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ABSTRACT

The study of vapor-liquid flow in porous media continued. Three aspects were addressed:
(¢) The further development of percolation and pore network models for phase change (boiling)
in porous media; (ii) Visualization of steam injection in Hele-Shaw cells: aad (#ii) Macroscopic
modeling of countercurrent steam- water flow in porous media.

We analyzed the liquid-to-vapor phrse change in single-component fluids in porous media at
low superheats. Conditions typical to steam iniection in porous media were taken. We examined
nucleation, phase equilibria and their stability and the growth of vapor bubbles. Effects of pore
structure were emphasized. It was shown that at low superheats, bubble growth can be described
as a percolation process. A modification was also proposed in the case of spatial temperature
gradients, when solid conduction predominates.

Visualization experiments on steam injection in Hele-Shaw cells continued. Both synthetic and
natural heavy oils were used under a variety of conditions, including effects of gravity. The ex-
periments were conducted at low pressures. The results demonstrate the intreplay between steam
injection, steam condensation, viscous fingering, heat transfer and steam distillation effects. The
experiments reveal that steam fronts are neither smooth nor flat, but undergo constant rearrange-
ment as a result of condensation and injection. These dynamics are substantially different from
a typical immiscible displacement. The injected steam was found to follow the path of condensed
water, which set the general fingering pattern. A viscoelastic response of the displaced heavy oil
was also identified.

The macroscopic modeling of countercurrent vapor-liquid flow also continued. Based on a
continuum cescription, the effect of permeability heterogeneity was analyzed. It was found that
the capillary heterogeneity induced acts as a body force that enhances or diminishes gravity effects.
Selection rules that determine tiic particular steady states reached in homogeneous, gravity-driven
heat pipes were formulated. It is shown that the two-phase .. ne terminates only if a substantial
increase in permeability. in the direction of increasing depth. occurs somewhere in the medium.
Weak heterogeneity affects only slightly gravity-driven flows. but strong variations in permeability
may give rise to substantial capillary effects.

Sabstantial efforts were made in the area of reservoir heterogeneity. These can be classified in

two categories: (1) Studies related to fractured systems and (:7) Parallel flow in long and narrow



Teservoirs.

Experimental studies were conducted to classify the displacement behavior in model systems.
We considered a glass micromodel taken to represent a fracture separating two matrix blocks.
While the uitimate goal is to studyv the effect of steam injection, it was realized that even simpl-.
immiscible displacement in such systems is poorly understood. We carried out a series of primary
imb:bition, primary drainage and secondary imbibition experiments for a variety of mobility ratio
and capillary number values. The flow mechanisms pertaining to the various conditions were
classified. Conditions for the penetration of the matrix block were derived.

In the same category, we investigated the numerical construction of fractal networks of fractures.
The method is based on the IFS technique and allows for great flexibility in the development of
patterns. Numerical techniques were developed to simulate unsteady single-phase flow in these
networks. It was found that the pressure transients behave according to the theoretical predictions
provided that there exists a power-law in the mass- radius relationship around the test well location.
Otherwise, finite size effects become significant and interfere severely with the identification of the
underlying fractal structure.

Regarding fluid flow in long and narrow reservoirs we performed a theoretical analysis of the
Vertical Equilibrium assumption. The latter is often applied to the modeling and displacement
of various flow processes in porous media. However, the existing methodology is rather intuitive.
In our work, we developed a rigorous asymptotic analysis, based on which a series of models are
obtained. In the absence of strong gravity effects, we generalized previous works on immiscible and
miscible displacements. When gravity is strong, such that fluids become fully segregated, conditions
for flow segregation were proved and previous approximations were justified and generalized. Effect:
of capillarity and transverse dispersion were also included.

In the second study related to parallel flow, we considered the dynamics of motion of interfaces in
parallel flow when viscous forces predominate. The particular application involves immiscible fluids
in a Hele-Shaw cell. The evolution of disturbances on the interface was studied both experimentally
and theoretically. It was found that such interfaces support wave motion. the amplitude of which
for long waves is governed by the celebrated KdV equation. The waves are dispersive provided that
the fluids have different viscosities. Experiments conducted in a long and narrow Hele-Shaw cell

appear to validate the theory for both the symmetric and the non-symmetric cases.
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Finally, work continued ir: the area of additives for mobility control. This year, we completed the
experimental study on foam propagation in porous media. A detailed report and a PhD Thesis were
published on this subject. Because of this availability, they will not be presented in this volume.
Work on foams currently continues. We also extended our previous study on non- Newtonian fluid
flow in porous media by using computer simulation to test theoretical predictions on the effective
permeability of power-law fluids. It was found that the critical path analysis can be effectively used
to model the permeability provided that the power law exponent is not too small. Preliminary work
is also reported on the properties of the displacement of a Newtonian fluid by a non-Newtonian
fluid and the effects of rheology on the displacement. Rheological effects are important on their own
right, but also because many heavy oils of interest to this work are likely to have a non-Newtonian

behavior.
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1 INTRODUCTION

This report covers work performed in the area related to the physicochemical factors for the
improvement of the oil recovery efficiency in steamfloods. In this context. three general areas are
studied: (¢) The understanding of vapor-liquid flow in porous media, whether the flow is internal
(boiling). external {steam injection) or countercurrent (as in vertical heat pipes). (it) The effect of
reservoir heterogeneity, particularly as it regards fractured systems and long and narrow reservoirs
(which are tyvpical of oil reservoirs). (1:1) The flow properties of additives for the improvement of
recovery efficiency, in particular the properties of foams.

The study of the mechanisms of vapor-liquid flow reported here involves all three research
tools. analysis. computation and experiments. We have focused on pore level modeling using
pore networks and on flow visualizatiorn using Hele-Shaw cells. Questions that need to be answered
include the following: to what degree the dynamics of steam-water or steam-oil interfaces differ from
a typical isothermal, immiscible, two-component displacement? and how do temperature gradients
and heat transfer affect the displacement pattern? Pore network simulation of moving interfaces
and visualization experiments, as described in Chapters 2 and 3 of this report, help provide some
insight on these questions. Ultimnately, we aim at scaling up pore network level phenomena to
mode] vapor-liquid flow at the macroscale. It is for this reason that the simnple theories of Chapter
2, such as percolation and gradiert percolation or other variations, may be of great utility.

Despite the apparent simplicity of the geometry, Hele-Shaw cells provide a great deal of infor-
mation on the dynamics of steam- liquid interfaces. Chapter 3 describes our efforts in this direction.
During the past vear we experimented with a variety of fluids and conditions. An important, un-
expected result was found owing to the viscoelastic behavior of the various heavy oils used. We are
in the process of understanding this behavior. Current work also involves the use of glass beads in
a packed Hele-Shaw cell in order to examine effects of geometric disorder.

In parallel, we are studying macroscopic flows, particularly countercurrent steam-water flow.
In view of the potential of horizontal wells in thermal recovery. countercurrent steam-water flows
are likely to be of importance. Prototypes of such behavior are heat pipes. In fact. a heat pipe
description is typicallv used to represent boiling in p~rous media. Despite their significance, how-
ever. many important questions have not been answered. By introducing permeability and capillary

gradients. we have formulated a theory presented in Chapter 4 based on which various flows are
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analyzed rigorously. We classify the various emerging regimes and propose rules for the selection
of steady- states.

The second important area of study in this work is reservoir heterogeneity. We are particularly
interested in fractured systems, as well as in general, macroscopic (field) scale heterogeneity effects.
While our ultimate interest is on steam displacement, we have realized that any meaningfui progress
requires that simpler, immiscible, isothermal displacement be analyzed first, particularly as it
regards fractured systems. This is the reasen that we proceeded with simple imbibition and drainage
studies in the micromodel fracture gecmetries described in Chapter 5. We should point out that
preliminary steam injection was indeed performed in these micromodels. However, a thorough
analysis must await the successful resolution of the isothermal immiscible displacement. Injection
of steam will commence soon after the successful completion of these experiments.

For large scale application the characterization of the fracture network in fractured systems is
also necessary. It is well known that typical double porosity systems, currently used routinely, suffer
from the inability to describe more than two scales of heterogeneity. Experimental observations
suggest that many naturally fractured reservoirs are multiply fractured and contain a cascade of
length scales. Using the novel tool of fractal geometry, we have proposed the use of fractals for the
representation of networks of fractures. Chapter 6 describes our efforts in the past year. We have
developed a novel technique for the synthetic construction of such networks and for the numerical
simulation of single-phase flow. Based on the progress to be made in the fracture-block interaction.
as described in Chapter 5, we hope to be able to provide a simulation of steam injection in fractured
systems in the near future.

In relation to reservoir heterogeneity, we have also addressed the issue of flow in long and narrow
reservoirs. This configuration has been used often in practice for the development of pseudofunc-
tions, under the common assumption of Vertical Flow Equilibrium. Despite its success, however,
it has lacked a fundamental justification. Ve embarked in a study of this problem in order to
provide the formalism that will enable the extension of the approach to many EOR processes. such
as steam injection. Chapter 7 provides the details of this approach. In the same context, we have
completed our work on the parallel flow of two immiscible fluids. The work is both experimental
and theoretical. We have studied the dyvnamics of lateral interfaces and found that they support

wave motion. Chapter 8 describes the results obtained. As it addresses primarily viscous coupling
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effects, the analysis should be also of interest to fully developed viscous fingers.

The final area of our work described in this report pertains to the injection of chemical additives.
Over the past several years we have been studying the flow propertics of foam. This eflort has
culminated with the completion of a Ph. D Thesis on experimental aspects of foam flow. Work
on foam flow continues in an effort to interpret and to extend the findings of the experimental
part. In parallel, we continued our research on the flow of non-Newtonian fluids in porous media.
In addition to their generic interest, non-Newtonian fluids are likely to model heavy oils. We
have alluded above to the novel behavior displayed in the displacement of heavy oils. Chapter 9
describes our research of the past year on the permeability of power-law fluids and on methods for
its estimation. Also briefly discussed are the properties of a displacement, where both Newtonian

and non- Newtonian (power-law) fluids are involved.
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2 PERCOLATION MODELS FOR BOILING AND BUBBLE GROWTH IN POROUS
MEDIA AT LOW SUPERHEATS

C. Satik and Y. C. Yortsos

2.1 INTRODUCTION

The liquid-to-vapor phase change in porous media is a process fundamental to many phenomena,
such as drying and boiling, and it is common to diverse applications, such as geothermal, enhanced
oil recovery and nuclear waste disposal. Despite its demonstr..ted significance, however, it is at
present poorly understood. With few exceptions, most of the available studies are of a phenomeno-
logical nature, relying on the conventional extension of Darcy’s law and on the use of relative
permeability and capillary pressure functions, typically borrowed from the literature on gas-liquid
displacement. Examples abound in the respective applications {119],[106],[37],[6]. Lacking, in par-
ticular, is the understanding of the interplay between phase equilibria and phase change, the degree
and rate of change of supersaturation, the heat transfer and the pore structure. The latter intro-
duces aspects different than for phase change in the bulk [121],[103],{102]. This is especially true
for porous media of moderate-to-low permeability, where capillary phenomena can be significant.
Although recent publications in the Russian literature peripherally touch on some of these
issues [123],[129],[70], concerted efforts to address various problems were made by Udell [135], who
attempted to describe vapor-liquid equilibria in porous media, and by Parlar and Yortsos [99],
who proposed a percolation model for steam-water relative permeabilities. Both approaches were
incomplete, however, in that the first largely ignored the pore structure, while the second neglected
any heat transfer or supersaturation considerations. It must be pointed out that the model of
Parlar and Yortsos [99] for drainage did indeed corroborate the experimental findings of Sanchez
and Schechter [116] for concurrent flow. Nevertheless, additional work is necessary to support their
findings and to describe the process for other flow configurations. Recently, Yortsos and Parlar [148)
made significant advances on the related problem of solution gas-drive. The system considered was
two-component, two-phase, with the bubble growth controlled by solubility, pressure decline and
mass transfer. The authors considered various aspects of the process including phase equilibria and
nucleation, and proposed a percolation model for bubble growth from many nucleation sites,

The work in [148] is the first to analyze systematically the bubble growth process. although



specific solutions were derived only for rather special cases. Since the two problems share many
common aspects we can apply a similar approach to describe the phase change and the subsequent
bubble growth of a single-component system driven by an imposed superheat. This forms the main
objective of this chapier. In the context of boiling in porous media, we will address equilibria of
vapor-liquid interfaces, issues of heterogeneous nucleation, the subsequent bubble growth and effects
of superheat and heat transfer. The analysis is intended to probe the validity of the conventional
approach. to derive constraints on its applicability and to illustrate growth patterns. A key element
in our models is the representation of the porous medium in terms of a connected (but uncorrelated)
network of pore throats and pore bodies of variable size. With the assumption of lack of spatial
correlations. we are in a position to take advantage of novel statistical tools, such as percolation
theory, to describe the growth process. This allows us to demonstrate clearly the difference between
bubble growth in a porous medium and that in the bulk.

Although a general analysis is attempted, specific results are obtained only for the case of low
superheats (slow growth). Under such conditions, expected to be valid for steam injection pro-
cesses in oil recovery or for geothermal reservoirs, temperature and pressure gradients are small,
thus relative permeabilities are only saturation (and history) dependent. As will become apparent,
nucleation effects significantly influence the macroscopic properties. We will illustrate two appli-
cations, one in which spatial temperature gradients are negligible and the heating is uniform, and
another in which heat conduction through the solid matrix dominates the distribution of phases.
Although prog.ess is made in both directions, significant work still remains to be done, as will be

pointed out below.

2.2 PHASE EQUILIBRIA IN POROUS MEDIA

We consider a vapor bubble in equilibrium with a liquid in a porous medium (Figure 1). We assume
that nucleation has ceased and that individual interface menisci in pores are spherical (although
macroscopic shapes are certainly not spherical). At conditions of equilibrium, temperature, liquid
and vapor pressures are all spatially uniform. Thermodynamics dictate that the Laplace equation

is satisfied, thus relating fluid pressures to the radius of curvature of any vapor-liquid meniscus
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Figure 2: Schematic of equilibrium and supersaturations

where v is the surface tension. For simplicity, we neglect Kelvin effects and assume that the
pressure in the vapor phase, Py, is equal to the saturation vapor pressure at 7. e.g., as given by
the Clausius-Clapeyron equation

Pv = Pyvo(TL) (2)

[t is worth pointing out that the importance of Kelvin effects has been exaggerated in the previous
literature (e.g. [135],{99]). In a recent study [118], using a conventional macroscopic description we
have shown that. except for very tight porous media (with permeability on the order of microdar-
cies), or for very low liquid saturation values, Kelvin effects are generally of secondary significance.

Phase change and phase equilibria in a porous medium may be schiematically interpreted as in

Figure 2. The system.initially in the liquid state (point A). is slowly hicated at constant pressure.
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until the equilibrium curve is reached (point B). Further increase in temperature leads to the
superheat AT = T, — Tyar, where Ty, is the saturation temperature at P, In a liquid in the bulk,
the appearance of the first bubble theoretically occurs at the onset of homogenous nucleation, which
requires substantial amounts of superheat. In a porous medium, on the other hand, the onset of
phase change is facilitated by heterogencous nucleation. Given that a bubble has formed (point
C), the pressure in the vapor phase at equilibrium is given by (2). Mechanical equilibrium of the
vapor-liquid interfaces in the porous media “bubble” (Figure 1) requires spherical shape menisci of

constant mean curvature Hy

Pyo(TL) - PL = 2vHo (3)

The RHS in the above is a measure of the capillary pressure and it is set by the porous medium.

Contrary to processes in the bulk, where unbounded growth ensues, pore walls in porous media
stabilize interfaces, thus vapor-liquid equilibria are possible. The stability of gas-liquid interfaces
in porous media for two-component, two-phase systems was summarized by Hirasaki et. al. [57].
It was shown that interfaces residing on converging pore geometries are stable, while these on
diverging geometries are unstable. Yortsos and Parlar [148] extended their analysis to account for
mass transfer by diffusion in the case of two-component, vapor-liquid systems. They found that the
stability of menisci on converging pore geometries is enhanced by mass transfer. Analogous results
should 4pply for the system under consideration here. In the following, we adapt the qualitative
part of their argument to show equivalent effects for the single-component, vapor-liquid system of
interest to bhoiling. The mathematical details are similar, but generally complex, and we refer the
reader to Appendix A of [148].

Consider a small perturbation in the curvature of a spherical, vapor-liquid interface located
in a converging pore element (from pore body-to-pore throat, Figure 3). For this interface to
advance, the mean cuvature must increase. For a constant liquid pressure, this requires an increase
in the vapor pressure, or equivalently, in the interface temperature. This increase sets, in turn, a
temperature gradient, and a concommitant heat flux away from the vapor towards the liquid, whicl
results in condensation. thus in a retraction of the interface to its original position. An equivalent
argument applies if the initial perturbation is in the oposite direction. One is led to conclude that

the equilibrium of a vapor-liquid meniscus in a conveging pore geometry is additionally stabilized
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Figure 3: Stability of a vapor-liquid interface in a converging geometry

by heat transfer and phase equilibria. This is not the case for a diverging geometry, where siable
equilibria are not possible, much like the case of vapor bubbles in the bulk. The existence of stable
interfaces in pore geometries is fundamental to heterogeneous nucleation, an issue to which we turn

next.

2.3 NUCLEATION

Nucleation processes in porous media are quite complex and there are still several questions that
remain unanswered. However, some reasonable progress has been made. It is evident that in the
majority of cases we can discard homogeneous nucleation as a plausible mechanism because of
its restrictive conditions of perfectly smooth and liquid wet solid surfaces, the absence of trapped
gases, and the unrealistically high supersaturations (of the order of several thousand psi for the
solution gas-drive example of Yortsos and Parlar {148]). All these conditions are not likely to be
met in many instances. Instead, heterogeneous nucleation is the mechanism likely to dominate the
phase change process.

Heterogeneous nucleation has been analyzed by Yortsos and Parlar [148]. who proposed a con-

ventional nucleation model. It is based on the assumption that there exist pore surface irregularitios
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Figure 4: Schematic of a nucleation site in a pore body

(cracks, scratches, pits), which are not liquid wet and which contain pre-existing or trapped gases,
that act as nucleation sites. For convenience in calculations, the sites were assumed of a conical
shape (Figure 4). Because of the premise of heterogeneous mechanism, the issue of nucleation rates
does not arise. Instead, sites are activated and a pore body is allowed to be occupied by vapor
when the vapor-liquid meniscus in the cavity loses stability. As shown below, this occurs when the
interface reaches the cavity mouth.

To examine the nucleation mechanism, we consider a hydrophobic conical cavity and evaluate
the variation of the radius of curvature of the liquid-vapor interface with the volume of the vapor
(Figure 5). Calculations of such configurations were made by Forrest [47). As previously pointed
out, stable interfaces correspond to configurations such that dr/dv < 0, i.e. the radius of curvature
decreases with an increase in the volume of the gas phase. Note that a negative radius of curvature
implies an interface concave to the liquid phase. ;From the schematic in Figure 5 it follows that
until the radius » reaches the pit mouth (and r = 1), the equilibrium state is stable, suggesting
that the vapor is confined in the cavity. When the cavity mouth is reached, however, a further
increase in the supersaturation (superheat) renders the equlibrium state unstable. The bubble

would grow in a non-equlibrium fashion. much like in the bulk, until its radius of curvature equals

[0
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Figure 5: Bubble radius-volume equilibrium for the hydrophobic cavity of Figure 4



the host pore body radius r,. Due to the pore wall constraints, further increase in the volume causes
a decrease in the radius of curvature. This step is also stable, although it may not necessarily be
an equilibrium one at the particular supersaturation (its radius may be larger than W), in which
case the bubble may further grow.

By contrast, a vapor bubble in the bulk liquid is in unstable mechanical equilibrium, that
enforces continuous growth or collapse. The fact that due to pore wall stabilization, a vapor bubble
can exist in stable equilibrium with a superheated liquid, is a major difference between porous media
and bulk. With W d:noting the cavity mouth radius, we conclude that the onset of nucleation of
a site occurs when

2y

Pyo(1L)- PL = W (%)

To express this condition in terms of the host pore body radius, we adopt from Yort.os and Parlar
[148] the geometric factor 8 = W/r,, which is the ratio of cavity mouth radius to pore body radius.
Given the latter, equation (4) expresses the condition for a pore body of a given size to nucleate
{be occupied by vapor). If 3 is assumed constant, larger pores are more likely to nucleate first.
Of course this may not necessarily be the case and, in fact, it is more likely that 3 is randomly
distributed. However, the assumption, of constant ;3 considerably facilitates the calculations, while
it does not detract qualitatively from the conclusions to be reached, particulz-ly regarding the
growth pattern. Of course, other expressions can also be used (see Parlar and Yv -tsos [98]).

[n the above, it was also assumed that no bubble detachment due to gravity occurs A condition
for the validity of the latter was obtained by balancing surface and gravity forces, [148]. For the
typical values listed in Table 1. we calculate that gravity-induced detachment will not take place

in any pore with size smaller than 571.59 /3um.

2.4 BUBBLE GROWTH

Having previously describea phase equilibria and nucleation, we may proceed to formulate hubble
growth in the pore space. The latter is controlled by surface, inertia, pressure and viscous forces.
the driving parameter being the externally imposed superheat in the liquid. For simplicity, we
consider first a single vapor “bubble” in an infinitely large porous medium otherwise occupied

by liquid i Fignre 1). In a later section, the model is extended to consider growth from muliiple



c, = 1.059 Btu/lbm/°F
H;' = 15pm

k = ldarcy

L, = 841.75 Btu/lbm
M = 18lb/mol

P; = 202.819ps:

T, = 383°F

ap = 6.7113 « 10~3ft2 /R
~ = 60.0 dynes/cm?

A, = 0.386Btu/h/ft/°F
£a=1

pr = 54.31 Ibm/ft®

¢ = 0.35

Table 1: Typical values of parameters
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“bubbles™. In the present context. “bubbles™ are not spherical, although individual menisci have

locally spherical shape.

2.4.1 Dimensionless Parameters

To discuss the growth process, the dimensionless groups that control the growth regimes are, first,
introduced. We follow Szekely and Martins [130] who studied the growth of a spherical gas bubble
in a supersaturated bulk liquid. Typical parameter values correspond to a steam injection process
for oil recovery and they are listed in Table 1.

As in Yortsos and Parlar [148], the variable ¢ expresses the importance of capillarity with

respect to supersaturation
& — 2’)‘ro (5\
T AP 2

where Hg is a reference mean curvature of the menisci. For the heat transfer problem of interest

here, we can alternatively use the imposed superheat AT to get

AT

= AT (6)

where
ki Tz -
AT =2 /HQ;P—L (7)

and

. = L. M (8
=5 )

Here. L,. M and R are latent heat of vaporization. the molecular weight and the ideal gas constant,
respectively. For the values in Table 1. AT"" = 0.33 °F. Depending upon the magnitude of AP
(or AT). growth is described by different regimes. At low superheat values, & is O(1) or larger.
Capillary-controlled growth occurs at #>0(1). in which case AP is of the order 29 Ho. The latter
can be significant for small permeabilities.

Another measure of bubble growth is the Jacob number

_ /7LC[,_\T

Ja (9)

pv L,

where pr. e, and py are liquid density, liquid specific lieat capacity and vapor density, respectively.

By using the ideal gas law and after some manipulation. the Jacob number can be related to the



superheat

AT
_ 10
Ja N (10)
where
AT = L KR (11)
prep T

and for the typical values of Table 1, AT*=6.204 °F. This is also inversely proportional to ¢

@l‘
Ja = 12)
Ja 3 (12)
where
& = (2vHo)(pLCy) i (13]
= (27 Ho) PLEP) P72 3)

Clearly, important parameters which control the magnitudes of of Ja and ® are liquid pressure and
temperature in the far field.

Finally, a measure of inertia forces is given by the growth rate parameter

Ja?
B=— 14
Ve (e
where
2
G = R°2 AP (15)
pLay

and where RBg and af are initial bubble radius and thermal diffusivity of the liquid, respectively.
Following Szekely and Martins [130], B <« 1 would imply heat transfer-controlled growth, while
B > 1 implies inertia-controlled growth. In our subsequent applications, Ja < 1, thus the growth
process is heat transfer-controlled only and inertia forces are, therefore, not considered. This is

certainly not the case in rapid bubble growth (flash boiling).

2.4.2 Governing Equations

To express the energy balance in the liquid-occupied space we use the dimensionless notation

Ty = T .
0__—-—-—-—AT s (1(1/)
aptJa -

T = R(z) S (]‘)
£= = (18]

Ity
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to find

.Ja(?"_ +vp.V8) = V%0 (19)
ar =
where
vy = FolL (20)
- aLJa

In the above, uz,r and t are liquid velocity, spatial distance and time, respectively, while T},

corresponds to the far-field liquid pressure. An energy balance at the vapor-liquid interface reads

_
T 9s

The energy balance in the solid obeys the heat conduction equation. In dimensionless form we

(21)

Vs

have

Ja%g = V3?0 (22)
where

0 = Lo~ Tt (23)

AT

and T and ¢ are the solid temperature and the ratio of solid to liquid thermal diffusivities, respec-

tively. At the solid-liquid interface, continuity of thermal energy yields
00 00

— = g 24
as ~ Hos (24)
where s is the ratio of solid to liquid conductivities.

At the vapor-liquid interface, and for low superheats, inertia and viscous forces are negligible

and the momentum balance simply reads

II=2an (25)
where
_ Py - P;, .
11 AP (26)
and
H
= — 27
n 7 (27)

where H is the mean curvature. Alternatively, II at the interface can be related to # by the
Clausius-Clapeyron equation. We note that at the low Re regime, fluid flow is described by Stokes

equation, which is commonly approximated for porous media by a Laplace equation,

vip=0 (2%)
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Appropriate boundary and initial conditions are
f=1 at £ — o or =20 (29)

and

vy =0 at £ — o (30)

The problem is, in principle, completely specified by the above. However, a full solution will
not be attempted here. Instead, some special, and quite limiting, cases are considered that allow

for a simpler description. In all cases described below low superheats are assumed.

2.4.3 Low Superheats

At conditions of low superheats. then Ja « 1, and both balance equations above reduce to the

Laplace equation, (provided also that Ja <« v),
V=0 (31)
vV =0 (32)

At such conditions, the temperature fields in both liquid and solid are quasi-static. This facilitates
considerably the analysis. Simple solutions are possible for two cases depending on the magnitude
of .

(a) When ®>0(1), capillary forces solely control the growth and the process is of the percolation
(ordinary or invasion) type, which has been well studied. The rules for the occupancy of pores by
the vapor phase given in Yortsos and Parlar [148] can be used with minor modifications. Percolation
(ordinary or invasion) growth patterns are applicable to quasi-static fields and the above are valid
only if the temperature increase rate is small, to allow for equilibrium to be established. Yortsos
and Parlar [148] developed a constraint for the case of pressure depletion in solution gas-drive
systems. It is straightforward to modify their result for the case of boiling in porous media. We

obtain the following condition on the heating rate

AT

—
[

Q< Ja? (33)

where
2]\.
7 = 5‘1 (34}
oay,
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and &4,k and ¢ are the dimensionless correlation length in the percolation process, permeability
and porosity. respectively. Taking Ja ~ 1072 and substituting AT” = 6.204 °F in the condition
above, gives Q <« 32.497 °F/day for percolation growth patterns to be valid. This constraint is
likely to be violated for typical, laboratory scale boiling processes where heating rates are generally
high. On the other hand, it is well within the limits of applications involving steam injection for
oil recovery or geothermal systems, where processes are slow and equilibrium can be reached.

