresis effect. Mbeit on a large scale [128]. The VD solutions of Figure 32

correspond to steady states reached by a system which is initially vapor-occupied and subsequently

cooled from the left. while superheated conditions are maintained somewhere on the right. This

is a condensation process (akin to imbibition). The LD solutions of Figure 33. on the other hand,

correspond to steady states reached by" an initially liquid-occupied system which is subsequently

}:teated from the right, while subcooled conditions are maintained somewhere on the !eft. This

corresponds to a boiling process (akin to drainage). Thus, the particular history imposed on the

system decisively ,tetermines rho fi[_.al stead,. state, i{vsteresis effects, but at the pore level, are

.',7,
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routine in typical displacement processes. For vapor-liquid counterflow, however, tile hysteresis

(evaporation - condensation) also involves large scale aspects (indeed. in the prese:_t work k'r,. k',.,_

and J were taken invariant to direction).

Before we proceed further, it is worthwhile to consider the limit of a large discontin_titv (a < 0

and !ai >> 1). It is readily confirmed that in this case the two roots, oct. and St,, approach the

respective limits Sv _ 0 and SL -- l. Because of the latter, and in view of the previous analysis.

singularities are not encountered, thus one may formMlv take rho limit of (43) at largo !a[. Th,,

result is the previous condition of capillary pressure continuity (46), provided that the predicted

- saturation value does not lie close to either of the two extremes, 0 or 1. Otherwise. the term

,)(k_e +/3k,_,)/k,ek_v can become comparable to -ad and the saturation jumps do not correspond

to capillary pressure continuity alone (see also below). This behavior is different from both the

a > 0 and the concurrent flow cases.

We close by noting that the above analysis also applies when the heterogeneity is slowly varying.

As shown below', the so!ution is still a VD or LD branch, now of variable saturations. When the r

profiles are arbitrary, however, a numerical solution is necessary, as discussed later.

B. Vertical Counterflow

Tt,_ above pertained to counterflow in :he absence of gravltv. We consider, next, the case of

vertical counterflow (Figure 34). Here, two generic configurations are possible, heating from the

top (0 = _/'2. sinO > 0), and heating from the bottom (0 = 3_r/2, sinO < 0). Because it is more

commonly encountered, we address the bottom heating case first.

1. Bottom Heating

Under this condition, equation (39) yields:

,dS (k,._ +/3k,..) _ (r 2 _ Ja) (51)
r J --_ = ._ k_ek_,

where a(_) is the hete--'geneity gradient, a - dr/d_. In the homogeneous case (r - con.st., a =_0),

the RH,5' above vanishes for the two saturation values Sva and SLC that solve the equation:

r2k_ek_,
..' = (52)

provided titat ,." < _:_..,..<,..The critical value --'c,-.c;is coustant for a homogeneous system of a _iven

pormoat_ilitv(e.g, equal to 0.3063 fort = t.[136]). 1tie twosteadv statosofgravitv-drivenlt(_r_l¢,-

oZ,'r_,'o_lstreat pip,,s wor_:,investi_atod in [91]. where a theory of h_,at t,ipe ins_abililv was ,t,'ve[op,,d.
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We recall that an identical multiplicity was also encountered in heterogeneous, horizot, tal counter-

flow. Because of this similarity, we contend below that, in a strict sense, instability is not really

relevant and that tile selection mechanisms of the horizontal case are much more appropriate. The

analysis follows closely the arguments for the horizontal case, except that the medium is now ho-

mogeneous. As in [91], a crucial role is played by the boundary conditions imposed. However, both

here and in [128], these boundary conditions are related to the past history of the system.

( i) Homogcneo_ts Systems: Steady State Selection

When the integration proceeds from the bottom (the "vapor side") upwards, it is the VD branch

St'a which is selected, if the starting saturation Sa lies to the left of SLG, $1 < SLC, (Figure 35a).

This would be the case if superheated vapor e_sted somewhere below, as in the bottom curve of

Figure 3.5a (note also that because of (46), any desired saturation value is rmssible as a starting

point, see top curve of Figure 35a). In the interpretation of [128] this case cocld result from an

initially superheated system that partly condenses due to top cooling. If Sa > Src,, on the other

itand, a flat profile does not develop and the saturation rapidly converges to S - 1 (Figure 35b).

By contrast, when the integration proceeds from the top (the "liquid side") downwards, it is the

LD branch, SLC,, which is selected, if the starting saturation So lies to the right of SvG, So > Svc,

(Figure 35c). This is the case of subcooled liquid somewhere at the top, a typical application being

boiling [128]. If ,S'o < SvG, a flat profile does not develop, the saturation rapidly approaching the

dry regime, S = 0 (Figure 35d). We readily conclude that it is the past history of the system that

determines the steady state solution. Evidently, all such saturation profiles are intrinsically stable.

(ii) Sharp Discontinuity : Termination of an "Infinite" Two- Phase Zone

Next. we proceed with the discussion of effects of heterogeneity. For convenience, we consider

first the special case of an abrupt discontinuity (lal >> 1). This analysis is necessary to explain how

VD or LD saturation profiles can merge with subcooled liquid or superheated vapor, respectively.

thus how an "infinite" two-phase zone can terminate in practice.

In the case of large la], the contribution of aJ on the RHS of (51) overwhelms that of r 2. For

this to occur requires:

i_r/_ ) > r2 (531

and. in dimensional notation,

i.XV/-£'/Aa'l >> _p g /,'/ct =-,V B (54)
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where A'_ is the Bon(l number. Although the latter is ty'pically small, O(l()-_;), on(, rea(lily [in_l>

that enforcement of (54) requires large permeability variations over quite small distances. Sut,je(,! t()

rho following, this ca.se is likely to represent continuity of capillary pressure. Thus, helerogen_,ilv in

mu('ll stronger than gravity and controls the saturation profile much like the horizor_tal ('o_l.,ll(,t'fl¢)w

of section A.

Consider. first, integration from the bottom within a constant permeability region (where ,., <

._-,-.c;). Then, a VD regime is rapidly reached. In a homogeneous medium this regime is predicted

to continue indefinitely (although see [128] and [118]). Can this profile merge with another LD

regime or with a region of subcooled liquid? The answer is negative to the first part, but not to the

second. In either case, for a change in the saturation state, a region of low permeability /,'t must

exist somewhere at the top. Then, because a is positive and large, the response is much like in the

horizontal case (46) and capillary pressure continuity applies. If/_t is such that w remains below

critical in tt_e top (recall that "_,c is proportional to r 2 or k), the previous scenario (pertaining

to Figures 35a-35b) is in effect and the solution is either another VD region or a rapid approach to

subcooled liquid, depending on the particular conditions. On the other hand, if _ > "_¢,,a at, the

top, only a finite two-phase zone develops that rapidly ends by merging with a subcooled liquid

region.

If integration proceeds from the top (where w < w_,c;), an LD region is rapidly approached.

Again, for this flat profile to eventually change, and for a dry region to be eventually encountered,

the bottom must be at a higher permeability. Since for this case we also have a > 0, we can employ

the same reasoning as before to reach the conclusion that it is the scenario of Figures %c-35d t.l_at

is followed, namely there will be either an attraction to another LD solutio_ or zt rela.tively fast

approach to superheated (dry) conditions.

A somewhat different way of stating the above is that in order to terminate a steady state

vertical counterflow with 0 = 37r/2, it is necessary that the permeability increases sonlewhere in

the downwards direction. If a VD region exists at the bottom, subcooled liquid do_ninates the tOl).

AlJd, if an LD region lies at the top, superheated vapor must exist at. the bottom. Signiticantly, LI)

and VI) branches never merge with each other, regardless of the position or t'ornl of h(,l(,rogenoitv.

This contrasts solne of rh(, arguments of [91] in which an "unstable" VI) regim(, bocom(,s conn(,cted

to a "stablo" I,I) reginle, and vi(:(, versa. Furthermore, if the (,hailge of l)ormeabilitv is in t lz(,
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opposite direction (a < 0), capillary pressure continuity cannot bring a qualitatiw, change in the

saturation state. In this case, a VD regime would always remain vapor-dominated without reaching

dryout, while an LD regime would always remain liquid-dominated, without reaching subcooled

liquid conditions.

(iii) General Heterogeneity Effects

Consider, next, the more general case of heterogeneity, with normal varia.tions in r. Equa-

tion (51) suggests that heterogeneity enhances (makes more vapor-rich or liquid-rich) the respective

VD or LD regimes when a < 0, and acts to diminish them in the opposite case. For concrete re-

salts, a numerical solution is necessary. For convenience, we used r profiles that satisfy a correlated

fractional Brownian motion (fBm) with H = 0.8, which appears to be the natural heterogeneity in

many rocks [56]. Two cases were studied, a slow and a normal variation in heterogeneity, both in

the unit spatial interval [0,1]. By a simple rescaling of the equations it can be readily shown that

the first can be equivalently represented by a signal of the same variation as in the normM case

except at much higher levels of r.

Thi_ case of slow variation can also be analyzed asymptotically. We take r - r(_/g), where

g >> 1, and rescale the spatial variable using g as the characteristic length, _¢= g¢, to obtain:

For g >> 1, the solution of the above is the saturation S((') that makes the RHS vanish, thus repre-

senting a gravity driven process in a weakly heterogeneous medium. This is similar to homogeneous

heat pipes, except that, because r is now variable, there exists a continuum of curves similar to

Figure 31, each for a fixed r (or ('). Their intersection with the line of constant _odefines a contin-

uum of S(r) values, which when plotted in a S(_') diagram give the solution to the problem. As

before, there are two possible branches, a VD and an LD, to which the solution is always attracted

(much like the cases in [118] and [100]). Again, VD and LD sequences are followed closely without

the branches ever becoming intertwined. It follows, that given a direction of integration, there is a

direct one-to-one correspondence between the heterogeneity r and the saturation, S.

For a numerical example we used the profile of Figure 36a. Because here the combination 7-2 -aJ

is always positive, it is possible for the RHS of (51) to vanish for all r provided that ¢o is low enough

(_o < VOc_.,_i,_,where Wet.rain must be obtained numerically). According to (55), the solution must

follow closely the variation of r _, resulting into either an LD or a VI) branch, del)ending; on the
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Figure 37: Capillary pressure gradient corresponding to Figure 36b

direction of integration. Numerical results shown in Figures 36b and 36c for the respective regimes

verify the theoretical predictions. After a short interval, tile profiles are attracted to this asymptotic

state and, with a small spati',d delay of about 0.05. mimic the variation of r 2. Tile VI) solution

shows a weaker sensitivity due to the relatively narrower range of saturation values allowed. As

predicted theoretically, saturations in the LD regime increase or decrease as r increases or decrea.ses,

respectively, while tile saturations in the VI) regime follow opposite trends. Capillary effects are

significant only near the initial boundary. The variation of the capillary pressure, corresponding to

the LD state, provides a clear demonstration (Figure 37). l','xcept near tl_e iIlitial boundary, wltere

it is quite large, the capillary pressure gradient is snlall througl_out, suggesting a gravity drive,

mechanism.
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\\'hell ttle tLeat tlux acquires larger values (_ > _.,'cr,,,,,,,), tllere are spalia] locati_Jlls wild'r,'

ll_,, local cri*ical values nlay be exceeded (_' > _o<._(_)). 'l'll_,n. litr, salurali<,IL df,t_arls frc, Iii ll_,.

corr_,sw_lldiltg reRiIlles and becomes rapidly attracted to a silltz,le pltase region (drvoul il_ lh_, cas_,

of an I.I) slate, as ill Figure '38a, or subcooled liquid in tlt_, case of a V1) slate, as ilt I"ig;ure :_,*t_).

()n the opposite, side, for very low values of _.,, as is typical in geoth_,rlnal r,:_..-,ervoirs, ali saturalioz_

values in ttle VI) regime are very low, hence the profile is very n_,arly fiat, (l.'igur_, :_.q), d_,spil,, lit<,

va riatioll in t_erm_,al_ilitv, lt is clear that the existence of altat l_rofil_ , should no! be take'li to i_nply

a hOll/()_(_llOOllS lllediUlll.

The second ,.:ase investigated corresponds to a normal variation of r (Figure 40a). lfere, th_,

combination r a - ag changes sign often within the interval. The solution displays hysteresis again,

depending on the direction of integration. However, now capillary efl'ects are quite significant and

the one-to-one correspondence with r(¢') is not obeyed. In fact, for relatively steep increases in

r, capillary pressure continuity may' be in effect, as discussed above, resulting in lower saturation

v'alues. For an I.D state this is contrary' to the gravity effect noted in the previous. Consider, for

instance, integration fi'om the left, where an LD regime is obtained provided that _o is low enougl_

(Figure 40b). As long as the r variations are not too great, the saturation values are relatively

constant (early part of Figure 40b). The saturation variation is mild even thougl_ regions of relative,

larg_, incr_,as_, i_ r are traversed. This behavior is similar to the horizontal counterflow for a negaliw,

and larg_,. At the point where a sharp increase is encountered and a becomes large (around th_,

mid-pelter of l.'igure 40a), capillarity dominates, capillary pressure continuity is enforced and tl_,

saturation falls significantly. If the drop is not too high, a lower saturation state, still of tlm VI)

t vt_, will I), followed in the remaining part.

l'nd,,r the sarnr' conditions in _o, a VI) regime arises, wl_en the integralion is from th_' rigid;

(Figure .10c). "I'l_e first part of the profile (for _ roughly between 0.3 and 1) corresponds 1o t_t -

erogeneity with generally positive slope (a > 0), thus capillary pressure co_tii_uity applies, th_

saturation rising as lower permeabilities are encountered. The second part of the hetorogen,,ity,

however, i_,,'olv_,s a rather steep negative slc,De (between 0.15 and 0.4). As i)oinl_d out pr_,viousl,,'.

l t_(, sal _rali<,_ respons,, _nay not be given by capillary pressure conti_uity alo_,, l_de_,d, aft0r tl_(,

saturation falls rapidly (for { between 0.3 and 0..1), further larg_ ct_aI_g;es irl l)_,rn_eabililv do _I

i_,.t_lc_, signitican_ saturalio_ response. Tt_is inle.rpretation is support_,d fro_ _t_ variali_ of ttl_.
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Figure 41" Capillary pressure corresponding to Figure 40a

capillary pressure (Figure 41), wher,e the regime of capillary pressure continuity at the right half of

rh,' i t,_ervai is o_vi,tent. When the heat flux increase:, a transition to single phase regions i: possibie,

the LD or VD states reaching drvout (Figure 42a) or subcooled [iquid (Figure 42b), respectivel:,,

in a short re_iou, This first occurs near the tocation with the h.>,';est positive slope irt r (mid-point

of the _ interval). We emphasize again that no transition from an LD to a VD state or vice versa

w'_ noted, while the two regimes maintain their identity _n regioas of r decreases, no matter !tow

sharp t,i_ iatter ar,:.

'__.7 .Lfe'_..',._'r,g

_,V,,clos,' by ; " _ ' ' '_._r,_,t_v_,_,'_iT_<t}lar si.rn_ia:r_sults are c_btaJ_l__df,,r _h_"oas,' _"_,,;_}t,.";t*itt_'_._Ir,.'_=
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Now, equation (.39) yields:
, d..q" ;:", + J_',", 2

.r J -- =,. .... +(r" + Ja) (56)

For a > 0, then db'/d ¢ < 0 throughout, and the solution follows in a straight%rward fashion.

Likewise. a monotonic profile (quite similar to the horizontal case) is obtained for a < 0 and

su.fficiently large _,. If ttle latter is low enough, however, tile heterogeneity may lead to gravity-like

VD and LD regimes, much like in the horizontal case. The various subcases were exhaustively

treated, and we shall not elaborate further.

4.3 CONCLUSIONS

Within the fran'wwork of a continuum description, effects oi"permeability heterogeneity on stead,,"

state, vapor-liquid counterflow in porous media were examined. Permeability variations affect

mainly two processes, gravity-driven flow and capillarity. The variations of the latter can be

significant, lt was shown that. as in sin-tilar previous flows [147], capillary heterogeneity acts like an

external body force (such as gravity), with the additiona] property that it also varies spatially. For

example, a multiplicity of steady" states similar :o gravity-driven heat pipes was found for decreasing

permeabilities in horizontal counterflow and for heat fluxes lower than a critical value. Vapor-

dominated and liquid-don'dnated regimes were obtained using selection rules that were postulated

to depend on the past history (transient state) of the system. The analysis was aided by an exact

solution obtained for a special heterogeneity profile.

The selection rules were next applied to determine the stead}' state regimes in gravity-driven

heat pipes in tlomogeneous systems. It was shown that VD regimes originate from underlying dr,,"

regions, while LD regimes are extensions of overlying subcooled liquid regions. Significantly, the

different regimes may never connect with each other, thus retaining their identity as long as the

system remains in a two-phase state. The issue of the termination of the infinite two-phase zone was

next analyzed. It was determined that termination requires that a sharp increase in the permeability

(in the direction of increasing depth} occurs somewhere in the medium. Across this discontinuity

it was shown that. depending on past history, either the overlying LD state rapidly connects with

a dry region below, or the underlying VD state rapidly converts to a subcooled liquid above. The

emerging picture (from top-to-bottom)is thus, subcooled liqui,:t - LD - (discontin_zity)- dr} region.

or _,,i:,cooled _ ".... _lq_lld - (di:sconTinuit:) - \'D - dry regiou. ia ttt_' respective, cases. This ordeiing mav



be helpful in the interpretation of tile nature and origin of geothermal systems. Unfortunately, this

argument cannot apply for homogeneous systems, the termination of an "infinite" two-phase zone

within which remains ,.,_ unresolved question.

Finally, the interplay of gravity and capillarity was demonstrated in a study of two different

heterogeneity modes, a slow and a normal variation. For heterogeneities that vary on a large

scale, the effect is mainly on the gravity component and the saturation response closely follows

the permeability variation depending, of course, on heat flux values. On the other hand, larger

variations in permeability induce significant capillary effects. Often, capillary pressure continuity

must be enforced, particularly for large increases in the direction of liquid flow (here, as depth

increases). In contrast to both static and concurrent flow systems, capillary pressure continuity is

not necessarily the condition for a decrease in prmeability, no matter how large the latter is. All

these effects attribute a significant large scale hysteresis on the saturation profiles.

72



5 VISUALIZATION OF IMMISCIBLE DISPLACEMENT IN MIC1XOMODEL FR.AC-

TUR.ED SYSTEMS

M.Haghighi and Y.C. Yortsos

5.1 INTRODUCTION

Steam injection is a potentially effective method for the recovery of heavv oil from reservoirs. This is

particularly important for the diatomite formations of Cal'tbrnia. which contain significant deposils

of heavy oi[. Unfortunately, the understanding of steam injection in fractured systems is curry, htlv

based mostly on phenomenology and typically consists of applying a double porosity formalism t_

steam simulators. Most of these simulators use capillary imbibition as a mechanism for the exchang,.,

of fluids bet.een the matrix blocks and the fracture network. Such a purely numerical approacll

offers little to further our insight into the process. A reasonable "alternative is experimental studies

in model geometries that mimic fractured systems, particularly good candidates of which are glass

micromodels. Such a special geometry is considered in this research. The ultimate objective is to

conduct steam injection experiments in these models. Unfortunately, the actual mechanisms even

for isothermaJ displacement are not well known. Indeed, we have realized that studies even for

ordinary immiscible displacement in such systems have been very limited, the understanding of the

basic flow mechanisms being rather poor at present even for imbibition. Thus. before attempting

to understand the more complicated case of steam injection, it was decided to experiment with the

simpler, but yet unciarified, case of immiscible, isothermal displacement.

Consider the waterflooding of naturally fractured systems. Significant early work in the subject

was done by Mattax and Kyte [88] who studied imbibition in fractured water-drive reservoirs. These

authors experimented with a single matrix block and introduced the concept of a "critical rate" in

connection with water advance in fractured-matrix reservoirs. The critical rate was defined as that

for which the water advance level in the fracture is the same to the water level in the matrix. For

rates less than the critical value, the water level in the matrix is above that in the fractures. Thus.

ali the recoverable oil will be displaced from the matrix block before til(, water in the fractures

reaches tile top of the block. Inversely, at rates greater than th_, critical val,l,,, t I,,, ",valor level iI_

rh(' fracture _ will nlove ahoad of th_' wator in the malrix .tnd til,, nlatrix [_l_ck will bo (-or_li_lot(qv

surro,ltld_d by water b_'fl_r_' imbibitioJi is completed. Iii ttl_._first visualization, s1_l(l\ ill ['l;:l('tllrt,_l
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systems, ttandv and Datta [54] provided visual evidence of water imbibing in an artificially-fractured

sandstone and in a heterogeneous sand pack. In the case of fractured sandstone, they observed that

the water moves preferentially through the fracture, due to the low capillary pressure , while in the

heterogeneous sand pack water imbibes into the fine sand because of capillary forces stronger than

in the coarse sand. As rates increased, the water was seen to move preferentially through the more

permeable regions.

