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FOREWORD

This report represents the final report on DOE Grant DE-FG19-
80BC-13407. The research was directed by Dr. C.W. Kauffman, Associ-
ate Research Scientist, Department of Aerospace Engineering, The
University of’Michigan éhdlcovéred the,two-yéar period September 1,
1978 through August 31, 1980. The Program Officer was Dr. Robert M.

Wellek, Office of Fossil Energy, Department of Energy.
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ABSTRACT

There are many applications with pronounced energy implications where
it is desirable to increase the permeability of a porous bed. Such
applications include "in situ" coal gasification and shale oil retorting
and enhanced o0il and gas recovery. A closely related problem is that of
the breakup of a frozen mass of coal while being transported in open
railroad hopper cars. This study was directed to the feasibility of using
gaseous detonation to effect the increase in porosity. Towards that end,
a heavy walled pipe (1.829 m long, 0.124 m I.D., and 0.168 m 0.D.) was
filled with solid spheres. In separate experiments, steel spheres of
19.05 hm and 38.1 mm and ceramic spheres of 38.1 mm were used. The gas-
eous combustible mixtures tested included hydrogen, methane, and propane,
all with oxygen as the oxidizer. A range of elevated initial pressures
and mixture equivalence ratios were tested. In each case, the variation
of wave velocity and pressure along the tube,as well as the strain (stress)
on the outside of the tube,were determined. The spheres caused the deton-
ation velocity to be lower than the theoretical Chapman-Jouguet (CJ)
velocity, which would be expected in an open tube of that size. Increase
of the initial pressure, diameter of the sphéres, and equivalence ratio
from lean towards stoichiometric resulted in an increase in detonation
velocity (and hence pressure and stress). The material of the sphere had
a slight effect; the steel spheres resulted in the higher velocities.

The measured velocities and pressures were compared with the calculated
CJ values. An approximate one-dimensional steady analytical model, which
included energy losses in the reaction zone, was developed. This expression

was used to calculate the critical condition wherein the detonation
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would no longer propagate through the packed bed, thus predicting the
minimum sphere diameter required for quenching. Finally, some experi-
ments were conducted wherein a large container was filled with coal,
sprayed with water, and allowed to freeze outside. Propane-oxygen

was blown through the pile and then detonated. Considerable fracturing was

was experienced.



INTRODUCTION

It is well known that a gaseous detonation wave is capable of gener-
ating a large pressure increase; its magnitude is determined by the
gaseous mixture composition and initial pressure. Some previous investi-
gationsl’2 have shown that gaseous detonations are able to propagate,
with only slight modification, through a porous medium with as little

. . 3
as a 25% void fraction. Some even more recent work 4

has shown that
detonations can propagate through crushed stone and, for energetic reac-
tants, even through sand. Considerable mechanical forces are exerted on
the solid matrix because of intense local overpressures produced by the
detonation waves. If these pressures are large enough to fracture the
bonds between the Tlarger particles, the overall structural rigidity of
the material will be destroyed and the material may collapse, or become
less resistant to deforming forces. If the overpressures are not suf-
ficient to fracture the major structural bonds, they may rupture sec-
ondary diaphragms and thereby increase the porosity. Since the gaseous
combustibles may be initially dispersed homogeneously through the entire
matrix, a uniform treatment at each location is assured, thus causing a
uniform modification of structural and fluid mechanical properties. Con-
densed (1iquid or solid) explosives are not attractive from this standpoint

in that the extreme pressures create a void at the location of the explo-

sion but highly compress the material away from that point.



This phenomenon of detonative fracturing could have several
applications in enhanced fossil fuel utilization and recovery efforts.
In underground gasification or enhanced petroleum recovery, it may be
necessary to increase the porosity of the strata to assist the passage
of various gases and fluids. When pulverized solid fuels freeze to-
gether in the process of being shipped or stored, the ice bonds between
particles and their containers must be broken. In addition to these
applications, the propagation characteristics of detonation waves
through porous beds is also of interest for hazard suppression in the
chemical and petroleum industries.

