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ABSTRACT 

In this project, fundamental studies were conducted to understand the mechanisms of the 

interactions between polymers/surfactants and minerals with the aim of minimizing chemical 

loss by adsorption. The effects of structures of the surface active molecules on critical 

solid/liquid interfacial properties such as adsorption, wettability and surface tension in 

mineral/surfactant systems were investigated. The final aim is to build a guideline to design 

optimal polymer/surfactant formula based on the understanding of adsorption and orientation of 

surfactants and their aggregates at solid/liquid interfaces. 

During this period, the wettability of alumina was tested using two-phase extraction at 

different pHs. The results were explained using the adsorption data obtain previously. It was 

found that the wettability is determined by both the nano-structure of the hemimicelles and the 

surface coverage. It was found that pH plays a critical role in controlling the total adsorption and 

the mineral wattability. At pH 4, the alumina surface remains hydrophilic in the surfactant 

concentration range tested because of the low surface coverage, even though hemimicelles are 

formed.     

Adsorption of sodium dodecyl sulfate (SDS) on alumina and silica, the component minerals 

reservoir rocks, was conducted at different pHs. The adsorption of SDS on silica is negligible, 

while the adsorption on alumina is high due to the different charge of the latter. Tests of 

adsorption of a modified polymer S-19703-35HT on alumina were also conducted at different 

pHs. Adsorption density decreases with pH. The results suggest that alkaline pH range is more 

cost-effective for a SDS/polymer system because of the low adsorption density.  

A new term, reagent loss index (RLI), was used to analyze the adsorption data for different 

surfactants and minerals. It was shown that the chemical loss is very high in the case of SDS on 



gypsum and limestone, while it is low in the case of silica. The mixed Dodecyl maltoside 

(DM)/C12SO3Na system was also evaluated using this standard term. It is fairly easy to find the 

optimal conditions, including mixing ratio and pH, for minimum chemical loss using 

polymer/surfactant mixtures.  
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INTRODUCTION 

Surfactant/polymer flooding is one of the promising techniques to recover residual oil from 

domestic oil reservoirs. However, the high cost of the processes as well as the significant loss of 

chemicals by adsorption on reservoir minerals and precipitations have limited the use of 

chemical-flooding operations. There is a need to develop cost-effective improved and innovative 

reagent schemes to increase recovery from domestic oil reservoirs efficiently. To achieve this 

goal, we have conducted systematic studies of adsorption of reagents on various reservoir 

minerals. Based on previous the results obtained, it can be inferred that interfacial behavior of 

surfactant mixtures can be manipulated by adjusting surfactant type and other parameters like 

mixing ratio and the order of addition. Currently, the aim of this project is to systematically 

analyze the data obtained to understand the mechanism of synergistic or antagonistic interactions 

between polymers and surfactants in bulk fluids and at mineral/fluid interfaces. In addition, we 

plan to develop a model to predict the performance of chemicals in enhanced oil recovery 

systems. 

During the previous reporting period, we completed the wettability tests of alumina 

particles using two-phase extraction. The data were correlated to the adsorption results that have 

been previously reported. It was found that the wettability of the mineral surface is determined 

by both the nanostructure and the surface coverage. Water wettability (opposite to 

hydrophobicity) of alumina particles at pH 7 decreases with dodecyl maltoside up to the CMC, 

but increase again above the CMC because of formation of bilayers. Even though there is also a 

sharp increase of adsorption density due to the formation of hemimicelles at pH 4, the alumina 

surface remains hydrophilic at all of the surfactant concentrations tested due to low surfactant 

coverages – only about two percent of that at pH 7; Pyrene-probe fluorescence tests were also 
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done under the same conditions as that for wettability tests to elucidate the structure of  

microdomains formed at the solid/liquid interface. These results are in accordance with the 

wettability data.  

During this period, we have also conducted adsorption tests of SDS and the modified 

polymer on both silica and alumina. It was found that SDS adsorbs strongly on alumina but very 

weakly on silica due to the different electrostatic forces. The adsorption density of both SDS and 

the modified polymer on alumina decreases markedly with pH, suggesting that alkaline range is 

more cost-effective with this surfactant/polymer system. 

In addition, the term, Reagent Loss Index (RLI), proposed to evaluate the reagent loss of 

the desired chemical systems on different minerals. Using this framework involving RLI, it is 

easy to evaluate different systems and further it will be helpful in the selection of the most cost-

effective reagents for oil recovery processes. 