Flow visualization is a valuable device that enables us to understand some of the complex pore

level mechanisms of multiphase flow in porous media, can confirm theories and upgrade computer

simulation. This is the reason why substantial efforts have been undertaken not only for fluid

flow during immiscible displacement [_3;',137],but also for solution gas drive [31], gravity drainage

[143], and many EOR processes, such as foam flow [86] and surfactant and polymer flooding [32].

Although observing fluid flow in a single capillary tube or doublets is very useful, especially for

the study of wetting phenomena [17]: tl_ese tools are too simple to mimic the complex structure of

capillary channels in real porous m,dia. Therefore, investigators have been continously searching

for models with closer similarity to porous media. Chatenever and Calhoun [24] were pioneers in

this area by making a single layer of glass and/or lucite spheres between plates. This kind of model

in general lacks the ability to show the process of individual interfaces in different geometries. Tb,en,

etched glass micromodels came into existence, in which interconnections between pore/throats were

introduced. The history of the fabrication of micromodels has been reviewed by Buckley [19]. In

spite of the fact that such micromodels are restricted to two dimensions, they have been very useful

in understanding the coinplex relationship between the geometry and topology of the medium and

the solid/fluid interactions [26, 79, 81, 82].

The majority of investigations so far was limited to replicas of porous media. To our knowledge

a systematic s,:udy has not been undertaken for network patterns having fractures along or across

the flow direcl;ion to study effects of high permeability avenues in the fluid distribution during

displacement. As a result, we do not have suf_cient knowlege regarding the true mechanisins of

capillary imbibition for oil recovery in fractured reservoirs. Furthermore, the role of fracture in

fluid distribution and the relati,,nship between fluid/solid interactions and flow parameters are

ripe subjects fi_r visualization investigations. These issues are discussed in this chapter. Our

general objective is to provide a better insight on the recovery mechanisms in naturally fractured
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Figure 43" The pore network and fracture pattern

reservoirs during immiscible displacements, in order to improve oil recovery from such reservoirs.

To achieve this goal, pore level and larger scale visualization of isothermal immiscible displacement

under various conditions (drainage, imbibition, and secondary imbibition) was performed in a glass

micromodel of a fracture-like structure, and a parametric experimental study of the effects of

capillary number and mobility ratio was undertaken.

5.2 EXPERIMENTS

The construction of the glass micromodel in our work is basically the same as that reported in

our previous DOE Report. In addition, some modifications were also implemented suitable to

our material, The first pattern we used was a 3" x 5" inch 2 uniform triangular network with a

coordination number of 6 as a matrix block and a 2 mm width strip all around the matrix as a

fracture system to mimic a single matrix-fracture block (Figure 43). The width of the network

channels is appro_mately 400 microns while the pores (region where three lines cross each other)

have a linear size of about 800 microns. Inlet and outlet ports were connected 1o the fractures. \Ve

}Lave employed several computer generated patterns with diff_,r,,nt t)(,re al,¢l Ihroat, size disl ributions.

!_ all tlt,,sr_, lh_' fracture is rei)r(,s,,nled by ,_ larg;,_ siz,' s, tit, i_t *}l,' I1_i(t(tl_, ,_I ll_, I,io(t_q aloil_ *}t,'



main flow direction. In recent models we have included two fractures, one along the main ttow

direction and another across the main flow direction. With this type of fracture configuration,

the roles of direction of the fracture in the displacement process and the fluid distribution can be

studied.

To estimate flow velocity in the model, which is needed for determining the capillary number,

the measured volumetric rate was divided by the total cross sectional area (pore volume, 0.77 tc,

divided by the length of the network, 12.7 cm). All experiments were carried out at constant rate

by the use of a syringe pump.

5.3 RESULTS

So far we have carried out the following three different sequences of fluid injection into the micro-

model:

1- Primary drainage

2- Primary imbibition

3- Secondary imbibition

For each displacement mode, a set of runs were made at different values of the mobility ratio

and the capillary number. The objective was to probe the A'¢_, M phase space in order to identify

operating mechanisms and various aspects of the phase diagram. The various conditions employed

are shown in Tables 2, 3 and 4.

5.3.1 Primary Imbibition

Systematic primary imbibition experiments were so far done only for the air-water pair. Methylene

Blue water was the wetting phase. The non-wetting phase consisted of air or kerosene or viscous

mineral oil in the respective experiments. For each fluid, displacements were carried out at four

different capillary numbers (Table 2). However, with water displacing air, and for a capillary

number lower tl_an 10 -s, the water invaded the matrix first. At the pore level, both in the inlet of

the model and in the matrix, two different and simultaneous mechanisms were clearly observed: 1-

: Water flow along the roughness of the walls. 2- Meniscus movement (Figure 44).

In the pore network, the movement of water along the pore surface roughness causes accumu-

lation on the walls. As a result, we subsequently observed two different mechanisms: 1- When
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I Fluid Displacing Fluid Mobility Volumetric (',apillary
Pair Viscosity (cP) Ratio Rate (cc/Inin) Number

Water-Air 1 0.018 0.00052 2 x 10.8

" " " 0.0052 2 x 10-7

" " " 0.052 2 x 10-¢_

" " " 0.52 2 x 10-5

Water-Oil 1 " 0.00052 4 x 10.8

" " 1.50 0.0052 4 x 10-7

" " " 0.052 4 x 10-6

" " " 0.52 4 x 10.5

Water-Oil 1 100 0.00052 4 x 10-8

" " " 0.0052 4 x 10.7

" " " 0.052 4 x 10-6

" " " 0.52 4 x 10-5

Table 2: Conditions for various primary imbibition experiments.
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sufticient accumulation of water on tile wall develops, the radius of curvature t_t"t:ll_,nlt, i|iscus ill-

creases, touches the wall, and pore and adjacent cha.nnel are invaded insta,ltan(,,,_usly. 2- Wht'll

there is sufficient accurnula.tion of water on the two walls of a d_a.nnel, only the channel is llllecl.

At capillary numbers below 2 x 10-s, both mechanisms were at work (Figure 45), rt,s_ltiltg irtto

a rough shaped front (Figure 46). Itowever, at capilla, ry numbers above 2 x 10-7, ollly the first

mechanism is operating and no channel filling was observed. The water invaded the network in a

frontal movement that proceed line by line (Figure 47). Both these mechanisms are in agr_,t_lnt,nt

with earlier studies [76].

Experiments with water displacing kerosene and viscous mineral oil are currt, ntly in progress.

While the water-Mr experiments showed indeed that the wetting phase preferentially invades the

matrix block, it is not at all clear that the same will be observed during a water-oil primary

imbibition.
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Figure 44: Primary imbibition (water-air) showing roughness flow.

!
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I:igure 45" Prima.ry imbibition (water-air) at Nc<, = 2 x 10 -8, showiag both pore invasion aild

cha_i_el filling.
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Figure 46: Primary imbibition (water-air) at No. = 10 -8, showing a rough shape of the displacement

front.

Figure 47" Primary im'_ibiti,_,n (water-air) at N_, = 10-7, sllowixl;: a flat shapo of th_, frottt.
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l"luid Displacing Fluid Mobililv \'olunletric Capillary

l'air Viscosily (cp) Ratio Rate (ce/rain) Number

),"Air-Water 0.01_ 55.56 0.00( 02 3.6 x l0 -le

...... 0.052 3.6 x 10 -s

...... 5.2 3.6 x i0 --6

'" " " 40 2.8 x 10 -s

Oil-Water 1.5 0.66 0.0027 3.2 x 10 -7

'" '" '" 0.054 6.3 x 10 -6

" " " 0.108 1.2 x 10 -5

" "' " 0.27 3.2 x 10 -s

Oil-Water lO0 100 0.0052 4.1 x 10 -s

Table 3: Conditions of various primary drainage experiments.

,5.3.2 Primary Drainage

In the second set of experiments we considered primary drainage processes. In this case, the model

was first saturated with water as follows. Tl_e micron_odel was held vertictdly and water dyed with

._leth.vleno Blue was introduced through a plastic tube connecled to the nm(lel inlet using a constant

rgtlo syringe puml). The flow rate was set at a very' low value to completely saturat,_ the model.

Then. the model was placed horizontally for the displacement experimenl Io be conducted. A video

canlera with a close-up kit provided the desix'ed visualization. A teta] of 12 runs, corresponding

t(_ thre(, ditferent mobility ratio values, ea(:h for four difDrent capillary nulut)ers were conducted

(Table 3). The fronl movemenl was also recorded under a microscot)(' for clearer visualization.

In the first set of experiments, with air disi)lacing water, for capillary numbers lower than 10 -6 ,

_dr inoves thTough the fracture only (Figures 48 and 49). \Vhell the flow rate is increased to 5.2

(:c/rain, however, where there is enough pressure to overcome the capillary threshold, air starts to

als(, invade the matrix (I"igure 50). Figure 51 shows air-waler disl)lacenl_,lll at a capillary number

c_f2.s x 10 -5. In this case air moves to the fracture first, htlt sabsequontlv dist.'laces water in the

llolwork a.s weil. 'l']!e displaceIl_enl ilas the ralnilied fornl characl(,rislics of a perc¢dation process.

l'lt,,s_, o'.;lmriIIt(,nls illustrale the competition Imtw_,(,n capillary alx<t viscous for(_.,s in the fracture
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and in the matrix.

Figures 52 through 55 show the displacement of water by kerosene. For capillary numbers lower

than 10 -6, oil is shown to enter the fracture only (Figure 52). This is consistent with the previous

observations. Likewise, at higher rates, oil moves to the fracture first, but _fter sufficient visccu_

pressure drop develops, the capillary threshold is exceeded and oil starts to invade the matrix as well

(Figures 53 and 54). The matrix is first invaded upstream and the displaced water moves towards

the fracture downstream. After oil breakthrough, the invasion of the matrix by o':l terminates.

At the capillary number value of 3.2 x 10 -5 oil moves both in the fracture and in the matrix

simultaneously (Figure 55). At this rate, oil can invade more than 90% of the network. At rates

higher than this, the network is invaded almost from the start, much like in a typical displacement

process. The effect of the mobility ratio is quite significant. In a typical displacement, mobility

ratio affects the frontal shape, such that at high values (unfavorable mobility) the front is highly

fingered, while at low values (favorable mobility) it is compact. In the case of a fractured system,

the mobility ratio affects primarily the degree of penetration into the fracture before invasion of

the network also commences. Clearly, as the mobility ratio decreases, penetration into the matrix

may occur at rates lower than before. Indeed, for the case of heavy oil drainage, where M=0.01,

even at the low rate of 0.0052 cc/min, the capillary number is of the order of 10 -5, thus matrix

and fracture are invaded simultaneously resulting into a very compact interface (Figure 56).

During primary drainage, the interface at the pore level obeys a "go and stop" rule, such that

the interface is stopped by the throat untill the capillary pressure is exceeded. After passing through

this throat, the oil spontaneously invades the larger adjacent pore. Resulting water entrapment in

the matrix is low because of low mobility ratio and the high connectivity of the pore network used

in our experiments.
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Figure 48: Primary drainage (Mr-water) at No= = 3.6 x 10 -l°, showing that air moves to the

fracture only.

I llr_._]L__t i e,:ee4 • 11t e I s -%il t • t t • • e i t t I , , • • . t i , i t., • •, . _ .-.-. t I I ¢¢-e-.;'_%%;;'/.'¢'1;"_
(___ _ t I t _ i.1 I_ tl ltltll t I I I • I iL I I t • I It @4 4 ti "* • • I I I • " ...... " "--"$ _'-'-" " •

,,.._........._"A'_,_d.9:_,,,,v..,.::::*•....,.,,,.,...___ ..__.._.__...,,,,...',,,....,,,_
_,_,,.,-,-(,-._<, ,,, ..... ,,, ,,.,..., ,,,.._.:,,,.,.,,,.......,o...-.;.-.-,.:,,,,.,:,,..,._::=.._._,.,.,_.:.._____._.....___.

::
',"' '.%%;%,,,_,%%%'g,,""'J:,, • • • ,";',%'.','.".......... ,', :2: ,..,,..... .'.'.'.V.".....**.,,,.,,...,,,.,.._,,...... ,.. ,., ,_,;'_a';_, _,%'.,,, ,.,.,,., ,g, *,, ..-..,., ......... , ............... , ,.%...... ..o..,,/;
t I llq_tl I i_I i i l i iI_l.l@ I t I li Iii i I . i i i ¢ t t i ! • t • lli664d¢ _ . i . I i l tt&@t_ llt_ll i _61

i i I w ! ii [l_.w_l'_i u i t I I) • i s . • let I • F# I I t I i i Ill t4i I I I I i . t i t i1_4 I t _ li ii t FI@_J f |J
ltltll I_rll ltOt4tl I I I el ts tb6@t • i ¢ t • • • i ilo i 141 #$ $ . ii I # i tt#tg i i i l_tli$1._4 fin 1

1%1111_It I t ii I I i • I I _ i ill • I • I . • 4 • i I Ill li I _ i ! • t t g I t41t lP I • I I I ii _t_it t t i lit_

l.lltl I {llll t/lillll | I _ I • I I I t li# t I # ! ! I • • 4 i t kill ¢ II e i I e I &t-_44 i f I |i tlll_ill_
t l]t_}tt_ I I i I I I tt i I _ _ 11 l i I &tll _ t i I p i i i $ lt t_t#t Q i leo i liltl{_l p 4 Iltlt_ltJi

t_liilll ll_ttll I I • i _il _ltO_ Iltl lilti | 4 _ _ _ I I t I I ttllqt _ ll'l lli_i_tll/illi_
i J IF,_-tl lititO _lrJ i t I t i 41tlll 8 ti I tt ii tO# I P i i • I • i tttill# I t f I ii il@ttlll#lllii_{

tl(.i_t_lill ii i I I_i I i I i t I t t t I I li I i i lttl t i I i I * ,_ ,_ i ! i II i t t I i I I i i t til I t I Iii fli_'t_it j
'_J lltttl lJ li tl llll I !Iii ii ii i ii I i tet * I i '* • • o " I '_ i ii II t I i ! • • i i tlt l#ll I li II t I'i I_IP t #J

__ll_tlflilill Ill t lllllll t ill li I i "'_ t • _ _ I I i lt + _ S • i Ill I itllll iii ¥1 tt t'lll II I lI I_
t.ll__ j-_l li_l I I iI tit t i I'i I I I i i t t i e ! I I * .t _ t I i it _ i i i • I i i I lilt I I i li ,' I i i II'_lll /ttitl
_i_i__tJJ I ILl_li tl li # t Jll. I lt t lilt i II I I i , • i • i i i t i _ i i • ,, / t i ke4 i t# I i ! i i lt it#t# t t/ii lt_.
lj I1 !_I l_ll tltllll li illtttt i I i i e i i t i iii i I t i i ! i I I t tt t t t I i • li li@@# lt I I t liilfl_.l t
-_1 tJl.ljlt@il I |ltlfl i I t t t Iii I i i i i i I iii t i i i ii t I t i t i i _. i tl i i i lt ,li I iiiltt i lt i . Ii lt_ltl lr
_Lt I f_O.lltittJjJlllilll lip f I d i 11 t I It tI$ i # t i I I t tl i i p i e i i . ll} tt pl # i J I i I tk'ti4 P } I
_el.e=m_i_lJl21 _l...il i i t II te p i g N i i ltl 4 g i # I i t e t i I I i II i i a , i . t i * k4t e # I !P i' '* II e_#t I l'':

I IPwilll lllll ltllO i i i ti i i lltl t lt g i i ,: . i t i i I i I i i i t li I &lilt I I i I i i ittlf i/i,t • "i
_t I lll.litllttt tllllt liiill ptp i • . • ,,i _lti itllil III I ltlll !ltl itiilli_/i. II
_l_ l#l i>llllll I#1 ii b 141 t I I / I L I S llb t t A t I i I i I I . lt q # ) t I _ • • ' ) Ii4 / f 141 * V$11t.i, t
-",, ¢i,,t/.#%,/_,i,l,il,.I,2o, LL, i,,,,, .... ,t.tl,,i_...,,2.L_.,,.,.,_o.,.,, ' ".*"

Figure 4.9: Primary drainage (air-water) at N_._ = 3.6 × l0 -s, showing that air moves to the fracture

only.
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Figure 50: Primary drainage (air-water) at Nc_ = 3.6 x 10 -6, showing that air may also invade the

matrix.
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Figure 51: Primary drainat',e (air-water) at Nc_ = 2.8 x 10 -s, showing that air invades the matrix

in a ramified fashion.
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Figure 54" Primary drainage (kerosene-water) at Nea = 1.2 x 10-5, showing that kerosene invades

the matrix after entering the fracture.
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Figure 55: Primary drainage (kerosene-water) at Nea = 3.2 × 10-5, showing that kerosene invades

most of the matrix after entering the fracture.
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Figure 56" Primary drainage (oil-water) at Nc_ = 4.1 × l0 -s, showing that viscous oil invades both

the fracture and the matrix.
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5.3.3 Secondary Iinbibition

In tile last set of experiments, we considered secondary irnbibition. Now the model is first saturated

with water. Then, the non-wetting phase is injected at capillary number values greater than 10 -'_ in

order to simulate _trainage with the least amount of trapping. Obviously, the precise way drainage

has taken place would substantially affect the subsequent mechanism of secondary imbibition.

This set of experiments pertained to an initial drainage at relatively high capillary numbers. The

resulting residual water tilms were not interconnected, particularly for the case of heavy oil. This

has significant effects on the secondary imbibition. Table 4 shows _..he various parameter values

used irt the different runs. During the experiments involving the fluid pair water-air, water invade

the matrix block following a mechanism different than for the case of primary imbibition. Now, tile

displacement is a succession of rapid invasion jumps that occur along the existing water films, left

behind at the conclusion of primary drainage (Figure 57). This mechanism operates at low capillry

numbers. At higher values, the typical meniscus displacement was also observed.

For the experiments ir, volving the fluid pair water-keros_ ae, secondary irabibition was not ob-

served at low capillary numbers (lower than 10-6). Water was found to enter the fracture first, and

only a few pores adjacent to the fracture were invaded (Figures 58 and 59). Only at higher values

of the capillary number, 4 x 10-e (Figure 60), an invasion similar to the previous was observed.

We attribute this lack of spontaneous imbibition to the lack of connectivity between the residual

water films.

In the experiments with heavy oil, where the mobility ratio was 100, water moves to the fracture

first. However, before water breakthrough in the fracture, water also invades the matrix. The

mechanism of displacement in both the pore throat and in the fracture is a slow uniform meniscus

movement. In this experiment, we observed that if a relatively heavy oil is used for drainage, the

water film left behind is apparently very thin, such that spontaneous imbibition will not take place

(Figures 61, 62, 63, 64).

In genera], the experiments described above provide some insight on the fluid flow in porous

media when a fracture system exists. At present, the set is incomplete, particularly as it. re-

gards secondary imbibition. Future work involves further investigation on the effect of film flow

and roughness flow and the computer simulation of these experiments, before steam injection is

atteml_ted.
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Fluid Displacing Fluid Mobility Volumetric Capillary

Pair Viscosity (cB) Ratio Rate (cc/min) Number

Water-Air 1 0.018 0.00052 2 x 10-6

" " " 0.0052 2 × 10-7

" " " 0.052 2 X 10 -6

,, " " 0.52 2 x 10 -s

Water-Oil 1 " I 0.50052 4 :× 10-8

" " 1.50 0.0052 4 x 10-r

" " " 0.052 4 X 10 -6

" " " 0.52 4 × 10 -5

Water-Oil 1 100 0.00052 4 × 10-8

" " " 0.0052 4 X 10 -7

" " " 0.052 4 X 10 -6

" " " 0.52 4 × 10 -5

Table 4: Conditions for various secondary imbibition experiments.
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Figure 57: Secondary imbibition (water-air) at Nea = 2 × 10-s

Figure 58: Secondary imbibition (water-kerosene) at Nea = 4 x l0 -s.
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Figure 59: Secondary imbibition (water-kerosene) at Nc_ = 4 x 10-7.
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Figure 61: Secondary imbibition (water-heavy oil) at Nc_ = 4 x 10-s
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Figure 63: Secondary imbibition (water-heavy oil) at Nea = 4 x 10 -6.

