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ABSTRACT 
 
Abstract for Project 
 NMR well logging provides a record of formation porosity, permeability, 
irreducible water saturation, oil saturation and viscosity.  In the absence of 
formation material, the NMR logs are interpreted using default assumptions.  
Special core analysis on core samples of formation material provides a 
calibration between the log response and the desired rock and/or fluid property.   
The project proposes to develop interpretations for reservoirs that do not satisfy 
the usual assumptions inherent in the interpretation.  Also, NMR will be used in 
special core analysis to investigate the mechanism of oil recovery by wettability 
alteration and the relative permeability of non-water-wet systems. 
 Some common assumptions and the reality of exceptional reservoirs are 
listed in the following and will be addressed in this project.   

(1) Assumption:  in situ live crude oil and OBM have a relaxation time 
proportional to temperature/viscosity as correlated from stock tank oils.  
Reality: methane and ethane relax by a different mechanism than for dead 
oil and GOR is a parameter; carbon dioxide does not respond to proton 
NMR but influences oil and gas viscosity and relaxation rates.  

(2) Assumption: the in situ hydrocarbons have a relaxation time equal to that 
of the bulk fluid, i.e. there is no surface relaxation as if the formation is 
water-wet.  Reality: Most oil reservoirs are naturally mixed-wet and drilling 
with oil-based mud (OBM) sometimes alters wettability.  If the formation is 
not water-wet, surface relaxation of the hydrocarbon will result. 

(3)  Assumption: OBM filtrate has the properties of the base oil.  Reality: OBM 
filtrate often has some level of the oil-wetting additives and in some cases 
has paramagnetic particles.  It may also have dissolved gas. 

(4) Assumption: the magnetic field gradient is equal to that of the logging tool.  
Reality: paramagnetic minerals may result in internal magnetic field 
gradient much greater than that of the logging tool. 

(5) Assumption: pores of different size relax independently.  Reality: clay 
lined pores can have significant diffusional coupling between 
microporosity and macroporosity. 

 

Abstract for Semi-Annual Report 
 Progress is reported on Tasks: (1.2) Properties of oil-based drilling fluids, 
(2.2) Application of restricted diffusion for characterization of vuggy carbonate 
formations, (2.4) Interpretation of systems with diffusional coupling between 
pores, and (3)  Characterization of pore structure and wettability. 
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EXECUTIVE SUMMARY 
 
Subtask 1.2: Properties of oil-based drilling fluids.  
Oil-based drilling fluids can invade formations and contaminate crude oils, 
hindering logging analysis.  This work details 1H NMR T2 measurements with 
mixtures of one drilling-fluid base oil, NovaPlus (SNP), and crude oils to 
determine the effect of the contamination.  Measurements are made using 2 MHz 
MARAN bench-top instruments on mixtures having various concentrations of 
SNP, with each of three crude oils (labeled STNS, SMY, and PBB), whose 
viscosities range from 13.7 to 207 cp.  T2 measurements for mixtures containing 
SMY and SNP are repeated four times for purpose of statistical analysis. 
 
Two approaches are explored to better relate NMR measurements with 
contamination.  In the first approach, a selective contamination index (SCI) is 
defined that relates the T2 distribution to the contamination.  Here, a subset of the 
T2 data is chosen for analysis based on sensitivity to contamination.  In the 
second approach, the T2 data are fit to a four-parameter, skewed Gaussian 
model for T2 distributions.  Two parameters of the model are combined in a 
distribution parameter index (DPI), which can be related to contamination. 
 
Both the SCI and DPI values can be fit using cubic polynomials, resulting in a 
functional dependence on concentration.  The polynomial functions, used in 
reverse, yield estimations of the degree of contamination, which for SMY-SNP 
mixtures are compared to standard T2,LM methods.  The comparison of the T2,LM, 
SCI, and DPI methods is done in terms of the estimated error in the degree of 
contamination. The SCI method provides the best estimate of contamination. 
Subtask 2.2: Application of restricted diffusion for characterization of 
vuggy carbonate formations. 

Measurements of time-dependant diffusion are performed on a rock 
sample saturated first with water, then methane, and finally ethane. The gasses 
were selected because their increased diffusivities and relaxation times allow 
probing greater length scales than water, and also because of their practicality.  
The NMR measurements employed Pulse Field Gradient Diffusion Editing pulse 
sequences, allowing analysis of D(td) as a function of relaxation time.  Very 
different D(td) behavior is observed for different relaxation times, including 
indications of diffusive coupling between pores of different sizes. The decay of 
the observed diffusivity depends on the length scales present in the pore 
network, which allows the results of D(td) measurements to be inverted to provide 
distributions of the effective length scales of the system. 
Subtask 2.4: Interpretation of systems with diffusional coupling between 
pores. 

Pore structure analysis by NMR relaxation assumes that the T1 or T2 
distribution is directly related to the pore size distribution. This assumption breaks 
down if the fluid in different sized pores is coupled through diffusion. In such 
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cases, the estimation of formation properties such as permeability and irreducible 
water saturation using the traditional T2,cutoff method would give erroneous 
results. Several techniques like “spectral" BVI and tapered T2,cutoff have been 
introduced to take into account the effects of diffusional coupling for better 
estimation of properties. 
 

We aim to provide a theoretical and experimental understanding of NMR 
relaxation in systems with diffusionally coupled micro- and macropores. 
Relaxation is modeled such that the fluid molecules relax at the surface of 
micropores and simultaneously diffuse between the two pore types. The T2 
distribution of the pore is a function of several parameters including micropore 
surface relaxivity, fluid diffusivity and pore geometry. The governing parameters 
are combined in a single coupling parameter (α) which is defined as the ratio of 
the characteristic relaxation rate of the pore system to the rate of diffusional 
mixing of fluid molecules between micro- and macropores. It is shown that 
depending on the value of α, the two pore types can communicate through total, 
intermediate or decoupled regimes of coupling.  
 

The model is applied to treat diffusional coupling in sandstones with a 
distribution of macropores lined with clay flakes. Simulations are verified by 
comparing with experimental results for chlorite coated, North-Burbank 
sandstone. It is observed that the T1 distribution shows a bimodal distribution at 
100% water saturation but a unimodal distribution when saturated with hexane. 
This occurs because the extent of coupling is higher for hexane than for water 
due to lower relaxivity and higher diffusivity of hexane. The α values indicate 
intermediate coupling for water and strong coupling for hexane. 
 
The model is also applied to grainstone carbonates with intra and intergranular 
porosity. In this case, α is found to have a quadratic dependence on grain radius 
and inverse dependence on micropore radius. The theory is experimentally 
validated on several systems with microporous particles of varying grain 
diameters and known microporosities. Here too, the T2 distribution at 100% water 
saturation varies from bimodal for coarse-grained particles to unimodal for fine-
grained particles. The transition from bimodal to unimodal distribution is also 
predicted theoretically from the values of α.  
Task 3:  Characterization of pore structure and wettability. 

Characterization of pore structure and wettability has been initiated on 5 
carbonate samples. The vug size, distribution and interconnection vary 
significantly in these five samples. The thin sections have been characterized 
through their two-point correlation function, chord size distribution and lineal path 
function. In the next six months we plan to work on reconstructing three-
dimensional pore structures, wettability, NMR response, electrical conductivity, 
and relative permeability of these rock samples.  
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SUBTASK 1.2: PROPERTIES OF OIL-BASED DRILLING FLUIDS.  
Motivation And Approach 
 

Oil wells are often drilled with the aid of oil-based fluids.  During the drilling 
process, an oil-based mud (OBM) is formed from the mixture of drilling fluid and 
drill cuttings.  Filtrates from these oil-based muds invade oil-bearing formations 
and mix with crude oils.  OBM filtrates alter the properties of the crude oils with 
which they mix.  In NMR well logging, one concern is whether the measured T2 
relaxation time distribution (or T2 distribution) changes enough to affect the 
estimated viscosity, which can be derived from these measurements through 
existing correlations.  Such concerns are particularly valid because OBM filtrates 
are similar in molecular structure to the crude oils themselves.  This inhibits 
attempts to separate the OBM filtrate signal from the crude oil signal in NMR 
logs. 
 

Other works have addressed using NMR to investigate OBM 
contamination of crude oils, mostly in the context of the pumpout phase of 
downhole fluid sampling.  Bouton, et al. (2001) developed a sharpness 
parameter to characterize T1 relaxation times of mixtures of crude oils and base 
oils.  Base oils are the predominant component in OBM filtrates.  The sharpness 
parameter is at a maximum for the base oil alone and decreases monotonically 
for higher concentrations of crude oil.  Continuing this work, Masak, et al. (2002) 
use a downhole fluid sampler to characterize contamination by measuring T1 
relaxation times during the pumpout process.  Here, measurements occur as 
time progresses, and the change in measured signal amplitudes is used to 
characterize the contamination.  More recently, Akkurt, et al. (2004) have 
extended the analysis by developing time and T2 domain approaches to assess 
contamination from the pumpout phase in the application of the downhole fluid 
sampler. 
 

In the present work, new approaches to study contamination are 
developed based on the following fluids.  NovaPlus, a commonly used base oil in 
drilling, is the contaminant.  NovaPlus (3 cp) is a mixture of 16- to 18-carbon 
internal olefins.  Nova Plus will be abbreviated as SNP.  The crude oils used are 
from the North Sea (13.7 cp), from offshore China (207 cp), and from the Gulf of 
Mexico (18.7 cp).  Henceforth, the crude oils will be called STNS, PBB, and 
SMY, respectively.  The above information is summarized in Table 1. 
 

The objective in this study is to relate the degree of contamination to 
features in the T2 distributions.  Another goal is estimating the extent of 
contamination from measured T2 distributions of samples at unknown degrees of 
contamination.  The traditional approach in studying fluids in NMR logs is using a 
logarithmic-mean T2 (log-mean T2, T2,LM).  The new approaches are compared 
with using T2,LM to estimate contamination. 
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Table 1: Viscosities and Abbreviations for Fluids Investigated 
 

Fluid Type Abbreviation Viscosity 
(cp) 

Nova 
Plus Base oil SNP 3.3 

North 
Sea 

Crude 
oil STNS 13.7 

Offshore 
China 

Crude 
oil PBB 206.7 

Gulf of 
Mexico 

Crude 
oil SMY 18.7 

 
Two new approaches will be described and implemented herein.  In one 

approach, contamination is characterized by amplitudes at a limited range of 
relaxation times in each T2 distribution.  In contrast, the default approach using 
T2,LM agglomerates data at all T2 into a weighted average.  Thus, using a limited 
range of relaxation times from the T2 distribution would increase NMR sensitivity 
to contamination.  This would salvage information from useful regions of the T2 
distribution, without needing to consider the entire distribution as in T2,LM.  The 
second approach uses a hypothesized probability distribution to fit the 
experimental T2 distribution.  Data in the T2 domain are fit to a skewed Gaussian 
distribution, whose parameters can be related to contamination.  With either of 
the two approaches, a polynomial fit extends the characterization over the entire 
contamination range.  The polynomial can then be used to estimate the degree of 
contamination. 
 
 
Experimental 
 

The experimental samples are as follows.  Crude oil mixtures with the 
model contaminant, NovaPlus, were prepared at various volumetric 
concentrations.  The concentrations used for STNS and PBB mixtures are 10, 
20, 50 and 75% SNP.  The crude oil (0% SNP) and SNP (100% SNP) were also 
included in the measurements.  For mixtures of SMY and SNP, concentrations 
prepared were 0, 10, 20, 50, 80, 90, and 100% SNP.  For 20% and 50% SNP, 
two samples were prepared to assess reproducibility. 
 

The following measurements were performed.  For all but the second 
samples of SMY mixtures at 20% and 50% SNP, the T2 relaxation time and the 
viscosity are measured.  For the two samples mentioned, the T2 relaxation time 
was measured but the sample volume was too low to do the viscosity 
measurement. 
 

Deoxygenation, the removal of the paramagnetic contaminant oxygen, 
was not performed before any of the T2 measurements for two reasons.  First, 
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invading base oil in a drilled formation would contain oxygen (Chen et al. 2004).  
Furthermore, the amount of dissolved oxygen is expected to play only a small 
role because the relaxation time distributions for the base and crude oils in this 
study fall below 1 second, for which the effect of oxygen on T2 distributions is 
minimal (Lo 1999). 
 

