DOE/BC/14126-9

(DE89000757)

NUCLEATION AND PORE GECMETRY EFFECTS IN

CAPILLARY DESORPTION PROCESSES IN POROUS MEDIA

Topical Report

By

Mehmet Parlar

Yanis C. Yortsos

August 1989

Performed Under Contract No. FG19-87BC14126

”Q’Hzmﬂnmmou

University of Southern California

Los Angeles, California

Bartlesville Project Office
U. S. DEPARTMENT OF ENERGY
Bartlesville, Oklahoma




This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office Of Scientific and
Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available
from (615)576-8401, FT'S 626-8401.

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

Price: Printed __A03
Microfiche A01



DOE/BC/14126-9
Distribution Category UC-122

NUCLEATION AND PORE GEOMETRY EFFECTS IN
CAPILLARY DESORPTION PROCESSES IN POROUS MEDIA

Topical Report

By
Mehmet Parlar
Yanis C. Yortsos

August 1989

Work Performed Under Contract No. FG19-87BC14126

Prepared for
U. S. Department of Energy
Assistant Secretary for Fossil Energy

Thomas B. Reid, Project Manager
Bartlesville Project Office
P. O. Box 1398
Bartlesville, OK 74005

Prepared by
University of Southern California
Department of Petroleum Engineering
Los Angeles, CA 90089-1211






TABLE OF CONTENTS

PAGE
AbStract....scesisusennonnassncssnsnesnnasnnsnsccnnennsees 1
INtrodUCtioN. sueecaseccccnnnanananasaanonsascencsnnnennnss 2
Effects of NUuCleation.cuececesnoonncconnasnnansenssnnnnes S
Arbitrary Size DistributionS...cccicecrcecccnanonnonccnces 19
DiSCUSSiON.netescancasscsnsnscacsnnnsonnsncnnancaannssssesss 25
SUMMAY Yescoseacnaanoaennnannnanasnnneansssssnanonsnnnnsesas 30
ReferenceS. e ecisnnescsscascasscsanasnasonsnsanrennsnnnsenssns 32

FIGURES

Figure 1. Schematic of a Nucleation Site in a Pore Body.. 34
Figure 2. Nucleation in a "Hydrophobic Site”..ceaesencenne 35

Figure 3. Accessible Fraction of Bonds as a Function of
Allowed Fraction p for Various Values of fp T Z=4 e cseannna 36
Figure 4. Accessible Fraction of Sites as a Function of
Allowed Fraction q for Various Values of fq I A 37

Figure 5. Accessible Fraction of Sites as a Function of
Allowed Fraction p for Various Values of f : Z=4........ 38
Figure 6. Effect of Coordination Number on Limiting

Site Size Distribution-.---....IIIIIIIIIIII--I.-IIIIII-. 39

Figure 7. Accessible Fraction of Sites as a Function of
Allowed Fraction p for Various Values of q, :

Arbitrary Size Distributions, Z=4, fq=0........f....... 40

Figure 8. Model Prediction of Primary Desorption
for Sorption of Nitrogen for Various Values of f ....... 41

Figure 9. Model Prediction of Primary Desorption
for Sorption of Nitrogen for Various Values of 8.cccacee. 42

Figure 10. Model Prediction of Secondary Desorption
for Sorption of Nitrogen : Z=4, fq=0..................... 42

Figure 11. Model Prediction of Secondary Desorption
for Sorption of Nitrogen (g=1-(1-p)“): I=4, fq=0......... 43

iii






NUCLEATION AND PORE GEOMETRY EFFECTS
IN CAPILLARY DESORPTION PROCESSES IN POROUS MEDIA
By

M. Parlar and Y.C. Yortsosg

ABSTRACT

A percolation model previously developed by the authors for
adsorption—desorption phenomena in porous solids (J. Colloid
Inter face Sci. 124, i62 (1988)), is extended to include
nucleation effects during desorption, and to general size
distributions of pore bodies and pore throats. Conditions under
which nucleation is likely to be important are delineated. For
such cases, desorption is treated as a growth problem with
continuous generation of source sites. Accessibility functions
are derived for Bethe lattice representations of the porous
medium. Similar calculations are presented for the case when pore
bodies and pore throats take arbitrary size distributions. The
latter find also applications to other related processes in

porous media. In view of the theory presented, the interpretation

of experimental sorption isotherms is further discussed.



1. INTRODUCTION

Experimental vapor sorption isotherms are indispensable

means for the characterization of the texture of porous solids

(2-5). The commonly used approach relies on Kelvin's equation

for the description of capillary condensation and evaporation,

and on a model representation of the actual pore

geometry and

topology. Owing to 1its obvious significance, the 1latter has

attracted consliderable attention.
Early works made use of the simple model of a bundle of

parallel caplllaries. Such models have llmited success, slnce

they neglect connectivity and topologlcal 1ssues by emphasizing

only local (single pore) phenomena (6-7). It 1s now accepted that

capillary evaporation in a pore depends, in additlon, to 1lts

accessibility to other vapor-occupied pores or to the bulk phase

outside. The resulting hysteresis cannot be captured by 1local

effects alone, and, as polnted out by Everett (5), requires the

interplay of pore space topology.

Network models possess suitable connectivity properties and

they have emerged as useful alternatives. Although their

relevance to porous medla was known for some time (8), successful

applications to sorption processes did not start untlil relatlively

recently (9). Key reallzatlion was the simllarity of features

between primary desorptlion and ordlnary percolation. Elements

from the latter (10, 11) were utilized by Wall and Brown (9) to

describe the hysteresis of primary sorptlon 1sotherms. Varlous

deviations from the sharp onset of percolatlon were attributed to

finite size effects.