Figure 64: Secondary imbibition (water-heavy oil) at Nea = 4 x 10 -s.
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6 NUMERICAL CONSTRUCTION AND FLOW SIMULATION IN NETWORKS OF

FRACTURES USING FP.ACTAL GEO_/IETRY

J. ,kcuna and Y.C. Yortsos

6.1 INTRODUCTION

Fractal geometry is a relatively new appr_,act_ for the description and modeling of comple× objects

and processes [46], [85]. [n general, fractal images are tb_. result of the repetition of a given

geometric shape into itself over a cascade of different length scales. When coupled with random

noise, the resulting complexity makes fractal images suitable for the description of a variety of

natural objects. Although this sbould not imply that every such object is fractal, nonetheless

fractMs constitute a very convenient method to describe many physical processes. [n particular, the

app|ication of fraztals to porous media is very promising. The review by Sahimi and Yortsos [1 i2]

classifies the fractal patterns that result from various porous media processes, such as percol_.tion,

viscous fingering and fracturing. Networks of fractures in a rock are natural candidates for a fractal

geometry description. This part.[chlor alternative is explored in this paper.

Conventionally, naturally fractured systems have been represented by the Warren and Root dou-

ble porosity mode[ [138] or by a random array of fractures [2I], [84]. Although capturing important

properties, neither of the two geometries can account for fractal characteristics recently attributed

to naturally fractured systems [5], [[05], [114]. The relation of fractals to fracture networks was first

explored in 1985, in a study of nuclear waste disposal [5]. That study revealed that many fracture

patterns a,t Yucca Mountain, NV, were self-repetitive over a range of scales, spanning from 0.2 to

I5 meters, within which several generations of fractures were detected. Additional support for the

fractal character of fracture network_ ca.n be found in recent studies of the fracture patterns of the

Monterey formation [50] and of the Geysers geothermal field [115]. P_ominent fra,ctal features in

the latter include the existence of a casca_de of fracture scales _ ,_d a self-similar structure.

It was recently proposed that the fracturing of disordered media, such as natural rocks, can

be modeled using fractals [55], [134]. Indeed, fractal structnres have been related to the ffa.cture

resistance of the material _nd to the particular fracturing process it undergoes [134]. For examp!e,

fragmentar, ion with substantial shearing, which appea.rs to be _t domina, nt mechanism for many

fracture net, works, leads to fractat dimension vail,es ranging between 1.2 and I._ [1_]. Sammis et
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al. have reported fractal dimensions between 1.5 and 1.7, [i 14].

Motivated by such findings, investigators have recently attributed fractal properties to networks

of fractures and proceeded to analyze their hydraulic response (Chang and Yortsos [23], Beier [.9]).

These works demonstrated that the traditional soluti,,. :is for single-phase fluid flow are particular

cases of a more general solution, where the dimensionality (reflected in the fractal dimension) is a

key vari',ble. Significantly, this dimension can take non-integer values and characterizes the fractal

response.

Current studies in the modeling of fractured systems with fractals rely on Sierpinski carpets

and percolation networks [104]. In certain cases, numerical simulation has shown the expected for

a fractM transient response. However, the particular networks taken represent rather special and

idealized cases. Fractal models for naturally fractured systems must be consistent with the basic

mechanisms of fracturing, such as shear fracturing, extension fracturing, etc. [60]. In addition,

any synthetic network must honor available d;*_,,, such as fracture length distribution, fracture

orientation and density, etc. Real systems also possess upper and lower cutoffs, which place limits on

the range of fractal behavior. Strictly speaking, rigorous methods for the construction of networks

of fractures must await the successful, development of fracturing theories. Recent advances in this

area have been many and significan.t and they hold promise that a unified theory may soon emerge

A practical alternative that may lack in rigor, but affords great flexibility, is possible for systems

that may be described by a fragmentation process. The latter is known to lead to fractal size

distributions [134]. The essential aspects ot_fragmentation can be simulated with the application

of the IFS (Iterated Function System) approach introduced by Barnsley [4]. This technique yields

networks of the desired fractal properties with much flexibility in the orientation of the fractures

and in the shapes of the fragments. This approach of combining fragmentation and IFS to create

fractal networks is proposed in this paper. Two issues will be addressed:

(i) The numerical construction of a synthetic network of fractures with fractal characteristics.

(ii) The simulation of transient, single-phase flow of a slightly compressible fluid and its press_re

transient response in such networks.
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6.2 NUMERICAL SYNTHESIS OF FRACTAL NETWORKS OF FRACTURES

6.2.1 Fragmentation and Fractals

In many fragmentation processes, the distribution of fragment sizes can be described by a power

law. This fact has been known since the early 1940s, when Schuhmann's law' [51] was introduced

to describe the distribution in grinding operations. Turcotte [134] documents many fracturing

applications, where the size distribution is described by a power law. More recently, Poulton et al.

[105] postulated apc, wer law behavior not only for the fragment size, but also for the length and

spacing of discontinuities in the rock. In a related study, a power law distribution of fracture trace

lengths was discovered by Barton [5].

Fragmentation was modeled in the classical work of Gilvarry [51], who used an exponential

distribution to describe repetitive fracturing. A basic parameter in the analysis is the probability'

" p:(1)_Sl that a given fragment of size in the interval between I and l+_l will be fragmented. Recently,

Turcotte [134] has showed that when Pl is constant, a power law distribution of fragment sizes is

obtained. For an idealized fragmentation process, where the fragments of a given generation are all

of the same relative size, the fragment size distribution is of the power law type, with an exponent

-. related to the probability of fracturing pl. For example, if each block creates an average of Sp/

new blocks of relative size I/,_,c, the theoretical value of the exponent is

2 In Sp/
E = (57)

In S

It can be shown that this exponent is also equal to the box fractal dimension, D, of the mosaic

made up of the same pieces. Since an unfractured block represents a missi0g subset of fractures, the

fracture length distribution will also be power law distributed with the same exponent. Equation

(57) suggests that non-trivial fractals (D < 2) are obtained only for PI < 1.

The box counting fractal dimension is one measure of a fractal structure. It is typically calcu-

lated by superposing a grid of a given cell-size on the fracture pattern and by counting the number

of occupied cells. The power law relation

s(r) ~ r-D (ss)

between the number N(r) of occupied cells and the scale r, yields the dimension D. Box counting
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has been routinelv used to characterize the fractal properties of real networks [5], [114].

For more realistic fragmentation processes, blocks of a given generation are not all of the same

relative size and a given size group may be composed by blocks of different generations. Nonetheless,

as will be shown later, a power lav,"distribution in fragment size and fracture length still persists.

We should also add that fractal behavior typically holds in a finite range between an upper and a

lower cutoff scale. The upper cutoff is defined by the maximum size fragment (tile "largest hole"

in the network). The lower cutoff is mc-e arbitrary, usually decided from practical considerations.

As shown below, finite cutoffs play an important role in the hydraulic response.

The way by which patterns are created by fragmentation, namely the initiation from a large

scale and the propagation towards successively sraaller scales in eLsystematic manner, has a close

analogy with the IFS technique recently developed. In the following, we propose to mimic a

natural fracturing process in the construction, of a synthetic network by combining the IFS with a

probability rule.

6.2.2 Generation of Fractal Networks of Fractures

Barnsley [4] has recently proposed the method of Iterated Function System (IFS) to constr'uct

fractal images. With this technique, a fractal is obtained from an initial simple shape (initiator)

by applying in an iterative fashion a set of aumerical transformations (propagator). Each iteration

creates multiple sets of n smaller, transformed images that occupy the place of the previous image.

After severn generations the set converges to a fractal. The technique creates fragments of various

sizes and shapes and it is well suited for the development of synthetic new,corks of fractures.

For the creation of the two-dimensional patterns to follow, two transformations were used. Each

consists of two quadratic expressions

x,_ = axn-1 + byn-1 + cx,-,-lyn-1 + d

y,_ = ex_,_l + fY,_-I + gx_,-ly,_-i + h

where x,_, y,_ are the coordinates of a given point of the nth generation, and a,b,c,d,e,f,g,h are tilde

coefficients of the transformation. When c = g = 0 ti_e transformation is linear (generally self-

affine). If in addition a = f and b = -e, it gives rise to self-similar fractals. The non-linear terms

(c,g) are useful in controlling the geometry of the final pattern. Itowever. control of the fractal
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characteristics and the fractai dimension is mainly obtained by varying the probability Pf. As in

fragmentation, we may specify that a fraction 1 - pl of newly generated blocks is not allowed to

further subdivide. The value of Pl affects the fractal dimension, although not necessarily according

to the simple result in equation (57).

Figures 65, 66 and 67 show three typical examples of fracture networks obtained with the

application of self-similar, self-affine and non-linear transformations, respectively. A fracturing

probability Pf = 0.75 was applied every second generation.

Because of our interest on fracture networks, the objects of Figure 65 to 67 have their fractures

retained. Thus, they are not strictly self-similar or self-affine. In this regard, they represent

modifications of the well-known Sierpinski gasket [85]. Nevertheless, they do possess similar fractal

characteristics. Figures 65b, 66b and 67b show plots of the box counting, fracture length and

fragment size distributions corresponding to these objects. In all objects, box counting exhibits a

power law behavior reflecting the underlying fractal structure, with an exponent varying between

the values of 1.60 (for Figure 66b) _nd 1.62 (for Figure 67b), both very close to the theoretical value

of 1.59 for a Sierpin _ki gasket. For the object of the self-similar transformations of Figure 65a_ the

other two fractal measures (fracture length and fragment size) are step-like with steps of equal size.

If only the points at the edges of the step are taken, the discrete distribution so obtained is of the

power law type with an exponent consistent with the theoretical value. However, this is not the case

for Figure 66b, where fracture length and box counting give approximately the same exponent but

the fragment size distribution hardly resembles a power law. It must be noted that finite size effects

are present on all distributions. The third non-linear object of Figure 67a can be characterized as

fractal, if box counting is applied (D ,-_ 1.62). Fracture length still follows a fairly well defined power

law. However, fragment size distribution has a power law behavior only in s,gments. Certainly,

as more generation are included, the distributions approach the expected power law. The above

differences serve to emphasize the relevance of box counting in the characterization of the fractal

structure in finite fractals.

The shape and geometry of the initiator have a significant effect on the geometry of the final

pattern. Figure 68a shows a pattern of eleven generations initiated from a quadrilateral shape with

a single fracture. Physically, the transformation at each stage consists of a rotation and subdivision

of the original two (upper or lower, left or right) halves. The apparent relative complexity of this
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Figure 66: (a) Modified Sierpinski gasket (11 generations) with self-affine IFS. (b) Corresponding

box counting(,), fracture length (solid line) and fragment size (dashed line) distributions.

100



I

/

E 102.=! ....

10_

• ,

t " -

10o - . .__ _ .
10-2 10-_ 10o

Size- l

Figure 67" (a) Modified Sierpinski gasket (11 generations) with non-linear IFS. (b) Corresponding

box counting(,), fracture length (solid line) and fragment size (dashed line) distributions.

101



pattern hides the fact that there are only minor differences with Figures 65 to 67, namely the angle

of the initial fracture, the initial shape and the value of pi (here equal to 1). In Figure 68a the

initial fracture tends to be parallel to the top and bottom edges. Corresponding box counting,

fracture length and fragment size distributions are shown in Figure 68b. Because the pattern is

composed of pieces in a narrow size range, the box counting fractal dimension is very close to 2

in the range of interest. Changing the position of the initial fracture dramatically alters the final

pattern. Figure 69a corresponds to the same initiator shape a_ Figure 68a, except that the initial

fracture is tilted at a larger angle. In this highly distorted network, the initial fracture is hardly

recognizable.

Even _.hough Figures 68 and 69 appear realistic, as more generations are included, the fractur-

ing process continues until the medium completely disintegrates. This results from the fact that

each block was allowed to further subdivide (p/ -- 1). To obtain non-trivial fractal patterns, the

fragmentation probability must decrease, lower values in p! resulting into lower values of the box

counting dimension D. The patterns in Figures 70a and 7la were constructed as in Figure 68a,

except that a fraction (1-pi) of randomly selected fragments were left unfractured after the fourth

generation. Different selections of the fragments result into different networks, although all realiza-

tions have the same box counting fractal dimension. Figure 70b and 71b show the box counting,

fracture length and fragment size distributions for these patterns. The box dimensions are 1.78

and 1.65 for the two networks, respectively. As expected, the values depend on both Pf and the

particular geometry. Away from tile cutoffs, fragment size and fracture length distributions are

of the power law type. Finite size effects are limited to sizes close to the cutoffs for regular and

moderately distorted networks.

The sequence of transformations that creates a fracture also specifies its address. For example, if

an IFS of two transformations, denoted by 0 and 1 respectively, is used, typical addresses of fractures

are 001, 1010, 01101, etc. The number of digits in the sequence equals that of the generation to

which the fracture belongs. The numbers also determine the position of a particular fracture in

the map. This systematic fracture identification is especially appropriate for fluid flow simulation.

The networks presented in this paper were constructed with two transformations applied to a two-

dimensional initiator consisting of a single initial fracture in a quadrilateral shape. Of course, this

is not a limitation of the technique, which allows for an infinite variety of transformations in any
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dimensions and ibr any initiator.

6.3 FLUID FLOW SIMULATION

The usefulness of any synthetic network is tied to the ability to simulate fluid flow. In the networks

under consideration, the IFS technique allows for expedient simulation. Certainly, for a numerical

solution, a finite number of generations must be considered. As sho_n below, this imposes a

significant constraint.

6.3.1 Flow Conductivity Matrix

The unique binary sequence that identifies each fracture, makes possible to precisely specify its

address, shape and location, as well as to devise a numbering system for its end points. In this

fashion, the nodes of the network are directly identified. This is an important development, a.s it

alleviates the need for a finite-difference or a finite-element description. Moreover, it is uniquely

related to the self-similar, nested structure of the frac'_al object.

To proceed with flow simulation, certain assumptions regarding the fluid flow in the fractures

must be made. Consider single phase flow. Along each fracture, the usual expression applies:

Q = CpW_[-_ -] (59)

where Q is the mass flow rate, W is the width of the fracture, Ap is the pressure drop along the

fracture, p is the fluid density and A is the conductivity exponent, usually taken equal to three. To

construct the flow conductivity matrix, we make use of the address of each fracture. The two end

nodes of the initial fracture, of known coordinates, are numbered nodes 1 and 2. Each new fracture
,'

subdivides an existing block and adds two new nodes to the system. The general expression for

the number of the end nodes of a fracture are a and a + 1, respectively, where

a=2 j+l-l+2,(ad) (60)

Here, j is the generation to which the given fracture belongs, and ad is the decimal value of the

binary address. The coordinates of each such node are obtained by applying the sequence of

transformations described by the address to the coordinates of nodes 1 and 2. In this fashion, we

may obtain the coordinates and the number of each node in the network. Intersections between
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fractures axe also specified numerically in a simple manner T_m final step is to cMculate the

conductivity of each fracture according to the assumptions made and to fill the entries of the

conductivity matrix.

A tr,_e fractal pattern of fractures contains an infinite number of generations. In practice,

however, only a small number of generations can be considered, since the size of the conductivity

. matrix doubles with every additional generation. This limitation is very significant or_ the response

o:i"the f_-actal.

6,3.2 Pressure Transients

We subsequently considered the simulation of the pressure transients during drawdown. A single

well is assumed, producing at constant rate, with no flux boundary c_ndi_ions imposed at the sides

of the pattern. Flow occllrs only in the fractures. The flow between nodes was evaluated u,¢ing (59),

while an appropriately weighted volume was assigned to each node. For simplicity, each fracture

wa.s assigned the same width. Denoting by gij the conductance bet_een neighboring nodes i and

j, the following discrete form for the mass balance for node / can be readily derived

&Pi PjYij(Pj - pi) _ Q/ii,,,, (61)
i J

where subscript j denotes all nodes connected to node i, cI is the fluid compressibility e_nd m is the

node number of the well. We have also used the shorthand notation _i,,4= 1 for i = j and 6i,: = 0

for i y_ j. For further simplicity, we take the approximation "v_= ½Y_Agij, and gi) = Ak, ,','here k
J

. 2r(p,,,-_)pol_A 'JD,i,j hL and',._the fracture permeability. Defining dimensionless variable_ PD = Qe_, =

tD = _t, where g is the average size of fractures of the last generation and PD -" 2_.p0,where Po is

a reference density, we fina/ly obtain

( )2_tD _ eD'iiAPD" = _'_ PD,ij PD'! 2 PD'J + _i,,n (62): j \ t-D,ij

This set of equations was solved using a fuIly implicit algorithm which iterates on the density term

at each time step.

Of crucial importance to the solution of the above is the size ratio N = L, where L is the physical

size of the domain. N is Mso related to the total number of nodes (approximately proportio.aal

to _,N, where Z is the coordination number of the network). A theoretical fractaJ corresponds
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to N >> 1 (obtained for infinitely many generations). However, as pointed out above, practical

considerations restrict N to a smaller value (O(100)).

It is important to discuss the effect of t_. When the number of generations of fractures in the

network increases for a fixed L, this is equivalent to a decrease in f, and to an increase in N. In

the dimensionless notation above, the effect will be equivalent to an increase in the size of the

system, or to a delay of the boundary effect. It follows that, working with a large a number of

generations is beneficial in two ways: It not only assigns stronger fractal characteristics to the

network, it &Iso serves to delay the effect of the boundary on the pressure transient. On the other

hand, by .decreasing e, the real pressure and real time corresponding to fixed dimensionless values

&Iso decrease, the real time following an l2 dependence. It is possible that this may render more

difficult the actual identification of the fractal structure, because of the demand for an increased

resolution of the diagnostic instruments, particularly when the fracture permeability is high.

The solution of (61) can be expressed solely in terms of N and tD

PD,m = f(tD; N) (63)

TheoreticaLly (N :_ 1), a fractal system must respond as described by the power law of Chang and

"_%rtsos [23]

PO,ra "_ tld-_ (64)

where __= -_ and d, is the spectral dimension. For percolation networks, d_ is related to the mass

fract&I dimension D and the fractal dimension of the random walk d_ [112] through

2D (65)
d, = d'-_,

Equivalently, we may use 8 = d,_, - 2 to write

D
_ (66)

2+8

While D is an expression of the mass dimension, 0 is related to the network connectivity and

describes the deviation from an ordinary random walk in the fract&i network. Clearly, it is the

combination of both these parameters that contributes to the fractal response.

Contrary to the theoretical results, however, the numerical simulation is subject to finite size

effects. These are pe.rticularly notable when the weil is "off-centered" as explained below. To

-- ItO.)

, i ,,
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analyze such effects, we focused our sensitivity studies on the number of generations, the position

of the well and the randomness and irregularity of the pattern. As a diagnostic of true fractal

behavior we used the pressure response in a log-log plot. According to the theory, the plots of log

PD and dpD/dlog'tD vs log tD must both be linear. Equivalently, we may monitor the slope of these

curves and test whether they are constant or not.

For a Euclidean homogeneous network, both slopes should approach zero after an early transient.

This is indeed the case as shown in Figure 72. The early response with slope of ½ is present in

all our simulations, indicating flow in a single (or a few) fractures that directly feed the well. It

is interesting to note that it is often the second curve (second derivative) that allows a clearer

identification of the underlying structure (it approaches a constant value faster). Also shown in

Figure 72c i_ the radial total fracture mass plot corresponding to this regular network. The plot is

obtained by tracing circles of increasing radius around the well and by measuring the cumulative

fracture length within each such circle. In the homogeneous case we expect a radial slope of 1

at small radii (single fractures originating from the well site) and a slope of 2 at larger values,

characteristic of homogeneous systems. This is indeed displayed in Figure 72c.

For a fractal network, the theoretical fractal behavior is well displayed in Figure 73, which

shows the transient response of a well at the center of the modified Sierpinski gasket of Figure

65. After an early transient, the two slopes remain constant for a significant interval of time, until

boundary effects are felt (Figure 73b). The constant slope is a clear indication of an underlying

fra_:tal structure. In fact, the slope approaches the theoretical value of 0.26 (/5 = 0.74), for D = 1.59

and 6 = 0.16. This _-_lue of 8 was obtained by random walks on the network as described by Orbach

[93]. The numerical values of (5 and _ are also in agreement with fluid flow simulations performed

in modified Sierpinski carpets [104].

The fractal response is a consequence of the well developed radial fractal structure around the

well under consideration. We confirm this in the associated radial mass plot (Figure 73c) which

shows two segments, one for small radii with slope 1, related to the early transient, and another

at larger radii with slope 1.59, related to the later part of the transient response. For finite size

systems, radial fractal structure is necessary in order to counteract finite size effects.