T2 measurements are made by two 2 MHz MARAN instruments, labeled 
MARAN-SS and MARAN-M, manufactured by Resonance Instruments.  In this 
measurement, the decay in signal amplitude, or magnetization, is measured as a 
function of time.  The resultant data is said to be in the time domain. 
  

The decay process is characterized by the following equation: 

∑
−

=
j

T
t

j

j
eMtM 2

0)( .  (1) 

In this expression, M is the total magnetization at time t, M0,j is the initial 
magnetization of component j, and T2,j is the T2 value corresponding to 
component j. 
 

The acquired data is then processed, converting the time-domain data to 
the T2-domain.  Before this, the large number of time-domain data points is 
parsed.  This process, called “sampling and averaging”, reduces the 
computational load in the conversion with minimal sacrifice to data quality 
(Chuah 1996).  The resultant amplitudes in the T2 domain are placed at 
predetermined relaxation times, which are spaced apart equally in logarithmic 
scale.  These chosen individual T2 values, T2,i, at which amplitudes are placed, 
are called bins.  An amplitude corresponding to these bins are given the symbol, 
Ai.  The index j is used for the time domain and index i is used for the T2 domain 
to signify that bins chosen do not match the intrinsic T2 values for the mixture 
components in general. 
 

The number of runs performed for each set of mixtures differs depending 
on the crude oil.  For mixtures containing STNS or PBB, one T2 distribution 
measurement is done.  For the SMY mixtures, four separate T2-distribution 
measurements of the same set of samples are made, for the statistical analysis 
below. The separate measurements will be called Run 1, Run 2, Run 3, and Run 
4. 

 
NMR data were obtained using the following conditions.  Runs 1, 2, and 3 

were performed with MARAN-SS and Run 4 was performed with MARAN-M.  In 
experiments for the mixtures mentioned above, the acquisition conditions used 
are 128 scans, 9216 (9k) echoes (time-domain data points), 320 �s echo 
spacing (time between echoes in each scan), and a 5 s wait time between 
neighboring scans.  The only exception to this is that for Run 3 and Run 4, the 
number of scans was not 128, but was adjusted such that the signal-to-noise 
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ratio is 100.  Data acquisition software automatically determines the actual 
number of scans. 
 

The viscosities are measured using a Brookfield viscometer, Model LVDV-
III+.  Measurements are made near the maximum shear rate that does not 
exceed torque limits or the rotation speed of the instrument.  For the STNS and 
PBB mixtures, the viscosity for each set was measured after the T2 distribution 
was obtained.  For the SMY samples, only samples having enough volume had 
their viscosity measured.  This measurement was done after Run 1.  The 
temperature of both T2 relaxation time measurements and viscosity 
measurements is 30 ºC. 
 
Overview Of Approach 
 

The results will be divided into three approaches.  The first approach is 
traditional, characterizing mixture viscosity and log-mean T2.  The second 
approach applies a selective contamination index (SCI) for relating measured T2 
distributions to contamination.  The third approach shows how a skewed 
Gaussian model for the relaxation time distributions performs in estimating 
contamination. 
 

Before proceeding, a brief explanation as to the difference in the methods 
used for the T2,LM approach, the SCI approach, and the distribution parameter 
approach is warranted.  Using T2,LM involves a one-stage analysis.  All the data 
contributes to T2,LM.  The value of T2,LM equally involves all bins, depending only 
on the signal amplitudes in all the bins.  The methods in the SCI approach and 
distribution parameter approach involve two stages. 
 

The two stages in the SCI approach and the distribution parameter 
approach are described below.  In the first stage of the SCI approach, a subset of 
the available T2 bins is used to define intermediate quantities, called binwise 
contamination indices.  The second stage creates a quantity, the selective 
contamination index or SCI, from a function of these intermediate quantities.  For 
the distribution parameter approach all the data is used, similar to using T2,LM.  
However, the approach is still in two stages.  In the first stage, one obtains the 
parameters of the skewed Gaussian model used to fit the data.  The second 
stage defines a single figure, the distribution parameter index (DPI), which is a 
function of a subset of these parameters. 
 
 
Preliminary Measurements 
 

Fig. 1 shows the incremental T2 distributions (as opposed to cumulative 
distributions) for mixtures of STNS and SNP.  The plots represent data from 50 
T2 bins.  The top panel shows the distribution for the contaminant SNP, and 
subsequent panels contain increasing amounts of STNS.  For a light crude oil 
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Figure 1:  Stacked plots showing
incremental T2 relaxation time distributions
for mixtures of STNS crude oil and SNP
base oil.  Note that the amplitude axis is
not to scale for all curves in the stack. 
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Figure 2:  Stacked plots showing
incremental T2 relaxation time distributions
for mixtures of PBB crude oil and SNP base
oil.  Note that the amplitude axis is not to
scale for all curves in the stack. 
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of SMY lies between the other two 
crude oils.  The trends for SMY are 
reproducible in the other runs.  The 
reproducibility is demonstrated at a 
base oil volume fraction of 0.5 in Fig. 
4. 
 

The T2 distributions in Figs. 1-
3 can be assessed in terms of the 
logarithmic mean relaxation times 
(T2,LM), which appear in Table 2 and 
Table 3.  Table 2 shows the log-
mean relaxation times for mixtures 
containing STNS or PBB crude oils 
with SNP.  One trend from Table 2 is 
that T2,LM increases as more base oil 
is added.  A second trend is that this 
increase in T2,LM is more severe for 
PBB, the heavier crude oil.  T2,LM 
values for Run 1 through Run 4, on 
mixtures containing the crude oil 
SMY, are shown in Table 3.  As with 
STNS and PBB mixtures, T2,LM 
increases with increasing 
concentrations of base oil. 
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Figure 4: Incremental T2 distributions for repeated measurements of the first
sample containing 50% SMY crude oil and 50% SNP base oil. 
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Viscosities appear in Table 4 and Table 5.  Table 4 shows the measured 
viscosities for the same mixtures in Table 2, namely for mixtures containing 
STNS or PBB crude oils.  As with T2,LM, the viscosity changes more drastically for 
heavier crude oils. However, viscosity decreases as more base oil, SNP, is 
present in the mixture.  A similar table for viscosity of SMY mixtures is shown in 
Table 5.  Note that some samples have insufficient volume for the measurement 
of viscosity. 
 
Table 2: Log-mean T2 Values for Mixtures of STNS and PBB crude oils with SNP 
base oil 
 

 T2,LM (ms) 
SNP Content 

(Volume Fraction) STNS PBB 

0.00 114.7   9.9 
0.10 145.3 16.4 
0.20 171.7 27.8 
0.50 288.3 52.6 
0.75 403.2 233.5 
1.00 534.6 512.4 

 
 
Table 3: Log-mean T2 Values for Mixtures of SMY crude oil with SNP base oil 
 

 T2,LM (ms) 
SNP 

Content 
(Volume 
Fraction) 

Run 
1 

Run 
2 

Run 
3 

Run 
4 

0.00 72 70 70 54

0.10 94 93 88 56

0.20 (1st) 112 110 117 95

0.20 (2nd) 157 109 139 106

0.50 (1st) 251 180 214 214

0.50 (2nd) 343 262 255 248

0.80 448 N/A N/A 425

0.90 586 586 641 622

1.00 660 587 728 685
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Fig. 5 shows a cross-plot between T2,LM and viscosity for the three sets of 
mixtures.  For the SMY mixtures, T2,LM comes from Run 1, because the viscosity 
measurement corresponds to Run 1.  The line is the expected behavior based on 
an existing correlation between T2,LM and viscosity, η, for dead crude oils.  The 
correlation, is given by 

9.0,2
1200
η

=LMT ,  (2) 

and is called the Morriss Correlation (Morriss, et al. 1997).  As Fig. 5 shows, the 
mixtures appear to follow this expected behavior. 
 
Table 4: Viscosities for Mixtures of STNS and PBB crude oils with SNP base oil 
 

 Viscosity (cp) 
SNP Content 

(Volume Fraction) STNS PBB 

0.00 13.7 206.7 
0.10 11.1 103.0 
0.20 9.2 57.0 
0.50 5.8 26.8 
0.75 4.3 6.3 
1.00 3.3 3.3 

 
Table 5: Viscosities for Mixtures of SMY Crude Oil with SNP Base Oil 
 

SNP Content  
(Volume Fraction)

Viscosity  
(cp) 

0.00 18.7

0.10 14.8

0.20   (1st)  11.0

0.20   (2nd) No measurement

0.50   (1st) 6.2

0.50   (2nd) No measurement

0.80 4.0

0.90 3.4

1.00 3.1
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Fig. 5 showed how T2,LM and � are related for each of the measured 
samples. To observe trends in either of these quantities, one can represent the 
measured data in terms of their variation with contamination level.  This is shown 
in Figs. 6 and 7. 

1

10

100

1000

1 10 100 1000Viscosity (cp)

T 2
,L

M
 (m

s)

STNS
PBB
SMY Run 1
Morriss Correlation

Figure 5: Relationship between viscosity and T2,LM: Comparison to Morriss 
Correlation. 

 
Fig. 6 compares measured and interpolated T2,LM for the mixtures of each 

crude oil with SNP.  The experimental values of T2,LM are compared with a linear 
interpolation between the measured log-mean T2 values for the crude oil and for 
SNP.  The interpolations are based on the T2,LM values for SNP and the crude oil 
in question according to the following equation: 

T2,LM mix= (T2,LM crude)1-f (T2,LM SNP)f. (3) 
In Eq. 3, T2,LM 

mix is the interpolated log-mean relaxation time of the 
mixture, and T2,LM 

crude and T2,LM 
SNP are the experimental log-mean relaxation 

times for the crude oil and for SNP, respectively. The quantity f is the volume 
fraction of SNP. In Fig. 6, experimental data are shown as points and 
interpolated data are represented as lines.  Only one run is shown for mixtures of 
SMY for illustrative purposes.  Other runs show similar behavior.  Fig. 6 shows 
that the characterization of T2,LM as a weighted log-mean of the T2,LM values of 
the two components provides a fair description of the trend seen in the 
experimental data. 
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Figure 6: Comparison of experimental T2,LM values with interpolations for
mixtures of crude oil and SNP based on Equation 3. 
 7 repeats the comparison for viscosities.  The equation for the interpolation 
ixture viscosities is analogous to that for T2,LM: 

η mix = (η crude)1 – f (η SNP) f  (4) 

is expression, η 
mix is the interpolated viscosity of the mixture, ηcrude is the 

erimental crude oil viscosity, and η SNP is experimental SNP viscosity.  Again, f 
e SNP volume fraction.  As with Fig. 6, the interpolated equation (lines in Fig. 
escribes the trend of the experimental data (points in Fig. 7). 
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igure 7:  Comparison of experimental viscosities with interpolations for 
ixtures of crude oils and SNP based Equation 4. 
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Selective Contamination Index Approach 
 

Although Figs. 6 and 7 suggest a trend from concentration-weighted 
logarithmic-mean averages for mixtures of SNP and crude oils, deviations of up 
to 60% are observed.  In order to improve the characterization of contamination 
from T2 distributions, an attempt is made to utilize a more appropriate summary 
of NMR T2 behavior than the log-mean value, T2,LM.  Using signal amplitudes at 
specifically chosen T2 bins allows a portion of the collected data to serve in 
mixture analysis, without being lumped in an overall average like the logarithmic 
mean. 
 

To do this, it is convenient to use cumulative distributions.  The amplitude 
of a cumulative distribution at a specific bin is a running sum of amplitudes from 
the earlier incremental T2 distributions, belonging to that bin and to all bins at 
lower values of T2.  Thus, cumulative distributions continually increase from low 
to high relaxation times.  Cumulative distributions are preferred because they 
exhibit a more monotonic behavior when the same T2 bin is compared for 
different contamination levels.  The cumulative distributions here are in the T2 
domain, just like incremental distributions, and are normalized such that the final 
amplitude (after amplitudes from all relaxation times have been summed) for 
each sample is equal to 1. 
 

For illustration, Fig. 8 shows the cumulative distribution for PBB mixtures 
with the base oil SNP.  The information in Fig. 8 is the same as in Fig. 2, 
presented in a different form.  Fig. 8 demonstrates the monotonic increase in 
amplitude at a given T2 as the base oil content decreases.  Note that the T2 bins 
are shown explicitly as points in Fig. 8. 
 