Mason (12) in a detailed network study, 1later recognized as

a percolation model on a Bethe lattice (13, 14), successfully

predicted several characteristics of primary and secondary

processes. Percolation concepts were also applied by Neimark (15)

for primary desorption on regular lattices. A comprehensive

approach outlining the relevance of percolation theory 1in the

description of primary and secondary sorption processes was

recently developed by the authors (1). Although regular lattlices

wvere also examlned, Bethe lattlices were exploited to obtaln exact

solutions. Results 1in (1) generalized previous expressions

derived by Fisher and Essam (16) and Flory (17) to arbitrary

(non-zero) fraction of initial source sites. In a concurrent

study, Mason (14) revised his previous model (12), likewvise

pursuing a percolation approach that lead to results similar,

although not identical, to those in (1).

All previous network and percolation models for caplllary

sorption rely on two 1important prenmises: The neglect of

nucleation phenomena in the liquid-to-vapor transition, and the

postulate of some form of a relationship between site and bond

size dlstributlons. Moreover, local hysteresis is tacitly assumed

negliglble.

Lack of nucleation attributes percolation-like features to

primary desorption. It appears to have been partly justified 1in

some experiments on porous glass (18-21),

and for a varlety of

adsorptives. The experimental results of Barrett et al (22) on

the silica-gel/nitrogen system also reveal a similar behavior. oOn

the other hand, deviations from a percolation behavior have also

been noted and variously attributed to nucleation, finite size,



vapor compresssibility or other effects. At present, a

quantitative assessment of the importance of nucleation during

desorption is lacking.

A similar uncertainty exists in the 1interrelation between

pore body and pore throat sizes. This issue is common to any

models of porous media, and of particular interest to processes

involving two phases, where occuplied throats determine phase

conductivity, while occupied bodies the phase volume. To be sure,

any such relationship would be material-specific, reflecting the

particular history (dlagenetic, etc.) of the porous medium. With

few exceptions, most studles bypass the lssue by considering site
only ox bond only processes. 1In the mixed bond-site problem 1in
(1) use was made of an algebralc relationship proposed in (12) to
relate site and bond size distributions. This relatlonship is the

lower 1limit of a general inequality reflecting the constraint

that a pore body has slze greater than 1its associated pore

throats. The model developed in (1) rellies exclusively on thils

limiting condition, thus unduly prohibiting the consideration of

largely arbitrary site and bond distributlons.

In this paper, these two lssues are explored in some detall.

Conditions to estimate nucleation effects 1in desorption are

outlined, and simple models for nucleation during desorptlon are

presented. The previous expressions are also generallized ¢to

account for‘ arbitrary site and bond size distributions. The

approach taken entails the special case of Zhdanov et al (23],

wvhere all bonds have the size of the assoclated site reduced by

a constant factor. The 1local hystereslis 1in the adsorption-



desorption cycle of cylindrical elements 1is also briefly

discussed.

Caplllary sorption, by virtue of the phase change involved,

nay be the prototypical process, among many others 1involving

jmmiscible phases (e.g. mercury porosimetry), £for the direct

application of percolation theory to porous media. This process

is further coupled here with a nucleation mechanism that leads to

accessibility-controlled growth from lnternal sources. Beslides

its direct physical relevance, the ensuing analysls may thus be

useful to other percolation processes as well. Phase change 1in

porous media is common to many applied processes (e.g. vapor-

liquid £low in oil and geothermal reservoirs (24, 25)), which
stand to benefit directly from the present investigation.

The paper is organized as follows: 1In Section 2, we briefly

review the previous model and present an analysls of nucleation

effects for single component systems. Section 3 deals with

arbitrary site and bond size distributions. As in (1) three

different problems are discussed: Bond percolatlion, site

percolation, and a mixed problem where the accessibility of sites

in bond percolatlion 1s analysed. Exact expressions valld for

Bethe lattices are derived. Related implicatlions are discussed in

Section 4.

2. EFFECTS OF NUCLEATION

Before proceeding, we briefly summarize the postulates of

the present model (1). The porous medium is represented by a

network of bonds and sites (throats and bodies) of size

distributions mb(r) and ms(r), and of coordination number Z.



Sites and bonds have approximately spherical and cylindrical

shapes, respectively, although nucleation pits on rough surfaces .

are also allowed (see below). Aside from this, other issues of

roughness, notably those of fractal structure of the surface (26,

27), are not considered. Additional assumptions are that  each

pore unit (body or throat) is occupied by a single phase = only,.

vapor or liquid, and that volumetric contributions are . obtained

from sites only, unless otherwise noted. _,Stabilityﬂ;

considerations (6) require that, if a throat is occupied by vapor

(as in desorption), the adjacent two bodies are also occupied:by_

vapor, while 1f a body is occupled by liquid (asﬁlnkadso:pthn),,‘

al: emanating throats are also occupied by liquid. . For

convenience, surface adsorption effects (28-30) are ignored.

- Given a pore element (site or bond) of size r, .there is a

corresponding value of the relative pressure (P /Py o) glven by

Kelvin's equation:

r = -r,. /ln(Pv/on) Shw Gwewd FBanp adfa tﬁ;ti[ll;
with the'characteristic~radius-rch;deflned by

'y = 2 s .0 VL /(R T) [21

Here, & is the surface tension, VL the liquid molar volume, R

the gas constant and T the absolute temperature, while PV and

PVO are equilibrium and saturation vapor pressures, respectively.

The parameter s 1is geometry dependent: In sites, for both

adsorption and desorption, it takes the value 1. By contrast, in

the cylindrical geometry bonds, s changes from 1 for desorption

to 1/2 for adsorption. This difference reflects local hysteresis

for elements of cylindrical geometry, and it 1s tacitly assumed

negligible (12-14). 1In the case of a single pore (infihite



coﬁﬁéétrbiéyi; dthe”ahove define'thekrelative pressure for phaseﬁH

change ‘{ﬁ””éhe'élément°6f sizé’r. One may then parametrlze the';

process by a varlable radlus,: denoted hereafter} for con51stency\k

(1 25 31 32) by rd, and obtalned from [1]—[2] by taklng s=1.

