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PART 1: INTRODUCTION AND PROJECT DESCRIPTION

SUMMARY

The research for this project, funded by the U.S. Department of Energy, provides new
technology to understand and successfully characterize, predict, and simulate reservoir-scale
fractures. Such fractures have worldwide importance because of their influence on successful
extraction of resources. For example, many conventional U.S. reservoirs yield about one-third of
the oil originally in place, but some estimates suggest that reservoirs with naturally occurring
fractures yield only about 10 percent of their reserves. This is a serious technical and financial
challenge for producers of reservoirs containing natural fractures.

Most fractures are below the limits of seismic resolution or detection and are difficult or
impossible to characterize adequately using currently available well test, full-diameter core, or
geophysical well log technology; this is because large fractures are intrinéically difficult to
sample with conventional wellbore sampling methods owing to their wide spacing.
Consequently, fractured reservoirs have been intractable to describe and interpret effectively,
impeding accurate reservoir description and simulation. Accurate characterization of reservoir
fractures, however, still holds great potential for improving production by increasing the
efficiency of exploration and recovery processes.

The scope of this project includes creation and testing of new methods to measure, interpret,
and simulate reservoir fractures that overcome the challenge of inadequate sampling. The key to
these methods is the use of microstructures as guides to the attributes of the large fractures that
control reservoir behavior. One accomplishment of the project research is a demonstration that
these microstructures can be reliably and inexpensively sampled. Great potential exists,
therefore, for increasing the quality and quantity of fracture data acquired as well as reducing the

cost.



Specific goals of this project were to

* create and test new methods of measuring attributes of reservoir-scale fractures,
particularly as fluid conduits, and test the methods on samples from reservoirs;

* extrapolate structural attributes to the reservoir scale through rigorous mathematical
techniques and help build accurate and useful 3-D models of the interwell region; and

* design new ways to incorporate geological and geophysical information into reservoir
simulation and verify the accuracy by comparison with production data.

The goals of this study are practical; they aim to improve diagnosis of natural fracture
attributes in hydrocarbon reservoirs and accurately simulate their influence on production.
Emphasis is on reaching the goal of increased domestic production by improving tools for
exploring and developing reservoirs that contain fractures. New analytical methods developed in
the project are leading to a more realistic characterization of fractured reservoir rocks. Testing
diagnostic and predictive approaches was an integral part of the research, and several tests were

successfully completed.

STRUCTURE OF THE REPORT

This report summarizes research accomplishments during this study and describes
technology transfer. The report is in four major‘ parts. Part I summarizes the issues the research
addressed and describes some of the key findings. Part I is an in depth description of research
focused on the key issue of fracture scaling. Part ITI recounts our research on incorporation of
geological information into reservoir simulators, which emphasis on incorporation of scaling
data. The material in this section of the report has not previously been described in our earlier
accounts or in papers published or submitted during the course of the project. Parts I and III are
thus complementary reports on a central issue of the study: scaling. Part IV documents

technology transfer and lists publications resulting from the study. Some important aspects of




project research that are not described in detail in this report are described in these other
accounts. Some issues covered in these other reports are briefly summarized in the appendices.

This project has created significant new technologies, some of which have already been
introduced to domestic operators through our technology transfer efforts. Research has also
revealed promising directions for further inquiry; additional efforts in the general field of
applying microanalytical methods to rock sample analysis hold the promise of significant
breakthroughs in meeting the challenge of exploring and developing hydrocarbon reservoirs that
contain fractures.

This report summarizes the justification for this research approach. There is a strong need
for accurate, site-specific data on natural fractures in the subsurface and for new ways to use
such information in reservoir simulators; the report also includes the specific projvect objectives
and project implementation. Owing to outstanding industry cooperation, we have been able to
test aspects of our technology in a spectrum of hydrocarbon reservoir settings; some of our key
findings with examples drawn from the tests are illustrated in the report.

The accomplishments of the research are revealed by examining the key hurdles to
overcome in fracture characterization and simulation, and key accomplishments are listed. The
final section of the report describes technology transfer accomplishments. We also look ahead to

areas of valuable follow-up research.

THE CHALLENGE OF RESERVOIR FRACTURE ANALYSIS

Although reservoir modeiing and development technology are rapidly advancing as a result
of improved computer capabilities and increased knowledge of reservoir complexity, knowledge
of one of the most important geological variables affecting reservoir performance is nevertheless
inadequate. Natural fractures play a large role in effective permeability in many reservoirs,
including those that do no't display the production characteristics of a classic “fractured

reservoir.” Because they are nearly impossible to characterize effectively with existing



technology, however, fracture networks are an almost unknown factor in reservoir models. The
enormous heterogeneity that is intrinsic to fracture networks cannot be predicted adequately on a
site-specific basis without site-specific data. Conventional technology at best provides site-
specific data on only a small number of fractures because these methods address only large
fractures, ones that are sparse and commonly oriented nearly parallel to wellbores. Consequently,
there is a serious problem of undersampling. We have documented aspects of this situation in
several publications (for example, Laubach and others, 1997; Marrett, 1997).

Understanding geologic control of reservoir heterogeneity is fundamental to modeling
subsurface fluid flow and to predicting the efficiency of different TECOVETY PIoCesses.
Accordingly, improved diagnosis and predictions of natural fracture attributes in reservoirs are
vital for projections of asset value and can lead to drastic modifications in exploration and
production decisions. To be most useful to reservoir engineers, information on natural fractures
must not only be far more complete and accurate than at present but must also be in a
quantitative form suitable for flow simulation.

Because of the worldwide importance of resources in fractured resefvoirs, improved
reservoir models are required not only to quantify fracture occurrence and fracture attributes but
also to accurately predict their spatial variation and simulate their effects on fluid flow. In order
to even begin constructing such models, however, improvements must be made in how
subsurface fracture attributes are measured. This researéh project was initiated to investigate the
above problems by using subsurface data as well as outcropping rocks that are analogs to those

in fractured reservoirs.

PROJECT IMPLEMENTATION

The project was carried out by a team of petroleum engineers and geologists at The
University of Texas at Austin working closely with scientists from a group of nine companies

from the petroleum and scientific instruments industries. Collaboration was facilitated by a




specially designed prbject Web site (Burns and Laubach, 1997) and by periodic review meetings.
The integration of geologic and petroleum engineering approaches was crucial to this project.

” The disciplines brought to bear on the problem include microstructural and structural
diagenetic analysis, geomechanical modeling, scaling, and flow modeling. We used samples,
production records, and other data supplied by the sponsor as the starting point for our analysis.
Access to wells and production data were used to test the accuracy of our results. We completed
two major integrated studies that involve subsurface data analysis and analysis of outcropping
rocks that serve as analogs for subsurface reservoirs. Owing to the cooperation of industry, we
have also been able to test aspects of our methods in numerous other rock units (Reed and
Laubach, 1998; Laubach and Reed, in preparation). Now that we have observed the requisite
microstructural indicators that our method depends on in more that 50 formations, we are

confident that our approach is widely applicable.

ACCOMPLISHMENTS

We will now discuss the general accomplishments of the project in the context of the
multifaceted challenges for reservoir fracture characterization and simulation. As illustrated in
figure 1, our aim was to obtain site-specific information that can help make decisions such as
how to specify target zones for completion or horizontal drilling. Figure 3 illustrates
measurements of fracture quality (left side of diagram) and fracture orientation (right side of
diagram). A key issue addessed in parts II and III of this reports describes efforts to measure and
simulate another key variable, fracture scaling (Marrett, 1997).