In Fig. 9, cumulative amplitudes from 11 of the 50 bins used to obtain T2 
distributions are shown for Run 1 SMY mixtures.  The data in each bin, plotted as 
separate entities in Fig. 9, includes information from T2 distributions at all 
measured contamination levels.  Note that bins placed in the upper part of the 
legend are the bins with the highest cumulative amplitudes in the plot.  The lines 
shown result from linear regression.  Those bins having regression lines of the 
greatest slope are most responsive to contamination and thus would be more 
useful in characterizing the relative amounts of SNP and crude oil. 
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Figure 8: Normalized, cumulative T2 distributions for mixtures of PBB crude oil 
and SNP base oil. 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1

Contamination (SNP Volume Fraction)

C
um

ul
at

iv
e 

A
m

pl
itu

de

2000 ms
890 ms
320 ms
120 ms
43 ms
16 ms
5.7 ms
2.1 ms
0.76 ms
0.28 ms
0.10 ms

 
Figure 9: Behavior of signal amplitude in selected T2 bins as a function of SNP 
concentration in Run 1 of mixtures of SMY crude oil and SNP base oil. 
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Fig. 10 is a direct representation of slopes in plots such as Fig. 9, for 
STNS mixtures.  Fig. 10 includes all 50 bins (shown as points), whereas Fig. 9 
showed only 11 bins.  Note that the plotted slope is large, as desired, only for a 
limited range of relaxation times.  Also, more bins appear on the left side of the 
maximum slope, corresponding to the peak in Fig. 10, that on the right.  In fact, 
the SCI approach uses only those bins on the left side of the maximum slope 
whose slopes are between 20% and 80% of the maximum slope in figures such 
as Fig. 10.  This choice of bins to use in determining SCI results from considering 
both sensitivity to contamination, as indicated by the aforementioned slopes, and 
the consistency of the binwise contamination index, defined below, for the 
selected bins. 
 

The binwise contamination indices are determined for the selected bins as 
follows:  

crude
i

SNP
i

crude
i

sample
i

if
GG
GG

I
−
−

=,   (5) 

In this equation, If,i is the binwise contamination index (not yet the SCI) for 
SNP volume fraction f and bin i.  Gf,i sample refers to the cumulative amplitude for 
sample with SNP concentration f for bin i and Gi SNP and Gi crude are the 
cumulative amplitudes in bin i of SNP and of the appropriate crude oil, 
respectively.  The binwise contamination index is defined such that it runs from 0 
(for crude oils) to 1 (for SNP). The goal of such a characterization is to calculate 
a quantity that correlates with the contamination in terms of the SNP volume 
fraction f. 
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Figure 10: Linear regression parameters of T2 cumulative amplitude against 
contamination for all bins in mixtures of STNS crude oil and SNP base oil. 
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The SCI is determined by taking the arithmetic means of binwise contamination 
indices for the pre-selected bins. So, SCI can be expressed as 

∑==
binsselected

iff IISCI , .  (6) 

Table 6 shows the SCI values for each concentration of SMY and PBB mixtures.  
Table 7 shows the SCI values for the SMY measurements.  In Table 7, the SCI 
shown is a mean SCI for each concentration across the four runs.  For 80% SNP, 
only the SCI values from Run 1 and Run 4 are used because instrumental errors 
caused erroneous results in the other runs.  Note that all error values shown are 
standard deviations.  Standard deviations for SNP and for the crude oil are zero 
because of the definition of the binwise contamination index and SCI. 

Table 7: Selective Contamination 
Indices for Mixtures of SMY Crude 
Oil with SNP Base   Oil 

SNP Content 
(Volume Fraction) SCI 

0.0 0.00 ± 
0.00 

0.1 0.16 ± 
0.03 

0.2 (1st) 0.33 ± 
0.02 

0.2 (2nd) 0.42 ± 
0.04 

0.5 (1st) 0.67 ± 
Table 6:  Selective Contamination Indices 
for Mixtures of STNS and PBB Crude Oils 
with SNP Base Oil 
 

SCI 
SNP Content 

(Volume 
Fraction) 

STNS PBB 

0.00 0.00 ± 0.00 0.00 ± 0.00
0.10 0.20 ± 0.05 0.28 ± 0.03
0.20 0.36 ± 0.02 0.50 ± 0.04
0.50 0.70 ± 0.02 0.68 ± 0.04
0.75 0.88 ± 0.03 0.94 ± 0.02
1.00 1.00 ± 0.00 1.00 ± 0.00
 
 
 
 

0.04 

0.5 (2nd) 0.76 ± 
0.03 

0.8 0.90 ± 
0.02 

0.9 0.96 ± 
0.01 

1.0 1.00 ± 
0.00 
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Figs. 11-13 show the SCI values in Table 6 and Table 7.  The curves 
shown on the figures represent cubic polynomial interpolations of the data points.  
Fig. 11 is the cubic polynomial interpolation for mixtures containing STNS crude 
oil.  Fig. 12 shows this data for PBB crude oil mixtures.  Fig. 13 shows SCI data 
for SMY mixtures in Runs 1-4.  In Fig. 13, the data correspond to the mean SCI 
values shown in Table 7 and the bars are the corresponding standard deviations.  
For each set of mixtures, Figs. 11-13 provide a relationship between SCI and 
contamination level.  
 

From this relationship, the degree of contamination is estimated as 
follows.  T2 distributions of an unknown mixture of a particular system (for 
example, SMY and SNP) are measured.  Then, binwise contamination indices 
are calculated for bins previously identified as optimal.  This requires the 
distributions of the crude oil and base oil separately, which are available because 
they go into developing the interpolation.  The average of the values calculated 
gives an SCI.  This value can be used with the polynomial interpolation, which is 
of the following form: 

                If = P(f)   (7) 
If is the SCI for a particular SNP volume fraction, f.  This is the quantity that would 
be calculated from the measurement.  P is the functional form of the polynomial 
in f.  The equation can then be placed in the following form: 

                   P(f) – If = 0                (8) 
The only physical root of this equation, namely when f is between 0 and 1, 

yields the SNP volume fraction or contamination level, f. 
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Figure 11: Selective contamination index and polynomial interpolation for 
mixtures of STNS crude oil and SNP base oil. 
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Figure 12: Selective contamination index and polynomial interpolation for 
mixtures of PBB crude oil and SNP base oil. 
 
The result of this procedure can be compared statistically with contamination 
levels estimated from T2,LM for SMY.  Such a comparison for SMY is shown in 
Fig. 14.  Fig. 14 shows both SCI (plot on the left) and T2,LM (on right) as a function 
of contamination.  The points represent the data from Runs 1-4.  The central line 
in both cases is a cubic polynomial interpolation.  For the SCI, the construction of 
the cubic polynomial was mentioned above.  For T2,LM, the cubic polynomial is 
constructed between the logarithm (base 10) of T2,LM and contamination.  The 
two curves flanking the central line on each plot are 95% confidence intervals for 
the respective polynomial interpolation. 
 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Contamination (SNP Volume Fraction)

SC
I

Data
Cubic Polynomial Fit

 
 
Figure 13: Selective contamination index and polynomial interpolation for 
repeated measurements of mixtures containing SMY crude oil and SNP base oil. 
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Figure 14: Selective contamination index and T2,LM, each with polynomial 
interpolation and confidence intervals for repeated measurements of mixtures 
containing SMY crude oil and SNP base oil. 
 

The width of these confidence intervals shows the uncertainty in 
contamination level given a particular parameter, whether T2,LM or SCI.  Notice 
that the width of the interval is smaller for the SCI measurements than for T2,LM 
over a large concentration range.  In particular at contaminations near 20% SNP, 
the width of the confidence interval is 0.23 for T2,LM and 0.11 for the SCI, both in 
units of SNP volume fraction.  This shows that a particular measured T2,LM for a 
sample with contamination near a SNP volume fraction of 0.20 would yield twice 
the uncertainty in contamination level as the corresponding SCI.  This suggests 
that the SCI is better than interpolation of T2,LM. 
 
 
Distribution Parameter Approach 

 
A more intuitive way of addressing NMR contamination data is by using a 

statistical distribution.  In the distribution parameter approach discussed here, a 
skewed Gaussian distribution models T2-domain data.  The basis for choosing a 
skewed Gaussian distribution is as follows. When T2 domain amplitudes are 
charted against a logarithmically scaled T2 axis, a pure component typically 
shows a Gaussian distribution.  Crude oils typically have T2 distributions that are 
skewed toward short relaxation times.  The skewed Gaussian model allows this 
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difference in two sides of the mode and maintains the Gaussian character for 
single components. 

 
Equation 8 shows the equation for the model itself: 
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In this equation, A( ) is the amplitude of the fitted model at a given T*

,2 iT 2 bin, .  

The superscript on  indicates that it is the logarithm of that is fit with a 

Gaussian distribution, not  itself.  C

*
,2 iT

*
,2 iT iT ,2

iT ,2 1 is the logarithmic mode of the skewed 
Gaussian model and C4 is the pre-exponential factor.  The model is skewed 
because of C2 and C3, which represent standard deviations on respective sides 
of the mode of the distribution.  C1, C2, C3, and C4 form the parameters of the 
model.  A non-linear least squares regression was used to achieve the fit 
between experimental data and the posited model. 
 
 The objective function in the fitting procedure is 
 

∑ −=Φ
i

iiT ATACCCC 2*
,24321 ))((),,,(

2
. (10) 

Here, is the objective function for the T
2TΦ 2 domain fit.  It depends on the model 

parameters because these can be changed to achieve the best match between 
the set of fitted amplitudes A( ) and the experimental amplitudes, A*

,2 iT i. 
 
 The resulting fits for STNS mixtures are given in Fig. 15.  The data points 
are the experimental data and the line represents the fit.  Note that the fit 
captures the shape of the peak associated with the mode of the distribution.  The 
fits for the tails at shorter relaxation times are still good, but some discrepancies 
are visible. 
 
 Fig. 16 repeats the treatment for mixtures of PBB and SNP.  Again, the 
peaks associated with modes are more accurately fit than the tailing portion of 
the T2 distribution.  However, the modes are not fit as well as with STNS 
mixtures.  The fits also extend farther toward short relaxation times than with 
STNS mixtures because of the greater amplitude for PBB mixtures at these 
relaxation times. 
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Figure 15:  Stacked plots showing T2
relaxation time distributions and the
corresponding fit for mixtures of STNS
crude oil and SNP base oil.  Note that the
amplitude axis is not to scale for all curves
in the stack. 
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Figure 16:  Stacked plots showing T2
relaxation time distributions and the
corresponding fit for mixtures of PBB
crude oil and SNP base oil.  Note that
the amplitude axis is not to scale for all
curves in the stack. 



  Fig. 17 shows fits for six 
representative samples from Run 1 
with SMY mixtures.  The nature of 
the fits for other runs is similar to that 
for the corresponding concentrations 
in Run 1.  Fig. 17 shows good fits for 
the peak associated with the mode. 
As the SNP concentration increases, 
the mode is fit better but the fit for 
the tailing portion of the T2 
distribution is poorer.  In the fits for 
all three crude oil mixtures, the 
skewness of the model is visible in 
that the two sides of the fitted 
distribution have noticeably different 
widths. 
 
 As mentioned earlier, the 
models used to construct the fits 
have four parameters.  The most 
relevant parameters in terms of their 
variation with contamination are C1 
and C2, the model logarithmic mode 
relaxation time and the standard 
deviation at short relaxation times.  
Specifically, C1 should increase with 
contamination, and C2 should 
decrease with increasing 
contamination.  The actual variation 
of the parameters is seen in log-log 
plots of the two parameters charted 
against each other, shown in Fig. 18
expected trend from crude oil (lowest, r
point) for STNS and PBB mixtures, re
quantities are and , called the
deviation factor, respectively.  These m
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 In this equation, C1 and C2 are the model parameters mentioned earlier.  
The additional subscripts refer to different T2 distribution measurements.  C1,sample 
and C2,sample refer to the value of C1 or C2 for a sample with a particular 
contamination level, C1,crude or C2,crude refer to the parameter value for the T2 
distribution of crude oil in that sample, and C1,SNP and C2,SNP refer to the 
parameters for the T2 distribution of SNP base oil measured with that mixture set. 
 

10

100

1000

1 1
Short-Time Standard Deviation Factor

M
od

el
 M

od
e 

(m
s)

0
 

Figure 18:  Cross-plot of two parameters of skewed Gaussian model for T2 domain fits 
of mixtures of PBB crude oil and SNP base oil. 
 