 

 

 

 

 

 

 

 

 

 



EXPERIMENTAL  

MATERIALS 

Surfactants 

Several typical ionic and nonionic surfactants were selected for this study. During this 

period, anionic sodium dodecyl sulfonate (C12SO3Na) of ≥99.0 purity purchased from TCI 

Chemicals, Japan, Non-ionic sugar-based surfactant, n-alkyl-β-D-maltoside (>95% purity by 

TLC), from Calbiochem was also used as received.  

                          

Sodium Dodecyl Sulfonate  Dodecyl Maltoside 

Figure 1 molecular structure of polymer used during this period. 

Polymer 

Modified polymer S-19703-35HT 

Mineral Samples: 

Solid substrate used during the current period is alumina AKP-50 obtained from Sumitomo. 

It has a mean diameter of 0.2 μm and the BET specific surface area of 10.8 m2/g was measured 

using nitrogen/helium with a Quantasorb system. Its isoelectric point (iep) was determined to be 

8.9. Silica obtained from Geltech has a mean diameter of 0.2 to 0.3 μm and has a specific surface 

area of 12.0 to 12.9 m2/g and the isoelectric point of around 2. 

Other Reagents:  
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HCl and NaOH, used for pH adjustment, are of A.C.S. grade certified (purity > 99.9%), 

from Fisher Scientific Co. To study the salt effect on surface tension, micellization and 

adsorption, salts NaCl, CaCl2, FeCl2, AlCl3, Na2SO3, and NaNO3 were obtained from Fisher 



Scientific Co.; and sodium citrate from Amend Drug & Chemical Company, all of A.C.S. 

certified, and used as received. The water used in all the experiments was triple distilled and was 

tested for the absence of organics using surface tension measurements. 

 

METHODS 

Adsorption experiments 

Adsorption experiments were conducted in capped 20 ml vials. Solid samples of 2 gram 

were mixed with 10 ml of triple distilled water for 2 hours at room temperature. The pH was 

adjusted as desired, and then 10 ml of the surfactant solution was added. The samples were 

equilibrated further for 16 hours with pH adjustment and then centrifuged for 30 mintues at 5000 

rpm and the clear supernatant was pipetted out for analysis.  

Wettability 

The samples for determining relative hydrophobicity tests were prepared in the same way 

as the adsorption experiment, and the wettability was determined using liquid-liquid extraction 

technique. After 16 hours of equilibration, 20 ml of the slurry was transferred to a separatory 

funnel to which 15 ml of toluene was added. The mineral–surfactant–toluene dispersion was 

shaken for 1 minute manually and then allowed to settle for 1 hour. The bulk of the aqueous 

phase with hydrophilic solids, as well as the toluene phase with hydrophobic solids, was emptied 

out of the funnel separately. The two phases containing the solids were evaporated and the 

weight of the mineral was recorded. The hydrophobicity values were calculated using the 

equation: 

WeightParticleTotal
TolueneinParticlesofWeightcityHydrophobi =     (1) 

Surface tension  
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The surface tension was measured at 25±1˚C using the Wilhelmy plate technique with a 

sandblasted platinum plate as the sensor coupled to a Cahn microbalance. The entire 

assembly was kept in a draft-free plastic cage at a temperature of 25 ± 0.05 0C.  For each 

measurement, the sensor was in contact with the solution for 30 minutes to allow 

equilibration. 

Analytical Techniques  

The residual concentration of the anionic surfactant after adsorption was determined by a 

two-phase titration method using a cationic surfactant, dodecyl trimethyl ammonium chloride 

(DTAC), as the titrating solution. Concentration of the sugar-based surfactant after adsorption 

was determined by colorimetric method through phenol-sulfuric acid reaction. In ionic/nonionic 

surfactant mixtures, the total residual surfactant concentration after adsorption was obtained by 

adding the concentrations of the individual component surfactants, which were measured by 

either the two-phase titration or the colorimetric method. 

