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ABSTRACT

+ . . . . u
This is a study on the use of alternative nonlinear methods in automated well test
analysis, production and injection schedule optimization and in reservoir simulation.

In automated well test analysis the advantages and disadvantages of second-order partial
derivatives are investigated. Newton's method is shown to be prone to difficulties, however by

adjusting the eigenvalues of the Hessian matrix, the performance can be substantially
improved.

In optimizing the cyclic steam injection process, Newton's method is compared with the
Quasi-Newton method using a simplified model to simulate the process. The Quasi-Newton
method does sxgmﬁcantly better than Newton’s method in saving function evaluations. Specific
operating strategies for the process are identified: the need to eliminate soak, the need for

greatly increased steam volumes and temperatures, and the need to optimize a combination of
economic objectives.

The two methods are then compared in reservoir simulation. Tests show that while it is
possible to use the Quasi-Newton method to build up inverse Jacobians as the iterations
proceed, for difficult problems the method requires the use of matrix solution techniques. The
method then becomes directly comparable to Newton’s method. Tests show that depending
upon the linear scheme used, and the difficulty of the problem, the Quasi-Newton method may
prove to be less expensive than Newton’s method in certain cases.

The study also addresses the issue of building scalable parallel reservoir simulators. Resi-
dual constraints are used to improve the robustness of the parallel matrix solution scheme. The
solution of the constraint matrix is shown to be a critical point in achieving good performance
on a parallel machine.

viii



1. INTRODUCTION

Many computational tasks in petroleum engineering require the solution of nonlinear
equations or the optimization of a nonlinear function. Both problems are very similar. To find
an extremum of a function we look for the point where its gradient, g, becomes zero, i.e. we
solve g(x) = 0. This is identical to the problem of solving a nonlinear system of equations
f(x) = 0. Because of this similarity, the same nonlinear iterative techniques apply to both prob-
lems, the classical technique being Newton’s method.

Although both problems are similar, in practical applications the performance of
Newton’s method differs significantly from one application to another. The modifications
made to Newton’s method reflect the issues that are important for each problem.

When solving nonlinear equations, Newton’s method usually converges rapidly. So
modifications to the method concentrate on reducing the costs involved.

. When minimizing a function, the convergence of Newton’s method becomes an issue;
this has two aspects to it. Firstly, convergence to the solution of g(x) = 0 often requires some
modification to the method. Secondly, even if the method solves g(x) = 0, this may not be the
solution of the original minimization problem. Modifications to the Newton’s method for this
case therefore attempt to improve convergence. Cost is a problem only if the derivatives are
time consuming to evaluate, for example if they have to be evaluated by finite-difference .

*So zero-finding and function minimization are at the same time very similar and also very
different. This study explores some alternatives to Newton’s method in automated well test
analysis, optimization and reservoir simulation.

1.1. SOLVING NONLINEAR EQUATIONS

The solution of the problem
f(x)=0

is required in many forms of engineering problems. For example, such a solution is required at
each time step in fully implicit reservoir simulation. If f is linear in the unknowns (or can be
linearized in some way) then the system can be written as Ax = b, where A is the matrix of

the coefficients of x and b the vector of constant terms from each equation. The solution is
then obtained in one step.

Iterative techniques are needed when the problem is nonlinear. Newton’s method for
solving this system is based on starting with an estimate for x and constructing a locally linear
model of the function, using the truncated Taylor series expansion

f(xk + Axk) = f(xk) + J(xk)Axk

where J is the Jacobian matrix, with elements Jy= (afi)/(axj). We wish to take a step to the
zero of the linear model, so we set f(xy + Ax) = 0 and obtain Newton’s method for a system
- of equations (also termed the Newton-Raphson method)

JkAxk = _fk

Xk+1 = Xk + AXy
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Newton’s method is quadratically convergent when close to the solution, so it is a very
atractive method. However the matrix solution required at each iteration can be expensive
when the number of unknowns is large.

1.1.1. Reservoir Simulation

"In fully implicit reservoir simulation all fluid and reservoir propemes are evaluated at the
unknown level of time, and the resultmg system of equatlons f(x) = 0 is solved by Newton’s
method. A good initial guess for x is always available since the value at the previous time
step can be used. Moreover by reducing the time step size the initial guess can be made as
close as desired to the solution. Convergence of Newton’s method in simulation is therefore
always possible, and will usually approach a quadratic rate of convergence. However, there
are a very large number of unknowns (the number of grid blocks times the number of equa-
tions at each grid block) to be found at each iteration, so a great deal of expense is involved.

To reduce this expense, several alternative methods to formulate the problem or to solve
the nonlinear system are possible.

1.1.2. Linear Formulations

The most economical techniques for reservoir simulation avoid Newton’s method alto-
gether and formulate the simulation as a linear problem. This is done by evaluating fluid and
reservoir properties at the old (known) level of time or by assuming that the properties change
linearly with respect to x. With linear formulations, the solution is obtained in one step so

substantial savings result. Depending on the details of the formulation, further savings are pos-
sible, for example: »

° The IMPES method treats pressures as the only implicit unknowns, so the matrix
- problem has only one equation per grid block. Fluid and reservoir properties are
evaluated at the old level of time. The small size of the matrix and the lack of itera-

tion together make IMPES the fastest method for the problem classes for which it is
suitable.

) The Sequential Solution method requires the sequential solution of an IMPES type
matrix for each equation at a grid block. If, for example, there are three equations
to be solved at each block (pressure, oil saturation and water saturation), the cost of

solving three nth order matrices is less than the cost of solving one matrix of order
3n, so this method also saves on the matrix

e  The Linearized Implicit method is the most expensive. Fluid and rock properties
are assumed to vary linearly with x, so the method is equivalent to the first iteration

of Newton’s method. However by avoiding iterations it is still at least three to four
times cheaper than Newton’s method.

While all linearized methods offer savings, in return they sacrifice stability with respect to time
step size; all are less stable than the fully implicit Newton’s method (Aziz and Settari, 1979).



1.1.3. Nonlinear Formulations

The more stable methods treat simulation as a nonlinear problem and require iteration. To
cut down on expense, the approach often used is to save time on the matrix solution step by
.some means and make up for this by performing a few extra iterations.

e  The Adaptive Implicit method (Thomas and Thurnau, 1981) treats a subset of the reser-
voir unknowns implicitly. The remaining unknowns are solved explicitly and eliminated
first, so the size of the matrix problem is reduced to just that needed to handle the impli-

- cit variables. This method has become quite popular since it retains the strengths of
Newton’s method (i.e. implicitmess) where needed, while saving on the expense.

® The Inexact Adaptive Newton method (Bertiger and Kelsey, 1985) is a variant of the
adaptive implicit method (it uses a different treatment for the diagonal terms). Bertiger

and Kelsey report both methods achlevmg 5 to 30 time savings compared to the fully
implicit method.

. The Inexact Newton method (Dembo et al., 1982) uses the fully implicit equations
unchanged. The accuracy of the solution is vaned instead - starting with a low accuracy
and solving to increasingly higher accuracy as the iterations proceed. Time is saved by
solving to low accuracy at the earlier iterations.

e  The Quasi-Newton method (see Dennis and Schnabel, 1983) is a different approach to
solving the nonlinear problem f(x) = 0. The method stores the values of f from each
iteration and can use them to build up an approximate Jacobian. In practical application
it reduces the number of Jacobian evaluations and factorizatons needed to reach the solu-
tion, at the expense of convergence rate. The Quasi-Newton method has had very good
success in optimization and some success in solving nonlinear equations in other fields.
For reservoir simulation Nghiem (1983) proposed a method dubbed the QNSS (Quasi-
Newton Successive Substitution) and reported success with it in solving the pressure
equation in compositional simulation.

. The latter part of the study explores the application of the more popular Quasi-Newton
methods to reservoir simulation problems. It shows that the Quasi-Newton method .can
offer time savings in certain cases but suffers from other drawbacks. If the Jacobian
matrix cannot be formed accurately, or if the number of unknowns at each grid block is
large then the method is a primary contender, otherwise it seems best suited to be a
backup option for a primary method that is closer to the true Newton method.

1.2. MINIMIZING OR MAXIMIZING A FUNCTION

The problem of maximizing or minimizing a scalar valued function is closely related to
that of nonlinear systems of equations, but there are some important differences. If the func-
tion, F, is linear in the unknowns, then it is unbounded on both sides and there is no minimum
or maximum unless F is constant. A bounded minimum or maximum will only occur at con-
straints. Solutions to this type of problem are found using linear programming techniques.

Newton’s method applies when the function is nonlinear. The nonlinear system is now
based on finding the zero of the m gradient of F, i.e. we solve g(x) = 0. The resulting itera-
tive scheme looks identical to Newton’s method for systems of equations:
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HyAxy, = —gy

Xk+1 = X + AXy

except that the Jacobian matrix is replaced by the Hessian H [(H,| (azF)/(ax,ax,)] and the
original vector valued function is replaced by the gradient g (gi 0 /Bx.)

For the kinds of optimizaton apphcatlons envnsaged in petroleum engineering the number
of unknowns is often much smaller than in reservoir simulation, so the cost of the matrix solu—
tion is no longer an issue. However a new set of problems appears

° Since the gradient is zero at both minima and maxima, we cannot be sure that the
stationary point reached w1ll be the one desired.

® The Hessian may be ill-conditioned so numerical instability occurs during the matrix
solution. This problem does not occur in reservoir simulation since the matrices are
diagonally dominant and pivoting for numerical stability is usually not required
(except among the phase equations at a particular grid block).

. Newton’s method is based on a quadratic mode! of the function. At points far from
the solution this model may be a poor fit so quadratic convergence may not be
obtained. Unlike in simulation, we do not necessanly have a good starting guess to
begin with.

° Evaluanng the gradlem and Hessian is expenswe if they have to be found by finite-
difference. This is the principal expense in optimization.

So unlike its application in simulation, a primary concern in Newton’s method now is to
ensure convergence to the required extremum. Cost savings now focus on minimizing the
number of function evaluations needed to evaluate the gradient or Hessian, instead of on the
matrix solution. So even though the basic method is unchanged, the important issues have
changed quite a bit. We look at two different application areas for Newton’s method and
specific variations that attempt to solve such problems.

1.2.1. Automated Well Test Analysis

In this work, we studied the use of a_variation of the Newton-Greenstadt (Greenstadt,
1967) method that solves both the problem of ill-conditioning and choice of direction. Tests
show that this technique can greatly improve the convergence behavior of the otherwise fragile
Newton method. Performance comes close to the popular Gauss-Marquardt method

(Marquardt, 1963), but only exceeds it when initial guesses are good or when ill-defined
parameters are present.

13. OPTIMIZATION

Following the study on automated well test analysis we looked at the problem of non-
linear optimization of an EOR process. In automated well test analysis both gradient and Hes-
sian can be obtained analytically. With less tractable functions they have to be obtained by
finite difference, which can be very expensive. Quasi-Newton methods offer a way to save on
this expense. Starting with the identity, I, they build up an approximate Hessian using gradient



,_5_

information picked up at each iteration. Such methods can potentially save on function evalua-
tions and also retain positive-definiteness of the Hessian matrix to ensure a descent direction.

We compare Newton and Quasi-Newton methods on optimization of the cyclic steam
injection process, and obtain some results pertinent to the process itself. Optimization shows
that significant improvements in efficiency and productivity can be made by using optimal
operating policies. It shows that operating at a high steam temperature makes the process much
more amenable to large improvements in performance. Operating at a high steam quality is less

: effectwe Also suggested by the optlmxzer are some changes that appear to be desirable under
all circumstances - minimization of soak time and greatly increased steam injection volumes.

1.3.1. Parallel Reservoir Simulation

The optimization of cyclic steam injection was performed using a simplified mathematical
“model. In other apphcauons a numerical simulator may be needed to more accurately model all
phenomena. However since 50-100 full simulation runs may be needed to find an optimum,
this may not be feasible on a conventional computer. The study finally looked at the problem
of reservoir simulation on a parallel computer. We showed how a fully parallel simulator can
be designed and constructed. We explored some parallel matrix solution schemes and show that
parallel reservoir simulation may be viable for practical applications. Specifically we showed
that the Red-Black ordering with ‘Watts (1971) line corrections can provide a highly parallel
solution scheme suitable for'a very large number of processors, yet does not suffer greatly in
serial against the best serial algorithm. We also investigated the effect of the line corrections on

robustness and speedup and show that they represent a critical point in the parallehzanon of a
simulator. SRS T .

In summary, the purpose of this thesis can be stated as the exploration of nonlinear tech-
niques in automated well test analysis, production schedule optimization and reservoir simula-
tion. Parallel reservoir simulation became a related objective in the final study. The order of the
material in the text follows the subjects of this study in the order stated above.
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2. COMPARISON OF FIRST AND SECOND ORDER METHODS
IN AUTOMATED WELL TEST ANALYSIS

Automated well test analysis has become a widely used technique in recent years.
Several references to automated well test analysis have appeared in the past (Padmanabhan and
Woo, 1976; Earlougher, 1977; Tsang et al., 1977; Padmanabhan, 1979; McEdwards, 1981). In
the past one of the difficulties with automated well test analysis was the evaluation of the
reservoir response functions in closed form. Rosa and Horne (1983) showed that it is possible
to fit well test data directly to the Laplace space models of well transient behavior - by using
the Stehfest (1970) algorithm to numerically invert pressure and its partial derivatives.

Comparisons of automated well test analysis with type-curve analysis or straight-line
analysis techniques (Rosa and Horne, 1983; Barua and Horne, 1987; Guillot and Horne, 1984),
showed some definite advantages. These include higher resolution than type-curve analysis,
reduction of the danger of choosing incorrect straight lines, ease in handlmg of multiple flow
rate history, reduced test duration etc.

Although automated well test analysis is often an improvement over conventional
methods, practical problems sometimes occur in its application. One problem is when the data
does not exactly match the model. In such cases there is not much one can do beyond using
engineering judgement, data editing, and help from conventional techniques to obtain the best
fit. Another problem occurs in the actual fitting process itself; ideally the program should con-
verge rapidly to the optimum for the given data and the selected model. This does not always
happen. Conventional analysis techniques can be used to give the method a good initial guess
but it is also desirable for the nonlinear algorithm to be quickly convergent.

When ill-defined parameters are present, the fitting process tends to be adversely affected.
Moreover, many common reservoir models are functions of different parameters over different
time ranges (for example, the wellbore storage coefficient at early time, the permeability at
intermediate time and the drainage volume at late time), and are often difficult problems to
solve by nonlinear regression.

The most commonly used regression scheme is the Gauss-Newton method modified by
Marquardt’s algorithm - this is also termed the Levenberg-Marquardt method (Levenberg,
1944; Marquardt, 1963). This method usually converges rapidly so it has become popular for
least-squares estimation. However the method sometimes runs into difficulties so there is a
need for better estimation algorithms. In this study, a second order method based on Newton’s
method, specifically the Newton-Greenstadt method (Greenstadt, 1967), was examined to see if
it could handle situations where the Gauss-Marquardt method had difficulty and also to see
how it compared on more general problems.

. NEWTON’S METHOD

The method which is central to all of those considered here is Newton’s method for
rmmmlzmg a nonlinear objective function. The approach used is to expand the objective func-
- tion F in a Taylor series about the estimated value F; obtained at a particular solution X and
- to truncate the series after the quadratic terms. This gives the Newton approximation F~ to
the objective function:

N 1
FF=F+gl x-x)+ 0 x - x)T H; (x — x;) (2.1)
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where X is the vector of n nonlinear parameters, g the gradient vector:

_ _ | oF _ _
g = [gi] = [-——-—axj |X.] (2.2)
and H the Hessian matrix:
_ | o%F |
Hl = [th] = [axjan Ixi] (23)

. . * , . s *
We wish to find the point x where F is stationary so we equate to zero the gradient of F

oF*
3w B +H;(x-x;)=0 (2.4)
which leads to the iterative scheme:
Hip; = -g (2.5)
and - o
Xiv1 = X+ PPy (2.6)

Where p is a step-length parameter obtained by a one-dimensional line search in the direction
p; such that the next calculated value of F be as small as possible.. Obtaining a precise value
for p will be expensive so an approximate minimum is usually accepted. The line search pro-
cedure is an important component of an optimization program, as it can significantly improve
convergence and also prevent divergence in some cases. In this work, the same procedure was
used on all the test cases to separate the effect of line searches on the performance comparis-

ons. In addition all the algorithms use penalty functions (Bard, 1974) to restrict the iterations to
feasible regions.

If F is quadratic in the unknowns then Eq. 2.1 is exact and Newton’s method converges
in a single iteration. Usually the objective function may not be quadratic. But as the optimum
is approached, the omitted terms in the Taylor series expansion become small, so Eq. 2.1 will
closely approximate the function. Thus Newton’s method will converge quadratically in the
neighborhood of the optimum. At points remote from the optimum Newton’s method approxi-
mates the function with the closest second order surface.

Newton’s method chooses a potentially desirable direction when the contours of the
objective function have a long, narrow valley or ridge. The eigenvalues of the Hessian matrix
reveal the presence of such features in the contours. Specifically if there exists a small eigen-
value then the contours will be elongated in the direction of the corresponding eigenvector.

The Newton direction can be determined if we perform the spectral decomposition of H

H=vVAVT
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where V is the matrix of eigenvectors and A the diagonalr matrix1 of eigenvalues. Now H is
symmetric so the matrix of its eigenvectors is unitary i.e. V' = V7°, and

H! = VAIVT

V forms a basis for this vector space so we can write the gradient as a linear combination of
the eigenvectors g = VT, and from Eq. 2.5 obtain the Newton step as

Hlg = VA IVTva

=VA~l®
Vl V2 V3 Vn
[xl % A xn]d

Now if the eigenvalue 7» is very small, then unless O is also coincidentally small, the
Newton step will have a large component in the direction of the eigenvector v;. So the method

makes long strides along valleys or ridges and avoids the hemstirching of a steepest descent
type method.

While Newton’s method has these advantages, practical problems occur if it is used in an
unmodified form.

° The Newton direction is not guaranteed to be a descent direction when far from the
optimum. In its unmodified form, Newton’s method may diverge and stop at saddle
points or maxima. The presence of negative eigenvalues indicates that Newton ]
method will move towards such a point.

° Even though the long steps along ridges and valleys are potentially desirable it may
not always be advisable to take these long steps since the quadratic model is only a
local approximation of the objective function.

° Furthermore, since the function does not change much in this direction (i.e. along
the valleys or ridges) it may be undesirable to move too far along it for the small
resulting decrease in the objective function.

° Small eigenvalues make H ill-conditioned, so numerical solution of Eq. (2.5) may
produce a poor result.

° Second partial derivatives are needed which are expensive to compute and compli-
cated to evaluate.

22. THE NONLINEAR LEAST-SQUARES PROBLEM

For nonlinear least squares the objective function is the sum of squares of the residuals
" and has a structure which allows for special treatment to avoid some of the problems of
Newton’s method:

F= % T (x) f(x) (2.7)



where

fx) =[] =F(x, t) - y; (2.8)

Here (t; y)) are a set of m observations of an independent and dependent variable (typically
time and pressure in a well test) and X is the set of N unknown reservoir parameters. The
reservoir response function F is a nonlinear function of the unknowns X and time t.

For this objective function the gradient is

g(x) = J(x)T f(x) (2.9)

where J(X) is the m X n Jacobian matrix:

J(x) =iyl = [%} (2.10)
J
while the Hessian is
He) = JooT Jix) + i;"gl £,(x) Gy(x) @.11)

where G; is the n X n matrix of second partial derivatives at the observation point t;

o3,
Gi(x) = [gj] = [‘a-x—jé-;aJ (2.12)

So the Hessian matrix has a combination of first and second partial derivatives. One of the

objectives of this study is to determine the relative merits of omitting or retaining the second
order derivatives.

2.3. DESCRIPTION OF THE PROCEDURES

This section discusses the propérties of some of the common nonlinear regression
methods and the method under study. For a broader view of nonlinear parameter estimation
methods, see Bard (1974) and Gill, Murray and Wright (1983).

All of the methods used here and elsewhere to improve on Newton’s Method are aimed
at guaranteeing that the solution is always moving downhill, which is usually achieved by
modifying H in Eq. 2.5 such that it becomes positive-definite, (i.e. all eigenvalues positive).

Four methods are discussed: Method of Steepest Descent, Gauss Method, Marquardt Method
and Greenstadt Method.