This investigation was initiated in order to determine the effect
of variations of some important factors upon the characteristics of
detonation waves in a porous bed. These factors were initial pressure,
different gaseous fuels, equivalence ratio, and the material and diam-
eter of spheres which comprised the porous bed. The measured parameters
were detonation velocities, pressures behind the detonation waves, and
the dynamic strain of the detonation tube.

These parameters were also calculated for Chapman Jouguet detona-
tion so that velocity and pressure deficits in the porous bed could
‘be ascertained and a mechanism for propagation developed.

Further, it was desired to vividly demonstrate the concept by

bonducting tests wherein a container of coal‘was frozen and then

fractured by a gaseous detonation.



EXPERIMENTAL EFFORT

Test System

Figure 1 is a schematic of the test system, which consists of a
detonation tube, combustible gaseous mixture supply, detonation initia—
tion tube, evacuation system, and instrumentation system. The detona-
tion tube was a cylindrical steel chamber with an inside diameter of
0.124 m, an outer diameter of 0.168 m, and overall length of 1.829 m.
The detonation tube was completely filled with solid spheres,and the
ends of the tube were closed. ‘Figure 2a shows an end view of the tube
partially filled with large diametef spheres. A closer view is given in
Fig. 2b and shows large ceramic spheres after the passage of numerous
détonations. The white unused sphere is shown for comparison. Detailed
views of the spheres constituting thevpotous bed are in Fig. 3. In
Fig. 3a, new spheres consisting ot 19.05 mm steel, 38.1 mm steel, and
38.1 mm ceramic are shown. After the passage of numerous detonations,
these spheres are as shown in Fig. 3b. It is possible to see regions
on the spheres where they were in contact with each other. Figure 3c
shows the surface detail for all spheres, both new and used.

The detonating gas, a mixture of the gaseous fuel and oxygen, was
fed into the detonation tube through stainless steel pressure tubing
and solenoid valves. The mixture ratio of the two gases was measured
by two flow meters. Before each run, high-pressure air heated by an
electrical heater was bled into the chamber to evaporate the combustion

products remaining from the preceding run. After removing the residual



gases from the chamber and recharging it with a combustible gaseous
mixture to a given pressure (measured by a mercury manometer at low
initial pressure or a pressure gauge at high initial pressure) the
detonation was initiated at one end of the chamber by using a glow plug
in a small initiator tube.

The parameters to be measured were the detonation velocity, the
pressure trace of the detonation, and the dynamic strain trace for the
test chamber,caused by the detonation wave.

Tonization gauges were used to measure the detonation velocities.
Five ionization gauges were positioned along the tube at intervals
of 0.4 m. The output from the first ionization gauge was used only to
trigger the oscilloscope sweep. The output from each subsequent ioniza-
tion gauge was connected via an amplifier circuit to a raster display
oscilloscope with a camera.

Two pressure transducers were installed in the test chamber wall,
0.8 m apart and 0.112 m from the initiating end. The output from each
of the twd transducers was connected‘via an amplifier to one of the
beams of a dual-beam oscilloscope with a camera.

| The strain gauges were attached on the outer surface of the detona-
tion tube, as shown in Fig. 1. An oscilloscope with a camera was used
to record the dynamic strain trace.

The first tests were made using ceramic spheres with a diameter of
38.1 hm. Next, steel spheres with a diameter of 38.1 mm and 19.05 mm
were used. The initial pressures of the detonatable mixtures were 1 atm,
2 atm, 5 atm, and 9 atm. The gaseous fuels were hydrogen, methane, and
propane. The equivalence ratios were 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2,
153, 1.4, and 1.5.



’Detonation Velocities

The detonation velocities were computed using time=versus-distance
plots, as shown in Fig. 4. Here, d = A0 + A]t and DEV is the sum of
the squareé of the deviations. The time versus distance plots were ob-
tained from the raster osci1loscope traces of detonation waves, as shown
in Fig. 5. A straight 11ne‘on the distance-time plot indicates a constant
| wave velocity, while concave downward and concave upward lines indicate
decaying and accelerating waves, respectively. The local slope gives the
Tocal detonation velocity. A close examination of all time-versus-distance
plots obtained shows that most of the plots are straight lines, although
a few showed decaying behavior. ~The Ve]ocity reported herein is the rate
at which the overall detonation front moVe§ along the axis of the test
chamber, and not to the velocity of propagaffon\through any given void.
~Presumably, this latter velocity is greater. >