The modified Sierpinski gasket was next taken to investigate the effect of the number of gener-

ations. The transient response for a gasket with nine (two less) generations is shown in Figure 74a.
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The early behavior in both Figures 73 and 74 is identical. However, because of the additional length

scale, the response of Figure 73 is extended over a longer period of dimensionless time (one more

cycle), thus making easier the identification of the constant slope period. This result is consistent

with the previous analysis.

Finite size effects can be introduced by slight rearrangements, for instance by placing the test

well at an "off-centered" position. Figure 75 shows the transient response for a test well placed at

position B in the object of Figure 65a. It is observed that the early transient of ½ slope is prolonged,

while the period of constant fractal slope appears later and it has much shorter duration. The slope

value is also slightly lower than in the case of position A. An explanation of this behavior is as

follows. For finite systems, the development of a sharp response depends on how well a power law

fits the radial mass relationship around the test well. For a perfect fractal, this relationship is of

the power law type with an exponent equal to the mass dimension D (D < 2). This is not the

case for our finite networks. For location B, the radial mass plot shows at least three segments.

The first with slope of 1 is longer than the corresponding segment for position A. This accounts

for the longer lasting period of the early transient at position B. The last two segments of the

radial mass plot, with slopes 2.24 and 1.72 respectively, can be related to respective features in the

derivative slope curve (dashed curve). However, if the network of Figure 65a were a subset of a

larger self-similar network, a power law radial mass plot and a fractal transient response would still

have been observed, much like in a true fractal, regardless of the position of the well.

In general, the response of finite systems vary significantly with the arrangement of the matrix

blocks (computationally obtained by taking different realizatitons). It appears that if the blocks

are arranged so that the radial structure around the well possesses fractal characteristics, the

response is also fractal. This is consistent with the theoretitcal results, which assume radially

fractal characteristics [23], and with the findings of [104].

Pressure transient tests were also conducted for the networks of Figures 70 and 71. The square

dot in the middle of the pattern indicates the position of the test well. Results are shown in Figures

76 and 77, respectively. Although both pressure responses are very different from the homogeneous

case (compare with Figure 72), neither test conforms exactly to the theoretical expectations for a

fractal. The well of Figure 70 has a response that tends to a constant slope, this behavior being

consistent with the radial mass plot which has certain power law segments. However, it cannot
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be used to unambiguously ascertain the underlying fractal. Even less revealing is the response of

the well of Figure 71, where the approach to a constant value occurs late and it is interfered with

boundary effects. It should be stressed again that this departure from the theoretical expectations

is only a result of the limited number of generations allowed in the numerical computatio_,s (the

objects of Figures 70 and 71 have fractal characteristics over a small range of scales only). Coupled

with the irregularity and randomness of the patterns, this limitation prevents the identification of

the fractal structure. On _he other hand, many real systems are more likely than not to contain such

limitations. Further work is necessary to develop better diagnostic techniques for the identification

of such networks.

A variety of other tests were also performed and analyzed. The previous findings were consis-

tently confirmed, namely that as long as the number of generations is small, the transient response

is unlikely to have the theoretical characteristics, unless the arrangement of matrix blocks is such

that a radially fra_:tal structure exits.

6.4 CONCLUSIONS

A method to create fractal fra_:ture networks with fractal characteristics was developed. The

method is based on a combination of the IFS technique for constructing fractal images [4], and

of a probability rule consistent with a fragmentation process. This technique allows one to create

two-dimensional fractal networks with controlled fragment shape, upper and lower cutoffs, fragment

sizes, and fractal dimension. Although not attempted here, the method can be generalized for the

creation of three-dimensional networks.

The simulation of pressure transients showed that the identification of the fractal object with the

help of existing theoretical methods is possible only if a significant number of generations is allowed,

or, equivalently, if the object is fractal over a large enough range of scales. Otherwise, finite size

effects and randomness may dominate the pressure response a_cd make difficult the identification

of the sliructure. This behavior serves to emphasize the importance of' cutoff scales in fractals.
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7 A THEORETICAL ANALYSIS OF VERTICAL FLOW EQUILIBRIUM

Y. C. Yortsos

7.1 INTRODUCTION

The descriptionofdisplacementprocessesinoilreservoirsorwateraquifersisoftengreatlysimplified

when thereservoirisnarrowand longand theflowalmostparallel.Thisistypicallythecaseinmany

applications.Approximationsunder suchconditionshave been postulatedby many researchers.In

general,a VerticalFlow Equilibrium(VFE) istypicallyassumed (Fig. 78). Depending on the

strengthofgravity,thevariousapproachescan be classifiedintwo categories:One inwhichviscous

forcesand heterogeneityaxepredominanton the distributionofphases,and anotherin which the

phasescompletelysegregatedue to gravity.

The firstcategoryisintendedto captureprimarilythe effectsof viscousforcesand theirin-

teractionwith heterogeneity(Fig.79).lthas been studiedby severalauthorsincludingCoats et

al. [28], Yokoyama and Lake [144], Zapata and Lake [151], and more recently by Pande and Orr

[95] and Lake et al. [72]. Since gravity is unimportant, the term vertical is meant to denote the

direction along the narrow coordinate. In most of these studies a two-layer description is taken, us-

ing rather intuitive, although correct in retrospect, arguments. Extensive numerical simulation has

verified the validit:- of the various approaches, particularly as it regards the dimensionless param-

eter RL = __n' which must take large enough values for the VFE to be applicable. Along the

same lines must be considered the work by Lake and Hirasaki [71] on tracer dispersion in stratified

systems, a.,; well various phenomenologicaJ viscous fingering models, such as Koval [69], Todd and

Longstaff [133] and Fayers [43]. The latter models have presently only an empirical basis, although

the numerical evidence is in many cases supportive of their applicability.

The second category emphasizes gravity in addition to viscous forces and it should be more

applicable to homogeneous systems of higher permeability. Not surprising, the original contribu-

tions in '.his direction were made in connection with groundwater aquifers, where the so-called

Dupuit assumption was introduced (see [7]). Viscous, two-phase flow was studied by Dietz [35],

and elaborated by Le Fur and Sourieau [73], Beckers [8] and others. A complete segregation of the

immiscible phases is assumed, a sharp macroscopic interface separating the two regions (Fig. 80).

Recently, Fayers and Muggeridge [44] extended this approach to tilted reservoirs with dip.
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While the two classes seem to derive from the same conditions, no effort has been taken to treat

them in a uniform fashion. In fact, it is not entirety clear which are the relevant parameters that

demarcate in the parameter space the two regimes and where do various approximations hold. At

present, most of the available evidence is numerical. While under certain conditions, this may be

sufficient, it would be nonetheless desirable if a rigorous derivation were available to clearly identify

the various approximations and assumptions. This is particularly the case for layered systems,

where presently available forinalisms are awkx, ard and difficult to extend to many layers.

The objective of this chapter is to provide a unified approach based on a rigorous asymptotic

expansion of the flow equations in long and narrow systems, where the VFE is expected to apply.

First, the fundamental asymptotic analysis is developed for a model immiscible, two-phase dis-

placement. In the absence of gravity or capillarity, an extension of the classical Buckley-Leverett

equation, that also includes cross-flow terms, is obtained. Subsequently, this equation is applied

to a layered systems of arbitrary number of layers. A hyperbolic non-linear system results that

describes the interaction between the layers. Weak effects of capillarity and gravity are next in-

troduced. The problem for miscible displacement is formulated in a subsequent section. Tracer

dispersion in a layered system is analyzed leading to the results of [71]. Finally, we consider strong

gravity and capillary effects that lead to segregated flow. The conditions for the latter are specified

and we derive generalized expressions for the Dupuit and Dietz approximations. Flow segregation

due to gravity-capillary equilibrium is also discussed.

7.2 ASYMPTOTIC ANALYSIS

Consider the constant rate immiscible displacement of "_il" by "water" in a long and narrow

reservoir, of thickness H and length L, where e _ H/L <:< 1. For simplicity, the reservoir has

no dip, but it is anisotropic and stratified with different permeabilities in the "horizontal" and

"vertical" directions

KH -- kH_H(X, Y) ; Kv - kv'cv(X, Y) (67)

Here '¢i > 0, (i = H, V) are dimensionless such that fott ,¢{dY = H, when the x-dependence is ne-

glected. Otherwise, the latter constraint is not satisfied. We normalize "horizontal" and "vertical"

scales, X and Y, by L and H, respectively:
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Figure 78: Schematic of heterogeneous reservoir for VFE.

Y

Figure 79: Scllemat.ic of vis('ollS fillgerillg ill \:1:'I'_.
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Figure 80: Schematic of gravity segregated displacement.

x Y
z = -- ; y (68)

and scale ai[ velocities by the injection velocity q, time by L, and the fluid pressure by Lk-_u°. If S

denotes a "w_ter" sat_:;aff_on, the dimensionless balances become

d®-ST+ -ST]+ a--£-"0
0 c3,

_(_ + ,_o)+ _(_,,,, + ro) = o

f)P' " i = o,u:
u, = -_H(z, y)A, c3z '

e iOPi cp, kvgl . i= o,u: (69)

Here we defined 5 _= _, we have taken the y coordinate to increase upwards, and we have used

a, and v, to denote the "horizontal" and "vertical" component', respectively, of the dimensionless

velocity of fluid i. [:t the absence of capillarity and gravity, _, and r, can be expressed in terms of

the total velocities zt - _ + tt_ and t., -- u,_ + t,o, with the use of the fractional flow functiot_ f,_.(._ ii.
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u_, = uf,_(,5') - _.,_,= vf,L,(S) (7o)

We recall that ,kT is the total mobility, AT = A._, + Ao, where k,L. -- _'_k_,_. and k,> - k,,,. tt_ls
j.l. It.,

f,,: =- A,_,/,\,r. We, then, obt_n

0_ 0v

Op
a -- --t_H( :r., y ),,_Ti__:r

e Op
-v_ = -_v(x,y)HcS--_y (;tl

Since _ << 1 (long and narrow reservoirs), if follows that u = O(i) and v = O(e), hence we may

define r = ew, where w = O(1). Substitution into (71) then yields the foliowing

es oI_ o/_
,-aT+  -a7 + w-b-7=0

Ou Ow

0--7+ Oy -0
Op

u = --,_TNH(X,y)o---X

1 Op
---4-w= -H_,( z, y) 0-7 (72)

where we have defined RL =-- "/'g L _
,- = hrV kH" In this forInulatiort, it is now-evident that the only

:timensionIess parameter is RL, which is precisely the parameter used in justifying the use of VFE

Lrt5t]- To obtain the lat,_,er a?pro,vimation, we take the limit R L >> 1 and expa.nd in a regular

a.symptot.ic expansion

1

u=uo+ R--_u l + ""

1

'tl" = tL' 0 + _-_-r Wl + --.
lo

1

P= P(3+ _Pt +""

1

,s'= ,b',)+ __7_:_---'_'_4-... (7:_)
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Substitution into (172) yields to leading order,

Ot + u°--g-_-z+ wo--g-_-y= 0

Ouo Owo = 0
0-7+ o---V

Opo
uo= --ATeH(x,y)-g;;

OPO
=0 (74)

0y

Eqn (74) dictates that po = po(x, t), i.e., the pressure depends on the x-coordinate only. This is

the fundamental assumption of VFE or parallel flow, rigorously derived here in the limit R_ >> 1.

Numerical evidence suggests that VFE is satisfied quite well when RL >_ 10. This is consistent

with our asymptotic expansion, where the next order enters at O(_-_L), hence the error made by

retaining only the first term is 1% or less. The rigorous identification of the parameter RL as the

relevant variable for the validity of the VFE represents the first important result of this section.

We should point out that implicit in the derivation of (74d) was the assumption _y ¢ 0. For

a layered system, where the permeability ev = ev(y) may vanish somewhere, one simply needs to

redefine the reservoir thickness and VFE applies without problem (Lake et al., [72]). The problem

is somewhat more complicated, however, when the system is not layered. At least near the regions

where _y vanishes, the VFE does not apply. This may complicate the analysis, thus it will not be

discussed further in this section.

Unless otherwise noted, for convenience, we shall omit subscripts 0 and H. The next step is to

eliminate _ by integrating (74c) :fiong the y-coordinate, to obtain

AT(S),_(x,y)
u = f°1 AT(S)_(z, y)dy (75)

where we have assumed a constant injection rate (although the extension to a variable rate is

straightforward). Subsequently, we eliminate w by integrating (74b)

_o_ Ouw = - _xdY (76)

where a no-flow boundary condition was used. Final substitution into (74a) yields the result

_-W[+ fd Aw,_dyOx Ox [fd Aredy ,)--_- o (77)
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This equation represents the second important result of this chapter. The equation is a first-order,

hyperbolic PDE, but in two spatial dimensions (x.y), and it contains only saturation S' as the

dependent variable. '_Vhen _ and S are independent of y, it naturally reduces to the traditional

1-D Buckley-Leverett (B-L) equation

,os of ,
¢-0-7+ 0-7-= 0 (rs)

In this sense, equation (77) is a 2-D generalization of the B-L equation under the conditions of

VFE. We must point out, however, that because of the reduction in the dimensionality, equation

(7;) cannot satisfy all boundary conditions, thus it is not expected to hold near all boundaries.

This becomes more apparent below.

Before we proceed, let us recall the conditions for the validity of the above. It was derived in

tile limit RL >> 1 in the absence of gravity and capillarity. The latter condition requires that the

gravity terms in (69d) are small, or

NG << 1 (79)

where the gravity number was defined, N(., - Hk_g(#_-#_ (note the difference in notation with-- L_oq

Fayers and Muggeridge, [44]. This allows for both equations (74d) and (75) to remain valid.

However, in order for gravity and capillarity to be also absent from (70) and (77), one needs the

stronger constraints (see also below)

1

NG << R----_Land NCT << _ (80)

where the transervse capillary number is Ncr = _ (see [144]). As pointed out in the intro-- H Nea

duction, under these conditions, equation (77) is a VFE approximation that emphasizes viscous

cross-flow and heterogeneity. It is assumed, therefore, to control viscous fingering in such systems.

7.3 LAYERED RESERVOIRS

While the full solution of (77) is possible, it is more practical to consider a discrete treatment of

the y-dependence instead. For example, this would be the case of a layered reservoir (Fig. 81). We
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Figure 81: Schematic of layered reservoir for VFE.

take

;_<y<_; i=1, N (81)
S(z,y) _ Si(z) N

Here, N is the number of equal thickness layers of the system. For simplicity, we shall denote

i
_; = Azo f_ AT_dy. We may then integrate (77) over y from _ to _, to obtain the system

Oi +_i-_- z -(f,- f,-1)_xxE_j =0 ; i= 1,'V (82)
1

Here, we have appro:dmated y-integrals by sums, have denoted fi - f_,(Si),_,i - _,(Si; ni) and

defined fo =_ _o - O. We may recast (82) in terms of a hyperbolic system

Os OS OK (s3)at + A_ = B 0-7

where S = [Sl,.5'_ ..... S:v] T and _ = [_l,n2,...,_N] T are (_Nxl) vectors. A = la,ii and B = [bij]

(i,j - 1, N) are N x N square matrices with the following coefficients. Matrix A consists of two

terms A = D - E, where

d. = AT(-S')n' (_)O,A i

d,, : 0. i # j (,'_t!

126



and

(fw(Si)- fw(Si-i))

eij = OiA2 _J x

(OAT_ -'_AT(Srn)h;mi ; j _<i-1

{-1
---_-JJ --_AT(Sm)_;m ; j >__i

1

cii = 0 (SS)

The inhomogeneous matrix B has coefficients

- ))
bij = ¢iA2 x

¢ N

t _ZAr(eom)_m ; j <_ i-- 1

AT(Si) (S6)
-_Ar(Sml_m ; j>_i

1

N

In the above we have denoted A = _AT(Sn)_m.
i

This general formulation in discrete form is free of empirical arguments and represents a rigorous

result, apparently also obtained here for the first time.

We observe the following"

1. Matrix A is neither diagonal nor symmetric. This is because of the coupling between adjacent

layers of different properties. The coupling is due to the variation of the mobility with

saturation.

2 When the layer permeabilities also depend on position (°'_• _7 ¢ 0) a source (sink) term arises

on the RHS of (83)• Thus, in this case, heterogeneity acts in the form of a reaction term.

This feature is also due to the coupling between the layers and it is absent in the single layer

case.

3. When ali layer properties are the same, the system reduces to the B-L equation, as expected.

4. For a two-laver system, we may further simplify (:\ = AT(S'I )_l + AT(.S'2)K2) to obtain

127



dll -- ¢1A -_] 1

d22 -" ¢2 A \ _) 2

d12=d21=O (89)

ell -- e12 = 0 (90)

l(fw(S2)-fw(S1))_l_2(O_-O-_.) ,_T(S2) (91)e21-'- 2 (])2A2 1

l(fw(S2)-fw(S1)) (_0___) ,,_T(S1) (92)e22 ---- --_ ¢2A2 t_it¢2 2

bxl = 0, b12 = 0 (93)

521 __. 21(fw(S2) -¢2A2fw(sl)) )_T(S1),_T(S2)t_ 2 (94)

1 (fw(S2) - f_(S1)) AT(Sx)XT(S2)_x (95)b:: - -_ _:2A2

The above contains the formulation of Zapata and Lake [151] and [95], but it is here also

augmented by permeability heterogeneity along the x-direction. The latter result is also new.

7.4 EFFECTS OF CAPILLARITY AND GRAVITY

When the injection rates are low enough for capillary and gravity effects to be of some importance,

but not very low for the phases to be segregated, equations (70) must be reformulated. We obtain

NCT cOlic

Uw = ufo.,(S) + -RL, gH)%fw Ox

{ OII_ 'Na} (96)v., = v fw( S) "_-my Aofw NCT Oy E
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where a J-function representation was used for the capillary pressure, and IIc is the dimensionless

capillary pressure.

Equations (71), (77) are appropriately modified. For instance, (7la) becomes

_x OIIc .Ias j +e ¢--_, + (u fw + R'---_

[ { _ 0Hc 6NG}] 0 (97)0 vfw+_Aof_ ._cT Oy eOy

We may proceed in exactly the same way as before, by substituting v = ew, identifying the large

parameter as R_ = _ and expanding appropriately. In order for the flow not to be segregated, con-

dition (79) must still hold, NG << 1. The longitudinal capillary term can be reglected, except near

sharp fronts, much like in the classical Buckley-Leverett problem. However, transverse capillarity

and gravity can be retained, if the following conditions are valid, NCT " O(e) and Nc "_ O(_-,f).

Then, the following equation is obtained

_V Aof_ R2LNG (98)
Oy e Oy

The relative importance of gravity over capillarity depends on the dimensionless ratio

eR 2LN c gA p H v/-ffv
= (99)

NCT 7

which is rate-independent. For thin beds of low vertical permeability, capillarity dominates. Then,

if the typical assumption is made about IIc as a single function of S, the RHS above represents

capillary spreading (one should keep in mind, however, that permeability heterogeneity is likely to

also imply capillary heterogeneity as weil, see Yortsos and Chang, [147]. This case is of interest but

will not be considered in this stud),). As shown below in the case of miscible displacement, capillary

spreading can be equivalently represented in terms of a macro-dispersivity. Capillary effects in VFE

were considered by Yokoyama and Lake [144].

When gravity dominates over capillarity in (98), then
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os ;,'r_ oL,_ o f_ Xr,_dy]0./',,.__c-_+ f_oArKdy Ox Oa.Ilo Ar,_dy Oy -
0

+Oe_y [_yAofw] (100)

i the contributionwhere we defined Oa = k-_(pw- Po ). Upon integration over y between /-_ and/Log

of the gravity term acts as a source/sink. Then, equation (83) must be modified as follows

0S 0S 0_¢

+ A_-_= B_ + G (101)O--i

where the ithelement of the G vectoris

gi = N@a[_VAo(Si)fw(Si)- tcvAo(Si-1)f_(Si-1)] (10°)

If the flow rates are quite low, such that NG --, O(1), the phases are likely to segregated. This

case is described in a later section.