Capillary adsorptlon (wvhether prlmary or secondary) ‘is‘

independent of acce551b111ty or nucleatlon effects, although it

may be subject to local hysteresis} At any‘Stage rd‘ vapor in all

sites- with r<r, and all bonds with r<r /z ‘ 15' allowed to

condense However,fiall bonds emanatlng from a llquidfoccupied

site (51ze r<r ) would also condense,‘ in view of the stablllty
considerations outlined above. .Thus, a substantially larger

fractionfoffbonds,would be occupied by liquid, and the effect of

geometry during adsorption would be greatly minimized. 1In fact,.

if ..the . volumetric  contribution of bonds  is taken to  be

negllgible, as. in  the analysis below, local geometry has no

effect on the primary hysteresis 1loop. By contrast, 1local

hysteresis would affect secondary desorption, where bond

statistics are of prlmary concern. For lack of Space, however,

we shall postpone further dlscusslon of thlS interesting case to

a future study

Desorptlon, on the other hand | depends strongly on

acce551b111ty and p0551bly, on nucleatlon (heterogeneous belng

the most l1ke1y mechanlsm) In the absence of the latter, vapor

occupancy dur1ng prlmary desorptlon occurs solely through access

to the outslde bulk vapor,‘ first established at the percolatlon

ythreshold.:d In 'secondary desorption, the 11qu1d to vapor

transition"‘orlglnates "also from preexistlng ‘vapor sltes.



Furthermore, when nucleatlion 1ls in effect, vapor occupancy will

also take place in liquid-occupied pores that are not necessarily

connected to a vapor site. In the general case; therefore, the

following two conditions must simultaneously hold, for an element

to be occupied by vapor:

r>r ..

1. The pore (site or bond) is allowed to desorb, a

2. The pore (site or bond) has access to
(a) the bulk vapor outside, and/or to

(b) vapor-occupied pore elements acting as internal sources.
The latter may have been either present initially (e.g. in

secondary desorption) or may be generated through nucleation
during the process (whether primary or secondary).

Clearly, 1i1f nucleation is allowed, the formation of an infinite

cluster 1is not required for a primary desorption process to

initiate and proceed. 1In fact, percolation characteristics could

very well be erased from the desorption 1isotherms. To assess

their importance, the two nucleation mechanisms are separately

discussed.

(i) Homogeneous Nucleation

Existing models for nucleation rates in single-component

systems make use of kinetic expressions of the form (3,33-35)
J =K exp[(—4mrr(2:/3kT)*‘i?] [3]

where k 1is the Boltzmann constant, K 1is a kinetic parameter

(34), and r. is the radius of critical size nucleil related to

pressure via Kelvin's equation [1]1. The dimensionless function %

represents effects of wettability and nucleation site

geometry.
Its value lies between zero and one, to cover the range between
perfectly heterogeneous to homogeneous nucleation. Further

details can be found in (36).



Usually, the onset of nucleation is arbitrarily defined at

the rate J=1 nucleus/sec-cc. The precise definition is

immaterial, since both the critical size and the corresponding

supersaturation are insensitive to large variations in J. For

example, for xenon at 151 OK, an increase in J by eight orders of

magnitude (from ]_0—'4 to 10+4) reduces the nucleation radius N

ry = {-1n(J/K)/[(4nc/3kT) *&1} 172 (4]

from 15.4 to 13.8 Angstrom, clearly a negligible change. It

follows that a quite sharp and fixed threshold for the onset of

nucleation can be identified. Therefore, and without loss, J will
be assumed to be unity (34,35) in subsequent examples.

When rd>rN (vapor pressure greater than nucleation

pressure), no phase change occurs via homogeneous nucleation,

wvhile when 1r_<r there

a<Tns is vapor occupancy via homogeneous

nucleation in all pore elements (bonds and sites) of radius r>rd.
We recall that in the absence of nucleation, the onset of primary

desorption is at the percolation threshold, defined in terms of a

radius rpt

I mb(r)dr = 1/(z2-1)

rpt

for a Bethe lattice. Note that the bond size

{51

distribution is

used, since desorption is controlled by pore throats, in view of

the stability premises outlined above. Thus, whether nucleation

is a significant factor 1in a desorption experiment or not,

largely depends on the ratio rN/rpt. Nucleation would be clearly

negligible 1if the latter is significantly smaller than one.

Quantitative estlimates are possible 1if ab(r) is relatively



smooth. For Z not too large, it can be ea511y shown that rpt is
of the same order as the mean throat size xb . Eor example,q_ for
the size dlstribution . . o : R Pt et

; bR T TEAISRUNE ) L et R

we have , . L - VR e et
WS S racnai e N AEE S e tok Lol -
ey T Uinh/mE L een

theiRHS of which is close to_onejfor’typical_values of Z. Thus,
for all practical purposes, the ratlok o
ry/np = [3KT 1nK/4nel />\ RS

may serve to measure the 1mportance of homogeneous nucleation. An

insignificant contribution is expected for media of larger kmeani

51ze, a likely occurrence in many appllcations. -

.Qn the other hand ) sorption experiments are”of‘ utilityk

1nso£ar as the corresponding isotherms are not too steep,kso thatr

reasonable resolutions are possible. ln turn,k this requires

smaller pore sizes. For instance, the slope of the sorption

lsotherm 1n a (liquid volume) vs. k(relative pressure) plot 1is

roughly equal to L
ds /d(Pv/PVO) as(r)r exp{rch/r}/rch [81
if equal volume sites are assumed. For a distribution of the type

[6a] w1th an average 51te radlus x s’ the slope has an estimate of

order x /r ch’. near the onset of desorption. Slmllar conclu51ons

are reached 1f it 1s required that the relative pressure at the
onset of desorptlon 1s not too close to one. For example, a value

‘equal to 0. 8 requlres )\ /r ch ("-} FP'G/I,Chf)' ~ 4 48.

It £ollows that successful sorption experiments ought’tow he

conducted under condltions such that at the ‘same tlme, x /r is

4not too 1arge, and x /r is not too small The two requirements

10



are favored at higher wvalues of ¢ and 1lower values of T,

conditions . commonly practiced in desorption experiments.