(b) When & « 1, capillarity is not important, and in the absence of solid conduction, the process
isof the DLA (Diffusion-Limited- Aggregation) type. In this case, equilibrium states are not possible
and there is continous growth until full occupancy of the porous medium by vapor. Clearly, at least

for this case. classival concepts such as relative permeabilities need to be reexamined.

2.4.4 Moderate and Large Superheats

Before proceeding we should briefly comment on the case of larger superheats. Now Ja is O(1) or
larger. Under the condition B « 1, inertia and viscous forces are still negligible. Therefore, the
growth process is heat transfer-controlled, but now the temperature field is no longer quasi-static.
This problem is quite complex, requiring for its solution the consideration of both convection and
unsteady state terms. Finally, at very large superheat, Ja > 1, while also B >> 1, implying that
inertia controlls growth. This is the case of explosive growth. which is outside the present scope.

The above pertained to growth of a single “bubble™ in porous media. In the remaining, we shall
consider growth of “bubbles™ from multiple sites. as a result of the activation of many nucleation
sites. Growth from multiple sites was studied by Yortsos and Parlar [148] who modified ordinary
percolation in infinite Bethe lattices. Their results are in closed-form expressions. Here, we present
numerical results for the boiling case by considering the same percolation problem but in a square
lattice. The model in [148] was developed for infinite systems, where there is no depletion of
supersaturation. Here, we shall also consider the adiabatic case, where the available energy is
finite.

We should point out that an importaut difference with the solution gas-drive problem is the par-
ticipation of the solid matrix to transport. In general. three different regimes can be distinguished
according to the ratio of conductivities ( g = A;/Ap )

p# < 1 — where only the liquid is conducting



i ~ 1 — where both solid and liquid participate in the conduction
ft > 1 — where only the solid is conducting
Each of these three cases finds many applications. The solution gas-drive model in Yortsos and
Parlar [148] pertains to the first limit, where the solid conductivity is small and its participation to
heat transfer is negligible. Many boiling applications in porous media lie closer to the third limit,

with the ratio u as high as 10. To account f-- this, a variant of gradient percolation is developed.

2.5 PERCOLATION MODELS

We consider bubble growth from multiple nucleation sites corresponding to low superheats (or to
& ~ 1), where the growth process is of the percolation type. In this case, infinitesimally small AT
steps corresponding to a slow heating rate are imposed, such that the supersaturation is always
balanced by capillary pressure. Three cases are considered: The first case is slow, uniform heating
at an increased superheat, the second corresponds to adiabatic expansion, although at spatially
uniform temperature and pressure, while the third involves static vapor-liquid distributions in the
presence of a temperature gradient. Main objectives are to find the distributions of the vapor and
liquid phases in the pore space, for each process, so that classical continuum concepts, such as
relative permeabilities, can be calculated. This is, by no means, a trivial exercise. As previously
implied, the present models mostly address effects of nucleation on these properties.

We use both bond and site distributions. The rules for the activation of the nucleation sites and
the occupancy of pore space by the vapor are simple. Given a superheat AT = T — Tiq., pores

with throat radius
27Tsat

>R = ——
= pVLvA’T

(35)
are occupied by the vapor phase if they are already connected to vapor-occupied sites or to nucle-

ation sites. New nucleation sites are activated if the host pore bodies have a large enough radius

T>R.
=B

An important difference between this model and ordinary percolation is nucleation. Classical

(36)

percolation is recovered in the limit 8 = 1.

2.5.1 Ordinary Percolation with Nucleation

Simulation results are shown in Figure 6, for square (30x30) lattice network at thiree different
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Figure 6: Bubble growth in percolation from nucleation sites in a square latice at three different
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stages of growth corresponding to increasing superheats. Pore body and throat sizes were randomly
assigned from a uniform distribution. In Figure 6, gray denotes vapor-occupied sites, black denotes
nucleation sites and white denotes liquid-occupied sites. It is apparent that all vapor-occupied
pores are connected to a nucleation site. In this model of unlimited supply of supersaturation,
more nucleation sites are activated as the supersaturation increases. However, not all nucleation
sites have expanded, particularly at low superheats. Since no temperature gradients are considered,
no frontal structures (spatial gradients) develop. The predictions from this mode] are similar to
those from the analytical study of Yortsos and Parlar [148]. In particular, a critical supersaturation
exists for the onset of bulk vapor flow, and relative permeabilities can be calculated as a function
of the nucleation parameter 3. We refer the reader to [148) for details. Figure 7 shows relative
permeability results reprinted from [148).

Since the process is of the percolation type, the onset of bulk vapor flow occurs when an

“infinite” cluster forms, corresponding to the supersaturation
AP, = — (37)

where ry. solves

<
/ a(r)dr = pe (38)

dc
Here, ap(r) is the bond size distribution, and p. is the percolation threshold. The critical vapor

¢

saturation S, is obtained by adding to the “infinite cluster” the contribution of vapor-occupied
sites that are connected to nucleation sites but do not belong to the percolation cluster. It is
apparent that the latter value would increase as nucleation is more facilitated. Equivalently, the
relative permeability to vapor would decrease as the nucleation fraction increases. These features
are clearly evident in Figure 7. We should point out that when the ratio x = fiﬁ; is not zero it is
possible that although sufficient superheat is available for bond percolation, vapo: occupancy has
not yet occured, because of lack of nucleation sites (3 < k). Percolation then takes place when the
first site is nucleated, with superheat corresponding to the radius 874 maz, thus resulting into large
values of Sg.. Figure 8 taken from [148] shows this dependence.

Conditions for the validity of this model were developed above. As pointed out, this process

is a slow, spatially uniform heating of the liquid in the porous medium. Clearly, this is only an

approximation to the actual process. One possible modification regards the depletion of superheat.
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2.5.2 Percolation with Superheat Depletion

To model this process, we have simulated vapor growth by pressure reduction in an adiabatic system.
Contrary to the previous, the available superheat here is finite. Since vapor expands and displaces
liquid which leaves the system, the available amount of initial entalphy is constantly reduced.
Further growth can thus occur only by further pressure depletion. We must note that although
supeerheat is depleted, competition for growth among the various bubbles is still absent, because
of the assumption of uniform temperatures. Results are shown in Figure 9 for conditions identical
to the previous. At the end of the process, th . pressure has been reduced from 202.8 psi to 185 psi,
while the temperature reduction is somewhat less, from 383 °F to 375.9 °F. Although the amount
of supersaturation or superheat changes, one can nevertheless show that the growth pattern still
remains identical to the previous percolation type. This is to be expected, since spatial gradients
are not included. One concludes that consideration of finite volume and adiabatic conditions does
not change the previous results as far as flow parameters (e.g. relative permeabilities, etc.) is
concerned.

Both of the above were modifications of ordinary percolation, corresponding to the case where
solid matrix participation is of no relevance. The last section considers gradient percolation which

involves mainly heat conduction by the solid.

2.5.3 Gradient Percolation with Nucleation

A final modification involves the case where a fixed temperature gradient is assumed across the
sample. The assumption is that solid conduction dominates the heat transfer (x > 1), thus, a
spatial temperature gradient can be sustained, regardless of pore space occupancy. We make use
of the previous rules for vapor occupancy of a site, for both nucleation and growth. Note, however,
that fluid flow, particularly countercurrent flow, is not considered. This is a substantial limitation:
A temperature gradient in the vapor phase requires a corresponding pressure gradient, thus vapor
flow. At steady state, this must be counterbalanced by liquid flow in the opposite direction. We
are currently investingating the effects of this approximation in a study of heat pipes using pore
network models.

Allowing for a spatial gradient gives rise to gradient percolation. This concept has been in-

troduced in recent years as a variation of classical percolation. It is recalled that in ordinary
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percolation the probability for the occupation of a site is spatially uniform. For gradient percola-
tion, on the other hand, it is given by a specified function which is variable in space. This difference
substantially changes the pattern of growth from that of classical percolation. In particular, fronts
can be delineated.

Gouyet et al. [108] introduced gradient percolation in their study of diffusion in solids. They
used the compleruentary error function to describe the probability distribution in space, for two-
dimensional, square and triangular lattice networks. Using certain clustering and occupaticn rules,
they examined tue nature of the diffusion front created. They found out that this front is fractal
(with dimension 1.75), while the probability value at the mean position of this front is related to the
percolation threshold of ordinary percolation. In a subsequent study of 3-d cubic lattices, (Gouyet
et al. [109]) they observed significant differences between 2-d and 3-d simulations. In particular,
the shape of the density profile at the frontier changed. Furthermore, the probability density value
at the mean frontier position was different than p.. Nevertheless, many scaling properties were
found (Rosso et al. [52]).

Concerning bubole growth in porous media. when solid conductica predominates (u > 1).
the application of gradient percolation is appealing. At such conditions, the temperature field is
decoupled from the occupancy scheme, which it actually dictates. For application to boiling, we have
modified gradient percolation by adding bond statistics and nucleation effects. We consider uniform
size distributions for sites and bonds, and a linear temperature profile. The parameters affecting
the occupancy are pore and bond size distributions. the values of 3 and the imposed gradient AT.
Growth patterns for modified gradient percolation models are shown in Figure 10 for two different
values of the nucleation parameter 3. Gray denotes vapor-occupied sites, while black denotes the
interface which separates the infinite clusters of liquid-occupied sites and vapor-occupied sites. As
3 increases, more nucieation sites are available and this results in higher occupancy of pores by
vapor. This increase in 3 shifts the interface toward the liquid side. Comparison between Figures 6
and 10 shows that the two patterns are quite different. A steam front is clearly distinguishable
in the gradient percolation case. However, when spatial gradients are involved the definition of
continuum quantities becomes problematic. Further progress requires additional research which is

currently in progress in our laboratory.
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2.6 CONCLUSIONS

In this chapter we applied the general methodology developed by Yortsos and Parlar [148] for so-
lution gas-drive processes. to the case of boiling in porous media. Phase equilibria and stability,
nucleation, pore level microstructure and bubble growth were considered. At conditions of low su-
perheat where the temperature field is quasi-static, the growth problem was shown to be similar to
a drainage displacement process, with the addition of growth from activated nucleation sites. The
case of uniform heating was described using a percolation approach, under the constraint that the
heating rate must be significantly lower than 32.49 °F/day. Field cases relevant to steam injection
or geothermal processes may obey this constraint. If such conditions prevail, relative permeability
functions and critical saturation values can be employed in a modified form to account for nu-
cleation. To account for temperature gradients in case where conduction in the solid dominates
the heat transfer, and in the absence of flow, we have modified gradient percolation. Although an
improvement over the uniform percolation model, these modifications are still tentative. We are
currently involved in an effort to resolve many of the important issues left unanswered. including

the effect of the rate of superheat and the competition between nucleation sites for growth.
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3 VISUALIZATION EXPERIMENTS ON STEAM INJECTION IN HELE-SHAW CELLS

X. Kong, M. Haghighi and Y.C. Yortsos

3.1 INTRODUCTION

Flow visualization experiments have been successfully employed in reservoir engineering research
for many years [24, 33, 59, 137, 141]. Typically, they make use of transparent Hele-Shaw cells,
glass bead packs and glass micromodels. Although such geometries lack important 3-D aspects and
particularly they do not accout for effects of gravity in the case of a horizontal arrangement, they are
nevertheless valuable for the insight they offer on the micromechanics of the displacement. This is
particularly important for displacement processes in constricted pore geometries, where an accurate
description of the dynamics of the moving interfaces is paramount to a proper understanding of
the process.

Most of the visualization work has been done on simple immiscible displacements (drainage or
imbibition). A great deal of valuable information has been obtained regarding the various regimes
that govern these processes, such as percolation, DLA (Diffusion-Limited- Aggregation), and other
aspects of viscous fingering {76]. Studies with micromodels have been instrumental in identifying the
pertinent flow mechanisms, particularly in secondary imbibition. Some visualization experiments
with glass micromodels have also been carried out to study more complex phenomena, such as
solution gas-drive, foam propagation, condensing-gas drive and other applications (2, 25, 31, 94, 80].
An excellent recent summary can be found in [19].

Surprisingly. visualization of steamfloods, which constitute a major part of current EOR meth-
ods for heavy oil, has not been attempted to date (although a preliminary investigation was indeed
conducted in our laboratory several years ago). Reasons for the lack of success in this direction
:nclude the difficulties associated with an adequate control of the heat transfer and operational
problems at higher temperatures and pressures. In a some what related context, the application
of CT scanning to steamfloods in sandpacks was recently proposed with encouraging preliminary
results [34]. Flow imaging using CT scanning accounts for important 3-D effects. However, the
scale of resolution is still too large to allow for a meaningful pore-level analysis. although impor-
tant laege scale heterogeneity effects can indeed be detected. At present. direct flow visualization

appears to remain an essential and inexpensive tool for studies at the pore-level.

249



Even in the absence of heat transfer control, steam displacement visualization can be very
valnable. For example. while much wors has been done on steamfloods in laboratory cores and on
partly scaled models [36, 122, 125], the results obtained are typically of the input-output type and
provide very limited understanding of the interactions at the pore-level. A thorough investigation
of the latter is important for the validation of many premises used in current theories, for the
refinement and improvement of models, for instance those pertaining to relative permeabilities and
capillary pressure, and for process simulation. It should be pointed out that the current state of the
art in thermal recovery relies on the direct application of two-phase flow concepts from immiscible
displacement analogues [99], the validity of which, however, for condensing-evaporating drives is
quite questionable.

Motivated by the above, we have undertaken experimental studies with a main objective the
visualization of steam injection processes in Hele-Shaw cells and in glass micromodels. The study
of Hele-Shaw geometries is expected to shed light on the displacement of heavy oils by steam in
planar geometries. To some degree, this geometry parallels that of a fracture, hence the study
would also find direct application to fractured systems. More generally, flow in Hele-Shaw cells
provides many clues about flow behavior in porous media. It should be recalled that flow in
Hele-Shaw cells at low Reynolds numbers is potential and can be approximated by Darcy’s law,
which governs porous media flow, although in the absence of microstructure (“noise™). Hence,
Hele-Shaw studies of steamfloods offer a good approximation of condensing/evaporating flows in
“porous media” geometries. On the other hand, because of the lack of microstructure, which is
an integral part of porous media, the analogy between Hele-Shaw and porous media displacement
is also tenuous. This deficiency can be partially remedied by studies in glass micromodels, which
allow for effects of pore structure to be investigated in great detail. Such an investigation will be
reported in a future communication.

This chapter is organized as follows: First, a briel description of the experimental procedure
is presented. Results of visualization experiments are subscaquently discussed. Two different

geometries are analyzed, one horizontal and another vertical, in order to isolate gravity effects.
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3.2 EXPERIMENTAL

The Hele-Shaw cell used for steam displacement was constructed from pyrex glass. The cell was of
dimensions 24.5in.x12in.x.035in. and consisted of two glass plates of 1/2" thickness. Three types
of oil were used, a synthetic oil (Dutrex 739), taken as a representative of heavy oil. a mineral
oil, taken as a representative of light oil, and a Long Beach crude oil. The mineral oil used was
Newtonian, with a room temperature viscosity of 189 ¢p, while both the Long Beach crude oil and
the synthetic oil exhibited non-Newtonian behavior with a room temperature shear viscosity of
1.35 x 10%cp and 10%cp, respectively. The shear viscosity for Dutrex 739 was significantly reduced
by an increase in temperature [36]. A similar sensitivity was expected, but it was not measured.
for the Long Beach crude. Non-Newtonian rheology, although complicating the interpretation of
experiments, is certainly a prominent, although typically neglected, feature of heavy oils.

Variable water injection rates and temperatures were used, typically in the range 0.1-5 cc/min.
Injection temperatures fluctuated to within a few °F around a mean value of 250 °F. In most runs,
the injected steam was superheated. The Hele-Shaw cell was not insulated or otherwise equipped
with heat loss control, which occured by heat conduction through the glass to the surroundings. The
lack of heat transfer control certainly presents important problems that may affect the quantitative,
although not the qualitative, analysis of our results. A separate, but equally important, problem
regards the low injection pressure typically used (in order to prevent fracturing of the glass). We
are currently experimenting with ways to resolve both these problems. More than 30 runs were
conducted. Most of the experiments were run with the cells in the horizontal position. Effects of
gravity were investigated by tilting the cell at various angeles and also by carrying injection in the
configuration of a planar vertical cross-section. A schematic of the experimental set up is shown in

Figure 11.

3.3 RESULTS AND DISCUSSION

We shall discuss in the following two sets of experimental results pertaining to: (i) Displacement

in horizontal Hele-Shaw cells and (ii) Effects of gravity.
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Figure 11: Schematic of the experimental apparatus

3.4 DISPLACEMENT IN HORIZONTAL HELE-SHAW CELLS

We consider as base case the displacement of Dutrex 739 by steam at the rate of 3 cc¢/min and
an injection temperature of 230 °F. In the subsequent pictures, taken from a still videotape,
displacement is from left to right. One injection and one production ports were used. In the
colored pictures, red is the color of the original oil, and bright white is steam. Condensed water
typically flows between residual yellow oil films attached to the two glass plates and left behind
after water displacement.

Figure 12 shows the initial part of the displacement. Due to the rapid heat losses and the contact
with the initially cold oil, steam is shown to condense rapidly. Thus, the original displacement of
oil is by condensed water only. Because of the unfavorable mobility contrast, this displacement
is unstable {145] and produces viscous fingers in a manner very similar to the case of isothermal
displacement. although the overall pattern is slightly different. Nonetheless, repeated tip splitting
was observed, as is common with highly unstable displacement [58]. We point out that the pattern
laid by the advancing condensed water is of crucial importance, because it dictates the paths to

be followed by the injected steam. After a certain period of injection, a rather irreguiar steam
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Figure 12: Initial stage of displacement

zone is established near the injection port (Figure 13). Vapor and liquid phases can be visually
separated. Upon displacement of oil, liquid water is covered on both sides by yellow, residual
oil films which coat the glass plates. Upon contact with vapor, these films rapidly diminish in
thickness and eventually disappear, perhaps as a result of a steam distillation mechanism. A close
up of the stgam zone is shown in Figure 14. One can distinguish traces of what appear to be light
oil components. Even after the glass plates are clean, vapor and liquid can be visually separated
by the meniscus, the motion of which can be clearly followed.

Most interesting are the shape and properties of the steam front. We recall that in a typical
immiscible displacement in a Hele-Shaw cell, interfaces advance smoothly, provided that the plates
are smooth. This was indeed the case for the displacement of oil by the advancing condensed water
(Figure 15). The thin films of oil left behind are predicted from Bretherton’s theory for displacement
[49], which postulates that their thickness increase with an increas in the capillary number N, (=
qi /7). The dynamics of vapor-liquid interfaces are quite different. however. Typically, 1wo kinds
of water vapor-liquid interfaces were observed, a steam-oil and a steam-water interface (Figure 15).
The steam-oil front was almost stationary and moved very slowly (if at all). Disconnected and

trapped steam bubbles were frequently observed. By contrast. the steam-water interace was in a



Figure 14: Close-up of steam front
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Figure 15: Snapshot after water breakthrough

state of perpetual fluctuation, which eventually resulted into a net but slow advancement. This
was explained as follows:

The advancement of the steam front led to a rapid condensation of a sizeable part of the steam
sone. as a result of heat losses. Shortly therafter, this was followed by a rapid burst of vapor-
influx, which essentially restored to vapor occupation the previously condensed part. This cycle of
advancement-vapor condensation-vapor replacement was repeated continuously and appeared to be
the general mechanism for the growth of the steam zone. In no instance did we observe a smooth
frontal displacement, of the typical water-oil intersace. Also, in contrast to what typically assumed,
steam fronts were neither smooth nor “flat”, but they had a finger-like appearence, as they followed
the flow paths of the condensed water. This complex process is of course controlled by heat transfer,
vicosity reduction, injection rates and pressure, the end result being quite different than ordinary
Hele-Shaw displacements. Indeed, it is possible that condensation and vapor growth phenomena in
the above cycles are rapid enough for inertia effects not to be negligible. This complex mechanism
is currently under investigation.

Water breakthrough occurs when the fastest among the competing fingers reaches the produc-

tion end. Important observations during this period were the following: Steam flowed mostly along



Figure 16: Evidence of emulsification of oil

the paths connected to the production well. Water fingers connected to the steam zone that did not
breakthrough, occasionally became disconnected from the steam zone due to condensation events.
Flow of steam was not smooth but involved the condensation -advancement cycle. During this
process, substantial emulsification of the oil also occured (Figure 16). After breakthrough, a large
fraction of the oil produced was in the form of water emulsion. We suspect that emulsification
wag enhanced by the following rather unusual rheological response of Dntrex. Soon after water
breakthrough. the connected finger started to continuously thin, until it oeventually fragmented at
one or several points and lost connection to the producing port (Figure 17). A different finger
then started growing following a usual displacement process. until breakthrough of that path was
also reached. Soon after. the process of thinning commenced, once again, to follow the previous
route until disconnection and so on. These phenomena are not due to steam injection, but they
are attributed to the particular oil. as they were also observed during an ordinary waterflood.

A possible explanation for this behavior can be provided if we assume that Dutrex 739 is vis-
coelastic. Before water breakthrough, the fluid pressure is relatively high due to the high viscosity.
Upon water breakthrough, the oil responds to the resulting pressure decrease by expanding following

a relaxation. time-dependent process. This results into the thinning and shrinkage of the producing,
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Figure 17: Finger thinning after breakthrough

water finger until total disconnection occurs. The process is then repeated. This rough qualitative
argument explains the gross behavior observed, although for a more convincing interpretation, a
model is necessary.

A comparison between steam and cold water displacement is shown in Figure 18 for the same
mass injection rates. Typical finger patterns before breakthrough show the characteristic tip-
splitting. Upon breakthrough, the same response previously described sets in. Significant dif-
ferences with the steam injection runs involved the presence of residual oil films and the lack of
emulsification in the case of water injection. Effects of injection rate were also considered, by
carrying a steam injection run at the lower rate of 1 cc/min. As anticipated, the decrease in the
rate results into a smaller steam zone area, which did not propagate significantly far into the cell.
Otherwise, phenomena qualitatively similar to the previous were observed.

For comparison, the results of steam displacement of light (mineral) oil at the same rate of 3
cc/min and a temperature of 230°F are shown in Figure 19. Several significant differences with the
heavy oil were noted: The degree of tip splitting was considerably less, as anticipated due to the
lesser viscosity contrast in the light oil case. No significant residual oil films were detected in the

displacement by either water liquid or by steam. This observation was verified by the cold water
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Figure 19: Snapshot of mineral oil displacement by steam
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injection experiments also. In contrast to the heavy oil case, the steam front did not necessarily
follow the path of the condensed water fingers. Instead, the steam zone expanded almost uniformly.
This behavior can be attributed to the higher mobility of the light oil, and it is consistent with
currently available theories. The behavior of the mineral oil was Newtonian throughout the process.
Upon breakthrough, the water finger width remained essentially constant and provided the main
flow path for the injected steam.

Steam displacement of the Long Beach crude oil resulted into a behavior qualitatively similar to
the displacement of Dutrex 739. Severe fingering by condensed water (Figure 20), residual oil films
after waterflood (Figure 21), steam front oscillation, propagation of steam zone along the condensed
water path (Figure 21) and finger thining after breakthrough were all observed. It appeared that
the crude oil shared with Dutrex 739 a similar non-Newtonian rheology. A significant difference
was noted, however, regarding water vapor-oil interaction. The almost instantaneous removal of
the residual oil film upon steam contact, observed during displacement of Dutrex 739, did not
occur in the case of crude oil. Instead, a process resembling extraction of light ends (perhaps
steam distillation) set in at the vapor-oil interface (Figure 22). The extracted components did
not partition in the water phase, but were instead convected along with the fllowing vapor. The
extraction process, continued for the duration of the experiments and appeared to be a primary

mechanism for the recovery of the crude oil.

3.4.1 Gravity Effects

The next set of experiments investigated effects of gravity following two different geometrical con-
figurations, one with the Hele-Shaw cell tilted at a small angle with respect to horizontal, and
another with the cell rotated parallel to the gravity vector (vertical cross-section).

In the first configuration we probed effects of formation dip. Steam was injected from the
bottom (updip) or from the top (downdip). For updip injection, steam displacement occured
along a rather narrow strip, the density difference acting to destabilize the front. The oscillation
phenomena of the front were well pronounced and steam zone breakthrough occured in a short
time (Figure 23). In direct contrast, a flat and stable steam front was observed in the case of
downdip injection (from top). This front advanced very slowly, due to the heat loss, most of the

displacement occuring by the condensed water (Figure 24). Both these observations are generally
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Figure 21: A different snapshot of stearr zone displacement of Long Beach crude oil
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Figure 22: Close-up of steam zone during steam displacement

consistent with conventional theories on the effecy of gravity on displacement fronts.

In the second corfiguration we probed effects of gravity override, for both Dutrex 739 and Long
Beach crude oil steamfloods. The most significant difference with the prevrious involved the in-
terplay between gravity, condensation and heat transfer. Typically, the injected steam migrated
npwards to form a rather stationary steam zone. Condensed water flowed downwards in the di-
rection of a water finger at the bottom of the steam zone, which developed at the onset of the
experiment and displaced oil towards the production well (Figure 25). Most of the oil displacement
occured as a result of this mechanism, although the extraction process was also very much evident
(Figure 26). After water finger breakthough, steam flow ensued along the finger path, much like
in the case of horizontal displacement (Figure 27). As in the previous case, the non-Newtonian
response of the heavy oils eventually resulted into finger thinning. Now, however, when the con-
nection to the production part is lost. the steam zone at the top starts growing. Condensed water
creates a finger originating frop: the upper part of the steam zone. resulting into a displacement
zlong the top. in a mechanism similar to the horizontal case { Figure 283, After this finger reaches
breakthroush. the cycle sets on again and a different branch may be selected. The process continues

until the displacement iz completed. We ohserved that the *eam zone volume depands significantis
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Figure 25: Steam displacement in a vertical cross-section

on whether it is connected to a finger that has already reached breakthrough or not. In the former
case. due to the prevailing lower pressure, steam zone volume is much larger than when the water

finger is not at breakthrough conditions.

3.5 CONCLUSIONS

The preliminary experiments reported above have probed a part of the complicated process of
steam displacement. One of the most interesting results, common to all runs, was the unsteady,
almost flickering state of the steam front, and the mode of advancement by the cycle penetration-
condensation-restoration. This is certainly to be affected by injection rate, heat transfer and flow
mobilities. Our current work is aimed at the understanding of this process.

For the low pressure. relatively high rate conditions of our experiments, injected steam was
found to follow the path of the condensed water. The latter set the general displacement pattern.
which in the case of heavy oil was highly fingered. It should be evident, that this result is a
consequence of the particular combination of fluid flow and heat transfer in our experiments, thus
any extrapolation must be done with caution, We identified a rather unusual non-Newtonian

behavior for Dutrex T39. a chemical taken to represent heavy oiliand for Long Beach crude oil.



Figure 27: Snapshot after water breakthrough
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Figure 28: Steam gravity override

Regardless of the particular aspects of the response observed, one may reasonably conclude that
the non-Newtonian rheology of many heavy oils is likely to lead to similarly complex behavior. This
subject is further to be explored.