Fluorescence Experiments 

Sample preparation. For fluorescence measurements in solutions, the surfactant solutions 

were mixed with the desired amounts of pyrene probe, to make the final pyrene concentration ~ 

1.0 μM. Surfactant solutions containing pyrene were shaken overnight at room temperature 

before fluorescence measurement. For fluorescence measurements at solid/solution interfaces, 

the same adsorption procedure was followed as in the experiments conducted in the absence of 

the probe. Desired amount of pyrene probe from stock solutions containing known amounts of 

pyrene was added into adsorption sample solution, to make the pyrene concentration ~ 0.2 μM. 

After separating the supernatant and the solid slurry by centrifugation, the solid slurry was taken 

for direct fluorescence measurements.  
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Steady-state experiments. Steady-state emission spectra were obtained using a Horiba Jobin 

Yvon Fluorolog FL-1039 spectrophotometer. A portion of the solid slurry sample from 

adsorption experiments or surfactant solution sample containing pyrene was transferred to quartz 

cells, and the samples were excited at 335 nm and their emission between 360 and 500 nm was 

recorded.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS AND DISCUSSIONS 

 

1) Wettability of alumina due to the adsorption of surfactant mixtures  

Adsorption of surfactants on solids could dramatically change the wettability of the surface. 

Wettability of alumina particles due to the adsorption of dodecyl sulfonate and DM mixtures has 

been investigated using two-phase extraction and deplection technique. The information on 

changes in wettability of the surface due to surfactant adsorption can also shed light on the 

orientation of the surfactant species on the solid surface and help to elucidate the relationship 

between molecular packing and structures.  
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Figure 2. hydrophobicity of alumina along with adsorption at pH 7. 
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The effect of DM adsorption on the hydrophobicity of alumina is illustrated in figure 2 

along with the adsorption isotherm at pH 7. Alumina becomes hydrophobic with the adsorption 

of DM and reaches maximum hydrophobicity around the CMC. Interestingly, the alumina 

remains hydrophobic only within a very narrow range and becomes hydrophilic again at higher 

surfactant concentrations. The drop in hydrophobicity suggests that additional surfactant 

molecules with hydrophilic groups orient towards the aqueous phase at higher concentrations. 

Evidently, in the low concentration range, a monolayer is formed with the surfactants adsorbed 

with the hydrocarbon tails oriented towards bulk and at higher concentration a bilayer with 

orientation of the hydrophilic head towards the bulk.  

Hydrophobicity obtained in the case of mixed C12SO3Na/DM is shown in figure 3. In this 

case, the alumina surface exhibits hydrophobicity even in the low residual surfactant 

concentration range (below CMC), because of the strong adsorption of dodecyl sulfonate due to 

the electrostatic attraction.  When the residual concentration reaches CMC, the alumina surface 

becomes hydrophilic again due to the formation of a bilayer.  
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Figure 3. Effect of DM/sulfonate mixture adsorption on the hydrophobicity of alumina. 

 

The effect of relevant parameters such as pH was studied next. It can be seen that pH has 

a marked effect on the adsorption of mixed C12SO3Na/DM on alumina. DM adsorbs fifty times 

less on alumina at pH 4 than at pH7, even though the adsorption isotherms have the same typical 

three-stage S shape (figure 4). The sharp increase at CMC indicates the formation of 

hemimicelles at the solid/liquid interface; however, the surfactant layer does not change the 

hydrophobicity of the surface due to the low surface coverage. The surface remains hydrophilic 

in the tested concentration range as shown in figure 4.   
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Figure 4. Effects of DM adsorption on hydrophobicity of alumina at pH 4. 

 

2). Steady state fluorescence study of adsorption of Dodecyl Maltoside  at solid/liquid 

interface. 

 

Steady-state emission spectra were obtained using a Horiba Jobin Yvon Fluorolog FL-

1039 spectrophotometer. A portion of the solid slurry sample from adsorption experiments or 

surfactant solution sample containing pyrene was transferred to quartz cells, and then the 

samples were excited at 335 nm and their emission between 360 and 500 nm was recorded. For 

fluorescence measurements at solid/solution interfaces, the same adsorption procedure was 

followed as for the experiments conducted in the absence of probe. After the adsorption reached 

 10



equilibration, the solid was separated from residual solution; and both the residual solution and 

the solid slurry were measured using fluorescence spectroscope.  

 The emission intensity from the residual solution and solids was plotted as a function of 

residual concentration in figure 5. The fluorescence intensity from the residual solution 

decreased sharply with concentration and becomes undetectable at CMC, as most pyrene 

molecules were extracted into the hemimicelles at solid/liquid interface. Interestingly, the 

intensity from the solids showed a sharp increase up to CMC and then decreased by almost half. 