Percolation—-type theories that do not account for homogeneous

nucleation, may then be successfully used for the determination

of  the size distributions. It can be shown that this is 1likely

the case in typical experiments. For example, for the conditions

in  (18) and (21),: the radii 'n and L for xenon (water) are 14.6

(10.8) Angstrom and 13.2 (10.3) Angstrom, respectively. The

corresponding - porous media used have a mean pore size in the

desired range. Indeed, the relative pressure for nucleation is

0-:406.:.: (0.385), .while ' experimentally observed desorption

thresholds are approximately at 0.525 (0.670). These data clearly

suggest:that at -the onset of nucleation, most of the pore

elements: are :already wvapor-occupied via percolation

~mechanisms
‘free -of: homogeneous nucleation.
w(11) Heteroqeneous Nucleatlon
Whlle’ homogeneous nucleation can be adequately estimated,

(thislyls hardly the case for the heterogeneous case, due to the

uncertalnty in the state of wettablllty and the geometry of the

gnucleation 51tes. Spec1f1c models or a probablllstlc approach mnay

‘then"”hew necessary. \ Typlcally, 'the' surface roughness is

‘approx1mated by con1ca1 plts oE the type studled by Ward et al

UW(35) and Forest (37) Geometrlc and 1nterfac1a1 propertles of the

'wlatter":may 'furt er% be\“a551gned ké” prObabllltY dlStrlbUtlon

mwfunctlon.’
‘”Tb be spec1fic,‘ consider a nucleatlon 51te of conlcal pit

‘geometry in a pore element (pore body) of size r (Flgure 1) The

©11



pit would be characterized by a half-width W, an angle @« and a

contact angle 6. Clearly, we must require that the conical pit be

considerably smaller than the pore element itself, thus we take

the ratio
8 = W/x {91

to be constant and relatively small (e.g. #=0.1), for « not too

small. One 1is then interested in determining the relative

pressure (radius) at which the pore element becomes fully

occupied by vapor via heterogeneous nucleation, and the

corresponding effects on the desorption curve.

Closely paralleling the analysis in (35), (37) it can be

shown (36) that under favorable wettability conditions (high

contact angle), vapor bubbles do indeed form 1in the pits,

possibly at a relative pressure even above that corresponding to

the pore element. However, as long as the radius Iq associated

with the prevalling vapor pressure is greater than the half-width

v, such bubbles are restricted near the pit mouth and would

grow to a generally small size with the meniscus located near the
pit mouth.
Figure 2a shows a qualitative schematic of the relationship

between vapor-liquid meniscus radius (r) and bubble volume (V)

for a "hydrophobic" conical cavity (9-a<n/2) satisfying the

inequality #<cos(®-u). The meniscus exhibits successively a local

maximum (W/cos(6-x), point A), a local minimum (W, point B), and

a global maximum (rs=site radius, point C), where the entire site

becomes occupied by wvapor, to be followed by an eventual

reduction 1in radius to that of the associated bonds (point D).

12



From such diagrams, the stability of the equilibrium states may

be readily 1identified (36). As with the case of homogeneous

nucleation, however, and for all practical purposes, kinetic

considerations would prevail in determining the occurence of

vapor occupancy.
The corresponding relationship between the change in the

Helmholtz free energy AF and the bubble volume V is qualitatively

shown in Figqure 2b, for the most interesting case W/cos(6-o«)> r_>

d
W. Two energy barriers exist. If a bubble forms with volume
greater than that corresponding to the first barrier (AFl), it

wvould grow to a metastable state at the pit mouth. However, for

the occupancy of the host pore element by such a bubble, a

second enerqy barrier (AFZ) must be overcome, the kinetics of

wvhich are favorable only if rd<W (36). Thus, the pore may become

vapor-occupied via heterogeneous nucleation, although at a

*
relative pressure PV/PVO’ which is considerably smaller than that

of the pore element itself, PV/PV0

* _ 1/8
Py/Pyg = (Py/Pyq) [10]

Since # 1is assumed to be small, heterogeneous nucleation is,

thus, 1likely to be important only in larger pore sizes, hence in

porous media with wide size distributions and long tails (such

that PV/PV0 can be close to unity). It is worth noting that, at

least for such model porous media, heterogeneous nucleation 1is

pore size-hence relative pressure-dependent, 1in contrast to the

homogeneous case.

The simplest model to be considered contains pits in each

site with a constant 8 (half-width W is fixed fraction of the

site radius), all such pits having the same contact angle 8 and

13



half-angle w. A precise nucleation radius rN can then be defined

from [4]). If rd>rN, there will be no heterogeneous nucleation. If

rd<rN, heterogeneous nucleation will take place in all pores with

radius rp > [cos(@—a)/ﬁ]rd. However, while in most pores growth

would be 1limited to the pit mouths (with negligible effect on

volume considerations), occupancy of the entire pore elements

will occur only in those with radius r_ > (1/8)rd. With this type

of simple, but instructive, model it is possible to make a

guantitative assessment of nucleation, as discussed in later

sectlons.

One concludes that the relative contribution of

heterogeneous nucleation to primary desorption can be measured by
the ratio of the maximum pit width to the

Srs,max/rpt or Brs,max/xb’ in view of [6bl. The use of the

percolation radius,

maximum site size should be noted. When this ratio is

substantially less than unity, for instance in relatively narrow

size distributions, ve anticipate that nucleation-free

percolation dominates the process. Several practical applications

are likely to satisfy this condition. In the opposite case, vapor

occupancy of pore elements would also occur from internal sources

(nucleation sites). While the likelihood of the latter is less, a

quantitative assessment of its importance would be desirable and

is explored below.