Representative curves of detonation velocities vérsus equivalence
‘ratio for different initial pressures are shown for a given fuel, material,
and diameter of spheres in Figs. 6 through 14. As can be seen, there is
appreciable scatter and the resultant shape of the curve is questionable,
in some cases. It is believed that this scatter is attributable to
uncertainties in the mixture composition and in the response of the ion
gauges. Even so, certain trends can be recognized. Higher initial pres-
sures result in higher detonation velocities if all other conditions are
held constant. It has been found that the detonation velocity is very
close to the calculated Chapman Jouguet value of the detonation through
unpacked beds when the initial pressure reaches 5 atm or more.

The effect of the diameter of the spheres upon detonation veloci-

ties is shown in Figs. 15 through 17, where Fig. 17 incorporates some data



from Ref. 2. The following trend is found: an increase in the diam-
eterlof the gpheres results in a higher detonation velocity.

The results as shown in Figs. 18 through 20 are somewhat sur-
”,prising 1n:that the detonation velocity is_s1ight]y higher for 38.10 mm
steel spheres than it is for 38.10 mm ceramic spheres. A similar phe-
~nomenon was found by Gierez, where the propagation velocity was higher
_for the copper-coated 8 mm sphere than fpr the same size sphere with

no coating.

Detonation Pressures

Typical oscilloscope traces showing detonation pressure time history
are given in Fig. 21 for the two differently located transducers; they are
the bottom two traces in each photograph. These photographs indicate that
the pressure rapidly rises to its peak value which, however, is not nearly
as fast as in a typical detonation. It then falls within a few microseconds
to a lower value. Thereafter, the pressure decays in an exponential manner
from the Chapman Jouguet value, leveling off at a pressure of about one-
third of the Chapman Jouguet value. The Von Neumann pressures, i.e.,
those immediately behind the shock, are commonly about twice the CJ pres-
sure. However, they are not usually resolved in gaseous detonation. Be-
cause of the Tocation of the transducer at the wall with its finite size
sensing element behind or under a sphere, it is not clear what pressure
the transducer would see. This made it difficult to accurately determine
_overpressures.

Representative curves of the detonation pressure ratio versus equiva-
lence ratio were obtained at the three or four different initial pressures
for a fixed fuel and oxidizer combination, material, and diameter of
spheres; as shown in Figs. 22 through 30. It can be seen that the pressure
ratios increase with initial pressure and equivalence ratio (at least on
the lean side as the mixture is enriched).

6



Figures 31 through 33 show the effect of the diameter of the
sphere on the pressure ratio. The following trend can be recognized:
larger diameter spheres will result in higher pressure ratios. Figures
34 through 36 show the effect of the material of the spheres upon the
pressure ratio. It is found that the pressure ratios are slightly higher

for the steel spheres than for the ceramic spheres of the same size.

Dynamic_Strain of the Detonation Tube

Oscilloscope traces showing the strain gauge output as a function
of the time were employed to determine the dynamic strain when the test
chamber was subjected to dynamic loading by the detonation wave passing
through the porous bed. Some typical data is shown by the upper trace
in Fig. 37. The signal oscillation forms an envelope and appears to
vibrate about a mean that is above the datum Tline. These large oscilla-
tory vibrations were considered to be the result of the "overshoot"
created by the detonation force. Using the microstrain read from the
oscilloscope, the dynamic stress was calculated by means of using the
ratio of Young's modulus of elasticity for dynamic loading to that for

static loading as being 1.22 (Ref. 5).



Representative curves of dynamic stress versus equivalence ratio
at the different initial pressures are given in Figs. 38 through 43 for
a given fuel and oxidizer combination, material, and diameter of spheres.
The trend 1is recognized, not suprisingly, that the stress increases

with initial pressure, equivalence ratio, and diameter of the spheres.