7.5 MISCIBLE DISPLACEMENT

Consider, next, a first-contact miscible process in tile limit of negligible gravity, Na << 1. The

mathematical description consists of equations (71b) - (71d), where the total mobility is now a

normalized inverse viscosity, AT(C) = 1--(-_, and where the dimensionless concentration C is the de-

pendent variable. The latter satisfies an advection-dispersion equation, which reads in dimensional

notation

OC OC) OC¢-_+_ +_0--7=
e o')2C O_T i 02C/

Pe-"-[,' Ox"-'-'_ + C_LePeL Oy 2 (103)

This equation is the analogue of (7la) to miscible displacement. In the above, we have denoted with

aL and aT the longitudinal and transverse dispersivities, respectively, and we expressed longitudinal

dispersion with the Peclet number, PcL. In the case of mechanical dispersion only,

L
P eL _-- _ (104)

o L
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Typically, L >> O'L, thus longitudinal dispersion can be neglected (except near slJarp fronts). '1'(,

obtain asymptotic results we follow the same procedure as above to get the final resull

OC A_ OC 0 [ fg Ah:dy" OC 0_( '¢-_ + -f__dv 0z 0z L:o__dv. 0:y= NrD-0_2 (105)
where, subscript T was omitted for simplicity. In (105) we have neglected longitudinal dispersion.

but have retained transverse dispervion by assuming that NTD _- _ 1 ,,_ oa= remains finite
OiL _ _ eft

in the limit of small e. When transverse dispersion is neglected, the previous equation (77)is

recovered, ii" the identification is made S _ C, hT _ _, and fw '---"C.

In the latter case, the equivalent of (83) reads

0C 0C 0K

0-T+ A-0-7= BO-7 (_06)

where C = [C1,C2,...,CN] T. The representation becomes simpler if we take the approximate

mobility dependence A(C) -- e rC, where r measures the mobility ratio, r = gn_f. Then, for

constant ¢i = ¢, which can subsequently be absorbed in the dimensionless time, the coefficient

matrices reduce to the following

_i erC'

dii - di - N '

1EgjerCJN
1

_7)--_fl_, j S i-1

eij - r(Ci - Ci-1)dj i- ,__ (107)

1 d _-7_ _, i< j
1

and

bij = -eO--L (10_)
r l'_j

One notes the interesting property that the sum of all the elements of each column of E vanishes,
N

Ee_ a = O.
./=1

When the solute is not passive, an exact solution to the system is not available. Some interoslirtg

remarks can be mad(, in the two liinits where r --, +co (unstable displa_inent, ._l >> 1) or when

r --, -_, (stablo disi)lacement , M <<71). In these two cases ii. can be showtt readily l ltal l]lo inatrix
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C becomes diagonal and, furthermore, that tile only element with non-zero velocity is the layer

with the highest (r --- oc) or tile lowest concentration (7" ---+ -ox:2), respectiv('ly. To show tills,

consider (10Ta) and rearrange as follows

di -- N (109)

] Cj -C, )
1

It is then straightforward that, in the limit r --_ oo, then di _ 0 for all i, except for i = max,

where C,,_x is the maximum concentration, hence dm_x ---*N. The opposite applies for the case

r --, c_, in which di _ 0 for all i, except for i = rain, where C'min is the minimum concentration,

hence drain -_ N. In summary, in the case of very unstable displacement (M >> 1), the highest

concentration travels the fastest, in accord with viscous fingering notions. While, for very stable

displacement (M << 1), it is the lowest concentration that travels the fastest, also as expected.

Besides this simple result, however, equation (106) contains a much richer structure. This is

currently under study.

7.6 TRACER DISPERSION

In the passive solute case, where the viscosity is constant (r = 0), the off-diagonal terms e ii vanish

and we obtain the linear system

OC, OCi 0 N
= -(Ci-Ci-,)-_-_(_'_,nm) (110)0---_--+ n,-O-_-z IkJ_ __

t

where, in the above ni is to be interpreted as normalized with the average permeability of a cross

section When _ =0, this has the solution

Ci = H(tm- x) (111)

where tt(z) is the step function. In the continuum limit

C? = lira 1,,--oo_ _ Ci (112)
1

we further get

C= f(n)H(_t-- x)d_c (113)
J /'_ rn I n
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whore f(_) is tile pdf of K. If we define tile cumulative distribution F(u) = f_, .... f(_)d_, then we

may rearrange to get
x

(" = It(t_m_x- x)- r(-[) (114)

For a more general result in the case _ = 0, we consider transverse dispersion. We shall make

use of the continuum formulation (104) and write (for ¢ = const.)

0C 0C 02C (115)
0"-'_ "t- _z(y)--_. -- 5rrD Oy'---_

This equation represents Taylor-Aris dispersion as applied to porous media flows [71]. One

can readily show that it tends asymptotically to macro-dispersion. Indeed, by using a coordinate

moving with tile average speed ( = x - ¢, one gets [132]

OC _ _02C (116)
(_(y)- 1)-_- = NTD Oy'2

which can be integrated to

C= 1 0C' f0v f0v'NTD O_ (pz(y") -- 1)dy"dy' (117)

In the moving frame of reference the mass flux over a cross-section is

ol(_(y)- 1)Cdy =

/o /o/o ,,, ocNTD (_(y)-- 1) (_( -- 1)dy"dy'dy. O_ (118)

thus, yielding the macro-dispersion appro.,dmation

0c? 0d: 02&
0--_+ Ox -- Dm Ox_f (119)

where

1 fol foVfo v' - "d "d 'd
Dm - (_(y)-. 1) (_(y") 1) y y y (120)

NTD

In dimensioJlal nolation, the macrodispersity is expressed as

c_m = tior(kH). 2 (h'H(y)- kH)

(121 )

Tills r<,sull was firsl <t_,rived by Lake and llirasaki [71] by differeill means.
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7.7 GRAVITY SEGREGATED FLOW

Consider, next, the case where the gravity terms in (69) are strong, Na "" O(1). }tere, the approach

is somewhat different. Gravity effects must be also considered in the distribution of pressure, not

only in the equation for the mass balance. Consider, first, negligible capillarity in the immiscible

displacement case. The general expression for the vertical flow velocity was derived before

Fv = -,% ar + NG(Aw:w+ o:o) (122)

where _i - .__ex_. In view of the fact that v = _w, we must takePw --Po

Op

AT_y + ga(Awfi_ + Ao/_o)=0 (123)

thusgravitytermsmust be consideredinthedistributionofpressure.Thisisa trueVFE. However,

the fluidsnow become segregatedand the previousanalysisisnot necessary.To show thatflow

segregation occurs we consider (96b) in the absence of capillary effects

v_, =e [w.fw(S)- _vkof_NcR_] (124)

Ali terms above must be O(1 ) or less. However, since we assumed Na '-, O(1), the last term on tlm

RHS would diverge at large RL, unless kv,Xofw vanishes, thus

Ao:w- 0 (125)

The solution of equation (125) is segregated flow

S= / Sw, ; h< y < 1 (126)

( 1-Sot ; 0<y<h

where the location of the "macroscopic interface" h - h(x, t) is to be determined as a function of

position and time (Fig. 79). This is the classical case of gravity tonguing which as shown above,

holds under the conditions RL >> 1, Na "_ O(1). The first is a geometric condition, while the second

also involves flow rates. To our knowledge, this is the first time that flow segregation was proved

analytically.
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To obtain the evolution of h, one needs to consider an intogr_d bala)lce. For tl,is, ('_lllatioII (72a

is integrated over y between 0 and 1 to yield

¢-_ Sdy + (u f_ )dy = 0 (127

Next, we use (123) to solve with respect to p. We obtaiJl after considerable algebra

Op 0 [_u (Awf>_+ Ao[_o)dy] 0II0--_ = N a -_x , A T + OX (]2,_)

where II - II(x,t) is the presure at y = 1 and depends on x and t only. Our ullilnale ,goal i,,; to

obtain an expression for u. By subsequent substitution of (128) into (69b) and (127), wo finally gel

1 1 0

Next, the total mass balance is considered. In a straightforward manner it can be shown that

the following equation results

f01 0Nc 0--_

{t_HAT_-_ (_lY (Awfw + A°f°) dY' - ]]) ) dy = OAT (130)

The two equations must be solved in conjection with the distribution (126). We illustrate this

application below.

7.8 THE DUPUIT AND DIETZ APPROXIMATIONS

Under the full segregation assumption, consider that the "oil" phase is "air" (switcl_ for a moulent

to subscript a) so that we take #a << Pw and Y[ =const. This conveniently eliminates tt_o last tern_s

iri (129) and (130). Expression (126) can be used to evaluate ali the integrals. I"or (,xanapl(,, w,

llave
I"

= / (1:_1)AT p_,, ; O< y < h
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Figure 82" Schematic of _r-water system for Dupuit assumption.

_']:eD_ce,

[_ I (_-i)_o ; h<y<l (132)

j.

[]dy'=[ (h 1)>_+(y-h)Z_ 0<y<h' Jl __

thus,

-Pw)_ ; 0<y<h

Proceedin_ similarly with the evMuation of the other integrMs the final result is obtained

,9 .--_T= . a -:_-_z RH(z, y )d y . _ (134)

where ?v"./-;= :Vc,/M and M is the ratio of the mobilities of the displacing to the displaced phase,

(here M : _r,,(_,_,,).,,k.,.(1-s_.) )" This is the standard, non-linear diffusion equation ._sed traditionally in

the water infiltration literature (Fig. 89.). it usuMiy arises under the so-called Dupuit approx_imation

where _H = [ (see [7]). [[ere. lt was derived explicity, rigorously, and mere generMly.

[n the more general .ase. a similar approach applies. The evMuation of the various integrals

is much simplified, if generMized functions (like step and ddta functions and their derivatives) are

used. For iu.<r,ance. we <.:_n t.a.ke



1

Ar = .,TIH(g - h) + H(h - y) (135)

so that the integra.1 in (129) is expressed in the compact form i)o(g - 1)H(y - h) + (fio(h - !) +

fi,,:(y - h))H(h - y). etc. The properties of the generalized functions needed are H'(z) = 5(z) and

z_'(z) = -[(z). where 6(z) is the delta function of z. Without going into the considerable details,

we sh.Mt only present the final results. The total mass balance yields

0[(/: 1/: )oH]0-7 _Hdy+ _ _Hdy ,-g2 = 0 (136)

while the "wate:" mass b_ance becomes

oh o oh]c)-_ + M NG -_x _ H d g . -_x -

M _Hdy.-_x = 0 (137)

H_r_ :'_I = _ok.,_(1-Sori We can integrate (136) onc_ with respect to x to get

h Oh-'VG gHdy" i:)x

(f"_Hdy + ,_ _Hdy _ = C (138)

,)li
where C = L. withou_ loss, and then eliminate _ between (137) and (138) to obtain the final

equ at ion

oot -_o_ f,_,_.e,;+ v ;2_.,,d:,jj

.V,-:;_. 1;) _Hdy + V ]£ ,.cHdgOz (139)

,. ._ Ira1 .Tli.i,-:.is _he _en_?ralizarion of" the well knowr! pa,raI .... flow approximation, derived by Dietz [35]

f,-,.r t}-,_ ,as_ (.,f cc,n>ta.qt, p._rmeat)i_t.v. The proces:_ cat1 bo approximated as an t - D displacement

i37
_
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with equivalent "saturation" S = S_,,,-+ h(1 - So,- - S_,,.), equivalent relative permeabilities given

by/¢_., = k_,( i- So_)fo h _Hdy and kro = k,.o(So,.)f2 NHd9, and a straight line _'capillary pressure"

with dispersion coefficient Na.

The pseudofunctions become straight-lines when the permeability is constant [35]. In any

other case, they are non-linear functions of 0 and, in fact, they may also vary with position x.

Clearly. because of the integral form, the order of the layers affects drastically the shape of the

pseudofunctions (Lake et al., [72]).

7.9 CA PIL LAtl_ITY- GRAVITY SEGREGATION

When the dimensionless ratio in (99) is not large, capillarity is also of importance. The equivalent

of (124) is now

Following the same arguments as before, when Ncr and Na are not small, we are led to the

capillary equilibrium condition

5ct = _-Na (141)
(

which can be integrated to yield

6Na
He = Heo + y_ (142)

eNcr

where Hto is the capillary pressure at y = 0. If II_ is assumed to be a single function of saturation.

the above determines the vertical distribution of saturation, given its value S0(z, t) at y = 0.

Again. an integral approach is needed. However, the problem here is quite simpler. Indeed, it

can be readily shown that the "'water" pressure is hydrostatic, such that

p,, = -.Vafi,_,(g - l) + II(z.t) (143)

hence, the totM flow rate u is described by expression (75) (assuming negligible capillarity along

the x-direction). Thus, we can use directly equation (127) to get



Equations (142) and (144) completely specify the problem. For example, all integrals in (144

can be explicitly calculated from the solution of (142), in terms of So(X. t), the evolution of which

can be obtained from (144). The result would be an equivalent to the Buckley-Leverett equatio,t.

this time in terms of So(x,t). Whether, however, appropriate pseudofunctions can be defined

remains to be investigated.

Finally, if capillarity predominates in equation (142), the saturation profiles along the vertical

direction follow the capillary heterogeneity. Specifically, if k_- does not vary greatly with y. then the

saturation profile is flat, S = S0(a:, t), and equa_tion (144) becomes the traditional Buckley-Leverett

equation (78).

7.10 SUMMARY

In this section, using a formal approach, the various manifestations of Vertical Flow Equilibrium

were derived. Key to the analysis was the identification of the parameter RL as the proper asymp-

totic variable and the development of a formal asymptotic method in terms of 1/R_. The analysis

confirms previously known numerical results and, for the first time, it rigorously" establishes their

validity in the limit of large R_. Because the condition is geometric-structural it applies indepen-

dently of flow and process parameters, hence it can be used regardless of the particular displacement

process. Due to the ensuing reduction in the dimensionality of the problem, the process description

is facilitated significantly. To our knowledge, this is one of the few cases in multiphase flow in

porous media where such a reduction is possible.

The formal approach presented has many advantages, as it allows for a plethora of special

cases to be readily derived. An analysis along these lines is also possible for any EOR process,

and we hope to report on this in the future. In ali cases, heterogeneity is the key variable of the

description and it is oaly the relative interplay of viscous to other forces that dictates the various

approximations. Viscous. gravity and capillary effects were considorod in the cas0 of immis:iblr__

di:spiacompnt The classification of the various regimes doDends on the wrelativ_, irnport'*,<_ of

these for,:es, as described by the dimensiort[ess parameters. We should point out tttar rho abmr,.

139
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can be readily extended to include a second "horizontal" dimension by appropriate, but perhaps

laborious, modifications.

Many of the results obtained here are new, in the sense that they extend previous approximate

analyses. Thus, eqns. (77) and (83) are an extension of Zapata and Lake [151], eqns (9S_) and

(100) extend the work of Yokoyama and Lake [144], eqns (106) and (119) are extensions of Lake

and Hirasaki [71], and eqns (184), (139) and (144)extend the Dupuit and Dietz approximations.

In addition to their formal aspects, our results also ofter insight on effects of viscous cross-flow,

as in (84)-(86), and they suggest directly the relevant pseudofunctions for each case. Finally, it is

the hope that a more detailed analysis of equation (106) would lead to improved approximations

and to rigorously establishing the validity of the various empirical viscous fingering models (such

as Koval, [69], Todd and Longstaff, [1331and Fayers, [43]).
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8 PARALLEL FLOW IN HELE-SHA_,V CELLS

M. Zeybek and Y.C. Yortsos

8.1 INTRODUCTION

During the past several years the flow of immiscible fluids in Hele-Shaw cells and porous media

has been investigated extensively. Of particular interest to most studies has been frontal displace-

ment, specifically viscous fingering instabilities and finger growth. This can be readily understood

in view of the many interesting theoretical and practical problems associated with such fronts. For

Hele-Shaw cells, we mention the selection problems and tile singular perturbation associated with

the high capillary number limit [10, 30], and the relation of viscous fingers to crystal growth [101]

and flame front dynamics [152]. In porous media, unstable frontal displacement has been high-

lighted with the use of Diffusion-Limited-Aggregation (DLA) [140] and other probabilistic growth

models [68]. Issues of capillarity, heterogeneity, randomness and spatial correlation, including frac-

tal statistics [41, 7"5, 77, 78], have been extensively explored, although several outstanding questions

still remain unanswered [145]. The practical ramifications regarding oil recovc;y, as well as many

other industrial processes in porous media, have served as the primary driving force for most of

these investigations.

By contrast, little attention has been paid to the motion of lateral fluid interfaces, which are

parallel to tile main flow direction. Parallel flow is an often encountered_ although much overlooked

regime. In tile context of Hele-Shaw displacement, it is the theoretical limit of full)" developed

fingers (e.g. the Saffman-Taylor finger [111]) (see Figure 83). Parallel flow conditions have been

invoked in qualitative support of the scaling properties of unstable, non-capillary displacement in

porous media. Concerning the latter, it has been shown [67, 74] that as long as the viscosity ratio

M is finite, the initially fractal displacing fluid cluster eventually evolves into a compact Euclidean

object (although its perimeter may be a self affine fractal [67, 68, 74]). In a different context,

parallel flow is often realized in thin and long reservoirs, typically masked under the assumption

of vertical flow equilibrium (VFE) [28, 144, 151]. Recent studies on viscous fingering in porous

media have invoked parallel flow to develop approximate models that satisfy numerical experiments

143..15]. Finally. we mention that parallel flow is routinely' encountered in yet other contexts, for

example the steady-state, con-current ttow in relative permeability measurements [29], as well as

...
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in processes involving counter-current imbibition [64]. Although not directly relevant to this work,

the pore-level analysis of such flows is very much incomplete at present, despite recent advances

in the understanding of viscous coupling between phases [3] and efforts to ascribe a viscosity ratio

dependence on steady-state relative permeabilities [110].

It is well known, that under the typical conditions of low Re = _ (where b denotes cell spacing),

the flow of a single phase in Hele-Shaw cells and porous media, (and more generally, multi-phase,

multi-component flow, but in the absence of spatial and concentration gradients) is potential. Such

purely viscous flow exists on either side of the interface between immiscible fluids in a ttele-Shaw

cell (Figure 83), and sufficiently far front the interface region in the case of porous media. We recall

that potential flow (although in the opposite, inviscid limit) also governs the fluid flow in water

waves [83]. We surmise that the dynamics of the lateral interfaces in parallel flow are likely to be

related to those of shallow water waves [53].

It is with this idea in mind that we examine the dynamics of fluid interfaces in parallel flow

in Hele-Shaw cells. In particular, the possibility of sustained wave propagation and the e,,dstence

of solitons form the main subject of this chapter. We present both theoretical and experimental

evidence that, subject to certain conditions, supports the existence of dispersive waves in the parallel

flow of two immiscible fluids. In the theoretical part, we first proceed with a linear analysis, which

shows that small disturbances are dispersive, if the viscosity ratio M is different than unity and

the spacing of the "inner" fluid does not correspond to the Saffman-Taylor finger configuration.

Subsequently, a weakly non-linear analysis is presented for long-wave, small amplitude disturbances.

The asymptotic description of the general problem is ultimately formulated in terms of a set of

KdV and Airy equations. The solution of the former is obtained numerically, although analytical

results are also used for comparison purposes. A brief summary of this work was given in a recent

article [154]. This chapter presents a more detailed account, as well as the extension to the more

general (non-symmetric) case.

\Ve must point out that although there are many similarities with shallow water waves, there

are also many differences. First, the use of two immiscible liquids in a ttele-Shaw cell invariably

raises issues of wettability and capillarity. The latter acts to dissipate high frequency waves, while

under certain conditions the former may completely dominate the process. Such issues do not arise

in shallow water waves, where it is viscous dissipation that results into an amplitude decrease.
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Secondly. for flat steady-state interfaces to develop between the two immiscible fluids, a parall_,l

flow condition (qalt, qbl_b) at high values of the modified capillary number, _%.,,. m_lsl b_, lit'sl

met. This requires a somewhat elaborate experimental procedure. Finally, solitary waves in shallow

water wave experiments are typically detected by special probes due to their very small amplitude.

Hele-Shaws cells make difficult the use of such probes. Therefore, the experiments were restricted

to simple flow visualization.

To test the theoretical predictions, sev..eral experiments were conducted. First, we considered

a configuration of two fluids separated by one interface. Eor reasons that will become apparent.

we refer to this as the symmetric case. This configuration allows us to test and improve our

experimental technique, but Mso to compare with well known analytical results. After satisfactory

results were obtained, experiments were carried out for the non-sylnmetric case, where two interfaces

are involved. In all experiments, we attempted to generate single solitons on both interfaces as well

as to seek the interaction of solitons. Compared to frontal displacement in ttele-Shaw experiments,

the experiments are well reproduced. Flat interfaces are readily recovered, after the disturbance

leaves the cell, and experimental runs can be easily reproduced. V_reshall point out that in our

experiments, the viscosity ratio was finite, contrary to most Hele-Shaw experiments reported in the

literature, which are carried out at large viscosity ratio.