23.1. The Method of Steepest Descent

This method replaces H in Eq. 2.5 by the identity matrix I multiplied by a scalar A. In
this way the amount by which p; is changed in each iteration is directly proportional to the



-10 -

gradient of F with respect to that parameter. Thus the solution moves downhill most steeply in
the direction of the parameter which most reduces F, hence the name steepest descent. The
method of steepest descent is very simple, however it is slow to converge and often requires
hundreds of iterations to reach the minimum. Its performance is particularly bad when the con-
tours of the objective function resemble a long narrow valley. While Newton’s method makes
strides along the axis of the valley, steepest descent will move repeatedly back and forth across
the valley (i.e., hemstitching) in the manner of a heavy ball let loose on the side of a narrow
valley. Progress along the axis of the valley will be very slow.

23.2. The Gauss Method

This method takes advantage of the least-squares origin of the objective function and
treats the second derivatives in Eq. 2.11 as if they were zero. So H(x) = J(x)T J(x), which is
always positive-definite. In addition, since it is no longer necessary to evaluate the second
derivatives, there is a considerable savings both in computational time and in the algebra
needed to obtain expressions for the elements of the Hessian.

The method requires the solution of the normal equations at the kth iteration
J¢ Jupy = -7 £ (2.13)

These equations are similar to those that arise in linear least-squares problems. The Gauss
method can thus be thought of as sequence of linear least-squares problems. One difference is
that in nonlinear least-squares the equations need not be solved as accurately, for each solution
is just a step in an iterative process towards the minimum.

The Gauss method often converges as fast as the Newton method (which can be shown
to be the most efficient in convergence as the optimum is approached (Greenstadt, 1967). Note
that as the reservoir model F approaches the observations y, the term in Eq. 2.11 that is
ignored in the Gauss method approaches zero even in the Newton method. Hence the Gauss
and Newton method become approximately the same provided the model really is a close
match to the data so that the residual is small at the optimum. Gill et al. (1983) point out that
ignoring the second order terms is not justified when the residual at the optimum |1f(x*)!1, is

. * T *
comparable to the largest eigenvalue of J(x )" J(x ).

In theory the Gauss method should always converge to a minimum because it always
moves in a descent direction. However in practice, it is sensitive to computational instability
which corresponds to a near singular Hessian matrix H. This occurs partly because the under-
lying mathematical model is ill-defined, unfortunately well test analysis applications are often
prone to this kind of difficulty (Rosa and Horne, 1983), and partly because the condition
number of JT is the square of the condition number of J.

23.3. The Marquardt Method

The Marquardt (1963) method is a modification that can be made to either the Gauss or
Newton methods, although it is commonly used with the Gauss method. In this method a con-

stant, [L, is added to the diagonal elements of H. This is equivalent to adding W to the eigen-
values of H.
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In the case of the Newton method, i must be chosen such that any negative eigenvalues
of the original matrix H become positive, thus ensuring positive-definiteness.

With the Gauss method the eigenvalues are already always non-negative, however the
addition of the Marquardt parameter ensures that no zero or almost zero values occur, thus

preventing computational singularity of the matrix. For the Kkth iteration of the Gauss-
Marquardt method the normal equations become: '

Q¥ JetmDpy = ~I7 fi | (2.14)

The condition number is now much improved for (Aga i) (Agminti) < (Apax)/Amin). As
the iterations proceed the Marquardt parameter | is reduced by a factor of 10 in each iteration
where extrapolation (increase in size of step p) is possible.

The addition of 1L on the diagonal of the solution matrix makes the method act in a
fashion similar to the method of steepest descent in the early iterations. Thus when far from
the optimum the Marquardt method benefits from the initial rapid reduction of F characteristic
of steepest descent, yet converges like Newton’s method as the optimum is approached. Thus,

in this and earlier studies, the Gauss-Marquardt method was often found to converge faster
than Newton’s method.

After several iterations L becomes very small, and the method will approach the original
method (either Gauss or Newton).

The Marquardt method sometimes runs into difficulties. The Marquardt parameter W is
increased by a factor of 10 in each iteration where interpolation is needed to obtain a decrease

in the objective function. When passing through particularly ill-conditioned regions, the param-
eter may become quite large.

In such cases the method once again behaves in the manner of steepest descent but this
tends to converge slowly in such regions. Moreover when J is large the Marquardt step also
becomes very small, for:

H+ php =-g

1’ 1
—H+Ip=-—
Tuetpe-

so as JL — oo, the step becomes an infinitesimal one in the steepest descent direction. Theory
suggests taking the Marquardt step always, but in practice one also uses a line search pro-
cedure to adjust the step length. However, due to the poor steepest descent direction, the step
size will likely remain small so the method can get stuck taking small steepest descent steps in
ill-conditioned regions.

may be written as

23.4. The Newton-Greenstadt Method

This method is another way to guarantee positive-definiteness of the Hessian matrix.
Greenstadt (1967) proposed performing the spectral decomposition of H to reveal the presence
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of zero or negative eigenvalues, and then using the absolute value of the eigenvalues before
proceeding with the calculaton of the inverse. If one of the eigenvalues is zero or close to
zero, this means that the model is insensitive to one of the parameters or to one particular com-
bination of the parameters. Greenstadt has proposed that any zero or almost zero eigenvalue
be replaced by an mﬁmty, this is achieved by replacing the reciprocal of the eigenvalue by
zero when calculating the inverse. Thus any. parameter which does not affect the value of F
will remain unchanged. This is what is desired in an automated well test analysis and is the
opposite of what will occur with Newton’s method in which the least sensitive parameters are
changed most (by the long strides along valleys).

Thus the Newton-Greenstadt method should provide good performance for automated
‘well test analysxs applications, which require an algorithm that is robust, rapidly convergent,
~and which is not influenced by parameters that might not affect the reservoir model response
for a particular set of data. This study was performed to determine whether the Newton-
Greenstadt method has the desired properties in practical application, and whether the addi-
tional effort required to calculate the second derivatives and the eigenvalues results in a perfor-
mance advantage.

235 Penalty Functions

All the methods can use penalty functions [Bard (1974), Rosa and Horne (1983)] to
prevent the search direction from approaching infeasible regions. The penalty functions provide
a simple means of adding inequality constraints to the problem without having to change from
unconstrained optimization techniques to constrained techniques. To impose the bounds
a, 2 Xy 2 X, We use the two constraints ‘

hJEau""

Xa
hj,) =%q — by

" Such constraints are incorporated for each parameter as penalry functions added to the objective
function

F<——F+):
7

The constant O is small so the penalty functions normally have little effect on the conver-
gence. In addinon ay can be progressively decreased so as to have negligible effect near the
optimum--a simple way to do this is to let o; decrease with F. However when the search pro-
cess approaches the limits a5 or b, the corresponding constraint h; tends to zero. The
penalty function /h then -becomes large and deflects the search from the infeasible direction.
Since the penalty ncuons are now a part of the objective function, the first and second partial
derivatives of aJ/h with respect to X, must also be included in gradient and Hessian respec-
tively.

- 23.6. Line Search

‘ The line search procedure used in all of the algorithms is described in Bard (1974). It
works by first making a trial step length pg. It then fits a one dimensional quadratic function
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through the trial point X + pop and the current point X. The quadratic is obtained from these
two points alone for if we define a function

v(p) = F(x + pp)

its derivative is

ay _[ar)
ap ox
=g'p

At the kth iteration we know both gy and py, so dy/dp can be found. We also know
y(0) = F(x) and y(pg) = F(x + pgp). With these three values the three coefficients of the
quadratic ap“ + bp + ¢ can be obtained. In this way a quadratic model of the objective func-
tion is obtained in the direction of the step vector, and we can proceed directly to the minimum
of this quadratic using p = —b/2a.

Since the quadratic may not closely model the function, the algorithm uses certain heuris-

tics to guide further interpolation-extrapolation steps and the reader is referred to Bard (1974)
for details.

2.3.7. Solving the Matrix Problem

. The Newton-Greenstadt method requires the spectral decomposition of the Hessian
matrix. In practical applications, scaling of the Hessian matrix is first done to improve the con-
dition number. Bard (1974) suggests a simple scaling that reduces all diagonal elements to unit
magnitude. This amounts to rescaling all variables so that the curvature of the objective func-
tion at the minimum is unity along all coordinate axes. The proposed scaling makes all off-
diagonal elements less than unity except when the matrix is indefinite. This happens with
Newton’s method in the early iterations but experiments show that this does not affect the per-
formance of the nonlinear method i.e., steps sizes and directions remain acceptable. Bard
(1974) also reports that the method has given very good results.

The inverse scaled decomposition thus provides a numerically accurate and stable means
of applying the Greenstadt modification and obtaining the inverse of the matrix. For the matrix
H this is obtained by the following steps:

1. Divide each element Hy b)} IHuHuW’, forming the matrix B. All zero Hy; are
replaced by one before performing this scaling.

2. Obtain the eigenvalues A; and eigenvectors u; of B.
3.  Divide the jth element of u; by [Hj;1"* to form the vector ¢, the ith column of C.
4.  The inverse scaled decomposition of H is given by H™! = CA™!CT,

This scaling is useful also for Newton and Gauss-Marquardt methods. The Greenstadt
modification consists of adjusting the eigenvalues prior to forming A~ ~1. The method is applied
in two ways, in the traditional variation negative eigenvalues are replaced by their absolute
values to ensure a descent direction. This will not solve the problem of ill-conditioning because
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zero or near zero eigenvalues need to be handled too. So in the second variation all eigen-
values less than a given number (this includes all negative eigenvalues) are replaced by a large
positive number. The latter modification serves to both ensure a positive-definite Hessian and
to control the effect of ill-defined parameters on the search. For simplicity in nomenclature we
refer to these as method (a) and method (b) respectively. Method (b) was implemented by
replacing all eigenvalues less than 0.00001 by 5.

24. EVALUATION OF THE ALGORITHMS

Several types of well test were analyzed using the different estimation algorithms, and
two representative examples are illustrated here. The first is the field example analyzed by
Rosa and Horne (1983). The test is a drawdown in a homogeneous reservoir with storage and
skin at the producing well. Several runs were made on this data and these are referred to as
Case 1 through Case 5. The second test is a simulated test on a dual-porosity reservoir.
Reservoir parameters for the two test cases are listed in Tables 2.1 and 2.3. Figure 2.1 shows
the first test data with a typical match drawn as a solid line. The response without storage is
also drawn as a solid line to show the extent of semilog straight line data available for a
manual match.

The parameters normally sought in this type of test are permeability, storage and skin. In
addition, the porosity-compressibility product was also used as a parameter in some of the
tests. The experience of Gringarten ez. al. (1979) and Rosa and Horne (1983) has shown the
porosity-compressibility product to be a very ill-defined parameter that cannot be uniquely
determined with a graphical type-curve match or by using the Gauss-Marquardt automated
matching procedure. The inclusion of this parameter is therefore a stringent test of the
automated methods. The initial guesses used in the analysis of the first test are listed in Table
2.2. Those for the second test are listed in Table 2.4.

2.4.1. Storage and Skin, Case 1

Figure 2.2 shows the convergence obtained with 4 different estimation techniques. The
three standard parameters (k, s and C) were to be determined and the initial guess is a good
one. Figure 2.3 shows that the Newton method converges fastest of all and much faster than
Gauss-Marquardt. It appears that the second order information available in the Newton method
can lead to a dramatic increase in performance but, as will be shown later, this is not usually

the case. We also see that the (b) variation of Newton-Greenstadt is nearly as good as
Newton’s method itself. .

Figure 2.3 shows the variation of the eigenvalues during the iterative process of Newton’s
method. In the early stages one of the eigenvalues is a small negative number. This illustrates
one of the problems with Newton’s method - the Hessian matrix is not guaranteed to be
positive-definite.

In this case the two positive eigenvalues indicate progress toward the minimum in two
directions while the negative eigenvalue indicates progress towards the maximum in the third
direction.

The (a) variation of the Newton-Greenstadt method corrects this kind of problem by
changing the sign of the negative eigenvalues and in effect turns around the search so that it is
facing downhill in all directions. :
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Table 2.1. Data for storage and skin tests

At, hrs | Ap, psi
0.0167 26.
0.033 53.
0.05 78.
0.1 148.
0.15 210.
0.2 267.
0.3 369.
0.4 454,
0.5 519.
0.6 572.
Formation thickness  69.00 ft |} 0.8 654.
Oil Viscosity 0.90 - cpl|l 1.0 719.
Wellbore Radius 2.75 in || 1.5 804.
Oil Production Rate 333.95 RB/D || 2.0 849.
2.5 859.
3.0 864.
3.5 869.
4.0 874.
4.5 877.
5.0 882.
6.0 887.
7.0 893.
8.0 897.
10.0 905.
12.0 911.
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Table 2.2. Initial guesses, bounds and best-fit values
for storage and skin test are listed in Table 2.4

Permeability Storage dcy

(darcies)  Skin (bbl/psi)  (1/psi)
Case 1 0.01 7. 0.001 -
Case 2 0.01 7 0.001 0.1613e-6
Case 3 0.001 1 0.000558 -
Case 4 0.001 1  0.000558 0.2613e-6
Minimum 0 0 0.0 0.1e-8
Maximum 1 30 2.6 0.1e-4

Best-fit 0.0155 14.9 0.0085 0.2613e-6
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Table 2.3. Data for double porosity tests

Formation thickness 13.00 ft
Oil Viscosity i 0.30 cp
Wellbore Radius 3.48 in

Oil Production Rate 1245.00 RB/D

At, hrs | Ap, psi
0.01 46.
0.02 74.
0.03 91.
0.04 102.
0.06 113.
0.08 119.
0.10 121.
0.3 126.
0.5 127.
0.7 128.
1.0 129.
4.0 136.
7.0 139.
10.0 140.
15.0 142.
19.0 144,
24.0 145.
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Table 2.4. Initial guesses, bounds and best-fit values for double porosity test

Permeability Storage ¢t
(darcies) . Skin (bbl/psi) (1/psi) w A
Guesses used for Double-Porosity Cases
5 parameters 0.152 -1.1 0.001 - 0.36 0.8 e-8
6 parameters 0.152 -1.1 0001 O0le6 036 0.8 e-8
Guesses used for Storage and Skin Case 5
Case 5 0.01 (f 0.001 - 0 1
Inequality Bounds for Double-Porosity Test
Minimum 0 -30 0.0 0.le-8 0.001 de10
Maximum 1 30 0.6 0.le-4 5 Jde4
Inequality Bounds for Storage and Skin Case 5
Minimum 0 -30 0.0 0.1e-8 0 0
Maximum 1 30 . 06 0.1e-4 1 1
True values 0.452 4.1 0.0085 0.1e6 0.16 2.8 e-8
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Figure 2.2. Convergence, Case 1.
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Figure 2.4. Eigenvalues of Newton-Greenstadt method, Case 1.
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The convergence shown in Fig 2.2 shows that despite the negative eigenvalue during the
first iterations, Newton’s method still can go on, in this particular case, and find the true
minimum of the objective function. Though the algorithm is trying to maximize in the direc-
tion of the negative eigenvalue, its magnitude is small so little harm is done because the func-
ton increases only slowly in that direction. Since it is at the same time minimizing in the
other two directions, Newton’s method progresses towards the global minimum. Eventually the
small eigenvalue changes sign and becomes positive from the third iteration onward and then
minimization occurs in all three directions.

So even without a positive-definite Hessian matrix Newton’s method has managed to con-
verge in this case. However we expect that when the negative eigenvalue is large in magnitude
Newton’s method will run into trouble, and this happened in later tests. « ‘

Figure 2.4 shows the eigenvalues for the (a) variation of Newton-Greenstadt, prior to
applying Greenstadt’s modification. Note that although the method has simply turned around
one of the eigenvalues, this has affected the entire search process and convergence requires 12
iterations compared to 6 iterations for Newton’s method. In the (b) variation we are stopping
or nearly stopping any movement in the direction of the negative eigenvalue and this method
converges in 7 iterations as shown in Figure 2.2.

, The eigenvalues for the Gauss method are always positive although they may often be
very small. Figure 2.5 shows the eigenvalues for the Gauss method prior to applying
Marquardt’s modification and we see that at certain points there is one small eigenvalue. The
final eigenvalue ratio of the Hessian (i.e., of the product JTJ) is 16137, indicating some ill-
conditioning, but obviously the Marquardt method can successfully handle this problem. Both
the eigenvalue and convergence plots show a striking similarity between the Newton-
Greenstadt (a) and the Gauss-Marquardt method; this is a coincidence since they usually con-
verge very differently.

2.4.2. Storage and Skin, Case 2

Using the same (good) initial guesses for K, s and C as in Case 1, the additional parame-
ter ¢y was also sought as an unknown in this test. Figure 2.6 shows that the Gauss-Marquardt
method is seriously affected by the addition of this new, ill-conditioned parameter. While the
performance of all the second order methods has remained nearly the same, the Gauss-
Marquardt method is converging only very slowly.

This is the kind of behavior that prompted this study. It is not uncommon in particularly
complicated models for the Gauss-Marquardt method to spend scores of iterations in steepest
descent type progress. This was handled in previous studies (Barua et al. 1985) by first doing a
manual semilog analysis to find k and s. The two parameters can be held fixed at these values.
Once the number of unknowns is reduced in this way convergence quickly follows. However,
one of the benefits of automated type curve match is that we can avoid choosing the wrong
straight line, but this advantage is lost if we are forced to do so for the sake of obtaining con-
vergence.

Another effect to note in Fig. 2.6 is that both second order methods are unaffected by the
addition of the ill-defined parameter. This indicates that second order information does provide
some benefit when dealing with ill-defined parameters. Later tests also show the same effect.
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Figure 2.5. Eigenvalues of Gauss-Marquardt method, Case 1.
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Figure 2.6. Convergence, Case 2.
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Figure 2.7 shows the eigenvalues for the Gauss method prior to Marquardt’s
modification. While there was just one small eigenvalue in Case 1, there now are two small -
eigenvalues, probably because skin and ¢c; are highly correlated.

The ratio of the maximum and minimum eigenvalues at the solution provides the condi-
tion number of the Hessian and this ratio is commonly used as a measure to see whether a
problem is ill-defined.

The final eigenvalue ratio in Fig. 2.7 is 37449, which is not very much larger than the
ratio of 16137 in Fig. 2.5. The performance is so greatly affected in this case that it leads us
to believe that the presence of more than one very small eigenvalue is more troublesome than a
‘high eigenvalue ratio. In other words multiple rank deficiency of the Hessian matrix is likely
" to be more troublesome than simple ill-conditioning of the matrix. This observation is
confirmed in later tests.

2.4.3. Storage and Skin, Case 3

While the previous two cases showed second order methods converging faster than the
Gauss-Marquardt method, they usually do not do so. Unless the Gauss-Marquardt method gets
stuck, tests showed that it generally converges faster than a second order method on the rela-
tively noise-free data used for the test cases.

Figure 2.8 shows the results of estimating k, s and C with a different set of initial
guesses that are far from the solution (see Table 2.2). This figure shows the Gauss-Marquardt
converging much faster than any other method. Also Newton’s method fails after 6 iterations.

Figure 2.9 shows the eigenvalues for Newton's method and we can see the same problem
observed earlier, an indefinite Hessian causing maximization in one direction. This time the
negative eigenvalue is large in magnitude so the function value is increasing by a large amount
in the direction of the corresponding eigenvector. In spite of this, the method is able to
achieve an overall reduction in the objective function over the first 6 iterations, but fails
thereafter. ‘

Figure 2.9 also shows why Marquardt’s modification is not very beneficial for Newton’s
method. To make all eigenvalues positive requires a Marquardt parameter orders of magnitude
larger than normal in the Gauss-Marquardt method. Since a large Marquardt parameter restricts
the size of the step and forces steepest-descent type behavior, very poor progress results from
this. This was confirmed by experiments. Figure 2.10 shows the eigenvalues for the Newton-
Greenstadt (a) prior to modification. From the second iteration onward all the eigenvalues are
positive so the method reduces to Newton’s method thereafter. It is obvious that in spite of
using second order information without any compromises to ensure positive-definiteness the
convergence is still not as good as for Gauss-Marquardt.