(iii) Accessibility Functions

The uncertainty in the precise estimate o0f nucleation

effects necessitates the use of a probabilistic approach. We

shall postulate that at any pressure level, parametrized by Lyr 2

14



fraction fq of the sites (or £_of bonds) with radius r>r is

d

also allowed to undergo a liquid-to-vapor transition via

(heterogeneous) nucleation. The resulting vapor-liquid menisci

advance and occupy adjacent pores until a pore throat with radius

smaller than I3 is encountered. 1In the absence of a specific

model, the nucleation probability fraction fq (in general,

variable with r or

a pressure) 1is unknown. Therefore, the

accessibility functions derived below are general and apply to

any functional fq (or fp). Note that for the simple model

introduced in the previous section, the nucleation fraction (f

or fp) at any rq can be simply obtained

©

fi = k) ui(r)dr {11}
rd/8

«© «

As noted in (1) the two probabilities q = Ias(r)dr, p = Imb(r)dr
r r
d d

represent the number fraction of bonds and sites in the alloved

interval [rd, wl. For simplicity, the two fractions will be

related by the previous expression (12)
(1-q) = (1—p)Z {(12]

A generalization to arbitrary sizes is presented in the next

Section. As previously pointed out, the analysis for secondary

desorption does not include effects of local hysteresis.

It is recalled that, 1in the absence of nucleation, primary

desorption 1is an ordinary percolation (1,9,12,14,15,23), while

secondary desorption requires the solution to a growth problem

from a fixed number of sources (1). In the presence of

nucleation, the desorption process (primary or secondary) is

15



neither of the above. Here, 1in addition, sources (slites or

bonds) are constantly generated during the process. As in (1),

three cases are distinguished, pertaining to bond percolation (no

site participation), site percolation (no bond participation),

and a mixed site-bond problem. The analysis is for a Bethe

lattice, although appropriate algorithms for regqular lattlices may

be readily constructed.

a. Bond Percolation

At the initiation of secondary desorption, a fraction p; of

bonds are vapor-occupied (initial sources). At any stage p>pi,

the fraction of bonds allowed for vapor occupancy is p. Some

allowved pores will be connected to initial sources, some will be

connected to generated sources in the newly allowed interval, p-
P;ir and some will be isolated without access to either type of

sources. Denoting the actually occupied fraction by Pb(p;pi,fp)

and the isolated fraction by Ib' wve obtain

Pp(pip;,£) = P - I, (pip;.£)) (131

The fraction Ib consists of isolated clusters of bonds of various

sizes. A bond in any such cluster has size 1in [rd, ril

(probability p—pi) and may not be a source bond (probability 1-
fp). Furthermore, all perimeter bonds have sizes in the interval

(o, rd] (probability 1-p). Therefore, the total isolated fraction

at any stage is

«

I (pip;.£ ) =§

n n t
b N Bn(p~pi) (l-fp) (1-p) 'n (141

1

vhere Bn is the configuration coefficient (16)
2(Z2-1)((n+1)(Z-1)-11!
n [15]
(n—l)!tn!

16



and tn is the perimeter,
tn = (Z-2)n + Z {161

The infinite series in [14]1 can be evaluated (16,1)

. _ _ _ _ _ _ 2(Z-1)
Pb(p,pi,fp) = p (1 fp)(p P;) [(1-p)/(1-x)] (171

wvhere x is the solution in the interval (0,1/(Z-1)] of

x(1-x)272 - (1—fp)(p—pi)(l—p)z—2 (18]

Equations [17] and (18] give the accessible fraction for

bond percolation and a nonzero nucleation probablility fraction

fp. The latter can vary with p as desired. The agreement with (1)

in the absence of nucleation (fp=0) is noted. Figures 3a and 3b

depict the accessibility functions obtained for pi=0 (primary

desorption), and pi=0.05 (secondary desorption), respectively,

for Z=4 and various values of the constant fp. It 1is apparent

that, in the presence of nucleation, the sharpness of the

primary desorption curve is greatly reduced as the

nucleation
probabllity increases.
b. Site Percolation
A similar approach is taken for site percolation. We shall
omit the details and simply note that both the configuration

coefficient and the perimeter are different than those in bond

percolation (16,1). The final result is
_ _ _ _ _ _ Z
Polaiay,£) = g = (1-£.)(q-q;) [(1-q)/(1-x)] (191

wvhere x solves (18] with q, a; . fq substituted in place of p, P

£ , respectively. The accessibility functions are qualitatively

b

similar to those in Fig. 3a as shown in Fig. 4.
c. Mixed Bond-Site Problem

We next examine the site accessibility in a bond-controlled
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process, which is most pertinent to capillary desorption, and to

many. other drainage processes as well. For simplicity, it is

assumed that only sites are 1likely to generate sources

(nucleation,. in pore bodies only), although the alternative 1is

also straightforward (36). The quantity of interest 1is the

accessible fraction of sites, given an allowed fraction of bonds.

Since the process is controlled by bonds, the fraction of

isolated sites is determined by firstly evaluating the fraction

of 1isolated bonds, and subsequently calculating the number of

associated sites. The accessible fraction xs i will be
r

Xs'i = q - Is,b(p;pi,fq) {201

attention is pald to Is b* At any stage Lqr each bond

r
of an isolated cluster has size in [rd,

As before,

ril (probability p—pi).

The condition for the bond cluster to be isolated is that all

perimeter sites have size in the interval {o, rd] (probability 1-

p). Additionally, none of the sites contained in the 1isolated

cluster may be a nucleation site. The probability of the latter

event is (1—fq)n+l. The density of isolated clusters of size n is

thus
, _ _ n ., n+l ., |t
Pb,n = Bn(p p;) (1 fq) (1-p) 'n (211
The number fraction of bond clusters of size n is simply Pb n/n.
4

The associated fraction of sites is obtained directly by noting

that a bond cluster of size n defines a site cluster of size n+1,

that Z bonds emanate from each site, and that each site is shared

by two bonds. Then,
7 e n+l
I . = cmm % ommmme B (p-p.)™(1-£ )™ (1-p)tn (221
/b 2p=1 n " F q

Evaluation of the series leads to the final result
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xs . = [1—(1-p)z] - (1-f ) {[(l-p)/(l—x)]Z - (l—p)z]} (23]
sl aq
where x solves

x(1-x)27% = (p—pi)(l—fq)(l—p)z_z [24]

In the limit fq=0, wve obtain previously developed expressions for
secondary desorption in the absence of nucleation (1). Figures 5a

and 5b show the results obtained for Z=4, various values of f

q

(taken constant), pi=0 and pi=0.05, respectively. As with Figure

3, a notable effect due to nucleation is observed.