The research program was designed to accomplish project goals that include (1) establishing
geologically realistic descriptions of fractured reservoir rocks whose afcquisition is cost effective,
(2) developing techniques that permit more accurate diagnosis of fracture and fault attributes in

- the subsurface (including methods that enhance well-test and seismic interpretations), and

(3) finding better methods of exploiting the fracture descriptions through improved prediction



and simulation. Testing of diagnostic and predictive approaches developed from outcrop, core,

and well-test studies was an integral part of the study.

Summary of New Methods

Our new methods are summarized in figures 1 through 22, which graphically depict how
our approach works from sample acquisition to reservoir simulation. Figure 1 illustrates one
innovative way we collect data from rock samples: the use of sidewall cores for systematic
fracture analysis. We have devised a technique that allows oriented sidewall core samples to be
reliably obtained. Figure 2 shows typical basic fracture data that we collect using new imaging
techniques: a plan view scanning electron microscope-based scanned cathodoluminescence
(scanned CL) image of a microfracture, quartz cement, and clastic grains. Note the 100 micron
bar scale. The rapid collection and interpretation of such small features is key to collecting the
large amount of microstructure data necessary to make reliable inferences about the large
fracture that are of primary interest in reservoirs.

Figure 3 is a diagram that shows how various parameters, such as permeability anisotropy,
fracture size distributions, and fracture fluid conduction capacity, should be incorporated into a
concept of reservoir fracture heterogeneity. Although the diagram is schematic, the patterns of
shifting fracture strike and fracture quality (openness) depicted in this diagram are from wells
and outcrops studied in this reséar'ch project. The nuanced view of reservoir natural fractures
shown here requires systematic collection of site-specific information that can only be achieved
with the methods we developed in this project.

Figures 4 and 5 illustrate a ‘blind’ test of our fracture orientation analysis method. In this
test in the Spraberry oil play of West Texas, we determined fracture orientations from
microstructure observations from samples collected by a third party. The true geographic

orientation of the samples was withheld from analysts until the microanalysis was complete.




These results are described elsewhere in the report. They illustrate that macrofracture
orientations can be obtained reliably from microfracture observations.

Fracture size distributions can also be measured from microfracture information, as shown
in figure 6. Figure 7 illustrates the concept that the size of the fractures and the scale of the
measurement are important for predicting fracture behavior in reservoirs. The data exemplified
by figure 6 illustrate how we can now address this issue. As discussed at length elsewhere in this
report, these results point toward techniques that will give accurate estimates of the role of
fractures in reservoir behavior. Incorporating such results in reservoir simulators was a major
task in this project, and is described in detail in parts II and III of this report.

Figures 8 through 13 illustrate how fracture ‘quality’ can be measured, and how this can
relate directly to producibility. This concept is examined in more detail in the next section Qf the
report. This innovative method allows identification of areas where productive fractures eX;St in
reservoirs without the necessity to directly sample the fractures. These illustrations includeff’cests
where this procedure was used to identify productive and non-productive wells. This aspecy;y of
the project has identified several fundamental controls on reservoir behavior that were notm:m
evident before. Follow-up work should be undertaken to understand the basic geologic pré;;;sses
that cause this phenomenon so that production can be better predicted ahead of drilling.

One way to predict fracture attributes in advance of drilling that can be applied now is to
use existing and new rock material and our methods to map fracture attributes. Since our’
methods can use samples that do not contain macroscopically visible fractures, a far grater data
density can be achieved than was hitherto possible. Figure 14 shows how measured fracture
attributes can be combined to map fracture heterogeneity in an example from the East Texas
Basin and thus predict fracture attributes in potential infill drilling locations.

Figures 15 through 21 show the conceptual steps involved in putting these observations into
reservoir simulators. This material is discussed at greater length in part III of this report. The
illustratibns show conventional dual-porosity simulator grid blocks and how we can now use

site-specific information and outcrop analogs (as well as geomechanical modeling, which is not



shown) to scale up to assign grid block attributes, select grid block sizes, and scale up to

effective properties.

Example: Identifying Fracture Production

Figures 9-14 show examples of how one aspect of our research can be useful in practical
exploration and production evaluation. The objective of this test is to identify where conductive
fractures are located in reservoirs in situations where the well has not encountered a fracture. In
the example in figure 10, we accurately predicted which of the two wells was an economically
successful hydrocarbon producer (Clift and others, 1997). Conventional approaches were .
unsuccessful in finding a significant geological or engineering distinction between the two wells,
which are in the same field and are completed in the same sandstone interval using identical
methods, and which have statistically identical conventional porosity values (Laubach, in
preparatioﬁ). Conventional core-analysis and borehole-image-log data from both wells correctly
indicated that natural fractures were present in both wells but inaccurately diagnosed fractures in
both wells as open and potential fluid conduits. In fact, only one of the wells contains open,
conductive fractures. The technique we illustrate here, however, has been shown to work even in
situations v_vhere conventional methods discover no reliable information about natural fractures.

The parameter we used to determine that the well has conductive fractures (postkinematic
cement volume) was readily obtained from small core samples (such as sidewall cores) that do
not contain macroscopically visible fractures. This parameter, known as postkinematic cement
volume, predicts the location of closed (mineral-filled) fractures that will not act as fluid
corllduits and therefore can discriminate between nonproductive wells and production “sweet
spots” in areas where natural fractures are the key to producibility. A teport defining this and
related parameters and the evidence for their widespread applicability has been reported and a
. fuller account is in press (Clift and others, 1997; and in press). The illustrations shown here show

this parameter (displayed in different ways) for a wide range of structural settings and rock types.




The Larsen and Emerald well examples are from the prolific Rangely oil field (Weber
Formation) and illustrate that this method can detect fracture system heterogeneity that was
accurately diagnosed using conventional geological or well analysis methods.

Because samples used to obtain data such as those illustrated in this example can be
targeted in intervals or areas of exploration or development interest, this approach for the first
time permits key natural fracture attributes to be systematically mapped. This greatly improved
data density on natural fracture attributes can vastly improve the input for reservoir simulators,
as well as aid decision-making.

The widespread occurrence of this phenomenon is documented in an appendix to this report,
which shows pre-, syn, and postkinematic cement in a wide range of formations. Postkinematic

cement is the key predictor of fracture occlusion (Laubach, 1997, and in preparation).

Fracture Documentation Methods

To meet the challenge of fracture characterization and prediction, we quantified
interrelationships among fractures, diagenesis, rock properties, and facies architecture by uging
both core and outcrop reservoir analogs. We discovered that many of the critical attributes of
fracture networks that are difficult or impossible to measure directly in the subsurface can be
deduced from microstructural and diagenetic relations by appropriately applying advanced
detection tools, scaling methods, and geomechanical modeling. Such deduction is possible
because fractures evolve in, and are strongly influenced by, the stratigraphic and diagenetic
context in which they form and interact. ‘

The new fracture characterization approaches described above are widely applicable
(Milliken and Laubéch; in press; Reed and Laubach, 1998, and in preparation; Marrett and
others, 1998); they provide data that are critically useful to development and exploration

planning. Although much remains to be learned and important tests of these methods are still in



progress, we have presented results to the industry through papers and lectures. Several key steps
needed to incorporate new observations in simulators have been derived because of our research.

We have found it possible to make observations at the scale of structures in available
samples (including samples as small as conventional cuttings) and to rigorously extrapolate
results to the critical scales that affect reservoir behavior. In other words, we use structures
(microfractures) with length scales of microns to millimeters to diagnose the attributes of
structures (macrofractures) with length scales of meters to decimeters. At this time, we can
acquire qualitative or semiquantitative information about large fractures from some microscopic
observations. From others, we have been able to make accurate quantitative predictions of the
attributes of large fractures. We have also identified attributes that are scale dependent or that
have nonlinear changes in attributes with changes in size. An example of using microscopic data
qualitatively is by predicting fracture occlusion as shown in figure 9. Quantitative measures of
fracture attributes are illustrated by measurements of fracture-size and fracture-strike distribution
(figures 5 and 6). These results are great advances over what can be achieved using conventional
techniques.