Discussion

For convenience in analytical work, both the detonation velocities
and pressure ratios in a porous bed have been non-dimensionalized using
the Champan Jouguet values (denoted by the subscript "0"). These were
calculated by means of the computational program developed by Gordon
and McBm‘de.6

- Figures 44 through 52 present the effect of variations in the initial

pressure, equivalence ratio, and diameter and type of spheres on the vel-
ocity ratio, us/uso. It is seen that qs/uSo varies from about 0.65 to
0.85 at the initial pressure of 1 atm. The velocity ratio, us/uso, in-
creases with increasing initial pressure, equivalence ratio, and diameter
of the spheres. When the initial pressure reaches 5 atm or more, us/uSO
is near unity. These results indicate that a porous bed decreases
detonation velocities, especially at low initial pressure. As shown
later, this is because of the drag forces between the hot gas and the
surface of spheres and the wall of the tube. However, when the initial
pressure increases, these losses will decrease.

Figures 53 through 61 present the effect of variations in the initial
pressure, equivalence ratio, and diameter of the spheres on the normalized
pressure ratios, p/pi/(p/p/)o, for a fixed fuel and oxidizer combination

and material of the spheres. It can be recognized that the overpressures

in porous beds at an initial pressure of 1 atm are about 27% to 35% Tless



than Chapman Jouguet. The pressure ratio, p/pi/(p/pi)o, increases
slightly with the initial pressure. When the initial pressure reaches
5 atm or more, the overpressure in porous beds is about 15% to 20%

less than Chapman Jouguet, even though us/uSO is near unity.

Fracture of Coal Pile

At the initiation of the program, it was thought to be desirable
to measure the shear and tension forces between adjacent spheres in
the porous bed. This would have provided information regarding the
fracturing potential of detonation waves in porous media. It was found,
however, that an appropriate strain gauge system could not be sufficiently
miniaturized. Analytically, at Teast in concept, similar data could be
obtained by integrating the pressure fie]d as it passed through such a
matrix.

However, in Tieu of such data, a small experiment was performed. A
quantity of bituminous coal, consisting on the average of irregular 40 mm
cubes, was placed in a heavy (5 mm thick) cylindrical container having a
diameter of 750 mm and height of 450 mm. The container and coal are
shown in Fig. 62, a and b. During the process of filling the container,
snow and cracked dry ice were mixed with the coal. The container was
insulated and allowed to stand outside overnight in below freezing weather.
Subsequently, the entire mass froze solid into one large mass. The con-
tainer is shown outside in Fig. 62c.

The center of the container bottom had an opening through which
metered combustible gases could be fed. A glow plug was located in the
fuel system near the container. A stoichiometric mixture of propahe and
oxygen was allowed to flow into the vessel for a period of time, during

which it was judged that the air in the voids of the frozen coal mass



would be replaced. The top of the container was covered with a rope
mat, and the combustible gases were ignited. A dull thud was heard,
and the rope mat 1ifted slightly. The previously frozen coal mass was
inspected, and it was found that fracturing indeed had occurred. The
entire coal container is shown in Fig. 63 a. The coal was easily dumped
from the container, and the resulting individual pieces of coal and ice
and coal only are shown in Fig. 63 b. These pieces are of such a size
that they could be handled easi]yi

Apparently, a propane oxygen detonation generates sufficient

inter-particle forces to rupture the ice bonds between frozen coal

particles.
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ANALYTICAL MODEL

The propagation of a gaseous detonation wave through a porous
bed is a three-dimensional process involving friction and heat trans-
fer between the hot gas and the surface of solid spheres and the wall
of the tube. Both mechanical and thermal losses would result in a de-
crease in the effective heat of a reaction and would consequently de-
crease the detonation velocity and overpressure. From the experimental
results with two different sphere materials, it is clear that thermal
losses, in comparison with the friction losses, do not play a signifi-
cant role. In fact, the results are the inverse of what would be ex-
pected. The intense turbulence caused by the spheres can strengthen
the burning velocity and decreése the non-uniform distribution of some
important quantities with respect to cross section. The experimental
results obtained are comparable, to some extent, with the cd]cu1atea’
Chapman Jouguet values of one-dimensional detonation.