3. ARBITRARY SIZE DISTRIBUTIONS

The previous expressions for the mixed problem were based on

the assumption that site and bond distributions are related by

{12]. Fiqure 6 shows a schematic of this constraint for a fixed

bond size distribution. An increase in Z leads to a corresponding

shift of the site distribution towards larger sizes. This

interesting effect is worth noting since it couples geometry and

topology in the porous medium. The underlying principle is that

no pore body has size smaller than its associated 2 pore throats.
However, as noted previously, expression [12] is only the

marginal limit of the stronger statement (14)

q>1 - (l-p)Z

(25a]
for every g and p. In fact, it may be shown (36) that the
additional constraint

q2p® [25b]

derived from the condition that a bond has size smaller than the

adjacent two sites, must also be satisfied (see also (38)).

Equivalently,
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r v ' r v 't 7 o %
r us(r ) dr 1 € min {[f ab(r ) dr 17, 1—(Imb(r)dr) } [261
0 0 r

for every r. For any distributions, the equality sign must be

obeyed at the limits g=p=0 (r=w) and g=p=1 (r=0). Obviously, a

large variety of such functions (e.qg. overlapping, non-

overlapping) satisfy the above restrictions. Generalizing the

previous results to arbitrary sizes as dictated by [25] is not as

trivial as it might appear. 1In fact, it is shown below that the

limiting relationship 1[12]1 plays a rather special role 1in a

network model and facilitates calculations considerably.

x
(i) Associated Fraction g

%
To proceed, the associated fraction g will first be

defined. Consider a fraction of bonds p and sites d,

wvith the same radius

«w ' [ «© t 1
p = Iub(r Yar , q = fua_(r )dr (271
r r

and assume that all such elements are actually allowed (they are

occupied by vapor as in primary adsorption). By definition, all

bonds are associated (terminate) with sites of size greater than

*
r. The number fraction of these sites, q , will be termed the

x
associated fraction. It will be shown that g>q , regardless of

the particular size distributions,
* Z
g>q =1- (1-p) (281
wvhich is expression [12]1. The proof is straightforward:

The probability that a randomly picked site is associated with at

least one bond in [rd, «] (probability p) is equal to one minus

the probability that all of the bonds emanating from it
(0,

are 1in

d] (each having probability 1-p). The probability of the
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latter event is (l-p)z,

and Equation [28] follows immediatelyQ

The latter holds both below and above the percolation threshold,

Pos and yields the total fraction of sites associated with either

finite or infinite bond

clusters.

To obtain the fraction contained in finite clusters
requires some analysis. Bond clusters of size n have the usual
probability

n t
Pn = Bnp (1-p) n [29]

vhile their number is Pn/n. Applying the usual reasoning that 2

bonds emanate from each site, each bond is shared by two sites,

and (n+l) sites associate with a bond cluster of size n, the

total fractlon of sites assoclated with finite bond clusters 1is
* YA ©
q., = -—— E (n+1)I[P_/nl
F 2 n=1 n
Z 0 n+l
= sm B a-lo B,p" (1 - p){Z72In+Z (301
2 n=1 n

The latter becones

* yA yA
dp = [((1-p)/(1-x)1" - (1-p) [31]

wvhere x 13 the solution of
x(1-x)27% = p(1-p)%2 (321

For P<p. = 1/(z-1), the relevant root 1s x = p. sSubstitution in

[31] ylelds [28] agaln. oOn the other hand, for P>P.r [31] ylelds

only the fraction associated with finite bond clusters. The

fraction contalined in the infinite bond cluster, q:, 1s obtalined

by deducting [311 from (28]
q =1 - (x/p)2/ (272 [331
where x solves [321.
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(11) Absence of Nucleation

We are now 1in a position to proceed with the general

problem. We shall first consider secondary desorption 1in the

absence of nucleation, thereby extending the percolation problem

in (1) to arbitrary size distributions. The mixed bond-site

problem is examined.

At the concluslon of adsorptlon (r=ri), a set of bonds and

sites of fraction Py and qy respectively, are vapor-occupled.

Glven Pjr the assoclated fractlon of sltes q: is defined. The

*
remainder set (ql—ql) is occupled by vapor but it is assoclated

(connected) with bonds that have slze smaller than

- At any

) %
stage rd<r1 during secondary desorption, this fraction (qi—ql)

may further be viewed as connected to bonds in elther [rd, rll

(probability p—pl) or in (O, rdl (probability 1-p).

consider now an 1lsolated bond cluster. It contalins interior

bonds in [rd, ril {probability p-pi), perimeter bonds in [0, rdl

(probability 1-p), and includes sites that may not be 1initlal
source sites. The probabllity for a site to satisfy the latter

* *
condition 1is (l—ql)/(1~q1), 1f one notes that all sites in q, are

contained 1in clusters that have bonds in [ri, «] (probabllity

pi), thus, they cannot be assoclated with bonds of smaller size.

The fraction of sites assoclated with such bond clusters \1is

calculated as before. We obtain the lsolated fraction
Z o nt+l

1 = === I ————-

n t ¥ _n+l
s b Bn(P‘Pi) (1-p) 'n [(l—qi)/(l-qi)] [34]
’ 2 n=l n

wvhich, after evaluation of the serles becomes
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_ _ _ Z _ & _ _x
Is,b = {[((1-p)/(1-x)] (1-p)7} (1 qi)/(l qi) [(35]

vhere x is the solution of the equation

x(1-x)272 - (p-p;) (1-p) 272 (1-q;)/(1-q}) (361

The accessible fraction of sites at any stage p can be now

evaluated. It shall consist of three terms

X g =4a - I p+8; (371

*
The presence of @ 1instead of g on the first term reflects the

fact that in this bond percolation process, only sites assoclated

with allowed bonds (of fractlon p) are eliglble (contrast with

{201). The second term is the usual isolated fraction. Flnally,
Si denotes the fraction of initlal vapor sites, which are
surrounded by bonds of size in [0, rd] (probabllity 1-p)

s, = [(aq;-q;)/(1-g}) 1(1-p)? [38]
This latter set contalns vapor-occupled sites not included in q*,
and must be accounted for. Upon substitution of (28], (351, and

[38]1 in (371, the simple expression is obtained
= - —ar - _ Z
xs,i =1 - [(1 qi)/(l q;)1 0(1-p)/(1-x)1] (391

wvhere x solves [36]1. It 1s Interesting to note that, in contrast

to the nucleation case below, the accessibility functions are

independent of the current value of the site fraction q, although

they do depend on the initlal value qy - In the absence of

nucleation, the only way a liquid-occupled site changes occupancy
is by becoming connected to a source site via allowed bonds. This
‘mechanism is independent of the site distribution function.