These methods address the central challenge of successful reservoir fracture analysis:
inadequate and unrepresentative sampling of the fracture network. The lack of adequate
sampling results from the wide (>1 m) spacing and steep dips of large fractures, which make
large fractures elusive targets for conventional wells (that is, excluding expensive horizontal
wellbores). Despite improvements in detection and characterization of fractures and faults by
geophysical logging tools, subsurface fracture and fault properties are commonly conjectural
because large fractures rarely intersect wellbores where they can be observed. It is not unusual
therefore, for many fracture attributes that critically affect hydraulic and mechanical properties
of subsurface rocks to remain unknown, even after extensive coring and logging efforts. Seismic
detection or resolution of fractures is limited, moreover, and improvement in seismic methods is
greatly hindered by an absence of fracture data with which to calibrate and verify seismic

Iresponse.
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Inadequate fracture sampling is a problem in virtually all reservoirs. The key advantage of
our method is that it provides site-specific fracture information reliably and at any user-specified
level of completeness. Our approach can therefore work even without measuring elusive,
difficult-to-sample, large fractures.

As our unpublished results and a few preliminary published reports show, initial results of
. applying this fracture characterization approach are highly encouraging (Laubach, 1997; Marrett
and Laubach, 1997; Marrett and others, 1998; Olson and others, 1998). The results offer a
tantalizing glimpse of the major advances possible through our research. Our approach is
beneficial because of reduced costs, as data can in many cases be acquired by wireline sampling
(sidewall cores) or, in some analyses, cuttings. This year we performed successful tests of our
method to obtain oriented sidewall cores. This approach makes use of commercially available,
relatively inexpensive wireline-conveyed coring devices to collect samples that are then oriented
by a combination of analysis of the core itself and geophysical well logs that run subsequent to
core collection to image sample locations on the borehole wall (Doherty and Laubach, in =
preparation). Our research has demonstrated how the orientation of these cores can be measured
with a high degree of accuracy. We are have tested our methods on cuttings supplied by one of
our industry research partners. It may be possible to use cuttings for some fracture diagnostics
applications.

The critical steps in applying these results to numerical reservoir simulation include
understanding how to extrapolate results to scales relevant to reservoir behavior, predicting
properties between data points (wellbores), and formatting results so that they can be
incorporated into reservoir simulators. These issues were central to the last phase of the research
on this project. Measures of the speed, accuracy, and value of these new approaches have been
gathered in our laboratory and in tests with industry partners. These measures and our field tests

show that the impact of this research can be substantial.
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Fracture Observation, Scaling Analysis, and Geomechanical Modeling

Our approach to solving the fundamental sampling problem is to diagnose fracture attributes
by analyzing proxies: microscale structures and their relationships to diagenesis. We have
demonstrated that in many rocks, microfractures, which have lengths of microns to millimeters,
are thousands of times more common than large fractures and can be sampled effectively even in
small volumes of rock by using modern microimaging technology, as shown in figure 2.

We have made significant progress in developing imaging techniques, particularly in the
area of digital color scanned CL imaging, as illustrated on our project Web site. We have also
made advances in image-interpretation procedures. Imaging microfractures is one step in the
process of diagnosing properties of large fractures. Advancemenfs have also been made in
diagenetic analysis, mathematical scaling methods, and geomechanical models for deriving
information from fracture observations and obtaining high-resolution (bed-by-bed) information
on fracture orientation, size distribution, clustering, conductivity, and other fracture properties.
Among the most striking accomplishments are the rigorous demonstrations of fracture scaling in
several reservoirs and reservoir analogs. Results of some of this work are being prepared for
publication (Ortega, 1997). Figure 4 shows a typical scaling data set from an ongoing reservoir
study.

This approach to characterization presents new opportunities for fracture prediction.
Predictive models are enhanced because through diagenetic modeling we analyze the mechanicalv
development of the entire rock, not just the fractures within it. Model predictions are, moreover,
designed to be testable by means of microstructural information. With limited samples, the
accuracy of model predictions can thus be rigorously evaluated before expensive additional
drilling is carried oﬁt;‘this will be a promising area for follow-up research.

For example, predictive geomechanical models that are coupled with basin history and
diagenetic models in order to specify the location, size, orientation, and connectedness of

fracture swarms may soon be attainable. We have explored this possibility as part of the
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modeling work mandated in this project by combining geomechanical models that we developed
with our diagenesis models and commercial predictive models of diagenesis that have recently
become available (in particular, the program EXEMPLAR). Although such predictions cannot be
accomplished at this time, our preliminary studies suggest that this may be possible in the future.
Our model predictions are inherently testable because they predict the attributes of both
large fractures that control production behavior and small fractures that can be readily sampled
and examined for verification of predictions. Methods that identify zones that have conductive
fractures (thief zones or sweet spots) can be used, for example, to design vertical or horizontal
wells to intersect or avoid fractured areas. This is one example of how project results have direct

applications to exploration, development, and reservoir management.

Numerical Simulation

Numerical simulation of fluid flow in hydrocarbon reservoirs forms the basis for choices -
that industry makes among various reservoir production strategies. Without accurate prediction
of these flow properties, hydrocarbon reservoirs cannot be efficiently exploited. The basis for our
approach was described in last year’s annual report, and technical publications on this work are
in preparation.

The goal of our simulation work is to mcaéure directly the properties that will define the
simulator cell attributes. Fracture orientation information has been used to predict permeability
anisotropy and production interference directions. Fracture “conduit quality” has been used to
predict areas where a single-porosity simulation is appropriate because fractures are blocked by
authigenic cement. We developed and tested a method of collecting field data, such as
distribution of fracture apertures, lengths, orientations, and other attributes, and deriving a
probability distribution for effective permeability. This probability distribution forms the basis

for assigning cell properties in dual-porosity simulation.
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Our approach has great potential for enhanced, yet practical, simulation of fractured
reservoirs. It permits improvement in widely used dual-porosity approaches to flow modeling.
Figure 17 illustrates our approach to deriving probability density functions for fracture reservoir
simulation that are based on site-specific well data or maps of fracture attributes that have well
control on attributes derived from our observational methods.

Some of the technical accomplishments of this aspect of our study are enumerated in a later
section of this report. Specific accomplishments are listed in the following section; we will

mention several general conclusions that can be drawn.

INFORMATION TRANSFER INITIATIVES

Innovation in technology transfer was accomplished through two related initiatives in this
project. We formed a group of industry scientists who participated in aspects of the research in
addition to periodically reviewing our progress. Second, to aid integration of the diverse
disciplines represented in our research group and to facilitate collaboration and rapid technology
transfer with industry partners, the project created and currently uses a unique Web-based virtual
laboratory (Burns and Laubach, 1997).

Having now observed the requisite microstructural indicators that our method depends on in
more than 50 formations, we are confident that our approach is widely applicable.

» Fracture orientation procedures were successfully tested in a “blind” test from a major oil
reservoir (Spraberry Formation), and additional tests were completed that test the reliability and
accuracy of results.

* Drilled sidewall cores were successfully oriented in three wells using our procedure.
Additional tests were carried out in various formations under different coring scenarios to
identify bottlenecks and limitations of the procedure.

* Fracture “conduit quality” indices have been measured in many reservoir rocks and have

been used to accurately predict reservoir behavior. Indices were tested in five formations where
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suitable well-pair comparisons could be performed. These tests demonstrate that this new
parameter is a powerful predictor of natural fracture attributes and well performance. We also
showed that this index can be successfully incorporated into a conventional dual-porosity
simulator.

