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OBJECTIVES

The objective of this research is to develop cost-effective surfactant flooding technology by
using surfactant simulation studies to evaluate and optimize alternative design strategies taking into
account reservoir characteristics, process chemistry, and process design options such as horizontal
wells. Task 1 is the development of an improved numerical method for our simulator that will
enable us to solve a wider class of these difficult simulation problems accurately and affordably.
Task 2 is the application of this simulator to the optimization of surfactant flooding to reduce its
risk and cost.

SUMMARY

The objective of Task 2 is to investigate and evaluate, through a systematic simulation
study, surfactant flooding processes that are cost-effective. We previously have reported on low
tension polymer flooding as an alternative to classical surfactant/polymer flooding. In this reporting
period, we have studied the potential of improving the efficiency of surfactant/polymer flooding by
coinjecting an alkali agent such as sodium carbonate under realistic reservoir conditions and
process behavior. The alkaline/surfactant/polymer ( ASP) flood attempts to take advantage of high
pH fluids to reduce the amount of surfactant needed by the chemical reactions between injection
fluid and formation fluid or formation rocks. The main mechanisms included in ASP flood and are
modeled in UTCHEM are the following:

reduction of surfactant adsorption,
chemical reactions,

phase behavior of surfactant,

in situ generated surfactant, and

cation exchange with clay and surfactant.

We performed for the first time mechanistic field-scale ASP simulations in three
dimensions. An areal view of the grid and the location of 13 wells (four injectors and 9
producers) is shown in Fig. 1. The permeability field was generated stochastically based on a log
normal distribution and conditioned for the well data (Table 1). The permeability distribution in the
top layer of the reservoir is shown in Fig. 2. The correlation lengths in the x, y, and z directions
were 184.8m, 184.8 m, and 2 m, respectively. The top layer initial oil saturation and porosity
contours are shown in Fig. 3. The 0.51 PV ASP slug consisted of 1.8 wt% sodium carbonate as
the alkali agent, 0.15 wi% polymer and 0.002 volume fraction surfactant. The chemical slug was
followed by 0.26 PV of 0.15 wt% polymer drive followed by formation water (Table 2). The
injected pH was 11.

Based on the water analysis shown in Table 3, seven elements, eighteen fluid species, four
solid species, four clay-adsorbed cations, and three surfactant-adsorbed cations were considered in
chemical reactions. The elements chosen in this study were hydrogen, sodium, calcium,
magnesium, carbonate, chloride, and acid (from HA). The acid number of the crude oil was 1.96.
The chemical reactions can be classified into five categories: oil-alkali chemical reactions,
homogeneous aqueous reactions, dissolution and precipitation reactions, ion exchange with clay
minerals, and ion exchange with micelles. The homogeneous aqueous reactions include various
dissociation reactions of the weak acids and bases. Table 4 lists the elements, species, chemical
reactions and equilibrium constants used in this study.

Figure 4 shows a comparison of the cumulative oil recovery for ASP, alkaline/polymer
(AP), polymer flooding and water flooding. The oil recovery results are also given in Table 2.
The oil saturation profile at the end of the ASP flood indicates a significant recovery of the oil
phase inside the well pattern.
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Table 3. Summary of water analysis for makeup water and
formation water used in the field scale simulations

Name of Ions| Formation Makeup
water water

(meq/ml) (meqg/ml)
Na+ 0.1043 0.0023
Mg2+ 0.003 0.00095
Caz+ 0.00271 0.00336

CI- 0.05892 0.00109
HCO3" 0.04301 0.0025
CO32- 0.008 0.002
S042- | - 0.0028

Table 4. List of elements, reactive species, and reactions

Elements or pseudo-element:

Independent aqueous or oleic species:

Dependent aqueous or oleic species:

Solid species:

Adsorbed cations:

Adsorbed cations on micelles:

Hydrogen (reactive), Sodium, Calcium,
Magnesium, Carbonate, A (from acid
HA), Chlorine

H*, Na+,Ca2+, Mg2+,CO%5, HA,, C,
H,O

Ca(OH)*, Mg(OH)*, Ca(HCO3)*,
HA, Mg(HCO3)*, OH-, HCO3, A,

H,>COs3, CaCOf,)J , MgCO§

CaCOj3 (Calcite), Ca(OH); (Calcium
hydroxide), MgCO3 (Magnesite),
Mg(OH); (Magnesium hydroxide)

H+ , Na+ , '(TaZ+, I\Tg?-'*‘

Nat , Ca2*, ﬁgz'*
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Table 4. (Cont.)
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Fig.1. Schematic of well pattern and grid used in the ASP simulations
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Fig. 2. Permeability field in layer 1
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Fig. 3. Initial oil saturation overlaid by porosity contour for layer 1
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Figure 4. Comparison of oil recovery for the ASP, AP, polymer, and water flood