 Figs. 19 and 20 show the respective DPI for mixtures involving STNS and 
PBB crude oils as a function of the contamination.  The DPI is correlated to the 
contamination with a cubic polynomial (lines in the figures). Figs. 19 and 20 show 
that the DPI is monotonic with contamination over the entire contamination 
range. Table 8 shows DPI values for STNS and PBB mixtures. 
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Figure 19:  DPI obtained from model parameters and cubic polynomial fit for T2 
domain fits of mixtures  of STNS crude oil and SNP base oil. 
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Figure 20:  DPI obtained from model parameters and cubic polynomial fit for T2 
domain fits of mixtures of PBB crude oil and SNP base oil. 
 
 The treatment in Figs. 19 and 20 and in Table 8 can be repeated for SMY 
mixtures.  However for statistical analysis, it is worthwhile to first point out the 
similarity between the DPI and the SCI.  Both are defined such that their value is 
0 for a crude oil and 1 for SNP.  The DPI, like the SCI, is correlated to 
contamination with a cubic polynomial.  Thus, contamination can be estimated 
from DPI values from fits of an NMR measurement in the same style as for the 
SCI.  Finding the appropriate roots of the polynomial interpolations developed 
above for DPI in a manner similar to Equations 7 and 8 for the SCI would provide 
a contamination level corresponding to an obtained DPI. 
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Table 8: DPI Obtained from Model Parameters for T2 Domain Fits of STNS and 
PBB Mixtures 
 

SNP Content 
(Volume Fraction) STNS PBB

0.00 0.000 0.000
0.10 0.325 0.190
0.20 0.388 0.333
0.50 0.747 0.563
0.75 0.939 0.903
1.00 1.000 1.000

 
 Considering the similarity between the DPI and SCI approaches, one can 
extend the analysis of DPI values in the same manner as was done with the SCI.  
Fig. 21 shows the DPI for SMY mixtures with 95% confidence intervals included.  
As such, Fig. 21 resembles the left side of Fig. 14 for the SCI approach.  Table 9 
shows the mean DPI and the respective standard deviations corresponding to 
the data is Fig. 21.  
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Figure 21:  DPI data and fit with 95% confidence bounds for all runs of mixtures 
of SMY crude oil and SNP base oil. 
 
 As with SCI, one can compare the reliability of DPI values with the other 
approaches by comparing the width of the confidence interval at 20% 
contamination.  This width is 0.19 for the DPI in Fig. 21.  The units for both 
quantities are units of SNP volume fraction.  This compares to a width of 0.23 for 
the T2,LM confidence interval and 0.11 for the SCI confidence interval, both at 
20% contamination.  This implies that the DPI is an improvement over treatment 
with T2,LM, but does not perform as well as the SCI. 
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Table 9: DPI Obtained from Model Parameters for T2 Domain Fits of SMY 
Mixtures 
 

SNP Content 
 (Volume 
Fraction) 

Mean 

0.0 0.00 ± 0.00

0.1 0.26 ± 0.02
0.2 (Both 
Samples) 0.50 ± 0.10

0.5 (Both 
Samples) 0.71 ± 0.06

0.8 0.85 ± 0.00

0.9 1.00 ± 0.03

1.0 1.00±0.00 
 
Conclusions  
 

Mixtures of three crude oils and SNP have been measured, yielding NMR 
T2 relaxation times and viscosity values.  Incremental T2 distributions show that 
more viscous crude oils show a greater effect from contamination with SNP.  For 
all sets of mixtures, effects were more pronounced in samples with more SNP 
content.  The mixtures behave according to the Morriss correlation, relating 
viscosity to T2,LM.  Furthermore, mixture log-mean relaxation times and viscosities 
can be interpolated to a moderate degree of accuracy with Equations 3 and 4, 
respectively. 
 

In order to improve accuracy, a scheme to use the data in T2 relaxation 
time bins was used.  Starting with cumulative distributions in the T2 domain, a 
selective contamination index is calculated from bins that show a strong 
dependence on concentration. This method yields strong correlations for 
contamination when appropriate bins are selected.  For these bins, the binwise 
contamination indices at measured SNP concentrations are consistent, as 
indicated by the small standard deviations in Table 6 and 7.  Polynomial 
interpolations are then used to construct curves that extend over the entire SNP 
concentration range.  These curves can be used to obtain concentrations, or 
contamination levels, from the SCI. 
 

Another method pursued is the characterization of contamination by fitting 
CPMG data to a skewed Gaussian distribution.  An index is developed from a 
subset of the parameters in this distribution.  Namely, the model mode and short-
time standard deviation factor, are combined into a distribution parameter index 
(DPI).  DPI can be correlated to contamination. 
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Comparing the two methods above, the DPI is less reliable than the SCI in 
terms of the uncertainty in degree of contamination corresponding to a particular 
index value.  However, it does outperform the T2,LM method using the same 
criteria.  Thus, using the SCI or DPI approaches would be recommended 
improvements to characterizing contamination using T2,LM. 
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Subtask 2.2: Application of restricted diffusion for characterization of 
vuggy carbonate formations. 
 
Measuring Pore Connectivity by Pulsed Field Gradient Diffusion Editing 
with Hydrocarbon Gasses  
 

1. Introduction 
 

New oilfield nuclear magnetic resonance (NMR) measurement and 
interpretation techniques have substantially improved fluid and reservoir 
characterization. These techniques take advantage of the magnetic field gradient 
of the NMR logging tools to make diffusion and relaxation measurements 
simultaneously. The results can be displayed as a 2-D map or distribution of 
diffusivity versus relaxation time, called D – T2 maps1. Relaxation time can be 
related to the pore size through a surface relaxivity, so relaxation measurements 
can provide a valuable new dimension for analyzing restricted diffusion. 

One technique for obtaining diffusion and relaxation information 
simultaneously is called Diffusion Editing (DE), where the sample signal is 
“edited” by allowing diffusion to occur before relaxation data is collected. There 
are a number of variants of DE techniques, but Pulse Field Gradient Diffusion 
Editing (PFG-DE) is perhaps the most appropriate for restricted diffusion 
measurements in the laboratory, as it allows fixed diffusion times and does not 
suffer the signal limitations imposed by static gradients.  

Previous attempts at investigating pore geometry through diffusion 
measurements have been hampered by the limits placed on diffusion time by the 
T2 relaxation of the sample.  Gasses such as polarized Xenon have achieved 
some success in extending these limits2. Therefore these experiments were 
performed on samples saturated with methane and ethane gasses, where both 
the diffusivities and the bulk relaxation times will be a significant improvement 
over water-saturation.  These fluids are more practical than other polarized 
gasses, and more feasible for down-hole measurements. 

With time dependent diffusion information available for each T2 through 
DE measurements and D – T2 maps, restricted diffusion analysis can be 
performed as a function not only of diffusion time, but also of pore size.  
Analyzing the departure of D(td) results from ideal isolated pores as a function of 
pore size should provide an important tool for investigating pore connectivity 
through NMR measurements. 
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2. Restricted Diffusion 
  
 Restricted diffusion occurs when a spin diffusing in a porous system is 
prevented from moving by the pore walls, resulting in a decreased observed 
diffusivity.  We consider four regimes of diffusion in a porous system:  

a. Free diffusion – without interactions with the confining space. 
b. First stage of restriction – observed diffusivity begins to attenuate as it 

encounters more of the pore walls. 
c. Restricted diffusion – observed diffusivity attenuates as a function of time.  
d. Plateau – spins may move out of the confined space into neighboring 

pores. 
In a fully connected pore network extending over several length scales, a spin 

might cycle though these regimes repeatedly when diffusion lengths approach 
larger length scales of the pore system.  Eventually, a final plateau will be 
reached, indicating all the lengthscales of the sample have been probed.  This 
plateau is referred to as the tortuosity limit, and the observed diffusivity here is 
referred to as the effective diffusivity, and can be related to the electrical 
resistivity of the sample through the formation factor according to the equation3: 

Deff

D0

=
1
τ

=
1

Fφ    (1) 

where D0 is the bulk diffusivity of the probe fluid. 
 
3. Simulations 
 
 In order to better understand the relationship between pore size and 
restricted diffusion measurements, random walk simulations of self-diffusion 
inside unconnected spheres were performed.  The total displacement due to self-
diffusion at selected diffusion times was determined in spheres of a range of 
sizes.  The relationship between the diffusivity of the diffusing fluid and the 
distance it would travel if unrestricted, referred to as the diffusion length (ld), is 
characterized in equation 2.  

ld = 6D0td    (2) 

The diffusion length is a measure of diffusion time, but has been transformed to 
units of length by the molecular diffusivity.  It is the root mean squared distance 
traveled in the bulk probe fluid if it is unrestricted by pore walls.  As a unit of 
length, it can be compared with the displacement of a molecule in a restricted 
system to compute the ‘observed diffusivity’. 
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 The results obtained from the simulation are summarized in Figure 1, 
showing displacement as a function of diffusion length for a number of sphere 
radii, with the radius of each sphere indicated by an X on the edge of the plot.  In 
each sphere, the limit of the displacement was slightly more than the radius of 
the sphere (excluding sphere sizes where the diffusion length did not approach 
the radius of the sphere).  In those latter cases, free diffusion occurred 
throughout the simulation.  The same results are plotted again in Figure 2, this 
time with the displacement and the diffusion length de-dimentionalized by 
dividing by the sphere radius.  All results fall along the same curve, indicating 
that restricted diffusion displacement in a sphere scales with the size of the 
sphere. 
 The displacements obtained from simulation can be converted to reduced 
diffusivities using equation 3.  Also using this equation, it is apparent that the 
reduced diffusivity, defined as the ratio of the observed to bulk diffusivites, should 
decrease with the inverse of time, delayed by the time before the maximum 
displacement has been reached.    The plot for the decay of observed diffusivity 
as a function of time (indicated as ld) is shown in Figure 3.  The free diffusion 
regime, onset of restriction, restricted diffusion, and plateau regimes are shown, 
though this system is a disconnected sphere so the plateau occurs at a reduced 
diffusivity of zero. 

Dreduced =
Dobs

D0

=
r2

6D0td

=
r2

ld
2    (3) 

 To further evaluate how the sphere sizes would effect diffusion 
measurements, a system of unconnected spheres of two sizes differing by a 
factor of 10 was examined. The reduced diffusivity for the sphere system is 
plotted against diffusion length in Figure 4. While equation 3 indicates that the 
decay should be with inverse time, the decay was fit to a sum of exponentials 
since that model was available on hand. Figure 5 shows the distribution of length 
scales contributing to the reduced diffusivity decay obtained from a multi-
exponential inversion of the data in Figure 4.  It is clear that a bias exists in the 
resulting distribution, most likely due to the non-exponential nature of the decay.  
The results therefore do not indicate the true sphere size, but instead some 
effective length scale that interprets the non-exponential behavior as exponential 
contributions.  This bias will be corrected by replacing the exponential decay 
basis function of the inversion with a function that takes into account the true 
character of the decay occurring.  Furthermore, the simulation will be extended to 
cylinders to expand the investigation to potentially connected systems.   
 
4. PFG-DE measurements 
 

The PFG-DE pulse sequence is shown in Figure 6.  The sequence shown 
includes three gradient pre-pulses to nullify the effects of residual gradients4 in 
the gradient coils.  The experiments were carried out in a MARAN Ultra 2-
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megahertz spectrometer, and considerable residual current-effects were 
observed before the addition of pre-pulses. The saturating fluids employed for 
these experiments were water, methane, and ethane.   

Water was measured at 30º C and atmospheric pressure, with no 
measures taken to de-oxygenate the samples.  Methane measurements were 
performed at 30º C and 4000 psi, using UHP (ultra high purity) methane with 
minimal oxygen content.  Ethane measurements were performed at 27º C and 
600 psi, with an oxygen stripper to remove oxygen from the sample.  The rock 
sample used for these experiments was a Cordova Shell sample with a porosity 
of 29.5 p.u. and a permeability of 47.5 mD.  The rock is visibly vuggy, with the 
largest surface vugs nearing half a centimeter in diameter.   