» A key requirement is that new methods must ultimately be cost effective. We determined
that samples can be collected using wireline devices and that results can be obtained rapidly.
These demonstrations suggest that deployment of these methods will be cost effective.

We have made several major discoveries regarding the scaling of natural fractures in
petroleum reservoir rocks:

* We have developed new techniques for measuring the mechanical apertures of fractures
in core and outcrop. Through a combination of portable magnifiers (for example, hand lens) and
comparators that we developed specifically for this purpose, we can now systematically méééure
fracture apertures down to the scale of ~50 microns in the field (presuming rock exposure
permits).

» We have collected several data sets that consist of umformly accurate mechanical
aperture measurements covering four to five orders of magnitude. This is twice the range of the
best data sets in the world prior to this project. The most important result of these data sets is the
direct confirmation that, at least in the cases investigated, microfractures and macrofractures
follow the same fractal distributions. This provides a solid basis for using microfracture
observations to predict the spatial frequencies of macrofracture apertures, a key to reservoir
simulation.

* Through numerous examples, we have demonstrated the feasibility of measuring
statistically significant numbers of microfracture lengths and mechanical apertures from small
borehole samples. By combining this information with the results above, we can now use locally
acquired data to predict the critical attributes of subsurface macrofractures on a layer-by-layer

basis, and in the time frame of a few days after sample collection and sample preparation.
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* We have found that the finite thickness of sedimentary layers in a fractured reservoir has
a significant effect on the observed scaling of fractures. As observed in two-dimensional rock
surfaces, fracture lengths apparently follow different scaling depending on whether they are
longer or shorter than the layer thickness. However, once sampling effects are accounted for, we
find that long and short fractures follow the same fractal distribution in a three-dimensional
volume. This is a significant result because, although fracture observation is almost always
limited to one- and two-dimensional sampling, fluid flow should be modeled in three
dimensions.

* Our research has repeatedly found that fracture attributes follow power-law fractal
scaling. This conclusion holds for both fracture length and mechanical aperture, microfractures
and macrofractures, and dozens of data sets from different rock units. An understanding of this
scaling provides the quantitative link between microscopic observations and a wide array of
valuable predictions about associated macrofractures, which have the most significant effect on
reservoir performance.

* Questions to which we can now provide quantitative answers, based on local fracture
observation, include the following: What values should be used for fracture porosity and
permeability in a reservoir simulation? What is the appropriate size of reservoir blocks in a
fractured reservoir simulation? How much variability of reservoir performance should be
expected from location to location? How long should a horizontal borehole be drilled to optimize
fracture permeability encountered versus the drilling cost?

In the key area of developing accurate reservoir simulation methods that use these data,
important progress has been made. Some of the steps that have been taken are outlined here.

* The effect of wide fracture aperture distribution has been studied. We analyzed the
influence of the type of power-law distributions we observed on effective permeability in the
simplified case where all fractures extend through an entire grid block, and showed that in this
case the widest single fracture in a block dominates flow through the entire block. As a result,

probability distribution can be derived for the widest single fracture in a block and for the
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effective permeability of the block. This probability distribution is extremely wide—that is,
permeability can vary by large factors from block to block.

* We dropped the assumption that fractures extend throughout a grid block and considered
sets of fractures with location, length, aperture, and orientation selected randomly from statistics
determined from field data. We determined implications of power-law scaling of fracture length
on effective permeability of the fracture pore space. For certain ranges of exponents in the power
law, the large population of short fractures link up on the microscopic scale; for other ranges, the
largest fractures link up on the megascopic scale. For power-law exponents between two and
three, like those in one of our case study areas (Westwater pavement, Mesaverde sandstone of
the San Juan Basin), and with fractures confined within a single layer of finite thickness, neither
short nor long fractures are guaranteed to link up; one must determine connectivity from Monte
Carlo studies for each given case.

* We showed the relationship between fracture statistics derived from two-dimensional
(2-D) (outcrop) data and frequency statistics in three dimensions (3-D). We confirmed that
different power-law scaling is observed in outcrops for fractures shorter and longer than layer
thickness, as reported for Westwater pavement, and that both are consistent with a single power-
law frequency in 3-D. Frequency:function in 3-D is related to, but not identical to, power laws
for either small or large fractures.

» Currently, we are studying intensively the implicétions of the fracture statistics
determiﬁcd for the Westwater pavement, Mesaverde sandstone of the San Juan Basin, on
effective permeability. It appears that clustering fractures may be essential to obtaining
connectivity between fractures and long-range effective permeability.

* Geomechanical modeling work is also in progress to understand the conditions that lead
to fracture clustering and to determine how this fracture pattern can be quantified using
microstructural data. We have studied the clustering of fractures on the micron scale that is
| qualitatively similar to that which we have observed among large fractures in horizontal wells

and in outcrop reservoir analogs.
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We have studied probability distributions for effective fracture permeabilities based on
fracture statistics from field studies, starting with the most widely studied outcrop reservoir
analog and extending to other fields. A key challenge was understanding how to model
connectivity using the raw statistical data from fracture observations. Introduction of clustering
in some form to get connectivity is only a partial solution. Flow in reservoir intergranular
porosity between fracture strands is important to fracture fluid flow. In this regard,

geomechanical modeling can help guide how fracture connectivity is visualized.

FOLLOW-UP WORK

We foresee some areas where profitable follow-up work will be beneficial. Extrapolation to
carbonate rocks of the methods we are devising and testing in siliciclastic rocks has great
potential value. Many of the methods and procedures we have devised could be automated.
Studying this area further could multiply the impact of our research on the domestic petroleum
industry. Microimage acquisition and processing is one area where many of the needed
components for an automated system already exist for other uses. These technologies could be
readily recruited for an automated natural fracture analysis system based on the approach
outlined in our research. Among the technologies that could be incorporated into such a system
are automated digital color image capture and tiling, automated mechanical scanning electron
microscope/cathodoluminescence ﬁﬁcroscope stages, image analysis software, and neural
network technology.

A key next step should be a thorough study of fracture-occluding postkinemétic cements
(Laubach, in preparation). Such a study provide critical guidance to successful well placement |
and drilling strategy in many reservoirs.

Our research also indicates that industry can gain much more information from fluid-
inclusion analysis than has been accomplished. Our image analysis shows that many of the fluid

inclusions in rocks that are currently discounted probably contain valuable data about the thermal
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and fluid-content evolution of rocks. Such information can be used in exploration and
development, and additional work could demonstrate the value of using these data.

Our research highlights many valuable opportunities for researching scaling studies and the
link between scaling studies and reservoir simulation; a few examples of future work in this area
are described below.

The smallest fractures observed in a population, regardless of the scale of observation,
typically show evidence of truncation bias. Our preliminary work has found that the data affected
by this sampling problem follow exponential distributions that contrast with the power-law
distributions of larger fractures. A better understanding of the behavior of truncation bias would
facilitate isolating its effects in data sets and significantly reduce the uncertainties of predicting
macrofractures from microfractures.

Our work has shown that fracture lengths follow a single fractal distribution across thé;
length scale of sedimentary layering. It is still uncertain, however, how fracture apertures béhave
across this threshold. Fracture-network permeabilities depend heavily on the apertures of the
largest fractures, so accurate macrofracture-aperture prediction from microfracture observaéf;jpn
requires an understanding of this problem. B

The spatial distribution of fractures as a function of fracture size is still poorly known, and
this is one of the critical parameters for generating virtual fracture networks for reservoir
simulation. Fortunately, we now have numerous data sets that would be ideal for analyzing
spatial distributions.

