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1 Introduction

The current project is a systematic research effort aimed at quantifying re-
lationships between process mechanisms that can lead to improved recovery

from gas injection processes performed in heterogeneous Class 1 and Class

2 reservoirs. It will provide a rational basis for the design of displacement
processes that take advantage of crossflow due to capillary, gravity and vis-

cous forces to offset partially the adverse effects of heterogeneity. In effect,

the high permeability zones are used to deliver fluid by crossflow to zones
that would otherwise be flooded only very slowly. Thus, the research effort
is divided into five areas:

• Development of miscibility in multicomponent systems

• Design estimates for nearly miscible displacements

• Design of miscible floods for fractured reservoirs

• Compositional flow visualization experiments

• Simulation of near-miscible flow in heterogeneous systems

The status of the research effort in each area is reviewed briefly in the

following section.

2 Project Status

• Developement of Miscibility in Multicomponent Systems

We are making progress on the creation of a systematic theory of mis-
cibility development in multicomponent systems. The dispersion-free

theory developed previously at Stanford shows that in any multicom-
ponent displacement, the recovery behavior is determined by a small

number of key tie lines that include the tie lines that extend through

the initial and injection compositions, and one or more crossover tie
lines. If any of those tie lines is a critical tie line, then the displace-
ment is multicontact miscible. Thus the key to determining minimum

miscibility pressure (or minimum enrichment for miscibility) is to find
which tie line approaches the critical locus first as pressure (or en.-

richment) is increased. Graduate student Brunc_ Aleonard is currently

investigating efficient algorithms for calculation of the critical locus.



The next step is to develop an algorithm to determine which tie line
lies closest to the critical locus. Once the key tie line for miscibility is

so identified, it should be possible to develop an efficient algorithm to

determine minimum miscibility pressure for a multicomponent system.

• Design Estimates for Nearly Miscible Displacements

The scaling theory developed last year has been extended to include
the effects of layer ordering in scaling nearly miscible displacements

in layered reservoirs. We found that gravity forces can offset the ad-

verse effects of high permeability channels in some layered reservoirs
if adequate vertical communication exists.

• Design of Miscible Flood for Fractured Reservoirs

We have made significant progress in modifying the existing high pres-

sure PVT equipment to conduct high pressure gravity drainage. We
will soon be able to conduct high pressure gravity drainage in the

presence of C02 in cores up to two feet in length.

In this area, we have also made progress in developing the theory of
three phase gravity drainage. Recent experimental and theoretical

results suggest that we are close to being able to predict oil drainage

rate and final recovery for a given system with good agreement between
experiment and theory.

• Flow Visualization Experiments

To understand more fully the visualization experimental results we

have obtained, we are in the process of modifying a compositional
simulator code to simulate the observations. A subroutine for calcu-

lating the phase behaviors of the fluid system used in our experiments
is to be completed. The oil-water-alcohol systems used in the low

pressure experiments are not modeled accurately by cubic equations
of state, and hence an approach based on excess free energy models is

being used.

• Simulation of Flow in Heterogeneous Reservoirs

We have continued to investigate the streamtube approach as a numer-
ical alternative to conventional finite difference simulators to be used

in predicting near-miscible gas injection in heterogeneous reservoirs.

We apply the streamtube approach to the two-phase immiscible case
which is assumed to be well understood and for which many reliable



numerical methods have been developed. Our results have given us

new insight on the applicability of the streamtube approach and, par-

ticularly, on tile novel idea that proposes to map a one-dimensional

analytical solution (Riemann solution) along the streamtubes to obtain
a two-dimensional solution for a heterogeneous reservoir.

In the sections that follows, we summarize new results obtained by

Ph.D student Marco Thiele concerning the streamtube approach.

3 Research Results

Previous research using streamtubes focused almost exclusively on the
immiscible two-phase problem with an areal geometry. Principally, it

is the weak nonlinearity of the immiscible two-phase problem (water-

food) that allows for the assumption of constant streamtube geome-
tries, which are almost universally applied in the published literature.

A notable exception is Renard (1990) . ttere the streamtubes are
recalculated periodically, and the fluid is assigned to the new stream-

tubes using a much finer mesh than that upon which the tubes are
calculated. In general though, the assumption of a fixed streamtube

geometry is widely used and reinforced by the areal geometry since,
by continuity, a streamline must start and end at a source. In the

areal plane sources are points leaving little room for the streamtubes

to change their shape during the displacement. Furthermore, except
for Hewett and Behrens (1991), all studies in the literature consider a

homogeneous reservoir to generate the streamtubes.