We test three limiting cases. First, Xs'i=l in the 1limit

*x
qg.=1, as expected. Second, if q,=q, (all source sites assoclated
i A |

with source bonds), ([391 and [(36] reduce to the expressions

derived previously (1). Finally, when q1=0, ve obtaln the
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*
ordinary percolation results in (12), (1), since qy and p; are

necessarily equal to zero. Figures 7a and 7b show the resulting

accessibility functions for the two values pi=0 and pi=0.05, for

various values of q; and for Z=4. The notable departure from the

previous cases (1) should be noted.

(111) Nucleatlion Effects
The above can be easily extended to include nucleation

effects. For simplicity, only nucleation in sites (pore bodies)

will be considered. At any stage rqr @ fraction (in general

variable) fq of the sites with radius r>rd can be activated ¢to

generate 1Internal sources for vapor occupancy of adjacent sites

and bonds. The method of evaluating accessibility is as follows.

We distingulsh four sets of sites. One contalns all sites

*
assoclated with bonds in [rd, o], of fractlion q . The second set

is the usual isolated fractlon, with the additlional
that

requirement
sites may neither be initial sources (probabllity per site
(1-q1)/(1—q:)), nor nucleation sites (probability l—fq). The
isolated fractlon becomes

Z = ntl n t n+l x .n+l
IS,b=-;—n§1__;__Bn(p—pi) (1-p) n(l—fq) [(1—q1)/(1—q1)] (401

vhich is evaluated to yleld

Z Z *
Is,b = (1—fq){[(l—p)/(1—x)l - (1-p) }(l-—qi)/(]_-qi) (411

The third set comprises sites that are initlally occupled by
vapor and completely surrounded by liquid-occupied bonds in (0,

rdl (probability 1-p). The final set contains all sites that are

in [rd,m], but not associated with bonds in [rd,m], they are

initially not occupled by vapor (probability (1—q1)/(1-q:)), and
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they become nucleation sites (probability (q—q*)fq). The

accessible fraction is, thus,

X, o = {1-(1-p)%} - L(1-£_)(0(1-p)/(1-x)1% (1-q.)/(1-q¥)-(1-p) %1}
r q 1 1
%
+ {(l-p)z(l—qi)/(l—qi} £ 1q-q VE_(1-q.)/(1-g")} (421
q i i

wvhere x is the solution of

x (1-x)272 = (p—pi)(l-p)z-z(l—f ) (1-q,)/(1-q;) (43]

q i i

Note that,

unlike the previous case, the site accessibility here

also depends on the current value of g. One interesting limit is

p=0 in the case qi=pi=0. Then, xs,i = qfq, as expected, since

only the sites that can nucleate are occupied by vapor. Also in

agreement, the percolation 1limit considered in (1), (12) 1is
obtained, when q1=pi=0 and £q=0.

4. DISCUSSION

An illustratlon of some of the above effects will be next

presented. Figure 8 deplcts calculated primary desorption curves

for nitrogen at 78°K. A Bethe lattice representation was used,

with a coordination number Z=4. Both bond and site sizes

vere
assigned a Rayleigh distribution
n (r-x,.) n (r—ro)2
@, (r) = ——= —-———e—— exp{- —--- —-———==——- } (44]
2 (ra—ro)z 4 (ra—ro)z

with minimum and average values, r0=10 Angstrom and ra=20

Angstrom for bonds, and r0=15 and ra=45 for sites, respectively.

Liquid saturations were evaluated using (42) along with the

assumptlons that only sites contribute to volume and the number

fraction is also the volume fraction. The nucleation fraction £

wvas held constant in one run (Flgure 8a), and allowed to lncrease
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during the progress of desorption in the other (Figure 8b),

according to the ad hoc expression, fq=exp(—an/on). To a

different degree, both cases reflect the increasing likelihood

of heterogeneous nucleation as the relative pressure decreases.

We note no discernible differences in the results of these two

different models. Both Figures show that the desorption isotherm

may rapidly 1lose 1its percolation character, provided that

sufficient nucleation iIs allowed. The deviation resembles vapor

compressibility (20) or finlte size (9) effects. Similar effects

exist in éecondary desorption.
In the above, the nucleation fraction was 1left largely

arbitrary. In reality, this 1Is in general not the case, as

pointed out by the simple model of Section 2. To 1llustrate the

difference, nucleation effects corresponding to (11] are shown in

Figure 9, with all other parameters held constant. It 1s recalled

that the parameter # 1s the ratio of pit size to pore size, in

general a small number ( e.g., 0.1-0.3). For the latter range, it

is suggested from the results of Fiqure 9, that nucleation

effects 1In capillary desorption may not be overemphasized.

Equivaléntly, i1f either one of the previous ad hoc models were to

be wused, constant fractions Eq should be not greater than 0.05,

while parameter "a" should be not smaller than 5. Of course, the

self-similarity and uniformity assumed in [11] are not expected

to hold in general, although the former iIs often a property of

fractal structures. A more accurate model may perhaps be

constructed with the parameter & being a distributed variable, to

reflect wettablllity non-uniformity, and the additlonal Increase

in the fractlion of activated nucleatlon sites upon a pressure
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decrease.

As stressed previously, homogeneous nucleation should be

negligible in properly designed desorption experiments, while

effects of heterogeneous nucleation may be present, since the

latter 1is size-specific. As stressed above, and for typlcal

cases, thls llkelihood (fq) is expected to be small in the range

of relative pressures near the onset of desorption.