The diffusion editing measurements were performed for 17 diffusion 
lengths, with 23 values for the gradient strength at each diffusion length.  An 
example of a D – T2   map for a water-saturated sample at a diffusion length of 14 
�m is shown in Figure 7.  Figure 8 shows a methane-saturated sample at a 
diffusion length of 280 �m.  Figure 9 shows an ethane-saturated sample at a 
diffusion length of 721 �m.  On each figure, the bulk fluid diffusivity is shown as a 
horizontal dashed line. 

 
5. D(td)  Results 
 
 For each D – T2   map, the median diffusivity at each T2 value was 
selected, providing separate D(td) decays for each relaxation time bin across the 
map.  Figure 10 shows the D(td) plots three different relaxation time bins.  A small 
shift correction (1.78) was used to shift the water peak to longer time matching 
the peak position of the other two fluids, shown in Figure 11. The multi-
exponential inversion applied to the simulation previously was applied to the 
reduced diffusivity decays with diffusion length for each T2, with the 
understanding that the apparent length scale would not be exact, but it should 
characterize pore size differences effectively.  The resulting length scale 
distribution for T2 = 1.05 is shown in Figure 12.  Pores of two different effective 
length scales contribute to the decay at this relaxation time.   
 To collect the data from each T2 value into one plot, a 2-D map of effective 
length scale vs. relaxation time was prepared.  As the reduced diffusivity for each 
bin is normalized to 1, these results are not sensitive to the total signal amplitude 
in each bin, so the amplitude of each bin is matched to the T2 amplitude for that 
bin.  The resulting plot is shown in Figure 13.  The curve drawn in the lower right-
hand corner of the plot indicates the behavior of disconnected spheres with the 
relaxivity of 0.04 �m/s and a bulk relaxation time of 6 seconds. A feature of the 
plot immediately draws attention: contributions to the slower-relaxing peak come 
from pores of two sizes differing by two orders of magnitude.   This behavior 
would manifest in systems with a high degree of diffusional coupling between 
pores represented by those two length scales.  No connection between larger 
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pores is evident, as the peak representing the largest pore is narrow in length-
scale and no peak beyond the millimeter scale is visible.  This suggests that the 
bulk of the diffusional communication in the system occurs between the larger 
and smaller pores, rather than the larger pores communicating with each other. 
 
6. Conclusions 
 
 The primary conclusion to be drawn from these experiments is that using 
hydrocarbon gasses for restricted diffusion measurements greatly extends the 
measurable diffusion lengths, allowing a better, more complete characterization 
of the pore matrix.   

Furthermore, the possibility of observing the D(td) character for different 
relaxation times offers additional insight into the pore geometry. A comparison 
between relaxation times and length scales determined through diffusion 
measurements can provide information about communication between larger 
pores and smaller pores, but communication between large pores has yet to be 
demonstrated. 
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Figure 1: Simulation results for diffuision inside spheres.  X indicates sphere 
radius in arbitrary units of length.  Diffusion length ld = 6D0td . 

 

 
Figure 2: Dimensionless simulation results.  Both dimensionless displacement 
and diffusion length were de-dimensionalized by the sphere radius. Diffusion 
length ld = 6D0td . 
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Figure 3: D(td) results for a system of spheres of the same radius (0.003 arbitrary 
units of length). Diffusion length ld = 6D0td . 

 
Figure 4: D(td) results for a system of spheres.  The two sizes of spheres in the 
system differ by a factor of 10 (.0001 and .01 arbitrary units of length). Diffusion 
length ld = 6D0td . 

 

 38



 
Figure 5: Length scale distribution obtained from multi-exponential fit of data 
displayed in Figure 3.   Dashed line indicate sphere radii.  Difference between 
sphere radii and measured lengthscales is due to non-exponential regions of the 
decay. 
 

 

Figure 6: PFG-DE Sequence with Gradient Pre-Pulses 
 

 
Fig. 7: D-T2 Map for Water-Saturated Sample, lD = 14 um.  The dashed line 
indicates the diffusivity of bulk water. 
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Figure 8: D-T2 Map for Methane-Saturated Sample, lD = 280 um.  The dashed 
line indicates the diffusivity of bulk methane. 

 
 

Figure 9: D-T2 Map for ehtane-Saturated Sample, lD = 721 um.  The dashed line 
indicates the diffusivity of bulk ethane. 
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Figure 10: D(td) results for three relaxation times.  Tortuosity limit was obtained from resistivity 
measurments. 

 
Figure 11: Relaxation distributions for all three fluids after a minor correction of 1.78 has been 
applied to the water distribution.  The methane and ethane peaks are not shifted.   
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Figure 12: Effective length scale distribution for T2 = 1.05 s.   Obtained using a multi-exponential 
inversion, so pores in the non-exponential regime will cause a bias. 

 

 
Figure 13: 2-D plot of effective length scale vs. T2.  The curve in the corner indicates the behavior of 
non-communicating spheres. 
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Subtask 2.4: Interpretation of systems with diffusional coupling between 
pores. 
 
DIFFUSIONAL COUPLING BETWEEN MICRO AND MACROPOROSITY FOR 
NMR RELAXATION IN SANDSTONES AND GRAINSTONES 
 
Introduction 
 
NMR T2 measurements are often used to estimate the pore structure and 
formation properties such as porosity, permeability and irreducible water 
saturation. NMR pore analysis assumes that in the fast diffusion limit, the T2 of a 
fluid in a single pore is given as 

                             2
pore2 2

1 1

B

S
T T V

ρ= + ⎛ ⎞
⎜ ⎟
⎝ ⎠                       (1)  

where T2B is the bulk relaxation time, ρ2 is the T2 surface relaxivity and (S/V )pore 
is the pore surface-to-volume ratio. 
 
For a rock sample having a pore size distribution, each pore size is assumed to 
be associated with a T2 component and the net magnetization relaxes as a multi-
exponential decay. 

                        
2

( ) expj
, jj

tM t f
T

⎛ ⎞
= −⎜⎜

⎝ ⎠
∑ ⎟⎟                     (2)  

where fj is the amplitude of each T2,j.  Such interpretation of NMR measurements 
assumes that pores of different sizes relax independent of each other. However, 
it is observed that this assumption often fails for shaly sandstones and 
carbonates especially in grainstones and packstones. Ramakrishnan et al. 
(1999) explained that the failure could be understood by considering the diffusion 
of fluid molecules between intra (micro) and intergranular (macro) pores. The 
resulting T2 distribution is influenced by surface-to-volume ratio of both the micro 
and macropores and thus, the correspondence between the T2 and pore size 
distribution is lost. In such cases, traditional method of employing a sharp T2,cutoff 
for estimating bound fluid fractions and permeability would  not be applicable. 
Techniques like “spectral” BVI and tapered T2,cutoff  (Coates et al., 1998, 
Kleinberg et al., 1997) have been proposed as better estimators of irreducible 
saturations.  However, a theoretical basis for the application of these techniques 
needs to be established.  
 
The paper is organized as follows. In the first section, we provide the 
mathematical understanding of NMR relaxation in diffusionally coupled systems 
by numerically solving the Bloch-Torrey equation. In the second and third 
sections, the theory is extended to explain pore coupling in sandstones and 
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grainstones respectively. Experimental results are provided for both the cases to 
substantiate the theoretical models. In the last section, a new technique, based 
on the analysis of the first section, is introduced for estimation of irreducible 
water saturation for the coupled systems.  
 
Diffusional Coupling Between Micro And Macropores 
 
Mathematical Modeling - We begin by mathematically modeling the decay of 
magnetization in pore geometry with a macropore in physical proximity to a 
micropore (Figure 1). The coupled pore is defined by three geometrical 
parameters: half-length of the pore (L2), half-width of the pore (L1) and 
microporosity fraction (β).  The  fluid  molecules  relax at  the  surface  of  the  
 

Macropore 

Micropore

   y 

   x 

βL2

Symmetry  
Planes 

      L2

      L1  
 
 
Fig. 1:  Physical model of coupled pore geometry. Fluid molecules relax at the 
micropore surface while diffusing between micro and macropore 
micropore and simultaneously diffuse between the two pore types.  As a result, 
the T2 distribution of the pore is determined by several parameters such as 
micropore surface relaxivity, diffusivity of the fluid and geometry of the pore 
system. 
 
The decay of magnetization per unit volume (M) in the pore is given by the Bloch-
Torrey equation 

                          
2

2B

M MD M
t

∂
= ∇ −

∂ T                               (3)    

The boundary conditions are 

              0Dn M Mρ⋅∇ + =  at micropore surface         (4) 

                           at symmetry planes           (5) 0n M⋅∇ =

where  is the unit normal pointing outwards from the pore surface and ρ is the 
surface relaxivity. A uniform magnetization is assumed in the entire pore initially. 

n
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In addition, the bulk relaxation rate is assumed to be very small in comparison to 
surface relaxation and is neglected. 
 
Equation (3) is expressed in dimensionless form by introducing characteristic 
parameters. The spatial variables are non-dimensionalized with respect to the 
half-length of the pore (L2), magnetization with respect to initial magnetization 
and time with respect to characteristic relaxation time, T2,c defined as  

                    
total 1 2 1

2,
active 2

c
V L L L

T
S Lρ ρβ ρβ

= = =                    (6) 

In the above equation, Sactive refers to the surface of the micropore at which 
relaxation is taking place and Vtotal refers to the total volume of the pore. T2,c can 
also be related to the relaxation time of the micropore T2,µ defined as  

                    2 1 1
2,

2

1 L L LVT
S Lµ

µ

β
ρ ρβ ρ

⎛ ⎞= = =⎜ ⎟
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                   (7) 

                                 
2,

2,c
T

T µ

β
⇒ =                                 (8) 

We also introduce three dimensionless groups: aspect ratio of the pore η, 
Brownstein number µ (Brownstein and Tarr, 1979) and coupling parameter α, 
defined as 

                                      
2

1

L
L

η =                                       (9)  

                                    2L
D

ρ
µ =                                    (10) 

                                   
2
2

1

L
DL

ρβ
α =                                  (11) 

 The equations in dimensionless form are given in Appendix A.  
 
Numerical solution- The non-dimensionalized equations (A1-A5) are expressed 
in residual form by expressing the unknown as the change in magnetization from 
the previous iteration as shown  

                       1 1k k kM M Mδ + += −                       (12) 

Here, k refers to the iteration index. The equations are then solved iteratively 
using Alternating-Direction-Implicit finite difference technique (Peaceman and 
Rachford, 1955). A sequence of five iteration parameters 0.75, 0.075, 0.0075, 
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0.00025 was found to be optimal in reducing the number of iterations per step. 
Solving the equations for the change in magnetization rather than for the 
magnetization eliminates any non-physical oscillations in the numerical solution 
due to round-off errors. The time truncation errors are controlled by using an 
automatic time step (∆t) selector algorithm (Todd et al., 1972). ∆t at the next time 
step is scaled by the ratio of maximum change in M desired to maximum change 
in M over the entire domain at the previous time step. Thus, the time truncation 
errors are, limited due to small ∆t in the beginning of the simulation (when the 
rate of change of M is large) and large ∆t towards the end.  
 
The decay curve is obtained by summing the magnetization values over the 
entire domain at each time step. Simulated decay data are sampled at the times 
corresponding to 0.5% change in the average magnetization and fitted to a multi-
exponential distribution to obtain the T2 distribution.  

                        ( )j i j
i

( ) exp / 2,iM t f t T≈ −∑                  (13) 

where j( )M t  is the average magnetization in the entire domain at discrete times 
(tj). The coefficients fi are obtained by minimizing the objective function (Dunn et 
al., 1994). 

       ( )
2

2
j i j 2,i

j i i

( ) exp / iM t f t T λ
⎡ ⎤

− − +⎢
⎢⎣ ⎦

∑ ∑ ∑ f⎥
⎥

      (14) 

In the above expression, λ is the regularizing parameter. The numerical scheme 
is validated by comparing the numerical solution with the analytical solution 
obtained by Brownstein and Tarr (1979) for the case of β = 1 for different values 
of µ. In all cases, the two solutions match within an accuracy of 0.1% (maximum 
relative error) indicating the correctness of the numerical solution. 
 
Results - The decay of magnetization in the coupled pore is characterized by 
three parameters: aspect ratio of the pore (η), microporosity fraction (β) and 
Brownstein number (µ).  Depending on the value of µ, defined as the ratio of 
relaxation rate to diffusion rate (Equation 15), the decay can be classified into 
fast, intermediate and slow diffusion regimes. 