Figure 2.11 explains why the convergence is so poor. Newton’s method assumes that the
objective function can be described by a locally quadratic model function. If this is so, then a
Newton step of unity takes us to the best local minimum. Newton's method is at its most
efficient and converges quadratically only when the step length is unity. Figure 2.11 shows

" that except for one occurrence nowhere else has the step length of unity been chosen. So even
though second order information is used, it is inadequate to describe the function exactly, so
the expected rate of convergence does not materialize. It is apparent that a quadratic model
will not be able to closely approximate the local behavior of the objective function in well test
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Figure 2.7. Eigenvalues of Gauss-Marquardt method, Case 2.
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Figure 2.8. Convergence, Case 3.
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Figure 2.9. Eigenvalues of Newton’s meihod, Case 3.

Eigenvalue

Eigenvalues for Newton-Greenstadit (a)

0 5 10 15
‘ Number of lterations

Figure 2.10. Eigenvalues of Newton-Greenstadt method, Case 3.
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Figure 2.12. Convergence, Case 4.
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analysis at least when far from the optimum. Therefore we do not expect quadratic conver-
gence from Newton’s method. In fact as Fig. 2.8 shows, the convergence may actually be
slower when using second derivative information.

2.4.4. Storage and Skin, Case 4

This test uses the same (poor) initial guesses as Case 3, with ¢c¢; also sought as an unk-
nown with its initial guess left exactly at the true value. Figure 2.12 shows the convergence
for the different methods and here again the effects noted in Case 2 appear. The Gauss-
Marquardt method is badly affected by the introduction of the fourth parameter.

Second order methods fare better. Newton-Greenstadt (a) is affected by the introduction
of the ill-defined parameter but less so than Gauss-Marquardt. Newton-Greenstadt (b) per-
forms about the same as when there were only three parameters.

So second order methods do seem to provide some help in the case of ill-defined parame-
ters but restricting the magnitude of the step in ill-defined directions [as in NG(b)] is even
more helpful. This has been confirmed recently by Nanba and Horne (1988) who used a
scheme similar to NG(b) on a Modified Cholesky Gauss method.

Since. the Newton-Greenstadt (b) modification has successfully turned an otherwise fragile
method into a more robust one we wonder if it can do the same thing for the Gauss-Marquardt
method. Figure 2.13 shows the result of such’an attempt. In this test any eigenvalue less than
0.001 was set to 5 before the Marquardt modification was made to the remaining eigenvalues.
We see that this modification has only a small effect. It is also not easy to- determine the
appropriate minimum eigenvalue to use in this case. Too small a cutoff leaves the problem
unchanged, while too large a cutoff may affect more than one value and continue to have an
effect even near the solution. In contrast the choice of 0.00001 as a cutoff for the second order
method was made relatively easily since it is only desired to affect negative eigenvalues and
eigenvalues so small that they have virtually no effect on the function.

2.4.5. Double-Porgosity Case

Double-porosity well tests are of considerable interest given their complexity in manual
interpretation. Figure 2.14 shows a simulated well test. Note that there are only a few data
points and a small amount of noise introduced by truncating all pressure values to integers.
Table 2.3 lists the test data while Table 2.4 lists the initial guesses used in the estimation pro-
cess.

Figure 2.15 shows the convergence for the 5 parameters (k, s, C, @ and A). Note that
even though there are more parameters than before, still the Gauss-Marquardt method has con-
verged fastest. Newton’s method failed afier one iteration while the Newton-Greenstadt (b) is
second best. Notice the very poor performance of NG (a) with its unrestricted step sizes along
the valleys.

Figure 2.16 shows the eigenvalues for the Gauss-Marquardt method. Here only one
eigenvalue is small and the same rapid convergence observed earlier is apparent. So a large
number of parameters does not necessarily mean difficulties for the Gauss-Marquardt method.
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Figure 2.14. Double-porosity test case.
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Figure 2.17 shows the convergence with the addition of the sixth unknown (§c¢;). Once
again both Newton methods are unaffected by the introduction of an additional ill-defined
parameter, while Gauss-Marquardt is, as expected, greatly affected. Newton-Greenstadt (a) is
intolerably slow as before, but there is relatively little change in its performance with the addi-
tional ill-defined parameter. Once again, the restriction of the step as in Newton-Greenstadt (b)
provides a greater benefit. The eigenvalues shown in Fig. 2.18 confirm the presence of two
very small eigenvalues in the Gauss-Marquardt method once again. : :

24.6. Storage and Skin, Case 5

One of the objectives of this study was to find algorithms that would work even if some
parameters were included that had not affected the reservoir response. This was checked by
again analyzing the storage and skin test with the same initial guesses as Case 1, but fitting it
this time with the two-porosity model.

Figure 2.19 shows that both Newton and Gauss-Marquardt remain unaffected and con-

verge in almost exactly the same manner as when fitting the data with the homogeneous reser-
voir model. :

Figure 2.20 shows the eigenvalues for the Gauss-Marquardt method and notice that there
is still only one small eigenvalue, hence the rapid convergence. For this test it is obvious that
there is mo problem in using the double porosity model even though no double porosity
behavior is observed. One explanation could be that the homogeneous reservoir response is a
subset of the double porosity response. Nanba and Horne (1988) looked at a more severe prob-
lem of missing data. They looked at a data range where the effects of wellbore storage was
dominant. Some difficulty in convergence was encountered in trying to estimate the three stan-
dard parameters (k, s and C). On the other hand no difficulty was encountered when storage
data was missing. It may be that if most of the parameters can be found with the available data
then convergence is rapid. ‘ : :

25. SUMMARY

e  Comparison of first and second order methods shows that despite the extra informa-
tion available, second order methods in general tend not to do as well as first order
methods.. First order methods usually converge faster unless good initial guesses
are available for the second order methods to begin with.

e  The first order Gauss-Marquardt method is greatly affected by the introduction of
ill-defined parameters while second order methods are less so. This effect is noted
even in the Newton-Greenstadt(a) method which does not use measures to handle
ill-defined parameters.

e  We use a Greenstadt type modification where small and negative eigenvalues are
replaced by large positive numbers to improve the performance of Newton’s
method. With this modification the method becomes robust enough to achieve per-

formance close to Gauss-Marquardt while remaining unaffected by the introduction
of ill-defined parameters.

° Experiments show that if there is only one small eigenvalue of the Hessian matrix
- the Gauss-Marquardt method works very well. With ill-defined parameters the

method works poorly and this seems to be correlated to the presence of more than
one small eigenvalue. :
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Performance of the algorithms is unaffected by an increase in the number of param-

eters, provided no additional small eigenvalues are generated or ill-defined parame-
ters introduced.

Note that first-order methods are more likely to have difficulty with noisy data
because the second derivative terms that have been neglected contain the residuals
(y — F) as multipliers. If these neglected terms are not small, the approximate Hes-
sian will not necessarily approach the actual Hessian of F, even at the optimum. In
such cases second order methods may be more appropriate.

The absence of the effect of a given parameter in the reservoir response does not
necessarily cause the problem to become more ill-defined.
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3. PRODUCTION AND INJECTION SCHEDULE OPTIMIZATION

Optimization is closely related to automated well test analysis. When second order
methods are used, both problems are mathematically identical. Optimization of production and
injection schedules of EOR processes is thus a natural application of the work described in
Chapter 2. Specifically, we looked at optimization of the cyclic steam injection process.

3.1. DESCRIPTION OF THE PROBLEM

Cyclic steam injection is the most widely used enhanced oil recovery process. The pro-
cess is used on heavy oils that are too viscous to flow at normal reservoir temperatures. A
cycle begins with the injection of steam for a few days to heat the reservoir. This is followed
by a soak period when the well is shut in to allow the steam to condense. The well is then put
on pump and produced until some economic limit is reached, at which point a fresh cycle
begins.

Prats (1977) points out that because this process is relatively easy and inexpensive to
implement, it is customarily tested directly in the field. Optimization can be done directly in
the field especially if large amounts of data from several wells are available. The field data is
sorted and the performance plotted with respect to operating conditions like reservoir charac-
teristics, cumulative steam injection, soak time, etc. Typical responses are then assigned for

~each operating condition and these can be used to optimize the operating variables.

It is simple to optimize one operating variable by using historical performance curves or a
mathematical model. However things become difficult if several variables are to be optimized,
especially if their effects on the response are not independent of each other. To optimize two
variables the single performance curve for one variable becomes a family of curves, each curve
corresponding to'a value for the second variable. This family of curves (or a part of it) has to
be generated by numerical experimentation or from field data. With several variables the prob-
lem can become too large to handle this way. However it can be solved with much less effort
by numerically optimizing a mathematical model.

3.2. MATHEMATICAL MODEL

Mathematical models for this process range from numerical simulators down to simplified
models. Numerical simulators offer the most detail and accuracy. However they are time-
consuming and also require a large amount of input data, much of which may not be known.

Several simplified models have been developed over the years (see Prats, 1977, for a
summary). All of the models use an approximation to describe the extent of the steam zone.
The frontal displacement model assumes a cylindrical front centered on the well. The steam
overlay model assumes a uniform thickness of steam overlaying the oil.

Gontijo and Aziz (1984) proposed a model that more closely approximates the steam
_zone by assuming it to be of a conical shape. Since steam rises to the top of the reservoir this
is more realistic than the frontal advance model, which does not allow override. At the same
time, gravity drainage of oil keeps the oil column small near the well. Here again the conical
model is more realistic than modeling the process with uniform thicknesses of steam and oil.
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The model assumes that a thin layer of heated oil on the surface of the cone flows by a
combination of gravity forces and pressure drop to the well. Several known results and correla-
tions are used in the model, some of which are mentioned below, the reader is referred to Gon-
tijo and Aziz (1984) for a more detailed description.

The model first obtains the average steam zone thickness hg; using an approximation
(Van Lookeren, 1977) based on the total reservoir thickness, quantity of steam injected and the
densities of oil and steam. The radius Ry, of the heated zone is next calculated based on the
volume of reservoir rock and fluids heated to steam temperature.

The production period is then modeled as a series of small time steps where flow rates
and heat losses are computed. Each time step requires the estimation of the average tempera-
ture using the Boberg and Lantz (1966) equation:

Tavg = Tr + (Ts = TR)[fupfvp(1 ~ fpp) = fppl 3.1)

where fyp and fyp are dimensionless terms that account for heat losses from horizontal and
vertical faces of the heated zone respectively, and fpp accounts for heat lost with the produced
fluids. This equation has been derived for the frontal advance model so its use in the conical
model is an approximation. The dimensionless terms are calculated using the expressions:

L
1

fyp = ——
D \J_1+5tDv

fup =

for =
PD szaxf Q, dt

where
tDH _ ot — tllﬂ)
RE
Aot - ty)
DV =~ h t2

Esoak
Quex = Hypy + Hpgg — TRZKR(T, — Tg)
Qp = (qoM, + gy w)(Tavg - Tg)

QP represents heat lost with produced fluids, while Q. represents the total heat in the reser-

voir at the start of the production period. The model assumes heat losses begin after the injec-
tion period.

Once average temperature is known from Eq. 3.1, average viscosity, Vgye, Can be

" obtained from correlations or curve-fit data. Gontijo and Aziz (1984) derived thegfollowing
expression for flow rate in the cone:

o= 27R \/ kk (00AS,AD .
VE TN maglin(®yiry) — 0.5] G
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where

R, = VRZ + h?

and AS, is the change in saturation following exposure to steam. The parameter my is adjusted

by doing a history match to observed production data. Gravity forces along the slope of the
cone are included in the potential drop A¢.

Each time step consists of estimating average temperature using Eq. 3.1 and then calculat-

ing flow rates using Eq. 3.2. Time steps repeat with progressively decreasing temperatures and
rates until the time allocated for production is used up.

The model is highly simplified but it attempts to account for all the major factors that
play a role in the process. It has been shown by Gontijo and Aziz (1984) to be able to ade-
quately match a numerical simulator’s output and a real field well’s performance.

The major benefit of its simplicity is that the model uses very little computer time, so it
is ideally suited for optimization studies in this respect. We used the model to see how the
same field well should have been optimally operated. '

33. OPTIMIZATION

Among early optimization studies, Rivero and Heintz (1975) tried different financial
objectives (present worth and cumulative daily profit) to optimize the time for beginning a new
cycle. For the first objective they used an assumed rate response (a straight-line decline of
peak oil rate with cumulative production) and attempted to maximize net present worth. For
the second method they used routine expense and income records to determine when to begin a
new cycle. Bentsen and Donahue (1969) used dynamic programming techniques to determine
the allocation of a steam generator among wells.

Linear and nonlinear programming techniques have been used to optimize various other
processes in the industry particularly in downstream processing plants. Lasdon et al. (1986)
point out that the petroleum production area has seen few successful applications of optimiza-
tion methods. They used nonlinear optimization techniques, specifically the BFGS Quasi-
Newton (Broyden, 1970) method, with a single phase two-dimensional reservoir simulator to
optimize a dry gas reservoir. They also suggested paralle] processing to cut down on the large
expense involved. See and Home (1983) applied linear programming techniques to a black oil

reservoir simulator and proposed a method to reduce the number of simulation experiments
needed.

3.3.1. Newton’s Method with Finite Differences

In optimization the quadratic model no longer has the structure that allowed use of the
Gauss method in the least-squares case. Newton's method is applicable of course, albeit with
some modifications to ensure positive-definiteness. The quadratic model is once again

F' = Fi+gl (x-x)+ —;— (x - x)T H; (x - x,) 33)
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where X is the vector of n nonlinear parameters, g is the gradient vector and H is the Hessian
matrix. And the iterative scheme is:

Hpp, =g ' _ (34)
X = X+ PPy (3.5)

Unlike in the least-squares case, the objective function F is now directly generated by the
mathematical model of the process. Typically this model will be much too complicated to
obtain analytical expressions for the elements of g and H so they have to be obtained by
finite-difference. If done the obvious way, this can be very expensive. Instead we use the fol-
lowing relations. Let ¢; denote the ith unit vector, then the elements of gradient are obtained by

F(X + he,) - F(X - hel)
&= h

the diagonal elements of the Hessian by

_ F(x + he;) — 2F(x) + F(x — he))
= v

it

and the off-diagonal elements of the Hessian by

- F(x + he; + he)) - F(x + he)) — F(x + he)) + F(x)
y= )
h

The first two expressions are obtained by subtraction and addition of Taylor series expansions
for F(x + hey) and F(x — he;) and are O(h?). Since F(x) is always evaluated, the diagonal
of the Hessian comes for free with the gradient.

The last expression is obtained by substituting the expression for the gradient in the Tay-
lor series expansion for F(x + hey) and is O(h). It is efficient, for we obtain two off-diagonal
Hessian elements (since the Hessian is symmetric) for each extra function evaluation.

; The selection of h is somewhat difficult, for if it is too small cancellation errors may
make the derivatives meaningless. If is too large then the accuracy of the derivative suffers.
Tests show that a fairly large h is preferable, we use h; = 0.1x,.

The Newton-Greenstadt (b) method can be used to modify H once again. One difference
now is that optimization frequently requires consideration of constraints when determining the
optimum. We can still use penalty functions but there is a problem when the optimum lies
directly on a constraint. Ideally that variable should be removed from the active set (Gill, Mur-
ray and Wright, 1983) so as not to affect the search process any more. With penalty functions
we simply keep it from ever reaching the constraint. :

By appropriately choosing the variables we can avoid this problem most of the time. In
instances where the problem does occur the method simply keeps the variable close to the con-
straint and as will be shown later, we can still reach the optimum.
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332. Quasi-Newton Methods for Optimization

Even though it is possible to evaluate the gradient and Hessian in a relatively efficient
manner for Newton's method, a Quasi-Newton method might be able to do the same optimiza-
tion with fewer function evaluations. The Broyden, Fleicher, Goldfarb, Shanno (BFGS)
method [see, for example, Bmyden (1970)], is particularly suitable for optimization. Essen-
tially starting with I, the Hessian is built up as the iterations proceed The Hessian matrices
satisfy the Quasi-Newton condition

Hiyy1(8k41 — 8K) = Xip1 — Xk (3.6)

This equation forces Hy,; to exactly match the gradient of the function in the direction
Xk+1 — X, and so behave in a manner similar to Newton’s method in this direction. Using the
notation

Y = Bkl ~ 8k
Sk = Xk41 ~ Xg
the BFGS update may be written as

T T
¥k  Hysysg Hy A
Hyp =Hg+ —— - — 3.7)
¥k Sk sk Hysy

This update maintains symmetry and positive definiteness of the Hessian and also saves on
function evaluations, so it is an attractive method. Furthermore its use has been well
developed over the years and ready-made subroutines are available for constrained optimization
using the BFGS method. We proceeded to optimize the process itself and at the same time
compared the Newton method with the Quasi-Newton method using BCONG, a ready-made
routine from IMSL. (1987).

34. OPTIMIZATION EXPERIMENTS WITH THE MODEL

We optimized three major variables that are subject to operator control.

e  First, the quantity of stcam injected was optimized. We assumed that the generator
capacity is limited to the rate -actually used in the field, so injection time is used to
vary steam quantity. Note that this automatically puts a limit on excessive injection
volumes, for otherwise no time will be left for actual production.

® Second, the soak time was optimized, even though no oil is produced during this
period while heat losses continue. The soak time is therefore theoretically unattrac-
tive but since such a priori knowledge may not always be available it was also
included in the optimization, to allow the optimizer to show us this fact.

e  Third, the producing time was optimized, although it was not treated as a separate

variable, instead it was set to be the time left over in the cycle after steam injection

~ and soak. So the task for the optimizer was to apportion a gwen total cycle time
between injection, soak and production times.
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We assumed that the steam is generated by buming some of the produced crude oil. To
convert volume burned into heat supplied at the reservoir, a factor of 2.86 million BTU/bbl
was used (5.72 million BTU/bbl at 50% efficiency).

Table 3.1 shows the effect of optimizing the net production, i.e. gross production less
volume burned, for the first two cycles of the field test. These numbers are compared to the
base case, which represents the steaming cycle actually used in the field. As expected the
optimum soak times are close to.zero (because of the penalty functions they cannot reach
exactly zero). In practice some small soak time may be required to prevent backflow of steam
or for running in the pump and preparing the well for production. Since soak time results in
heat losses with little productive benefit, the time should clearly be minimized, perhaps by
using some mechanical arrangement to prevent backflow.

Note also the greatly increased steam injection times. The optimal times are more than
twice the times actually used in the field. The model obviously makes a strong case for high
steam injection volumes, once. a large amount of heat is input into the reservoir, high produc-

tion rates can be sustained for a long period during production. This is similar to the prevailing
practice in steam injection in Venezuela.

Looking at the nonlinear methods we see that the Newton method requires more itera-
tions than the QN method. One of the reasons for this is that the soak times are at the con-
straint values and this is not handled well with penalty functions. Other reasons could be the
efficacy of the line search and convergence criteria. Since the two programs are different in all
these respects we instead can compare the number of function evaluations per iteration to see

how efficient the methods are, it is clear that the QN method is. much more efficient on this
problem.

3.4.1. Optimizing a Linear Combination of Objectives

Notice in Table 3.1 that while optimizing net production the optimizer has done so at the
expense of net production per barrel burned, three times as much steam is needed to double the
net production. It may be desirable instead to obtain the best combination of these two
economic objectives. This can be done by making the objective function a linear combination
of the two primary objectives, each weighted according to the operator’s priorities.

Table 3.2 shows the outcome of optimizing such a combination. The soak times are held
at one day in view of the model’s strong preference for zero soak times. So the remaining two
operating variables are the injection times in first and second cycles.

Observe that in every case the net production obtained is greater than the net production
for the base case. In Cases C and D the net/bumed ratio is also greater than the base case
value of 10.8 while net productxon is at least 55% higher. So if we assume that the model
represents what will happen in reality, then it is clear that much can be done to improve the
operating efficiency of the process both in terms of productwn rate and rate per barrel bumed.

Notice also that there is some nonuniqueness in the optimum. For example in Case B, the

optimum net production is only 25 barrels apart between the two methods but the gross and
volume bumed are significantly different.