We have observed direct evidence of a steam extraction of oil components from a crude oil, a
process that has direct relevance to the oil recovery. Effects of gravity were also examined. While
the mode of injection (updip or downdip) was found consistent with currently available theories on
frontal displacement, the detailed visualization of frontal motion revealed additional aspects. In
particular, the growth of the steam zone in a vertical cross-section displacement was found to be
affected significantly from the condensation and flow phenomena ahead of it. Much of this behavior

is novel and requires further investigation.
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4 EFFECTS OF HETEROGENEITY ON VAPOR-LIQUID COUNTERFLOW IN POROUS
MEDIA

A. K. Stubos, C. Satik and Y. C. Yortsos

4.1 INTRODUCTION

Countercurrent vapor-liquid flows in porous media have been the subject of many recent studies due
to their relevance to geothermal processes, boiling, thermal methods for oil recovery and nuclear
waste disposal [126],[127),[136],{106],[38]. Of particular interest are steady state heat pipes driven
by gravity. The theoretical analysis shows that when the system is homogeneous, an infinitely long
two-phase zone of nearly constant saturation develops if the heating rate is low enough (below a
critical value). Furthermore, under the same operating conditions. two such states are predicted, one
coresponding to low liquid saturation (vapor-dominated, VD) and one corresponding to high liquid
saturation (liquid-dominated, LD). In a recent note [128], using the detailed analysis described in a
previous paper [118], we have proposed that the selection of the particular solution only depends on
the past history of the system. For instance, in boiling applications which involve bottom heating,
it is the LD branch that is followed. While, in the case of condensation of a superheated vapor (top
cooling), it is the VD branch that is selected. In either of the two cases, capillarity is necessary to
connect the constant saturation profiles to the subcooled or dry regions, respectively.

In practice, of course, all systems are finite and heterogeneous. The two-phase zone must
terminate at a finite location, thus, the “infinite” extent predictions of the heat pipe formalism
cannot hold indefinitely. Termination of the two-phase zone must be obtained by smoothly merging
the two-phase region with a subcooled liquid or a dry region, in the LD or VD cases, respectively
(otherwise, non-zero vapor and liquid fluxes would exist at the impermeable boundary of the
medium [128]). Although the various studies conveniently avoid further elaboration on this issue,
the implicit assumption is that this can be accomplished with the use of heterogencities. Analogous
problems arise in the gravitational stability of counterflow vapor-liquid systems, when a vapor-rich
region underlies a subcooled liquid layer. Even if we accept the suitability of the various base states
used in the analysis [120],[107] (the validity of which is questionable), the present consensus is that
unconditional stability is possible only if a heterogeneity is present somewhere in the two-phase

region.
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Heat pipe instability, but in a much different context, and more precisely as it regards the
sensitivity of steady, 1D profiles to the boundary conditions, was considered in a recent study [91].
It was suggested that, under certain conditions, a V'D solution is unconditionally “unstable” and
must revert to a “stable™ LD configuration, or vice versa, if the boundary conditions are reversed.
While not immediately apparent, this problem is really rclated to heterogeneity, as shown below.
We recall that boundary end effects in immiscible displacement can be considered as special cases
of heterogeneity, when the change in permeability is abrupt and very large [147)].

Effects of heterogeneity on vapor-liquid concurrent flow were studied in [100]. These authors
generalized previous works on the steady state, two-phase flow of non-condensing fluids [147]. With
the exception of a rather preliminary analysis [27], however, heterogeneity effects on countercurrent
vapor-liquid flows have not been addressed in much detail and they are currently poorly under-
stood. Cases in point are the previously mentioned questions on the termination of the theoretically
“infinite” two-phase zone, on the gravitational instability and on the sensitivity to boundary con-
ditions. This chapter aims at resolving some of these issues. We theoretically investigate effects
of heterogeneity under various configurations. We find that permeability (capilla-y) heterogeneity
acts in reality as a body force (e.g. gravity), with the important additional property that it is also
spatially varying. Heterogeneity may thus enhance or counterbalance gravity effects, depending on
magnitude. form and direction of change.

The chapter is organized as follows: We first study the simpler, but quite useful, horizontal
case, which allows for an exact solution to be developed. Then, we apply the results obtained to
interpret effects of gravity when the heat flux is below critical. Next, we address problems involving
both heterogeneity and gravity at conditions of slow and fast permeability variation. In all these
cases, heat conduction is not significant, and it is not considered. Throughout the chapter, the
formalism of [118] is followed. The description is thus traditional, based on continuum assumptions,
and employs the concepts of equilibrium, saturation-dependent only. relative permeability and
capillary pressure functions. Whether this formalism is adequate for rapidly varving permeabilities,
is not questioned in this chapter, the conclusions of which are therefore subject to this important
hypothesis. It is conceivable that. at least in the case of sharp heterogeneities, some of the results

may need further support. e.g. from more detailed pore network-level analysis.



4.2 FORMULATION

We proceed with the assumption that the main heterogeneous variable is permeability [147],[100].
Contrary to 2D flows, where viscous effects dominate, an important parameter which is affected in
the present case of 1D counterflow is capillary pressure. This is a result of the Leverett J-function

representation:
oJ(S)

vk

The function J (as well as the relative permeabilities) may also be taken as weakly varying, although

P. =

it is the dimensional v/k-dependence that basically controls the capillary variation (see also [147]
for a more detailed discussion).

The importance of conduction is expressed through the following dimensionless group [118]:
KR, = HeMuPop,
J ART?

For large values of the latter, conduction is negligible. This is the case typically in heat pipes,
where A R,, is large (equal to 5184 for the conditions in {136]). Conduction must be retained in
systems with low &k or very high A values, although, such cases may be of limited practical interest
(although see [128]). When the flow configuration is different, conduction may be important, e.g.
in the geothermal systems of the type discussed by Schubert & Straus [119], where its consideration
is necessary in order to sustain counterflow. Regardless of the application, however, the relevance
of conduction to a study of heterogeneity should be small. "Indeed, for the former to have some
impact requires substantially large variations in the vapor pressure [128].[118]. Such are not likely to
occur if the regions of continuous permeability increase (or decrease) are not very long. Therefore,
capillarity is likely to predominate over conduction, the effects of which we shall neglect henceforth.

In the absence of heat conduction, we can formulate the problem in a straightforward fashion.
because saturation and temperature are decoupled from each other and the solution is obtained
by simple means. Following [118], a straightforward manipulation of mass, momentum and cnergy

balances vields the simple equation:

' dS dr (hre + 3kp) , )
—d— = w sinf 39
TJ 1z J(ff o + sinf T (39)

T . . . . . . . -
Here 7 = /k/k® is the heterogeneity variable which is spatially varying, k* denotes a constant

- ey . L . . . . - . . .
reference permeability and superseript  indicates derivatives with respect to §. The notation is
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(a) (b)

Figure 29: Schematic of a special heterogeneity profile: (a) Permeability increase; (b) Permeability

decrease

identical to [118] except for 7, which here does not denote temperature. The coordinate £ increases
in the direction {rom the liquid to the vapor, such that the liquid velocity is positive, while the
dimensionless heat flux w = qu,/k*L,gApp, is normalized with a reference permeability. In this
notation. therefore, different permeability regions have the same value of w, but not the same
critical”values (see also below). Equation (39) must be generally solved numerically. Preliminary
insight can be obtained by an analytical solution, which is possible for a special case in horizontal
counterflow.
A. Horizontal Counterflow

In a horizontal svstemn (6 = 0) counterflow is driven by capillarity only [38]. Then (39) vields:
y caj 3 \ ) )

dS (kep + Bkry) dr ,
J —mw—— 4 ] — 10)
T [ ST: )

Cousider, without loss. & » 0. Very useful results are obtained in the special case, when 7 is

precowise linear (Figure 29):
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T+ o5 d<(
where 7, = ad + 1. Here, the spatial extent of the heterogeneity 1s denoted by d > 0, while «

indicates the direction of change (a > 0 for an increase, a < 0 for a decrease of 7 in the £ direction).
Outside this region, £ < 0 or d < £, the system is homogeneous and the solution is a continuously

decreasing saturation profile, S(£), of the general form:

S k,ekyJ dS

- wg .
gt = (or 5) + ome

T+
Inside the heterogeneity, 0 < £ < d, the saturation satisfies:

krlkru']’ds _ d£
w(krl + ,Bkrv) + kyekrya J - af +1

(42)

This can be readily integrated. Because of the qualitatively different responses, two different cases
are separately considered:

l.a>0 (Figure 29a)

Here, the permeability is increasing, and from (42) we obtain the straightforward result:

o krlkrv\]’ds 1
= q 1 43
/so SUhe ¥ Blno) ¥ Fgbpa J M@+ D) (43)

where S, is the saturation at 0 (presently unknown). Because of ¢ > 0, the saturation decreases

steadily also within the region of heterogeneity (Figure 30). The downstream value S; satisfies:

/s1 krek,oJ dS _ L (44)
50 Wkt + Bkyy) + krckppa J @ ¥

provided that a solution to the latter exists. This requires:

> —l 45
kr( + fdkrv) + krlkrua J T a T ( ))

/l krekry(—J)dS 1 _
o w(

Otherwise, single-phase flow conditions develop inside the heterogeneity region. The particular
saturation profile depends on the conditions imposed away from the heterogeneity. If the location
of the subcooled liquid boundary on the left is known, then integration occurs from left to right.

and S,, 5] etc. can be determined sequentially. The reverse applies if it is the location of the dry

region on the right which is known.
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Figure 30: Schematic of saturation response for the profile of Figure 29a

Of special interest is the case of a sharp discontinuity (a 3> 1). Then, (44) yields:

J(S1) [k

AT (46)

which is nothing else but the condition of constant capillary pressure, implying a saturation jump
across the discontinuity. This is the static (no flow) condition, which differs from the case a < 0,
as shown below, as well as from the case of concurrent flow {147]. In the latter, a build-up of the
wetting\phase saturation is necessary before a high permeability region is entered.

2.a <0 (Figure 29b)

While the previous are straightforward, non-trivial effects arise in the case of a permeability
decrease. When e < 0, the denominator in (43) may vanish, if w is small enough. For this to occur,
the following equation must admit a real solution:

Keghry

wee Jkrl + Bkrv

(47)

The RIS of (47 is schematically plotted in Figure 31. We note that there exists a critical value,

']kr[krv )

“er i = (—a)max < -
' S ker + 3k,
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Figure 31: The capillary heterogeneity function w(.5)




above which a real solution to (47) does not exist. In dimensional notation we obtain:

oLypy (ﬂ dﬂ)

iy dz

Thus, sharper changes in permeability result into larger critical flux values. The system response

qh X (49)

depends on the relative value of w: (i) For w > we, i, equation (47) has no solution. Then, the effect
of heterogeneity is identical to the previous (a > 0), the solution being described by (42), (43) and
(44), as schematically plotted in Figure 30. (ii) For w < w¢, g, on the other hand, equation (47) has
two roots, denoted by Sygy and Sy (0 < Syy < Sty < 1), in very close analogy with the vapor-
dominated and liquid-dominated regimes, respectively, of gravity-driven heat pipes. The similarity
with the latter is very interesting. Indeed, as in heat pipes, the saturation integral diverges at the
two saturations, thus nearly flat saturation profiles (either VD or LD) develop to span the region
of heterogeneity. Here, however, it is capillary heterogeneity, with the permeability decreasing in
the direction of liquid flow, and not gravity, that sustains the constant saturatio. profiles.

In retrospect, the analogy between capillary heterogeneity and gravity is not unexpected. In
capillary-controlled displacements in pore networks, effects of either gravity or pore size hetero-
geneity can both be successfully described by the gradient percolation approach of [117]. In terms
of continuum models, the analogy between capillary heterogeneity and gravity was noted in the
concurrent flow study of [147]. In the latter case, however, the curve corresponding to w(S) (which
represented an augmented fractional flow curve) admits only one root, therefore there was stable
attraction to a single root only. In [147], steady state saturation profiles were obtained by back-
wards integration starting from the outlet end (opposite to the flow direction), since the solution
is ill-posed and rapidly diverges if integration started from the opposite end. In the present case
of countercurrent flow, both sides can be used as starting points for the integration. As shown
below, however, which end is taken is decisive on the selection of the particular solution. This was
implicitly contained also in [91].

Consider, first, integration from the vapor side (Figure 32). This requires that superheated
vapor exists somewhere on the right so that we may start integrating from the location S = 0 in the
negative £ direction. The saturation, Sy, reached when the heterogeneity is entered, £ = d, dictates
how the solution behaves inside the heterogeneity: - If S} < Sy, then dS/d€ < 0. and the solution
is rapidly attracted to the asymptotic value Sy (compare with (43)) as shown in Figure 32a. This

is a vapor-dominated regime as in gravity-driven heat pipes. Outside the heterogeneity, £ < 0, the
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integration is straightforward:

=6 (50)

/5 krokpod dS
Jsoy (krg 4+ 3kry)
This solution applies until conditions of subcooled liquid are reached (§ = 1). - If Sy <51 < SpH.
then d5/d€ > 0. and the solution is again asymptotic to Sv . except that the saturation is now
decreasing in the short region before the asymptote is reached (Figure 32b}. - Finally, if Spg < S1.
then dS/dS < 0. but the sclution cannot be now attracted to a flat profile. The iatter does not
develop. instead the saturation is described with the previous equations (43)-(43). much like the
case A.l (Figure 32c}.

Consider. next, integration from the liquid side. We assume that subcooled liquid exists some-
where on the left. such that we can proceed integrating from the location § = 1 in the positive
direction. If we denote by S, the saturation at §& = 0, the following c¢ptions are possible: - If
Sie < S, then dS/d€ < 0, and the solution is attractel to the liquid-dominated regime with value
Spy (Figure 33a). After exiting the heterczeneity, further integration proceeds normally. much like
in (50) until superheated vapor conditions are eventually reached (5§ = 0). - If Svg < S, < SruH.
then dS/d& > 0. and the solution is attracted to the same liquid-dominated asymptote, except that
now the saturation increases in the short region before this asymptote is reached (Figure 33b). -
Finally. if 5. < Svpg. then d5/d§ < 0. but the solution is not attracted to a flat profile. Instead. it
decreases relatively fast. much like in the homogeneous case (Figure 33¢).

Thus. depending on the direction of integration, two different solutions {(a VD and an LD) are
found to satisfy the system. This feature is particular to vapor-liquid steady state counterflow.
We contend that the selection of the particular paths (for example, whether it is the profiles in
Figure 32 or those in Figure 33} is strictly determined from the past history of the system, which
therefore attributes a hysteresis effect. albeit on a large scale (128]. The VD solutions of Figure 32
correspond to steady states reached by a system which is initially vapor-occupied and subsequently
cooled from the ieft. while superheated conditions are maintained somewhere on the right. This
is a condensation process (akin to imbibition). The LD solutions of Figure 33. on the other hand,
correspond to steady states reached by an initiallv liguid-occupied system which is subsequently
heated from the right. while subcooled conditions are maintained somewhere on the left. This
corresponds to a boiling process (akin to drainage). Thus. the particular history imposed on the

svstemm decisively determines the final steadv state. Hvsteresis effects. but at the pore level. are
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routine in typical displacement processes. For vapor-liquid counterflow. however. the hysteresis
(evaporation - condensation) also involves large scale aspects (indeed. in the present work kqp k.,
and J were taken invariant to direction).

Before we proceed further, it is worthwhile to consider the limit of a large discontinuity {(a < 0
and la| > 1). It is readily confirmed that in this case the two roots, 5y and 5. approach the
respective limits Sy — 0 and §; — 1. Because of the latter, and in view of the previous analysis.
singularities are not encountered, thus one may formully take the limit of (43) at large [a. The
result is the previous condition of capillary pressure continuity (46), provided that the predicted
saturation value does not lie close to either of the two extremes, 0 or 1. Otherwise. the term
(ks + Bkyy)/kreky, can become comparable to —aJ and the saturation jumps do not correspond
to capillary pressure continuity alone (see also belov:). This behavior is different from both the
a > 0 and the concurrent flow cases.

We close by noting that the above analysis also applies when the heterogeneity is slowly varying.
As shown below, the solution is still a VD or LD branch, now of variable saturations. When the 7
profiles are arbitrary, however, a nuruerical solution is necessary, as discussed later.

B. Vertical Counterflow

TL~ above pertained to counterflow in the absence of gravity. We consider, next, the case of
vertical counterflow (Figure 34). Here, two generic configurations are possible. heating from the
top (8 = 7 /2. sinf > 0), and heating from the bottom (8 = 37/2, sinf < 0). Because it is more
commonly encountered, we address the bottom heating case first.

1. Bottom Heating

Under this condition, equation (39) vields:

dS - (krf+/3kru)
T T Rk

(r? - Ja) (51)
where a(£) is the heter~zeneity gradient, a = dv/d€. In the homogeneous case (7 = const., a = 0),
the RH S above vanishes for the two saturation values Sy and Sy that solve the equation:

o Tgkrlkrv (52
¥ = %t k. %

provided that o < w. ;. The critical value we, ¢ is constant for a homogeneous system of a given
permeability (e.g. equal to 0.3063 for 7 = 1. [136]}. The two steady states of gravity-driven homo-

ceneous lieat pipes were investigated in [91]. where a theory of lieat pipe instability was developed.
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We recall that an identical multiplicity was also encountered in heterogeneous. horizontal counter-
flow. Because of this similarity, we contend below that, in a strict sense, instability is not really
relevant and that the selection mechanisms of the horizontal case are much more appropriate. The
analysis follows closely the arguments for the horizontal case, except that the medium is now ho-
mogeneous. Asin [91]. a crucial role is played by the boundary conditions imposed. However, both
here and in [128], these boundary conditions are related to the past history of the system.

{1) Homogeneous Systems : Steady State Selection

When the integration proceeds from the bottom (the “vapor side™) upwards, it is the VD branch
Sy which is selected, if the starting saturation S lies to the left of Sy, 51 < Srg (Figure 35a).
This would be the case if superheated vapor existed somewhere below, as in the bottom curve of
Figure 33a (note also that because of (46). any desired saturation value is possible as a starting
point, see top curve of Figure 35a). In the interpretation of [128] this case covld result from an
initially superheated system that partly condenses due to top cooling. If §; > S, on the other
hand, a flat profile does not develop and the saturation rapidly converges to S = 1 (Figure 35b).

By contrast, when the integration proceeds from the top (the “liquid side”) downwards, it is the
LD branch, S;g, which is selected, if the starting saturation S, lies to the right of Sv5. S, > Svg
{Figure 35c). This is the case of subcooled liquid somewhere at the top, a tvpical application being
boiling [128]. If S, < Syg, a flat profile does not develop, the saturation rapidly approaching the
dry regime, S = 0 (Figure 35d). We readily conclude that it is the past history of the system that
determines the steady state solution. Evidently, all such saturation profiles are intrinsically stabie.

(i1} Sharp Discontinuity : Termination of an “Infinite’” Two — Phase Zone

Next. we proceed with the discussion of effects of heterogeneity. For convenience, we consider
first the special cvase of an abrupt discontinuity (|a] > 1). Tius analysis is necessary to explain how
VD or LD saturation profiles can merge with subcooled liquid or superheated vapor, respectively.
thus how an “infinite™ two-phase zone can terminate in practice.

In the case of large |a, the contribution of aJ on the RH S of (51) overwhelms that of 72. For
this to occur requires:

|AT/AL > 72 (53)

and. in dimensional notation,
iA\/E/AI{»;\pgk/UE_\'B (54)
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where Np is the Bond number. Although the latter is typically small, O(107%), one readily finds
that enforcement of (54) requires large permeability variations over quite small distances. Subject to
the following, this case is likely to represent continuity of capillary pressure. Thus, heterogeneity is
much stronger than gravity and controls the saturation profile much like the horizontal connterflow
of section A.

Consider. first, integration from the bottom within a constant permeability region (where w «
wer ). Then, a VD regime is rapidly reached. In a homogeneous medium this regime is predicted
to continue indefinitely (although see [128] and [118]). Can this profile merge with another LD
regime or with a region of subcooled liquid? The answer is negative to the first part, but not to the
second. In either case, for a change in the saturation state, a region of low permeability &, must
exist somewhere at the top. Then, because a is positive and large, the response is much like in the
horizontal case (46) and capillary pressure continuity applies. If k; is such that w remains below

critical in the top (recall that we, g is proportional to 72 or k), the previous scenario (pertainin

g
to Figures 35a-35b) is in effect and the solution is either another VD region or a rapid approach to
subcooled liquid, depending on the particular conditions. On the other hand, if w > w., ¢ at the
top, only a finite two-phase zone develops that rapidly ends by merging with a subcooled liquid
region.

If integration proceeds from the top (where w < w,r ), an LD region is rapidly approached.
Again, for this flat profile to eventually change, and for a dry region to be eventually encountered,
the bottom must be at a higher permeability. Since for this case we also have @ > 0, we can employ
the same reasoning as before to reach the conclusion that it is the scenario of Figures 35¢-35d that
1s followed, namely there will be either an attraction to another LD solution or a relatively fast
approach to superheated (dry) conditions.

A somewhat different way of stating the above is that in order to terminate a steady state
vertical counterflow with @ = 37/2, it is necessary that the permeability increases somewhere in
the downwards direction. If a VD region exists at the bottom, subcocled liquid dominates the top.
And, if an LD region lies at the top, superheated vapor must exist at the bottom. Significantly, LD
and VD branches never merge with each other, regardless of the position or form of heterogeneity.
This contrasts some of the arguments of [91] in which an “unstable” V) regime hecomes connected

to a “stable™ LD regime, and vice versa. Furthermore, if the change of permeability is in the
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opposite direction (¢ < 0), capillary pressure continuity cannot bring a qualitative change in the
saturation state. In this case, a VD regime would always remain vapor-dominated without reaching
dryout, while an LD regime would always remain liquid-dominated, without reaching subcooled
liquid conditions.

(117) General Heterogeneity E f fects

Consider, next, the more general case of heterogeneity, with normal variations in 7. Equa-
tion (51) suggests that heterogeneity enhances (makes more vapor-rich or liquid-rich) the respective
VD or LD regimes when a < 0, and acts to diminish them in the opposite case. For concrete re-
sults, a numerical solution is necessary. For convenience, we used 7 profiles that satisfy a correlated
fractional Brownian motion (fBm) with H = 0.8, which appears to be the natural heterogeneity in
many rocks [56]. Two cases were studied, a slow and a normal variation in heterogeneity, both in
the unit spatial interval [0,1]. By a simple rescaling of the equations it can be readily shown that
the first can be equivalently represented by a signal of the same variation as in the normal case
except at much higher levels of r.

This case of slow variation can also be analyzed asymptotically. We take 7 = 7(£/¢), where

£ > 1, and rescale the spatial variable using ¢ as the characteristic length, £ = €(, to obtain:

1/ keekyy , o .dS  dr krekro2(C)
Bl A S —_——J =) mw - 27 55
14 (krl + ﬂkrv,) (J T(C) dc JdC> v kr( + ﬂkrv (5 )

For £>> 1, the solution of the above is the saturation S({) that makes the RH S vanish, thus repre-
senting a gravity driven process in a weakly heterogeneous medium. This is similar to homogeneous
heat pipes, except that, because 7 is now variable, there exists a continuum of curves similar to
Figure 31, each for a fixed 7 (or (). Their intersection with the line of constant w defines a contin-
uum of S(7) values, which when plotted in a S({) diagram give the solution to the problem. As
before, there are two possible branches, a VD and an LD, to which the solution is always attracted
(much like the cases in [118] and [100]). Again, VD and LD sequences are followed closely without
the branches ever becoming intertwined. It follows, that given a direction of integration, there is a
direct one-to-one correspondence between the heterogeneity 7 and the saturation, .

For a numerical example we used the profile of Figure 36a. Because here the combination 72 —aJ
is always positive, it is possible for the RH S of (51) to vanish for all 7 provided that w is low enough
(W < Wermin, where wer ;min, must be obtained numerically). According to (55), the solution must

follow closely the variation of 72, resulting into either an LD or a VD branch, depending on the
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Figure 37: Capillary pressure gradient corresponding to Figure 36b

direction of integration. Numerical results shown in Figures 36b and 36¢ for the respective regimes
verify the theoretical predictions. After a short interval, the profiles are attracted to this asymptotic
state and, with a small spatial delay of about 0.05. mimic the variation of 2. The VD solution
shows a weaker sensitivity due to the relatively narrower range of saturation values allowed. As
predicted theoretically, saturations in the LD regime increase or decrease as 7 increases or decreases.
respectively, while the saturations in the VD regime {ollow opposite trends. Capillary eflects are
significant only near the initial boundary. The variation of the capillary pressure, corresponding to
the LD state, provides a clear demonstration (Figure 37). Except near the initial boundary, where
it is quite large, the capillary pressure gradient is small througlout, suggesting a gravity driven

mechanism.
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When the heat flux acquires larger values (w > Wergnin ), there are spatial locations where
the local eritical values may be exceeded (w > wer(€)). Then, the saturation departs {rom the
corresponding regimes and becomes rapidly attracted to a single phase region (dryout in the case
of an LD state, as in Figure 38a, or subcooled liquid in the case of a V) state, as in Figure 38b ).
On the opposite side, for very low values of w, as is typical in geothermal reservoirs, all saturation
values in the V'D regime are very low, hence the profile is very nearly flat, (Figure 39), despite the
variation in permeability. Tt is clear that the existence of a flat profile should not be taken to imply
a homogencous medium.

The second case investigated corresponds to a normal variation of 7 (Figure 40a). Here, the
combination 74 — aJ changes sign often within the interval. The solution displays hysteresis again,
depending on the direction of integration. However, now capillary effects are quite significant and
the one-to-one correspondence with 7(() is not obeyed. In fact, for relatively steep increases in
7. capillary pressure continuity may be in effect, as discussed above, resulting in lower saturation
values. For an LD state this is contrary to the gravity effect noted in the previous. Consider, for
instance, integration from the left, where an LD regime is obtained provided that w is low enough
(Figure 40b). As long as the 7 variations are not too great, the saturation values are relatively
constant (early part of Figure 40b). The saturation variation is mild even though regions of relative
large increase in 7 are traversed. This behavior is similar to the horizontal counterflow for a negative
and large. At the point where a sharp increase is encountered and a becomes large (around the
mid-point of Figure 40a), capillarity dominates, capillary pressure continuity is enforced and the
saturation falls significantly. If the drop is not too high, a lower saturation state, still of the V)
type, will be followed in the remaining part.

Under the same conditions in w, a VD regime arises, when the integration is from the right
(Figure 40c). The first part of the profile (for € roughly between 0.5 and 1) corresponds to het-
erogeneity with generally positive slope (a > 0), thus capillary pressure continuity applies, the
saturation rising as lower permeabilities are encountered. The second part of the heterogeneity,
however, involves a rather steep negative slove (between 0.15 and 0.4). As pointed out previously,
the saturation response may not be given by capillary pressure continuity alone. Indeed. after the
saturation falls rapidly (for € between 0.3 and 0.4), further large changes in permeability do not

inditee significant saturation response. This interpretation is supported from the variation of the



Figure 38: Weak heterogeneity for larger heat fluxes: (a) LD regime, w = 24
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Figure 41: Capillary pressure corresponding to Figure 40a

capillary pressure (Figure 41), where the regime of capillary pressure continuity at the right nalf of
the ivterval is evident. When the heat flux increases, a transition to single phase regions ic pussible.
the LD or VD states reaching dryout (Figure 42a) or subcooled liquid (Figure 42b). respectively,
in a short region. This Hirst occurs near the location with the .y iest positive slope in 7 {mid-point
of the £ intervall. We emphasize again that no transition from an LD to a VD state or vice versa

w#s noted. while the two regimes maintain their identity in regions of 7 decreases. no matter how

-}
Sl

L
arp the jatter are.

2. Top Heating

We close by briefly noting thar similar results are obtained for the case of top heating it =
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Now. equation {39) vields:
S Ao + 3k,

T

= &

+ (7 + Ja) (56)

For @ > 0. then d5/d¢ < 0 throughout. and the solution follows in a straightforward fashion.
Likewise. a monotonic profile (quite similar to the horizontal case) is obtained for ¢ < 0 and
sufficiently large «. If the latter is low enough. however, the heterogeneity may lead to gravity-like
VD and LD regimes. much like in the horizontal case. The various subcases were exhaustively

treated. and we shall not elaborate further.