Preliminary compilations of data suggest that fracture length and mechanical aperture are
not linearly related. Understanding this relationship may provide important constraints on
fracture growth, but it is also important for pragmatic reasons such as predicting both
macrofracture lengths and apertures from limited microfracture data.

Although we have not yet pursued the issue, it would be feasible to study how mechanical
aperture varies along individual fractures. This would illuminate how fractures grow and

interconnect.
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We have made preliminary studies of how to quantify the connectivity of a fracture
network. Although the idea of connectivity is intuitively obvious, it is conceptually difficult to
quantify, even apart from the practical challenges it may present. Nevertheless, connectivity
could be the single most significant parameter governing fluid flow through a fracture network.
Developing a protocol for measuring connectivity and controlling it in models should be a high
priority for future reservoir modeling studies. This is an area where progress could come from
studying both the petrology governing evolving rock properties and the mechanics of growing
fractures as simulated by numerical models.

Preliminary observations suggest that the degree of mineral fill in natural reservoir fractures
varies according to the size of fractures. Microfractures are typically completely or almost
completely mineralized even where macrofractures are mostly open. Understanding why this
occurs and how to predict the scale of fractures at the transition is important because
intermediate-size fractures can be required to provide a connection between large fractures, and
whether or not the intermediate fractures are open may govern fluid flow through a fracture
network. A related concern is whether the degree of synkinematic mineral fill also scales with
the identity of the phase involved (for example, does ankerite tend to be more effective in filling
fractures than quartz?).

Numerous indirect techniques for observing fractures such as production logs and
surface/borehole seismic are now widely utilized. Little work has yet been done, however, to
calibrafé these tools to actual measurements of fracture attributes; the application of our

approach would permit such calibration.
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Figure 1. Collection of drilled sidewall core. (a) and (b) show local stresses during drilling and
initiation of breakoff. (c) shows a schematic diagram of a typical wireline core drilling tool, showing
its deployment in the wellbore, position of the drill during coring, and collection of the core and
marker in the recieving cylinder.
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Figure 2. Scanned CL image of a quartz lined microfracture in the Davis Sandstone, Fort Worth
basin. Bar scale is 100 microns. Light grey areas are grains, dark grey is quart cement and fracture
fill, and black areas are porosity. Thin section is cut parallel to bedding in sandstone, so this is a
plan view. North is to top of image, so fracture strikes eastnortheast. New imaging technology
helps reveal microfractures that were previously invisible. These small fractures can be used as
proxies for large fractures that are difficult or impossible to sample. These fractures from gas
reservoirs in Texas are invisible when using conventional observation methods. Their orientation
matches those of large fractures in the well, and their size-distribution patterns provide evidence of
the patterns of larger fractures. '
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Figure 3. Concept diagram of fracture heterogeniety in a reservoir. Central block diagram is based
on outcrops of the Frontier Formation in the Green River basin; right hand rose diagrams of
microfracture strikes are from core data. Diagrams on the left show syn- and postkinematic cement
values and porosity as a proportion of cement volume. High values of postkinematic cement (black)
predict closed fracures.

Site-specific information about fracture attributes is critical information that is difficult or impossible
to acquire. This is one of the chief stumbling blocks to effective simulation of reservoir fractures.
This diagram depicts the objective of our studies: accurate site-specific information about key
fracture attributes on a scale appropriate for drilling decisions and simulation. Illustrated here:
fracture quality and orientation. Reservoir-analog studies show that fracture attributes can be highly
variable. For characterization and simulation of reservoirs that contain such features, site-specific
fracture information is required. Abrupt shifts in fracture size and variation in degree of fracture
mineral fill and intensity have been observed in outcrop and in core.
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Figure 4. Rose diagram of microfracture strike in Spraberry oil reservoir samples, compared to the
strike of large fractures in the same horizontal well. Microfractures accurately predict the orientation
of the large fractures. This example is from the Spraberry Formation, a major oil play in West
Texas. In this “blind test” samples were collected by a third party and supplied without any indication
of their orientation (samples were taken from a horizontal core where macrofracture strikes had
been measured). Subsequent comparison shows that the mean strike determined by our method and
that of the macrofractures is identical. Rose diagram and mean and 95 percent confidence angle for
macrofractures is shown in comparison to mean and 95 percent confidence for microfracture strikes.
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Figure 6. Large open fractures and interconnected fracture networks have the greatest effect on
reservoir flow quality of fractured reservoirs. Consistent scaling patterns of fracture apertures suggest
that large and small fractures are commonly merely different size fractions of the same fracture
population, giving confidence that small fractures can be used to infer the properties of large. Although
fraught with interpretation pitfalls, rigorous scaling analysis is a potentially powerful tool for fracture
analysis and a link to fractured reservoir simulation. Our studies of open-fracture populations can
be used to infer fracture permeability, porosity, and shear-wave anisotropy. In this example from
Texas, because the spatial frequency of fractures having apertures smaller than 1 micron to nearly

1 centimeter follows a single relation, the microfractures provide an accurate means of predicting
the abundance of large fractures. Such data can be a key input to reservoir simulators.
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Figure 7. Measured permeability versus the scale of measurement (from Marrett, R. unpublished).
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Figure 9. Postkinematic cement values shown as percent of rock and as ‘degradation index.’
Degradation index is the ratio of postkinematic cement to post fracture opening porosity, as
determined by microstructural criteria. Areas having high values of postkinematic cement (in either
representation) will tend to have closed fractures.
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Figure 10. Wolfcamp sandstone well pair compared using degradation index.
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Figure 13. Degradation index for two wells from the Weber sandstone, Rangely field, Colorado,

showing heterogeniety in fracture quality.
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Figure 14. Map of fracture attributes derived from microanalysis, Waskom field, East Texas basin.
Fracture quality, size, and orientation are shown.
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Figure 15. How geology enters a reservoir simulator. A focus of the project was gaining the capability
to acquire data that can easily be used in existing and advanced reservoir simulators. We can obtain
fracture information in all wells that penetrate a horizon of interest, and have gained insights into
how to extrapolate between data points. Future research should address the latter issue more fully.
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Figure 16. Tllustration of the link between observations and effective grid block properties. To
accomplish scale up, we used scaling criteria (Part II), from cores and outcrop analogs. We also
investigated use of geomechanical modeling for this application (Part IIT). More reseach on this
aspect of the problem is warrented.
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Figure 17. Diagram illustrating conversion of measured fracture attributes to probability density

functions that can be used in reservoir simulators. We have made progress in the use of microfracture
scaling patterns to determine orientation, porosity and permeability inputs.
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Figure 18. Map of reservoir shown in figure 15, with fracture strikes determined at each well
locations (Laubach, 1997) and structural domains (strike domains) delineated.
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Figure 19. Map of reservoir shown in figures 15 and 18, which permeability anisotropy dehneated
and grid blocks assigned.
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Figure 20. Fracture quality data from each well in reservoir shown in figure 15. For each well, a
representative depth profile of postkinematic cement (black) and primary and secondary porosity
(grey and no pattern) are shown. Wells with little postkinematic cement are interpreted to have
open fractures. The depth profiles are from Texas reservoirs.
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Figure 21. Example of simulator conditioned by observations in every well. Where fractures are
indicated to be closed (light grey), fractures are ‘turned off.” Where fractures are ‘on’, fracture
anisotropy (or isotropy) is indicated by microfracture orientation patterns. A key step not shown
here is collection and incorporation of fracture size and connectivity information in simulators.
These critial issues are discussed in depth in parts IT and III of this report.
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APPENDIX A: PERMEABILITY, POROSITY, AND SHEAR-WAVE ANISOTROPY FROM
SCALING OF OPEN FRACTURE POPULATIONS

Summary

Open fractures have a profound impact on fluid flow and shear-wave propagation in rock.
Previous models have specified the permeability, porosity, and shear-wave anisotropy caused by
a fracture system in terms of average geometric attributes of extension fractures. However, new
and published data indicate that the apertures and lengths of extension fractures follow power-
law scaling, which implies that average geometric attributes are not meaningful. The fluid flow
and seismic models are recast in forms consistent with the scaling of extension fractures so that
fracture-associated permeability, porosity, and shear-wave anisotropy are related to the scaling
variables of extension fracture populations. Combination of the results offers the possibility of
remote quantification of fracture permeability and porosity via shear-wave seismic methods.