This table shows that maximizing a combination of objectives could be more efficient
than optimizing either one by itself. The most notable example is Case D, which shows very
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Table 3.1. Optimizing net production (4 parameters)

Base Case Newton QN
Cycle 1 | Injection time 6 30.8 28.8
Soak time 5 0.167  0.167
Production time 55 35 37
Cycle 2 | Injection firne 9 14.8 18.4
Soak time 2 0.67 0.67
Production time 146 141.5 138.2
Totals | Gross Production 13228 27627 27783
Net Production 12062 24280 24267
Volume Burned 1166 3347 3516
Net Prod/bbl brn 10.34 7.25 6.90
Num. iterations 17 11
Num. func. evals 201 119
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Table 3.2. Optimizing a linear combination of objectives

Inj. Inj. Gross Net . Vol Net/  Obj. Its Func
time 1 time 2 Prodn. Prodn.  Burned Burned . Func Evals

Field simulation
6 9 13228 12062 1166 1034

Case A: Unoptimized (1 day soak time) e
6 9 13759 12593 1166 ~ 10.8

Case B: F = Net oil production ,
N 28.7 16.0 27190 23884 3306 - 7.223 23884 7 61
QN 287 17.8 27313 23859 3454 6’.‘907’,‘ 23859 6 45

Case C: 7 = 0.8 * Net + 1000 * Net/Burned ... =
N 22.94 0.3 21481 19889 1592 125 28411 22 182
QN 229 0.3 21445 19858 1587 1251 28396 5 32

Case D: F = 0.7 * Net + 1500 * Net/Burned Pt o
N 16.5 0.3 17771 16618 1153 1442 33263 7 60
QN 16.53 0.3 17793 16639 1154 1441 33262 4 28
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good production with less total volume burned than in the base case. In both Cases C and D it
is apparent that the optimizer would like to avoid the second injection period. One reason for
this preference is that the temperature of the injected steam in the first cycle is 30 degrees
higher than in the second cycle, although the injection rate is lower. So the optimizer has
judged it to be more worthwhile to spend time on the first injection period only.

Once again, as far as the nonlinear methods are concemned, the Newton method does not
seem to do as well as Quasi-Newton. Function evaluations are once again more frequent in the
Newton method. Note that by removing soak time from the problem the convergence is much

improved, Case B is now fully unconstrained and requires 6-7 iterations compared to 11/17 in
Table 3.1.

3.42. Effect of Steam Properties

The process is sensitive to parameters like formation thickness and pattern area which
may be beyond the operator’s control. But there are other parameters that can be controlled to
some extent, such as steam temperature and quality. Steam temperature is solely determined by
the injection pressure. However it is possible, for example, to inject at high rates so that the
pressure (and thus temperature) goes up. Table 3.3 shows the result of increasing temperature
in both cycles by 100 degrees Fahrenheit. Case A uses the unoptimized production schedule
with the higher temperatures, and shows that performance has not improved by much over the
field results. In contrast the production rates are now much higher when optimization is per-
formed. For example, in Case B the net production is 70% higher than previously achieved.

Even Cases C and D show greatly increased production although we are trying to maximize
efficiency in these cases.

Table 3.4 shows the effect of keeping steam temperature unchanged and raising the qual-
ity by 0.15 in both cycles. In marked contrast to Table 3.3, the performance does not improve
very much with this change.

By increasing steam quality we increase the total heat input to the reservoir so average
temperature will decline less rapidly. Production rates will therefore also decline less rapidly.
With a higher steam temperature, heat input is increased too, but more significantly the average
temperature from Eq. 3.1 is always higher (assuming all else is unchanged), so the viscosity
stays low and daily production rates are higher. These optimized results show that this situation
allows for greater improvements than a simple increase in heat input.

3.43. Effect of Cycle Parameters

The previous results have indicated a strong tendency to favor the first cycle for its
higher steam injection temperature. Table 3.5 shows what would happen if all steam properties
were identical in both cycles. For net production there is now no preferential treatment for

Cycle 1. However, once we consider efficiency, the tendency to favor Cycle 1 is again
apparent.
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Table 3.3. Optimizing with higher steam temperature

Inj. Inj. Gross Net Vol Net/ Obj. Its Func
time 1 time 2 Prodn. Prodn. Burned Burned Func Evals
Field simulation
6 9 13228 12062 1166 10.34
Case A: Unoptimized
6 9 17986 16743 1243 13.47
Case B: F = Net oil production
N 27.6 37 47083 41763 5319 785 41763 6 54
QN 27 37.8 47213 41856 5357 781 41856 7 52
Case C: F = 0.8 * Net + 1500 * Net/Burned
N 26 17.16 41674 38257 3417 11.2 47406 10 85
QN  26.5 15 40839 37583 3255 11.54 47376 6 47
Case D: F = 0.8 * Net + 3000 * Net/Burned
N 21.96 031 28004 26399 1605 16.45 71753 8 66
QN 21.95 0.3 27986 26383 1603 16.45 6 39

71667




Table 3.4.  Optimizing with higher steam quality

Inj.  Inj.  Gross Net _ Vol _ Net/ Obj. Its Func
time 1 time 2 Prodn. Prodn. Burned Burned Func Evals
Field simulation o
6 9 13228 12062 1166 10.34
Case A: Unoptimized »
6 9 16065 14704 1361 10.80
Case B: F = Net oil production ‘
N 28.5 12 29924 26500 3424 7.74 26500 13 106
QN 269 17.3 30386 26561 3825 6.94 26561 5 39
Case C: F = 0.8 * Net + 1000 * Net/Burned
N 23.7 0.3 25119 23223 1895 12.25 30828 &5 44
QN 234 0.3 24946 23074 1872 1233 30789 6 40
Case D: F = 0.7 * Net + 1500 * Net/Burned
N 16 0.3 20268 18980 1288 14.73 35381 7 61
1447 35377 6 39

QN 168 = 0.3 20882 19532 1350
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Table 3.5. Optimizing with balanced steam properties

Inj. Inj. Gross Net Vol

Net/ Obj. Its Func
time 1 time 2 Prodn. Prodn. Burned Burned Func Evals
Field simulation
6 9 13228 12062 1166 10.34
Case A: Unoptimized : o
6 9 14328 13303 1024 12.98
Case B: F = Net oil production ‘ :
N 29.5 28 32557 28634 3923 7.3 28634 T 62
QN 304 30 32692 28579 4113 69 28579 3 28
Case C: F = 0.8 * Net + 1000 * Net/Burned
N 21.7 12 20976 27264 2712 10.05 31861 5 41
QN 289 9.53 29595 26970 2625 1027 31846 5 41
Case D: 7 = 0.8 * Net + 1500 * Net/Burned
N 20.8 031 22332 20891 1441 145 38463 8 63
QN. 219 0.3 23558 21893 1575 14 38514 5 35
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35. SUMMARY

The tests with a simplified model reveal that significant improvements in efficiency may
be possible by using optimal operating policies. We have explored the effect of some of the
operating conditions on the optimal policies. The specific numbers obtained are particular to
the field test simulated but we can make some general observations.

e  Soak time should be minimized or eliminated if possible.

e Significantly higher steam injection volumes than current practice may be beneficial.
This allows subsequent production rates to be sustained for a longer period.

e  While attempts to improve steam quality are desirable to reduce heat lost outside the
reservoir, the effect of reservoir steam quality does not seem to be as significant as
that of the steam temperature. With a higher steam temperature it may be possible
to make very large improvements in production rate using optimal strategies.

e  Optimizing a combination of objectives can lead to a more efficient process than
optimizing just one objective by itself.

e Because of the large number of process variables that are needed to simulate this
process, it will be difficult to give exact guidelines unless the correlations and the
model are specifically tuned for the reservoir under consideration.

e Furthermore, because the model is simplified, it cannot simulate all the intricate
details of the process, so recommendations from the model will need verification in
the field followed by additional tuning. '

® Because two different routines were used in the study, we cannot compare absolute
performance of the two nonlinear methods but it is clear that the Quasi-Newton

method can provide savings in function evaluations and at same time converge quite
rapidly.

The simplified Gontijo and Aziz model used here is adequate for exploratory studies.
Ideally we would like to use a model that can more rigorously model all the phenomena. This
~ would have to be a numerical simulator, but the principal difficulty is that each optimization

may take 50-100 full simulation runs. This would be very expensive. One way of addressing
this problem would be to use parallel computers to either do the function evaluations in paral-
lel, or more generally to run each individual simulation in a parallel manner. Quasi-Newton
methods also hold promise for simulation. So a detailed study of parallel simulation and of
Quasi-Newton methods was performed next. This is covered in subsequent chapters.
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4. QUASI-NEWTON METHODS IN RESERVOIR SIMULATION

Quasi-Newton methods are applicable to both optimization and nonlinear equation solv-
ing. In optimization the usefulness of the method has been seen in the previous chapter. How-
ever the method’s utility in equation solving is not so clear. The form of the Quasi-Newton
method also seems attractive for parallel processing since one can directly solve the nonlinear
problem of fully implicit reservoir simulation using this method, but whether this results in a
more efficient method is again not clear. These questions are explored in this and subsequent
chapters.

4.1. PREVIOUS WORK

Quasi-Newton methods have been used successfully on nonlinear systems of equations in
the finite-element and ordinary differential equation fields to avoid some of the costs associated
with Newton’s method and to provide better convergence than the modified-Newton method. In
the modified-Newton method the Jacobian is formed and factored once into the lower triangu-
lar matrix L and the upper triangular matrix U. Subsequent iterations only involve forward
elimination with L followed by back substitution with U and so are cheaper than a Newton
iteration.

Mattheis and Strang (1979) explored the use of Quasi-Newton methods on nonlinear
finite-element equations and showed how a Quasi-Newton method could succeed where the
modified-Newton method failed. Brown er al. (1985) experimented with Quasi-Newton
methods on stiff systems of ordinary differential equations and showed that for some problems
a Quasi-Newton method could do better than the modified-Newton method. Nghiem (1983)
proposed a Quasi-Newton method which he named the QNSS and reported success with it in
handling the pressure equation in a compositional simulator. Steihaug (1981) worked out the
convergence of inexact Quasi-newton methods. In addition, work on new Quasi-Newton
methods continues in the applied mathematics field, especially for sparse systems (for example
see Kelley and Sachs (1987), and Tewarson and Zhang (1987)). Many of the practical details
about Quasi-Newton methods are provided in Dennis and Schnabel (1983).

This part of the study was aimed at exploring whether one of the most popular Quasi-
Newton methods could be used to good effect in reservoir simulation problems.

4.2. RESERVOIR SIMULATION

Black oil reservoir simulation requires the solution of the following set of coupled multi-
phase fluid flow equations for oil, water and gas (for more details see Aziz and Settari, 1979):

V[KO(VP o Yovz)

i
1-8., —
-2 [ea-s, sg)}+qo “n

at B,

VIAu(Vpw — 1w V2)] = _E)aT } + Qw (4.2)

R(1-S,-S) S
V[Rslo(vpo -YVz) + ;\-g(vpg - 'ngz)] = % [(9[ ( B g) + Eg—}:l + Ry, + q
0 g

(43)
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These are the result of substituting Darcy’s law into the mass conservation equations for
oil, water and gas respectively, over a unit volume. The three phase pressures p,, Py and p,
are replaced by a single unknown, p,, using the following relations:

Pcow = Po— Pw 4.4)
Pcog Po — Pg

where Py and P, are obtained by table lookup. The mobilities, Aj, are defined as

LI | (5)
=——1I1=0,w,
- B, &

where relative permeability k, is a function of saturation, k., = k(S,). Viscosity u,, formation
volume factor B, and density 7, are all functions of phase pressure p;. All these properties are
found by table lookup. The absolute permeability k and porosity ¢ are assumed to be known.

When free gas is present, the solution gas oil ratio Ry = Ry(p,) is found by table lookup,
so the three unknowns are (po, Sy, Sg). When no free gas is present §; = 0, and the three
unknowns are (po, Sw, Rg). This change is handled by the process of variable substitution.

The fluid flow equations are discretized on a block-centered grid using the fully implicit
backward-in-time centered-in-space approach. The resuit of applying this finite-difference
scheme to the oil or water equation can be written as (in one dimension)

oS,
B,

)

[AT AP, - ¥ = -—Ag[ ] +Q, =o,w (4.6)

where V represents volume of the grid block and Q) the block injection/production rate.

The flow terms on left hand side of Eq. 4.6 can be expanded as

ATA(p — vz) = ATAp — ATyAz
= T‘ 1 P —Pi—7Y 1z — 7))
+-2_ H'?

=T [Pi—Pici = Yi—w (& — 2i,))] 4.7)

where interblock transmissibility Ti.i2 = Ap12(Ai12/AXi12).  Ajpyp is the cross-sectional
area available for flow between block i and block i + 1, and Ax;,,,, is the distance between the
centers of these grid blocks.

The accumulation term on the right-hand side of Eq. 4.6 can be expanded as

BElEEE] e
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The superscript n indicates values evaluated at the current time t and n + 1 indicates
values at time t + At. All terms on the left hand side of Eq. 4.6 are evaluated at time level
n+ 1.

Physical properties at the boundary, i.e. ati+ 1/2, are set to the average of the values in
the two adjacent blocks, except for relative permeability where upstream weighting is used, i.e.

if(P; — Yiewe 1) > (Piv1 — i wZis1)

Equation 4.6 is expanded in a similar manner for the other two dimensions. Similarly, the
three-dimensional equations for water and gas are also discretized.

By moving the right-hand side terms of Eq. 4.6 to the left, we can write the equation in
residual form. In the one dimensional case this gives:

TinlPit = Pi — Yi s (Zie1 — 7)) — Ticy [Pi — Pic1 = Yiews (5 — 7)) :
V || 95 ¢S, |" _
STENCTR

with all terms except the accumulation term with superscript n, evaluated at time level n + 1.

This is the fully implicit formulation of the reservoir simulation equations and is uncondition-

ally stable for any time step size. When written for all phases and grid blocks, these form a
nonlinear system of equations:

fx)=0 (4.10)
that must be solved for x, the vector of unknowns (Po, Sw, R, or Sg) at each grid block.

The classical technique for solving this nonlinear system of equations, from an initial
guess X, is Newton’s method, as shown in Fig. 4.1. -

fork =0,1,...until converged
Form Jacobian matriz J; at x;
Solve Jysi = —f(x;)
Add step, Xp41 = Xi + s

Figure 4.1. Newton’s method for solving nonlinear systems of equations

Newton’s method is quadratically convergent when started with a good initial guess.
However it is expensive since the Jacobian and the solution of the matrix problem,
Jisk = —f(x), must be computed at each iteration. :

Quasi-Newton methods can also be used to solve the nonlinear system of equations
f(x) = 0 and attempt to reduce some of the expense associated with Newton’s method. Such
methods have a slower convergence rate than Newton’s method but the cost of each iteration is
lower, so in terms of total time they may be more efficient.
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4.3. QUASI-NEWTON METHODS FOR SYSTEMS OF EQUATIONS

Quasi-Newton methods are based on building up secant information as the iterations
proceed. Suppose at the kth iteration the method takes a step S = Xy;1 — Xk causing a change
¥k = f(Xg41) — f(xi) to the nonlinear system of equations. Then the next Jacobian approxima-
tion, Ay,;, will satisfy the secant passing through these two iterates if

Ak+1 Sk = Yk (4.11)

This is termed the Quasi-Newton equation or the Quasi-Newton condition and is the design cri-
terion for such methods. Equation 4.11 has two known vectors, s, and yi, and an unknown
matrix Ay,;. It is impossible to uniquely solve Eq. 4.11 for the unknown matrix except in the

one-dimensional case, when one simply obtains a single number equal to the slope of the
secant. :

Since a large number of matrices satisfy Eq. 4.11, several different Quasi-Newton
schemes have been proposed. All of these attempt to update the current Jacobian approximation
A, rather than obtain a new approximation Ay,; from scratch.

Two of the most popular Quasi-Newton schemes for nonlinear equations were tried on
reservoir simulation problems during this study. These are the BFGS (Broyden, 1970) update
and Broyden’s (Broyden, 1965) first method. The BFGS update has certain desirable proper-
ties, such as maintaining the symmetry and positive-definiteness of the Jacobian, which makes
it very effective in optimization. Early testing showed that Broyden’s update works better for
the nonsymmetric Jacobians that arise in reservoir simulation.

Two differences occur when using a Quasi-Newton method instead of Newton’s method.
First, the convergence rate is at most g-superlinear (i.e. faster than linear but possibly either
much faster or only a little faster than linear).

The second difference is that s, the step taken at each iteration is now the solution to the
equation:

Agsy = —f(xy) (4.12)

In other words, it is the solution to the approximate Jacobean that has been built up using
secant information by updating Ay_; in some manner. In turn Ay_; has been obtained from
A,_, and so on down to Ag. ’

Simply obtaining one matrix from another is, of course, not very interesting if the latest
matrix has to be solved from scratch, since then Newton’s method would perform better.
Instead the updates are designed such that all solutions after the first will be less expensive.

44. BROYDEN’S UPDATE

Broyden’s update may be applied either directly to the inverse of the approximate Jaco-
bian matrix or to the factors of the approximate Jacobian matrix. The latter approach, suggested
by Gill and Murray (1972), updates the QR factors of the Jacobian matrix, this approach is
numerically very stable because it uses Householder transformations to triangularize the matrix.

However the QR factorization is twice as expensive as LU factorization, so we do not consider
this form of update further.
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The inverse form of Broyden’s update provides a convenient way to solve Eq. 4.12 on a
parallel computer. It updates the inverse of the Jacobian, so that the solution of Eq. 4.12 could,
in principle, be obtained by the matrix-vector product; s =~Ar! f(x,).

This update is given as:

sk — Acl yy) si Ay

-1 -1
A = Ay + st AF' yi

(4.13)

This is a recurrence relation, so once A;! is obtained by some means, then using Eq.
[ ) 0 y
4.13, it can be converted into A7} and so on without any further inversions. Since matrix-

vector products are highly parallelizable, all iterations after the first will be performed very
quickly.

The inverse matrices are never actually formed for several reasons. Obtaining the inverse
of a matrix is costly and numerically undesirable. The inverse of a sparse matrix will usually

be dense, requiring substantial storage. Finally, the matrix-vector product will be expensive on
a dense matrix.

Instead we store either A or the factors of Ay and a series of update vectors, and this is
how the updates are usually applied (Mattheis and Strang, 1979). The detailed steps for
Broyden’s update are provided later in this chapter.

4.4.1. Properties of Broyden’s Update

The obvious property of Broyden’s update is that it satisfies the Quasi-Newton equation.
A second property is that all directions other than Sk are unaffected by the update from Ay to
Agy1- The update modifies the approximate Jacobian by using only the information obtained in
the last step and does not introduce any extraneous information. This second property implies
that Apx = Ay, x, for all x orthogonal to Sy, i.e., s;{x = 0.

These two properties can be regarded as the design conditions for deriving Broyden’s
update. Since information is only obtained in one direction we start with a prototype of a rank
one correction for the update, of the form:

Agh = @+ o8] Ay (4.14)

This form satisfies the second property. The unknown ¢, can be obtained by substituting this
update into the Quasi-Newton equation as follows:

s = Ay
=T+ gs)) Ag! Yk
=A v+ ey ALy,

Therefore

-1
Sk — Ag ¥k

Cy =
T 4 1
Sk Ag vk

which when substituted into Eq. 4.14 gives Broyden’s update.
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The step vectors s, are not guaranteed to be orthogonal; they could even be linearly
dependent so, unlike the one-dimensional secant method, the precise order of local convergence
of Broyden’s method cannot be stated. ' V ‘

Dennis and Schnabel (1984) show that if the conditions for quadratic convergence of
Newton's method are met and, if there exist positive constants €, & such that llx, — x.ll < e
and A, — J(xs)ll <8, then the sequence Xy generated by Broyden's method is well defined
and converges g-superlinearly to the solution x.. Here Il - Il denotes the matrix or vector I
norm.

The proof requires

HJxo)H Ag = Jxa)ll < 1/6

This condition is sufficient to prove q-superlinear convergence, which implies that the
Quasi-Newton step approaches the Newton step in both direction and magnitude.

~ They point out that the order of the g-superlinear convergence cannot be stated unless
one can also state the convergence rate of the limit:

A = J(xe))sy !
lim =
K—poo lls, |l

An a priori estimate of this convergence rate will, in general, be difficult to obtain for a
real problem. So the most that can be said is that if the initial approximate Jacobian is close to
the Jacobian at the solution then one can expect a g-superlinear convergence rate (of an
unspecified order).

They also show that if we just assume Lipschitz continuity of the J acobian in the search
space D: '

1 J(x) — J(x.)ll <yllx—xl,¥yxeD

then we can at least expect linear convergence. This serves as a lower bound on the conver-
gence rate to be expected from Broyden’s method.

The Lipschitz continuity condition will usually be met by the Jacobians in reservoir simu-
lation, small discontinuities appear when wells start declining after flowing at a specified rate,

larger discontinuities appear when phase changes occur but we can avoid trouble with such
changes as described later. :

With only linear convergence guaranteed and lacking any more definite convergence

result one has to rely on numerical experiments to see if and when the method provides any
advantages.