4.3 CONCLUSIONS

Within the framework of a continuum description, effects of permeability heterogeneity on steady
state. vapor-liquid counterflow in porous media were examined. Permeability variations affect
mainly two processes, gravity-driven flow and capillarity. The variations of the latter can be
significant. It was shown that. as in similar previous flows {147], capillary heterogeneity acts like an
external body force (such as gravity). with the additional property that it also varies spatially. For
example, a multiplicity of steady states similar o gravity-driven heat pipes was found for decreasing
permeabilities in horizontal counterflow and for heat fluxes lower than a critical value. Vapor-
dominated and liquid-dominated regimes were obtained using selection rules that were postulated
to depend on the past history (transient state) of the svstem. The analysis was aided by an exact
solution obtained for a special heterogeneity profile.

The selection rules were next applied to determine the steady state regimes in gravity-driven
heat pipes in homogeneous systems. It was shown that V'D regimes originate from underlying dry
regions, while LD regimes are extensions of overlying subcooled liquid regions. Significantly, the
different regimes may never connect with each other. thus retaining their identity as long as the
system remains in a two-phase state. The issue of the termination of the infinite two-phase zone was
next analyzed. It was determined that termination requires that a sharp increase in the permeability
(in the direction of increasing depth) occurs somewhere in the medium. Across this discontinuity
it was shown that. depending on past history, either the overlying LD state rapidly connects with
a dryv region below. or the underlying VD state rapidly converts to a subcooled liquid above. The
emerging picture {from top-to-bottom | is thus. subceoled liquid - LD - (discontinuity) - dry region.

or subcooled lignid - (discontinuiiy) - VD - dry region, in the respective cases. This ordering may
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be helpful in the interpretation of the nature and origin of geothermal systems. Unfortunately, this
argument cannot apply for homogeneous systems, the termination of an “infinite™ two-phase zone
within which remains «» unresolved question.

Finally, the interplay of gravity and capillarity was demonstrated in a study of two different
heterogeneity modes, a slow and a normal variation. For heterogeneities that vary on a large
scale, the effect is mainly on the gravity component and the saturation response closely follows
the permeability variation depending. of course, on heat flux values. On the other hand, larger
variations in permeability induce significant capillary effects. Often, capillary pressure continuity
must be enforced, particularly for large increases in the direction of liquid flow (here, as depth
increases). In contrast to both static and concurrent flow systems, capillary pressure continuity is
not necessarily the condition for a decrease in prmeability, no matter how large the latter is. All

these effects attribute a significant large scale hysteresis on the saturation profiles.
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) VISUALIZATION OF IMMISCIBLE DISPLACEMENT IN MICROMODEL FRAC-
TURED SYSTEMS

M.Haghighi and Y.C. Yortsos

5.1 INTRODUCTION

Steam injection is a potentially effective method for the recovery of heavy oil from reservoirs. This is
particuiarly important for the diatomite formations of Cal fornia, which contain significant deposits
of heavy oil. Unfortunately, the understanding of steam injection in fractured systems is currently
based mostly on plienomenology and typically consists of applying a double porosity formalism (o
steam simulators. Most of these simulators use capillary imbibition as a mechanism for the exchange
of fluids bet.een the matrix blocks and the fracture network. Such a purely numerical approach
offers little to further our insight into the process. A reasonable alternative is experimental studies
in model geometries that mimic fractured systems, particularly good candidates of which are glass
micromodels. Such a special geometry is considered in this research. The ultimate objective is to
conduct steam injection experiments in these models. Unfortunately, the actual mechanisms even
for isothermal displacement are not well known. Indeed, we have realized that studies even for
ordinary immiscible displacement in such systems have been very limited, the understanding of the
basic flow mechanisms being rather poor at present even for imbibition. Thus. before attempting
to understand the more complicated case of steam injection, it was decided to experiment with the
simpler, but yet unciarified, case of immiscible, isothermal displacement.

Consider the waterflooding of naturally fractured systems. Significant early work in the subject
was done by Mattax and Kyte [88] who studied imbibition in fractured water-drive reservoirs. These
authors experimented with a single matrix block and introduced the concept of a “critical rate” in
connection with water advance in fractured-matrix reservoirs. The critical rate was defined as that
for which the water advance level in the fracture is the same to the water level in the matrix. For
rates less than the critical value, the water level in the matrix is above that in the fractures. Thus.
all the recoverable oil will be displaced from the matrix block before the water in the fractures
reaches the top of the block. Inversely. at rates greater than the critical value. the water level in
the fracture will move ahead of the water in the matrix and the matrix block will be completely

surrounded by water before imbibition is completed. In the first visualization study in fractured
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systems, Handy and Datta [54] provided visual evidence of water imbibing in an artificially-fractured
sandstone and in a heterogeneous sand pack. In the case of fractured sandstone, they observed that
the water moves preferentially through the fracture, due to the low capillary pressure , while in the
heterogeneous sand pack water imbibes into the fine sand because of capillary forces stronger than
in the coarse sand. As rates increased, the water was seen to move preferentially through the more
permeable regions.

Flow visualization is a valuable device that enables us to understand some of the complex pore
level mechanisms of multiphase flow in porous media, can confirm theories and upgrade computer
simulation. This is the reason why substantial efforts have been undertaken not only for fluid
flow during immiscible displacement [&7, 137], but also for solution gas drive [31], gravity drainage
[143], and many EOR processes, such as foam flow [86] and surfactant and polymer flooding [32].
Although observing fluid flow in a single capillary tube or doublets is very useful, especially for
the study of wetting phenomena [17], t}ese tools are too simple to mimic the complex structure of
capillary channels in real porous m_dia. Therefore, investigators have been continously searching
for models with closer similarity to porous media. Chatenever and Calhoun [24] were pioneers in
this area by making a single layer of glass and/or lucite spheres between plates. This kind of model
in general lacks the ability to show the process of individual interfaces in different geometries. Then,
etched glass micromodels came into existence, in which interconnections between pore/throats were
introduced. The history of the fabrication of micromodels has been reviewed by Buckley [19]. In
spite of the fact that such micromodels are restricted to two dimensions, they have been very useful
in understanding the complex relationship between the geometry and topology of the medium and
the solid/fluid interactions [26, 79, 81, 82].

The majority of investigations so far was limited to replicas of porous media. To our knowledge
a systematic study has not been undertaken for network patterns having fractures along or across
the flow direction to study effects of high permeability avenues in the fluid distribution during
displacement. As a result, we do not have sufficient knowlege regarding the true mechanisms of
capillary imbibition for oil recovery in fractured reservoirs. Furthermore, the role of fracture in
fluid distribution and the relationship between fluid/solid interactions and flow parameters are
ripe subjects for visualization investigations. These issues are discussed in this chapter. Our

general objective is to provide a better insight on the recovery mechanisms in naturally fractured
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Figure 43: The pore network and fracture pattern

reservoirs during immiscible displacements, in order to improve oil recovery from such reservoirs.
7o achieve this goal, pore level and larger scale visualization of isothermal immiscible displacement
under various conditions (drainage. imbibition, and secondary imbibition) was performed in a glass
micromodel of a fracture-like structure, and a parametric experimental study of the effects of

capillary number and mobility ratio was undertaken.

5.2 EXPERIMENTS

The construction of the glass micromodel in our work is basically the same as that reported in
our previous DOE Report. In addition, some modifications were also implemented suitable to
our material. The first pattern we used was a 3" x 5" inch 2 uniform triangular network with a
coordination number of 6 as a matrix block and a 2 mm width strip all around the matrix as a
fracture system to mimic a single matrix-fracture block (Figure 43). The width of the network
channels is approximately 400 microns while the pores (region where three lines cross each other)
have a linear size of about 800 microns. Inlet and outlet ports were connected to the fractures. We
liave emploved several computer generated patterns with different pore and throat size distributions.

In all these. the fracture is represented by a large size strip in the middle of the model along the



main flow direction. In recent models we have included two fractures, one along the main flow
direction and another across the main flow direction. With this type of fracture configuration,
the roles of direction of the fracture in the displacement process and the fluid distribution can be
studied.

To estimate flow velocity in the model, which is needed for determining the capillary number,
the measured volumetric rate was divided by the total cross sectional area (pore volume, 0.77 cc,
divided by the length of the network, 12.7 cm). All experiments were carried out at constant rate

by the use of a syringe pump.

5.3 RESULTS

So far we have carried out the following three different sequences of fluid injection into the micro-
model:
1- Primary drainage
2- Primary imbibition
3- Secondary imbibition
For each displacement mode, a set of runs were made at different values of the mobility ratio
and the capillary number. The objective was to probe the N.,, M phase space in order to identify
operating mechanisms and various aspects of the phase diagram. The various conditions employed

are shown in Tables 2, 3 and 4.

5.3.1 Primary Imbibition

Systematic primary imbibition experiments were so far dore only for the air-water pair. Methylene
Blue water was the wetting phase. The non-wetting phase consisted of air or kerosene or viscous
mineral oil in the respective experiments. For each fluid, displacements were carried out at four
different capillary numbers (Table 2). However, with water displacing air, and for a capillary
number lower than 107°, the water invaded the matrix first. At the pore level, both in the inlet of
the model and in the matrix, two different and simultaneous mechanisms were clearly observed: 1-
Water flow along the roughness of the walls. 2- Meniscus movement (Figure 44).

In the pore network, the movement of water along the pore surfuce roughness causes accumu-

lation on the walls. As a result, we subsequently observed two different mechanisms: 1- When



Fluid Displacing Fluid | Mobility | Volumetric Capillary
Pair Viscosity (cP) Ratio | Rate (cc/min) [ Number
Water-Air 1 0.018 0.00052 2% 1078
“ ” “ 0.0052 2 x 1077

« ” « 0.052 2 x 107

« " “ 0.52 2% 1078
Water-Oil 1 « 0.00052 4% 1078
“ " 1.50 | 0.0052 4 %1077

“ " “ 0.052 4% 10°°

“ ” « 0.52 4 x 107°
Water-Oil 1 100 0.00052 4 %1078
“ « 0.0052 4 %1077

“ ” « 0.052 4x 107

“ ” « 0.52 4% 107°

Table 2: Conditions for various primary imbibition experiments.
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sufficient accumulation of water on the wall develops. the radius of curvature of the meniscus in-
creases, touches the wall, and pore and adjacent channel are invaded instantancously, 2- When
there is sufficient accumulation of water on the two walls of a channel, only the channel is filled.
At capillary numbers below 2 x 107%, both mechanisms were at work (Figure 45), resulting into
a rough shaped front (Figure 46). However, at capillary numbers above 2 x 1077, only the first
mechanism is operating and no channel filling was observed. The water invaded the network in a
frontal movement that proceed line by line (Iigure 47). Both these mechanisms are in agreement
with earlier studies [76].

Experiments with water displacing kerosene and viscous mineral oil are currently in progress.
While the water-air experiments showed indeed that the wetting phase preferentially invades the
matrix block, it is not at all clear that the same will be observed during a water-oil primary

imbibition.
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Figure 44: Primary imbibition (water-air) showing roughness flow.
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Figure 46: Primary imbibition (water-air)at N, = 1078, showing a rough shape of the displacement

front.
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Fluid Displacing Fluid | Mobility Volumetric Capillary
Pair Viscosity (cp) Ratio Rate (cc/min) | Number
Air-Water 0.018 55.56 0.00052 3.6 x 10710
" b b 0.052 3.6 x 1078
. " : 5.2 3.6 x 107

" " 40 2.8 x107°

Oil-Water 1.5 0.66 0.0027 3.2 % 1077

. " " 0.054 6.3 x 107¢

« ” ” 0.108 1.2 x10°°

- " " 0.27 3.2x107°
Oil-Water 100 100 0.0052 4.1 x 10_{)4&

Table 3: Conditions of various primary drainage experiments.

5.3.2 Primary Drainage

In the second set of experiments we considered primary drainage processes. In this case, the model
was first saturated with water as follows. The micromodel was held vertically and water dyed with
Methylene Blue was introduced through a plastic tube connected to the model inlet using a constant
rate syringe pump. The flow rate was set at a very low value to completely saturate the model.
Then. the model was placed horizontally for the displacement experiment to be conducted. A video
camera with a close-up kit provided the desired visualization. A total of 12 runs, corresponding
to three different mobility ratio values, cach for four different capillary numbers were conducted
(Table 3). The front movement was also recorded under a microscope for clearer visualization.
In the first set of experiments, with air displacing water, for capillary numbers lower than 107,
air moves through the fracture only (Figures 48 and 49). Wkhen the flow rate is increased to 5.2
cc/min, however, where there is enough pressure to overcome the capillary threshold, air starts to
also invade the matrix (Figure 50). Figure 51 shows air-water displacement at a capillary number
of 2.8 x 1075, In this casc air moves to the fracture first, but subsequently displaces water in the
network as well. The displacement has the ramified form characteristics of a percolation process.

These experiments illustrate the competition between capillary and viscous forces in the fracture

s




and in the matrix.

Figures 52 through 55 show the displacement of water by kerosene. For capillary numbers lower
than 107°, oil is shown to enter the fracture only (Figure 52). This is consistent with the previous
observations. Likewise, at higher rates, oil moves to the fracture first, but after sufficient visccus
pressure drop develops, the capillary threshold is exceeded and oil starts to invade the matrix as well
(Figures 53 and 54). The matrix is first invaded upstream and the displaced water moves towards
the fracture downstream. After oil breakthrough. the invasion of the matrix by oil terminates.
At the capillary number value of 3.2 x 10™° oil moves both in the fracture and in the matrix
simultaneously (Figure 55). At this rate, oil can invade more than 90% of the network. At rates
higher than this, the network is invaded almost from the start, much like in a typical displacement
process. The effect of the mobility ratio is quite significant. In a typical displacement, mobility
ratio affects the frontal shape, such that at high values (unfavorable mobility) the front is highly
fingered, while at low values (favorable mobility) it is compact. In the case of a fractured system,
the mobility ratio affects primarily the degree of penetration into the fracture before invasion of
the network also commences. Clearly, as the mobility ratio decreases, penetration into the matrix
may occur at rates iower than before. Indeed, for the case of heavy oil drainage, where M=0.01,
even at the low rate of 0.0032 cc/min. the capillary number is of the order of 10~%, thus matrix
and fracture are invaded simultaneously resulting into a very compact interface (Figure 56).

During primary drainage, the interface at the pore level obeys a “go and stop” rule, such that
the interface is stopped by the throat untill the capillary pressure is exceeded. After passing through
this throat, the oil spontaneously invades the larger adjacent pore. Resulting water entrapment in
the matrix is low because of low mobility ratio and the high connectivity of the pore network used

in our experiments.
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Figure 48: Primary drainage (air-water) at N, = 3.6 X 10~1° showing that air moves to the

fracture only.
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Figure 50: Primary drainage (air-water) at Ne, = 3.6 X 10 6, showing that air may also inva

matrix.
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Figure 51: Primary drainage (air-water) at N¢g = 2.8 X 1073, showing that air invades the matrix

in a ramified fashion.
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Figure 52: Primary drainage (kerosene-water) at N, = 3.2 x 1077, showing that kerosene enters

the fracture only.
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Figure 53: Primary drainage (kerosene-water) at N, = 6.3 X 10~%, showing that kerosene invades

the matrix.
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Figure 54: Primary drainage (kerosene-water) at N¢, = 1.2 x 1075, showing that kerosene invades

the matrix after entering the fracture.

Figure 55: Primary drainage (kerosene-water) at N, = 3.2 X 10~%, showing that kerosene invades

most of the matrix after entering the fracture.
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Figure 56: Primary drainage (oil-water) at No, = 4.1 X 107°, showing that viscous oil invades both

the fracture and the matrix.
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5.3.3 Secondary Imbibition

In the last set of experiments, we considered secondary imbibition. Now the model is first saturated
with water. Then, the non-wetting phase is injected at capillary number values greater than 107% in
order to simulate Jdrainage with the least amount of trapping. Obviously, the precise way drainage
has taken place would substantially affect the subsequent mechanism of secondary imbibition.
This set of experiments pertained to an initial drainage at relatively high capillary numbers. The
resulting residual water films were not interconnected, particularly for the case of heavy oil. This
has significant effects on the secondary imbibition. Table 4 shows the various parameter values
used in the different runs. During the experiments involving the fluid pair water-air, water invade
the matrix block following a mechanism different than for the case of primary imbibition. Now, the
displacement is a succession of rapid invasion jumps that occur along the existing water films, left
behind at the conclusion of primary drainage (Figure 57). This mechanism operates at low capillry
numbers. At higher values, the typical meniscus displacement was also observed.

For the experiments ir.volving the fluid pair water-keros: e, secondary imbibition was not ob-
served at low capillary numbers (lower than 107¢). Water was found to enter the fracture first, and
only a few pores adjacent to the fracture were invaded (Figures 58 and 59). Only at higher values
of the capillary number, 4 x 10~¢ (Figure 60), an invasion similar to the previous was observed.
We attribute this lack of spontaneous imbibition to the lack of connectivity between the residual
water films.

In the experiments with heavy oil, where the mobility ratio was 100, water moves to the fracture
first. However, before water breakthrough in the fracture, water also invades the matrix. The
mechanism of displacement in both the pore throat and in the fracture is a slow uniform meniscus
movement. In this experiment, we observed that if a relatively heavy oil is used for drainage, the
water film left behind is apparently very thin, such that spontaneous imbibition will not take place
(Figures 61, 62, 63, 64).

In general, the experiments described above provide some insight on the fluid flow in porous
media when a fracture system exists. At present, the set is incomplete, particularly as it re-
gards secondary imbibition. Future work involves further investigation on the effect of film flow
and roughness flow and the computer simulation of these experiments, before steam injection is

attemp’ted.
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Fluid Displacing Fluid | Mobility | Volumetric Capillary
Pair Viscosity (cP) Ratio | Rate (cc/min) | Number
Water-Air 1 0.018 | 0.00052 2 x 1078
“ ” “ 0.0052 2 x 1077

“ K « 0.052 2x107®

“ ” “ 0.52 2x10°°
Water-0il 1 “ 0.60052 4x10°8
« ” 1.50 | 0.0052 4x 1077

“ K « 0.052 4 %1076

“ ” “ 0.52 4 x10°°
Water-Oil 1 100 0.00052 4x10°8
“ " “ 0.0052 4 x 1077

“ " “ 0.052 4 x1076

“ ” « 0.52 4x10°°

Table 4: Conditions for various secondary imbibition experiments.
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Figure 58: Secondary imbibition (water-kerosene) at N, = 4 X 1078,
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Figure 61: Secondary imbibition (water-heavy oil) at Ne, = 4 x 107°.
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Figure 62: Secondary imbibition (water-heavy oil) at N, = 4 x 107",
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Figure 63: Secondary imbibition (water-heavy oil) at Ne; =4 X 107°.
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Figure 64: Secondary imbibition (water-heavy oil) at N, =4 x 107°.
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6 NUMERICAL CONSTRUCTION AND FLOW SIMULATION IN NETWORKS OF
FRACTURES USING FFACTAL GEOMETRY

J. Acuna and Y.C. Yortsos

6.1 INTRODUCTiON

Fractal geometry is a relatively new apprcach for the description and modeling of cornplex objects
and processes [46], [85]. In general, fractal images are tr=2 result of the repetition of a given
geametric shape into itself over a cascade of different length scales. When coupled with random
noise, the resulting complexity makes fractal images suitable for the description of a variety of
natural objects. Although this should not imply that every such object is fractal, nonetheless
fractals constitute a very convenient method to describe many physical processes. In particular, the
application of fractals to porous media is very promising. The review by Sahimi and Yortsos [112]
classifies the fractal patterns that result from various porous media processes, such as percolation,
viscous fingering and fracturing. Networks of fractures in a rock are natural candidates for a fractal
geometry description. This particular alternative is explored in this paper.

| Conventionally, naturally fractured systems have been represented by the Warren and Root dou-
ble porosity model [138] or by a random array of fractures [21], [84]. Although capturing important
properties. neither of the two geometries can account for fractal characteristics recently attributed
to naturally fractured systems [5], [L05], [114]. The relation of fractals to fracture networks was first
explored in 1985, in a study of nuclear waste dispesal [5]. That study revealed that many fracture
patterns at Yucca Mountain, NV, were self-repetitive over a range of scales, spanning from 0.2 to
15 meters, within which several generations of fractures were detected. Additional support for the
fractal character of fracture networks can be found in recent studies of the fracture patterns of the
Mounterey formation [50] and of the Geysers genthermal field [115]. Prominent fractal features in
the latter include the existence of a cascade of fracture scales i ..d a self-similar structure.

[t was recently proposed that the fracturing of disordered media, such as natural rocks, can
be modeled using fractals [55], [134]. Indeed, fractal structures have been related to the fracture
resistance of the mateiial and to the particular fracturing process it undergoes [134]. For example.
fragmentation with substantial shearing. which appears to be a dominant mechanism for many

fracture networks. leads to fractal dimension values ranging between 1.2 and 1.8 [1R8]. Sammis et
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al. have reported fractal dimensions between 1.5 and 1.7, [114].

Motivated by such findings, investigators have recently attributed fractal properties to networks
of fractures and proceeded to analyze their hydraulic response (Chang and Yortsos [23]. Beier [9]).
These works demonstrated that the traditional solutic as for single-phase quid flow are particular
cases of a rnore general solution, where the dimensionality (reflected in the fractal dimension) is a
key variuble. Significantly, this dimensionr can take non-integer values and characterizes the fractal
response.

Current studies in the modeling of fractured systems with fractals rely on Sierpinski carpets
and percolation networks [104]. In certain cases, numerical simulation has shown the expected for
a fractal transient response. However, the particular networks taken represent rather special and
idealized cases. Fractal models for naturally fractured systems must be consistent with the basic
mechanisms of fracturing, such as shear fracturing, extension fracturing, etc. [60]. In addition,
any synthetic network must honor available daia, such as fracture length distribution, fracture
orientation and density, etc. Real systems also possess upper and lower cutoffs, which place limits on
the range of fractal behavior. Strictly speaking, rigorous methods for the construction of netwarks
of fractures must await the successful development of fracturing theories. Recent advances in this
area have been many and signiﬁcaﬂt and they hold promise that a unified theory may soon emerge
(35].

A practical aiternative that may lack in rigor, but affords great flexibility, is possible for systems
that may be described by a fragmentation process. The latter is known to lead to fractal size
distributions [134]. The essential aspects of fragmentation can be simulated with the application
of the IFS (Iterated Function System) approach introduced by Barnsley [4]. This technique yields
networks of the desired fractal properties with much flexibility in the orientation of the fractures
and in the shapes of the fragments. This approach of combining fragmentation and IFS to create
fractal networks is proposed in this paper. Two issues will be addressed:

(i} The numerical construction of a synthetic network of fractures with fractal characteristics.
(ii) The simulation of transient, single-phase flow of a slightly compressible fluid and its pressure

transient response in such networks.
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6.2 NUMERICAL SYNTHESIS OF FRACTAL NETWORKS OF FRACTURES

6.2.1 Fragmentation and Fractals

In many fragmentation processes, the distribution of fragment sizes can be described by a power
law. This fact has been known since the early 1940s, when Schuhmann’s law [51] was introduced
to describe the distribution in grinding operations. Turcotte [134] documents many fracturing
applications, where the size distribution is described by a power law. More recently, Poulton et al.
[105] postulated a puwer law behavior not only for the fragment size, but also for the length and
spacing of discontinuities in the rock. In a related study, a power law distribution of fracture trace
lengths was discovered by Barton [5].

Fragmentaticn was modeled in the classical work of Gilvarry [51], who used an exponential
distribution to describe repetitive fracturing. A basic parameter in the analysis is the probability
ps(1)él that a given fragment of size in the interval between [ and /44! will be fragmented. Recently,
Turcotte [134] has showed that when py is constant, a power law distribution of fragment sizes is
obtained. For an idealized fragmentation process, where the fragments of a given generation are all
of the same relative size, the fragment size distribution is of the power law type, with an exponent
related to the probability of fracturing ps. For example, if each block creates an average of Spy
new blocks of relative size 1/5, the theoretical value of the exponent is

_ 2In Spy

E= InS (57)

It can be shown that this exponent is also equal to the box fractal dimension, D, of the mosaic
made up of the same pieces. Since an unfractured block represents a missirg subset of fractures, the
fracture length distribution will also be power law distributed with the same exponent. Equation
{57) suggests that non-trivial fractals (D < 2) are obtained only for py < 1.

The box counting fractal dimension is one measure of a fractal structure. It is typically calcu-
lated by superposing a grid of a given cell-size on the fracture pattern and by counting the number

of occupied cells. The power law relation

N(r)~rP (5%)

between the number N (r) of occupied cells and the scale 7, yields the dimension D. Box counting
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has been routinely used to characterize the fractal properties of real networks 5], [114].

For more realistic fragmentation processes, blocks of a given generation are not all of the same
relative size and a given size group may be composed by blocks of different generations. Nonetheless,
as will be shown later, a power law distribution in fragment size and fracture length still persists.
We should also add that fractal behavior typically holds in a finite range between an upper and a
lower cutoff scale. The upper cutoff is defined by the maximum size fragment (the “largest hole”
in the network). The lower cutoff is mc-e arbitrary, usually decided from practical considerations.
As shown below, finite cutoffs play an important role in the hydraulic response.

The way by which patterns are created by fragmentation, namely the initiation from a large
scale and the propagation towards successively srnaller scales in a systematic manner, has a close
analogy with the IFS technique recently developed. In the following, we propose to mimic a
natural fracturing process in the construction of a synthetic network by combining the IFS with a

probability rule.

8.2.2 Generation of Fractal Networks of Fractures

Barnsley [4] has recently proposed the method of Iterated Function System (IFS) to construct
fractal images. With this technique, a fractal is obtained from an initial simple shape (initiator)
by applying in an iterative fashion a set of aumerical transformations (propagator). Each iteration
creates multiple sets of n smaller, transformed images that occupy the place of the previous image.
After several generations the set converges to a fractal. The technique creates fragments of various
sizes and shapes and it is well suited for the development of synthetic nevworks of fractures.

For the creation of the two-dimensional patterns to follow, two transformations were used. Each

consists of two quadratic expressions

Tn = aZp-1 + byn~1 + CTn_1Yn-1 + d

Yn = €Tn-1+ fYn-1 + GTn-1Yn-1 + h

where z,, y, are the coordinates of a given point of the nth generation, and a,b,c,d,e,f,g,h are the
coefficients of the transformation. When ¢ = g = 0 wne transformation is linear (generally self-
affine). If in addition @ = f and & = —e. it gives rise to self-similar fractals. The non-linear terms

{c.g) are useful in controlling the geometry of the final pattern. Iowever. control of the fractal
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characteristics and the fractal dimension is mainly obtained by varying the probability ps. As in
fragmentation, we may specify that a fraction 1 — p; of newly generated blocks is not allowed to
further subdivide. The value of py affects the fractal dimension, although not necessarily according
to the simple result in equation (57).

Figures 65, 66 and 67 show three typical examples of fracture networks obtained with the
application of self-similar, self-affine and non-linear transformations, respectively. A fracturing
probability py = 0.75 was applied every second generation.