With the aid of the experimental data, it seems reasonable to make
the following simplifying, but physically admissible, assumptions accord-
ing to the analysis of Rag1and.7

The detonation front is planar and steady. Thé flow in the region
where the chemical reaction takes place is assumed to be one-dimensional.
The drag and heat transfer which actually occur at thé boundaries surround-
ing the spheres are distributed uniformly across the cross section. The
distribution of the spheres in the tube is uniform. The spheres fill the

tube in a hexagonal closely packed arrangement. Each.vqid is the same.
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For the control volume and the coordinate system shown in Fig. 64,

the equations of conservation of mass, momentum, and energy have the form:

93u3 - plul =0 ’ (1)
3
—2 -9 —
P33 = Py =Py -Pg* ﬁL'J by, dx , (2)
2
and
— 2 —2
%)< )G
p3(‘*3+ 2 )“3 P (el+ A
L 3
Pyuy - Pgug + ﬂ;’J (Q-qg +tu )b, dx (3)
2

Now assume:

1. u; = 0, i.e. the gas is initially at rest.

2. The Chapman Jouguet condition holds at position Eé,i.e. U = aj.
3. The gases are calorically and thermally perfect, i.e.,
2
= = a —
h cpT —
a® = YR = yRT |
P
Also, define non-dimensional drag and heat transfer coefficients:
3
C,= | b dx/ L Ap,u? (4)
d W 7 "sP2t2
2
3 2
— uz
Cp = J q b, dx/ A592us<h2 fp - hw) ' (5)
2

12



And, for convenience, replace the integrals in the momentum and energy

equations by:

B =

i _ Ay uym Gy
J wa dx = 7_\— -2—‘ p1us (6)

1
Ac 9 c u Gz

b]us ' (7)

4

Using these relations (4) to (7), the conservatidn equations

become
p3d3 - pqug = 0 (8)
2
+ 1 a
2( Y3 2 1 \.
P33 (‘“?“‘)"01 (“s * 7“)‘ B (9)
3 1
and
of V3 * ] 2312 2)
p3a3 ;g-:—T' - D]US Y] . + Us = ZUS B+ 2C (]0)

Using Egs. (6) through (9) and the relation p = (paz)/ , the
expressions for the ratios of several flow properties across the detona-

tions can be derived:

2A u.
3. — c's¥2 (11)
1 Y3
2 2
3 1S (1 L1, B ) (12)
ap Ty M2 2Acusi



_ ‘ (13)

2
L I
3 Y1M52 2A_u_ T,
2 2
CAu CA u
2 d's 2 1 d"s"2
1+ v.M (] + ————-—':-—'>} Y (] + + =
. { 1's 2R U U, 3 Y M AT
3 m3 S
T, m ? (14)
1M (1 - v5)
5 2(y32 - 1) ¢AH/a12
M &= (15)
° CAul 2(v.2 - 1) CA U2
1+ ds 2 + YB _ h's'2
Acusu2 Acusu2
2 "'1/2
s ={1+[c +2(y2-1)c]5s— ——u—z—} (16)
(usio ~ d 3 h AC U U

14



For a face-centered cubic unit cell:

A Jé? 7 X X
__5_=_‘-i____3.-_-'|7'|5_3 (17)
A V2T ' d

c 1- £

Substituting Eq. (17) into (16), the following expression can

be obtained:

2 ~1/2
s C. o+ 2(y 2 17.15 3 12 18)
Iagjg-— 1+ [Cd + 2(y3 - 1) Ch] 7. TT'G—E; (
s

The value for (us)0 and forvy, and M, are available as
functions of equivalence ratio and initial pressure from the computer
program developed by Gordon and McBrideﬁ. Knowing Cd’ Ch’ and the

) can be calculated after several jtera-

reaction zone length, us/(uS o

tions. ‘Initially, Chapman Jouguet values are used for the required
parameters on the right hand side of the equation.

‘The total drag coefficient is the sum of the shear drag coef-
ficient and the form drag coefficient, as givén by

C =Cds+cdf (19)

d

However, the shear drag is only about 1% of the total drag, so the

8

shear drag can be neglected. Tallmadge~ suggests that a useful analogy

can be drawn between the form drag and the Reynolds number in a porous

bed, i.e.,

_ 0.98 . -0.14

Cdf n d (20)
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where n is the bed porosity (the fraction of volume not occupied by
spheres) and Red is the Reynolds number based on the sphere diameter,

i.e.,
) pZUZd

Ho

Re

’ (21)

For the face-centered cubic packing, the porosity has a value of 0.259.