The shape of the peak corresponded with the peak of hydrophobicity as shown in figure 6.  
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Figure 5. Effects of adsorption density on the intensity of pyrene emissions from solid and 

residual solution  
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Figure6. Intensity of pyrene emission compared with hydropobicity of alumina surface at 

same adsorption situation . 

3) nanostructure of mixed  surfactants on minerals 

Previous work has been done on interactions between surfactants and minerals in terms of 

adsorption of surfactants and wettability of minerals. It was found that the wettability of minerals 

particles is determined in terms of not only by the adsorption density but also the orientation of 

the surfactant molecules in aggregation. An example is given in figure 7. Adsorption tests were 

conducted with mixtures of sodium dodecyl sulfonate and sugar-based n-dodecyl-β-D-maltoside 

(DM) on alumina minerals at different surfactant mixing ratios. The total adsorption density is 

less than 50% of that at other pH levels below a mixing ratio of 0.6, but the mineral surface is 

surprisingly hydrophilic under this condition, which suggests that the head groups of surfactant 
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molecules are orienting towards the bulk solution. This condition is beneficial for efficient 

chemical flooding.    

 

Adsorption density d>c>b>a 

Figure 7: Molecular packing at solid/liquid interface determines the loss of reagents in improved 

oil recovery 

Possible nanostructures formed in different mixing ratio range were speculated and 

illustrated on the right of figure 7, which shows that the nanostructure is determined mainly by 

the mixing ratio. In b and c ranges, the mineral surface is hydrophilic, even though the surface is 

not fully covered, because of the spherical and cylindrical structures, in which, the surfactant 

molecules arranged on the top have the head groups oriented towards water.  

 

4).Adsorption of SDS and modified polymer on alumina 
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Adsorption of SDS on alumina was tested at both pH 4 and pH 7. The adsorption 

isotherms are shown in figure 8. At pH 4, SDS reaches plateau adsorption range at lower 

concentrations due to the strong electrostatic attraction between negatively charged surfactant 

molecules and the positively charged mineral surface. At pH 7, the adsorption reaches plateau at 

concentrations close to the CMC of SDS because of the neutralization of the positive charges on 

alumina surface.  
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 Figure 8 Adsorption of SDS on alumina at pH 4 and pH 7 

 
 Tests have been conducted to investigate the adsorption of the modified polymer on 

alumina at pH 4, 7 and 10. The results are shown in figure 9. It was found that pH plays an 

important role in the adsorption of the polymer on alumina. The adsorption density at pH 10 is 

smaller than 50% of that at pH 4, suggesting the electrostatic force to be one of the driving forces.  
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Adsorption of Modified S-19703-35HT on alumina
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 Figure 9 Adsorption of modified polymer on alumina at different pHs 
 

5). Modeling of surfactant adsorption on solid surfaces. 

A new term, “Reagent Loss Index (RLI)”, was proposed previously to evaluate the 

performance of a surfactant in a standardized framework in order to evaluate the adsorption 

behavior of different surfactants on varied minerals and then take the molecular structure into 

account to develop a structure performance relationship eventually. The RLI is defined as the 

ratio of the actual loss due to adsorption and precipitation to the theoretical maximum 

adsorption, Ads0, when a complete double layer is formed at solid surface.  

 Some of the previous adsorption results were categorized into 6 Reagent Loss Index 

(RLI) range as shown in table 1.  
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Table1. Typical ranges of Reagent Loss Index and examples. 

Reagent Loss Index 
(RLI) range Phenomena Cases 

0 No adsorption Ionic surfactant alone on 
solid surfaces with same 

charge 
~0 Negligible adsorption Dodecyl maltoside on silica 

0~0.5 Medium adsorption DM on alumina in pH range 
3~6 

0.5~1 Strong adsorption DM on alumina in pH range 
7~10 

1~ Enhanced adsorption Ionic surfactant on highly 
oppositely charged mineral 

surfaces 
>>1 Precipitation Sodium Dodecyl Sulfate on 

gypsum and limstone. 
 