The physical and geometrical constraints imposed on the governing

PDE then, are such that the geometry of the streamtubes becomes a
weak function of the total mobility distribution. In light of this, the

good matches reported by Higgins and Leighton (1962); Higgins, Bo-

Icy, and Leighton (1964); Martin and Wegner (1979); aim Hewett and

Behrens (1991) are not all too surprising. Another way of account-
ing for the weak nonlinearities was proposed by Martin and Wegner

(1979). They show that instead of updating the geometries of the
streamtubes, the total volume of fluid injected can be made a function

of the resistance of each tube. The change in volume of a stream-
tube is traded for a varying volume of fluid going down each tube,

while keeping the actual streamtube geometry constant. Although the



approaches differ slightly, all show convincingly that streamtubes can
successfully and inexpensively predict recovery for two-dimensional,

areal waterflood problems.

In this work, the waterflood problem is approached differently and

used to demonstrate the applicability of a Riemann method. Detailed
descriptions of techniques for construction of solutions for multicompo-

nent, two-phase flow problems have been presented previously (Thiele

and Blunt (1993)i). The domain is considered to be heterogeneous and
the geometry to be cross-sectional. The streamlines are now ilo longer

pinned down by two points in the domain as in the areal case. This
makes them 'freer' to move and conform to the flow field allowing the
nonlinearities to become more noticeable. But the real difference is in

the mapping of the one-dimensional solution along each streamtube.
In this work, the one-dimensional solution is treated as a solution to a

Riemanm problem. This means that at the new time level the solution

is not given by an integration from tD to tD +AtD, as in conventional

time-stepping algorithms, but rather from 0 to t D + kiD, where the
initial condition at time t D = 0 is characterized by a discontinuity at
XD = 0. This, of course, is the well-known initial condition tbr the

Buckley-Leverett solution. Treating the one-dimensional solution as a
Riemann solution means that each streamtube is treated as a true one-

dimensional system on which the Buckley-Leverett solution is simply

mapped repeatedly for different times.

In this approach, the underlying assumption is that the solution is
indeed scalable by xD/tD along each tube. In simple words: the fluid

entering a tube remains in the tube and can exit only by the outlet
end. The validity of this assumption is considered in detail in the
section that follows.

3.1 Validation of the Riemann Approach

Tile Riemann approach was tested by the following numerical exper-

iment. Using a standard finite difference simulator (ECLIPSE), the

velocity fields were stored for regular increments of dimensionless time.
From each velocity field, the corresponding streamtubes were then cal-

culated and used to find the saturation profiles by mapping a Riemann

solution along the streamtubes. The saturation profiles obtained by
this method were then compared to the saturation profiles obtained by



the direct Riemann approach proposed in this research, the underlying

assumption being, of course, that the velocity fields obtained fi'om the
finite difference simulator are indeed 'correct'

The data used to test tile Riemann approach are shown in Fig. 1. Al-
though the end-point mobility ratio is 10, the frontal mobility ratio is,

in fact, only 1.36, resulting in a more stable displacement than sug-

gested by the end-point value alone. A similar statement can be made
for many waterfloods with 'reasonable' relative permeability curves:
the frontal mobility ratio is usually of order 1 even though the end-

point can be of order 10 or 100. The weak nonlinear behavior of the

two-phase immiscible problem results from the relatively mild adverse
mobility ratio.

The absolute permeability field is shown in Fig. 2. This field was
derived from a finer 250x100 permeability field by taking a geometric

average of each set of four blocks on the fine grid that equal one block
in the 125x50 grid used here.

As is shown in Fig. 3, the pure Riemann approach agrees well with the

mixed method (ECLIPSE velocity field + Riemann solution). Both
are seen to be devoid of numerical dispersion, as expected, compared to

the saturation profiles obtained directly from ECLIPSE. Fig. 3 displays
profiles for dimensionless times tD = 0.2 and tD = 0.4. The upper

row shows saturations profiles obtained directly from ECLIPSE. The
middle row shows profiles obtmned using the velocity from ECLIPSE

(and consequently the streamtubes) but mapping the solution as
Riemann solution. The last row shows profiles obtained by using the
Riemann approach only to solve the entire nonlinear problem.