Some of the salient characteristics of fluid flow through fractured rock may be understood
as consequences of the scaling of extension fractures. The significant spatial heterogeneity of
fluid flow in a sample of fractured rock results from virtually all fracture permeability in a given
sample being derived from only the few largest-aperture fractures. Anomalous pressure-transient
curves are consequences of most matrix-fracture cross flow and fluid storage occurring in
fractures that contribute minimal permeability. Finally, the observed scale-dependence of
fracture permeability results from the tendency to encounter larger-aperture fractures in longer

samples.
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Technical Challenge

Fluid flow in the upper crust is dramatically affected by the presence of fractures. Fractures
commonly differ from host rock in terms of permeability, and consequently introduce
heterogeneity and anisotropy to flow. Shear fractures (i.e., faults) in many cases produce barriers
to fluid flow by locally decreasing permeability. Extension fractures (i.e., joints, veins,
microcracks) that are open in the subsurface produce fluid conduits that locally enhance
permeability. Fracture-enhanced permeability is important in a wide array of problems, including
hydrocarbon reservoirs (Nelson, 1985), aquifers (Sharp, 1993), waste repositories (Barton and
Hsieh, 1989), and hydrothermal mineralization (Sanderson et al., 1994). Despite the importance
of fracture-enhanced fluid flow, major problems remain in terms of the characterization of
fracture systems, the relations between fracture system and fluid flow, and effective means for
evaluation without direct observations of fluid flow.

The permeability, porosity, and shear-wave anisotropy induced by open fracture systems
may be addressed by referring to the geometrical attributes of the fractures. For convenience
assume that fractures are vertical, and refer to the horizontal fracture-parallel dimension as the
length and the vertical fracture-paralle] dimension as the height. The aperture of an extension
fracture at a specific location is the fracture-perpendicular distance between the fracture walls.
The aperture of an open fracture may be related to permeability using the ‘cubic law’ for flow
between parallel plates (Lamb, 1932; Snow, 1969). Open fracture length may be related to the
velocity anisotropy of elastic shear-waves propagating vertically through fractured rock
(Thomsen, 1995).

A basic problem for theories of fluid flow and seismic propagation in fraCture& rock has
been that fracture systems comprise many individual fractures collecfively ranging over many
orders of magnitude in aperture and length. Previous fluid flow and seismic propagation models
. for fractured rock have been defined in terms of the average apertures, spacings, and lengths of

extension fractures. However, meaningful averages cannot be defined for phenomena that follow
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power laws, and recent analyses' show that the apertures and lengths of extension fractures in
many systems define populations that follow power-law scaling (Gudmundsson, 1987a; Barton
and Hsieh, 1989; Wong et al., 1989; Heffer and Bevan, 1990; Barton and Zoback, 1992; Hatton
et al., 1993; McCaffrey et al., 1993; McCaffrey et al., 1994; Sanderson et al., 1994; Belfield and
Sovich, 1995; Clark et al., 1995; Gross and Engelder, 1995; this paper). The objective of this
paper is to incorporate explicitly the scaling of extension fracture populations into simple
theories of fluid flow and seismic propagation in fractured rock, to relate the fluid and seismic

properties, and to elucidate some of the typical fluid flow characteristics of fractured rock.

Fracture Scaling Relations

The apertures and lengths of extension fractures defining a fracture system commonly range
over many orders of magnitude. However, a variety of sampling biases affect collection of -
fracture aperture and length data (e.g., Baecher and Lanney, 1978; Barton and Zoback, 1992).
Censoring bias results from inadequate characterization of the largest fractures in a population,
for example when fractures are longer than the exposed sampling surface or when apertures’ are
large enough to produce disruption in a borehole. Truncation bias results from inadequate
characterization of the smallest fractures in a population, for example when the threshold for
detection of small fractures is inconsistent over the study domain due to variable exposure in
outcrop. Size bias results if the topologic dimension of a sampling domain is lower than the
topologic dimension occupied by a fracture population, for example when fractures in a volume
are sampled along a scanline or over an exposed surface. The effects of truncation bias may
explain why early studies of extension fracture aperture and length populations (e.g., Snow,
1970; Baecher et al., 1977) concluded that data follow negative exponential or log-normal size
distributions.

Several recent analyses have suggested that extension fracture aperture and length

populations follow power-law scaling (Gudrnundsson, 1987a; Barton and Hsieh, 1989; Wong et
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al., 1989; Heffer and Bevan, 1990; Barton and Zoback, 1992; Hatton et al., 1993; McCaffrey et
al., 1993; McCaffrey et al., 1994; Sanderson et al., 1994; Belfield and Sovich, 1995; Clark et al.,
1995; Gross and Engelder, 1995), analogous to fault displacement and length populations (e.g.,
Shaw and Gartner, 1986; Gudmundsson, 1987b; Childs et al., 1990; Scholz and Cowie, 1990;
Marrett and Allmendinger, 1992). In a specific region of size S (length of sample line, area of
sample surface, or volume of sample solid) the cumulative number (N) of extension fractures
having aperture > b~ or length > IN may be expressed as N=S2ab NorN=Sdl f\?, and the
cumulative frequency (f) may be expressed as f=abyorf=dIy , where a and d are measures
of fracture intensity and c and e are constants for a specific population. If aperture and length
scale linearly with each other according to 1 = g b, as expected from linear elastic fracture
mechanics (e.g., Pollard and Aydin, 1988), then ¢ = e and a = d g °. Some observations are
consistent with a linear relation between aperture and length (Vermilye and Scholz, 1995),
however other results (Johnston, 1992; Hatton et al., 1994) indicate a nonlinear relation of the
form 1 = gb?, in which case c =e z and a = d g °. Because fracture data typically are collected
along one-dimensional (scanline, borehole) or two-dimensional (map, cross section) samples
taken at high angle to fractures in three-dimensional volumes, a size bias is introduced. To
convert exponents from 1D to 2D or from 2D to 3D, the number one must be added to measured
values of e and 1/z must be added to measured values of c (Marrett and Allmendinger, 1991;
Marrett, 1996). This follows from recognizing that the probability of sampling a randomly
located fracture on a map (or scanline) taken at an arbitrary position through a volume depends
linearly on the height (or area) of the fracture, which is assumed to be proporﬁonal to the fracture
length (or length squared).

Values of ¢ determined from 1D samples of extension fracture apertures commonly range
from 0.75 to 0.85 (Fig. A.1). Most of the fractures represented by these data are partially or
completely mineralized. While this drastically reduces the fluid flow and seismic propagation
effects of the fractures in their current states, the mineralization preserves the apertures that

existed in the subsurface if the fractures did not develop via a progressive crack-seal process.
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Values of e determined from 2D samples of extension fracture lengths commonly range from

1.6 to 1.9 (Fig. A.2). The smallest members in some of the fracture aperture and length
populations deviate from the power laws fit to the data sets, probably reflecting the effects of
truncation. Censoring effects on the largest members of the populations generally appear
negligible, however combining data from serial scanlines (i.e., Fig. A.1: Monterey Fm., Rutland
quartzite, Westerly granite) has produced steep trends for the largest members in some of the
populations (e.g., Childs et al., 1990). It is interesting that, despite the distinct rock types
represented by the data, only limited variation of ¢ and e are required to model data from fracture
apertures collectively spanning seven orders of magnitude, and from fracture lengths spanning
five orders of magnitude. This might indicate that the exponents are largely insensitive to the
mechanical properties of rock and the physical conditions during fracture. Converting the
exponents determined from 2D sampling of fracture lengths to 1D exponents (i.., subtracting the
number one) yields values of e between 0.6 and 0.9. This range of values overlaps with the -
observed range of ¢, consistent with z = 1 and linear proportionality between fracture aperture

and length.