               
2
2
2

Relaxation rate
Diffusion rate

L L2

DD L
ρ ρ

µ = = =              (15) 

In the fast diffusion regime (µ<<1), the lowest eigen value of the diffusion 
equation (Equation 3) completely dominates and the decay curve is mono-
exponential whereas in the slow diffusion regime (µ>>10), the higher modes also 
contribute to the relaxation and the decay curve is multi-exponential (Brownstein 
and Tarr, 1979). These diffusion regimes can be seen with the help of snapshots 
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of magnetization in the pore at 
intermediate decay times.  Figure 2 
shows the contour plots of 
magnetization for β = 0.5 and η = 10 at 
dimensionless time t =1 for various 
values of µ. For µ small compared to 1 
(µ = 0.1), fast diffusion leads to nearly 
homogenous magnetization in the 
entire pore. With the increase in the 
value of µ, gradients in the longitudinal 
direction become substantial. The 
gradients imply that the micropore is 
relaxing much faster than the 
macropore.  
 
Note that µ is based on an analysis for 
from its functional dependence on the
Hence, it cannot explain the results for a
i.e.  L1 and L2. 
 
Coupling Parameter- Two processes cha
the coupled geometry: relaxation of spins
of spins between the micro- and macro
micropore is much faster than the inter-p
pore types is small. On the other hand, i
the relaxation rate, the two are significan
of coupling can, thus, be characterized w
which compares the characteristic rela
diffusional mixing of spins between micro

               
2

2, 1 2
2 2

12 2

1 cT L L
DLD L D L

ρβ ρβ
α βη= = = =

The physical significance of α can be i
distributions for the previously mentioned
For α = 0.5, the T2 distribution shows 
relaxing at a single relaxation rate due
increases, some spins in the micropore
diffuse into the macropore. This results
relaxation times (micropore peak). Moreo
to the micropore slowly and hence a shif
relaxation times. As we get into still s
diffusion becomes negligible and the enti
macropore.                 

Micropore relaxation - The amplitude of t
magnitude of the fraction of the microporo
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Fig. 2: Contour plots at t =1 showing
uniform magnetization for small µ and
gradients for larger µ.
a one-dimensional system as is evident 
 length scale (L2) of macropore only. 
 system with two intrinsic length scales 

racterize the decay of magnetization in 
 at the micropore surface and diffusion 
pore. If the relaxation of spins in the 
ore diffusion, coupling between the two 
f the diffusion rate is much greater than 
tly coupled with each other. The extent 
ith the help of a coupling parameter (α) 

xation rate of the pore to the rate of 
 and macropore i.e.  

µ          (16) 

llustrated with the help of simulated T2 
 case of β = 0.5 and η = 10 (Figure 3). 
a single peak since the entire pore is 
 to fast diffusion. As the value of α 

 are able to relax faster than they can 
 in the appearance of a peak at short 
ver, the spins in the macropore diffuse 

t of the macropore peak towards longer 
lower diffusion regime, the inter-pore 

re micropore relaxes independent of the 

he micropore peak (called ϕ ) gives the 
sity which is decoupled from the rest of 



the pore. ϕ, thus, serves as the criterion to quantify the extent of coupling 
between the micro and macropore. For totally coupled micro and macropore ϕ = 
0 while for decoupled porosities ϕ  = β.  A value of ϕ  between 0 and β indicates 
an intermediate state of diffusive coupling. Figure 4 shows the cross-plot 
between ϕ  normalized by β (henceforth referred to as independent 
microporosity fraction) and  α. The curves correspond to different β and span a 
range of η from 10 to 1000. The results show that depending on the value of α, 
the micro and macropore can be in one of the three states of 

• Total coupling ( 1α < ): For values of α less than 1, diffusion is much faster 
than the relaxation of the magnetization in the micropore. The micropore is 
totally coupled with macropore and the entire pore relaxes with a single 
relaxation time. 

• Intermediate coupling (1 250α< < ): In this case, diffusion is just fast 
enough to couple some of the micropore with macropore. The T2 
distribution consists of distinct peaks for the two pore types but the 
amplitudes of the peaks are not proportional to the porosity fractions. 

• Decoupled ( 250α < ): The two pore types become independent of each 
other and the T2 spectrum consists of separate peaks with amplitudes 
representative of the porosity fractions (β and 1-β for micro and 
macroporosity respectively). Further, the dimensionless relaxation time of 
the micropore peak reaches a value β (Appendix B) indicating complete 
independence of the two pores. 

 

 

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

10
-2

10
-1

10
0

10
1

10
2

0

0.5

1

µ = 0.1 
α = 0.5 

µ = 1 
α = 5 

µ = 10 
α = 50 

 
T2 (dimensionless) 

Fig. 3:  The T2 distributions as a function of α with the
parameters chosen to correspond to those of Figure 2. 
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Fig 4: Independent microporosity fraction (ϕ/β) shows
lognormal relationship with α. Three regimes of coupling
(see text) can be identified using α.  

 It was also found that the independent microporosity fraction correlates more 
strongly with α than with µ. This is because α has dependence on the length 
scale of both micro and macropore and thus, provides a better measure to 
quantify extent of coupling.  
 
The sigmoidal character of the curves in Figure 4 suggests that we can establish 
a lognormal relationship between the independent microporosity fraction and α. 
Mathematically, the relationship can be expressed as 

                      
1 log 2.291 erf
2 0.89 2

ϕ α
β

⎡ ⎤⎛ ⎞−
= +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
              (17)  

The choice of mean and standard deviation of the lognormal relationship is 
governed by experimental results, as shown later. 
Macropore relaxation– Since the relaxation of both micro and macropore is 
governed by the same Bloch equation, we expect the relaxation time of the 
macropore to also correlate with α. It was found that the macropore relaxation 
time correlates with the product of α and square of macroporosity fraction      (1-
β). This is because the product (1-β)2α represents the normalized diffusion time 
(td) within the macropore as described below 

                
( )2

22

1 2

(1 )
(1 ) d

c

L D t
L
β

β α
ρβ

−
− = =

,T                   (18) 
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Figure 5 shows the plot of dimensionless relaxation time of the macropore with 
(1 )ν β α= −  for different parameter values. Here, the relaxation time is 

correlated with ν instead of its square because  ν is proportional to the length 

scale, L2, of macropore (Equation 18).   
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Fig. 5: Relaxation time of macropore shows cubic
relationship with  (1 )β α− .  

(1 )β α−

 
We can establish a cubic relationship between the dimensionless macropore 
relaxation time and ν as shown in Equation 19. The functional relationship, 
although fitted to experimental results for grainstones and sandstones as shown 
later, closely match the simulation results. 

              (19) 
 

* 2
2,macro 1 0.025* 0.4* 0.009*T v v= + + − 3v

where 10-1 <  ν  < 101 

 

SANDSTONES 
 
In this section we will extend the ideas developed in the previous section to 
describe diffusional coupling in clay-lined pores in sandstones.  Straley et al. 
(1995) modeled the clay flakes as forming microchannels perpendicular to the 
pore walls such that each micropore opens to a macropore (Figure 6).  The two 
dimensional structure of the clay-lined pore can be modeled as a periodic array 
of rectangular flakes arranged along the wall of the macropore (Zhang et al., 
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2001, Zhang et al., 2003). Since the model is periodic, the relaxation process can 
be adequately modeled by considering only the symmetry element between two 
clay flakes.  The model can be further simplified to the one in previous section by 
approximating the flakes to be needle shaped with negligible thickness.  
 

Micropore 

Clay flakes 

Macropore 

                                 
(b)(a) 

Fig. 6: a) Model of a clay lined pore showing micropores opening to a macropore 
b) Simplified model with rectangular clays arranged along macropore wall.  
 
Pore size distribution- To experimentally validate the theoretical model, the NMR 
response of North-Burbank (NB) sandstone with pores lined with clay flakes is 
simulated (Trantham and Clampitt, 1977). Analysis of the sandstone cores 
yielded an average porosity of 0.21 and  air/brine  permeability  of  220  md.  The 
pore  size distribution obtained by mercury porosimetry is shown in Figure 7.  
The bimodal structure of the pore size distribution arises due to the presence of 
pore-lining chlorite flakes. Mercury first invades the macropores giving rise to the 
peak at larger pore radii. The clay flakes, being closely spaced, are invaded by 
mercury at high capillary pressures which gives rise to the peak at smaller pore 
radii.   
 
A lognormal pore size distribution with mean of 8 µm and standard deviation 
0.135 is simulated to approximate the distribution of macropores (Figure 8).  
Since mercury porosimetry measures the distribution of pore throats, the 
distribution of pore bodies is obtained by assuming a fixed pore body to pore 
throat ratio of 3 (Lindquist et al., 2000).  Thus, the characteristic pore 
(corresponding to the mode of the distribution) has the pore radius of 24 µm.  
Each pore is then modeled to be lined with clay flakes which are assumed to be 
of constant length and equally spaced in all pores. As a result, clay flakes 
completely occupy the small pores and form a thin rim on the surface of larger 
pores. The distance between the flakes is given by the peak at smaller pore 
radius in the pore size distribution. 
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Fig. 7:  The bimodal pore size
distribution for NB sandstone arises
due to pore-lining chlorite. 
 
 
Numerical solution- In order to solve
magnetization in the ith pore, we need th

• Microporosity fraction βi 

• Aspect ratio 2, 1,i iL L iη =  

• Brownstein number  2,i iL Dµ ρ=

The parameters in different pores are, 
other since they are constrained by the 
spacing between clay flakes in all pores

1, 2, = const.i iL L=              

                     2, 2, = const.i i c cL Lβ β=       

where the subscript “c” refers to the cha
 
Hence, if we specify the parameters fo
for the rest of the pores can be calcu
Similar to the analysis of a single por
equations (3-5) for each pore are non-
characteristic parameters. Hence, the s
normalized by the radius and relaxation
6). The normalized equations are then
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ig 8: A lognormal distribution is
imulated to approximate the
istribution of macropores. Also shown

are the pores with changing proportion
of pore volume occupied by the clay
flakes.
 the Bloch equation for the decay of 
ree parameters for each pore:  

 

however, not totally independent of each 
assumptions of constant length and equal 
. Mathematically, the constraints imply 

                                                            (20) 

                                                            (21) 

racteristic pore.   

r the characteristic pore, the parameters 
lated by making use of the constraints.  
e in the previous section, the governing 
 dimensionalized with respect to common 
patial variables and time are respectively 
 time of the characteristic pore (Equation 

 solved for the decay of magnetization in 
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each pore individually. The magnetization in the entire pore structure is 
computed by interpolating the individual magnetization values at some common 
values of time and then summing them over the entire volume. The total 
magnetization (Mtot) in the pore structure is given as 

                    
p

tot ,( ) ( )
N

p i i
i

M t V M= ∑ t                                                                      (22)    

where Np is the number of pores, Vp,i is the volume fraction of the ith pore and Mi 
is the magnetization in the ith pore at dimensionless time t.  The T2  distribution for 
the pore structure is obtained by fitting a multi-exponential distribution to the total 
magnetization. 
 
Results- Since each pore in the pore size distribution has a different value of α, a 
volume averaged α for the pore structure is defined as  

                     ,i p i
i

Vα α= ∑                                                                                (23) 

The simulated T2 distributions for the pore size distribution with typical values of 
βc and ηc (βc = 0.3 and ηc = 100) are shown in Figure 9 as a function of α .  
We can see that the T2 distribution changes from unimodal to bimodal with the 
increase in the values of α . This is because when  α <1, the pores are in total 
coupling regime and each pore relaxes single exponentially with the 
dimensionless relaxation time, , given as  2,iT

                        
( ) 2,

2,
2, 2,

ii c
i

c i

V S

c

L
T                                                           (24) T L

ρ β
β

= = =

Thus, for α <1, the T2 distribution exactly replicates the unimodal lognormal 
distribution of the pore radii. As the pores enter the intermediate coupling regime 
(α >1), a fraction of microporosity starts relaxing independently of the 
macroporosity giving the T2 distributions a bimodal shape. 

Fig. 9: Simulated T2 di
unimodal to bimodal di
 

 

 

 

T2 (dimensionless) 
stributions for βc = 0.3 and ηc = 100 showing transition from 
stribution with increase in α . 
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To compare the simulations with experimental results for NB, the characteristic 
parameters are chosen such that they are representative of the core properties. 
Hence, the value of βc is calculated such that the microporosity fraction of the 
simulated pore size distribution corresponds to the irreducible water saturation, 
i.e 

                           ∑                                                                      (25) , ,

Np

i p i w
i

V Sβ = irr

                           
,irr

,
2,

2,

w
c Np

p i
c

i i

S
V

L
L

β⇒ =

∑
                                                               (26) 

The aspect ratio ηc is calculated from the ratio of macropore and micropore radii 
obtained from mercury porosimetry. The third parameter µc is specified such that 
the simulations best match with the experimental results.  
 