In the case being studied, when the Prandtl number is unity, the
Reyno]ds analogy may be used to relate the shear drag and heat trans-
fer, i.e.,

Cys = ZCh (22)

d
Since Cds is ignored, Ch is also neglected.

Additionally, the characteristic time for heat transfer to the
spheres can be approximately calculated. Consider the spheres to be
represented by a cylinder of radius d and length d, which is conducting
heat along its length. The thermal energy of this volume of hot gas
is:

= T2
Q-| = pCp (Tg - To) 2 d=d (23)

The heat conducted to the cylinder is:

_ ) 2
Q2 =3 (Tg - TW) m d (24)
The characteristic time for heat loss is defined as:
2
Q pC d
T=—l=——g>\—' (25)

2

For the 38.1-mm spheres and a stoichiometric hydrogen-oxygen detonation,

the characteristic times calculated for ceramic and steel spheres are

2

10" and 10'3 sec, respectively. The calculated characteristic times for

16



the spheres seem to be much too long, compared to the characteristic
time for the reaction zone, 10_6 sec, again justifying the neglect of
heat transfer. Indeed, one would expect that on the basis of heat
transfer alone that the detonation would show a greater velocity de-
ficit while propagating through steel spheres. However, the inverse
was found experimentally.

For detonations, it is known that increasing the initial pressure
will result in a decrease of the reaction-zone length. From Eqs. (18),
(20), and (21), it is clear that increasing initial pressure and diam-
eter of the spheres will result in a decrease of the form drag coeffi-
cient Cdf' Therefore, the us/(us)0 will increase with initial pressure.
The theoretical curves of us/(us)o versus sphere diameter and initial
pressure are given for a stoichiometric mixture of hydrogen and oxygen
in Fig. 65.

The pressure ratios can also be calculated, and theoretical curves
of [p/pi]/[(p/pi)o] versus the initial pressure and the diameter of
spheres are given for a stoichiometric mixture of hydrogen and oxygen
in Fig. 66.

These values, however, reflect a modification of Chapman Jouguet

values. In much of the detonation data collected to date9

, while the
velocities are frequently found close to Chapman Jouguet values, the
pressures seem consistently low. This may be explained by considering
that, for unsupported detonations, the state point at the end of the
reaction zone is on the weak branch of the detonation Hugoniot curve.
Most measurements of detonation velocity, pressure, density, and final

Mach number are consistent with the hypothesis. In White's worio, the

measured pressure and density are 10% to 15% below the calculated Chapman

17



Jouguet value. The detonation velocities .are 0.5% to 1.0% above
the Chapman-Jouguet value. Therefore, the calculated Chapman-Jouguet
values for pressure were decreased by 15%.

This pressure may also be used to calculate the dynamic strain
in the confining tube. For a thick-wall tube having an inner diameter

of 8 and an outer diameter of ros the tangential stress is given by

e S (26)

with the strain, of course, being obtained through
e = o/E (27)

with the previously mentioned appropriate correction being made to
relate dynamic and static quantities.

One effect which was not included in the analysis was catalytic
wall reactions. This would effectively appear as modification in
the heat of reaction. 1In a porousgbed arrangement, there is certainly
a large surface area. The experimental data consistently indicated
that, especially for hydrogen and oxygen at lower pressures, the deton-
ation waves propagating through the ceramic spheres showed larger
deficits than those propagating through steel spheres. The ceramic
~ spheres were alumina grinding balls furnished by Coors Porcelain Company.

In work reported by Fujiwara1], oxygen/hydrogen detonations were
allowed to propagate through small-diameter tubing of different material —
steel, glass, alumina—with different roughness. Lower Ve]ocities, 4
to 6%, were consistently measured for alumina walls. Analytically, this
could be predicted by considering the reaction, H + OH ~ H20, occurring

at the wall with 100% efficiency. This would appear to offer a

18



satisfactory explanation for the velocity differences observed for the
two different materials used in the porous bed.