The difference between the two methods is indeed small, suggesting
that the nonlinearity of the velocity field is captured correctly by the

direct Riemann approach. In fact, it is interesting to note that numer-

ical dispersion causes a larger difference in recovery than the direct
Riemann solution method. Fig. 4 shows the differences in recovery

performance for the three methods. The recovery curve obtained from

the mixed method (ECLIPSE velocity field + Riemann solution) lies
above the recovery curve obtained directly from ECLIPSE. Because

the velocity fields for these two recovery curves are identical, the dif-

ference must be attributed to numerical dispersion and the way in
which the one-dimensional solution is mapped along the streamtubes.
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Figure 1' Relative permeability curves (krw - S_, kro = ,S'_), correspond-
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Figure 2: Permeability map with logarithmic scaling - (125x50 Grid).



That numerical dispersion may have the upper hand is suggested by

the saturation profiles shown in Fig. 5.

Although this numerical experiment does not prove that the two-
dimensional solution is scalable by XD/t D along streamtubes, it does

suggest that the differences in the velocity field compared to a tradi-
tional finite difference approach is small and that numericM dispersion

can lead to larger deviations than those caused by assuming a Riemann

solution along streamtubes.

3.2 Convergence of the Riemann Approach

Before using the Riemann approach to investigate other immiscible
cases, the issue of convergence is addressed in this section. In other

words, at what rate must the streamtubes be recalculated in order to
consider the solution converged? If the two-phase immiscible problem

is indeed weakly nonlinear, then it may require fewer updatings of the

pressure (or _-field) than currently used in finite difference simulators
and thus lead to a substantial speed-up. Finite difference simulators

usually use a CFL (Courant, Friedrichs, and Lewy 1928) type stabil-

ity criterion for the discretized hyperbolic conservation equation to
determine when to resolve for the pressure field. In such methods the

pressure field is recalculated at every time step.

In the streamtube approach, of course, the conservation equation is not
discretized and therefore there is no CFL condition to worry about.

The question that arises, instead, is how many times the streamtubes
must be updated to consider the solution converged? This question is

addressed by solving the previous problem repeatedly while increasing
the number of streamtube updates over two pore volumes injected.

Recovery curves for 1, 10, 20, 40, and 100 streamtube updates are

shown in Fig. 6.

It is rather surprising to find that 20 solves are indeed sufficient to con-

sider the problem converged over a range of two pore volumes. With

only 20 solves, the new approach represents a reduction in computa-
tion time by two orders of magnitude compared to the 1000's of solves

needed by a traditional finite difference simulator like ECLIPSE. Thus,
two important points can be made here:

1. The displacement is indeed only weakly nonlinear. Although the
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Figure 3: Saturation profiles at times tD -- 0.2 and tD -- 0.4. From top
to bottom: profiles obtained directly from ECLIPSE; profiles obtained by

using the velocity field from ECLIPSE but mapping a Riemann solution

along streamtubes; profiles obtained by the method proposed in this work.
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Figure 6: Recovery curves for for 1, 10, 20, 40, and 100 streamtube updates

over two pore volumes injected (tD = 2) showing that the problem can be
considered converged if more than 20 updates are used.

end-point mobility ratio is 10, it is the shock-fl'ont mobility ratio

of 1.36 that dictates the severity of the nonlinearity. Far fewer
solves of the pressure field are required than used by traditional

finite difference simulators leading to a two orders of magnitude

speed-up.

2. The dominating factor in the displacement is not the viscous in-

stability caused by the difference in viscosity of the fluids, but

rather the reservoir heterogeneity and preferential flow channels.
Since viscous instability is certainly the more difficult problem to

solve, this is a very encouraging result.

3.3 Other Immiscible Solutions

This section consider other immiscible cases intended to verify further

the streamtube method as well as to gain some physical insight. There
are, of course, many parameters that affect the displacement efficiency

and an exhaustive investigation would have to consider them all. Yet,

since the scope of this research is to understand miscible displacements,

only two parameters are investigated here: (1) The end-point mobility

10



ratio and (2) tile correlation length of the reservoir. Except where
noted, the relative permeabilities are assumed fixed and given by k,.,, =

End-Point Mobility Ratio

The end-point mobility, defined as

(.) .o r=Al+:d=-_/ - .1 _ !- #wkro ' (1)

where the subscripts I and J refer to initial and injected conditions re-

spectively, is simply varied by increasing the resident fluid viscosity, in

this case that of the oil. As is shown in Fig. 7 and Fig. 8, the chang-
ing end-point mobility ratio seems to affect the rate of convergence
only, with tile Me,_d = 1 case requiring one solve, the Mend = 3 less

than ten, the Mend : 5 approximately ten, and the Mend = 10 twenty

solves as mentioned earlier. It is interesting to note that the converged

recovery curves all compare in the same way with tile recovery curves
obtained from ECLIPSE. As discussed in the previous discussion on

the validity of the Riemann approach, the differences can be attributed
to numerical dispersion caused by the finite difference formulation in