Parallel-Plate Model of Fracture Permeability and Porosity

The simplest model relating the gepmetricél attributes of fractures to their fluid flow
characteristics is the parallel-plate model (e.g., Lamb, 1932; Snow, 1969). The parallel-plate
model assumes single-phase laminar flow through a set of aligned fractures having smooth walls,
constant apertures, and heights equal to the thickness of the fractured layer under consideration.
The parallel-plate model is fundamentally one-dimensional because the fractures are assumed to
be infinitely long, a seemingly unrealistic simplification of natural fractures in rock. However,
even essentially parallel fractures have a tendency to be linked with other fractures along strike
(e.g., Laubach, 1992), a tendency that is strongest for the longest fractures in a population. Due

to linkages with adjacent fractures, the longest fractures can provide fluid flow conduits that are
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effectively infinite in length although more tortuous than depicted by the parallel-plate model. To
a significant degree, the connectivity of a fracture system will be increased by the presence of
multiple fracture sets, which are ignored in the present analysis. Consequently, the parallel-plate
model may be useful for describing the first-order characteristics of fluid flow through fractured
rock.

Previous treatments of the parallel-plate model additionally assume that a set of fractures
may be represented adequately by an average fracture aperture and an average fracture spacing
(e.g., Nelson, 1985). The power-law scaling of fracture apertures suggests that the use of average
fracture attributes is not meaningful. The one-dimensional parallel-plate model is generalized |
here (Derivation A.I) by application to each fracture of a fracture set that is sampled one-
dimensionally along a scanline of length L, taken perpendicular to the fractures. In this case, the
apertures of the individual fractures may be honored and there is no need to specify fracture

spacings (Fig. A.3). The fracture set has porosity (¢ total) and permeability (X total) of:

® o = Ce) % = CG) ) (A.1)
Ko = CG) ‘1%‘13,;' = C(é) K (A2)

and by equating the fracture-aperture terms of equations A.1 and A.2:

3
Ko = _CCT((CT)) ‘I'é' ¢ otal

¢ (A3)

where the subscript 1 refers to the largest-aperture fracture and C is the Riemann zeta function

(see Derivation A.I for definition). The Riemann zeta function converges for arguments > 1 -
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(Apostal, 1957), and a good approximation (accurate to 3 significant figures) is given by
summing the first three terms of the Riemann series and taking the first two terms of the Euler-

Maclauren summation formula (Dahlquist and Bjorck, 1974) to express the remainder, yielding

(x)=1+27% 3% 42T 4x

2(x~1) (Marrett, 1996). Consequently, the total fracture permeability

converges for ¢ < 3 but the total fracture porosity converges only for ¢ < 1, where ¢ is determined
from 1D sampling. Thus, if the total fracture porosity converges, then the total fracture
permeability will converge very rapidly (X total < 1.20 k 1). Because natural fracture-aperture
populations typically show scatter about a power law, the most accurate estimates of fracture
porosity and permeability may be made by using actual fracture data for the range of data
unaffected by sampling truncation and by using analytical expressions (e.g., Riemann zeta
function or integration; Marrett and Allmendinger, 1992; Marrett, 1996) for extrapolation over
the range of of truncated data. Note that a 1D-sampling power-law distribution of fracture

a=21
L,

apertures requires sobi= (aL)I/c may be substituted into equations A.1 and A.2 to give:

O tota = C(-l—) by = C(l) q /e 1 (-c)c
L ¢ (A4)

3} b,3 1 3 o)/
ktota1=C() 1 =___§(_)a3/cL(3c)/c

c)12L 12 c (A.5)

Several importaﬁt characteristics of fracture-enhanced fluid flow may be inferred from these
relations. Taking ¢ = 0.8 as a representative value for fracture aperture populations, we see from
equations A.1 and A.2 that ¢ total = 4.59 ® 1 and K toa1 = 1.10 X 1. This implies that the single
largest-aperture fracfure in a sample accounts for most of the totai fracture permeability (91%),
but the other fractures account for most of the total fracture porosity (78%). In addition, fracture
surface area, where cross flow from matrix porosity into fracture porosity must occur, is strongly

partitioned into the smallest fractures (Marrett, 1996). A corollary to these statements is the
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inference (Nelson, 1987) that the largest fractures control short-term flow rates and smaller
fractures control long-term flow rates &uring reservoir depletion, producing pressure-transient
curves that are anomalous by comparison with those from homogeneous rocks in which fluids
flow through intergranular pores (Aguilera, 1980). The result that the single largest-aperture
fracture in a sample dominates fracture permeability explains the large spatial heterogeneity
typical of fracture-enhanced fluid flow (e.g., Nelson, 1985), because the aperture of the largest
fracture in a specific sample depends greatly on the location in which the sample is taken.

: 25
Again taking ¢ = 0.8, we see from equations A.4 and A.5 that ¢ totat ~ L 02

and

Ktotal ~ L%7 This implies that fracture porosity and permeability in a specific region depend
on the size of the s|ampling domain considered, at least over the range of sample scales that
contain a fracture aperture population following a single power law (i.e., constant a and c). The
sample-length dependence of fracture porosity and permeability results from the tendency to
encounter larger-aperture fractures in longer samples. In particular, the aperture of the largest »
fracture (and therefore fracture porosity) and the aperture cubed of the largest fracture (and
therefore fracture permeability) increases faster than the length of a scanline as progressively
longer scanlines are addressed. The dependence of fracture porosity on sample length is
relatively weak, however fracture permeability should increase rapidly with increases in sample
length. The predicted dependence of fracture permeability on sample length is consistent with
observations in fractured crystalline rocks up to sample lengths on the order of 100 m (Cléuser,

1992; Neuman, 1994), which might represent the maximum sample scale at which fracture

aperture populations follow a single power law in the crystalline rocks that were studied.

Penny-Shaped Crack Model of Shear-Wave Anisotropy and Porosity

Although fracture apertures hold fundamental importance to fluid flow in fractured rock, it
is commonly impractical to quantify apertures directly. Analysis of many problems would

benefit from remote detection and characterization of extension fracture systems. Previous
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seismic studies (e.g., Mueller, 1991) have shown that both fracture orientations and spatial
distributions may be remotely quantified because a set of open, aligned fractures produces
velocity anisotropy of elastic shear-waves propagating in a direction at a low angle to the
fractures. The magnitude of the velocity anisotropy can be quantified in terms of fracture
geometry and size using a penny-shaped crack model.

The penny-shaped crack model (e.g., Thomsen, 1995) assumes that fractures are fluid-filled
ellipsoids embedded in rock, and is fundamentally a three-dimensional model. The ellipsoids are
assumed to have two equal long dimensions (fracture length and height) and a much smaller
short dimension (fracture aperture), and the short dimensions of the ellipsoids are assumed to be
aligned. Consequently the fractures are treéted as isolated features, which is a poor
generalization of natural fractures in rock. However, to the extent that connected fractures
behave as fractures having lengths exceeding their heights, connectivity will have negligible
effects on observed shear-wave anisotropy (Skj rstein et al., 1995). Provided that fracture =
heights are small by comparison with the Wavelength of vertically propagating seismic energy,
the penny-shaped crack model should provide reasonable first-order estimates of the shear-wave
anisotropy produced by fractures even if they are linked along strike.