4.4.2. Implementing the Update Efficiently

To see how Broyden’s update, Eq. 4.13 can be efficiently applied using update vectors
consider the following. Recall Broyden’s update:

(s — Alysk AL

1 _ -l
A=A + T Ay,




L -83.
where
Yk = fiy — £
Sk = Xk41 — Xk

=-Ag' fy
This update can be written in the form: ,
Air = I+ o) AL

where
s =—Ag! i
by = AL fiu
b,

s (by + sy)

We do not want to actually construct Ag}; so to see how the iterations proceed consider
the first three iterations. At the first iteration we have:

§p = —Aal fo
which is the same as the Newton step if Ay = J;. At the second iteration we have:
by = Ag' f,

_bo

=
sg (bo + )

$; =—Al_1 fl

—(I + cos) Ag!

(I + ¢s¢) by
At the third iteration we have:
b=A7'f,

A+ cosd) Ag' £y

¢ m

R
s (b; + 51)

s =-A7' f

== +csN) AT £

=~ + ¢;5])b;
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At the fourth iteration we have:
| b, = A7'f3

= A+ cs) Ag' 1

.._bz
) = —m———
57 (by + 5)
s3=-A3" f3

=—(1 + c;57) Ay f3

=—(I+ ;) by

So at every iteration we obtain a tentative step, dy = Ag ! £, , which then goes through
some updates to finally obtain the step sy (computing by_; and ¢,y on the way). The number-
ing scheme is a little confusing since each iteration uses information from the previous
iteration(s), but it is relatively easy to program the algorithm.

The updates can be applied with little cost after dy is obtained. Looking at part of the
fourth iteration again:

b,=A;'f3
= +¢;57) A+ cosq) A f
=+ c;s7) I+ cosd) ds
= ([ + ¢;s]) [d3 + (S d3)eo]
= (I + ¢;s7) (d3 + ocp)

Each level of update requires one vector dot-product to obtain the coefficient o followed by a
vector add. The sequences s, and ¢, are stored to apply the updates.

4.4.3. Restarting Updates

Usually one will not continue with the initial approximation A, until convergence. To
save on update vector storage space, a number of iterations are done until space runs out, then
the method is restarted. A restart consists of forming the Jacobian and factoring it and setting
it to be the new A, at the current x location.

In certain cases we do not wait for the update vector space to be filled but do an immedi-
ate restart. One such case is when phase changes occur, this is because the update vectors then
relate to a different set of variables, i.e., the third variable might switch from §; to R; or vice-
versa.
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Restart may also be needed in the following situation. Dennis and Schnabel (1984) note
that the Quasi-Newton direction, s, = —A7'f(x,), is not guaranteed to be a descent direction for
the one-dimensional function % HIf(x)ll2.

They mention that uphill directions do not appear often in practice and point out that an
easy fix is to restart if any uphill direction occurs.

In tests on simulation problems it appears that uphill directions only appear if the Jaco-
bian approximation A is not adequate to the task, i.e. using too simple an approximation for
difficult problems. The tests also showed that one may choose to ignore the occasional small
uphill step without any detrimental effects. In practice it seems best to choose a good enough
approximation so that the problem does not occur.

Another case where a restart may be necessary occurs when the denominator of the
second term in Eq. 4.15 is very small. In such a situation one may decide not to perform the
update and instead restart. This occurs very rarely.

Experiments showed that restarts occur mainly because of phase changes and running out
of update storage space. These periodic restarts are beneficial in one way because the Jacobian
is made up-to-date. Moreover the Quasi-Newton step after a restart is the same as the Newton
step at that point so convergence is improved there. On the other hand the periodic restarts
increase the number of times that the Jacobian has to be formed and factored.

4.4.4. Summary of the Method

The Broyden updates can be applied with relatively little cost. The principal penalty in
using a Quasi-Newton method is the reduced convergence rate. At the kth iteration, we must
obtain .

dy = Al f, (4.15)

and use the update sequence to get the final step. Potential savings arise from the fact that the
same matrix or inverse is Used in Eq. 4.15 for several iterations during which the Jacobian
also need not be formed. Also the method is accumulating secant information as the iterations
proceed so there exists the possibility of starting out with a simple Jacobian approximation and
building it up as we go. This is the approach used in optimization where we start with 1.

4.5. TWO-PHASE EXPERIMENTS WITH THE QN METHOD

Early experiments were run to see if the QN method could take the approximation
Ay = diagonal (Jp) and collect enough secant information to solve the nonlinear system of
equations f(x) = 0. This was found to work for simple nonlinear equations and single-phase
flow even in cases where Newton’s method fails with the same approximation.

For two-phase problems it turns out that this approximation will not work and the method
needs at least Ay = block-diagonal (Jo) each block being the 2 x 2 matrix of the oil and water

equations at each grid point. This is probably because of a move from diagonal dominance to
block-diagonal dominance.

The inverse of the block-diagonal matrix is also block-diagonal with each block inverted.
For the 2 X 2 sub-matrices the elements of the inverse can be explicitly written out as algebraic
expressions so the solution cost of Eq. 4.15 remains very low.
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The change to a block-diagonal approximation proves adequate to simulate simple
waterfloods. A quarter five-spot water flood simulation that had earlier been solved using
Newton’s method was run using this approximate Jacobian. While Newton's method averaged
3 iterations/time step (using a direct solver), Quasi-Newton took an average of 24
jterations/time step. However the cost of each QN iteration was so low that total time was still
acceptable.

Figure 4.2 shows the total time taken as a function of number of grid blocks. There are
two obvious ways to increase the number of grid blocks. One can keep the size of grid blocks
constant and increase their number. This makes the problem easier to solve since the wells
move further apart. The corresponding curve is labeled "Easy" in this figure.

Alternatively one can keep the overall size of the model constant and put more blocks
into the same area. The size of blocks now decreases. This makes the problem harder to solve
since transients are more severe in smaller blocks. This curve is labeled "Hard."

Figure 4.2 shows the expected difference in total times. It also shows how the Quasi-
Newton method behaves with increasing problem size. One might wonder that since we are
building up secants, do the number of secants needed increase as the dimensions of the prob-
lem increase? From Fig. 4.2 it is apparent they do not.

This is an important factor when using Quasi-Newton methods, for there is no guarantee
that the search directions are orthogonal. If the number of search directions increase with
problem size then the method would clearly be unacceptable.

Also shown is the linear increase line, with constant degree of difficulty, the simulation
times may be expected to follow this. The kN? curve shows how an algorithm scaling with the
square of the number of grid blocks would fare, the D4 algorithm, for example, scales approxi-
mately as N? (Aziz and Settari, 1979). The good performance of QN in comparison is due to
the diagonal Jacobian being used and to the method’s insensitivity to problem size. For the
latter reason we expect that with a better approximate Jacobian, as long as the approximation

involves O(N) work, the overall algorithm will also scale linearly with constant degree of
difficulty.

This property (if it could be guaranteed) appears very attractive since a algorithm that
scales with N will eventually out-perform any algorithm that scales with a higher power of N
no matter how efficient it may be. Unfortunately there is no guarantee and more powerful algo-
rithms may also scale with N,

Figure 4.3 shows that a move from 2D to 3D also makes the problem more difficult, but
the 3D curve is near-linear again.

Early parallel experiments were run on this waterflood model. Using a block-diagonal
approximation for Ay meant that the matrix solution could be trivially run in parallel. In addi-
tion the rest of the simulator was built to run in parallel. The details of the parallel simulator
as well as the final comparison of the QN method are described in the next chapter.
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5. PARALLEL RESERVOIR SIMULATION

Parallel computers provide a way to greatly increase the speed of reservoir simulation.
To do optimization using numerical simulators the simplest way is to run several simulation
jobs in parallel. Howéver a more interesting problem is running one simulation in parallel on
several processors, this is also useful for general purpose simulation tasks. A study on parallel
reservoir simulation is detailed in this chapter as are final tests and evaluation of the Quasi-
Newton method.

5.1. PARALLEL COMPUTING

The fastest supercomputers today use cycle times of a few nanoseconds. Since light itself
travels only 11.78 inches in one nanosecond (electricity travels even less) such machines seem
to be approaching physical limits. At such speeds physical distance to memory, and within a
memory card, becomes a problem. Cost of components that can work at such speeds, espe-

cially memory, is also very high. Because of these factors further speed increments are more
difficult and expensive.

Parallel computers capable of similar absolute performance can be made today at a much
lower total cost. In addition it is possible, in principle, to enhance performance by simply
adding more processors. It is likely that parallel computers will eventually greatly exceed the

performance of conventional supercomputers, so they represent an important platform for reser-
voir simulation.

The form of parallel computers has not been standardized. Different approaches to solve
the hardware issues have resulted in different types of parallel computers, e.g. message-
passing, shared-memory, data-flow, systolic arrays and connectionist machines. Of these the
first two types are the most promising for general purpose use.

Much effort is being spent on algorithms for parallel computation. It is relatively simple
to make good use of a few processors working in parallel. In some cases this can be done
automatically on existing serial code by the compiler and/or the hardware (Padua and Wolfe,
1986). However it is difficult to make effective use of a large number of processors working in
parallel. It is this latter type of machine that holds the most promise and also presents the most
difficulty in devising suitable parallel algorithms.

. Usually one is forced to use an algorithm that is less than optimal for a serial computer.
One cannot rely on the compiler to automatically detect and take advantage of concurrency in
existing serial code; rather the code has to be explicitly written to run in parallel.

5.2. AMDAHL’S LAW

Even with parallel algorithms the achieved speedup is often not as good as expected prin-
cipally because of Amdahl's law (Amdahl, 1967). Amdahl’s law states that the time for a
given computation T, is the sum of two components: a serial component S that must be per-
formed in serial, and a parallel component P that can be performed in parallel. Therefore, on a
single-processor machine the total time is:

Tl=S+P
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‘Now suppose that no time is lost on synchronization/communication etc. when running
in parallel. Then the time for the same process on p processors will be:

P
| Tp=S+';
and speedup is then:
T, - S+P _ 1
TP 542 5.2
p P

which, in the limit of an infinite number of processors, approaches 1/S. Even a small serial
component can seriously affect performance, for example with a serial component of 5% the
maximum possible speedup is 20. Actual speedup will be even less because of time lost in
synchronization or communication between processors.

Because of Amdahl’s law it has been widely believed that there was an upper limit of
about 200 on the speedup possible in useful scientific computation.

Recently, Gustafson et al. (1988) broke through this limit by showing speedups of 1000
on 1024 processors on three different scientific problems. This speedup is based on a modified
form of Amdahl’s law. They also report the speedup by Amdahl's law as shown here to be
around 500. This means that only 0.1% of the time was spent on the serial component and in
communication, a remarkable feat since it means that a 16 hour computation on a uniprocessor
machine would need only 1 minute of purely serial time.

5.3. PARALLEL MATRIX SOLUTION

The matrix solution step in simulation is the most difficult to parallelize. Conventional
algorithms for matrix solution have high serial components and are unusable unless modified.
Consider a triangular matrix, trivially solvable on a serial computer, it is a major challenge for
a parallel computer. Since one element of the solution can only be obtained after the previous
element has been obtained, there is an unavoidable serial component in solving this matrix.
Some degree of parallelism is possible by operating on columns in parallel but gains are lim-
ited on the sparse matrices that arise in simulation.

Instead the matrix must be solved in a manner such that no processor has to wait for the
result of another. Gustafson et al. (1988) solved their matrix problem using the point-Jacobi
preconditioned conjugate gradient method (see Concus et al., 1976). This method is ideally
suited for parallel computation, since the only serial component arises in the dot-products (i.e.,
vector inner products).

In addition by using point-Jacobi they were able to handle much larger problems than
otherwise possible by storing only the main diagonal of the matrix. Since no matrix is stored
they obtain the matrix-vector product that occurs in each PCG iteration by an additional func-
tion evaluation.

Their parallel speedup has been so spectacular that all other results (including those
presented here) pale in comparison and this record will probably stand for a long time. How-
ever it remains to be seen whether such speedup will be possible with a more powerful matrix
solution scheme. ,
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Parallel matrix solvers have also appeared in reservoir simulation applications. Scott et
al. (1987) tried various parallel SOR-type methods. They concluded that the submatrix method
showed the best potential speedup. In this method each processor performs independent SOR
iterations on part of the matrix. So various parts of the matrix are at different iteration levels.
They showed a speedup of about 6.7 on 10 processors with this scheme.

Killough and Wheeler (1987) tried domain decomposition ordering as a preconditioner for
an Orthomin (Vinsome, 1976) accelerated iterative method. The final form of their algorithm
is a block Gauss-Seidel preconditioner combined with Watts (1971) line corrections. The grid
is ordered such that the blocks corresponding to the domains are solved first, followed by
blocks corresponding to the edges of the domains, finally the vertices between the edges are
solved. This method was shown to compare favorably with current serial methods on ill-
conditioned matrices but was slower by a factor of 3.2 when applied to a production reservoir
simulator. They explained this by noting that the method seems to be linearly convergent after
the first iteration, regardless of the condition number of the matrix. On ill-conditioned matrices
current serial methods have difficulty converging but because of this linear decrease the method
is competitive. In the reservoir simulator the matrices were not ill-conditioned so current serial
methods, RS/ILU(0) (incomplete LU factorization with zero fill-in after reducing the matrix to
half the normal size by red-black elimination - see, for example, Behie and Forsyth (1984) in
particular, converged rapidly. They noted that each domain decomposition iteration is three
times as expensive as a RS/ILU(O) iteration and this resulted in the poor performance. By
finally limiting the solution to a single domain decomposition iteration they were able to get
within 10% of the serial time.

Efrat and Tismenetsky (1986) used a biconjugate gradient algorithm, however, this
method requires more work than a conjugate gradient type algorithm and has not since been
used by others in the petroleum field. :

5.4. OBJECTIVES OF CURRENT STUDY

In addition to parallel matrix solution the parallel formation of the matrix equations also
needs to be considered. The objective of this study was to construct a fully scalable (i.e., one
capable, at least in theory, of achieving linear increase in speedup over any number of proces-
sors) parallel black-oil simulator and see what the issues involved are. In addition we also
explored the use of Quasi-Newton methods for solving the nonlinear system of equations in
parallel (and serial). In principle any parallel matrix solution scheme can also be used with the
Quasi-Newton method and on the face of it the method appears attractive for parallel process-
ing. We now briefly describe the some of the issues involved in parallelizing a reservoir simu-
lator, followed by a comparison of Newton and Quasi-Newton methods and conclude with tests
of the parallel simulator. '

5.5. SHARED-MEMORY AND MESSAGE-PASSING ARCHITECTURES

These are emerging as the most successful general purpose parallel architectures and are
shown schematically in Fig. 5.1. Both usually operate as MIMD (Multiple Instruction Multiple
Data) machines, i.e., each processor runs its own code on its own data.

On message-passing machines each processor has its own memory and processors com-
municate by passing messages over a network that ties together all the processors. The hyper-
cube topology is usually used for the network because it keeps the interprocessor distance
small (at most logy(p) on p processors) while also keeping the communication traffic through a
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PARALLEL MIMD ARCHITECTURES
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Figure 5.1. Sh’ared-memory and message-passing architectures.
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node small. Such machines can be built with a very large number of processors using rela-
tively low cost memory and components.

Programs for these machines are quite a bit different from ordinary serial code, since
messages must be passed to access global data. Messages move relatively slowly so one also
has to spend effort on minimizing communication. In addition programs for such machines
usually have a host process to schedule and control the parallel node processes, a concept
never considered on serial code.

Shared-memory machines have a globally shared memory that can be accessed by all pro-
cessors. Each processor usually operates out of a cache, but here the caches have to be more
sophisticated than is usual in uniprocessor machines.

If a change is made to global memory by one processor, all caches must sense this, deter-
mine if they hold the memory location in cache and either invalidate the data or read it in.
These machines suffer from the high bus traffic that resuits from multiple processors working
with one shared memory. This architecture is therefore not suitable for a very large number of
processors. On the software side a shared-memory machine is easier to program and commun-
ication between processors is very fast.

5.6. PROGRAMMING A SHARED-MEMORY MACHINE

In this study, runs were made on a 16 processor shared-memory MIMD machine, the
Encore Multimax. The machine uses National Semiconductor NS32032 32 bit CPUs and
NS32081 floating point co-processors. The operating system is similar to Unix. Physically
each processor can access any of the shared memory, but from the logical point of view each
processor has its own local memory and access to a global shared memory,

The shared-memory paradigm makes it relatvely simple to write a simulator for this
machine, the resulting code can run almost unchanged on a conventional serial machine.

The environment available for this study was most conducive to the C language so the
simulator was written in this language. There are certain disadvantages in using C. Since the
bulk of numerical code is in FORTRAN, little use can be made of existing code. C also does
not handle multidimensional arrays as well as FORTRAN, specifically a subroutine/function
cannot accept variable size arrays (unless they are one-dimensional). In FORTRAN, the
declaration A(N, N) allows any size two dimensional array to be passed. This is not possible

in C so this makes everything a little bit harder to do since one-dimensional arrays have to be
used throughout.

On the positive side C is very close to the machine, offers constructs like do-while,

switch, user-defined types and records, preprocessing to allow selective compilation and other
features typical of more modern languages.

Argonne National Laboratory’s parallel processing package of process control, synchroni-
zation and communication primitives (described in Boyle, J., et al., 1987) provides the neces-
sary parallel extensions to what is otherwise standard C language. The important primitives for

shared-memory machines are named CREATE, LOCK and BARRIER and are briefly described
below.
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5.6.1. The CREATE Primitive

This primitive copies the entire program and data to a specified number of processors,
starting them up at a specified subroutine. Each processor then runs its own copy of the pro-
gram, using local memory for all variables expect those explicitly allocated in global memory.

The simulator allocates space for all reservoir data and vectors and matrices in global
memory. This is mainly for programming convenience, the code is designed so that each pro-
cessor deals with a subset of the variables. Most variables like tables, loop counters and tem-
poraries are kept local to each processor. A few (convergence flags, dot product results, global
sums etc.) are explicit global variables and meant to be looked at or modified by any or all of
the processors.

5.6.2. The LOCK Primitive

This primitive is used to control access to global variables. To see why this is needed,
consider two processors incrementing a global variable. Suppose that the global variable is set
at 21. Now if processors A and B each do an increment the variable should become 23. But
suppose processor A reads in 21 and before it can write it out, processor B also reads in 21.
Then A will write out 22 and so will B, giving an incorrect answer. To ensure correctness, A
must be able to exclude B until it is done.

LOCK lets A make sure that B cannot access the variable until it has done its job and
performed an UNLOCK. If two processors simultaneously try to get the LOCK only one will
succeed (it shouldn’t matter which one it is) and the other must wait. A typical application for

these primitives is self-scheduling, where a processor determines what it should work on
dynamically e.g.

LOCK(); /* obtain the lock */
my_index = global_index; /* get index to work on */
global_index++; /* increment index */
UNLOCK() ; /* let the lock go */

This sequence can be used in a simulator when doing table lookups for example. Each
processor gets a grid block to work on and returns for another until all are done. Once a pro-

cessor has the lock, all others trying to get the lock must wait so LOCKs reduce the amount of
useful computation done.

In simulation the problem can be easily partitioned so this primitive is not used in the
code. Instead we pre-schedule by assigning different parts of the reservoir (and corresponding
parts of arrays and vectors) to each processor. Some global variables are used, but due to the
nature of the preceding operations it is possible to avoid the use of LOCKs, either by allowing

only a particular processor to modify the variable or by allowing all processors to modify the
variable.
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5.6.3. The BARRIER Primitive

This primitive is used to synchronize the processors. Upon coming up against a BAR-
RIER statement a processor temporarily halts execution of the program. When all have halted
at the BARRIER, it opens and all resume work.

The BARRIER primitive is useful in ensuring the consistency of data across all the pro-
cessors. For example, suppose processors A and B are assigned grid blocks 1-22 and 23-44
respectively of a 1-D reservoir. Let’s assume that the processors first go through their assigned
blocks performing table look-ups and store the results. On a second pass they use these stored
values and calculate the flow equation at each block. :

If speed on the table lookups differ it is possible that one processor, say B, finishes
before the other. The flow equation for block 23 will now be incorrect since it includes flow
in from block 22 on which A has not yet done the lookup.