ECLIPSE. A more surprising result is that ECLIPSE consistently un-
derestimates compared to the recoveries obtained from the streamtube

approach -surprising because it is usually assumed that numerical dis-
persion increases recovery, since it mitigates viscous instability thereby

reducing viscous fingering and early breakthrough. One possible ex-
planation in this case is that numerical dispersion smears the shock
fl'ont and thu_ reduces its effectiveness in recovering the oil ahead of

it. Since the streamtube actually uses an analytical solution along
each streamtube, the piston-like recovery mechanism remains intact

and predicts a higher oil recovery from the reservoir. In fact, the true

physical answer may lie somewhere between the two, but these re-

sults are significant because, for the first time, the effects of numerical
dispersion on recovery are quantifiable.

Data tbr another example are shown in Fig. 9. In this case the end-

point relative permeability of the oil phase is k_olso=l = 0.25. Keeping
the same exponents as before and assuming an oil-to-water viscosity
ratio of ten (/to = 10, #w = 1) leads to an end-point mobility ratio o['

11
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Figure 9: Relative permeabilities, fractional flow, and one-dimensional satu-
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_//end -- 40. But even in this case, as the recovery curve in Fig. 10

demonstrates, the streamtube method is able to capture the nonlin-

earity within 20 updates.

Reservoir Heterogeneity

To understand the impact of reservoir heterogeneity on recovery, the
Mend -- 10 one-dimensional solution of Fig. 1 was used to find re-

coveries up to two pore volumes injected for the three permeability

fields shown in Fig. 11. All three permeability fields have four orders

of magnitude variation in absolute permeability and differ only in the
correlation length. The recoveries are shown in Fig. 12.

As in the end-point mobility case, the streamtube method is able to

give some interesting insight that may have not been observable with a
standard finite difference simulator. For example, the recovery curves

suggest that the degree of the nonlinearity of the problem is actually

dependent on the reservoir heterogeneity present. A permeability field
with a very short correlation length tends to mitigate the nonlinearity

(see case with Ac = 0.02) while longer correlation lengths allow for a

stronger nonlinear behavior (see case with ,_c = 0.6). Short correla-

tion lengths promote the growth of many fingers, but no single finger
is able to grow into a dominant flow channel that will characterize the

recovery curve. As soon as a finger begins to grow beyond the field's

correlation scale there is a high probability that it will encounter a low
permeability region and slow down. Therefore, the nonlinearity is not

as noticeable in the geometry of the streamtubes since all streamtubes

expand and contract many times over the duration of the displace-
ment and end up, on average, to behave like streamtubes from the

unit mobility case. The correct recovery curve can be obtained by

simply solving for the streamtubes once and mapping the appropriate
Buckley-Leverett solution. The success of thet approach is is clearly

shown by the recovery curves for ,_c = 0.02 in Fig. 12 which practically
fall on top of each other.

As the correlation length increases the nonlinearity becomes more no-
ticeable, and, in fact, for a ,_c = 0.6 the converged solution is reached

at about 40 updates. The long correlation length now produces a clear
path of least resistance between the inlet and outlet, which the fluid

has no problem finding. A dominant flow channel is created and early

15
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break through occurs. As a result, tlle nonline_trity of the problem is
accentuated, meaning that the injected phase increases its total veloc-

ity along the path until it reaches the outlet end (this increasing total

velocity IS the nonlinearity). Capturing this continuous increase in
total velocity is, in fact, what requires the more updates of the stremn-

tubes compared to the shorter correlation length cases. It should be

• emphasized at this point that 'more' is to be understood within the
context of streamtubes, but still compares very favorably to 1000's of

solves a traditional finite difference simulator would require.

3.4 Conclusions

(1) Two-phase I)roblems for two-dimensional heterogeneous reservoirs
can be solved efficiently by mapping a one-dimensional Buckly-
Leverett solusion onto streamtubes.

(2) The Combination of Riemann solutions and streamtubes leads to
solutions that are devoid of numerical dispersion.

(3) Computations with the Riemann streamtube approach are orders
of magnitude faster than comparable finite difference computa-
tions.
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