From Fig. 65, it is clear that us/(us)o decreases with decreas-
ing diameter of the spheres. Obviously, there should exist a minimum
diameter of a sphere below which the detonation wave could not travel
through the porous bed. Assuming the minimum detonation velocity
~through a packed bed 1s equal to the speed of sound (probably too
conservative), the following expression for the minimum diameter of

the spheres may be derived:

1/1.14
_ 0.98
Gmin = 0 w2 (28)
(QZ 2) )
1 u 2
2 (17.15 X3 U, )
uglip
where
2
u22 4 (MSO2 -1
Uty (- + 1) (WM _Z-m Zra)m 2 (29)
sY2 (v )(Y]So - Mg ) M,

The theoretical minimum diameter of spheres for successful detonation
propagation at the initial pressures of 1, 2, 5, and 10 atm are given
for stoichiometric mixtures of H2/02, CH4/02, and C3H8/O2 in Table 1.
This is, of course, based solely on drag Tosses. The failure of fhe
detonation to propagate through the porous bed fiay also be based on
interstitial quenching. The critical diameters of spheres,calculated
on the basis of a minimum quénching distance corresponding to the
different fuels,are given in Table 2. The quenching criterion
requires a much smaller sphere in order to prevent the propagation of

~a detonation.
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COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS

A comparison of analytical and experimental detonation velocity
ratios for the four different initial pressures, the three kinds of
fuel, the two different materials of spheres, and the two different
diameters of the spheres is given in Tables 3 through 5. The results
show that the average accuracy of prediction is within 6%.

A comparison of analytical and experimental detonation pressure
ratios is given in Tables 6 through 8. The predicted results follow
the trend of experimental results. They are, on the average, accurate
to 5%.

A comparison of the analytical and experimental maximum stress of
the test chamber is given in Table 9. It can be found that the experi-
mental results, on the average, agree with those predicted by the analyti-
cal model, with an error of 8%.

The departure from experimental values becomes less puzzling, con-
sidering that there are several effects which make the comparisons only
approximate. First, the observed flow is neither exactly steady nor
exactly one-dimensional. The one-dimensional, steady model can apply
at best, only in an average sense. Second, the measurements are not
made at the center of the tube. The pressure and detonation velocity
are measured at the wall of the tube and are thus affected by the bound-
ary layer flow. Third, the measurements have a certain scatter caused
by the instrumentation system and the operator. While there is some
disagreement between the experiments and the predictions, the results

are encouraging.
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CONCLUSIONS

Experiments have shown that under certain conditions gaseous
detonation waves are able to propagate through porous beds. The
detonation velocities, overpressures, and dynamic stress of the det-
onation tube depend mainly on the fuel and oxidizer, initial pressure,
equivalence ratib, and diameter of the spheres. They are, of course,
reduced from their Chapman Jouguet values. Increasing the initial
pressure and diameter of the spheres will cause an increase in the
detonation velocity, pressure ratio, and dynamic stress of the detona-
tion tube. Changing the material of the spheres will cause some change
in the detonation velocity, overpressure, and dynamic stress, with the
velocity and overpressure slightly higher for 38.1-mm steel spheres
than for the ceramic spheres of the same size. The propagation of the
detonation is most affected by Tow initial pressure and by small spheres.
Experimental results indicate that the forces exerted on the bed by the

detonation are sufficient to rupture the cohesive forces in frozen coal.



NOMENCLATURE

3y sound speed of the combustible mixture

ay . sound speed of the combustion products at the Chapman-
Jouguet plane '

Ac average unoccupied cross-sectional area

AS surface area of the spheres in reaction zone

bW perimeter

Cd drag coefficient of the spheres

Cdf form drag coefficient of the spheres

Cds shear drag coefficient of theVspheres

Ch heat transfer coefficient

CJ Chapman-Jouguet point

Cp ‘constant pressure specific heat of mixture

d diameter of the spheres

e internal energy of the combustible mixture

e, internal energy of the combustion products

h specific enthalpy

My molecular weight of the mixture

my molecular weight of the products

Ms Mach number of the detonation wave

Py pressure of the mixture

P3 pressure of the products at the Chapman-Jouguet plane

q heat dissipation

Q heat liberated due to chemical reaction

ry inside radius

rs outside radius

T1 temperature of the mixture

T3 temperature of products at the Chapman-Jouguet plane

Uy velocity of the combustible mixture

Uy velocity of the mixture behind the shock wave

Ug velocity of the combustion products at Chapman-Jouguet plane
detonation velocity