At the same

time, it should be kept in mind that, 1in porous medlia with long

tails in the size distributions and with sufficlent heterogeneity

in wettabllity properties, heterogeneous nucleation effects can

become comparable to percolation. Such may be the case in phase

change processes in natural porous rocks (e.qg. geothermal

reservolirs).

The effect of arbitrary size distributions on secondary

desorption is shown in Fiqure 10. To 1illustrate a notable

feature, distributions with a maximum cut-off size in nucleation-

free (£q=0) processes were consldered. We take Rayleigh-type

statistics with r0=10, ra=15, and rb,max=25 Angstrom for bonds,

and 15, 25, and 45 Angstrom for sites, respectively. All other

parameters take the same values as In Fig. 8. We note that some

of the secondary isotherms are flat for a range of relatlive

pressures iafter the initiation of desorption, since no phase

change would occur until the pressure 1is reduced to that

corresponding to the 1largest pore throat. This feature is

inherently absent in media satisfying [12] and it could be used

to 1identify the largest throat slze, provided of course that

other effects (resolution, nucleation, compressibility, etc.)
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would not obscure the interpretation of the data.

It should be emphasized that in a network model, bonds and

sites can be assigned sizes at random provided that relation [26]

is not violated. We recall, that the first of the restrictions

follows by noting that the fraction of sites in an interval (rd,

w) 1is, 1in general, greater than the fraction associated with

bonds in the same size Iinterval. Similarly, the second

restrictlion expresses the fact that the fraction of bonds in the

size ._interval (O,rd) is generally greater than the fraction

assoclated with sites in the same size interval (36). When local

hysteresis in bonds during the two processes

(adsorption/desorption) is neglected, relationship [25b] does not
enter in any of the accesslibility calculations although, of

course, the distributions must still satisfy the restrictlion.

Incorporating the local hysteresis into a network model does not

appear to be as trivial as one might expect, even when the

volumetric contribution of bonds is neglected. While primary

processes and secondary adsorption remain unaffected by local

hysteresls, secondary desorptlon would be altered. additionally,

1f the bond volume 1is not ignored, all processes would be

influenced. The significance of this effect Is currently being

investigated.

In our previous work (1), the followlng relationship between

the slopes of secondary desorption and primary adsorption at the

onset of desorption

_ a _ Z-1
dSL,SD/dSL,A =1 (1 pi) [45a]

vas suggested as a means for the direct estimatlon of the throat

density function ab(r), subject to [121. The extension of [45al

28



to the more reallstic case [25] can be readily obtained

a(l-py)  (1-q)  (1-qp)?
ds /ds = 7 { - ] [(45b]

BeSDETLAA T F(Imqy o) (1-p;)2

In contrast to [45al, however,

now it is a differential rather

than an algebraic equation that relates data (LHS) to parameters

(RHS). When [12] 1s assumed, [45al can be used to estimate Py

and the adsorption data would yleld the volume distribution

Vs(r). In the general case (28], on the other hand, an assumption

about the volume distribution Vs(r) is necessary, for further

progress. The adsorption data may then yield q (hence, us(r)),

wvhich 1Is to be used for a (numerical) Integration of (45bl.

Figure 11 portrays a typical schematlc of secondary desorption

isotherms for some model distribution satlsfylng [25a)l. It can be
reasonably argued that an assumptlon about the volume of a site

is more justifiable than the postulate [12]. For both cases, of

course, the coordination number Z must be properly chosen ¢to

. match the percolation threshold. This may require a trial-and-

error procedure. It should be also cautioned, that relations (451

have been derived based on a Bethe lattice representation, and

may not warrant application to other networks.

A 1limitation of the above analysis 1is the thermodynamlic

equilibrium assumed 1n the occupancy of pore elements, although

one should also note the kinetlic considerations In estimating

nucleation effects. Equilibrium times associated with capillarity

in porous media vary with the size distributlons, among other

variables, 1long times associated with systems with disparate

scales (26). Under this qualification, the above may be extended
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{areﬂdohvious directions.‘ Finally,

-capillary ;sorption .:processes:in:;porous;.medla..

~nhucleatlion. . .and.. pore:

rdetall.. Ity wconcluded: that. homogeneous

:yafﬁeqt>thsﬂﬂesgﬁpt19nﬂiso£hermsﬁ;

r,account : for. . the  latter .case :in Bethe:.lattlice

~:compressibllity . (20) .and . finite.;.size :(9),.,

;irexplained by nucleation. .

vileads; o

w=¥While primary.desorptlion ds amnaffected,:

= inotably .influenced,.

Sy £

to other growth processes perhaps with some modifications.

Nucleationﬁ in multicomponent systems in porous media (e g. :oil-u

gas., mixtures) fare interestlng processes,'iwhere dlffusion;xmay

1ntroduce addltlonal non- local effects.?;Appllcation of the more

general relationship [25] to immiscible phase equilibria and flow

(caplllary pressure,A phase permeabllities (31 32)) would affect

currently ‘used models for quasistatic flow Ain” porous media.

;Extensions to other related processes following the lines of (25)

”%hé" investigation Mof such

‘processes in regular lattices may be worth considering

' 75+ SUMMARY

7 The: present..study -is..an-extenslion of ..previous : work . in
..;The Lssues . of

~slze.distributions were explored . in  .more

~nucleatlion -may .be

= Slmple.models were developed. to

i pore. . networks.

Deviations from a percolatlon. behavior, :.previously attributed .to

-Likewlse be

i Consideration:. of; largely; arbitrary pore size distributions

+ko azmonztrivial.modification ;of the previous expressions.
¢ 8econdary. processes ;are
= particularly..in. the, presence;of nucleation.

-1s suggested..that: such. effects .are dnherently present.to:-any



netwvork model of porous media, and should be accounted for in the

various ‘capillary processes, where site occupancy HQ*ﬁ“iﬁmétric

estimates are dictated from bond connectivity.
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