Figure 10 shows the comparison of  
T1 distributions of three water-
saturated NB cores with the 
corresponding simulated 
distributions. Here, the comparison is 
made with the T1 (instead of the T2) 
distributions since the T2  relaxation 
is influenced by the internal 
gradients induced by chlorite flakes 
(Zhang et al., 2001, Zhang et al., 
2003). The characteristic parameters 
for the simulations are shown in 
Table 1. The dimensionless 
simulated distributions are 
dimensionalized by choosing T2,c = 
50, 44 and 40ms respectively which 
gives the best overlay of the 
simulated and experimental 
distributions. We can see that the 
simulated distributions very well 
estimate the location as well as the 
amplitudes of the micro and 
macropore peaks. The values of 
α (=12.2, 15 and 16.6) indicate that 
the two pore types are in 
intermediate coupling regime. This is a
we plot the amplitude of the micropore p
with the total microporosity fraction vs. 

 

T1 (ms) 
Fig. 10: Comparison of simulated and
experimental T1 distributions for three
water saturated NB cores 
lso demonstrated in Figure 11 (a)  where 
eak at 100% water saturation normalized 

α for the three cores. The measurements 
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fall on the intermediate coupling regime of the lognormal relationship (Equation 
17). Figure 11 (b) shows that the cubic relationship (Equation 19) for the 
normalized macropore relaxation time also holds for the three cores. In the 
figure, the relaxation time of the macropore is normalized by the characteristic 
relaxation time defined by Equation 8. 
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Fig. 11: a) Independent microporosity fraction agrees with lognormal relationship 
b) Normalized relaxation time agrees with cubic relationship. 
 
To explore other coupling regimes, 
measurements were done with cores 
saturated with hexane.  Higher 
extent of coupling is expected with 
hexane than with water due to higher 
diffusivity and lower surface relaxivity 
for hexane. Figure 12 shows the T1 
distributions of cores NB1 and NB2 
saturated with hexane and the 
corresponding simulated 
distributions. The dimensionless 
distributions are dimensionalized by 
choosing T2,c= 500 and 360 ms 
respectively. Now the T1 distributions 
show unimodal distributions implying 
the merger of the micro and 
macropore peak. The smaller values 
of α also suggest stronger coupling 
for hexane than for water.  

 
T1 (ms) 

Fig. 12: Comparison of simulated and
experimental distributions for two hexane
saturated NB cores. 
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Table 1: Characteristic parameters for the simulations for three NB cores. 

Core βc ηc µc α  
NB1 0.3 800 0.048 12.2 
NB2 0.28 800 0.065 15 
NB3 0.21 800 0.094 16.6 

 
Estimation of surface relaxivity - We can calculate the values of the surface 
relaxivity for the cores from the corresponding values of α . For the values of 
parameters L2,c = 24 µm, L1 = 0.03 µm, diffusivity for water and hexane DW = 2.5 
(µm)2/ms and DH = 4.2 (µm)2/ms (Reid et al, 1987),  the average value of 
relaxivity is found to be 7.1 µm/sec for water and 1.6 µm/sec for hexane.  
Another estimate of relaxivity can be obtained by comparing the cumulative pore 
size distributions obtained from T1 relaxation and mercury porosimetry. However, 
the estimates from the latter method are about three times (20 µm/sec) as high 
as those calculated from simulations. This is because mercury porosimetry does 
not take into account the large surface area provided by the clay flakes in the 
estimation of relaxivity. 
 
GRAINSTONES 
 
The analysis of the first section (on diffusional coupling) can also be applied to 
describe pore coupling in grainstone carbonates. Ramakrishnan et al. (1999) 
modeled the grainstones as microporous spherical grains surrounded by 
intergranular pores. This three dimensional model can be mapped into a two-
dimensional model of periodic array of slab-like grains separated  by  
intergranular macropores as shown in Figure 13 . We can transform this model to 
the model discussed in the first section by neglecting the thickness of grain 
between the micropores and assuming the pores to be linear in shape. Note that 
in this model relaxation at the outer surface of the grains is neglected. We are 
justified in making this assumption if the surface-to-volume ratio of the micropore 
is much larger than the external surface-to-volume ratio of the spherical grains. 

 

 

 

 

 

 

 

 

Fig. 13: Reduction of a two- 
dimensional one. 

three dimensional grainstone model to a 
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Coupling parameter for grainstones- The transformation of the spherical grain 
model to the 2-D model enables us to define a coupling parameter for 
grainstones through a mapping of characteristic parameters. In the original 
model, L1 was defined to be the half-width of the micropore. Hence for 
microporous grains, L1 corresponds to the radius of the micropore (Rµ) i.e.  

                                      1L Rµ=                                                                        (27) 

Also, as a first approximation, L2 can be taken to be equal to the grain radius (Rg) 

                                     2 gL R=                                              (28) 

Substituting Equations (27) and (28) in Equation (11), we get the definition of α 
for grainstones as 

                                 
2

grain
gR

DRµ

ρβ
α =                                  (29) 

αgrain, thus, shows a quadratic dependence on the grain radius and inverse 
dependence on the micropore radius. This suggests that grainstones with large 
grain radius or small micropore radius are expected to show less effect of 
diffusional coupling. 
 
The above definition of coupling parameter also helps us to understand the 
analysis of grainstone model developed by Ramakrishnan et al. (1999). 
suggested that in the case when the decay of magnetization in macropore occurs 
on a time scale much larger than the decay of magnetization in micropore, 
relaxation in the coupled geometry can be expressed as a bi-exponential decay 

        
2,

( ) exp ( )expa
m m

sm

t tM t f f
V T µ

ρ
φ

⎛ ⎞⎛ ⎞
= − + − −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

           (30) 

In the above equation, Vsm is the macropore volume-to-surface ratio, φ and fm are 
the total porosity and macroporosity respectively and ρa is the apparent relaxivity 
for the macropore. The bi-exponential model is valid when the diffusion length of 
magnetization within the microporous grain is much smaller than the grain radius 
i.e.  

                                  
2,

g
DT

R
F

µ

µ µφ
<<                                      (31) 

where Fµ is the formation factor. We can understand the above condition by 
substituting the expressions for the parameters from our model as described 
below. Thus, the relaxation rate of the micropore is related to the micropore 
radius as 
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1 2S
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                            (32) 

The microporosity fraction β is related to the porosity of grains φµ and total 
porosity φ  as 

                                
(1 )mfµφ

β
φ
−

=                                       (33) 

Substituting the expressions for 1/T2,µ and φµ from Equations (32) and (33) in 
(31), we get 
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The above condition implies that the micropore relaxes independently of the 
macropore for large values of α, which is the same condition for the decoupled 
regime obtained for our model. However, for typical values of grainstone 
parameters, the value of apparent relaxivity can be an order of magnitude larger 
than the intrinsic relaxivity and the decay of macropore would occur on a time 
scale comparable to that of micropore. For such cases, the pores are in 
intermediate coupling regime and the amplitudes of the bi-exponential fit are not 
representative of the actual micro and macroporosity fractions.  
 
Experimental validation- In order to experimentally validate the grainstone model, 
NMR response of microporous chalk, silica gels and alumino-silicate molecular 
sieves is studied as a function of grain radius. These systems with varying 
physical properties help us to systematically analyze the effect of different 
governing parameters on pore coupling. The physical properties of the systems 
are listed in Table 2. 
 
 
Table 2: Physical properties of the grainstone systems 
 

 Chalk Silica Gels Molecular 
Sieves 

Surface Area (m2/g) 4.1 300 20 
Micropore Radius (Å) 185 150 4 

Relaxivity(µm/sec) 0.27 0.06 0.04 
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1. Chalk- Crushed chalk was sieved into five fractions with average grain 
diameters of 630 µm, 360 µm, 223 µm, 112 µm and 22 µm. The T2 distributions 
of the five fractions at 100% water saturation and the corresponding distributions 
at irreducible saturation are shown in Figure 14.   
 

 
Fig. 14: T2 dis
 
We can see th
peaks for mic
same as that 
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T2 (ms) 
tributions of microporous chalk as a function of grain diameter 

at for the two coarsest fractions, the T2 distributions show distinct 
ro and macropores and the area under the micropore peak is the 
at irreducible conditions. This implies that the systems are in the 
ime which is verified by large values of αgrain. The effect of coupling 
e pronounced for medium coarse grains (Dp=223µm and 112µm), 
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which show a build up of micropore peak amplitude at irreducible saturation. The 
values of αgrain now correspond to the intermediate coupling regime.  The total 
coupling regime is visible for finest fraction for which the T2 distribution shows a 
unimodal behavior. 
 
2. Silica Gels – A homologous series of silica gels with grain diameters of 335µm, 
110µm and 55µm constituted the second system. Figure 15 shows the T2 
distributions at 100% water saturation and at irreducible saturations for the three 
fractions.  Similar to the response of chalk, the distributions change from being 
bimodal to unimodal with the decrease in particle diameter indicating increased 
coupling. The values of αgrain suggest intermediate coupling regime for the two 
coarsest fractions and total coupling regime for the finest fraction.  

 
Fig. 15: T2 distribution
 
3. Molecular sieves - 
narrowing T2 distributio
the respective fractions
 
 
 
 

 

 
 

 

 

 
 

T2 (ms)
s of silica gels as a function of grain diameter 

The response of molecular sieves shows similar trend of 
ns with decrease in grain diameter. The values of αgrain for 
 predict the transition of the coupling regimes.  
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The lognormal and cubic relationships of Equations 17 and 19 also hold for the 
three systems (Figure 16) establishing the validity of the grainstone model. 
 

 
Fig. 16: The lognorm
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al and cubic relationships hold for the grainstone systems. 

EDUCIBLE WATER SATURATION 

od of estimating Sw,irr employs a lithology-specific sharp 
 T2 spectrum into free fluid and bound fluid saturations. For 
ionally coupled micro and macropores, the use of a sharp 
rrect estimates since in such cases the direct relationship 
d T2 distribution no longer holds.  

upling, the estimation of Sw,irr amounts to the calculation of 
 β for a given T1 or T2 distribution at 100% water saturation. 
 inverse problem is obtainable by making use of the 
endent microporosity fraction and normalized macropore 
tions 17 and 19).  Three parameters are required for the 
eak amplitude (ϕ), relaxation time of micropore (T2,µ) and 
acropore (T2,macro). It is assumed that T2,µ is known from 
ysis and is same for the formation. This assumption is 
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justified if the formation has similar relaxivity and micropore structure as the 
cores. From the T2 spectrum at 100% water saturation, the values of ϕ and 
T2,macro can be calculated from the area under the micropore peak and the 
relaxation time of the mode of the macropore peak. Hence, for the given 
parameter values, the correlations can be simultaneously solved for the values of  
α and β.  Graphically, the solution involves determining the intersection point of 
contours of ϕ and T2,macro/ T2,µ  on the α and β  parameter space as shown in 
Figure 17. The values of contour lines for  T2,macro/T2,µ  differ by a factor of 2 and 
those for ϕ differ by 0.1. The coordinates of the intersection point of the contours 
for experimentally determined values of ϕ and T2,macro/T2,µ  estimates the value of 
α and β for the formation. For a unimodal distribution with a zero value of ϕ (total 
coupling regime), the microporosity fraction can be calculated from the ratio of 
the relaxation times of micro and macropore, i.e.       

                                  2,

2,macro 0

T
T

µ

ϕ

β
=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
                  (36)         

In this case, the value of α is indeterminate and can be anything less than 1. This 
is because as ϕ approaches 0, the contours for T2,macro/T2,µ  asymptote to the 
reciprocal β value independent of α.  

 
Fig. 17: Intersection of
for the formation. 
 
Figure 18 shows the 
values determined exp
individual  values  for  
The estimates lie withi
α, respectively. This in
studied irrespective of 
     
 

 

 contours for correlations for ϕ and T2,macro/T2,µ  estimates β 

comparison of the calculated values of β and α with the 
erimentally. An average value of T2,µ  obtained from the  

different  sieve  fractions  or cores is used for calculations. 
n an average absolute deviation of 4% and 11% for β and 
dicates that the technique is applicable to all the systems 
the properties and coupling regimes.    
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Fig. 18:  β is estimated within 4% and α within 11% error for the systems studied. 
 