Because of our interest on fracture networks, the objects of Figure 65 to 67 have their fractures
retained. Thus, they are not strictly self-similar or self-affine. In this regard, they represent
modifications of the well-known Sierpinski gasket [85]. Nevertheless, they do possess similar fractal
characteristics. Figures 65b, 66b and 67b show plots of the box counting, fracture length and
fragment size distributions corresponding to these objects. In all objects, box counting exhibits a
power law behavior reflecting the underlying fractal structure, with an exponent varying between
the values of 1.60 (for Figure 66b) and 1.62 (for Figure 67b), both very close to the theoretical value
of 1.59 for a Sierpinski gasket. For the object of the self-similar transformations of Figure 65a, the
other two fractal measures (fracture length and fragment size) are step-like with steps of equal size.
If only the points at the edges of the step are taken, the discrete distribution so obtained is of the
power law type with an exponent consistent with the theoretical value. However, this is not the case
for Figure 66b, where fracture length and box counting give approximately the same exponent but
the fragment size distribution hardly resembles a power law. It must be noted that finite size effects
are present on all distributions. The third non-linear object of Figure 67a can be characterized as
fractal, if box counting is applied (D ~ 1.62). Fracture length still follows a fairly well defined power
law. However, fragment size distribution has a power law behavior only in s sgments. Certainly,
as more generation are included, the distributions approach the expected power law. The above
differences serve to emphasize the relevance of box counting in the characterization of the fractal
structure in finite fractals.

The shape and geometry of the initiator have a significant effect on the geomstry of the final
pattern. Figure 68a shows a pattern of eleven generations initiated from a quadrilateral shape with
a single fracture. Physically, the transformation at each stage consists of a rotation and subdivision

of the original two (upper or lower, left or right) halves. The apparent relative complexity of this
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pattern hides the fact that there are only minor differences with Figures 65 to 67, namely the angle
of the initial fracture, the initial shape and the value of p; (here equal to 1). In Figure 68a the
initial fracture tends to be parallel to the top and bottom edges. Corresponding box counting,
fracture length and fragment size distributions are shown in Figure 68b. Because the pattern is
composed of pieces in a narrow size range, the box counting fractal dimension is very close to 2
in the range of interest. Changing the position of the initial fracture dramatically alters the final
pattern. Figure 69a corresponds to the same initiator shape as Figure 68a, except that the initial
fracture is tilted at a larger angle. In this highly distorted network, the initial fracture is hardly
recognizable.

Even .hough Figures 68 and 69 appear realistic, as more generations are included, the fractur-
ing process continues until the medium completely disintegrates. This results from the fact that
each block was allowed to further subdivide (py = 1). To obtain non-trivial fractal patterns, the
fragmentation probability must decrease, lower values in ps resulting into lower values of the box
counting dimension D. The patterns in Figures 70a and 71a were constructed as in Figure 68a,
except that a fraction (1 —py) of randomly selected fragments were left unfractured after the fourth
generation. Different selections of the fragments result into different networks, although all realiza-
tions have the same box counting fractal dimension. Figure 70b and 71b show the box counting,
fracture length and fragment size distributions for these patterns. The box dimensions are 1.78
and 1.65 for the two networks, respectively. As expected, the values depend on both ps and the
particular geometry. Away from the cutoffs, fragment size and fracture length distributions are
of the power law type. Finite size effects are limited to sizes close to the cutoffs for regular and
moderately distorted networks.

The sequence of transformations that creates a fracture also specifies its address. For example, if
an IFS of two transformations, denoted by 0 and 1 respectively, is used, typical addresses of fractures
are 001, 1010, 01101, etc. The number of digits in the sequence equals that of the generation to
which the fracture belongs. The numbers also determine the position of a particular fracture in
the map. This systematic fracture identification is especially appropriate for fluid flow simulation.
The networks presented in this paper were constructed with two transformations applied to a two-
dimensional initiator consisting of a single initial fracture in a quadrilateral shape. Of course, this

is not a limitation of the technique, which allows for an infinite variety of transformations in any

102



IR SR S -
e S e
.D

4
10 3 —r —— 3
E 3
o
- o -
o /
Q
103k © -
E o o 3
o RS -
- ° ‘ ;
- © ]
Q * 7
- ° i
u
< 102k °
I3 e _
£ E o . \ 3
E J
Z - o 3]
L
t o ]
- o
. B
101k
: o * E
g o ;
L
= o ]
lo%j i " P SR SRS S S S { 4 " L I " PO
102 -1
10 100
Size~!

Figure 68: (a) Fracture network (11 generations) using a quadrilateral initiator and p; = 1. (b)

Corresponding box counting(*), fracture length(o) and fragment size (z) distributions.



TN ‘p"/‘“& M

i.ﬁ,,..wr//,v_.,\.,‘@._w,%\.,
N

LN T

ciiny

Vi
\ iy
et

(i
NV A

kRN

1.

100

10

104

0
02

104
1035
10E

(b)

Figure 69: (a) Distorted fracture network (11 generations) using a quadrilateral initiator and p;
(b) Corresponding box counting (), fracture length(o) and fragment size (z) distributions.



& 3\\- By N
e * “ Rt -
. ST L on OV TR N
SRS, R DA “\‘\"&‘ X
g ~‘:>"~ S ﬁ .i %&%pwﬁﬁ% ““i!ﬁ

S
. -y ey
“"‘ ‘ oAt 53 e
1‘\ N %Fygkgiaau‘ 3mé‘F===ﬂﬂﬁ=ii§§\ﬁ5§§§&n.."

“—“‘a A
“” ““'ft‘ ) SRR Y 1
NS st '!.!-‘ '\"-‘-“,-4’ S S SRR
"‘\‘“““‘!“ "“ ' TS

‘ &S N
"‘ ‘ﬂ“““‘ A '50‘“
R e e e TR
A s R W e A s
=0 OrTeous e\ Ay
O OO e ] x5 »"-\" .
S I G s el O e R I w1
s B RgE eee
‘ N
AR -
- “ ' % b
EST3 RS s i A
s VW G“l""‘":‘:“‘i ]
AW YOy At
AN S PR
104 —
(b) 3 SRR S S A I R S S A A
103 #
2 o Y
-:‘; 102 - : . ° W a ’ =
£ : ‘ - ° L » 3
B - . ° . . x ]
3 o : X * :
3 ° x ’ b
1015 . x B
5 : ‘ 5
- [ N
100 1 1 1 1 R S W L I L " A
10-2 107 100

Size™!

Figure 70: (a) Fracture network (11 generations) as in Figure 68 with p; = 0.90. (b) Corresponding

box counting(#*), fracture length(o) and fragment size (z) distributions.

105



*ﬁ\ A - }‘
’ !
TR\

e N o
== S S Wi
A S W e
“" RS g\‘mi"w:azﬁh
<S5 (]
e | B2
3
‘ﬁ‘ﬁ‘ “,"’:-m»‘—’ ‘...-!"'"\""
R el Le S S -
v“—i‘i“‘”‘““‘m& .’“‘Wsws—umo
e S = s
NS s S e A -
- N RN B g A
PN R e
B G - "‘bn*:' -
= S R )

[
00 X1
WS st

104 T
(b) e
- ¢ -
L. P
r— . -
1035 .
- - i
b o 0;.‘... x- —
L C g O . 4
- 2 o % .
.
2 ° ' *
£ 10 Lot 3
= - o ok =
. DU 3
- . .o LR s
- o X 4
o .
10k : : . =
E L e E
: o : . [y :
ol - -4
+ o -1
o —
100 " n n WUUI W G T ST i i I PO i
10-2 101 100
Size™!

—
SSSPONY

Figure 71: (a) Fracture network (11 generations) as in Figure 68 with p; = 0.80. (b) Corresponding

box counting(#*), fracture length(o) and fragment size (z) distributions.

106



dimensions and for any initiator.

6.3 FLUID FLOW SIMULATION

The usefulness of any synthetic network is tied to the ability to simulate fluid flow. In the networks
under consideration, the IFS technique allows for expedient simulation. Certainly, for a numerical
solution, a finite number of generations must be considered. As shown below, this imposes a

significant constraint.

6.3.1 Flow Conductivity Matrix

The unique binary sequence that identifies each fracture, makes possible to precisely specify its
address, shape and location, as well as to devise a numbering system for its end points. In this
fashion, the nodes of the network are directly identified. This is an important develcpment, as it
alleviates the need for a finite-difference or a finite-element description. Moreover, it is uniquely
related to the self-similar, nested structure of the fractal object.

To proceed with flow simulation, certain assumptions regarding the fluid flow in the fractures

must be made. Consider single phase flow. Along each fracture, the usual expression applies:

@ = cow () (59)

where () is the mass flow rate, W is the width of the fracture, Ap is the pressure drop along the
fracture, p is the fluid density and A is the conductivity exponent, usually taken equal to three. To
construct the flow conductivity matrix, we make use of the address of each fracture. The two end
nodes of the initial fracture, of known coordinates, are numbered nodes 1 and 2. Each new fracture
subdivides an existing block and adds two new nodes to the system. The g;eneral expression for

the number of the end nodes of a fracture are a and a + 1, respectively, where

a =2+ — 14 2% (ad) (60)

Here, j is the generation to which the given fracture belongs, and ad is the decimal value of the
binary address. The coordinates of each such node are obtained by applying the sequence of
transformations described by the address to the coordinates of nodes 1 and 2. In this fashion, we

may obtain the coordinates and the number of each node in the network. Intersections between
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fractures are alsn specified numerically in a simple manner. The final step is to calculate the
conductivity of each fracture according to the assumptions made and to fill the entries of the
conductivity matrix.

A trne fractal pattern of fractures contains an infinite number of generations. In practice,
however, only a small number of generations can be considered, since the size of the conductivity
matrix doubles with every additional generation. This limitation is very significant or. the response

of the {ractal.

8.3.2 Pressure Transients

We subsequently considered the simulation of the pressure transients during drawdown. A single
well is assumed, producing at constant rate, with no flux boundary conditinns imposed at the sides
of the pattern. Flow occurs only in the fractures. The flow between nodes was cvaluated uring (59),
while an appropriately weighted volume was assigned to each node. For siraplicity, each fracture
was assigned the same width. Denoting by g;; the conductance beiv 2en neighboring nodes i and
7, the following discrete form for the mass balance for node i can be readily derived

Ap; pigii(Pi — Pi)
c P:‘r:—" = — - Qéi,m (61
PP AL Zj uls; )

where subscript j denotes all nodes connected to node i, ¢y is the fluid compressibility =nd m is the
node number of the well. We have also used the shorthand notation 4, ; = 1 for i = j and §;; =0

for 1 # j. For furcher simplicity, we take the approximation V; = 1) A¢;;, and g;; = Ak, vhere k
2L J 9i;
J

is the fracture permeability. Defining dimensionless variables pp = ml‘Q-TiM,L'D,,'J = e—}’— and

tp = p-%;, where £ is the average size of fractures of the last generation and pp = ;‘-’0—, where pg is

a reference density, we finally obtain

pD.i PDi—PD; .
2Bt N i Apps = 3 ppis | 225 ERL) 15,
‘2Atozj: D4 APD, j PD,;( o )+«5, (62)

This set of equations was solved using a fully implicit algorithm which iterates on the density term
at each time step.

Of crucial importance to the solution of the above is the size ratio N = %, where [ is the physical
size of the domain. N is also related to the total number of nodes (approximately proportional

to %N, where Z is the coordination number of the network). A theoretical fractal corresponds
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to N > 1 (obtained for infinitely many generations). However, as pointed out above, practical
considerations restrict N to a smaller value (O(100)).

It is important to discuss the effect of £. When the number of generations of fractures in the
network increases for a fixed L, this is equivalent to a decrease in ¢, and to an increase in N. In
the dimensionless notation above, the effect will be equivalent to an increase in the size of the
system. or to a delay of the boundary effect. It follows that, working with a large a number of
generations is beneficial in two ways: It not only assigns stronger fractal characteristics to the
network, it also serves to delay the effect of the boundary on the pressure transient. On the other
hand, by decreasing ¢, the real pressure and real time corresponding to fixed dimensionless values
also decrease, the real time following an ¢ dependence. It is possible that this may render more
difficult the actual identification of the fractal structure, because of the demand for an increased
resolution of the diagnostic instruments, particularly when the fracture permeability is high.

The solution of (61) can be expressed solely in terms of N and tp
ppm = f(ip; N) (63)

Theoretically (N > 1), a fractal system must respond as described by the power law of Chang and
Yortsos [23]

pDm~ 5" (64)

where 4 = %4 and d, is the spectral dimension. For percolation networks, d, is related to the mass

fractal dimension D and the fractal dimension of the random walk d,, [112] through

2D
dy = —
a. (65)
Equivalently, we may use 8 = d,, — 2 to write
D
6 = —— )
2+ 9 (66)

While D is an expression of the mass dimension, 8 is related to the network connectivity and
describes the deviation from an ordinary random walk in the fractal network. Clearly, it is the
combination of both these parameters that contributes to the fractal response.

Contrary to the theoretical results. however, the numerical simulation is subject to finite size

effects. These are particularly notable when the well is “off-centered” as explained below. To
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analyze such effects, we focused our sensitivity studies on the number of generations, the position
of the well and the randomness and irregularity of the pattern. As a diagnostic of true fractal
behavior we used the pressure response in a log-log plot. According to the theory, the plots of log
pp and dpp/dlogtp vs log tp must both be linear. Equivalently, we may monitor the slope of these
curves and test whether they are constant or not.

For a Euclidean homogeneous network, both slopes should approach zero after an early transient.
This is indeed the case as shown in Figure 72. The early response with slope of -12- is present in
all our simulations, indicating flow in a single (or a few) fractures that directly feed the well. It
is interesting to note that it is often the second curve (second derivative) that allows a clearer
identification of the underlying structure (it approaches a constant value faster). Also shown in
Figure 72¢ is the radial total fracture mass plot corresponding to this regular network. The plot is
obtained by tracing circles of increasing radius around the well and by measuring the cumulative
fracture length within each such circle. In the homogeneous case we expect a radial slope of 1
at small radii (single fractures originating from the well site) and a slope of 2 at larger values,
characteristic of homogeneous systems. This is indeed displayed in Figure 72c.

For a fractal network, the theoretical fractal behavior is well displayed in Figure 73, which
shows the transient response of a well at the center of the modified Sierpinski gasket of Figure
65. After an early transient, the two slopes remain constant for a significant interval of time, until
boundary effects are felt (Figure 73b). The constant slope is a clear indication of an underlying
fractal structure. In fact, the slope approaches the theoretical value of 0.26 (6§ = 0.74), for D = 1.59
and 8 = 0.16. This value of # was obtained by random walks on the network as described by Orbach
[93]. The numerical values of § and # are also in agreement with fluid flow simulations performed
in modified Sierpinski carpets [104].

The fractal response is a consequence of the well developed radial fractal structure around the
well under consideration. We confirm this in the associated radial mass plot (Figure 73c) which
shows two segments, one for small radii with slope 1, related to the early transient, and another
at larger radii with slope 1.59, related to the later part of the transient response. For finite size
systems, radial fractal structure is necessary in order to counteract finite size effects.

The modified Sierpinski gasket was next taken to investigate the effect of the number of gener-

ations. The transient response for a gasket with nine (two less) generations is shown in Figure 74a.
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The early behavior in both Figures 73 and 74 is identical. However, because of the additional length
scale, the response of Figure 73 is extended over a longer period of dimensionless time (one more
cycle), thus making easier the identification of the constant slope period. This result is consistent
with the previous analysis.

Finite size effects can be introduced by slight rearrangements, for instance by placing the test
well at an “off-centered” position. Figure 75 shows the transient response for a test well placed at
position B in the object of Figure 65a. It is observed that the early transient of % slope is prolonged,
while the period of constant fractal slope appears later and it has much shorter duration. The slope
value is also slightly lower than in the case of position A. An explanation of this behavior is as
follows. For finite systems, the development of a sharp response depends on how well a power law
fits the radial mass relationship around the test well. For a perfect fractal, this relationship is of
the power law type with an exponent equal to the mass dimension D (D < 2). This is not the
case for our finite networks. For location B, the radial mass plot shows at least three segments.
The first with slope of 1 is longer than the corresponding segment for position A. This accounts
for the longer lasting period of the early transient at position B. The last two segments of the
radial mass plot, with slopes 2.24 and 1.72 respectively, can be related to respective features in the
derivative slope curve (dashed curve). However, if the network of Figure 65a were a subset of a
larger self-similar network, a power law radial mass plot and a fractal transient response would still
have been observed, much like in a true fractal, regardless of the position of the well.

In general, the response of finite systems vary significantly with the arrangement of the matrix
blocks (computationally obtained by taking different realizations). It appears that if the blocks
are arranged so that the radial structure around the well possesses fractal characteristics, the
response is also fractal. This is consistent with the theoretical results, which assume radially
fractal characteristics (23], and with the findings of [104].

Pressure transient tests were also conducted for the networks of Figures 70 and 71. The square
dot in the middle of the pattern indicates the position of the test well. Results are shown in Figures
76 and 77, respectively. Although both pressure responses are very different from the homogeneous
case (compare with Figure 72), neither test conforms exactly to the theoretical expectations for a
fractal. The well of Figure 70 has a response that tends to a constant slope, this behavior being

consistent with the radial mass plot which has certain power law segments. However, it cannot
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Figure 75: The response of the modified Sierpinski gasket of Figure 65a

Pressure transients. (c) Radial fracture mass plot for position B.
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be used to unambiguously ascertain the underlying fractal. Even less revealing is the response of
the well of Figure 71, where the approach to a constant value occurs late and it is interfered with
boundary effects. It should be stressed again that this departure from the theoretical expectations
is only a result of the limited number of generations allowed in the numerical computatious (the
objects of Figures 70 and 71 have fractal characteristics over a small range of scales only). Coupled
with the irregularity and randomness of the patterns, this limitation prevents the identification of
the fractal structure. On the other hand, many real systems are more likely than not to contain such
limitations. Further work is necessary to develop better diagnostic techniques for the identification
of such networks.

A variety of other tests were also performed and analyzed. The previous findings were consis-
tently confirmed, namely that as long as the number of generations is small, the transient response
is unlikely to have the theoretical characteristics, unless the arrangement of matrix blocks is such

that a radially fractal structure exits.

6.4 CONCLUSIONS

A method to create fractal fracture networks with fractal characteristics was developed. The
method is based on a combination of the IFS technique for constructing fractal images [4], and
of a probability rule consistent with a fragmentation process. This technique allows one to create
two-dimensional fractal networks with controlled fragment shape, upper and lower cutoffs, fragment
sizes, and fractal dimension. Although not attempted here, the method can be generalized for the
creation of three-dimensional networks.

The simulation of pressure transients showed that the identification of the fractal object with the
help of existing theoretical methods is possible only if a significant number of generations is allowed,
or, equivalently, if the object is fractal over a large enough range of scales. Otherwise, finite size
effects and randomness may dominate the pressure response and make difficult the identification

of the structure. This behavior serves to emphasize the importance of cutoff scales in fractals.
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Figure 77: (a), (b) Pressure transient response for the network of Figure 71.
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7 A THEORETICAL ANALYSIS OF VERTICAL FLOW EQUILIBRIUM

Y. C. Yortsos

7.1 INTRODUCTION

The description of displacement processes in oil reservoirs or water aquifers is often greatly simplified
when the reservoir is narrow and long and the flow almost parallel. This is typically the case in many
applications. Approximations under such conditions have been postulated by many researchers. In
general, a Vertical Flow Equilibrium (VFE) is typically assumed (Fig. 78). Depending on the
strength of gravity, the various approaches can be classified in two categories: One in which viscous
forces and heterogeneity are predominant on the distribution of phases, and another in which the
phases completely segregate due to gravity.

The first category is intended to capture primarily the effects of viscous forces and their in-
teraction with heterogeneity (Fig. 79). It has been studied by several authors including Coats et
al. [28], Yokoyama and Lake [144], Zapata and Lake [151], and more recently by Pande and Orr
[95] and Lake et al. [72]). Since gravity is unimportant, the term vertical is meant to denote the
direction along the narrow coordinate. In most of these studies a two-layer description is taken, us-
ing rather intuitive, although correct in retrospect, arguments. Extensive numerical simulation has
verified the validit: of the various approaches, particularly as it regards the dimensionless param-
eter Ry = f’;\/g, which must take large enough values for the VFE to be applicable. Along the
same lines must be considered the work by Lake and Hirasaki [71] on tracer dispersion in stratified
systems, as well various phenomenological viscous fingering models, such as Koval [69], Todd and
Longstaff [133] and Fayers [43]. The latter models have presently only an empirical basis, although
the numerical evidence is in many cases supportive of their applicability.

The second category emphasizes gravity in addition to viscous forces and it should be more
applicable to homogeneous systems of higher permeability. Not surprising, the original contribu-
tions in <his direction were made in connection with groundwater aquifers, where the so-called
Dupuit assumption was introduced (see [7]). Viscous, two-phase flow was studied by Dietz [35],
and elaborated by Le Fur and Sourieau [73], Beckers [8] and others. A complete segregation of the
immiscible phases is assumed, a sharp macroscopic interface separating the two regions (Fig. 80).

Recently, Fayers and Muggeridge [44] extended this approach to tilted reservoirs with dip.
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While the two classes seem to derive from the same conditions, no effort has been taken to treat
them in a uniform fashion. In fact, it is not entirety clear which are the relevant parameters that
demarcate in the parameter space the two regimes and where do various approximations hold. At
present, most of the available evidence is numerical. While under certain conditions, this may be
sufficient, it would be nonetheless desirable if a rigorous derivation were available to clearly identify
the various approximations and assumptions. This is particularly the case for layered systems,
where presently available formalisms are awkvw ard and difficult to extend to many layers.

The objective of this chapter is to provide & unified approach based on a rigorous asymptotic
expansion of the flow equations in long and narrow systems, where the VFE is expected to apply.
First, the fundamental asymptotic analysis is developed for a model immiscible, two-phase dis-
placement. In the absence of gravity or capillarity, an extension of the classical Buckley-Leverett
equation, that also includes cross-flow terms, is obtained. Subsequently, this equation is applied
to a layered systems of arbitrary number of layers. A hyperbolic non-linear system results that
describes the interaction between the layers. Weak effects of capillarity and gravity are next in-
troduced. The problem for miscible displacement is formulated in a subsequent section. Tracer
dispersion in a layered system is analyzed leading to the results of [71]. Finally, we consider strong
gravity and capillary effects that lead to segregated flow. The conditions for the latter are specified
and we derive generalized expressions for the Dupuit and Dietz approximations. Flow segregation

due to gravity-capillary equilibrium is also discussed.

7.2 ASYMPTOTIC ANALYSIS

Consider the constant rate immiscible displacement of “5il” by “water” in a long and narrow
reservoir, of thickness H and length L, where ¢ = H/L <« 1. For simplicity, the reservoir has
no dip, but it is anisotropic and stratified with different permeabilities in the “horizontal” and

“vertical” directions

Ky = kusy(X,Y) ; Kv = kvry(X,Y) (67)

Here x; > 0,(¢ = H,V) are dimensionless such that fOH kidY = H, when the x-dependence is ne-
glected. Otherwise, the latter constraint is not satisfied. We normalize “horizontal” and “vertical”

scales, X and Y, by L and H, respectively:
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Figure 78: Schematic of heterogeneous reservoir for VFE.

Figure 79: Schematic of viscous fingering in VI

121



[l |

Figure 80: Schematic of gravity segregated displacement.

X Y
=7 YT H
by

T

(63)

and scale all velocities by the injection velocity ¢, time %, and the fluid pressure by éfg—" Iis

denotes a “water” saturation, the dimensionless balances become

05  Ouy Ovy,
I i I Wil
¢ at + dz I+ dy
i+ 52) 4 (v + 05 = 0
u; = -w(’x,y)/\idp’ ; t=o,w
oz
€ Op; € pikvg] 4 )
=v, = =Ry (T, ¥) A |5 + % ;L= o, w {6
6? wviz,y) tay—i—& " J I =0,Ww {69)

Here we defined & = ;/:-3;, we have taken the y coordinate to increase upwards, and we have used
1, and v, to denote the “horizontal” and “vertical” component: . respectively, of the dimensionless
velocity of fluid i. In the absence of capillarity and gravity, u, and v; can be expressed in ferms of

the total velocities u = uy, + 4, and © = vy, + v,. with the use of the fractional low function fu (5.



Uy = ufu{S) 1 vy =0 (5) (70
We recall that A1 is the total mobility, At = Ay + A,, where A\, = %Af,“, and A\, = k... this

fiw = Aw/Ar. We, then, obtain

.95 a 0
e%§+amnﬂ+%umum
ff)—L—L E)i =0
dr  dy
u= ~5H(T-y)/\TT£
or
€ dp -
gl = —ky(z, U)/\Ta (vl

Since ¢ € 1 (long and narrow reservoirs), if follows that w = O(1) and ¢ = O(¢). hence we may

define r = ew, where w = O(1). Substitution into (71) then yields the following

95  Ofu | Ofu

5 T e Ty =0
Ju  Ow _,
dr  dy
8,
u = -V\TKH(I,y)gE
T
0
Izliuj = ~’\T"":V(Is y)% (72)

where we have defined R, = Ng = #\/%. In this formulation, it is now evident that the only
dimensionless parameter is Ry . which is precisely the parameter used in justifying the use of VFE
[151]. To obtain the latier approximation, we take the limit R} > 1 and expand in a regular

asymptotic expansion

U=+ Szur -
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1
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Substitution into {72) yields to leading order,

350 afw afw _
S5 Tup T, =0
auo awo _
9zt Oy
a
up = —Arnn(z,y)ﬁ
dpo _

Eqn (74) dictates that pp = po(z,1), i.e., the pressure depends on the r-coordinate only. This is
the fundamental assumption of VFE or parallel flow, rigorously derived here in the limit R? > 1.
Numerical evidence suggests that VFE is satisfied quite well when R; > 10. This is consistent
with our asymptotic expansion, where the next order enters at O(-};TL), hence the error made by
retaining only the first term is 1% or less. The rigorous identification of the parameter Ry as the
relevant variable for the validity of the VFE represents the first important result of this section.

We should point out that implicit in the derivation of (74d) was the assumption ky # 0. For
a layered system, where the permeability kv = Ky (y) may vanish somewhere, one simply needs to
redefine the reservoir thickness and VFE applies without problem (Lake et al., [72]). The problem
is somewhat more complicated, however, when the system is not layered. At least near the regions
where Ky vanishes, the VFE does not apply. This may complicate the analysis, thus it will not be
discussed further in this section.

Unless otherwise noted, for convenience, we shall omit subscripts 0 and H. The next step is to

eliminate gf by integrating (74c) along the y-coordinate, to obtain

o A(S)N(z,9)
Jo AT(S)n(z, y)dy
where we have assumed a constant injection rate (although the extension to a variable rate is

(75)

straightforward). Subsequently, we eliminate w by integrating (74b)

v Ju -
w= — A -é-;dy (76)

where a no-flow boundary condition was used. Final substitution into (74a) vields the result

d5 AT Ofy 0 Oy/\Tridy O fu _
3t Tagndy 02 9% | [Tarndy| 0
Jo Arrdy Oz T | [y ATrdy Y

¢ (77)
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This equation represents the second important result of this chapter. The equation is a first-order,
hvperbolic PDE, but in two spatial dimensions (z.y), and it contains only saturation S as the
dependent variable. When s and § are independent of y, it naturally reduces to the traditional

1-D Buckley-Leverett (B-L) equation

0S  Bfu _ ,
“ot tor T (

-1
vs]

[n this sense. equation (77) is a 2-D generalization of the B-L equation under the conditions of
VFE. We must point out, however, that because of the reduction in the dimensionality, equation
(77) cannot satisfy all boundary conditions, thus it is not expected to hold near all boundaries.
This becomes more apparent below.

Before we proceed. let us recall the conditions for the validity of the above. It was derived in
the limit Ry > 1 in the absence of gravity and capillarity. The latter condition requires that the

gravity terms in (69d) are small, or

N K1 (79)

where the gravity number was defined, Ng = ﬂcﬁ—%&i—';:ﬂ‘ﬁ (note the difference in notation with
Fayers and Muggeridge, [44]. This allows for both equations (74d) and (75) to remain valid.
However, in order for gravity and capillarity to be also absent from (70) and (77), one needs the

stronger constraints {see also below)

— and Ner € € (80)

where the transervse capillary number is Nor = ;\ME,‘“ (see [144]). As pointed out in the intro-
duction. under these conditions, equation (77) is a VFE approximation that emphasizes viscous

cross-flow and heterogeneity. It is assumed, therefore, to control viscous fingering in such systems.