Adsorption data of SDS on four different minerals: alumina, silica, gypsum and limestone, 

have been analyzed and the reagent loss indexes obtained are listed in table 2. The high chemical 

loss in the cases of gypsum and limestone is due to precipitation caused by the possible calcium 

ions. From the table, it can be concluded that SDS could be used in those containing alumina and 

silica but should be avoided for used in oil reservoirs containing gypsum or limestone. 

 

 

 

 

 

 

 

Table 2 Reagent Loss Index for SDS on different minerals 
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Minerals Surfactants pH Adsorption 
Reagent Loss Index 

(RLI)  
Alumina SDS pH 4 1.04E-05 1.8 

Alumina SDS pH 7 6.95E-06 1.2 

Silica SDS pH 7 1.24E-07 0.02 

Gypsum SDS pH7 0.00037 64.9 

Limestone SDS pH 7 5.07E-05 8.8 

Table3.  Reagent Loss Index for DM/ C12SO3Na mixture on alumina 

Surfactants pH Mixing Ratio Adsorption 
Reagent Loss Index 

(RLI) 

DM pH 7 1:0 5.63E-06 0.78  

DM pH 7 3:1 5.11E-06 0.71  

DM pH 7 1:1 2.19E-06 0.30  

DM pH 7 1:3 1.5E-06 0.21  

C12SO3Na pH 7 3:1 2.21E-06 0.39  

C12SO4Na pH 7 1:1 3.92E-06 0.69  

C12SO5Na pH 7 1:3 5.45E-06 0.96  

DM pH 4 1:1 2.72E-06 0.38  

C12SO3Na pH 4 1:1 5.81E-06 1.02  

DM pH 10 1:1 1.95E-06 0.27  

C12SO3Na pH 10 1:1 2.37E-06 0.42  

 

Moreover, the analyzed adsorption data of mixed DM/C12SO3Na and the reagent loss 

index at different mixing ratio and pH are listed in table 3. It was observed that at pH 10 both 
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DM and C12SO3Na have the lowest adsorption, suggesting that alkaline pH range is the most 

cost-effective for this mixed systems for oil recovery. 
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SUMMARY AND CONCLUSIONS 

The wettability changes of alumina with surfactants adsorbing on the surface and the 

adsorption of modified polymer were investigated during this period to elucidate mechanisms of 

interactions of molecular structures from a fundamental point of view. The wettability of alumina 

was found to be determined by both the nano structure of the hemimicelles and the surface 

coverage. 

Polarity results measured by fluorescence are in good agreement with the wettability results. 

The fluorescence intensity changes in the residual solution and at the solid surface indicated 

formation of hemimicelles on solids. At pH 7, a narrow hydrophobic range was found with DM 

for alumina by both wettability and fluorescence tests. 

A new term, reagent loss index (RLI), was used to evaluate different surfactants and their 

mixtures on various mineral surfaces. This term can be used for designing and screening of 

chemical formula in oil recovery. Since the RLI is a standardized term, the adsorption behavior 

of surfactants in different cases can be compared.   
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FUTURE PLANS  

 
For task 2: 

 The effects of dissolved species (multivalent and univalent ions, such as Na+, Mg2+, Fe2+, 

SO4
2- etc) on the adsorption of selected surfactant / polymer systems on minerals under 

various conditions will be studied. The effect of polymers on the adsorption of surfactant 

on various types of miners such as alumina will also be further investigated. Adsorption, 

abstraction and precipitation studies will be conducted to find out optimum formulation 

to minimize the loss of chemicals due to precipitation.  

 
For task 3: 

 Selection of optimal formulations under simulated reservoir conditions: selected 

experiments will be conducted in the lab under representative reservoir conditions (pH, 

salinity and temperature) to establish the validity of the optimal processes. Phase diagram 

of mixtures of representative oil and optimal formulations, possibly mixtures of 

surfactants and polymers, will be examined to determine the possibility of formation of 

emulsions in the presence of dissolved multivalent ions from minerals.  

For task 4: 

 Previously reported data will be analyzed using the standardized framework and then 

models will be developed to obtain a better quantitatively understanding of the interaction 

between minerals and surfactants/polymers, the precipitation of chemical reagents due to 

the dissolution of multivalent ions from the minerals, and the performance of the 

formulations under reservoir conditions. Based on the models, a guidebook containing 
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optimally desirable chemical combinations will be organized to facilitate the evaluation 

of formulations of the surfactant/polymers for different reservoir mineral environments in 

terms of several key parameters. 
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