The solution, as shown in Fig. 5.2, is to put a BARRIER after the table lookups to ensure
that all are done before work begins on the flow equations. It is also possible for each proces-
sor to maintain copies of the grid blocks surrounding its region and thus make sure of its own
data by itself. This leads to redundant calculations and introduces some complexity in the code.
So the simulator employs BARRIERSs to make sure things are consistent.

Due to different times for table look-up, different outcomes of if-then statements, and
presence or absence of reservoir edges and wells, each processor will be doing varying
amounts of work even if all have the same number of grid blocks assigned to work on. This
means that the load will never be perfectly balanced. Some processor will always take longer
than the others to complete a given stage of the computation. So there is a slowdown at BAR-
RIERs since the processors must wait there until the slowest one catches up. Some time is

also needed for the system to actually execute the BARRIER statement itself. For these reasons
BARRIERs tend to slow down the code.

USE OF BARRIERS

Processor A Processor B

Lookup kys, B, for blocks 1-22

Lookup k,,, B, for blocks 23-44
BARRIER

BARRIER
Make oil equation for blocks 1-22

Make oil equation for blocks 23-44

Figure 5.2. Use of BARRIERS on 2 processors.
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In writing a parallel program one therefore aims for the coarsest granularity possible (i.e.,
long stretches of independent work given to the processors) and good load balance (i.e., equal
amounts of work assigned to each processor) to reduce the time wasted at BARRIERS.

5.7. BUILDING A PARALLEL RESERVOIR SIMULATOR

Recall the fully implicit formulation of the previous chapter:

TiswlPis1 = Pi — Yiews(@is1 — Z)] — Ty [P1 — Pio1 — Yieu(@i — 24-1)]

S ORI

This can be written as f(x) = 0. So the major tasks in parallel simulation are to form f(x),
and its Jacobian J(x) and then solve the associated matrix problem, all in parallel.

Scott et al. (1987) talk about pipelining these separate tasks so that one processor could,
for example, begin work on making f before the matrix solution is complete. However this
may not be practical because in order to obtain the maximum throughput we want to always
use perfectly balanced parallel techniques everywhere. So, in principle, no processor will
finish on a task before the others.

The approach used in this study is to complete one task in parallel on all processors
before going on to the next task. For good load balance each processor is assigned an equal
number of grid blocks and equations to work on. When the number of grid blocks cannot be
equally divided the remainder is distributed one by one among the first few processors (e.g.,
for 14 blocks on 4 processors the assignments are 4 4 3 and 3 grid blocks each).

Figure 5.3 shows the program flow chart of the parallel simulator, The arrows represent
major BARRIERs. These ensure that each processor will be working on identical code sec-
tions at the same time, each on its own set of grid blocks or equations.

The only exception to this rule is processor 0, which is assigned the task of printing out
results (parallel I/O is not possible on this machine), and also the task of updating global vari-
ables like dot-product results, convergence etc., All instances of the program check to see if
they are on processor O and the one that passes proceeds to perform the task while the others
either wait for the result or continue work until the next BARRIER,

§.7.1. Parallel Construction of f and J

Most of steps required to construct f and J can be run independently in parallel. The
tables are replicated on each processor so table lookups go through without any interference
between processors. They are followed by a BARRIER to counter speed mismatches.

For maximum performance in the construction of f and J, special treatment is needed
when running in parallel. If used as written, the finite difference equation (Eq. 5.1) contains
redundant calculation, for example at block 2 one of the flow terms is
TIp; — p1 — ¥ (z; — z;)]. However the identical term has already been evaluated when
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PROGRAM FLOW CHART

(Arrows correspond to major synchronization points)

Read in input data, allocate memory

CREATE (p — 1) processes

Processor A

Processor B

Table Lookup for Oil

Table Lookup for Oil

1 ¥
Make f and/or J pass 1 (O) Make f and/or J pass 1 (O)
1 ¥

Make f and/or J pass 2 (O)

Make f and/or J pass 2 (O)

Y

Repeat for Water and Gas

Repeat for Water and Gas

Factor J with parallel ordering scheme

Factor J with parallel ordering scheme

Y Y
Solve Js = —f using factors Solve Js = —f using factors
¥ i
Addstepx=x+s Addstepx=x+3s
Y Y
Check convergence Check convergence
Y y

Advance time if converged else repeat

Advance time if converged else repeat

Figure 5.3. Program flow chart on 2 processors.
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_processing Block 1. The transmissibility at the interface will be identical for both blocks
regardless of which is upstream. So this term and its derivative needs to be evaluated only
once.

In two dimensions we need only calculate the flow rate and its derivative for a block and
its two downstream neighbors, (i + 1) and (j + 1), and add these to the neighbors as flows
from (i — 1) and (j — 1). So by the time a block’s turn comes up half the work has been done.
This is easy to implement in a serial computer but some care is needed on a parallel computer.
Because the flow rates and derivatives are summed on the main diagonal of the Jacobian and in
f there is a chance for error during the summation if different processors try to add in flow
contributions to the same grid block at the same time.

These contributions occur too frequently to bracket each one with a LOCK and
UNLOCK sequence. Extra blocks at edges will solve the problem but this introduces redun-
dant calculations. The chance of error is avoided if the processors store (not sum) these contri-
butions. Storage space is available in the vectors used by the Orthomin acceleration scheme.

Constructing the Jacobian and f is then a two pass process as shown in Fig. 5.4. In the
first pass the processors store flow terms and derivatives at each block and at its neighbors. A
BARRIER at the end makes sure that all are done. Finally, in a second pass the processors run
down each block, adding on the previously stored entries (with the appropriate change in sign),
add accumulation terms and wells to complete the Jacobian and f.

CONSTRUCTING f AND J

Pass 1 - Store Rates Pass 2 - Sum Up Rates
Block i, Block i +1,j Block i, 5 Block 1 4+1,7
Y .
| 1\ | |
Storage areas T
Block i,j +1 Block 7,7 + 1

Figure 5.4. Parallel construction of f and J.

5.7.2. Parallelizing Vector Dot Products

Vector dot-products have significant serial component. Each processor can, in parallel,
‘perform dot-products on part of the vectors, but the partial results must then be summed in
serial to obtain the final dot-product. A code example is:

BARRIER(); /* wait for consistent arguments */
MakePartialDotProducts();
BARRIER(); /#* wait for all to finish */
if (ProcessorID == 0)
Global->DotProduct = SumUpResults();
/* sum up partials in serial on processor 0 */
/* and store the result in a Global variable */
BARRIER(); /* wait for serial sum to finish */
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This code requires 3 BARRIERS and the serial sum. Some time can be saved by careful
coding. For example, by checking the places the routine is called from we can remove the first
BARRIER from this routine and place it before the call only where needed.

It is also possible to save time on the serial step by using more than one processor. If the
partial results are stored in a vector, one can recursively add odd elements to even elements in
parallel, halve the vector length and repeat until this length is one.

With a large number of processors this saving is useful for it reduces the floating-point
time to logy(p) instead of p. This is important in the 1024 processor machine used by Gustaf-
son et al. (1988) since log,(1024) = 10.

With 16 processors the serial sum requires 16 floating point add/accumulates. The faster
method reduces this to 4 floating point add/accumulates but requires integer comparison, deci-
sion making and BARRIERSs after each add/accumulate, so it is not attractive for this machine.

With the limited size of the problems that could be run on this machine, even this small
number of serial instructions has quite an effect. For example, consider the dot product of two
800 element vectors. On 12 processors, 67 multiply/accumulate instructions are enough for an
ideally parallel operation. Instead we need 67 + 12 instructions and the 3 expensive BAR-
RIERS - so speedup is much less than 12.

The dot-product problem can also be solved using the LOCK/UNLOCK primitives.
When each processor is done with its partial result it can get the lock on a global sum variable,
add on its result and release the lock. Speedup is not improved since 16 sums still have to be
done, one after the other but this time with the added overhead of a LOCK/UNLOCK pair sur-
rounding each sum. There is also the need to zero the sum variable initially and to wait for all
processors to complete before passing the result back.

5.7.3. Miscellaneous Linear Algebra Routines

Common routines like vector adds, copying vectors etc. (the most heavily used is the
addition of a scaled vector to another: s = ax + y) are handled by a small library written to do
the operations in parallel. Each processor is pre-assigned a subset of the vector elements to
look after so the routine simply executes the operation on the subset in its charge.

By calling on subroutines to do these basic tasks, the main program can be written as if it
were for a serial machine. ' '

5.7.4. Globally Shared Variables

Certain flags and sums require global variables. For example, to calculate oil in place
each processor makes a partial sum and stores the answer in its slot of a global oil-in-place
vector. When all the processors are done, Processor 0 sums up the partials as in the dot-
product.

For automatic time step control each processor stores the maximum change in P and S,
on its grid blocks. Once again Processor 0 finally obtains the overall maximum changes.
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For convergence tests, warnings about table look-ups being out of bounds and for well
rates the processor involved directly changes the associated variables.

5.8. PARALLEL EXPERIMENTS WITH THE QUASI-NEWTON METHOD

Early paralle]l experiments were run on the waterflood model used as a test for the
Quasi-Newton method. The block-diagonal approximation for Ag allows the matrix solution to
be trivially run in parallel. In addition the rest of the simulator was built to run in parallel as
detailed above.

So without addressing the question of when the QN method is more efficient we have a
fully parallel simulator to experiment with.

During these experiments reservoir block sizes were kept constant, while their numbers
were changed to present different sizes of problems. Due to memory constraints on the
machine the problem size was limited to 400 grid blocks.

Figure 5.5 shows clearly the benefit of moving from a serial computer to a parallel com-
puter. Compared are the time on 1 processor with the time on 12 processors. Notice how the
total time needed increases much more gradually with problem size on a parallel machine. The

figure also shows the previously noted effect of Quasi-Newton methods, the serial work scales
- linearly with problem size with a diagonal Jacobian approximation.

Figure 5.6 compares the speedup at various problem sizes to the ideal speedup. Note that
for the 5 X 5 problem there is a decrease in speedup as the number of processors increases. On
such a small problem each processor is doing very little work before coming up against syn-
chronization points at BARRIERs. This work shrinks as the number of processors increases
until finally the time lost at BARRIERs overcomes the speedup obtained by running in parallel.

It is obvious that as the problem size increases, the better the speedup obtained, in fact
this is one of the standard conclusions of researchers in parallel computing. Figure 5.7 shows
the speedup on 4 processors with various problem sizes. From 100 grid blocks onwards
speedup is close to ideal. The speedup curve still trends upwards at 400 grid blocks so it is
likely that speedup can get even closer to ideal. This figure shows that on a small number of
processors it will be relatively simple to get very close to ideal speedup.

Figure 5.8 shows the speedup on 12 processors with various problem sizes. At small
sizes we see the detrimental effect of BARRIERSs; observe the speedup of only 2.5 on the
5 x 5 problem. Speedup is disappointing even at 400 grid blocks. At this size each processor is
still only dealing with 33 or 34 blocks. It appears that the overall problem size would have to
be at least 2-3 thousand blocks for this problem before the times could begin to approach ideal
speedup.

As the number of processors go up this threshold will also rise (the way it has done
when moving from 4 to 12 processors). In general, problem sizes have to be very large in
order to get good speedup, for instance Gustafson er al. (1988) got their best results with 2
million finite elements (2048 elements on each of 1024 processors), a problem that would have
taken 20 years to solve on a single processor.
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5.9. COMPARING NEWTON AND QUASI-NEWTON METHODS

, We now compare Newton and QN methods on three phase simulation of a standard test
problem on a serial machine.

5.9.1. Variable Substitution

Recall that the Quasi-Newton method holds the accumulated secant information in update
vectors. This works well with the two phase oil-water system but three phase simulation
requires the treatment of gas. The unknown variable that accounts for gas changes from S,
when free gas is present, to R; when all free gas disappears and vice versa. The Quasi-
Newton update vectors relate to the set of variables at the start of the time step. On variable
substitution these vectors become outdated so the method must be restarted with the new set of
variables. This can be costly if factorization costs are high so ideally one would like to avoid
this forced restart, if possible.

The pseudogas concept, where a small amount of gas is always present, avoids variable
substitution but, as shown by Forsyth and Sammon (1984), has a greater material balance error.
To avoid variable substitution and material balance error one can use a single variable for the
total gas in a grid block, i.e.:

- S
Sg=§§+

RS,
B,

(5.2)

Given Sg it is relatively simple to find S, or R,. If Sg > RSy, where R, and B, are

the values for a saturated oil at the block pressure, then free gas is present and S, can be deter-
mined from Eq. 5.2. Otherwise S, = 0, and R, can be found using a 1-D Newton scheme and
the B, lookup table [the Newton scheme is needed because B, = By(R;, P,)].

So this one variable can represent both R and S, and restarts should no longer be neces-
sary. However there are large changes in the Jacobian when gas evolution or solution takes
place. In a Quasi-Newton method the Jacobian will have been constructed before the gas phase
appeared or disappeared and the updates must change it to reflect the new status (similar to

Mattheis and Strang’s (1979) handling of a change from elastic to plastic in structural finite
elements),

Tests show that the Quasi-Newton updates can work when gas comes out of solution but
do not work when free gas goes into solution, The method seems unable to update a Jacobian
constructed with free gas present, to account for disappearance of the gas. This is probably due
to the big decrease in effective compressibility of the block on such a change.

5.9.2. Test Conditions

A standard test case, the first SPE comparative solution project (see Odeh, 1981) was the
basis for test runs. This is a 10 X 10 X 3 simulation model with fairly high permeability con-
. trasts, high rate gas injection and high rate oil production. For benchmark purposes a ZXY

ordered band solver was also tried on this problem. This ordering has a smaller bandwidth than
standard ordering. ‘
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All cases used the same nonlinear convergence test as follows. Convergence was accept-
able when either:

Ix@)! < 1.0
& Isi) < 1x10°,Vi=1,.,N
or

x(i)

where X is the vector of unknowns and s the step vector.

l[—QJI 2%x10°5,Vi=1,.., N

The first test appears lax but usually pressure converges slower than saturations (this is
the basis for the COMBINATIVE method of Behie and Vinsome, 1982) so the second test will
usually apply and prevent premature acceptance. The first test is used to avoid the occasional
occurrence of a tiny gas saturation appearing in the denominator of the second test, magnifying
an acceptable step, and not allowing the iterations to complete. The actual numbers are ad hoc
but appear to be adequate, a later 10 year run on this problem with a linear solver tolerance of
0.01 gave zero material balance error for oil and 0.0005% error for gas (error being expressed
relative to quantity produced).

All runs simulated the first 100 days of this test, unless otherwise specified. Time steps
started at 1 day and increased by a factor of 1.5 thereafter. No time step cuts were necessary.

5.9.3. First Order Techniques

With gas in the problem the block-diagonal approximation for A; is no longer adequate
- and must be improved. Dubois et al. (1979) dlSCUSS a method for improving on inverses using
a truncated Neumann series approx1mauon for A~ To solve Ax=b they define the splitting

A =M —~ N. Then since A = M{JI — M™!N), and using the Neumann series expansion for an
inverse

=1 -MINyM!

= i (M'IN)‘]M‘1

L

=3 a- M“A)i]M‘l

i=0

The sum is truncated to obtain an approx1mate inverse - p terms give the approximation M, -1
They show that one iteration with M is equivalent to p iterations of

x®+D = x® 4 M1 b — Ax®)

When M is the diagonal of A this is the iteration scheme for the first order (i.e., without
acceleration) Jacobi method.
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So one can either improve Aj' for the QN method using a Neumann series or
equivalently solve the equation Agdy = f. At this point we face a fundamental problem with
the Quasi-Newton method. The principal advantage of the method is that the same inverse can
be used for several iterations. Ideally we would like use this improved inverse rather than solve
the equivalent equation. However, the inverse will not be sparse so we cannot afford to store
it, instead the equation must be solved at each iteration. This reduces the possible gains from
the method if the matrix equations are solved iteratively.

It turns out that at least z-line Jacobi iterations are needed for this problem because of the
high vertical transmissibility. To do this the grid blocks are numbered along vertical lines and
M is the (block) tri-diagonal part of A. :

Table 5.1 shows a comparison of Newton and Quasi-Newton schemes under the standard
test conditions. Cases A through D show z-line Jacobi iterations done to various convergence
tolerances. The iterations continue until either the 1, norm of the residual (fx — Aody) has
dropped below a specified fraction of the l, norm of the initial residual (i.e., of fy), or a max-
imum number of Jacobi iterations have been done. In Case E, the ZXY band solver is used.
Time reported is the total time for the simulation.

Case E shows how the QN method can save with direct solvers, because in most itera-
tions it can get away with just a forward-elimination followed by back-substitution on the LU
factors of the Jacobian matrix, substantial savings in time are possible.

Case A shows the effect of solving iteratively to high accuracy. Here the linear conver-
gence tolerance is tight, resulting a good solution - Newton’s method takes the same number of
iterations as with the direct solver. The Quasi-Newton method fares poorly in this case, taking
more iterations than Newton’s method. This is because the convergence of a Quasi-Newton
method is at most superlinear while Newton’s method converges quadratically.

Cases B through D shows the effect of relaxing the convergence tolerance. Total time
drops because of the reduced time spent on the matrix solution. But notice also that as the
approximation gets worse the QN method begins to perform better. The nonlinear iteration
count for Newton’s method begins to increase, indicating a drop in convergence rate from qua-
dratic. The convergence rate of the QN method falls less dramatically, until in Case D it
requires fewer nonlinear iterations than Newton’s method. In this last case Newton’s method
takes 44% longer and also produces a less accurate answer; material balance is orders of mag-
nitude worse than that obtained with the Quasi-Newton method.

From this table it is clear that the QN method can make use of the secant information
that is accumulated. Of course, as Case A shows it cannot do better than superlinear and so it
will not converge faster than Newton’s method with an exact solution. However for the same
reason that it does well with the approximate solutions shown in this table, we expect that it
will do well when used with an approximate Jacobian and later experiments confirm this.

5.9.4. Accelerated Techniques

Orthomin (Vinsome, 1976) is the most popular acceleration technique in reservoir simula-
tion and is the equivalent of the preconditioned conjugate gradient method for nonsymmetric
matrices. It is based on generating a series of A-orthogonal search vectors and minimizing the
residual in the direction of the search. At the kth iteration, if the search vector is Aqy and the
residual is ry, then the residual is minimized in the search direction by choosing the step length
p such that llry, — pAgyll2 is minimized.
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Table 5.1. Comparison of direct and first order iterative methods

Number . Number

Solver

‘ Maximum of of
, Residual Jacobi Nonlinear Jacobi Time
Case Method Tol. Itns Itns Itns sec
A Newton 0.001 100 43 2408 251.1
QN 60 3249 331.8
B Newton 0.01 50 51 1680 182.7
QN ‘ 70 1623 174.9
C Newton 0.1 20 78 1133 139.1
QN | 81 774 94.1
D Newton 02 15 92 946  126.1
QN ‘ 81 708 87.4
E Newfon Band 43 1225.5
QN 58 545.6
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Because the search vectors are orthogonal the method is guaranteed (except in pathologi-
cal cases) to be able to span the vector space in its search for the solution. Furthermore by
minimizing the residual the method, in effect, acts like a direct method at each orthogonal step.
The combination of orthogonalization and minimization makes the method extremely powerful.

Since QN must also use the same acceleration method to match Newton’s time, a QN
method accumulates secant information in precisely the same search direction. So the only
extra information picked up by Quasi-Newton is the difference between the linear model and
the nonlinear model in one direction. On the other hand the effectiveness of the minimization
is hampered by the QN scheme since the old Jacobian is used for A. So the superlinear versus
quadratic convergence rate tradeoff again applies when comparing the two methods.

Table 5.2 shows the effectiveness of the Orthomin acceleration scheme and the perfor-
mance of the QN method with various linear solution schemes. In this and all subsequent tests
the linear tolerance used was 0.1 and the number of linear iterations limited to 15, unless noted
otherwise. :

The columns correspond to, in order, number of iterations (nlt), number of factors (nF),
number of Jacobian evaluations (nJ), number of forward eliminations/back solves on the previ-
ously factored Jacobian (nS), number of Watts’ line corrections (nW), time for 100 day simula-
tion, material balance error for oil in barrels per million barrels produced, material balance
error for gas in MCF per 100MMSCF produced.

The rows correspond to the linear schemes which, in order, are z-line Jacobi, Red-Black
Gauss-Seidel (RB GS), RB GS with Orthomin acceleration and RB GS with Orthomin
acceleration and Watts (1971) line correction. These are detailed in the next section.