7.3 LAYERED RESERVOIRS

While the full solution of (77) is possible, it is more practical to consider a discrete treatment of

the y-dependence instead. For example. this would be the case of a layered reservoir (Fig. 81). We
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Figure 81: Schematic of layered reservoir for VFE.

take
K(z,y) = wi(z) i-1
) N y<'ﬁi
S(z,y) =~ Si(z)

Here, N is the number of equal thickness layers of the system. For simplicity, we shall denote

1=1, N (81)

Y= AR/ fol Arxdy. We may then integrate (77) over y from ‘—;} to %, to obtain the system
8S; | . 8fi 8 Z"l ,
}i_ '/1 - = Ji1— Ji- /':0; = "/V 82
@ at + v 33: (f f 1)31_ - w] l 1 ( )

Here, we have approximated y-integrals by sums, have denoted fi = fu(S:),¥: = ¥(Siik;) and
defined f, = ¥, = 0. We may recast (82) in terms of a hyperbolic system

ds ads Ok
°é—t-+A~a—; —Bg‘; (83)

where S = [51.52..... Sn)T and & = [K1.K2,...,&N]T are (Nx1) vectors. A = [a;;] and B = [bi;]

(1,7 = 1,N)are N x N square matrices with the following coefficients. Matrix A consists of two

terms A = D - E, where

d" —- ’\T(Sx)f’:x (afw>
v oA as i
d,=0.1#7 (81
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and

(fuw(SD) = fuw(Si-1))

€y; = (ﬁ,’A? Kj X
N
A Ar(Sm)Em ) j<i—1
(3/\7") NZ (Sm)K J
as /; it S
’ l ——IIVZAT(Sm)Nm ;g2
1
ei; =0 (85)
The inhomogeneous matrix B has coefficients
(fu(S:) = fu(Si-1))
by = $iA? X
AV
1ﬁz:)‘T(Sm)":m ; J<i=1
Ar(S;) Yt (86)

“#ZAT(Sm)H’m > ]ZZ
1

N
In the above we have denoted A = ﬁZAT(Sm)nm.

i
This general formulation in discrete form is free of empirical arguments and represents a rigorous

result, apparently also obtained here for the first time.
We observe the following:
1. Matrix A is neither diagonal nor symmetric. This is because of the coupling between adjacent

lavers of different properties. The coupling is due to the variation of the mobility with

saturation.

2. When the layer permeabilities also depend on position (g—g # 0) a source (sink) term arises
on the RHS of (83). Thus, in this case, heterogeneity acts in the form of a reaction term.
This feature is also due to the coupling between the layers and it is absent in the single layer

case.
3. When all layer properties are the same, the system reduces to the B-L equation, as expected.
4. For a two-laver system, we may further simplify (A = Ap(S51)k1 + Ar(.S2)K2) to obtain
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dyy =

=50 (),

_ A1(82)k2 (Ofw
%12 = P2 A (35>2

diz=dn =0

el =e2=20

en = % (fw(&;;\{u}(s‘)) K1K2 (%)1 Ar(S2)

o= (B8 (3) i

b1 =0, b2=0

b = § (LalS2)= ful5)

¢2A2 ) /\T(Sl)/\T(Sz)KQ

b2 = —

1 (fw(S;») ~ fu(S1)

5 (L= 22) s sian(sam

augmented by permeability heterogeneity along the z-direction. The latter result is also new.

7.4 EFFECTS OF CAPILLARITY AND GRAVITY

N oll.

Uy = ufulS)+ CTKH/\ofw'—".A

Ry Oz
oll, 6

Vv = Vfu(S) + kv Ao fw {NCTa— - —NG}
y €
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(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

The above contains the formulation of Zapata and Lake [151] and [95], but it is here also

When the injection rates are low enough for capillary and gravity effects to be of some importance,

but not very low for the phases to be segregated, equations (70) must be reformulated. We obtain

(96)



where a J-function representation was used for the capillary pressure, and II. is the dimensionless
capillary pressure.

Equations (71). (77) are appropriately modified. For instance, (71a) becomes

a8 0 Ner o1l,
€ [QS—QT + Eg(ufw + “}E“KHAofw“aT)] +
0 . oI, 6 _
£ [l‘fu- + Ky Ao fu {ACY oy ZNG}} =0 (97)

We may proceed in exactly the same way as before, by substituting v = ¢w, identifying the large
parameter as R% = ;5-; and expanding appropriately. In order for the flow not to be segregated, con-
dition (79) must still hold, Ng < 1. The longitudinal capillary term can be reglected, except near
sharp fronts, much like in the classical Buckley-Leverett problemn. However, transverse capillarity
and gravity can be retained, if the following conditions are valid, Nor ~ O(€) and Ng ~ O(;%,L-).

Then, the following equation is obtained

05, _dre 0fu 0 [fg,\mdy} 8fw _

+ =
ot fol Arkdy oz oz fol /\Trcdy ay
a NCT 8Hc 2
- [KVAO fu {T = RLNG}] (98)

The relative importance of gravity over capillarity depends on the dimensionless ratio

GR%NG _ gApHVEy
Ner g

(99)

which is rate-independent. For thin beds of low vertical permeability, capillarity dominates. Then,
if the typical assumption is made about Il as a single function of S, the RHS above represents
capillary spreading (one should keep in mind, however, that permeability heterogeneity is likely to
also imply capillary heterogeneity as well, see Yortsos and Chang, [147]. This case is of interest but
will not be considered in this study). As shown below in the case of miscible displacement, capillary
spreading can be equivalently represented in terms of a macro-dispersivity. Capillary effects in VFE
were considered by Yokoyama and Lake [144].

When gravity dominates over capillarity in (98), then
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where we defined O¢ = %ﬁ(ﬂw—ﬂo)- Upon integration over y between I‘I_VL and K" the contribution

of the gravity term acts as a source/sink. Then, equation (83) must be modified as follows

JS oS Ik
;5{+A;9—1;—B5;+G (101)

where the it" element of the G vector is
gi = NOG[kv Ao(S:) ful(Si) — kv Au(Siz1) fw(Si-1)] (102)

If the flow rates are quite low, such that Ng ~ O(1), the phases are likely to segregated. This

case is described in a later section.

7.5 MISCIBLE DISPLACEMENT

Consider, next, a first-contact miscible process in the limit of negligible gravity, N « 1. The
mathematical description consists of equations (71b) - (71d), where the total mobility is now a
normalized inverse viscosity, Ap(C) = m IC , and where the dimensionless concentration C is the de-
pendent variable. The latter satisfies an advection-dispersion equation, which reads in dimensional

notation

(628 1420) 4,20
ot T "oz dy
e 0°C ar 1 0*C

Pey, " 9z? ar, ePer 9y? (103)

This equation is the analogue of (71a) to miscible displacement. In the above, we have denoted with
ar, and a7 the longitudinal and transverse dispersivities, respectively, and we expressed longitudinal

dispersion with the Peclet number, Pe;. In the case of mechanical dispersion only,

L
Pej ~ — (104)



Typically, L > ap, thus longitudinal dispersion can be neglected (except near sharp fronts). To

obtain asymptotic results we follow the same procedure as above to get the final result

G0C , _Ax 0C_ 9 [ ‘g)mdy] oc 9

B TTawdy 0z 07 | [Tawdy| 0y " OBy o)
where, subscript 7' was omitted for simplicity. In (105) we have neglected longitudinal dispersion,
but have retained transverse dispervion by assuming that Nyp = ﬁf(—g}T: ~ 2L remains finite
in the limit of small e. When transverse dispersion is neglected, the previous equation (77) is
recovered, if the identification is made § & C, Ar < A, and f,, — C.

In the latter case, the equivalent of (83) reads
ocC ocC ok

where C = [Cy,Cy,--+,Cn]T. The representation becomes simpler if we take the approximate
mobility dependence A(C) = €"C, where r measures the mobility ratio, r = ¢nM. Then, for
constant ¢; = ¢, which can subsequently be absorbed in the dimensionless time, the coefficient

matrices reduce to the following

Kie O
di = di=— ,
N DK€
1
N
KD dm, j<i—1
ei; = 1(Ci—Cio1)d; Yy (107)
1
and
8,]
b, = 2L 8
9T s (108)

One notes the interesting property that the sum of all the elements of each column of E vanishes,
N

Zeu = (.

1=1
When the solute is not passive, an exact solution to the system is not available. Some interesting

remarks can be made in the two limits where r — +0o (unstable displacement, A7 > 1) or when

r — —= (stable displacement, M < 1). In these two cases it can be shown readily that the matrix
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C becomes diagonal and, furthermore, that the only element with non-zero velocity is the layer
with the highest (r — oc) or the lowest concentration (r — —oo), respectively. To show this,

consider {107a) and rearrange as follows

d; = i (109)

N
aner(c,—c.)
1

It is then straightforward that, in the limit » — oo, then d; — 0 for all 7, except for ¢ = max,

2f-

where Ch 4, is the maximum concentration, hence d.r — N. The opposite applies for the case
r — o0, in which d; — 0 for all ¢, except for ¢ = min, where (), is the minimum concentration,
hence dpin — N. In summary, in the case of very unstable displacement (M > 1), the highest
concentration travels the fastest, in accord with viscous fingering notions. While, for very stable
displacement (M <« 1), it is the lowest concentration that travels the fastest, also as expected.
Besides this simple result, however, equation (106) contains a much richer structure. This is

currently under study.

7.6 TRACER DISPERSION

In the passive solute case, where the viscosity is constant (r = 0), the off-diagonal terms e;; vanish

and we obtain the linear system

ac, aC; 0
—8‘F+K;‘—6“;“‘(Ci“0i—l)b—£(z:"‘im) (110)

where, in the above k; is to be interpreted as normalized with the average permeability of a cross

section. When %ﬁ; = (), this has the solution

Ci = H(tk; — ) (111)

where H(z) is the step function. In the continuum limit

B 1 N
C = lim — i
M );C (112)
we further get
C :/ " (k)Y H (Kt~ 2)dn (113)
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where f(x) is the pdf of k. If we define the cumulative distribution F(x) = [  f(k)dk. then we

Kman

may rearrange to get

C = ]1(tKn1ar - I) - I,’(

~|8

) (114)
For a more general result in the case 9% — 0, we consider transverse dispersion. We shall make

Jdr

use of the continuum formulation (104) and write (for ¢ = const.)

oc ~oC 0*:C .
E—%—n(y)g—;——f\TDayz (115)

This equation represents Taylor-Aris dispersion as applied to porous media flows [71]. One
can readily show that it tends asymptotically to macro-dispersion. Indeed, by using a coordinate

moving with the average speed £ = z — t, one gets [132]

aC 9:C
(h(y) -1 € E NTDW (116)

which can be integrated to

NITD ag/ / - 1)dy"dy’ (117)

In the moving frame of reference the mass flux over a cross-section is

1
/ (k(y) - 1)Cdy =

——/ s - ) [ / - nay'day- G (118)
thus, yielding the macro-dispersion approximation
where

Dy, /mw —~1>// ((y") - 1)dy"dy’dy (120)

In dimensional notation, the macrodmpersxty is expressed as

= e I
o HaT(kH)"'/ (Ku(y) —kn)
v ory'

/ / (Ky(y") = ky)dy"dy'dy (121)
Jo

This result was first derived by Lake and Hirasaki [71] by different means.
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7.7 GRAVITY SEGREGATED FLOW

Consider, next, the case where the gravity terms in (69) are strong, Ng ~ O(1). Here, the approach
is somewhat different. Gravity effects must be also considered in the distribution of pressure, not
only in the equation for the mass balance. Consider, first, negligible capillarity in the immiscible

displacement case. The general expression for the vertical flow velocity was derived before

€ _ 9p 5 . \
5” = —Ky ’\Tay + Na(Auwpw + AaPo)] (122
where §; = o In view of the fact that v = ew, we must take
0 _ _
Ar—ég + No(Awhu + Aofo) = 0 (123)

thus gravity terms must be considered in the distribution of pressure. This is a true VFE. However,
the fluids now become segregated and the previous analysis is not necessary. To show that flow

segregation occurs we consider (96b) in the absence of capillary effects

v = € [wfulS) = kv AefuNGR] (124)

All terms above must be O(1) or less. However, since we assumed Ng ~ O(1), the last term on the

RHS would diverge at large Ry, unless ky A, f, vanishes, thus

Aofw — 0 (125)

The solution of equation (125) is segregated flow

5 Swr 1+ h<y<l1 (126)

1-So 3 O0<y<h
where the location of the “macroscopic interface” h = h(z,t) is to be determined as a function of
position and time (Fig. 79). This is the classical case of gravity tonguing which as shown above,
holds under the conditions Ry, > 1, Ng ~ O(1). The first is a geometric condition, while the second

also involves flow rates. To our knowledge, this is the first time that flow segregation was proved

analytically.
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To obtain the evolution of h, one needs to consider an integral balance. For this, equation (72a)

is integrated over y between 0 and 1 to yield
o [! 10
— [ 5d —(ufw)dy = 127
¢at/0 y+/O (%(uf Jdy =0 (127)

Next, we use (123) to solve with respect to p. We obtain after considerable algebra

Op ) {/y (Awpw + /\aﬁo)dy] on
= No— 128)
oz~ Negz L)) N t B (128)

where Il = Il(z,?) is the presure at y = 1 and depends on r and t only. Our ultimate goal is to

obtain an expression for u. By subsequent substitution of (128) into (69b) and (127), we finally get

a 1 19
(ﬁg{/(l de'f“NG/(; 5;—
8 ( [V (Pubut oo .
{KH,\wa(-ﬂ (/1 (—_—TT——) dy —H)}dy_o (129)

Next, the total mass balance is considered. In a straightforward manner it can be shown that

the following equation results

1o
Ng | 92
O ([ [V dubwt XoPo , _ ,

The two equations must be solved in conjection with the distribution (126). We illustrate this

application below.

7.8 THE DUPUIT AND DIETZ APPROXIMATIONS

Under the full segregation assumption, consider that the “oil” phase is “air” (switch for a moment
to subscript @) so that we take py < p,, and IT =const. This conveniently eliminates the last terms
in (129) and (130). Expression (126) can be used to evaluate all the integrals. For example, we
have

Awpu + Acpa pa 3 h<y<l

X = (131)
T fjuz \ 0< 1y < h
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Figure 82: Schematic of air-water system for Dupuit assumption.

Hence,
v - 1)p ;o h<y<l
/ Ndy/ = (y— 1)pa y (132)
I (h=1)pa+(y—h)pw ; 0<y<h
thus,
3 ¥ 0 i h<y<li
= [y = L (133)
T (Pa— Pu)Bet + O<y<h

Proceediny similarly with the evaluation of the other integrals the final result is obtained

on ., 00 Bh} (134)

h
Oo— = NH— sz, y)dy - —
at “dr [/o H(zZ,y)dy dr
where V. = Ng/M and M is the ratio of the mobilities of the displacing to the displaced phase,

, vwkralSwe) L. - . . . . . .
(here A = u“‘,: ’(‘1 "‘S 7)- This is the standard, non-linear diffusion equation used traditionally in
afrw —<ar

the water infiltration literature (Fig. 82). It usually arises under the so-called Dupuit approximation

£

where ky = [ (see {7]). Here, it was derived explicity, rigorously, and mcre generally.

J
[n the more general .ase. a similar approach applies. The evaluation of the various integrals
is much simplified. it generalized functions (like step and delta functions and their derivatives) are

nsed. For instance. we can take
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/\r=—ﬁH y—h)+ H{h-y) (135)

sc that the integral in (129) is expressed in the compact form gy — VVH(y — h) + (F.(h — 1) +
Pulty — R))H(h — yj. etc. The properties of the generalized functions needed are H'(z) = §(z) and
z8'(z) = —é(z), where §(z) is the delta function of z. Without going into the considerable details,

we shall only present the final results. The total mass balance yields

d h Oh
N L ALY
Fr {/@ wHdY 81:]

i} h 1 on
i d — =0 136
61[(/0 KH y+M r:H y\ } (136)
while the “wate:”™ mass balance becomes
Ah [
O 3 + M NG [ Kedy - -
d h oll
dy- —1 =20 7
M5 Uo KHEY ax} (137)

Here, M = £2krull=9er) e cap integrate (136) once with respect to z to get

Hw k?’d( 5!0"')

. [k oh
:\G/ kydy - 3z
0 T

h oIl
(J{] wardy + TI/h any) S =C (138)

where " = 1. without loss, and then eliminate %% between (137) and (138) to obtain the final

equation

JOh 0 { fo Kedy 1_
6 j'Oh nH(,./f Kgdy ah]

5 (139
T | Y kpdy + I mady O

This is the generalization of the well known parallel flow approximation. derived by Dietz [33

for the case of canstant permeability. The process can be approximated as an 1 - D displacement
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with equivalent “saturation” S =S8, +h{l =S8, —S,.-). equivalent relative permeabilities given
by kryw = kru(l = Sor) foh kpdy and k.o = krol Sor) fhl xydy, and a straight line “capillary pressure”
with dispersion coefficient Ng.

The pseudofunctions become straight-lines when the permeability is constant [35]. In any
other case, they are non-linear functions of S, and, in fact, they may also vary with position r.
Clearly, because of the integral form, the order of the layers affects drastically the shape of the

pseudofunctions (Lake et al., [T2]).

7.9 CAPILLARITY-GRAVITY SEGREGATION

When the dimensionless ratio in (99) is not large, capillarity is also of importance. The equivalent

of (124) is now

N ) 2
U, =€ [u_rfw(s) + HV/\ofIL’ <i ST O;ch . -VGRZ‘)] (140)

Following the same arguments as before, when Nc7 and Ng are not small, we are led to the

capillary equilibrium condition

ol é
N == -N 141
T, =6 (141)
which can be integrated to yield
0N ,
M. = Mo + y—r (142)
eNer:

where TI, is the capillary pressure at y = 0. If Il is assumed to be a single function of saturation,
the above determines the vertical distribution of saturation, given its value Sp{z,t) at y = 0.
Again. an integral approach is needed. However, the problem here is quite simpler. Indeed, it

can be readily shown that the “water” pressure is hydrostatic. such that

Pe = —Ngpuly — 1) + II{z.1) (143)

hence. the total flow rate u is described by expression {75) (assuming negligible capillarity along

the x-direction). Thus. we can use directly equation (127) to get
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. {fmg sl Sidy] (141)

a

OE/O St B \Jo NH/\T(,S)dL/f

Equations (142) and (144) completely specify the problem. For example. all integrals in (144)

can be explicitly calculated from the solution of (142), in terms of So(z.t). the evolution of which

can be obtained from (144). The result would be an equivalent to the Buckley-Leverett equatiou.

this time in terms of So(z,t). Whether, however, appropriate pseudofunctions can be defined
remains to be investigated.

Finally, if capillarity predominates in equation (142), the saturation profiles along the vertical

direction follow the capillary heterogeneity. Specifically, if ky- does not vary greatly with y. then the

saturation profile is flat, § = Sp(z,t), and equation (144) becomes the traditional Buckley-Leverett

equation (78).

7.10 SUMMARY

In this section, using a formal approach, the various manifestations of Vertical Flow Equilibrium
were derived. Key to the analysis was the identification of the parameter R; as the proper asymp-
totic variable and the development of a formal asymptotic method in terms of 1/R%. The analysis
confirms previously known numerical results and, for the first time. it rigorously establishes their
validity in the limit of large R%. Because the condition is geometric-structural it applies indepen-
dently of flow and process parameters, hence it can be used regardless of the particular displacement
process. Due to the ensuing reduction in the dimensionality of the problem. the process description
is facilitated significantly. To our knowledge, this is one of the few cases in multiphase flow in
porous media where such a reduction is possible.

The formal approach presented has many advantages, as it allows for a plethora of special
cases to be readily derived. An analysis along these lines is also possible for any EOR process,
and we hope to report on this in the future. In all cases, heterogeneity is the key variable of the
description and it is only the relative interplay of viscous to other forces that dictates the various
approximations. Viscous. gravity and capillary effects were considered in the case of immis-ible
dispiacement. The classification of the various regimes depends on the wrelative importarnce of

thiese forces. as described by the dimensionless parameters. We should point out thar the above
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can be readily extended to include a second “horizontal™ dimension by appropriate, but perhaps
laborious, modifications.

Many of the results obtained here are new, in the sense that they extend previous approximate
analyses. Thus, eqns. (77) and (83) are an extension of Zapata and Lake [151], eqns (98) and
(100) extend the work of Yokoyama and Lake [144], eqns (106) and (119) are extensions of Lake
and Hirasaki [71], and eqns (134), (139) and (144) extend the Dupuit and Dietz approximations.
In addition to their formal aspects, our results also ofter insight on effects of viscous cross-flow,
as in (84)-(86), and they suggest directly the relevant pseudofunctions for each case. Finally, it is
the hope that a more detailed analysis of equation (106) would lead to improved approximations
and to rigorously establishing the validity of the various empirical viscous fingering models (such

as Koval, [69], Todd and Longstaff, [133] and Fayers, [43]).
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8 PARALLEL FLOW IN HELE-SHAW CELLS

M. Zeybek and Y.C. Yortsos

8.1 INTRODUCTION

During the past several years the flow of immiscible fluids in Hele-Shaw cells and porous media
has been investigated extensively. Of particular interest to most studies has been frontal displace-
ment, specifically viscous fingering instabilities and finger growth. This can be readily understood
in view of the many interesting theoretical and practical problems associated with such fronts. For
Hele-Shaw cells, we mention the selection problems and the singular perturbation associated with
the high capillary number limit [10, 30}, and the relation of viscous fingers to crystal growth [101]
and flame front dynamics [152]. In porous media, unstable frontal displacement has been high-
lighted with the use of Diffusion-Limited-Aggregation (DLA) [140] and other probabilistic growth
models [68]. Issues of capillarity, heterogeneity, randomness and spatial correlation, including frac-
tal statistics [41, 75, 77, 78], have been extensively explored, although several outstanding questions
still remain unanswered [145]. The practical ramifications regarding oil recovery, as well as many
other industrial processes in porous media, have served as the primary driving force for most of
these investigations.

By contrast, little attention has been paid to the motion of lateral fluid interfaces, which are
parallel to the main flow direction. Parallel flow is an often encountered, although much overlooked
regime. In the context of Hele-Shaw displacement, it is the theoretical limit of fully developed
fingers (e.g. the Saffman-Taylor finger [111]) (see Figure 83). Parallel flow conditions have been
invoked in qualitative support of the scaling properties of unstable, non-capillary displacement in
porous media. Concerning the latter, it has been shown [67, 74] that as long as the viscosity ratio
M is finite, the initially fractal displacing fluid cluster eventually evolves into a compact Euclidean
object (although its perimeter may be a self affine fractal [67, 68, 74]). In a different context,
parallel flow is often realized in thin and long reservoirs, typically masked under the assumption
of vertical flow equilibrium (VFE) [28, 144, 151]. Recent studies on viscous fingering in porous
media have invoked parallel flow to develop approximate models that satisfy numerical experiments
13, 45]. Finally. we mention that parallel flow is routinely encountered in yet other contexts, for

L

example the steady-state. con-current flow in relative permeability measurements [29]. as well as
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in processes involving counter-current imbibition [64]. Although not directly relevant to this work.
the pore-ievel analysis of such flows is very much incomplete at present, despite recent advances
in the understanding of viscous coupling between phases [3] and efforts to ascribe a viscosity ratio
dependence on steady-state relative permeabilities [110].

It is well known, that under the tvpical conditions of low Re = 339- (where b denotes cell spacing),
the flow of a single phase in Hele-Shaw celis and porous media, (and more generally, multi-phase,
multi-component flow, but in the absence of spatial and concentration gradients) is potential. Such
purely viscous flow exists on either side of the interface between immiscible fluids in a Hele-Shaw
cell (Figure 83), and sufficiently far from the interface region in the case of porous media. We recall
that potential flow (although in the opposite, inviscid limit) also governs the fluid flow in water
waves [83]. We surmise that the dynamics of the lateral interfaces in parallel flow are likely to be
related to those of shallow water waves [53].

It is with this idea in mind that we examine the dynamics of fluid interfaces in parallel flow
in Hele-Shaw cells. In particular, the possibility of sustained wave propagation and the existence
of solitons form the main subject of this chapter. We present both theoretical and experimental
evidence that, subject to certain conditions, supports the existence of dispersive waves in the parallel
flow of two immiscible fluids. In the theoretical part, we first proceed with a linear analysis, which
shows that small disturbances are dispersive, if the viscosity ratio M is different than unity and
the spacing of the “inner” fluid does not correspond to the Saffman-Taylor finger configuration.
Subsequently, a weakly non-linear analysis is presented for long-wave, small amplitude disturbances.
The asymptotic description of the general problem is ultimately formulated in terms of a set of
KdV and Airy equations. The solution of the former is obtained numerically, although analytical
results are also used for comparison purposes. A brief summary of this work was given in a recent
article [154]. This chapter presents a more detailed account, as well as the extension to the more
general (non-symmetric) case.

We must point out that although there are many similarities with shallow water waves, there
are also many differences. First, the use of two immiscible liquids in a Hele-Shaw cell invariably
raises issues of wettability and capillarity. The latter acts to dissipate high frequency waves, while
under certain conditions the former may completely dominate the process. Such issues do not arise

in shallow water waves, where it is viscous dissipation that results into an amplitude decrease.



Secondly. for flat steady-state interfaces to develop between the two immiscible fluids, a parallel
flow condition (gqa = gops) at high values of the modified capillary number, N/, . must be first
met. This requires a somewhat elaborate experimental procedure. Finally, solitary waves in shallow
water wave experiments are typically detected by special probes due to their very small amplitude.
Hele-Shaws cells make difficult the use of such probes. Therefore, the experiments were restricted
to simple flow visualization.

To test the theoretical predictions, several experiments were conducted. First, we considered
a configuration of two fluids separated by one interface. For reasons that will become apparent,
we refer to this as the symmetric case. This configuration allows us to test and improve our
experimental technique, but also to compare with well known analytical results. After satisfactory
results were obtained, experiments were carried out for the non-symmetric case, where two interfaces
are involved. In all experiments, we attempted to generate single solitons on both interfaces as well
as to seek the interaction of solitons. Compared to frontal displacement in Hele-Shaw experiments.
the experiments are well reproduced. Flat interfaces are readily recovered, after the disturbance
leaves the cell, and experimental runs can be easily reproduced. We shall point out that in our
experiments, the viscosity ratio was finite, contrary to most Hele-Shaw experiments reported in the

literature, which are carried out at large viscosity ratio.