8.2 THEORY

We examine the laterai interfaces between two immiscible and incompressible fluids of different

viscosities in the parallel ttele-Shaw flow shown schematically in Figure 83. The cell is horizontal

and has half-width W. Parallel flow requires flat interfaces and the absence of pressure gradients in

_he transverse (Y) direction. This condition is satisfied by the requirement p_q_ = it_qc_= Q, where

t_i denotes viscosity and q, the flow velocity of fluid i. Under the above, steady-state interfaces

are flat. We denote the normalized interface positions by Aa and A,. (-1 _< A2 < ,\1 _< 1), where

transverse lengths are scaled with the half-width H". The basic governing equations follow from

the usual Ilele-Shaw assumptions. In each fluid, Darcy's law applies and the pressure satislies ttl(,

l_at)lac_-'equation

V2t', ' = 0 =_ V',2(I)i = 0 " i = a, b (1.15)

tt,,ro, s_lbscript a <l_'1,c_l_'_the "inner" fluid. We shall poinl (,li _, that fluid b tl_,ws i_t lw<_dift'ereill.

1.13



y=l _1,..- qb ' ]'rb

Y=_"revll _ qa ' ['ta

y=K2-n2
qb ,P-b

y=-I (a)

Figure 83: Flow geometry for (a) Non-symmetric and (b) Symmetric case

separated regions, thus two different pressures are needed for a full description. We describe tile

interfaces in dimensional notation by

.TdX, Y,T ) --- Y - F,(X,T)= 0 ; i = 1,2 (146)

On each interface, the usual kinematic conditions apply, that fluid velocities normal to the interfaces

are equal to each other and to the normal velocity of the interface itself

Ob._,=Oa._, ; i=1,2 (147)

Oa.ni -" "TiT
[VSri [ , i= 1,2 (148)

where ffi = _ is the normal vector. With the use of Darcy's law tile above transform into

VPb._7.T, = M VP_.V3c; ; i = 1,2 (149)

: _7..V.7i - 0.T, . i = 1 2 (150)OT

Finally, across each interface the pressure drop is due to curvature, thus

Fz X X

At_ ---t lr.Til 3 " j = a,b ; i - 1,2 (IS1)
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whore ? is the interfacial tension. Since tile present interest is ill long waves, higher order correclions

to pressure drop are of secondary importance. We point out briefly that lhis problem is different

than the two problems b.v Park and ttomsy [97] for frontal displacement and by Burgess and Foster

[20] for flow at the side of a Hele-Shaw bubble, where capillarity dominates the leading order

approximations in the thin dimension. Thus, the present case requires a novel formulation, which

is currently under consideration.

8.2.1 Linear Analysis

The dynamics of flat interfaces parallel to the flow direction is next obtained by following

an anMysis in terms of normal modes. As a preliminary step, we investigate one interface only,

corresponding to the symmetric problem A1 = -A2, rh = -7?2, where rh and r/2 describe the

dimensionless disturbances of the two interfaces (0 < y < 1) (see Figure 83b). Using lower case

letters to denote dimensionless quantities, the dimensionless base interface is at location

f, = ,x, (152)

while the base pressure satisfies

Pi = -x ; i=a,b (153)

tIere, we have scaled pressure by _ where k b2k ' = ]5 is the permeability of the Hele-Shaw cell, L

is a streamwise length and time is scaled by L/q_. Perturbations are next taken for the pressure

and the interface as follows

P, P, + p' ei(_t-k_)= = - x + e _i(y) ; i = a,b (154)

fl -- -fl + Be e i(wt-kx) (155)

Af)er linearization and use of no-flow boundary conditions at y = 1 and y = 0, the following results

for the potential disturbances

v% = h'l cosh(k(y - 1)) • A1 < y < 1

_a = K.2 coshky ; 0 < y < Al
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Substitution into tile interface conditions yields after some algebra, the following result for the

complex frequency w

k si nhk
,.'-2

(1 + M)sinhk + (1 - M)sinhk(1 - 2Al)

i 2k3sinh(kAa )sinhk(1 - A1)+ (156)
6N_ (l + M)sinhk + (1- M)sinhk(1- 2A1)

Here, M - _ is defined as the ratio of the viscosity of the "outer" fluid b, to the viscosity of the#a

"inner" fluid a (Figure 83). We note that in the above relation, capillarity first enters at 0(k4).

Hence, for long waves (small k) and for a sufficiently large value of the modified capillary number,

3,'_, = q_t_L2/Tb _ [58], capillarity can be neglected, although it should be cautioned that 3-D

effects may become important when the capillary number is too large [90]. Under these conditions,

the frequency is strictly real and the long wave speed c = w/k can be expanded as

k 2 (M- 1)A_(1- 2A1)(1 - Al)

c - c0[1 - -_ 1- A, + A,M +'" "] (157)

where co = 1/( 1- A_+ A_51). For 5I _ 1, the above relation predicts dispersive waves [1], i.e., waves

with different wavelength travel with different speed. This result is quite different from the linear

stability relations of frontal displacement, which yield either constant growth (viscous fingering) or

constant decay. The existence of oscillatory modes in Ilele-Shaw displacements was first reported

in a previous communication [149] and it is also in agreement with recent marks by Xu [142] and by

Meiburg [92]. As expected, the waves become non-dispersive when the fluids have equal viscosity

(M = 1). Interestingly, non-dispersive waves are also predicted for the Saffman-Taylor conditions

1
(AI= _), although the latter have infinitesimal velocity when M >> 1.

An analysis similar to the above gives the dispersion relation for the non-symmetric case, whero

now two interfaces are involved (Figure 83a). As expected, the dispersion relation is substantially

more complicated. The final result is

taT_h(k(1- A1))[e-_:\'aD + ek'\_aE] - aMe-k'\_D - b__,-k'_D + bek:_'E + aMek_'E = 0 (158)

where

D = e_'\2f(d-b)sinh(k(1 + A2)) - Mdcosh(k(1 + A2))]

E = e-k_\_[(b- d)sinh(k(1 + A2)) - M dcosh(c_(1 + A2))]
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=i[1- At]

For our purposes, we shall consider only the asymptotic expansioll al slxlall waw, nu1111_,rs, I_\

taking c = x0 + xi/,' + _:2 k 2 + "". Two solutions arise

c,n = x0.,n + x2,,,,k 2 +... ; m - 1,2 (15!))

where

1
XO,1 = _-

2
XO, 2 -- _.

[M-1)(,\1-1){A2+I)(A1-'A2)
X2,1 -- M_(2_A__AI )

(2+,x2",X_)

and where we have defined & - 2+(M- I)(Aa-A2). The two roots correspond to the two different

amplitude equations for the two interfaces. As in the symmetric case, the waves are dispersive as

long as M 76 1.

8.2.2 Weakly Non-Linear Analysis

The linear analysis is limited to the description of the onset of motion. The subsequent dynamics

can be obtained by a non-linear analysis that includes higher order effects. In this section, the

evolution of these dispersive waves is investigated.

We shall apply a perturbation analysis similar to that used for shallow water waves, valid for

s_nall amplitudes and long wavelengths. We consider the initial value formulation as described in

[66]. First, two key dimensionless parameters are defined: /_ =- W/L, where L is the initial length

of the disl_Jrbance, and e = A/W, where A is a measure of the iIlitial disturbance amplitude. Iii

ttiis notation, l,l_e l.aplace equation in each flow region is

b2¢,_ + 4_ivv = 0, ; i = a, 1,2 (160)

11, lh. aI)¢,vo, wo haw, us-d subscripts 1 and 2 to denote lilt, volocity pot.nlial of fluid b in the

'=Upl)('r'" aJJ¢l "lowot" r,'gi()r,s, ro._po(:tively. ('orrespolt(lin/z, ly, tile iltlorfaco l)osili_)tls aro ai y, -=
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Ai + 7h (i = 1,2). The interface conditions now read

62(0ix - 1)rlix-Oiy=_21_4(¢ax - 1)T/ix- M_bay ; i= 1,2 (161)

62(rlit- rlix(¢_x- 1)) = -¢_u ; i = 1,2 (162)

and in the absence of surface tension

¢_ = ¢i ; i = 1,2

The problem is fully specified with the no flow boundary conditions at the side walls

o__ = 0 at y= 1Oy

o¢_ _ 0 at 1--SV- Y=-

a sufficiently fast far-field decay of the disturbances

rli _ 0 at Jx] ---, oo

and the initial condition:

r/i(x,0)= Ehi(z)

To implement an asymptotic approach, a long wave, long time and small amplitude approximation

is considered, _ << 1, [ = ct, e << 1. Then, the following asymptotic expansions are taken

¢i -'- {[q_iO "t- E_2¢il + _4¢i2 _" "'" ; i = 1,2 (163)

?_i -" er]iO -_- e21]il -_- "'" ; i = 1,2 (164)

where the various terms of the expansion also depend on t', e.g. rh =- 7]i(x,t, t). For non-trivial

results to be obtained, the relation _ = Xv_ is necessary, as can be readily shown with the method

of dominant balance [66]. Use of this in (163)-(164) and substitution into the field equations and

in the interfaces conditions (161)-(162)yield the following results. At the 0 th order

r/o,t + A .r/o, x = 0, (165)

where the matrix

[ M+I-(M-1)A_ (M-1)(AI-I)

M/, MA

A -- -(l+A2)(h4-1) l_.f+l+(M-l),\l
MA MA
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has oigenvalues _ aIid 3_" This syst(,m is diagonalized if we introduce the variable

Vo = -L'rlo (166)

WilOrO

-1 1
1

L = (2-,\1+,\2)
I+A_ 1 -Al

The components of vo = vlo , v2o can be expressed in terms of rho,

VlO = V = rh°--r12°--
2-AI+A_

v2o =- V = [l+A_)v_o+(1-A_)n2o (167)- 2-_i_2

It follows that variable U is proportional to the net transverse displacement of fluid a. From (165)

and (166) we obtain

Vo,_ + D.vo,_ = 0 (168)

where

D =L-1AL = [ _ 0 ]

[ 0 J
The solution of the initial value problem (168) is

rio = fo(a,t) (169)

V2o = go((, t) (170)

where the two moving coordinates a - x- -_, _ -- x - _, were introduced, and lo(a, 0) = h,(0),

go( ,0) =

To obtain the dependence on a, _ and t, the next order in the expansion is considered. After

considerable algebra, one finds

7"ll,t + A • r]l,r = --r/O,i + C • r/lOrllo,:r , r/20_]20,:r + (rllOrl20)xd - _2ex:r (171)

where

C - 2(,_I-J) ,_I + 1 - (AI - 1)A2 -(]_I - 1)(I 1 - 1) ]

- -X_ -(1 + A2)(M - 1) -(:'_I + 1 + A,(M- 1)) J
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1

(,zt-t) (M- i)(Ai+Aa)-2M ]d = _ (M- 1)(At+A2)+2M
_1

a:ad ;he vector e is a complicated expression involving 0o, r/o.... and their spatiM derivatives [153].

EquivMently, we may use transform (166) to obtain

vl,t + D •vt.x = -voi - L • C - rhorho,_ , r/_or]2o,_: - (rhorl2o)_L • d + _L - e_ (172)

Use of (167)-(170) into (172)leads after considerable algebra to

( 2 1 4(M- 1)
, = -v - + A2 (2 + A2 - ,\t)Vlovlo,_A M )v_ t,_ to,t

_2(M - 1)
+ MA (ativlo,_,_,_ + ai2v2o,_) (173)

a,nd

2 l M-I

= - ho, +( )(2 + + v ot'=oz)
M 1

)[a2i t'lo,_c, + a_.zV2o,_] ( 174 )"+ MA

After integration of (173) with respect to 5, ali secul_r terms vanish if the terms containing rio also

van.ish, thus (U _ rio)

4(M - 1) ("vi - 1)_ _
L"{---- Au (2 + A2 - ,kt )UU_ + ,_,/A aitU_a_, (17.5)

Similarly working for the otl_er component in (174) and eliminating secular terms yields

(M - t)__
= (176)': M A "" "

a.ssuming sufficiently la.st dec_v to zero. "The two coefficients in (175) and (176) are given by

I,%1 _,\_-"lift+.k?--->,i)[(_":-:-t):'+(-\i-l}2'+(.\z+t)(.\l-t)]
(ZL[ -- 3& (2+,\._-\1)

( t -,\_ )( ,\ _---\2 )( t + ,\,-_)A
(Z22 - :%t 12+.k_- \l )

.tl Axz.,
and they are related to z,.,.t and _:_,2 b,v a,, = ,_t-t (i = !.'2). The various parameters in

(t75)-(176) a.re Nnctions of the undisturbed interface positions At. ,\,. and the mobility ratio ;'t:I.

For the full problem, the solution of both (175) and (t76i is r0q_ired. We mar note the %llowing:

(i) pqroi}" trn.n_la.ticmn.] rn(_tinn _v-c-nr_ whon _[ = 1. ,_s o×_octod" (iii Thore a, ro tw() lon_ wave
,_,
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speeds. 2/A and t/3d, both decreasing to zero as the viscosity ra,rio increases. Tbe_ long w:_v_,

speed 1/.,_,[ corresponding to variable t" is simply the dimensionless (undisturbed) velocity of fluid

b; (iii) As anticipated, the linearized equations yield the leading order of the linear analysis (ici

The dispersive term in the KdV equation vanishes when 1 + A,,- kt -- 0 (which. tor the svrnrnetric

case Al = -A.,. coincides with the Saffman-Taylor finger width Al = I/'2); (c) Anti-symmetric

disturbances (r/_ = r/.a) are goverr_ed by the Airy equation (!76) alone: (t,i) Finally'. when both

initial and disturbed interfaces are symmetric (Al = -A2 and fit - -rl2). the intorfa, ce motiop, is

governed by the KdV equation alone. The latter is of great interest for the subsequent experiments,

This case may be recast in terms of the original variables as fotlows (A = At)

3

Equation (177) can be interpreted as follows: Due to parallel flow, any initial disturbance

! ,qtravets wi_h a long wave speed co. The latter always lies between the velocities of the two fluids

(e.g., 1 < co < 1/M for M < I). For an observer traveling with speed co the fluid flow is counter-

current, the lower viscosity fluid flowing towards _ne right and the higher viscosity towards the

left in the schematic of Figure 84 (where one must recall that in the ttele-Shaw context, viscous

shear is not relevant _o long waves). Because of unequM viscosities, the long wave disturbances

also disperse, to the left if (M - 1)(t -2A) > 0, and to the right, otherwise. We note that shorter

wavelength dispersion, although possible, is likely to be damped by capillarity" and wettability

effects. Sustained wave propagation is possible only if amplitudes are smMl and the non-linearity

is weak. Strong nan-linear effects must be excluded. They violate parallel flow conditions and are

likely to lead to frontal motion and viscous fingering. Nonetheless, weakly non-linear waves also

tend to break, to the left if (AI - l)r/> 0, and to the right, o_nerwtse. For the positive disturbance

of Figure 84, dispersion will oppose breaking if 1 -2A < 0. Under this condition, a permanent form

wave would deve{op, ahat propagates to the left or to the right, depending on wb.ether ,11 > 1 or

_[ < l, respectiw_qy. Analogous conclusions can be drawn for all other possibilities.

II_ the: symmetric case we may use classical results !39 i to predict it! e_dvanc_-_ the possibility _f

solit,_tr; waw,s, irt terms of _t[. the in,terrace position ,\t and the initial shap,, of" rho distut'banc_.

Wii.h ttl<, 'as" Of ti_ rescaling

_,_
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Figure 84: Counterflow of the two fluids in a moving frame of reference

where

. 3 (M- 1)A(I- 2A)(1- A)]-I/3

= -}(M-

Equation (177) can be mapped into the standard form

'ut - 6uu:_ + u_:_:_,= 0 (178)

with initial condition

u( z, O) = -uosech'2(b( z - :ro))

Then. the theory predicts the following: (i) When A1 > 0.5. M < 1, 77> 0, and ,\_ < 0.5, M > 1,

rt < 0, solitons develop and propagate in the positive crdirection. (ii) When A1 > 0.5, M > 1, rl > 0,

and ,Xi < 0.5, M < 1, rl < 0, solitons propagate in the negative a direction. (iii) No solitons would

form in any other case. Based on the above, the phase diagram of Figure 85 can be constructed.

Both the existence of"solitons and their direction of propagation, in a frame of reference moving

with spe,_'d 2/.,X, are showu. Tit,, map will be repeated/3 used below in t.},_ ,_',.)r,.lparison between

e',:periment attd tb.::,-,rv.
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8.2.3 Numerical Method

Although we shall often use general exact results, we shall rely for illustration purposes on

numerical results, obtained with the pseudospectral technique of Fornberg and x,Vhitham [48]. The

method combines a Fourier transform treatment of the space dependence with a leapfrog scheme for

the time evolution and it is well suited for non-linear dispersive waves, The interval l is discretized

into N equidistant points, with spacing Ax = I/N (N was taken as 128,256 or 512). "['he function

rl(x,t) is discrete Fourier-transformed with respect to x by the use of a fast Fourier transform

algorithm. Thus equation (177) is discretized as follows

T}_+I n--1 271" n 27I"- r/, = - 2i_tco.T-a[(-_-n.T(r/)] + 2i(2(M - 1)Co_)(rh )-_t _--1[(-_- n.T(r/)]

g2CO 2 r _

- 2i(e --_) (M - 1)A(1 - 2A)(1 - A) .T-l[sin((m) 3N na_t)'T(r])] (179)

The numerical scheme was tested favorably with an exact soliton solution, as well as with the

test example of Zabusky and Kruskal [150]. A similar discretization was implemented for the Airy

equation.

In the experiments that follow, the existence of solitons was tested by direct comparison with

simulation, but also by looking for the foUowing key properties [39]: (i) Arbitrary initial distur-

bances evolve into one or more solitons and into dispersive waves of substantially smaller amplitude:

(ii) The speed of a soliton depends on its amplitude, which increases with an increase in amplitude:

(iii) Solitons regain their identity after interaction with other solitons. For a given initial condition.

the number of solitons and their amplitude can be predicted from the standard theory of the Kd\"

equation [39, 139]. For example, the number of solitons obeys the condition

uo i )I/2 i,

while the soliton amplitude is

O ')a,_ : -gT_ (1,_1)

where

1 4u0 )1/2
_,_ : _b[(1 + _ -(2,z- 1)] (182)

These were used in the subsequent comparison with the experiments.

_54
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Figure 86" Experimental set up

8.3 EXPERIMENTAL

As in shallow water wave experiments, the,two small parameters b and e play a critical role.

The conditions _,e << 1 suggest that for a satisfactory resolution (larger A) requires larger cell

width, which in turn requires proportionally larger length. Therefore, the construction of a narrow

and long Hele-Shaw cell was necessary in order to observe possible solitary' waves [89, 96, 1ll. 131].

The cell consisted of two ple.'dglazs plates, ½ in. thick, of dimensions 230 x 27 cre, and of a rubber

gasket spacer 0.08 cm thick. Since interferometric methods [131] were not available, tile uniformity

of tile gap was estimated by tile indirect method of [96]. The linear regression coefficient of ttle data

was 0.999, indicating a good uniformity of the cell. Tile plates were held together using C-clamps.

The experimental set up consists of the Hele-Shaw cell in horizontal position, three integral variable

speed peristaltic pumps, a video camera, a video recorder and a monitor (see Figure 86). Tile frame

of tile cell was constructed such that it can be tilted both with respect to the transverse and to the

longitudinal axes. This was necessary in order to establish the steadv-s_ate interfaces.

Experiments reported below were conducted with two different ttuid t_airs. The tirst t)_ir is

mineral oil and glycerol/water solution with corresponding viscosili_,,, 170 cp a_,(t _60 cp. r,'slJ,W.
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tively, while the second pair is DC 200 silicon fluid and glycerol/water solution with corresponding

viscosities 1060 cp and 500 cp, respectively. Mineral oil is the wetting fluid in the first pair, while

DC 200 silicone fluid is the wetting fluid in the second pair. The viscosities of the fluids were

measured by both a Cannon-Fenske and a Brookfi{ ld spindle viscometers. Since the parallel flow

condition is one on fluid viscosities, (q_#a = qb#b), the accuracy of these measurements play an

important role in establishing the fiat interface. Relatively high flow rates were used, such that the

modified capillary number was typically O(102). No sustained wave propagation was observed for

substantially lower _' values This is consistent with the theory. The experiments were conducted" CO.

with configurations involving both one and two interfaces. The single interface case corresponds to

the symmetric case (Al = -k2, r/1 = -r/2). This configuration can be viewed either as the top or

the bottom half of the symmetric problem. It can be easily checked that the solution of (177)is

invariant to the change Ai 4. 1 + k2, '11 --* 7?2, M --+ 1/M (please note also the rescaling of time),

thus without loss we may view the flow as the top half of a symmetric problem with the "lower"

fluid being fluid a. In our experiments, this was the more viscous fluid for the case M = 0.2 and

the less viscous fluid for the case M = 2.1.