The table shows that with the first-order iterative schemes the QN method can do better
than Newton’'s method but with acceleration the QN method is slower. However this does not
rule out the QN method, for it requires fewer factorizatons (nF) and Jacobian evaluations (nJ)
than Newton’s method. More solve steps (nS) and function evaluations are required by QN.
Tests show that the time to form the function is about half the time needed to form the Jaco-
bian which itself is not very expensive in black oil simulation. So we omit costs of forming f
in further discussions. The relative merits of the two methods will depend upon how expen-
sive it is to form the Jacobian and do the factorization step, relative to the solve step.

The factorization step consists of converting the preconditioning matrix, M = J, into its
factors, i.e. the upper triangular matrix, U, and the lower triangular matrix, L, such that

M=LU
The solve step consists of solving Mx = b, by forward elimination
Ly=b

followed by backward substitution

and acceleration in iterative techniques.
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Table 5.2. Comparison of iterative methods

nlt nF nl nS oW Time Oil Gas

sec Error Error

Newton

zLine Jacobi 99° 99 99 1214 0 87.8 1408 582

Red-Black GS 75 75 75 696 0 649 1408 224
RBGS+ ORTH 55 55 55 169 226 192 69
RB GS4+ORWatt 52 52 52 62 242 22.7 0 0

Quasi-Newton

zLine Jacobi 91 28 28 940
'Red-Black GS 85 28 28 533
RBGS+ ORTH 81 25 25 229
RB GS+ORWatt 71 21 21 80 29

64.7 0 10
49.8 0 9
26.7 304 117
24.5 16 0

©CoOoOOoOQ
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The relative cost of these steps depends upon the linear techniques used:

e  With a direct method there is a clear case for the QN method since M = J, and the
factorization step will be much more expensive than the single solve step.

e  With iterative schemes the performance depends on the form chosen for M, and the
method used for the factorization. For example we use a tridiagonal M, so the fac-

torization cost is very low. If a denser M were used, the cost of LU factorization
will go up.

e - Incomplete LU factorizations set M = J, but do not factorize exactly. Instead they
save time by allowing only a certain level of infill terms to appear in the factors.
The cost of factorization increases with the level of infill allowed.

e  The solve step in iterative schemes requires one \f2em or more iterations of forward
elimination, back substitution and acceleration. If the number of iterations is exces-
sive then this cost will be much higher than the factorization cost so the QN method
will not be competitive.

e  The ideal situation for QN seems to be a preconditioner with a high setup and fac-
torization cost, followed by one solve step per nomnlinear iteration (this is similar to
what Killough and Wheeler (1987) needed to do in order to get acceptable perfor-
mance). Usually such preconditioners will require very few solve iterations anyway
(in the limit, direct methods require only 1 iteration) so they will be more conducive
for the QN method. '

With the z-line Gauss-Seidel preconditioner used here the matrix is tridiagonal and this
can be factorized very quickly. The solve step requires one or more iterations of forward-
elimination, back-substitution and acceleration all of which put together are more expensive
than the factorization, so little can be expected from a QN method with this preconditioner on
this problem. For this reason the Watts aided results in Table 5.2 show that the Quasi-Newton
method takes longer than Newton’s method in spite of using less than half as many factoriza-
tions and Jacobians.

5.9.5. Effect of Number of Updates

All the previous runs have restarted the QN method after 7 updates or on a phase change.
This number could be reduced to improve convergence. Table 5.3 shows the effect of varying
the number of update vectors. During this simulation several update restarts occur due to vari-
able substitution so each iteration has not been run to the number of updates allowed. Still
some obvious trends can be observed. Nonlinear convergence can be improved by reducing
the length of the update sequences but not to a very great degree; observe the small drop in
number of iteration from 71 to 69 in moving from QN(8) to QN(5, the number in parenthesis
being the maximum number of updates performed before restarting. The number of factoriza-
tions increases more rapidly, from 20 to 25 for the same case and total time decrease only

slightly. Note that the performance for both methods is markedly better with Watts’ line
correction, particularly in material balance.
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- Table 5.3. Comparison of number of updates

nlt nF nJ nS oW Time Oil Gas
sec Error Error
Red-black z-Line Gauss-Seidel Orthomin
Newton 55 55 55 169 0 226 192 69
QN(8) 82 23 23 233 0 269 160 66
QN(7) 81 25 25 229 0 26.7 304 117
QN(6) 81 26 26 232 0 274 288 117
QN(5) 78 27 27 221 0 263 176 72
Red-black z-Line Gauss-Seidel Orthomin + Watts
Newton 52 52 52 62 242 22.7 0 0
QN(8) 71 20 20 80 299 24.5 16 0
QN(7) 71 21 21 80 299 24.5 16 0
QN(6) 70 24 24 80 297 24.2 0 3
QN(5) 69 25 25 18 292 23.7 0 0
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5.9.6. Effect of Simulation Parameters

The previous discussion has compared the two nonlinear methods on a standard test case
and showed that with a tri-diagonal preconditioner the Quasi-Newton method cannot do better
than Newton’s method on the test case.

Some further tests were run to see under what conditions the QN method may be
appropriate. The first test is one simulating depletion in a solution gas drive reservoir. Dimen-
sions and physical properties are the same as before but this time the gas injector is nearly shut
in (injecting at Immscfd instead of 100mmscfd). The reservoir is just above bubble point so
evolution of gas is taking place in nearly every time step as the producer draws down the
reservoir pressure. Table 5.4 shows the results on this test.

This problem is easier than the standard test case and the nonlinear iteration counts (nlt)
clearly reflect it. Because the problem is less nonlinear the QN method requires only a few
more iterations than Newton’s method. Where previously the QN method needed 71 iterations
versus 52 for Newton, now the numbers are 39 to 38. So it is not surprising that the QN
method is faster than Newton’s method, 13.7 seconds versus 16.2 seconds. Even though the
low cost tridiagonal preconditioner is still being used, the number of solves has barely gone up
so overall time is less. Notice that without the Watts line correction (the third method) the QN
method does not do as well. This effect is also observed in Table 5.2 and Table 5.3.

Making the problem more difficult than the standard test case reveals more about the
Quasi-Newton method in simulation. Doubling the oil and gas rate makes the problem much
more difficult. Table 5.5 compares Newton, Quasi-Newton and modified-Newton. Observe that
both of the latter methods have difficulties with the problem now. Each matrix solution method
has required at least one time step cut. Indeed both methods suffer 2 time step cuts with the
most powerful linear method tried.

The time step cuts were due to table look ups going out of bounds. This is not just due
to the slower convergence rate of the latter two methods. The reason this happens is that by
using an old Jacobian both methods lose some degree of implicimess; this becomes obvious
when the problem becomes more difficult. Newton’s method can in principle take any size time
step on most any problem and usually converge but the same cannot be said about the last two
schemes. The Quasi-Newton method does perform better than modified-Newton but both are
unacceptable for this problem. If this last test represents the average difficulty of a simulation
problem it is clear that reservoir simulation is too demanding for the Quasi-Newton method.
However not all simulations will be as difficult since, for example, the test case itself is easier.

5.9.7. Performance on Approximate Jacobians

In black-oil simulation it is relatively simple to obtain an exact Jacobian, but this may not
be the case in a compositional model. To simulate an approximate Jacobian, we perturb each
3 x 3 block of elements of the true Jacobian by alternately multiplying and dividing alternate
blocks by a factor. Table 5.6 shows the results on these approximate Jacobians. All cases were
solved to 0.01 tolerance so material balance error was negligible.

Observe that, as expected, the Quasi-Newton method does better as the approximation
gets worse. This is in spite of using an accelerated scheme to solve the matrix. Also note that
the Watts correction does not do as well with an approximate Jacobian. It seems that with an
approximate Jacobian the correcting effect of the constraint may be nullified. This has been
confirmed by other experiments.
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" Table 5.4. Depletion gas drive

nlt nF nJ nS oW Time Oil Gas
sec  Error Error
Newton
zLine Jacobi 92 92 92 1258 0 875 1568 1633
red-black GS 60 60 60 701 0 616 720 746
RB GS + ORTH 43 43 43 150 0 19.0 96 107
RB GS4+ORWatt 38 38 38 38 196 16.2 0 6
:  Quasi-Newton
zLine Jacobi 61 20 20 765 0 455 208 221
red-black GS 51 16 16 439 0 348 192 213
RBGS+ ORTH 50 16 16 169 0 19.0 64 63
RB GS+ORWatt 39 15 15 39 200 13.7 0 1
Table 5.5. Doubled oil and gas rates
nlt nF nS nW Time OQil Gas
sec  Error Error
Newton
zLine Jacobi 134 134 1662 0 111.6 9354 1598
red-black GS 81 81 752 0 67.0 389 136
RBGS+ ORTH 65 65 190 0 26.5 61 10
RB GS+ORWatt 59 59 72 293 26.1 7 1
Quasi-Newton
zLine Jacobi 145 47 1285 0 80.0 1lc
red-black GS 131 46 1719 0 61.7 1lc
RBGS + ORTH 135 45 322 0 39.0 lc
RB GS+ORWatt 156 44 164 588 47.2 2c
modified-Newton
zLine Jacobi 161 49 1448 0 918 1lc
red-black GS 135 46 882 0 708 1c
RB GS + ORTH 247 69 446 0 55.1 lc
RB GS+ORWatt 200 59 199 650 55.6 2c
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Table 5.6. Performance on approximate Jacobians -

nlt nF nS oW Time
‘ sec
Factor = 1.01
Newton rbzIGSO 48 48 203 53.6
+Watts 47 47 79 377 538
QN rbzlIGSO 64 19 246 57.3
© 4Watts 61 20 103 496 59.1
Factor = 1.025
Newton rbzIGSO 49 49 209 55.3
+Watts 48 48 82 416 574
QN rbzIGSO 66 20 253 59.6
+Watts 61 20 105 509 61.0
Factor = 1.05
Newton rbzlGSO 61 61 285 73.7
+Watts 66 66 111 690 84.3
QN rbzlIGSO 69 22 287 66.6
+Watts 66 20 113 588 66.6
Factor = 1.075
Newton rbzIGSO 119 119 723 181.7
+Watts 128 128 245 1685 182.1
QN rbzIGSO 70 21 326 75.8
+Watts 71 21 122 688 T74.7
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So the final picture on the Quasi-Newton method is mixed. It is clearly not as robust as
Newton’s method but for easy problems it can work faster than Newton’s method. The ideal
application seems to be in a simulator that uses a costly preconditioner but is being run on an
easy problem. The Quasi-Newton method could thus be used as a backup option to be
switched in when things are going well (e.g. after the initial transients have passed through the
reservoir). With an approximate Jacobian the method becomes a strong contender for first
choice. Another possible application for the QN method is if there a large number of equations
at each grid block. Behie (1985) shows that the relative cost of factorization to backsubstitu-
tion varies from Neq to 5Neq depending on the type of preconditioner used.

5.10. SOLVING THE MATRIX EQUATIONS IN PARALLEL

The previous section has compared certain parallel matrix solution schemes with the two
nonlinear methods. The details of the solution schemes are given now.

The first improvement over the Jacobi method is Red-Black Gauss-Seidel. This consists
of coloring the grid in a checkerboard pattern of alternate red and black blocks. The red blocks
are numbered first followed by the black blocks. For a § x 4 grid this gives the ordering
shown in Fig. 5.10.

With the five-point finite difference scheme this ordering decouples each color’s blocks
since each of the 4 blocks around a red block are black and vice-versa. In this study for the
3-D simulations we color each z-line red or black and order the blocks by lines first and then
by colors; this decouples each z-line from its surrounding lines. The corresponding matrix

equation now becomes:
Dr  Cgr{ |xr| _ |bg

where Dg and Dg are both diagonal or block-diagonal, while Cg and Cg are of some
unspecified structure. The red equation Dgxg = bg can now be solved in parallel by solving
any diagonal (or block-diagonal) element independently of the others. We solve each tridiago-
nal along a z-line independently of the others. This is followed by the solution of the black
equation Dgxg = by — Cpxy in the same manner. In first order iterative schemes the next
iteration continues with Dgxg = by - Crxp. When used as a preconditioner for Orthomin
(Vinsome, 1976) just one pass through red and black is most efficient (i.e. Cr is ignored).

In the absence of round-off error and excepting pathological cases, Orthomin is
guaranteed to solve a nth order matrix in at most n iterations by minimizing the residual in a
series of orthogonal directions, provided space is available for 2n vectors. In practice only 2k
vectors need be stored, k being between 5 and 10. Fig. 5.10 lists the procedure for
Orthomin(k).

Most of the operations in Fig. 5.10 can be performed in parallel. The matrix-vector pro-
duct in Step 4 can be done by multiplying by diagonals. This is simplest if the matrix A is in
standard order. All vector operations can be done in parallel by allocating parts of the vectors
among the processors.

If implemented as shown, Step 4 requires storing the matrix A in addition to the storage
space for the LU factors of the preconditioner M. There are ways to avoid the extra storage, an
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Figure 5.9. Red¥b1ack ordering of 5 x 4 grid.

To solve Ax=b,set r=b and x = 0.
For n = 0,1,2... until convergence: .

l.l=nmodk+1.
2. m = min(n, k)

3. Solve Mz = r; where M is the preconditioning matrix, i.e. an easily solved
approximation to A.

4. Formu = Az
5. Fori <lorl<i<mForm a; =+ < p‘,u>
6. ql =2z— o as'qi '

‘ e

p' =z — Tk, ap’

1#l

7.4 =1/ <p,p' >
8. w=v<r,p'>

9. X — X +wq

10. r & r —wp'

Figure 5.10. The Orthomin algorithm.
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especially attractive method being the reduced system approach discussed by Behie and
Forsyth (1984), which also halves the size of the matrix problem. It would be interesting to try
this approach on a parallel machine but the ordering of the standard reduced matrix is not
appropriate for parallel processing so some modification will be needed before it can be used.

Gustafson et al. (1988) avoid storing A and the matrix-vector product Az at the cost of
an extra function evaluation, using

_ b(x, + €2) — b(x,)
= -

Az

(5.4)

This expression follows from the Taylor series approximation, b(x + 8x) = b(x) + A8x, since
A is the Jacobian of b.

For application in simulation the evaluation of the product this way has several disadvan-
tages

° To satisfy the locally linear model represented by the Taylor series we must save
the fluid properties of all three phases (or look them up again) at Xg and use these
to compute b(x, + €z). Ordinarily storage for only one phase is needed so storage
requirements are tripled if we wish to avoid another lookup.

. Any Gauss-Seidel type preconditioner part of the unfactored matrix A must be
stored to compute the right hand side residual vector. In the Red Black ordering
this is needed before the black pass through Eq. 5.3.

] Tests reveal that a straightforward multiplication by diagonals is 2.3 times faster
than a standard function evaluation (i.e. one where the lookup is repeated).

) A second matrix-vector product with A is needed when constraints are used.

So the code multiplies by diagonals on Step 4; it turns out that the matrix multiply for the
Watts line corrections is the most heavily used and could do with some fine tuning.

Step 3, the solution of the preconditioning matrix, is the crucial step in parallelization of
the algorithm. The matrix M must be ordered so that it can be solved in parallel, hence the
need for the various ordering schemes, red-black, domain decomposition, nested dissection etc.

As far as the QN method is concerned, Step 3 in the only place that holds promise for
saving. The LU factors of the preconditioning matrix M are obtained once before the start of
the Orthomin acceleration. In the QN method these factors can be retained for several non-
linear steps during which the Jacobian is also not formed. This makes sense if obtaining the

Jacobian and/or its factors is expensive and the number of Orthomin iterations per step is
small. ' o

5.10.1. Adding Constraints

The efficacy of constraints that force the residual to zero in a certain direction or over a
set of equations has been demonstrated by Watts (1971), Settari and Aziz (1973), Appleyard ez
al. (1983) and Wallis (1983).
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Watts (1971) proposed line correction to accelerate LSOR. Settari and Aziz (1973) pro-
posed a 2-dimensional line correction technique. Appleyard et al. (1983) proposed the nested
factorization method, which ensures zero residual sums along diagonal lines in two-dimensional
problems and along diagonal planes in three-dimensional problems, as a preconditioner for
Orthomin. Wallis (1983) proposed the use of residual constraints with Orthomin independently
of the type of factorization used.

Wallis et al. (1985) proposed a new generalized conjugate residual method similar to
Orthomin and proposed making the optimal choice: of -constraints based on the eigenvalues of
AM™!. They pointed out that the addition of conmstraints helps improve the robustness of
preconditioners built with local grid information like ILU(0) or for that matter z-Line Jacobi or
Gauss-Seidel. The constraints help to tie together preconditioners that use local information and
eliminate low-frequency errors that otherwise eventually slow down the convergence.

In parallel computation we are, of necessity, using local information since we do not
want one processor to depend on another. Killough and Wheeler (1987) used line corrections
with a domain decomposition ordering and also noted that they provide a rigorous and simple
technique to join the various solutions built with local information. While constraints are usu-
ally applied as line corrections, they may also be applied in other forms (for example to zero
errors in pressure). In their most general form residual constraints require the solution of

CT ACy = CTr ‘ (5.5)

where C is a constraint matrix of order n X m, A is of order n X n, and m is small compared
to n. This correction satisfies the constraint condition

C'r.=0 (5.6)
where

re=r— ACy (5.7)

The constraint condition forces the components of the corrected residual r; to sum to zero in
the directions chosen by C.

The solution y can be added to the current solution or the residual can be updated by
using Eq. 5.7. The choice of C defines the direction in which the constraints are applied. Gen-
erally the corrections should be applied in the direction of largest transmissibility (Aziz and
Settari, 1979) and this is almost always the vertical direction. Wallis et al. (1983) used eigen-
value analysis to determine the optimal direction for the corrections and these invariably turned
out to be in the direction of the highest transmissibility. Killough and Wheeler (1987) looked
at a heterogeneous problem with no dominant direction for the transmissibility and observed
that applying corrections simultaneously in all three directions was best in such cases.

For this study we have only looked at the use of constraints with Red-Black orderings.
The Red-Black ordering is highly scalable since there the number of blocks of a given color
can be tailored to fit the number of processors, furthermore the size of the submatrix problems
does not change as it does in a domain decomposition ordering. To the Red-Black ordering
we add z-line corrections since the vertical direction usually has the highest transmissibility and
also because the primary ordering is along z-lines.
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5.10.2. Solving Matrix and Constraint Equations in Parallel

The constraints can be added to the Orthomin acceleration scheme by Wallis’s (1983)
CRPO method - Constrained Residual Preconditioning for Orthomin. This is very similar to
Orthomin and is shown in Fig. 5.11.

There are now two matrices: A, the original n X n matrix, and CTAC, the m X m con-
straint matrix, to be solved in parallel. Using z-line corrections is convenient for the constraint
matrix retains the same structure as the original matrix with three-dimensional features replaced
by two-dimensional features. For Red-Black z-line ordering of the original matrix, the con-
straint matrix is Red-Black point ordered and can be solved in parallel in exactly the same
manner as the original matrix.

Acceleration is also used to speed up convergence on the constraint equations. The outer
Orthomin loop of Fig. 5.11 now has an inner Orthomin loop for the correction at Step 4. As an
inner loop the corrections tend to be expensive. So even though they greatly improve conver-
gence of the outer iterations [see the huge drops in (nS) in Tables 5.2 - 5.5] the number of
inner iterations is large (nW) and total time may decrease only slightly.

Table 5.7 the effect of residual constraints on linear convergence and total time. For loose
linear tolerances the benefit of the constraints is not clear, but for tight linear tolerances an
appreciable benefit of the constraints appears. Also note that in every case there seems to be
an optimum on the Watts tolerance on either side of which total time increases. With tight
tolerance, the number of solve steps goes down quite a bit but the number of Watts iterations
increases to counter the benefit. There is the possibility of another level of correction on top of
the Watts level to reduce the Watts time. From the Table 5.7, we can obtain some guidelines
for practical use of the constraints.

° The Watts tolerance has to be fairly loose in order to keep the time spent on correc-
tions within reasonable bounds.

° The Watts program code should be highly optimized. One unfortunate consequence
of the reduced size of the Watts matrix is that the granularity for parallel computa-
tion is much reduced so speedup is also affected.

° The constraints become more useful as the problem becomes more difficult but
costs also go up.