X3 reaction zone length

22



specific heat ratio of the mixture

specific heat ratio of the products at the
Chapman-Jouguet plane

heat of combustion
strain

bed porosity

viscosity coefficient
density of the mixture

density of the products at the
Chapman-Jdouguet plane

stress
shear stress of the spheres
equivalence ratio
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TABLE 1. MINIMUM DIAMETER OF SPHERES IN
TERMS OF FRICTION LOSSES

dmin(mm)
P.(atm)
‘b:]\] 1 2 5 10
Mixtures
H2/O2 1.04 0.52 0.20 0.09
CH4/02 0.69 0.34 0.13 0.06
C3H8/02 0.35 0.17 0.066 0.033

TABLE 2. MINIMUM DIAMETER OF SPHERES IN
TERMS OF QUENCHING DISTANCE

dmin (mm)
P.(atm)
¢=1\‘ 1 2 5 10
Mixtures
H2/02 0.22 0.1 0.043 0.022
CH4/02 0.26 0.13 0.052 0.026
C3H8/02 0.21 0.10 0.050 0.021
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TABLE 9.

Mixture

¢ =1

CH4/O2

C3H8/O2

COMPARISON OF ANALYTICAL AND EXPERIMENTAL

MAXIMUM DYNAMIC STRESS

Sphere
mm

19.05
Steel

38.10
Steel

19.05
Steel

38.10
Steel

19.05
Steel

38.10
Steel

P1
(atm)

[S2 I A I S L A

N —

o)

(kg/cm?)
Analytical

41.
94.

269.

47.
102.

279.

63.
145.
407.

71.
160.
434,

84.
195.
536.

95.

205,

549.

29

Sy BN W N NN O

w

— 0 O O o o

o

(kg/cmz)

Experi-
mental

37.
87.
.0

251

50.
100.
301.

62.
150.
351.

75.
163.
376.

87.
163.
401,

100.
201.
502.

6
9

N

O ~~ W B~ oYy

(Xe]

Relative
Error

%
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a. End of Detonation Tube

b. Ceramic Spheres in Detonation Tube

Figure 2. Photograph of Porous Bed

31



Photograph of Spheres

Figure 3.

New Spheres

a

o

i

Used Spheres
32
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c. Surface of Spheres
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H2/02, o = 0.7
P = 1 atm
19.05 mm steel sphere

sweep 107° sec/div.

CH4/02, ¢ = 0.6
P1 = 1 atm
19.05 mm steel sphere

sweep 10_5 sec/div.

C3H8/029 ¢ = 0.9
p1 =5 atm
19.05 mm steel sphere

sweep 107° sec/div.

Figure 5. Oscilloscope traces of detonation waves.
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HZ/OZ’ o = 0.7

38.10mm steel spheres

Py = 2 atm

sweep = 100 microsec./div.
0.2 volts/div.

k1.01 psi/mv

‘CH4/02, ¢ = 1.0

38.10mm steel spheres

Py = 5 atm

sweep = 100 microsec./div.
1.0 volts/div.

1.01 psi/mv

C3H8/02, o = 1.3

38.10mm steel spheres

pq = 2 atm

sweep = 100 microsec./div.
0.5 volts/div.

1.01 psi/mv

Figure 21. Oscilloscope traces of detonation pressures.
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C3H8/02’ = 1.0
38.10mm steel sphere

Py = 2 atm

sweep = 100 microsec./div.
1.0 volt/div.

50 wustrain/div.

1.01 psi/mv

Figure 37. Typical oscilloscope trace of dynamic strain.
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Apparatus
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Figure 63. Fractured Coal Pile
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(a) Wall Fixed Coordinates
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(b) Shock Fixed Coordinates

¥ig. 64 Control volume and coordinate system
for the one-dimensional analysis,
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Fig. 65 Theoretical curve of us/(us)O vs. sphere diameter and

initial pressure of mixture.
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" Fig. 66 Theoretical curve of p/pl/(p/p]?ovs. sphere

diameter and initial pressure of mixture.
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