Conducting the flow experiments consists of two stages. The first stage is to establish a fiat

lateral fluid interface and parallel flow conditions for the two fluids. For the single interface case,

this was accomplished by a displacement process with the aid of gravity. The cell was first filled

with one fluid. While the cell is tilted on its side, the lighter fluid is slowly injected at the top.

Subsequently, the cell is slowly returned to horizontal position. The parameter A, which is the

dimensionless location of the interface, is controlled by t;e relative amounts of fluids injected.

For the non-symmetric case, flat interfaces were established by :he simultaneous injection of both

. fluids, while the cell was slightly tilted on the transverse axis. We were unable to independently

vary the locations of both top (,Xi) and bottom (,k2) interfaces, which shifted together according to

the amounts of the fluids injected. We stress that in the two interface problem, the parallel flow

condition, IZbqb = _aqa, was found essential for the establishment of a parallel interface. Under

conditions such that the modified capillary' number is relatively large, flat interfaces were obtained

with an accuracy of =t=1mm.

The second stage is to introduce a disturbance as an initial condition, typically obtained by

iiltorrupting momentarily the flow of one fluid, and to monitor the motion of tho disturbaltce. The
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wave lenglh and tile amplitude of tile disturbances were controlled by"tile speed of the interruption.

Although results obtained with such initial conditions were generally satisfactory, questions may

arise as to the effect of flow interruption and end effects. This will be discussed in a later section.

8.4 RESULTS AND DISCUSSION

8.4.1 Symmetric Case

Three different cases were considered corresponding to three different viscosity ratio regimes

(?_I < 1. M _ 1, AI > 1).

8.4.2 M < 1

Here, tile first pair of fluids (mineral oil and water/glycerol solution) was used with M = 0.2.

Figure 87 shows typical experimental results in digitized pictures taken from a videotape. A hump-

like initial disturbance taken to satisfy the small amplitude and long wave conditions was imposed

on the parallel interface (A = 0.69) (Figure 87a). Tile cell width here is 6 crn.. For the particular

initial conditions of wavelength L = 20 crrt, and amplitude 1 crn, the theory predicts a single soliton

traveling forward (X > 1/2, M < 1, r/> 0) (see Figure 85). Indeed, upon restoration of the flow rate

to the initial level, the disturbance was advected by the flow, and it started developing into a wave

of constant shape followed by a wiggly interface of small amplitude and short wavelength behind it.

Typically, this constant amplitude wave has taken a permanent form after traveling about 45 cre,

and appeared to possess all the characteristics of a soliton (Figure 87b). The amplitude is clearly

different from the initial and remains constant for a substantial distance traveled (Figure 87c),

as long as 1.50 cre, beyond which end effects seem to become appreciable. Numerical simulations

corresponding to these conditions and for the initial shape of Figure 87a are shown in Figure 88.

The comparison between theory and experiment shows a quite satisfactory' agreement, despite

the ambiguity on the suitability of the initial condition for the experiment (recall that the distur-

bance is imposed by flow interruption). Theoretical and experimental number of solitons coincide

(equal to 1), while computed and observed final amplitudes were 0.81 crn and 0.76 cre, respec-

tively. The wave velocity with respect to a fixed observer was calculated to be 0.28 cre/aec, which

compares well with the experimental value of 0.26 cre/src. Due to the particular scales selected to

match one-to-one tile experimental pictures, certain typical characteristic features of soliton and
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Figure 87" Single solitary wave (a) Initial condition (b) and (c) Subsequent stages
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dispersive ',vaves are sul)pressed in l"i_ur_, _s. 'I'o illllstrate t l_is i_(,ivLl, l ll_' l)r'_,fil,' _f l:i_,Jl'_' _,'-',i_

ret)lotte_l ill the ii_sel with different so'ales. NonetlLel_,ss. Ixx_lic_l__f" dispvv'siw' v,';L,.'_,s,.va,_;_t_J:_ll',

not observed to our satisf;tction iii the eXl)erilllellts. "l'yl_ically .... noisy ;tlt_l wiggly ivttvrfac,, _f s:v_all

wave length anti amplitude formed sootl after the main wave evolvt,d, ll_m'_,ver, we st_sl)_,c'l I]_;xt

wettability and surface tension have likely played major roles on its subsequc,llt devvlt_i_vv_vttt.

Figure 89 shows the emergence of two solitons arising from an initi;d clistv_rl_avtce of longer

wavelength (L--,45 cre). According to the theoretical predictions, two solitary waves,_f'_lifforc, vtt

amplitudes (and speed) should arise, in order of descending amplitudes (Figure sr,_). As tight,

progresses, the two solitons are clearly, separated, the higher amplitude soliton moving faster atxd

away from the trailing lower amplitude soliton. Figure 89b is a picture of the trailing wave. A

typical characteristic of the emergence of more than one solitons is an increase i_t the amplit ucle

after the onset of the initial disturbance. This feature was clearly observed. Coniparison with th_,

nunierical simulations is again quite satisfactory (see Figure 90 and the inset with different scales).

[:nder the same conditions, soliton interaction is shown in Figure 91. To create the two solitary

waves, two disturbances of different amplitude were sequentially introduced. The second distur-

bance is of higher initial amplitude and evolves into a faster soliton, that eventually takes over

the preceding slower one. After this nonlinear interaction, tall and short solitons reappear, but i_

reverse order and propagate with their origi_al speed (Figure 91b). Ali these feat ures are con.sistelll

with the tl_eorv. Corresponding numerical simulations are in good agreement as shown i_ Figure

!.12. Some additional effects were also considered. For instance, short wave disturbances, typically

c_>rrespo_ding to b > 0.5, were found to dissipate after their onset, as predicted by the literary.

Figure !)3 sinews such a >l_(,rl wave, dislurl,ance and its subsequenl stage, where tln_, a_plitud_, l_as

._ignificantly decreased over a rather short distance. Nun mrical simulations ar(, also in agro(,lllellt.

For disturbances in the ol)posile negative direction (z/ < 0), no solitons are l)re(li('t(,(t I)y 111_'

II_eory (('enel)are Figur_ SY). This prediction was tested in the ext)eri_nents. (:()_sisl.ent willn

tire theory, ;_i_v such (listurt)ances (whether of long or short wavelength) dissil_at(,(l ('(_/,li_l_¢,usly.

although ii is quite likely that wettability may have also interfered with tl_e interface dvnan_ics ill

this case (see below). Sinlila:'ly, for 0 < A < 1/2, but with a, positive initial dist_rl)a_co, no solitc_l_s

are tl|eoretically l)V'edict_,d. :\ typic;d experimeI_tal ru_t for such conditions (A -- 0.3) is sll_w_ i_
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(a)

(b)

Figure 89: Two solitary, waves at two different stages
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Figure 94. The corresponding simulation result was also in good agreement with the experiment.

Fin_lly, when 0 < A < l/2, and the initial disturbance is negative, solitons are predicted to

propagate in the negative cr direction (Figure 85). Unfortunately, this disturbance could uot be

introduced clearly and so[itons were not observed, although dispersive-like waves traveling ahead

of the main disturbance were noticed and the advective velocity agreed with the theory to some

degree. We strongly believe that the reason for this discrepancy is wettabilitv. Indeed, soliton

propa_gation in the negative cr direction (which is equivalent to this case) was observed, when we

experimented with a different pair of fluids of different viscosity ratio (M > 1), but with reverse

wettability.

8.4.3 M _ 1

t_ ,'_ second region of interest in Figure 8.5 corresponds to equal viscosity fluids. Experiments

were carried out with a pair of mineral oil and water/glycerol solution of nearly equal viscosity

0._,) In this case, becb the noa-tinear and the dispersive terms in the KdV equation (177)(.tl =' "- .

are very small, hence we expect constant wave speed and transl_'_tional motion independent of the

wave amplitude. In the experiments, disturbances similar to Figure 87 were introduced. However.

, a,e/ther a change in shape nor a wiggly interface were observed.The disturbance simply propagated

with a constant speed, equal to the fluid velocities lisa]. As a second test, two disturbances with

different am',litudes were sequentiMlv introduced, in a way analogous to the soliton interactt ",

case discussed above. It was observed that the distance between the two disturbances remained

constant and that no further interaction occurred. This behavior is full)" consistent with the theory.

8.4.4 M > 1

: Finally, for completeness, we also considered the case with AI > 1. As pointed out above,

this case is symmetric to _!.I < i. thus resuIts identical to the previous shou[d be obt_tined und('r

the appropriate conditions. I'he condition ell > ! required a diff,._rent p_tir of fluids, however, th_,

wettability was not ztlt.erc-d (th_: top fluid was still w_?tti_ the surf'ac,,). We us,_,,t D(' 200 silicort

- N._,i{{:_.r_dglyc,,v__>[,/water s,.>lllti<-,rt with 3.I =: 2.1. Nolit<_ns ar_, predicto,t tc_ move to tit,:: loft ,_rl th_,

,,rrz_xiv for .rf > i. ,\ > i/:2 and rI > 0 (_"ip(ure sS).

l'.ho first; ,-experirne_t was t(_)_enorztte a sing[o so[iron. As irt the [)r_'vio_I.'a CaSO. iT Wa,S '_ati_f_t('t_,rz



Figure 94: Experiment with k < i,/2 and positive initial disturbance
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[153]. Interaction of solitons was sought in a subsequent experiment. Contrary to tile case 3,I <

I. we first introduced tile higher amplitude disturbance, which evolves into a higher arnpiitude

soliton, to be followed by the lower amplitude disturbance, which evolves into a lower amplitude

soliton. According to the theory', for a fixed observer, the lower amplitude soliton travels faster and

eventually overtakes the higher amplitude soliton. This was clearly' observed. Because of limitations

on the length of the cell. however, complete reappearance of the lower amplitude soliton after the

interaction was not possible. As before, the experimental run and the corresponding numerical

simulation were in good agreement [153].

8.4.5 Non-Symmetric Case

Although the _eriments in the symmetric case appear to support the theory, we also exper-

imented with the non-symmetric configurations. Two different channel widths (2II" = 9 ('_,_ and

_2 ('m.} were used. As in the first set of experiments, the pair of fluids consisted of mineral oil

(outer fluid) and glycerol/water solution (inner fluid). The flat lateral interfaces were established

by the simultaneous injection of the two fluids.

In the experiments below, we used )'1 = 0.65 and -\2 = -0.76. Two disturbances, of initial

amplitude 1.'2 crn and -0.75 cre. respectively, were simultaneously generated on each interface.

Figure 95 shows the solitary waves developed on each interface. The two waves retained rh,qf

shapes even after the', traveled a distance of about 140 cre. Wiggly interfaces suggesting dispersiw,

waves were observed in the back of the waves. Figure 93 shows the corresponding numerical

si mutat ions.

Interaction of solitons was also studied, ttere, two different amplitude disturbances were se-

quentially introduced on each interface. Numerica! simulations confirmed the experimental findings.

Other conditions were also tested for different ;'atues of A1 and k.,. In the non-symmetric case. rh,'

value of the parameter Al - k_ is critical. \\"hen ,\1 - k:, < 1 {interfaces are closer to oath oti_r).

all ,other conditions remaining the same the disturbances _tissipated. For additionai (:l_,tails, r_'t'-

ereItce _[153_,.....*hould be consulted ['nfortuttat;qv., rh,,,_ exp_'rimental artlplit:ld;_s w_,r¢, too small f_),.

satisfactory identificatiort and o)mpar;sot_. Furthor w;_rk _zi thi._ a_d rolat_,d issu_,s is (,l:rot_tt;

underway.



(a)

(b)

Figure 95" The non-symmetric case: SiI_g!e soliton at two diff_r;_nt ,_ta_s
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8.5 CONCLUDING REMARKS

The small amplitude, long wave motion of lateral interfaces in parallel flow was investigated

at large values of _,_ in a long, horizontal Hele-Shaw cell. The asymptotic theory for the case

of two fluids was formulated in terms of a set of KdV and Airy equations. The findings of the

theory were validated by experiments involving both one (symmetric case) and two interfaces (non-

s"'mmetric case). Under the condition llbqb = l_£aqa,flat interfaces pertaining to parallel flow ,,,.'ere

successfully established in either case. Experimental results supported, for the most part, the

theoretical predictions including the existence of solitons. It is important to point out that this

is the first time that Hele-Shaw (and, perhaps porous media) flows have been reported to contain

KdV dynamics (although see also [63] in a different context). However, some experimental aspects

still remain unclear.

It was pointed out that dispersive waves associated with solitons should appear in the ex-

periments. These waves can be identified in the simulations, although only at a high resolution.

However, they were not observed in the experiments. A wiggly shape did de'elop at the points

where it was supposed to be present. This was observed in both forward and backward moving

solitons. We believe that it is indeed the initial motion of the dispersive waves that initiates these

noisy interfaces. However, the subsequent motion is largely controlled by surface tension and wet-

tabilit"' effects which become important at small wavelengths. Significantly, no wiggly interface was

observed in the experiments with equal viscosity fluids (?,I _ 1).

Along the same lines, it was pointed out that the direction of the initial disturbance was

critical to the development of wave motion. In all cases, the experiments were successful when the

initial disturbance was in the direction of drainage (non-v,'etting displacing wetting). Inconclusive

were the results of experiments when the disturbance was introduced in the opposite (imbibition)

direction. Eor the latter, it was observed that the shape of disturbance was not as well defined

as in the drainage case. We demonstrated this for the simplest case of equal viscosities, M _ 1.

Quite satisfactory results were obtained when the disturbance was positive (from non-wetting to

wetting), tlesults much different than expected, and generally not in agreement with the theory,

were obtained when l lte disturbance was ilt the opposite direction (front wetting to non-wetting

ftuidi. Wottal)ility and relate<I effects are c_:'rtaiitl'_ in need of furth_?r investigation.

t-+ittallv, iii .SOltlr,cases the velocity of tlt_' i'ranl+, of r_'f,'re1_('e was quite larger than the soliton
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speed, thus we were not able to monitor the full extent of the wave motion. \Vilh the aid of gravity,

this velocity of the frame of reference can be reduced to zero. Ilowever, now the flow directions

must be opposite to each other. Such experiments are currently underway. Parallel theoretical

developments involving waves in the presence of gravity in Hele-Shaw flows are reported in [92].
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9 FLOW OF POWER-LAW FLUIDS IN POROUS MEDIA

C. Shah and Y. C. Yortsos

9.1 INTRODUCTION

An important industrial application of non-Newtonian fluids ill porous media is in the area of

Enhanced Oil Recovery(EOR). In such processes, various non-Newtonian fluids, such as low con-

centration polymer solutions, emulsions etc. are simultaneously injected to increase the viscosity

of injected water or other driving agents that displace oil from reservoirs. A variety of rheologi-

caJly complex fluids are used to improve sweep efficiencies, divert _lisplacing fluids and block swept

zones. To describe the viscosity (_1)versus shear rate (_) behavior of such fluids in the bulk, various

empirical models have been proposed. A commonly used is the power law model[12]

,7= "-1 (lsa)

where If is a consistency index and the difference between n and unity indicates tile degree of

departure from Newtonian behavior. The fluid behavior is shear thinning for n < 1 and shear

thickening for n > 1.

In contrast to Newtonian fluids, the state of the art in understanding the flow of power-law

fluids, either single- or multiphase, in porous media is incomplete. As a rule, the interplay of the

nonlinear rheology with the porespace geometry results in complex problems, that prohibit the

direct passage from the micro-(pore) to the macroscale (Salman et al. [113], Sorbie et al. [124]).

Thus, with few exceptions, laws analogous to Darcy's for flow of non-Newtonian fluids in porous

media have not been rigorously established. Indeed, although frequently used in practice, capillary

tube models based on a bundle of capillary tubes do not represent adequately tl_e true physical

phenomena in porous media. Although sophisticated approaches have recently appeared (Canella

et al. [22], Sorbic et al. [124]), Similar issues arise in the simultaneous flow of a pair of in,miscible

non-Newtonian fluids in porous media. Fortunately, when one or both of these fluids are of the

power-law type, and at conditions of capillary control at tj,(' porescale (Nc., << 1), tile COllCet)l

of saturati,':.m-dependent relative permeability may be apl)licat)le, t)¢,rltaps in a ii,o¢lified form. t_

ac_:ou_ll t_r p,)ssibl_, r'fl'r,cls of the l)Ow_,r-law rheology (SalIllalJ et al. [1 1:_]). l)esl_il_, lh,, cc_1,si_l_,r'at_l_,
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extent of applications, however, littl _is known at present about such dependences.

To obtain a better insight on the flow of non-Newtonian fluids in porous media, we have c_)it-

sidered simulation of flow in network-like 2-D porous media with distributed sizes. First, the single

phase flow of both shear thinning and shear thickening fluids is simulated, lt is shown tl,at the

critical path approach of Katz and Thompson [65] as extended by Yortsos [146] is well suited for

power-law fluids except for very small values of the power law index n. Subsequently, the immiscible

displacement of Newtonian fluid by a non-Newtonian fluid is simulated and st,me initiM results are

reported. The chapter is completed by an analysis of the importance of con',erging-diverging ge-

ometries in porous media to pressure drop during flow of viscoelastic fluids. Tho latter is important

in certain cases, and shall be included in future simulation.

9.2 POWER-LAW FLUIDS

The problem considered in t lis section involves single- and multi-phase flow of power-law fluids in

porous med;.a, the latter modelled as a network of capillaries. An important limitation imposed in

the subsec_uent analysis is that such elements are of uniform cross-section, so that the contribution

of converging-diverging geometries to the pressure drop is not significant. Hence, overall pressure

drop ac. oss a capillary is still related to the average flow rate through the capillary by a power-law.

\Ve caution, however, that this may not be necessarily the case in porous media, particularly at suf-

ficiently high flow rates as discussed later in this chapter. Pro.'eeding under the above assumption,

the porescale relation for a power-law fluid becomes

q = g(AP) _/'_ (184)

where q is the volume flow rate in a pore of conductance q, across which there is an api)lied

: pressure drop AP. Under the abo_',_ qualification, which renders tla_ problem to one of power-law

resistors, the following aspects will be addressed: (i) Effective Medium Averages and (ii) Critical

Path Analysis. Both these issues were briefly discussed theoretically in a previous report [146]. Irt

this chapter, we shall test the validity of the previous theory by the use of numerical sin_ulation.

For the simulation of single phase flow of a power-law fluid in a single capillary, the following

expression was used
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pl,,rtR , 7*,A

q = (2L)1/'_(377 + 1)K (185)

where R and L denote radius and length of the capillary, respectively. Appropriately rescaled, the

dimensionless form of the above equation is

Q* = R* " (Ap*)I/" (186)

The pressure field in the network was calculated by applying a mass balance at each node of

the network which allows us to calculate the flow irl each bond. Successive relaxation iterations

using under-rela-xation were found to lead to convergence for this highly non-linear problem. The

convergence criteria used for the iterative method wa_s of the order of 1 • l0 -s, both for shear

thinning and for shear thickening fluids. Results for the flow and conductance distribution have

been obtained both for shear thinning (n < 1) and for shear thickening (n > 1) fluids in a network

of size 21'21. These results were used to test the previous theories on EMA and critical path

analysis.

9.2.1 Effective Medium Averages

Yortsos [146] obtained the following analytical expression for the Effective Medium Approximation

(EMA) in the flow of power-law fluids in a Bethe lattice (a tree-like network)

fo ° - 1]dg = 0 (187)

( z 1)g
G(g)[g, + (((z - 1)" - 1)g_,)'/_

where G(g) is the distribution of the conductances of the bonds, gm is the effective conduct,_.nce,

the value of which we are seeking, and z is the coordination number of the network.