Later runs show that the constraints become more effective as the areal extent of the
problem increases. Table 5.8 shows the effect of varying the number of blocks in the z direc-
tion on residual constraints. With up to 10 grid blocks in the vertical direction the effectiveness
of the constraints increases dramatically. However the effectiveness falls off once the number
goes beyond that; this may be because the length of the z-line is then greater than the length in
either of the other two directions.

5.11. EXPERIMENTS WITH THE PARALLEL SIMULATOR

With the fully parallel simulator at hand and the Newton method used as the primary
method, runs were made on the simulator to experiment with its abilities. -
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Table 5.7. Effect of residual constraints on linear convergence.

Watts Time
Tol nlIt nSolve nWatts sec
Linear Tolerance = 0.1

W /o Correction - 57 139 0 43.0

W Correction 0.25 50 53 232 433

W Correction 0.10 48 51 303 45.5
Linear Tolerance = 0.01

W /o Correction - 44 189 0 48.6

W Correction 0.25 46 75 255 47.0

W Correction 0.10 43 68 345 47.5
Linear Tolerance = 0.001

W /o Correction - 43 304 0 714

W Correction 0.25 43 112 337 55.3
W Correction 0.10 43 102 468 58.8

W Correction 0.05 43 92 527 59.5
Linear Tolerance = 0.0001
W /o Correction - 43 398 0 918

W Correction 0.25 43 150 451 67.9
W Correction 0.10 43 125 564 67.2
W Correction 0.05 43 113 652 69.0
Linear Tolerance = 0.00001
W /o Correction - 43 485 0 111.1
W Correction 0.25 43 197 574 83.1
W Correction 0.10 43 154 684 78.1
W Correction 0.05 43 139 778 79.9
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Table 5.8. Effect of z-line length on residual constraints.

Watts Time

Tol nlt nSolve nWatts sec
10x10x3

W /o Correction - 44 209 0 236

W Correction 0.2 44 75 287 227
100x10x5

W/o Correction - 46 216 0 44.0

W Correction 0.2 45 73 295 36.6
10 x 10 x 10

W /o Correction - 46 184 0 815

W Correction 0.2 44 76 273  69.5
10x 10 x 15

W/o Correction - 45 172 0 115.2

W Correction 0.2 45 84 289 110.0
10 x 10 x 20

W /o Correction - 47 173 0 157.7

W Correction 0.2 45 94 327 150.3

W Correction 0.1 45 94 414 152.3
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To solve Ax = b, define T = C(CT AC)!CT, and compute x =Tb. Set r=b — Ax.
Forn =0, 1, 2 ... until convergence:

I.!=nmodk+1

2. i1 = min(n, k)

3. Solve Mz = r, where M is the preconditioning matrix of A.
4. Solve for corrections and add to solution z «— z + T(r — Az)
5. Form u = Az

6. Fori <lorl<i<mPForma; =4 < p',u>

7. q _Z—Zs_oaz
p —Z_Zl—oa‘lpi

8. v=1/<p,p' >

©

.w=+'<r,p' >
10. x — X + wq’

11. r «r — wp'

Figure 5.11. Constrained residual preconditioning for Orthomin.
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5.11.1. Comparison of Parallel Algorithms

Table 5.9 compares some parallel algorithms on a serial machine. The first is point-Jacobi
Orthomin which is similar to the method used by Gustafson et al. (1988). Note that we always
solve the three equations at each grid block simultaneously, so the point qualifier refers to the
number of grid blocks involved.

It is clear that for reservoir simulation a point-Jacobi preconditioner is unacceptable. Time
is an order of magnitude worse and, more seriously, the material balance is badly flawed. So in
spite of the great speedup shown with this preconditioner it is not going to work for simula-
tion.

The other three methods turn in more respectable times. The effectiveness of Red-Black
Gauss-Seidel is obvious when compared to the equivalent Jacobi method. The Watts corrected
version shows a slight edge on this 100 day simulation run.

One of the questions that arise in evaluating the parallel speedup of an algorithm is how
it compares with the best serial algorithm. The test case simulation was run to 10 years on
IMEX, a commercial simulator, returning a time of 198 seconds. On the same simulation and
the same serial machine the Red-Black zLine Gauss-Seidel method took 418 seconds, while the
Watts corrected version took 332 seconds (both had linear solution tolerance of 0.01, and zero
material balance error). A further run with 0.1 linear tolerance returned a time of 257 seconds
and very good material balance.

The run times have clearly suffered because of using a parallel scheme. However they are
within the same range of magnitude; there is no need to make the order of magnitude sacrifice
entailed with the point-Jacobi scheme as shown in Table 5.9.

Part of the reason the runs are slower is that the simulator is research code built from
scratch and does not have optimized code and algorithms everywhere while IMEX is a state-
of-the-art commercial simulator. Time step choice also plays a factor. It is likely that with
more powerful algorithms this gap can narrowed. For example, the z-line preconditioner can
be replaced by a block preconditioner to solve for all the grid blocks residing on a processor.
Also different ordering schemes could be tried. The main conclusion to draw is that it will be
possible to solve in a parallel manner without sacrificing a great deal of performance in serial
comparison. Secondly the Watts’ correction can help improve the competitiveness of the Red-
Black scheme especially over long and difficult runs. Once acceptable serial times are
obtained, running in parallel can make a big difference, for example with parallel speedup of
10, turnaround time for the Watts corrected version drops to 33.2 sec.

Figure 5.12 shows the parallel speedup obtained with varying problem sizes on seven
time steps of the test problem. The maximum speedup achieved is 10.46 on 14 processors. The
kinks in the curves are caused by variations in load balance. For example the 12 x 12 x 3
problem is perfectly balanced on 12 processors and a peak in speedup reflects this. On the
other hand the 10 X 10 X 3 problem suffers from load imbalance at 12 processors since the
grid blocks cannot be equally divided among the processors. In practice the grid blocks are
assigned one z-line at a time, so all operations along a z-line are handled by the same proces-
sor. This makes for fairly coarse granularity so quite a bit of time is wasted by processors that
are one z-line short, hence the pronounced peaks and dips.

Figure 5.13 shows better speedup on this 3-phase three-dimensional problem compared to
the 2-phase two-dimensional problem tried earlier. The positive slope is once again
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Table 5.9. Comparison of some parallel algorithms.

nlt nSol nWatts Time Oil Error QGas Error

Jacobi-Orthomin : :
100 2392 275.5 J4366 8566

zLine Jacobi-Orthomin :
51 404 35.1 16 6

Red-Black zLine Gauss-Seidel-Orthomin
44 210 23.4 16 4

Red-Black zLine GS-Orthomin + Watts-Orthomin
44 75 287 22.2 0 2

CPU time for 10 yr simulation run

IMEX 198 seconds
Red-Black zLine GS 418 seconds

RB zl.ine GS-Watts 332 seconds
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encouraging. However, Fig. 5.14 shows that on 14 processors things are not as good. Part of
the reason is the imperfect load balance with this odd number of processors. Part of this is also
due to the effect noted earlier - increasing the number of processors makes it very hard to get
good speedup - the acclaim accorded to Gustafson et al. (1983) is obviously very well
deserved. On the other hand, the largest problem run here allocates only 31 grid blocks per
processor when 14 are used in parallel; bigger problem sizes could not be run due to memory
limits on the machine. ‘

5.11.2. Effect of Constraints on Speedup and Total Time

Figure 5.15 shows how the Watts line correction affects parallel speedup on the
10 x 10 x 3 problem. The small size of the constraint matrix means that the processors are
unable to do much work before synchronization is needed. As the number of processors
increases, the amount of work per processor decreases and the problem gets worse. Relaxing
the linear tolerance from 0.1 to 0.2 relieves some of the slowdown. The problem is more
obvious on the 6 X 6 X 3 problem which is shown in Figure 5.16. Part of the effects seen are
because of a peak at the well-balanced 12 processor run, but here even the 0.2 correction
causes a big drop.

Figures 5.15 and 5.16 showed speedup i.e., the time for a problem on several processors
compared to the time for the same problem on one processor. However the effectiveness of the
Watts line correction depends on the problem as shown earlier in Table 5.7. Fortunately the
effectiveness increases with problem size. Figure 5.17 shows the ratio of toral time with Watts
line correction to the time without correction, on a single processor. Evidently the correction
becomes more useful as the problem size goes up; its function of tying together the local solu-
tions becomes more important as the solutions move far apart.

Because of the increased effectiveness with problem size shown in Fig. 5.17 and the
increased size of the constraint matrix, the total parallel time with corrections eventally
becomes competitive as shown in Fig. 5.18.

5.11.3. Effect of Input/Output on Speedup

Figure 5.19 illustrates how even small serial components affect parallel speedup. At the
end of every time step, the simulator on processor 0 normally prints out five lines of informa-
tion describing details of the last time step. This informaton is calculated beforehand and this
figure shows the effect of simply including or suppressing printout of these lines. Observe that
even this small serial component affects speedup noticeably. On a production simulator it will
probably be necessary to use parallel I/O and moreover a good deal of effort will probably be
needed in going through all operations to eliminate small serial inefficiencies. The problem is
less severe with a small number of processors, observe that on four processors the speedup is
barely affected.

5.11.4. Speedup of Various Tasks in Simulation

One of the objectives of this study was to build a fully parallel simulator with all opera-
tions done in parallel except unavoidable serial components. To see how much speedup had
been achieved, a series of runs were made to time the various tasks running in parallel.



Speedup

.05 .

16

14 -

12

10

..............................................................................

1

| 1

Actual

12

10

Speedup

100

200 300

Number of grid blocks

400

Figure 5.14. Speedup on 14 processors.

500

T

No Waltts

6 8 10
Number of Processors

12

14

Figure 5.15. Effect of corrections on speedup on 10 x 10 x 3 problem.

16



- 96 -

Speedup
10
8 -
6 -
4+
— No Watts
2 -
"""" Watts 0.2
— - Watts 0.1
0 ! 1 1 ‘ 1 1 i I}
0 2 4 6 8 10 12 14 16
Number of Processors
Figure 5.16. Effect of corrections on speedup on 6 x 6 x 3 problem.
‘2 (Total time) / (No Watts time)
No Watts
o TS ST
‘Watts 0.2
08
0.6
04
02
0 ! ) I Il | ! ]
0 20 40 60 80 100 120 140 160

2-d Problem Slze

Figure 5.17. Effect of corrections on total time on 1 processor.



-97 -

4 (Total time) / (No Watts time)

Watts 0.1 -
121 Watis 0.2 ... ~
WA D8 e T ——
1 B Nowans e LTI LTI T T o e e e
08
06
04
0.2+
0 1 1 | 1 1 ! 1
0 20 40 60 80 100 120 140 160
Watts 2-d Problem Size
Figure 5.18. Effect of corrections on total time on 14 processors.
Speedu
12 P
-
NoPrintOut 7"
gb With Print Out
6 bem
4
2r
0 1 1 ] i 1 | ]
0 2 4 6 8 10 12 14 16
Number of Processors :

Figure 5.19. Effect of I/O on parallel speedup.



- 98 -

The amount of serial time spent on the tasks depends on the time step, as shown in Fig.
5.20 for time steps of 1 day and 100 days. The cost to form and factorize the Jacobian is, of
course, unchanged in absolute time. However relative to the total computation time the cost to
form the Jacobian changes from 24% to 18% with time step size. The factorization cost simi-
larly changes from 32% to 24%, (this includes the cost of forming and factorizing the Watts
matrix). For both time step sizes the solve step is the dominant expense (for this precondi-
tioner and this test problem). This includes all steps needed to get a solution vector i.e.
forward-elimination, back-substitution, acceleration and the solve step for the Watts matrix.

Figure 5.21 shows the speedup of various solve options on a one day time step. At this
small time step size the first order Red-Black Gauss-Seidel is competitive and in fact has the
highest speedup. This avoids the several dot-products and small granularity vector operations
in Orthomin so speedup obtained is good; the peak speedup is 11.29 which is the best speedup
obtained for any operation in this study. As the solve step increases in power with the addition
- of acceleration and line corrections, speedup decreases progressively.

On the 100 day time step, acceleration must be used to get acceptable performance. Fig-
ure 5.22 shows that the speedup obtained here without line corrections remains virtually the
same as that obtained with a one day time step. The speedup obtained with line corrections is
hampered because of the greater time spent on the Watts matrix to handle this difficult prob-
lem, compared to that spent in the one day time step problem (in both cases the Watts problem
is solved to 0.1 tolerance). At the bottom of this figure is a comparison of the total time
without corrections relative to time with corrections. With one processor the corrected version
is more efficient by a factor of 20%. However due to its decrease in efficiency in parallel the
corrected version is eventually less efficient by 2% at 14 processors. In spite of this small loss
in efficiency in parallel it is likely that once the problem size gets large enough, the corrected
version will be preferable always. Also this big drop in speedup suggests that the Watts correc-
- ton is a critical area in which to seek small gains in efficiency. For this problem the Red-
Black point-Gauss-Seidel used on the constraint matrix turns out to be more efficient than an
x-line or y-line Jacobi so there is no obvious parallel method to employ for increased
efficiency.

Figure 5.23 shows the speedup for forming and factorizing the Jacobian, including factor-
izing the Watts matrix. Although both are results on a 12 X 12 x 3 problem, it can be seen that
the speedup behavior for forming the Jacobian is a little erratic. It is also apparent that form-
ing the Jacobian is less efficient than factorizing it. Part of this is due to the relatively small
granularity of the various tasks in forming the Jacobian - when all BARRIERs were removed
maximum speedup rose to 10.93. Part of the slowdown is that because of the presence/absence
of wells and reservoir boundaries the load is not perfectly balanced when forming the Jacobian.

In principle the factorization should run at nearly ideal speedup, since the steps are com-
pletely independent. A sample code for the factorization is shown in Fig. 5.24. This code is
run by each processor. The function b+IsMyLine+ is used to check if the ith z-line is the
responsibility of the processor and just requires two integer comparisons to return TRUE of
FALSE.

In spite of this nearly ideal parallel code, the speedup is not close to ideal, although
BARRIERs are very few and far-between. Contributing to the loss of ideal speedup are issues
concerned with the basic hardware of the system. In particular the MULTIMAX is built with
two processors on a card sharing the same cache. With two processors on the cache, contention
for the cache will take place - hence the machine is not fully scalable. Another factor that may
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BARRIER(); /* wait for Matrix to be\ready */

CopyDiagonalsToSpaceForLfactors();

/* Lower triangular needs to be saved for black pass */

BARRIER() ; /* Wait till done */
for (i = 0; i < nIJ; i++) {
if (IsMyLine(i)) { /* see if this line is your job */

FactorizLine(i);
MakeAndFactoriWattsPoint (i) ;
}

}
BARRIER();

Figure 5.24. Example code for factorizing by lines.
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be contributing to the loss of speedup is cache line size. Commonly if any cache data is invalid
- just the affected bytes are not the only ones replaced - typically an entire line of bytes
(16-32) will be replaced. Now it is possible that part of a line is affected by one processor,
while part of is affected by a second processor - this may cause loss of speedup as lines are
replaced successively on each processor’s write, '
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6. CONCLUSIONS

This study has compared the advantages and disadvantages of various Newton related
methods in well testing, optimization and reservoir simulation. The study has also looked at
the question of optimizing the production and injection schedules of the cyclic steam injection
process, and finally looked at parallel reservoir simulation. The comparison of Newton type
methods has shown the following:

Second order methods in automated well test analysis tend to be unaffected by the
introduction of ill-defined parameters, while the (first-order) Gauss-Marquardt
method is seriously affected. However unless initial guesses are good the second-
order methods do not usually do as well as first order methods.

By replacing small and negative eigenvalues of the Hessian with large positive con-
stants, we can improve the robustness of the otherwise fragile Newton method.

In optimization the Quasi-Newton method converges rapidly and saves on function
evaluations over Newton’s method.

In simulation the Quasi-Newton method may in certain cases be used as an alterna-
tive to Newton’s method. The ideal application for it seems to be when a high cost
preconditioner is used on a relatively easy problem.

When exact Jacobians are available its application should be as a backup for a
different primary method.

With approximate Jacobians the Quasi-Newton method may outperform Newton’s
method in speed of convergence and total time.

The Quasi-Newton method seems to work better when the Watts line correction is
used to damp out low frequency errors.

If direct solution techniques are being used (as is often the case in research type

programs) the Quasi-Newton method can save significant amounts of time compared
to Newton’s method.

Experiments in optimizing the cyclic steam injection process suggest certain improve-
ments for optimal operations:

Soak time should be minimized or eliminated.

Steam injection volumes considerably larger than current field practice may improve
production rates by keeping the well flowing strongly for a longer period thereafter.

Optimizing a combination of parameters instead of just one leads to a more desir-
able set of operating conditions.

A high steam injection temperature allows greater possibility of improvements than
a high steam quality because average temperature stays high.
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Constructing a scalable parallel simulator has revealed the following guidelines and con-
clusions:

° It will be possible to build a fully scalable simulator and obtain serial times that are
fairly close to the best serial algorithm. However due to slowdowns at BARRIERs
etc. the achieved speedup in parallel is highly dependent on problem size. Speedups
of 10.5 on 14 processors were attained on the relatively small problems tested.

° For parallel decomposition the program should be structured so that each task is
completed in parallel at the same time and overlap of tasks should not be used. All
processors then work on the same routine at the same time.

° Programming to the message-passing paradigm may be beneficial even on a shared-
memory machine because:

-~ The number of BARRIER statements can be reduced substantially.

-~ Local memory is faster than global memory and by using this paradigm all
arrays and vectors can then be stored in local memory.

-~ We avoid cache and memory contention by localizing a processor’s work to
one region of memory,

--  The code is more easily ported to a message-passing machine.

) Residual constraints can improve the robustness of parallel preconditioners espe-
cially as the simulation problem gets harder.

N As the simulation problem gets harder more time is spent on the constraint matrix.
Because of the small size of the constraint matrix parallel speedup drops off as the
problem get harder. ’

) Efficient solution of the constraint matrix appears to be a critical step towards
obtaining the best performance.
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NOMENCLATURE
A Matrix
Ay Approximate Jacobian matrix
b Vector
by Temporary vector used by Quasi-Newton method
B, Formation volume factor of phase 1, res. bbl/STB
Ck Quasi-Newton update vector
C Constraint matrix
d Temporary solution for Quasi-Newton method
€ Unit vector with non-zero ith element
f Nonlinear system of equations

fup  Dimensionless heat loss from horizontal faces of heated zone
fpp  Dimensionless heat loss with produced fluids
fyp  Dimensionless heat loss from vertical faces of heated zone

F Nonlinear function (scalar-valued)

g Gradient vector of F

h Step used for finite-difference derivatives
h; Formation thickness

H Hessian matrix of F

Hj,; Heat injected in current cycle

Hj,s Heat remaining in reservoir from previous cycles
J Jacobian matrix of f

k Absolute permeability

ky Relative permeability of phase 1

Kr  Reservoir conductivity

m, History match parameter

M, Heat capacity of phase |

M Preconditioning matrix

P Step vector
Pi Pressure in phase |
P Parallelizable fraction of time spent on one processor

P, Oil-water capillary pressure

P, Oil-gas capillary pressure

q A-orthogonal step vector

4 Flow rate of phase I (per unit volume in simulation)
Q Total flow rate of phase I from gridblock

Qmax Heat in heated zone before start of production

Q,  Heat lost with produced fluids

r Residual vector

I'w Wellbore radius

R, Heated zone radius
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Solution gas-oil ratio SCF/STB

Radial distance along cone

Step vector

Serial fracton of time spent on one processor

Saturation of phase 1

Time

Injection time

Soak time

Dimensionless time for heat loss from horizontal faces of heated zone
Dimensionless time for heat loss from vertical faces of heated zone
Average heated zone temperature

Transmissibility of phase 1

Time to execute program on p pProcessors

Reservoir temperature prior to steam injection

Steam injection temperature

Time to execute program on one processor (assumed to be unity)
Block volume

Distance in x direction

Vector of unknowns

Yield, i.e. change in function value after nonlinear ste

Depth from reference point

Greek Letters

o Thermal diffusivity

v  Lipschitz constant

Y1 Density of phase I"

A, Mobility of phase I

Iy Viscosity of phase |

p  Step length parameter

¢  Porosity

Phi Potential

Subscripts

g Gas

i Gridblock position in x direction
J Gridblock position in y direction
k  Iteration number

o Oil

w  Water

Superscripts

n Time level (n = old time level, n + 1 = new time level)
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