Unification of spectral and sharp cutoff theory- The estimation of Sw,irr using 
spectral or tapered T2,cutoff is based on the premise that each pore size has its 
own inherent irreducible water saturation. The fraction of bound water associated 
with each pore size is defined by a weighting function W(T2,i) where 0 ≤ W(T2,i) ≤ 
1. The Sw,irr is then given as 

                                                                        (37) ,irr

n

w i
i

S W= ∑ iP

where n is the number of bins and Pi is the amplitude of  each bin. The weighting 
factors are determined using empirical permeability models or cylindrical pore 
models (Coates et al., 1998, Kleinberg et al., 1997).   
 
An implicit assumption of the above mentioned technique is that the producible 
and irreducible fractions of each pore have same relaxation time at 100% water 
saturation.  However, the analysis of a single pore (see section on diffusional 
coupling) shows that the micro and macropore can communicate through 
decoupled and intermediate coupling regimes as well. Thus, in a general 
coupling scenario, the response of the pore shows distinct peaks for micro and 
macropore with amplitudes ϕ and (1-ϕ) respectively.  The amplitude ϕ can vary 
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from 0 to β depending on the coupling regime. Therefore, the microporosity 
fraction coupled with the macropore amplitude is given as 

                                
2,macro

2,
( , )

1
T

T µ

β ϕα
ϕ

−
Φ =

−                          (38) 

Φ is a function of the ratio of macro to micropore relaxation times and α which 
determines the microporosity fraction coupled with the macropore response. As α 
increases, the extent of pore coupling decreases and thus, the microporosity 
fraction coupled with the macropore response also decreases.  
 
This is illustrated in Figure 19 where we plot Φ vs.  the ratio of relaxation time of 
macro and micropore for different values of α.  The curves show that a spectral 
or tapered cutoff is required for the estimation of irreducible saturation in total or 
intermediate coupling regime. The increase in the steepness of the curves with α 
indicates that lesser correction for diffusional coupling is required for large α. 
Once the pores are decoupled, a sharp cutoff is suitable for estimating irreducible 
fraction as illustrated by sharp fall of Φ curve to zero for  α = 200. This could also 
probably explain the suitability of a single lithology-specific T2,cutoff for estimating 
irreducible saturations when the formation is in decoupled regime irrespective of 
the properties. More experiments are, however, needed to prove this postulate.     
 

1

 
Fig. 19: Plot of Φ vs. 
required for the estim
regime.  A sharp cutoff
 
 
CONCLUSIONS 
 
The concept of diffus
relaxation has been 
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ional coupling between micro and macropores for NMR 
numerically analyzed as a function of physical and 
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geometrical parameters. The analysis, applicable to both microporous 
grainstones and clay-coated pores in sandstones, is shown to encompass 
previously described models.  A coupling parameter α  has been introduced 
which helps to identify different regimes of pore coupling.  Experiments with 
representative sandstone and grainstone systems prove the applicability of α  to 
quantify the extent of coupling. 
 
A new technique for the estimation of microporosity fraction and coupling 
parameter for the reservoir formation is also introduced. The parameters for the 
technique are easily obtainable from laboratory core analysis and the T2 (or T1) 
spectrum at 100% water saturation.  Estimates of microporosity fraction for the 
sandstone and grainstone systems match within 4% deviation of the 
experimental values. It is also shown that α provides a quantitative basis for the 
application of spectral or sharp cutoffs.  
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APPENDIX A  
 
The dimensionless variables are given as 
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where Mo is the initial magnetization and T2,c is the characteristic relaxation time 
(Equation 6). The governing equations (3-5) in terms of the dimensionless 
variables are 
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In the above system, the discontinuous boundary condition along the y-axis is 
combined into a single equation by using the step function S(y*) defined as  

                  for           *( ) 1S y = *0 y β≤ ≤        
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APPENDIX B 
 
Here, we resolve the issue of faster relaxation of micropore in the coupled case 
than in the decoupled case, observed in our simulations. For the case of no 
diffusional coupling, the dimensionless relaxation time of the micropore is 
inversely proportional to its surface-to-volume ratio i.e. 
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Hence, when coupling between micro and macropore is allowed, the micropore is 
expected to relax slower than β. Figure 20 shows the relaxation time of 
micropore peak (normalized by β) as a function of α for different simulation 
parameters. We see that for the decoupled regime, the normalized micropore 
relaxation time tends to 1 as expected.  But for the intermediate coupling regime, 
it appears that the micropore is relaxing faster than the decoupled rate. This 
artifact of faster relaxation of micropore in the coupled case was also observed in 
Ramakrishnan's analysis (1999). No explanation for the artifact was, however, 
offered in their paper. 
 
The apparent contradiction can be resolved by studying the early relaxation data 
of the coupled pore. Analysis of the initial slope of the decay curve reveals that 
the micropore is indeed relaxing no faster than the expected rate. However, the 
decay curve has contribution from slow decaying component of the macropore 
and fitting the curve to multi-exponential fit has an apparent effect of reducing the 
relaxation time of the micropore. 
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 Fig. 20: Micropore appears to relax faster when coupled with macropore.    
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Task 3:  Characterization of pore structure and wettability. 
 
Introduction 
The goal of this research is to relate NMR measurement to pore structure and 
wettability and thus to permeability and relative permeability.  In Task 3, 2D pore 
structures will be extracted from thin-sections. The oil/brine/rock compositions 
will be related to wettability as determined by contact angle goniometry and 
atomic force microscopy.  Amott wettability will be measured to define core scale 
wettability. Brine and oil NMR response of the cores will be measured. NMR 
response of surfactant solution imbibed carbonate cores will also be measured. 
NMR response will be simulated from pore images and wettability. Mechanistic 
correlations will be developed between NMR response, wettability and pore 
structure. Such correlation will help NMR logging define the variation of pore 
structure and wettability through all logged wells. Ten cores (five vuggy 
carbonate cores and five sandstone cores) and two reservoir oils will be used.  
In Task 4, NMR response will be related to permeability and relative 
permeabilities.  Such a correlation can estimate the reservoir heterogeneity and 
multiphase flow in logged but non-cored wells. The relative permeability functions 
determine the time for water breakthrough and the rate of oil recovery. Water-oil 
imbibition relative permeability will be measured for each core plug. Electrical 
conductivity will be measured at end-point saturations. Pore network models 
developed in Task 3 will be used to estimate the relative permeabilities and 
electrical conductivity. Correlations will be made among the NMR response and 
transport properties. Simple, but mechanistic correlations will be developed for 
NMR response, permeability and relative permeability.  
The project started in the last quarter of last year. We have worked on three 
subtasks: pore structure, wettability and relative permeability/electrical 
conductivity of 5 carbonate cores. The activities are described in the next section. 
II.  Experimental 
Five carbonate rock samples from a west Texas field have been obtained. Thin 
sections were obtained from these samples. The thin sections were viewed by 
using an optical microscope. The digital images were captured by using a CCD 
camera, and the video output signal was sent to a PC computer by using a 
frame-grabber PCI card. The picture was then segmented into pore space and 
solid by using Crabtree’s algorithm. Several contiguous images were taken for 
the same sample and then composed together to form a larger image of 
approximately 1 to 2 cm coverage.  
 
From 2D images of the rocks, we obtain the following statistical functions: 
porosity, 2- point autocorrelation function, chord length distribution, and lineal 
path length distribution. These functions characterize the pore structure. Using 
these functions and applying heuristic methods such as simulated annealing, we 
reconstruct a 3D image having similar statistical functions of that of 2D image. 
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At present we are performing analysis on five carbonate cores, named Sample 1 
through Sample 5. For each core, we have analyzed thin sections in both 
horizontal and vertical directions. Porosity is defined as the fraction of the total 
bulk volume that is occupied by pore space. If a 2D image is represented by 
Z(i,j),  then: 
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Porosity φ can be mathematically expressed as: 
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The two point autocorrelation function S2 is the probability that two pixels in an 
image at distance r are both in the pore space. 
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Chord length distribution is the length through the pore space in between two 
rock pixels for a given direction. Chord length distribution is calculated by dividing 
the number of chords of a given length by the total number of chords found. 
Lineal path length distribution is the probability that a chord of given length lies 
totally in the pore space. The difference is that the chord length measures only 
the total distance through a pore space whereas the lineal path includes all 
possible combinations of distances through the local pore space. The results of 
the statistical analysis of the thin sections are described in the next section. 
 
Oil has been obtained from a west Texas reservoir. The cores are in the process 
of being reconditioned with the reservoir oil. After the aging, the Amott wettability 
of cores will be determined. A core holder with four electrodes for electrical 
conductivity measurement and an LCZ meter are being procured. Electrical 
conductivity and relative permeability will be measured for the reconditioned 
cores.  
III. Results 
Figure 1 shows the horizontal thin-section binary image and the statistical 
functions of Sample 1. This sample is a peloid/fusulinid packstone/wackstone 
dolomite. The porosity is 15%. The matrix has very little intergranular porosity. 
The vugs are distributed more or less uniformly throughout the sample. Vugs are 
about 1-3 mm in size. There seems to be several micro fractures connecting the 
vugs. The two point autocorrelation function S2 decreases monotonically with the 
lag shown in pixels. The chord length and lineal path functions are very similar 
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both in x and y directions. The correlation length is about 100 pixels (1 pixel=10 
µm).  
Figure 2 shows the horizontal thin-section binary image and the statistical 
functions of Sample 2. This sample is a fine peloid packstone/wackstone 
dolomite. The porosity is 7.4%. The matrix is filled with anhydride with 
intercrystalline pores. The vugs are are small (<1 mm) and few. The two-point 
autocorrelation function S2, chord length and lineal path functions are quite 
different for x and y directions. The correlation length is about 200 pixels.  
Figure 3 shows the horizontal thin-section binary image and the statistical 
functions of Sample 3. The porosity is 6.6%. The vugs are large (1-5 mm) and 
connected through the intercrystalline pores which are very small. The two-point 
autocorrelation function S2, chord length and lineal path functions are similar for x 
and y directions. The correlation length is about 400 pixels.  
Figure 4 shows the horizontal thin-section binary image and the statistical 
functions of Sample 4. The porosity is 6%. The vugs are large (1-5 mm) and 
connected through the intercrystalline pores which are very small. The two-point 
autocorrelation function S2, chord length and lineal path functions are different for 
x and y directions. The correlation length is about 250 pixels.  
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Figure 1: Binary image, S2, chord length and lineal path function for Sample 1 
horizontal thin section 
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2-Point Autocorrelation Function 
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Chord Length Distribution 
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Lineal Path length Distribution 
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Figure 2: Binary image, S2, chord length and lineal path function for Sample 1 
horizontal thin section 
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Figure 3: Binary image, S2, chord length and lineal path function for Sample 3 
horizontal thin section 
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Figure 4: Binary image, S2, chord length and lineal path function for Sample 4 
horizontal thin section 
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Figure 5: Binary image, S2, chord length and lineal path function for Sample 3 horizontal 
thin section 
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Lineal Path length Distribution 

Figure 5 shows the horizontal thin-section binary image and the statistical 
functions of Sample 5. This sample looks like a breccia or an agglomerate of 
broken rocks. There is ample intergranular porosity. The porosity is ~22%. The 
vugs are large (1-5 mm) and numerous. The two-point autocorrelation function 
S2, chord length and lineal path functions are very similar for x and y directions. 
The correlation length is about 100 pixels.  
IV. Conclusions  
Characterization of pore structure and wettability has been initiated on 5 
carbonate samples. The vug size, distribution and interconnection vary 
significantly in these five samples. The thin sections have been characterized 
through their two-point correlation function, chord size distribution and lineal path 
function. We are working on reconstructing three-dimensional pore structures, 
wettability, NMR response, electrical conductivity, and relative permeability of 
these rock samples.  
V. Plans for Next Reporting Period 
• Pore structure of carbonate samples (Sub-Task 3.1) 

• Wettability of carbonate samples (Sub-Task 3.2) 

• NMR response of carbonate samples (Sub-Task 3.3) 

• Relative permeability/conductivity of carbonate samples (Sub-Task 4.1) 
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