8.2 THEORY

We examine the lateral interfaces between two immiscible and incompressible fluids of different
viscosities in the parallel Hele-Shaw flow shown schematically in Figure 83. The cell is horizontal
and has half-width W. Parallel flow requires flat interfaces and the absence of pressure gradients in
the transverse (1Y) direction. This condition is satisfied by the requirement yyqn = f,q, = Q. where
jt; denotes viscosity and ¢, the flow velocity of fluid 7. Under the above, steady-state interfaces
are flat. We denote the normalized interface positions by Ay and Az (=1 < Ay < Ay < 1), where
transverse lengths are scaled with the half-width W. The basic governing equations follow from
the usual llele-Shaw assumptions. In each fluid, Darcy’s law applies and the pressure satisfies the
Laplace equation

VP =0 = Vip, =0 : 1= a.b (115)

Here, subseript a denotes the “inner™ fluid. We shall point out that fluid b flows in two different.
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Figure 83: Flow geometry for (a) Non-symmetric and (b) Symmetric case

separated regions, thus two different pressures are needed for a full description. We describe the

interfaces in dimensional notation by

FAX,Y,T)=Y - F(X,T)=0 ; i=1,2 (146)

On each interface, the usual kinematic conditions apply, that fluid velocities normal to the interfaces

are equal to each other and to the normal velocity of the interface itself

Upit, = Upit;, 5 i=1,2 (147)
— F.
U,.7; = —IV‘;I Ci=1,2 (148)

where 7; = ]—%—.ﬁ is the normal vector. With the use of Darcy’s law the above transform into

VPh.VF,=MVP,VF ; i=12 (149)
- OF, .
Ua.V]-',' = ——a?- N 1= 1,2 (150)

Finally, across each interface the pressure drop is due to curvature, thus

Fixx : : .
APJ:'ylv}_‘[3 oy =ab o =102 (151
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where « is the interfacial tension. Since the present interest is in long waves, higher order corrections
to pressure drop are of secondary importance. We point out briefly that this problem is different
than the two problems by Park and Homsy [97] for frontal displacement and by Burgess and Foster
{20} for flow at the side of a Hele-Shaw bubble, where capillarity dominates the leading order
approximations in the thin dimension. Thus, the present case requires a novel formulation, which

is currently under consideration.

8.2.1 Linear Analysis

The dynamics of flat interfaces parallel to the flow direction is next obtained by following
an analysis in terms of normal modes. As a preliminary step, we investigate one interface only,
corresponding to the symmetric problem A; = —A2, 77 = —m,, where 7, and 7, describe the
dimensionless disturbances of the two interfaces (0 < y < 1) (see Figure 83b). Using lower case

letters to denote dimensionless quantities, the dimensionless base interface is at location
fi=X (152)
while the base pressure satisfies
p,=~z ; 1=a,b (153)

Here, we have scaled pressure by gﬂ,‘c"—l‘, where £ = % is the permeability of the Hele-Shaw cell, L
is a streamwise length and time is scaled by L/q,. Perturbations are next taken for the pressure

and the interface as follows

— /

=P, +9p = __x+£e:(ut—kr)

ei(y) ; i=a,b (154)
fi = F + Beelet=k) (155)

After linearization and use of no-flow boundary conditions at y = 1 and y = 0, the following results

for the potential disturbances

oy = Kycoshlk(y-1)) ; A <y<l

wa = Nycoshky 1 0<y< A
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Substitution into the interface conditions yields after some algebra, the following result for the

complex frequency w

=9 ksinhk
T T % (14 M)sinhk + (1 — M)sinhk(1 — 2))
i 2k3sinh(kA;)sinhk(1 = Ay)
+ : . (156)
6N, (1 + M)sinhk + (1 — M)sinhk(1 = 2X;)

Here, M = /i’i- is defined as the ratio of the viscosity of the “outer™ fluid b, to the viscosity of the
“inner” fluid a (Figure 83). We note that in the above relation, capillarity first enters at O(k*).
Hence, for long waves (small k) and for a sufficiently large value of the modified capillary number,
N!. = qupal?/+b? [58], capillarity can be neglected, although it should be cautioned that 3-D

effects may become important when the capillary number is too large [90]. Under these conditions,

the frequency is strictly real and the long wave speed ¢ = w/k can be expanded as

k2 (M - DA (1= 2M0)(1 = A) ;.

c=co[l -

where co = 1/(1=A1+A M), For M # 1, the above relation predicts dispersive waves [1], i.e., waves
with different wavelength travel with different speed. This result is quite different from the linear
stability relations of frontal displacement, which yield either constant growth (viscous fingering) or
constant decay. The existence of oscillatory modes in Hele-Shaw displacements was first reported
in a previous communication [149] and it is also in agreement with recent marks by Xu [142] and by
Meiburg [92]. As expected, the waves become non-dispersive when the fluids have equal viscosity
(M = 1). Interestingly, non-dispersive waves are also predicted for the Saffman-Taylor conditions
(M= %). although the latter have infinitesimal velocity when M > 1.

An analysis similar to the above gives the dispersion relation for the non-symmetric case, where
now two interfaces are involved (Figure 83a). As expected, the dispersion relation is substantially

more complicated. The final result is
tanh(k(1 - X)) (e *aD + ¥MaE) — aMe™ M D — be ™" D 4 bekME + aMeFME = 0 (158)
where

D = ek2[(d - b) sinh(k(1+ X2)) — M dcosh(k(1 + Ap))]
E = e %%2[(b—d)sinh(k(1+ X2)) — M dcosh(a(l + A2))]

a=ifl-1]



b=i[l - M)
d=1i[1- %]

For our purposes, we shall consider only the asymptotic expansion at small wave numbers, by

taking ¢ = vy + b + 72k% 4+ .... Two solutions arise

Il

Cm = Tom + Tomk? + -+ om=1,2 (159)

where
1
IL‘QJ = —M—-

2
170’2 = N

— (M=1)(M=1)(A2+1)(A1=A2)
T21 = MZ(24X;=X1)
4 (M=1) 1 =22)(1+A2=A)[(Aa+1)2+ (A1 ~ 1)+ (A2 +1) (M —1)]
3 TA? (2+32-X1)

I22 =

and where we have defined A = 24 (M —1)(A;1 = ;). The two roots correspond to the two different
amplitude equations for the two interfaces. As in the symmetric case, the waves are dispersive as

long as M # 1.

8.2.2 Weakly Non-Linear Analysis

The lincar analysis is limited to the description of the onset of motion. The subsequent dynamics
can be obtained by a non-linear analysis that includes higher order effects. In this section, the
evolution of these dispersive waves is investigated.

We shall apply a perturbation analysis similar to that used for shallow water waves, valid for
small amplitudes and long wavelengths. We consider the initial value formulation as described in
[66]. First, two key dimensionless parameters are defined: & = W/L, where L is the initial length
of the disturbance, and ¢ = A/W, where A is a measure of the initial disturbance amplitude. In

this notation, the Laplace equation in each flow region is
O2Gur+ Gy =0, ; i=a,1,2 (160)

In the above, we have used subscripts 1 and 2 to denote the velocity potential of fluid & in the

“upper” and “tlower™ regions, respectively. Correspondingly. the interface positions are at y, =
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Ai + 1 (1 = 1,2). The interface conditions now read
83 (¢ix = Vmiz = iy = 8" M(¢ar — Utz = My ;i =1,2 (161)
82t — Nix(Paz — 1)) = —duy 5  i=1,2 (162)
and in the absence of surface tension
$a =i 5 1=1,2

The problem is fully specified with the no flow boundary conditions at the side walls

a sufficiently fast far-field decay of the disturbances
7 =0 at |z|]— o0
and the initial condition:
ni(x,0) = €h;(x)

To implement an asymptotic approach, a long wave, long time and small amplitude approximation

is considered, § < 1, = €t, € « 1. Then, the following asymptotic expansions are taken
¢ = epio + €6 + bz + - 5 i=1,2 (163)

m=emot+ €N+ 5 i=1,2 (164)

where the various terms of the expansion also depend on {, e.g. 7; = n;(z,t,1). For non-trivial
results to be obtained, the relation § = ky/€ is necessary, as can be readily shown with the method
of dominant balance {66]. Use of this in (163)-(164) and substitution into the field equations and
in the interfaces conditions (161)-(162) yield the following results. At the 0* order

No,t + A- Moz = 0, (165)

where the matrix

M+1-(M=1));  (M=1)(\;—-1)
MA MA

“(1+22)(M=1)  M414+(M-1))\,
MA MA
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. 9 ~y - . . . . . .
has eigenvalues £ and §;. This system is diagonalized if we introduce the variable

vo=-L-mg (166)
where
L . -1 1
= E=a Y
1+2) T4+ A 1A
1
The components of vo = [ Yo, V20 ] can be expressed in terms of 7o,
= — _Mo—720
vo=U= 23142, (167)
r 142 1-)\
v =V = _(+ 2)2'71%1\2 1)m20

It follows that variable U is proportional to the net transverse displacement of fluid a. From (165)

and (166) we obtain

Vot + D. Vo,r = 0 (168)
where
2
£ 0
D=L"'AL=| 2
0 L
M
The solution of the initial value problem (168) is
v10 = fo(o, Z) (169)
v20 = go(&, 1) (170)

where the two moving coordinates ¢ = ¢ — %, E=z - -h’—,, were introduced, and fy(0,0) = hy(0),

90(£.0) = ha(0).
To obtain the dependence on o, £ and £, the next order in the expansion is considered. After

considerable algebra, one finds

T
MetA-n,.=-n,;+C- [ MoMox s 7o | + (M070)ed — K2err (171)

where

C = 2AM-1) M+1-(M-1)x —(M = 1)(A = 1)
= TRaT
—(L+ XM =1) —(M+1+A(M-1))
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(M = D) (A + Aa) = 2M
(M = 1) (AL + Ag) +2M

_ M-y
d - TAMAZ

and she vector e is a complicated expression involving ¢g, 7p, ... and their spatial derivatives [153].

Equivalently., we may use transform {166) to obtain
T 2
vig+ D vy = —Voi~ L-C. [ momo,z » 720720,z ] — (monw)zL - d+ k°L - ez, (172)

Use of (167)~(170) into (172) leads after considerable algebra to

2 1 HM - 1),
(‘5 - Tﬁ)vll.é = =Vt '—&‘2——(2 + Az — AM)viovio0
KH M -1) )
—_(—/‘Ir(allvlo,ooa + alzvzoﬂg) (173)

and

2L Mo
A e T Ther TR

W2+ Az — A )(vaovi0,0 + v10V20,)

K2(M - 1)
MA

=

(221110000 + @22020 6c¢] (174)

After integration of (173) with respect to €. all secular terms vanish if the terms containing vy also

vanish, thus (U = vyg)

. HAM-1) A M - 1)k e
LE = ———-3—2—)(2 + /\2 - /\1 o (V'g + L—-AE‘)——-alll'rgga (IID)

Similarly working for the other component in (174) and eliminating secular terms yields

M- 1)&?
= —-———( )K. (ng‘rk&f (176)

I
MA

Y

assuming sufficiently fast decay to zero. The two coefficients in (175) and (176) are given by

A D= A = A0 S P+ =12+ (e (N = 1]
34 (2N =2y)

(L= (A=A ) {1+ 2)8

Q=

an = M 2¥-11)
~ 3 . . . B ."[A.L";.l . P - . .
and they are related to r,; and ryy by a,, = -1~ (¢ = 1.2). The various parameters in

(1751-(176) are functions of the undisturbed interface positions A;. A,. and the mobility ratio M.
For the full problem. the solution of both (1731 and (176 is required. We may note the following:

{23 Pureiv translational maotion acenrs when V[ = 1 as expected: (i) There are two long wave

o
=



speeds, 2/A and 1/M, both decreasing to zero as the viscosity ratio increases. The long wave
speed 1/M corresponding to variable V' is simply the dimensionless (undisturbed) velocity of fluid
b; (i) As anticipated, the linearized equations yield the leading order of the linear analysis: (i)

The dispersive term in the KdV equation vanishes when 1+ A, — Ay = 0 (which. for the symmetric

case Ay = —Aq. coincides with the Saffman-Taylor finger width Ay = 1/2); (v) Anti-svmmetric
disturbances (1m; = 7;) are governed by the Airy equation {176) alone:; (vz) Finally. when both
initial and disturbed interfaces are symmetric (A; = —A, and 7y = —n,). the interface motion is

governed by the KdV equation alone. The latter is of great interest for the subsequent experiments.
This case may be recast in terms of the original variables as follows (A = A)
2
h+cone — 2AM = 1)e2nne + E%QKZ(M — DML = 2A)(1 = M)7pep = 0 (177)
Equation (177) can be interpreted as follows: Due to varallel flow, any initial disturbance
travels with a long wave speed c¢g. The latter always lies between the velocities of the two fluids
(e.g., 1 < cog < 1/M for M < 1). For an observer traveling with speed ¢y the fluid flow is counter-
current, the lower viscosity fluid flowing towards cne right and the higher viscosity towards the
left in the schematic of Figure 84 (where one must recall that in the Hele-Shaw context, viscous
shear is not relevant to long waves). Because of unequal viscosities, the long wave disturbances
also disperse, to the left if (M — 1)(1 —2X) > 0, and to the right, otherwise. We note that shorter
wavelength dispersion. although possible, is likely to be damped by capillarity and wettability
effects. Sustained wave propagation is possible only if amplitudes are small and the non-linearity
is weak. Strong non-linear effects must be excluded. They violate parallel flow conditions and are
likely to lead to frontal motion and viscous fingering. Nonetheless, weakly non-linear waves also
tend to break, to the left if (Af — 1)n > 0, and to the right, otherwise. For the positive disturbarnce
of Figure %4, dispersion will oppose breaking if 1 —2A < 0. Under this condition, a permanent form
wave would develop, ihat propagates to the left or to the right, depending on whether 1/ > 1 or
M <1, respectively. Analogous conclusions can be drawn for all other possibilities.
In the symmetric case we may use classical results [39] to predict in advance the possibility of
solitary waves, in terms of M. the interface position A| and the initial shape of the disturbance.

With the use of the rescaling

w—an . & — 3T .t =i
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Figure 84: Counterfiow of the two fluids in a moving frame of reference
where
8= —[e D k(M = DAL - 22)(1 = A)|~1/3
a=—-3(M-1)3

Equation (177) can be mapped into the standard form

U — 6utiy + Uz =0 (178)
with initial condition

u(z,0) = ~ugsech?(b(z — r¢))

Then. the theory predicts the following: (i) When A; > 0.5. M < 1, 7 >0,and \{ < 0.5 M > 1,

11 < 0, solitons develop and propagate in the positive ¢ direction. (i) When Ay > 0.5. M > 1, n >0

)
and A; < 0.5, M < 1, n < 0, solitons propagate in the negative o direction. {iii) No solitons would
form in any other case. Based on the above, the phase diagram of Figure 83 can be constructed.
Both the existence of solitons and their direction of propagation, in a frame of reference moving
with speed 2/, are shown. The map will be repeatedly used below in the comparison between

experiment and theory.
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8.2.3 Numerical Method

Although we shall often use general exact results, we shall rely for illustration purposes on
numerical results, obtained with the pseudospectral technique of Fornberg and Whitham [48]. The
method combines a Fourier transform treatment of the space dependence with a leapfrog scheme for
the time evolution and it is well suited for non-linear dispersive waves. The interval { is discretized
into N equidistant points, with spacing Az = I/N (N was taken as 128, 256 or 512). The function
n(z.t) is discrete Fourier-transformed with respect to z by the use of a fast Fourier transform

algorithm. Thus equation (177) is discretized as follows

2 : . 1.2
- Tt = 20t F T(SE nF ()] + 22(M - D) (n)ALFTH(SF nF (n)
2.2

— 2i(e %C—O) (M = 1)A(1 = 2A)(1 - A) f—‘[si-n((%l_f)i‘ nBAOF(n)  (179)
The numerical scheme was tested favorably with an exact soliton solution, as well as with the
test example of Zabusky and Kruskal [150]. A similar discretization was implemented for the Airy
equation.

In the experiments that follow. the existence of solitons was tested by direct comparison with
simulation, but also by looking for the following key properties [39]: (i) Arbitrary initial distur-
bances evolve into one or more solitons and into dispersive waves of substantially smaller amplitude:
(12) The speed of a soliton depends on its amplitude, which increases with an increase in amplitude;:
(#17) Solitons regain their identity after interaction with other solitons. For a given initial condition.
the number of solitons and their amplitude can be predicted from the standard theory of the KdV

equation [39. 139]. For example, the number of solitons obeys the condition

\'5[(Z—§+§)‘/'~’« %j+ 1 (180)
while the soliton amplitude is
an = 2x2 (181)
where
Kn = %b[(l + %9)‘/2 —(2n = 1)) (182)

These were used in the subsequent comparison with the experiments.
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8.3 EXPERIMENTAL

As in shallow water wave experiments, the,two small parameters ¢ and € play a critical role.
The conditions é,¢ < 1 suggest that for a satisfactory resolution (larger A) requires larger cell
width, which in turn requires proportionally larger length. Therefore, the construction of a narrow
and long Hele-Shaw cell was necessary in order to observe possible solitary waves [89, 96, 111, 131].
The cell consisted of two plexiglass plates, % in. thick, of dimensions 230 x 27 ¢m, and of a rubber
gasket spacer 0.08 ¢m thick. Since interferometric methods [131] were not available, the uniformity
of the gap was estimated by the indirect method of [96]. The linear regression coefficient of the data
was 0.999, indicating a good uniformity of the cell. The plates were held together using C-clamps.
The experimental set up consists of the Hele-Shaw cell in horizontal position, three integral variable
speed peristaltic pumps, a video camera, a video recorder and a monitor (see Figure 86). The frame
of the cell was constructed such that it can be tilted both with respect to the transverse and to the
longitudinal axes. This was necessary in order to establish the steady-state interfaces.

Experiments reported below were conducted with two different finid pairs. The first pair is

mineral oil and glycerol/water solution with corresponding viscosities 170 cp and 860 ¢p. respec



tively, while the second pair is DC 200 silicon fluid and glycerol/water solution with corresponding
viscosities 1060 cp and 500 cp, respectively. Mineral oil is the wetting fluid in the first pair, while
DC 200 silicone fluid is the wetting fluid in the second pair. The viscosities of the fluids were
measured by both a Cannon-Fenske and a Brookfi¢ld spindle viscometers. Since the parallel flow
condition is one on fluid viscosities, (gqits = gpus), the accuracy of these measurements play an
important role in establishing the flat interface. Relatively high flow rates were used, such that the
modified capillary number was typically O(10%). No sustained wave propagation was observed for
substantially lower N/, values. This is consistent with the theory. The experiments were conducted
with configurations involving both one and two interfaces. The single interface case corresponds to
the symmetric case (A\; = —A2, ;3 = —mn2). This configuration can be viewed either as the top or
the bottom half of the symmetric problem. It can be easily checked that the solution of (177) is
invariant to the change Ay — 1+ A2, ;3 — 72, M — 1/M (please note also the rescaling of time),
thus without loss we may view the flow as the top half of a symmetric problem with the “lower”
fluid being fluid a. In our experiments, this was the more viscous fluid for the case M = 0.2 and
the less viscous fluid for the case M = 2.1.

Conducting the flow experiments consists of two stages. The first stage is to establish a flat
lateral fluid interface and parallel flow conditions for the two fluids. For the single interface case,
this was accomplished by a displacement process with the aid of gravity. The cell was first filled
with one fluid. While the cell is tilted on its side, the lighter fluid is slowly injected at the top.
Subsequently, the cell is slowly returned to horizontal position. The parameter A, which is the
dimensionless location of the interface, is controlled by ti-e relative amounts of fluids injected.
For the non-symmetric case, flat interfaces were established by the simultaneous injection of both
fluids, while the cell was slightly tilted on the transverse axis. We were unable to independently
vary the locations of both top (A;) and bottom (A;) interfaces, which shifted together according to
the amounts of the fluids injected. We stress that in the two interface problem, the parallel flow
condition, psgs = pag,, was found essential for the establishment of a parallel interface. Under
conditions such that the modified capillary number is relatively large, flat interfaces were obtained
with an accuracy of +1 mm.

The second stage is to introduce a disturbance as an initial condition, typically obtained by

interrupting momentarily the flow of one fluid, and to mounitor the motion of the disturbance. The



wave length and the amplitude of the disturbances were controlled by the speed of the interruption.
Although results obtained with such initial conditions were generally satisfactory, questions may

arise as to the effect of flow interruption and end effects. This will be discussed in a later section.

8.4 RESULTS AND DISCUSSION

8.4.1 Symmetric Case

Three different cases were considered corresponding to three different viscosity ratio regimes

(M <1, M~1,M>1).

8.4.2 M«<«1

Here, the first pair of fluids (mineral oil and water/glycerol solution) was used with M = 0.2.
Figure 87 shows typical experimental results in digitized pictures taken from a videotape. A hump-
like initial disturbance taken to satisfy the small amplitude and long wave conditions was imposed
on the parallel interface (A = 0.69) (Figure 87a). The cell width here is 6 ¢m. For the particular
initial conditions of wavelength L = 20 em, and amplitude 1 ¢m, the theory predicts a single soliton
traveling forward (A > 1/2, M < 1,17 > 0) (see Figure 85). Indeed, upon restoration of the flow rate
to the initial level, the disturbance was advected by the flow, and it started developing into a wave
of constant shipe followed by a wiggly interface of small amplitude and short wavelength behind it.
Typically, this constant amplitude wave has taken a permanent form after traveling about 45 ¢m,
and appeared to possess all the characteristics of a soliton (Figure 87b). The amplitude is clearly
different from the initial and remains constant for a substantial distance traveled (Figure 87¢),
as long as 150 ¢m, beyond which end effects seem to become appreciable. Numerical simulations
corresponding to these conditions and for the initial shape of Figure 87a are shown in Figure 88.

The comparison between theory and experiment shows a quite satisfactory agreement, despite
the ambiguity on the suitability of the initial condition for the experiment (recall that the distur-
bance is imposed by flow interruption). Theoretical and experimental number of solitons coincide
(equal to 1), while computed and observed final amplitudes were 0.81 ¢m and 0.76 cm, respec-
tively. The wave velocity with respect to a fixed observer was calculated to be 0.28 ¢m/sec, which
compares well with the experimental value of 0.26 em/sec. Due to the particular scales selected to

match one-to-one the experimental pictures, certain typical characteristic features of soliton and
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dispersive waves are suppressed in Figure 8% To illustrate this point, the profile of Fignre 88 is
replotted in the inset with different scales. Nonetheless, motion of dispersive waves was actually
not observed to our satisfaction in the experiments. Typicallv, « noisy and wiggly interface of siall
wave length and amplitude formed soon after the main wave evolved. However, we suspect that
wettability and surface tension have likely played major roles on its subsequent development.
Figure 89 shows the emergence of two solitons arising from an initial disturbance of longer
wavelength (L ~ 45 ¢m). According to the theoretical predictions, two solitary waves of different
amplitudes (and speed) should arise, in order of descending amplitudes (Figure 89). As time
“progresses, the two solitons are clearly separated, the higher amplitude soliton moving faster and
away from the trailing lower amplitude soliton. Figure 89b is a picture of the trailing wave. A
typical characteristic of the emergence of more than one solitons is an increase in the amplitude

after the onset of the initial disturbance. This feature was clearly observed. Comparison with the

numerical simulations is again quite satisfactory (see Figure 90 and the inset with different scales).

Under the same conditions, soliton interaction is shown in Figure 91. To create the two solitary
waves, two disturbances of different amplitude were sequentially introduced. The second distur-
bance is of higher initial amplitude and evolves into a faster soliton, that eventually takes over
the preceding slower one. After this nonlinear interaction, tall and short solitons reappear, but in
reverse order and propagate with their original speed (Figure 91b). All these features are consistent
with the theory. Corresponding numerical simulations are in good agreement as shown in Figure
2. Some additional effects were also considered. For instance, short wave disturbances. typically
corresponding to & > 0.5, were found to dissipate after their onset, as predicted by the theory.
Figure 93 shows such a short wave disturbance and its subsequent stage, where the amplitude has
significantly decreased over a rather short distance. Numerical simulations are also in agrecment.

For disturbances in the opposite negative direction (1 < 0), no solitons are predicted by the
theory (compare Figure 85). This prediction was tested in the experiments. Consistent with
the theory, any such disturbances (whether of long or short wavelength) dissipated continuously.
although it is quite likely that wettability inay have aiso interfered with the interface dyvnamics in
this case (see below). Similarly, for 0 < A < 1/2, but with a positive initial disturbance, no solitons

are theoretically predicted. A typical experimental run for such conditions (XA = 0.3) is shown in
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Figure 94. The corresponding simulation result was also in good agreement with the experiment.
Finally, when 0 < A < 1/2, and the initial disturbance is negative, solitons are predicted to
propagate in the negative o direction (Figure 85). Unfortunately, this disturbance could not be
introduced clearly and solitons were not observed, although dispersive-like waves traveling ahead
of the main disturbance were noticed and the advective velocity agreed with the theory to some
degree. We strongly believe that the reason for this discrepancy is wettability. Indeed, soliton
propagation in the negative o direction (which is equivalent to this case) was observed. when we
experimented with a different pair of fluids of different viscosity ratio (M > 1), but with reverse

wettability.

§43 M~1

The second region of interest in Figure 835 corresponds to equal viscosity fluids. Experiments
were carried out with a pair of mineral oil and water/glycerol solution of nearly equal viscosity
(M = 0.87). In this case, both the non-linear and the dispersive terms in the KdV equation {177)
are very small, hence we expect constant wave speed and translational motion independent of the
wave amplitude. In the experiments, disturbances similar to Figure 87 were introduced. However.
neither a change in shape nor a wiggly interface were observed.The disturbance simply propagated
with a constant speed, equal to the fluid velocities [153]. As a second test, two disturbances with
different amolitudes were sequentially introduced. in a way analogous to the soliton interacti »
case discussed above. It was observed that the distance between the two disturbances remained

coustant and that no further interaction occurred. This behavior is fully consistent with the theory.

844 M>1

Finally. for completeness. we also considered the case with A > 1. As pointed out above.
this case is symmetric to M < 1. thus results identical to the previous should be obtained under
the appropriate conditions. The condition M > | required a different pair of fluids, however, the
wettabiliry was not altered (the rop fluid was still wetting the surface). We used DC 200 silicon
fuaid and glyeerol/water solution with M = 2.1, Solitons are predicted to move to the left on the
aoaxisfor M > 1. A > 1/2 and n > 0 (Figure 85).

The first experitent was to generate a single soliton. As in the previous case, it was satisfactor
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[153].

Interaction of solitons was sought in a subsequent experiment. Contrary to the case M <
1. we first introduced the higher amplitude disturbance. which evolves into a higher amplitude
soliton. to be followed by the lower amplitude disturbance. which evolves into a lower amplitude
soliton. According to the theory, for a fixed observer, the lower amplitude soliton travels faster and
eventually overtakes the higher amplitude soliton. This was clearly observed. Because of limitations
on the length of the cell. however, complete reappearance of the lower amplitude soliton after the
interaction was not possible. As before. the experimental run and the corresponding numerical

simulation were in good agreement [153].

8.4.5 Non-Symmetric Case

Although the  veriments in the symmetric case appear to support the theorv. we also exper-
imented with the non-symmetric configurations. Two different channel widths (218" = 9 ¢ and
12 ¢m) were used. As in the first set of experiments. the pair of fluids consisted of mineral oil
{outer fluid) and glvcerol/water solution (inner fluid). The flat lateral interfaces were established
by the simultaneous injection of the two fluids.

In the experiments below, we used \; = 0.65 and A, = —0.76. Two disturbances. of initial
amplitude 1.2 em and —0.75 cm. respectively. were simultancously generated on each interface.
Figure 95 shows the sclitary waves developed on each interface. The two waves retained their
shapes even after they traveled a distance of about 140 cm. Wiggly interfaces suggesting dispersive
waves were observed in the back of the waves. Figure 95 shows the corresponding numerical
simulations.