The above is an integral equation for gin, the solution of which allows for the average and tota]

conductances < g > and < gT >, respectively, to be evaluated

< g >= ((z- 1)"-- 1)l/ng m (188)

2

< gl >= < g > (189)
z-i
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Figure 97: Effective conductances for power-law fluids for a uniform pore size distribution in [0.9-

1.1]

In a previous publication, Canella et al [22] obtained a different EMA expression for power-law

fluids over a regular lattice that reads as follows

j[o ° )n _ 1]dg =

z/2gm

c(g)[(g+ (z/2- 1)gin
0 (190)

The two expressions (187) and (190) are clearly different. In order to test their validity, we

obtaJne, the respective vMues of gm along with numerical results from direct simulation in a square

lattice. Figures 97-99 show plots of the values of the effective con ',actances gm vs. the power-law

index n for various size distributions ranging from narrow to wide. Solid lines indicate values

of gm obtained from expression (190), dotted lines show the value_ calculated from expression

(187), while numerical values are plotted as crosses. For comparison purposes, three different bond

size distributions were used. As shown in Figure 97, the two analytical expressions give values

comparable to the numerical values for it wide range of n. To a certain degree, this is anticipated.

Expression (187) appears to be in a better agreement ilt comparison to expression (190) and also

has the proper trend. One shoul,i recall that (1_7)is a rigorous asymptotic t':MA expression for

Bethe lattices. Figure 97 sugg'ests that it may I_e also al)l_roxiIl_aloly valid fi_r l_¢_r¢_,lszll(,(tia a';

l_(J



Figure 98: Effective conductances for power-law fluids for _ uniform pore size distribution in [0.4-
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well. We point out that rigorous EMA results for general network for power-law fluids are not

currently available. The close agreement between EMA and numerical results is attributed to the

narrow size distribution of Figure 97. As this distribution becomes wider, the agreement between

analytical and numerical results deteriorates, particularly for low values of n (Figures 98 and 99).

Nonetheless, expression (187) appears to be a better choice, provided that the distribution is not

very wide. For wider distributions, EMA theories are not expected to be valid. Instead, a critical

path analysis is m,')re likely to be applicable. This is discussed below.

9.2.2 Critical Path Analysis

Based on the method of Katz and Thompson [65], Yortsos [146] extrapolated the concept of critical

path analysis to power-law fluids and derived the following macroscopic law

qa = klAk_ a-1)/_AP
mL (191)

where the constant A is related to the formation factor a/ao and the exponent n

A = [(a/ao)°'3s)¢°'l_] a-1 (7"84)l-"31+n(23"57t")*"
22a+1( 1 + 3n)n(3 + tn)2+t,, ] (192)

and for a 3-d network

ta _ 1.76+0.24/n (193)

In the above, kl is the Newtonian permeability

= 226 a-_ (19,1)

where lc is a percolation length obtained from mercury porosimetry. The concept of critical path

requires a wide conductance distribution such that substantial flow occurs only over a subset of

the pore network, which can be taken to be the percolation cluster. To test this approach, we

rearranged the above as follows

1[log kl + logc2]n + log B (195)log( q'_/ D ) = -_

where we have defined for simplicity
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Figure 100: Test of critical path analysis for a uniform pore size distribution in [0.4-1.6]

1

B = kll2Ap
cmL ' (196)

c --- (alao)°'3s¢ °'12, (197)

and

(7.84)l-n31+"(23.57t,,)t"

D = 22n+l(3n + 1)"(3 + tn) 2+t- (198)

By rearranging in the form of equation (195), we can directly test the critical path analysis by

searching for a linear relation between qnlD and n in a semilog plot. Figures 100 and 101 show

semilog plots of q"l D against the power-law index ii for two different distributions of bond sizes

obtained by numerical simulation in a 3-D 11"11"11 cubic lattice. As can be shown, the theoretical

prediction of a straight line in (195) is quite well satisfied for values of n that are not too small. We

do observe, however, a deviation from the straight line behaviour for small values of n. The effect of

tile pore size distribution is nel very significant, both Figures 100 and 101 displaying approximately

tlie same behavior. Indeed, despite the relatively narrow pore size distribution used in Figure 100,
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Figure 101: Test of critical path analysis for a uniform pore size distribution in [0.01-1.99]

the corresponding conductance distribution, which scales as r 3+lln, is still wide, thus satisfying the

conditions for the critical path analysis.

The different behaviour of single phase flow in porous media when the values of n are small

raises the possibility of a different kind of flow mechanism compared to that of critical path. In a

preliminary investigation, we examined in more detail the actual flow pattern as obtained from the

numerical simulation.

9.2.3 " Flow Patterns

Typical results of single-phase flow in tile network for various values of n are shown in Figures 102-

105. In all these simulations, fluid flow occurs from left to right at a constant pressure difference.

The two boundaries are held at a fixed pressure, with periodic boundary conditions applied to

the lateral two boundaries. In the Figures, black color represent the maximum flow rate, while

white color squares correspond to little or no flow through the bonds of the network. Only the flow

through the bonds is shown, flow through the node connecting two bonds depicted ill white. Shades

between black and white indicate fl_)w rates distributed proportionately betweeen a maximum and

zero respectively. In ali plots, a uniform distribution of bond sizes in tile interval [0.01-1.99] was

l,',O



Figure 102: Flow Pattern for n--I

used.

Figure 102 shows the flow of a Newtonian fluid (n = 1). We observe that the flow is distributed

over the entire network, and we may identify a connected cluster, resembling a percolating cluster,

through which most of the flow is taking place. Indeed, there exist empty pockets (holes), where

flow is very small and bonds are not conducting. Similar results were also obtained for n=0.8

to 0.4 (not shown), indicating that shear thinning fluids in this range of power-law index flow

through the network much as expected from the critical path theory. It should be pointed out,

though, that more empty pockets appear in the network as the value of n decreases. A typical

example of this flow distribution obtained when n=0.2 is shown in Figure 103. In this case, tl_e

flow occurs only through a limited network of connecting bonds. We n_ay identify Iar_:, eml)ty

1_1



Figure 103: Flow Pattern for n=0.2
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FigureI04:Flow Patternforn=0.07

pockets,where no flowoccurs.This isstillin accordancewith the theory.At smallervaluesof

n, "_heconductancedistributionisverywide and flowoccursonly through a smallsubsetof the

percolatingclustercorrespondingto thehighestconductingbonds.The subsetbecomes smalleras

n decreases[13,14].We observea more pronounced effectwhen n=0.07 (figure104).In thiscase,

the entireflowoccursthrough a verysmallnumber ofconnectedbonds. The remainingnetwork

participatesverylittleto flowand actslikean empty pocket.Clearly,the applicationofeffective

medium theorieswould be fruitlessinsuch situations.

In the above,the key conceptisthe existenceof a criticalpath,which in turnrequiresthat

conductancedistributionsare wide enough. Sincethe conductanceisrelatedto the bond size

through g _ r3+l/n, it follows that such a hypothesis is satisfied better as n decreases. Nonetheless,
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Figure 105: Flow Pattern for n=5
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shear thickening fluids also qualify for the same critical path analysis. Figure 105 shows tile

flow pattern for a shear thickening fluids (with n = 5), where the flow distribution resembles tile

Newtonian case (n = 1).

The above confirm quantitatively the validity of the critical path analysis, particularly for shear

thinning fluids. When n becomes very low, however, the application of the theory is questionable.

This was already anticipated in [146]. Additional research is necessary in order to understand the

behavior in this low n range. In fact, because of the close similarity of the flow at small n with the

flow of Bingham plastics, a common treatment of these two cases may be necessary. We hope to

report on this in future publication.

9.3 TWO-PHASE FLOW

With the increasing application of non-Newtonian fluids in EOR processes, it is important to

develop an understanding of pore level displacement. At present, very little is available in this

area, most of the studies, concentrating instead on phenomenological description. To remedy this

situation, we performed computer simulations at the pore level, involving a non-Newtonian power-

law fluid displacing a Newtonian fluid. This displacement was studied under constant pressure

conditions across the network and for a drainage process. In modeling the displacement of the

immiscible Newtonian fluids through the network, we have used the following assumptions [1.5]

(i)Volume calculations apply to pore bodies only, the pressure drop occuring in pore throats.

(ii)Throats are filled by either invading or displaced fluids, while bodies may contain both fluids.

(iii)The capillary pressure in a throat is inversely proportional to the tube radius, while the capillary

pressure drop in a node is negligible. (iv)Poiseuille's law for the flow rate Qij across the bond

connecting adjacent nodes i and j for a Newtonian fluid reads

Qii=  R ;(Pi- Pi)
81_Lij = gij(Pi- Pi) (199)

where Pi is nodal pressure, Rii and Lij are the radius and length of the bond respectively and # is

the viscosity of the Newtonian fluid. ]_br the non-Newtonian power law fluids, the above reads

-o(3n+'_)/nn(pi_ pi)l n
Q_J = "'_ij = gijAP_j/" (200)

As the fluids are incompressible, the following mass balance applies
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Q_j = 0 (201 )
J

We can calculate the pressure field by using the iterative method described in the simulation oi

single-phase flow, except that we use a combination of linear and nonlinear pressure drop equations,

depending oil the type of fluid present in the bond.

Initially, the network is occupied by the Newtonian fluid. A non-wetting, non-Newtonian fluid

is injected through the left side of the 2-D network, held at a fixed pressure. Fluid escapes throug}l

the right side of the network, also held at a constant pressure. The capillary pressure condition is

applied to determine when a particular bond is invaded. The node saturation is updated each time

by using the above equations for Qij. In time At, the nodal saturation Si(t) increases following

Si(t + At) = Si + AtVi _ Qij (202)
J

where _,'_is the volume of node i. The time interval At is calculated such that only one node is

filled at each time step. For the next time step, the above calculations are repeated and the flow

of the two immiscible fluids is modelled.

Preliminary results were obtained for immiscible displacement at a fixed pressure difference for

two different values of the power-law index. Figure 106 shows a sequence of the interface motion

for the case of a shear thinning fluid (n=0.2). lIere 1 and 0 refer to pores occupied by invading and

initial fluids, respectively. _Ve observe significant fingering, trapping and bypassing. These results

are expected based on the previous flow patterns of single-phase flow (Fig. 102-105). Indeed, one

would anticipate that the shear-thinning fluid would show a pronounced tendency for fingering,

selecting a very narrow path. The same is observed in Figure I06. To some degree, the pattern is

reminiscent of flow distribution in a single pha,se flow under shear-thinning conditions.

On the other hand, the opposite picture develops for the shear-thickening case (n=2). Figure

107 shows corresponding results. It is observed that the interface is quite compact, the front moving

with a small amount of trapping at the indicated capillary number.

Work is currently in progress in order to understand the particular rnachanisms wllich lead to

the features of these displacement processes.
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Figure 106" Simulation of drainage for n=0.2 at three different times (Nc_:0.03)( 1 denotes injected

_nd 0 denotes displaced fluids)
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Figure 107: Simulation of drainage for n=2.0 at three different times (Nta=0.03)(1 denotes injected

and 0 denotes displaced fluids)
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9.4 VISCOELASTIC EFFECTS

Tile above were confined to fluids of power-law type where other elasti(, effects were s_lppr(!ss(',l.

IIowever, shear thinning fluids used in EOR applications rarely exhibit inelastic chara('teristi_'s.

Most such fluids do exhibit shear thinning but in addition they also display extensional viscosilv

effects. In our analysis, we have neglected such issues. Complications, however, are certail_ t_,

arise when the pressure drop in porous media is large enough for extensional viscosity ell'cots lo

be importaut [61]. Indeed, Jones and Walters [61, 62] have reported that above a critic;_l st,J of

conditions, a significant increase in the flow resistance in a porous media is observed. Tl_is ]_as be(.,_l

attributed to the high extensional viscosities, which are found in many dilute polymer solutions

at moderate to high strain rates. It is obvious that the question of extensional viscosity, would be

important near the wellbore, where strain rates are the highest. Moreover, extensional viscosity

becomes important whenever the flow of non-Newtonian fluids occurs through geometries such

that the crosssectional area is not uniform. This section sumraarizes the pertinent literature on the

su bject.

Typical porous media consist of converging-diverging geometries, which are likely to contribute

to the overall pressure drop due to the generation of extensional flow. It is important, therefore, to

understand the critical conditions at which extensional flow can be significant. Jones and Waiters

[61] studied both extensional as well as shear flows for the determination of the rheological properties

of very dilute aqueous solutions of Xanthan Gum and Polyacrylamide, both of which are oi"potential /

use in I!_OI{..For polyacrylamide solution, a critical strain rate region was identified, beyond whicl_

extensional viscosity effects are likely to be important for practical polymer flooding. Figure 108

sllows tl_e general flow behaviour of viscoelastic fluids in geometries which can induce extensional

viscosity' effects. Critical flow rates between 0.02 to 0.4 ce/see were reported based on the type of

geon_etries shown in Figure 109. The corresponding Reynolds numbers are quite low and range

between 0.0d to 0.06. In contrast, Xanthan Gum solution, wlficl_ is both shear thinning and tel_siolt

tllinning 11as an extensional viscosity behaviour which is different from that of the higl_ molecular

weig,llt polyacrylarnide.

III exmnining tile flow of non-Newtonian elastic fluids, Boger [16] pointe(l ()111,thai vortex ell-

I_ai_c,,n_ont in linked \vitll an increased pressure loss througl_ tile co_tra(-tioll r('giol_, l lil_(lin_z a_(1

Walt,¢,rs [11] ca rrie(I ou! a study to measure pressure (trops in contraction flow _(,()motrios h)r l ii,,
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determination of the extensional behaviour of polymer solutions. The flow rates used during tl-2ir

study were in the range of 10-r - 10-4m3/s. They reported that Boger fluids (which are highly-

elastic, constant-viscosity non-Newtonian fluids) displayed vortex enhancement in axisyrnmetrical

contraction, but not in plannar contractions, while aqueous solutions o_"polyacrylamide exl, ibited

vortex enhancement, in both these geometries. On the other hand, Evans and Walter [42] carriod

" out experiments with a wide variety of geometries to examine the flow of aqueous polyacrylanlide

solutions ,rod reported that the flow characteristics in contraction flows are difficult to generalize

from one type of contraction to another, or from one type of non-Newtonian fluids to another. Durst

[40] studied porous media flows of dilute polymer solutions and showed that the small addition of

high molecular weight polymers to a Newtonian solvent trigger pressure drops if the flow rate ex-

ceeds an onset flow rate corresponding to a critical Deborah number of the porous media-polymer

solution matrix. The critical Deborah number was identified as 0.5 ?r, that study.

Another important viscoelastic effect identified is the Trouton ratio, given by [61, 62]

,TE(g) (203)TR =

where 7lE is the extensional viscosity based on the stain rate g and '1 is the shear viscosity at the

shear rate _t. For Newtonian fluids, the Trouton ratio is constant (Tri = 3), wkereas highly-elastic

fluids are noted for having high TR. Jones et aJ [62] reported that the Trouton ratio increases with

increase in strain rate both for a Boger fluid and for an aqueous solutions of polyacrylamide at

constant shear viscosity.

The above studies indicate that extensional viscosity may contribute significantly to the overall

pressure drop for viscoelastic fluids in convergence-divergence flow geometries, even at low Reynold

numbers for viscoelastic fluids. For this reason, it would be worthwhile to incorporate the associated

pressure dlop from convergent-divergent porous medium models in order to identify the contribution

of extensional flow to the overall pressure drop. This work is currently underway.
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SUMMARY AND FUTURE WORK

Our work on network models to describe vapor-liquid flow is near completion. To test al ld

validate the approach, experimental flow visualization is planned. Upon the satisfactory match

of theory and experiment, efforts will be taken for process scale-up, in which effects of tempera-

ture gradients on the growth of the vapor (steam) phase and relative permeability effects will be

particularly considered. In parallel, we shall modify the existing code to describe steam injection.

The experiments on steam injection in ttele-Shaw cells and micromodels identified several inter-

esting phenomena regarding the interplay between steam injection, condensation, frontal stability

and the viscoelastic response of heavy oils. Our subsequent research on this subject will involve

the analysis and modeling of these observations. We shall proceed to investigate the steam front

dynamics in both Hele-Shaw and p._rous media geometries. Particular attention will be paid to the

rheology of heavy oils in porous media, a subject that has not been adequately addressed previously.

The work on pore level modeling will be coupled with our continuum models of both concurrent

and countercurrent flow. Process scale up will be attempted in order to understand in detail the

origin of the capillary and permeability characteristics of macroscopic vapor-liquid flows. Effects of

heterogeneity will be further explored, particularly as the latter affects frontal displacement. This

work is also expected to enhance our understanding of the onset of nucleate boiling, a process still

incompletely understood. Finally, we plan to explore the solution of various problems related to

the injection of steam from horizontal wells and the concommitant problems of gravity drainage.

Reservoir heterogeneity will be further explored in the continuation of our work on the represen-

tation of fracture networks using fractal geometry. We shall p_:rsue the development of diagnostic

methods based on multiple wells and interference testing. In parallel, investigations will continue

on the understanding and the modeling of steam injection in fractured systems. Experimental

studies will be conducted for steam injection in the micromodel geometries taken to represent a

fracture-matrix element. Fhe focus of this work will be on steam displacement mechanisms in

fractured reservoirs. Additionally, we shall proceed with scale tap, where the large scale description

using fractals will be coupled with the pore-level analysis.

The development of a rigorous framework for the description of flow processes under the as-

sumption of VFE has enabled us to model various EOR processes. An important application in the

present context is steam injection. Various models of steam injection have appeared in the litera-
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ture, typically under severe simplifying assumptions. The availabilitv of our VI:E fralll,,work caT_

lea.d to tile proper formalism and to the development of more appropriate models where many of ll_e

previous assumptions can be relaxed. In particular, effects of !mterogeneily and gravity segregaliol_

will be probed. In parallel, we shall investigate the properties of simple systems, such a,s one-I_l_as_'

miscible and two- phase immiscible flow under VFE conditions, to determine lhc behavior of l]le

system obtained, particularly whether it admits chaotic solutions or not and how does it lead 1_,

simplifying average models, such as the Koval, Todd-Longstaff, and Fayers approximations. Tllis

research is necessary for a better understanding of viscous fingering in unstable displacement, a

subject of interest to heavy oils.

The final part of this work involves investigations on chemical additives. Previous efforts have

been in the area of foam formation and propagation. At present, work needs to be done to interpret

some of the previous experimental findings in the area of foam formation. Work is under way to

develop a mechanism of foam formation in a pore network, using recent advances in the field.

Experimental work is also planned to test these hypotheses using micromodels. Because of the

similarity of foam flow with the flow of Bilagham plastics, we plan to continue our previous study of

non-Newtonian fluids by concentrating on shear-thinning behavior and on the flow of viscoplastic

fluids. In addition, in view of their possible relevance to the rheology of heavy oils, viscoelastic

effects in porous media flows will be studied.



PUBLICATIONS

The following publications have resulted from this research during tile period report('_[:

1. Satik, C., and Yortsos, Y.C., "Percolation Models for Boiling and Bubble Growth in Porous

Media", paper presented at the i991 ASME Annual Meeting, Atlanta, GA (Dec. 4, 1991).

2. Satik, G., and Yortsos, Y.C., "Simulation of Pattern Formation and Percolation Using Frac-

tional Brownian Statistics", paper presented at the 1991 AIChE Annual Meeting, Los Angeles,

CA (November 20, 1991).

3. Kong, X., Haghighi, M., and Yortsos, Y.C., "Flow Visualization of Steam Injection in ttele-

Shaw Cells", paper presented at the Heavy Oils and Tar Sands Symposium, Lexington, KY

(Nov. 14, 1991).

4. Yortsos, Y.C., "A Theoretical Analysis of Vertical Flow Equilibrium", paper SPE 22612,

presented at the 66th SPE Annual Fall Meeting, Dallas, TX (Oct. 6-9, 1991).

5. Acuna, J., and Yortsos, Y.C , "Numerical Construction and Flow Simulation in Networks of

Fractures Using Fractal Geometry", paper SPE 22703, presented at the 66th SPE Annual

Fall Meeting, Dallas, TX (Oct. 6-9, 1991).

6. Zeybek, M. and Yortsos, Y.C., "Interface Dynamics in Parallel Flow In Hele-Shaw Cells", J.

Fluid Mech., in press (1992).

7. Stubos, A.K., Satik, G., and Yortsos, Y.C., "Critical Heat Flux Hysteresis in Vapor-Liquid

C,,unterflow in Porous Media", Int. J. Heat Mass Transl., in press (1992).

8. Stubos, A.K., Satik, G., and Yortsos, Y.C., "Effects of Heterogeneity on Vapor-Liquid t?our_-

terflow in Porous Media", Int. J. Heat Mass Transf., submitted (1991).

9. Chang, J. and Yortsos, Y.C., "Effect of Capillary tteterogeneity oil Buckley-Leverett Dis-

placement," SPERE, in press (1992).

10. Yortsos, Y.C., Satik, C.; Bacri, J.-C., and Salin, D., "Large-Scale Percolation Theory of

Drainage", Transport in Porous Media, in press (1992).
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