Interaction of solitons was also studied. Here. two different amplitude disturbances were se-
quentially introduced on each interface. Numerical simulations confirmed the experimental findings.
Other conditions were also tested for different values of A, and .. In the non-symmetric case. the
value of the parameter Ay — A, is critical. When A} — A, < 1 {interfaces are closer to each otheri,
all other conditions remaining the same the disturbances dissipated. For additional details, ref-
erence 153! should be consulted. Unfortunately, the experimental amplitudes were too small for
satisfactory identification and comparison. Further work vn this and related issues is currentls

underway.,
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Figure 95: The non-symmetric case: S
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8.5 CONCLUDING REMARKS

The small amplitude, long wave motion of lateral interfaces in parallel flow was investigated
at large values of V), in a long, horizontal Hele-Shaw cell. The asyinptotic theory for the case
of two fluids was formulated in terms of a set of KdV and Airy equations. The findings of the
theory were validated by experiments involving both one (symmetric case) and two interfaces (non-
symmetric case). Under the condition upq, = uaqa, flat interfaces pertaining to parallel flow were
successfully established in either case. Experimental results supported, for the most part, the
theoretical predictions including the existence of solitons. It is important to point out that this
is the first time that Hele-Shaw (and, perhaps porous media) flows have been reported to contain
KdV dynamics (although see also [63] in a different context). However, some experimental aspects
still remain unclear.

It was pointed out that dispersive waves associated with solitons should appear in the ex-
periments. These waves can be identified in the simulations, although only at a high resolution.
However, they were not observed in the experiments. A wiggly shape did develop at the points
where it was supposed to be present. This was observed in both forward and backward moving
solitons. We believe that it is indeed the initial motion of the dispersive waves that initiates these
noisy interfaces. However, the subsequent motion is largely controlled by surface tension and wet-
tability effects which become important at small wavelengths. Significantly. no wiggly interface was
observed in the experiments with eqnal viscosity fluids (A ~ 1).

Along the same lines, it was pointed out that the direction of the initial disturbance was
critical to the development of wave motion. In all cases, the experiments were successful when the
initial disturbance was in the direction of drainage (non-wetting displacing wetting). Inconclusive
were the results of experiments when the disturbance was introduced in the opposite (imbibition)
direction. For the latter, it was observed that the shape of disturbance was not as well defined
as in the drainage case. We demonstrated this for the simplest case of equal viscosities, M ~ 1.
Quite satisfactory results were obtained when the disturbance was positive (from non-wetting to
wetting). Results much different than expected. and generally not in agreement with the theory.
were obtained when the disturbance was in the opposite direction (from wetting to non-wetting
fluidi. Wettability and related effects are certainly in need of further investigation.

Finallv. in some cases the velocity of the frame of reference was quite larger than the soliton

17
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speed, thus we were not able to monitor the full extent of the wave motion. With the aid of gravity,
this velocity of the frame of reference can be reduced to zero. However, now the flow directions
must be opposite to each other. Such experiments are currently underway. Parallel theoretical

developments involving waves in the presence of gravity in Hele-Shaw flows are reported in [92].



9 FLOW OF POWER-LAW FLUIDS IN POROUS MEDIA
C. Shah and Y. C. Yortsos

9.1 INTRODUCTION

An important industrial application of non-Newtonian fluids in porous media is in the areca of
Enhanced Oil Recovery(EOR). In such processes, various non-Newtonian fluids, such as low con-
centration polymer solutions, emulsions etc. are simultaneously injected to increase the viscosity
of injected water or other driving agents that displace oil from reservoirs. A variety of rheologi-
cally complex fluids are used to improve sweep efficiencies, divert displacing fluids and block swept
zones. To describe the viscosity (7)) versus shear rate (%) behavior of such fluids in the bulk, various

empirical models have been proposed. A commonly used is the power law model[12]

n= ]&"'yn—l (183)

where K is a consistency index and the difference between n and unity indicates the degree of
departure from Newtonian behavior. The fluid behavior is shear thinning for n < 1 and shear
thickening for n > 1.

In contrast to Newtonian fluids, the state of the art in understanding the flow of power-law
fluids, either single- or multiphase, in porous media is incomplete. As a rule, the interplay of the
nonlinear rheology with the porespace geometry results in complex problems, that prohibit the
direct passage from the micro-(pore) to the macroscale (Salman et al. [113], Sorbie et al. [124]).
Thus, with few exceptions, laws analogous to Darcy’s for flow of non-Newtonian fluids in porous
media have not been rigorously established. Indeed, although frequently used in practice, capillary
tube models based on a bundle of capillary tubes do not represent adequately the true physical
phenomena in porous media. Although sophisticated approaches have recently appeared (Canella
et al. [22], Sorbie et al. [124]), Similar issues arise in the simultaneous flow of a pair of immiscible
non-Newtonian fluids in porous media. Fortunately, when one or both of these fluids are of the
power-law type, and at conditions of capillary control at the porescale (N, << 1), the concept
of saturation-dependent relative permeability may be applicable, perhaps in a modified form. to

account for possible effects of the power-law rheology (Salman et al. [113]). Despite the considerable



extent of applications, however, littl > is known at present about such dependences.

To obtain a better insight on the flow of non-Newtonian fluids in porous media, we have con-
sidered simulation of flow in network-like 2-D porous media with distributed sizes. First, the single
phase flow of both shear thinning and shear thickening fluids is simulated. It is shown that the
critical path approach of Katz and Thompson [65] as extended by Yortsos [146] is well suited for
power-law fluids except for very small values of the power law index n. Subsequently, the immiscible
displacement of Newtonian fluid by a non-Newtonian fluid is simulated and some initial results are
reported. The chapter is completed by an analysis of the importance of converging-diverging ge-
ometries in porous media to pressure drop during flow of viscoelastic fluids. The latter is important

in certain cases, and shall be included in future simulation.

9.2 POWER-LAW FLUIDS

The problem considered in t1is section involves single- and multi-phase flow of power-law fluids in
porous media, the latter modelled as a network of capillaries. An important limitation imposed in
the subsecuent analysis is that such elements are of uniform cross-section, so that the contribution
of converging-diverging geometries to the pressure drop is not significant. Hence, overall pressure
drop acrouss a capillary is still related to the average flow rate through the capillary by a power-law.
“We caution, however, that this may not be necessarily the case in porous media, particularly at suf-
ficiently high flow rates as discussed later in this chapter. Pro:eeding under the above assumption,

the porescale relation for a power-law fluid becomes

g = g(AP)/" (184)

where ¢ is the volume flow rate in a pore of conductance ¢, across which there is an applied
pressure drop AP. Under the above qualification, which renders the problem to one of power-law
resistors, the following aspects will be addressed: (i) Effective Medium Averages and (ii) Critical
Path Analysis. Both these issues were briefly discussed theoretically in a previous report [146]. In
this chapter, we shall test the validity of the previous theory by the use of numerical simulation.
For the simulation of single phase flow of a power-law fluid in a single capillary, the following

expression was used



B r RIS A PN
T(2L)Y7(3n + 1)K

where R and L denote radius and length of the capillary, respectively. Appropriately rescaled, the

q (185)

dimensionless form of the above equation is

3ntl
Q*: R* " (AP*)I/n (186)

The pressure field in the network was calculated by applying a mass balance at each node of
the network which allows us to calculate the flow in each bond. Successive relaxation iterations
using under-relaxation were found to lead to convergence for this highly non-linear problem. The
convergence criteria used for the iterative method was of the order of 1 * 10~%, both for shear
thinning and for shear thickening fluids. Results for the flow and conductance distribution have
been obtained both for shear thinning (n < 1) and for shear thickening (n > 1) fluids in a network
of size 21*21. These results were used to test the previous theories on EMA and critical path

analysis.

9.2.1 Effective Medium Averages

Yortsos [146] obtained the following analytical expression for the Effective Medium Approximation

(EMA) in the flow of power-law fluids in a Bethe lattice (a tree-like network)

i (z=-1)g _
O g~ e =0 (187)

where G(g) is the distribution of the conductances of the bonds, g,, is the effective conductance,
the value of which we are seeking, and z is the coordination number of the network.
The above is an integral equation for g,,, the solution of which allows for the average and total

conductances < g > and < gr >, respectively, to be evaluated

<g>=((z=1)"-1)""g, (188)

L gr>= —— < g> (189)



1.1}

ll o gh e T T T T T T T e o oTrTTI s L Tt
::Bﬁ*;" AR S +

+ + + +

E: 0.8} 8

0.7

T
i

0.6

T
1

0.5 1 1.5 2 25 3 35 4 45 5

I/n

Figure 97: Effective conductances for power-law fluids for a uniform pore size distribution in [0.9-

1.1]

In a previous publication, Canella et al [22] obtained a different EMA expression for power-law

fluids over a regular lattice that reads as follows

oo z2/29m
/o G(g)[(g +(2/2 - 1)gm

The two expressions (187) and (190) are clearly different. In order to test their validity, we

)y — 1]dg = 0 (190)

obtaine. the respective values of gy, along with numerical results from dircct simulation in a square
lattice. Figures 97-99 show plots of the values of the effective con "uctances g¢,, vs. the power-law
index n for various size distributions ranging from narrow to wide. Solid lines indicate values
of g, obtained from expression (190), dotted lines shcw the values calculated from expression
(187), while numerical values are plotted as crosses. For comparison purposes. three different bond
size distributions were used. As shown in Figure 97, the two analytical expressions give values
comparable to the numerical values for a wide range of n. To a certain degree, this is anticipated.
Expression (187) appears to be in a better agreément in comparison to expression (190) and also
has the proper trend. One should recall that (187) is a rigorous asymptotic EMA expression for

Bethe lattices. Figure 97 suggests that it may be also approximately valid for porous media as
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well. We point out that rigorous EMA results for general network for power-law fluids are not
currently available. The close agreement between EMA and numerical results is attributed to the
narrow size distribution of Figure 97. As this distribution becomes wider, the agreement between
analytical and numerical results deteriorates, particularly for low values of n (Figures 98 and 99).
Nonetheless, expression (187) appears to be a better choice, provided that the distribution is not
very wide. For wider distributions, EMA theories are not expected to be vaiid. Instead, a critical

path analysis is more likely to be applicable. This is discussed below.

9.2.2 Critical Path Analysis

Based on the method of Katz and Thompson [65], Yortsos [146] extrapolated the concept of critical

path analysis to power-law fluids and derived the following macroscopic law

_ kAR AP

— (191)
where the constant A is related to the formation factor o/, and the exponent n
7.84)1-"3147(23.571,,)tn
A= o 0.38) (0.12in--1 ( n
and for a 3-d network
tn =~ 1.76 4 0.24/n (193)
In the above, k; is the Newtonian permeability
1 ,0
ky = .22—61‘:;; (194)

where [ is a percolation length obtained from mercury porosimetry. The concept of critical path
requires a wide conductance distribution such that substantial flow occurs only over a subset of
the pore network, which can be taken to be the percolation cluster. To test this approach, we

rearranged the above as follows

1
log(q"/D) = E[logkl + Iogc2]n +log B (195)

where we have defined for simplicity
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k/2AP
B = cml (196)
c = (0/00)0.38¢0.12’ (197)
and
_ (7.84)17m3147(23.57t,,)'n
D= 22n+l(3n + 1)71(3 + tn)Z-Hn (198)

By rearranging in the form of equation (195), we can directly test the critical path analysis by
searching for a linear relation between ¢"/D and n in a semilog plot. Figures 100 and 101 show
semilog plots of ¢"/D against the power-law index n for two different distributions of bond sizes
obtained by numerical simulation in a 3-D 11*11*11 cubic lattice. As can be shown, the theoretical
prediction of a straight line in (195) is quite well satisfied for values of n that are not too small. We
do observe, however, a deviation from the straight line behaviour for small values of n. The effect of
the pore size distribution is not very significant. both Figures 100 and 101 displaying approximately

the same behavior. Indeed, despite the relatively narrow pore size distribution used in Figure 100,
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Figure 101: Test of critical path analysis for a uniform pore size distribution in [0.01-1.99]

the corresponding conductance distribution, which scales as r3+1/n s still wide, thus satisfying the
conditions for the critical path analysis.

The different behaviour of single phase flow in porous media when the values of n are small
raises the possibility of a different kind of flow mechanism compared to that of critical path. In a

preliminary investigation, we examined in more detail the actual flow pattern as obtained from the

numerical simulation.

9.2.3 ’Flow Patterns

Typical results of single-phase flow in the network for various values of n are shown in Figures 102-
105. In all these simulations, fluid flow occurs from left to right at a constant pressure difference.
The two boundaries are held at a fixed pressure, with periodic boundary conditions applied to
the lateral two boundaries. In the Figures, black color represent the maximum flow rate, while
white color squares correspond to little or no flow through the bonds of the network. Only tﬁe flow
through the bonds is shown, flow through the node connecting two bonds depicted in white. Shades
between black and white indicate flow rates distributed proportionately betweeen a maximum and

zero respectively. In all plots, a uniform distribution of bond sizes in the interval [0.01-1.99] was
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Figure 102: Flow Pattern for n=1

used.

Figure 102 shows the flow of a Newtonian fluid (n = 1). We observe that the flow is distributed
over the entire network, and we may identify a connected cluster, resembling a percolating cluster,
through which most of the flow is taking place. Indeed, there exist empty pockets (holes), where
flow is very small and bonds are not conducting. Similar results were also obtained for n=0.8
to 0.4 (not shown), indicating that shear thinning fluids in this range of power-law index flow
through the network much as expected from the critical path theory. It should be pointed out,
though, that more empty pockets appear in the network as the value of n decreases. A typical
example of this flow distribution obtained when n=0.2 is shown in Figure 103. In this case, the

flow occurs only through a limited network of connecting bonds. We may identify large empty
) g g Y A pt
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Figure 103: Flow Pattern for n=0.2

182



Figure 104: Flow Pattern for n=0.07

pockets, where no flow occurs. This is still in accordance with the theory. At smaller values of
n, the conductance distribution is very wide and flow occurs only through a small subset of the
percolating cluster corresponding to the highest conducting bonds. The subset becomes smaller as
n decreases [13, 14]. We observe a more pronounced effect when n=0.07 (figure 104). In this case,
the entire flow occurs through a very small number of connected bonds. The remaining network
participates very little to flow and acts like an empty pocket. Clearly, the application of effective
medium theories would be fruitless in such situations.

In the above, the key concept is the existence of a critical path, which in turn requires that
conductance distributions are wide enough. Since the conductance is related to the bond size

through g &~ r3+1/" it follows that such a hypothesis is satisfied better as n decreases. Nonetheless,



Figure 105: Flow Pattern for n=5
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shear thickening fluids also qualify for the same critical path analysis. Figure 105 shows the
flow pattern for a shear thickening fluids (with n = 5), where the flow distribution resembles the
Newtonian case (n = 1).

The above confirm quantitatively the validity of the critical path analysis, particularly for shear
thinning fluids. When n becomes very low, however, the application of the theory is questionable.
This was already anticipated in [146]. Additional research is necessary in order to understand the
behavior in this low n range. In fact, because of the close similarity of the flow at small n with the
flow of Bingham plastics, a common treatment of these two cases may be necessary. We hope to

report on this in future publication.

9.3 TWO-PHASE FLOW

With the increasing application of non-Newtonian fluids in EOR processes, it is important to
develop an understanding of pore level displacement. At present, very little is available in this
area, most of the studies, concentrating instead on phenomenological description. To remedy this
situation, we performed computer simulations at the pore level, involving a non-Newtonian power-
law fluid displacing a Newtonian fluid. This displacement was studied under constant pressure
conditions across the network and for a drainage process. In modeling the displacement of the
immiscible Newtonian fluids through the network, we have used the following assumptions [15]
(i)Volume calculations apply to pore bodies only, the pressure drop occuring in pore throats.
(ii)Throats are filled by either invading or displaced fluids, while bodies may -ontain both fluids.
(iii)The capillary pressure in a throat is inversely proportional to the tube radius, while the capillary
pressure drop in a node is negligible. (iv)Poiseuille’s law for the flow rate Q;; across the bond

connecting adjacent nodes ¢ and j for a Newtonian fluid reads

__ TRY(P - F)
A 8uL;;

where P; is nodal pressure, R;; and L;; are the radius and length of the bond respectively and p is

= g.'j(P,' — Pj) (199)

the viscosity of the Newtonian fluid. For the non-Newtonian power law fluids, the above reads

WRS?”H)/"n(P.' - Pj)l/"
Qij = 1/n
3n+ 1)K

(2L);!
As the fluids are incompressible, the following mass balance applies

= g;APY/" (200)

1
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> Q=0 (201)
J

We can calculate the pressure field by using the iterative method described in the simulation of
single-phase flow, except that we use a combination of linear and nonlinear pressure drop equations,
depending on the type of fluid present in the bond.

Initially, the network is occupied by the Newtonian fluid. A non-wetting, non-Newtonian fluid
is injected through the left side of the 2-D network, held at a fixed pressure. Fluid escapes through
the right side of the network, also held at a constant pressure. The capillary pressure condition is
applied to determine when a particular bond is invaded. The node saturation is updated each time

by using the above equations for Q;;. In time At, the nodal saturation S;(t) increases following

Si(t+ At) = Si + AV Y Qy; (202)
i

where V; is the volume of node i. The time interval At is calculated such that only one node is
filled at each time step. For the next time step, the above calculations are repeated and the flow
of the two immiscible fluids is modelled.

Preliminary results were obtained for immiscible displacement at a fixed pressure difference for
two different values of the power-law index. Figure 106 shows a sequence of the interface motion
for the case of a shear thinning fluid (n=0.2). Here 1 and 0 refer to pores occupied by invading and
initial fluids, respectively. We observe significant fingering, trapping and bypassing. These results
are expected based on the previous flow patterns of single-phase flow (Fig. 102-105). Indeed, one
would anticipate that the shear-thinning fluid would show a pronounced tendency for fingering,
selecting a very narrow path. The same is observed in Figure 106. To some degree, the pattern is
reminiscent of flow distribution in a single phase flow under shear-thinning conditions.

On the other hand, the opposite picture develops for the shear-thickening case (n=2). Figure
107 shows corresponding results. It is observed that the interface is quite compact, the front moving
with a small amount of trapping at the indicated capillary number.

Work is currently in progress in order to understand the particular machanisms which lead to

the features of these displacement processes.
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9.4 VISCOELASTIC EFFECTS

The above were confined to fluids of power-law type where other elastic effects were suppressed.
However, shear thinning fluids used in EOR applications rarely exhibit inelastic characteristics.
Most such fluids do exhibit shear thinning but in addition they also display extensional viscosity
effects. In our analysis, we have neglected such issues. Complications, however, are certain to
arise when the pressure drop in porous media is large enough for extensional viscosity effects to
be important [61]. Indeced, Jones and Walters [61, 62] have reported that above a critical set of
conditions, a significant increase in the flow resistance in a porous media is observed. This has been
attributed to the high extensional viscosities, which are found in many dilute polymer solutions
at moderate to high strain rates. It is obvious that the question of extensional viscosity would be
important near the wellbore, where strain rates are the highest. Moreover, extensional viscosity
becomes important whenever the flow of non-Newtonian fluids occurs through geometries such
that the crosssectional area is not uniform. This section sumrnarizes the pertinent literature on the
subject.

Typical porous media consist of converging-diverging geometries, which are likely to contribute
to the overall pressure drop due to the generation of extensional flow. It is important, therefore, to
understand the critical conditions at which extensional flow can be significant. Jones and Walters
[61] studied both extensional as well as shear flows for the determination of the rheological properties
of very dilute aqucous solutions of Xanthan Gum and Polyacrylamide, both of which are of potential
use in EOR. Ior polyacrylamide solution, a critical strain rate region was identified, beyond which
extensional viscosity effects are likely to be important for practical polymer flooding. Figure 108
shows the general flow behaviour of viscoelastic fluids in geometries which can induce extensional
viscosity effects. Critical flow rates between 0.02 to 0.4 cc/sec were reported based on the type of
geometrics shown in Figure 109. The corresponding Reynolds numbers are quite low and range
between 0.04 to 0.06. In contrast, Xanthan Gum solution, whicli is both shear thinning and tension
thinning has an extensional viscosity behaviour which is different from that of the high molecular
weight polyacrylamide.

[n examining the flow of non-Newtonian elastic fluids, Boger [16] pointed out that vortex en-
hancement is linked with an increased pressure loss through the contraction region. Binding and

Walters [11] carried out a study to measure pressure drops in contraction flow geometries for the
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determination of the extensional behaviour of polvmer solutions. The flow rates used during their
study were in the range of 1077 — 107#m3/s. They reported that Boger fluids (which are highlv-
elastic, constant-viscosity non-Newtonian fluids) displayed vortex enhancement in axisvmmetrical
contraction, but not in plannar contractions, while aqueous solutions «f polyacrylamide exhibited
vortex enhancement in both these geometries. On the other hand, Evans and Walter [42] carried
out experiments with a wide variety of geometries to examine the flow of aqueous polyacryvlamide
solutions und repcited that the flow characteristics in contraction flows are difficult to generalize
from one type of contraction to another, or from one type of non-Newtonian fluids to another. Durst
[40] studied porous media flows of dilute polymer solutions and showed that the small addition of
high molecular weight polymers to a Newtonian solvent trigger pressure drops if the flow rate ex-
ceeds an onset flow rate corresponding to a critical Deborah number of the porous media-polymer
solution matrix. The critical Deborah number was identified as 0.5 in that study.

Another important viscoelastic effect identified is the Trouton ratio, given by {61, 62]

’7E(5-:) 203
(-’) ( )

where 7 is the extensional viscosity based on the srain rate € and 7 is the shear viscosity at the

R

shear rate 4. For Newtonian fluids, the Trouton ratio is constant (Tg = 3), whereas highly-elastic
fluids are noted for having high Tg. Jones et al [62] reported that the Trouton ratio increases with
increase in strain rate both for 2 Boger fluid and for an aqueous solutions of polyacrylamide at
constant shear viscosity.

The above studies indicate that extensional viscosity may contribute significantly to the overall
pressure drop for viscoelastic fluids in convergence-divergence flow geometries, even at low Reynold
numbers for viscoelastic fluids. For this reason, it would be worthwhile to incorporate the associated
pressure drop from convergent-divergent porous medium models in order to identify the contribution

of extensional flow to the overall pressure drop. This work is currently underway.

191



.

SUMMARY AND FUTURE WORK

Our work on network models to describe vapor-liquid flow is near completion. To test and
validate the approach, experimental flow visualization is planned. Upon the satisfactory match
of theory and experiment, efforts will be waken for process scale-up, in which effects of tempera-
ture gradients on the growth of the vapor (steam) phase and relative permeability effects will be
particularly considered. In parallel. we shail modify the existing code to describe steam injection.

The experiments on steam injection in Hele-Shaw cells and micromodels identified several inter-
esting phenomena regarding the interplay between steam injection, condensation, frontal stability
and the viscoelastic response of heavy oils. Our subsequent research on this subject will involve
the analysis and modeling of these observations. We shall proceed to investigate the steam front
dvnamics in both Hele-Shaw and porous media geometries. Particular attention will be paid to the
rheology of heavy oils in porous media, a subject that has not been adequately addressed previously.

The work on pore level mcdeling will be coupled with our continuum models of both concurrent
and countercurrent flow. Process scale up will be attempted in order to understand in detail the
origin of the capillary and permeability characteristics of macroscopic vapor-liquid flows. Effects of
heterogeneity will be further explored, particularly as the latter affects frontal displacement. This
work is also expected to enhance our understanding of the onset of nucleate boiling, a process still
incompletely understood. Finally, we plan to explore the solution of various problems related to
the injection of steam from horizontal wells and the concommitant problems of gravity drainage.

Reservoir heterogeneity will be further explored in the continuation of our work on the represen-
tation of fracture networks using fractal geometry. We shall prsue the development of diagnostic
methods based on multiple wells and interference testing. In parallel, investigations will continue
on the understanding and the modeling of steam injection in fractured systems. Experimental
studies will be conducted for steam injection in the micromodel geometries taken to represent a
fracture-matrix element. The focus of this work will be on steam displacement mechanisms in
fractured reservoirs. Additionally, we shall proceed with scale up, where the large scale description
using fractals will be coupled with the pore-level analysis.

The development of a rigorous framework for the description of flow processes under the as-
sumption of V'FE nas enabled us to model various EOR processes. An important application in the

present context is steam injection. Various models of steam injection have appeared in the litera-
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ture. typically under severe simplifying assumptions. The availability of our VFE framework can
lead to the proper formalism and to the development of more appropriate models where many of the
previous assumptions can be relaxed. In particular, effects of heterogeneity and gravity segregation
will be probed. In parallel, we shall investigate the properties of simple systems, such as one-phasc
miscible and two- phase immiscible flow under VFE conditions, to determine the behavior of the
system obtained, particularly whether it admits chaotic solutions or not and how does it lead to
simplifying average models, such as the Koval, Todd-Longstafl, and Fayers approximations. This
research is necessary for a better understanding of viscous fingering in unstable displacement. a
subject of interest to heavy oils.

The final part of this work involves investigations on chemical additives. Previous efforts have
been in the area of foam formation and propagation. At present, work needs to be done to interpret
some of the previous experimental findings in the area of foam formation. Work is under way to
develop a mechanism of foam formation in a pore network, using recent advances in the field.
Experimental work is also planned to test these hypotlieses using micromodels. Because of the
similarity of foam flow with the flow of Bingham plastics, we plan to continue our previous study of
non-Newtonian fluids by concentrating on shear-thinning behavior and on the flow of viscoplastic
fluids. In addition, in view of their possible relevance to the rheology of heavy oils, viscoelastic

effects in porous media flows will be studied.
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PUBLICATIONS

The following publications have resulted from this research during the period reported:

1.

_‘J

Satik, C., and Yortsos, Y.C., "Percolation Models for Boiling and Bubble Growth in Porous

Media”, paper presented at the 1991 ASME Annual Meeting, Atlanta, GA (Dec. 4, 1991).

Satik, G., and Yortsos, Y.C., "Simulation of Pattern Formation and Percolation Using Frac-
tional Brownian Statistics”, paper presented at the 1991 AIChE Annual Meeting, Los Angeles,
CA (November 20, 1991).

Kong, X., Haghighi, M., and Yortsos, Y.C., "Flow Visualization of Steam Injection in Hele-
Shaw Cells”, paper presented at the Heavy Oils and Tar Sands Symposium, Lexington, KY
(Nov. 14, 1991).

Yortsos, Y.C., A Theoretical Analysis of Vertical Flow Equilibrium”, paper SPE 22612,
presented at the 66th SPE Annual Fall Meeting, Dallas, TX (Oct. 6-9, 1991).

Acuna, J., and Yortsos, Y.C , ”Numerical Construction and Flow Simulation in Networks of
Fractures Using Fractal Geometry”, paper SPE 22703, presented at the 66th SPE Annual
Fall Meeting, Dallas, TX (Oct. 6-9, 1991).

Zeybek, M. and Yortsos, Y.C., ”Interface Dynamics in Parallel Flow In Hele-Shaw Cells”, J.
Fluid Mech., in press {1992).

Stubos, A.K., Satik, G., and Yortsos, Y.C., "Critical Heat Flux Hysteresis in Vapor-Liquid

Counterflow in Porous Media”, Int. J. Heat Mass Transf., in press (1992).

Stubos, A.K., Satik, G., and Yortsos, Y.C., "Effects of Heterogeneity on Vapor-Liquid ¢ cun-

terflow in Porous Media”, Int. J. Heat Mass Transf., submitted (1991).

. Chang, J. and Yortsos, Y.C., "Effect of Capillary Heterogeneity on Buckley-Leverett Dis-

placement,” SPERE, in press (1992).

Yortsos, Y.C., Satik, C., Bacri, J.-C., and Salin, D., ”Large-Scale Percolation Theory of

Drainage”, Transport in Porous Media, in press (1992).
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Zeybek, M. and Yortsos. Y.C.. " Long Waves in Parallel Flow In Hele-Shaw Cells™. Phys. Rev.
Lett., 67, 1430-1433 (1991).

Satik, G., Parlar, M.. and Yortsos. Y.C., " A Studyv of Steady- State, Steam-Water Counterflow

in Porous Media”, Int. J. Heat Mass Transf., 34, 1755-1771 (1991).
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