A volume of rock containing aligned vertical fractures will polarize vertically propagating
shear waves into components having particle motion pérallel to (velocity =V fast) and transverse
to (velocity =V slow) the fractures (Thomsen, 1995). The velocities are related by the shear-wave
anisotropy (7y) such that V fast = 1+7)v slow, and Y may be expressed in terms of the lengths of
fractures distributed in a sample volume (Thomsen, 1995). Based on the power-law scaling of

fracture lengths in a volume, we find (Derivation A.ID):

(2 5 Y o)
e sey v T e A6)

2
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where v is Poisson’s ratio of the intact rock, V is the volume of rock containing the fractures, and
e is the 2D-sampling exponent of the fracture-length distribution. Shear-wave anisotropy
depends on sampling scale for the same reason that fracture porosity and permeability do.
Because seismic waves of different frequency effectively sample different size volumes of rock,
we may anticipate that shear-wave anisotropy will be somewhat frequency dependent.

Using the penny-shaped crack model and volumetric sampling, we also can calculate the
total fracture porosity (Derivation A.II) in a similar manner to that of the previous section.

Assuming that fracture apertures are linearly related to lengths (1 = g b) we determine:

_ 3y ® 172 (L)
q)total —C(C'Fl)ﬁg v _C e+1 ¢1‘ (A7)

By equating the fracture-length terms of equations A.6 and A.7, we find that the shear-wave

anisotropy and the fracture porosity are linearly proportional:

T 2=V

Y
2 g 1-v , (A.S)

O tora =
as found by Thomsen (1995). Taking v = 0.33 and g = 1000, for example, we get the
approximate result of P total = (0.0039) v. Note that, although both shear-wave anisotropy and the
fracture porosity are scale dependent and functions of the size distribution of the fractures, they
depend on scale and the fracture size distribution in exactly the same way. Thus, the relationship
between shear-wave anisotropy and the fracture porosity is independent of the size distribution of

the fractures and the sampling scale.
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Fracture Permeability/Shear-Wave Anisotropy Relation

The parallel-plate and penny-shaped crack models summarized above make fundamentally
different assumptions regarding the geometries of natural fractures in rock. The two models |
represent end-members in terms of their implications about the connectivity among essentially
parallel fractures. The penny-shaped crack model assumes that fractures are completely
unconnected, whereas the parallel-plate model implies that fractures are ideally well connected.
Natural fractures are somewhere in between. Nevertheless, for the reasons outlined above, the
models may be accurate enough for the first-order analyses presented.

Fracture porosity was analyzed using both the parallel-plate and penny-shaped crack
models. Both models are adequate for fracture porosity calculations, because porosity is
insensitive to the connectivity of fractures. As one extension fracture decreases in aperture along
strike, an overlapping fracture typically increases in aperture such that the sum of apertures -
varies little (e.g., Peacock, 1991). However, another difference between the two fracture porosity
analyses is the three-dimensional (penny-shaped crack model) versus one-dimensional (parallel-
plate model) configuration. Stereological arguments guarantee that the two approaches are
exactly equivalent, regardless of the shapes, sizes, or orientations of fractures (Underwood, 1970,
p- 25-30). Point counting of two-dimensional rock samples provides valid three-dimensional
estimates of porosity for the same reasons. Therefore, we may substitute equation A.8 into
equation- A.3 to yield a relation between shear-wave anisotropy and the total fracture

permeability:

3 3 C(i) 2
- (2—-vV L
Kot = ( ) < ‘—73

96 \1-v C3 (l) g3 '
c ; (A.9)
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Similar to the fracture porosity-permeability relation, the cube of shear-wave anisotropy is
proportional to fracture permeability. Taking ¢ = 0.8, v = 0.33, and g = 1000, for example, we
get the approximate result of K total = (17 darcy m-2) L.2y3 where L is the lesser of the seismic
resolution or the sampling-length scale at which the apertures cease following a single power
law.

The significance of equation A.9 is that it provides a basis for using remote detection
methods for before-the-bit prediction of fracture permeability. In principle, this relationship
combined with shear-wave anisotropy measurements should provide minimum estimates of
fracture permeability, because the presence of multiple fracture sets will decrease shear-wave
anisotropy but increase fracture permeability. However, the parallel-plate model probably yields
over-estimates fracture permeability and the penny-shaped crack model probably yields under-
estimates shear-wave anisotropy. Additional degrees of uncertainty derive from the potentially
significant variation of the parameters c, v, and g. Consequently, an empirical approach to

evaluating the coefficient (F) of equation A.9 is desirable:

Ko = F YB (A.10)

For example, in local areas where both fracture permeability and shear-wave anisotropy
measurements are available, F can be determined empirically. Equation A.10 may then be used
to map fracture permeability using seismic data in adjacent areas. Because fracture permeability
is scale-dependent, the permeability predictions made from seismic data will represent

permeability at the length scale of the seismic resolution.

Discussion

Some important aspects of fracture systems have been ignored in this paper. The parallel-

plate model for fluid flow is limited by the assumption that natural fractures are connected.
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Because long fractures have greater probabilities of being connected than do short fractures, on
average long fractures will more closely approach the permeabilities predicted by the parallel-
plate model. The scale-dependence of connectivity will reinforce the cubic relation of the
parallel-plate model, so that the combined effect in the permeability-aperture relation will be an
exponent statistically greater than 3. Another limitation of the parallel-plate model stems from
the assumption of smooth fracture surfaces. The rough surfaces typical of natural fractures
reduce the effective aperture for fluid flow, however recent studies offer the possibility of
accounting for fracture surface roughness in a modified parallel-plate model (Brown et al.,
1995).

Important uncertainties regarding the limits of fracture scaling remain. If microfractures
generally follow the same scaling law as macrofractures in the same population, then
microfracture observations may prove useful for characterizing the macroscopic properties.of
fractured reservoirs. For example, microfractures observed in core plugs might be used to infer
(via empirically defined scaling laws) the frequency and aperture of macrofractures, and
consequently the associated fracture permeability. An upper limit to extension fracture scaling
might be anticipated based on the observed change in scaling for earthquakes that span the
seismogenic zone (e.g., Pacheco et al., 1992). In layered sedimentary rocks, extension fractures
often are limited in height by the thickness of individual beds, so the scaling of extension
fractures that span a mechanically significant bed might differ from the scaling of smaller
fractures in the same bed. An understanding of such a change in scaling (or lack thereof) is
necessary before microfracture observations can be used to make useful reservoir-scale

predictions.

Conclusions

The geometric attributes of individual extension fractures, which collectively form a

fracture system, follow power-law scaling. The implications of extension fracture scaling reach
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beyond the geometry of fracture systems, and encompass fluid flow and seismic propagation
characteristics. In particular, knowledge of the scaling relations of an extension fracture
population enables specification of fracture permeability, fracture porosity, and shear-wave
anisotropy due to the entire fracture system in terms of a few variables. Perhaps more
importantly, the fluid flow and seismic propagation characteristics may be related to one another.
This offers the prospect of remote quantification 6f fracture permeability and porosity.

Some of the salient characteristics of fluid flow through fractured rock may be recognized
as consequences of the scaling of extension fractures. The significant spatial heterogeneity of
fluid flow in fractured rock results from almost all fracture permeability in a given sample
deriving from only the few largest-aperture fractures. Anomalous pressure-transient curves are
consequences of most matrix-fracture cross flow and fluid storage occurring in fractures that
contribute minimal permeability. The observed variation of permeability with the length scale of
sampling results from the tendency to encounter larger-aperture fractures in longer samples, at

least over a wide range of length scales.

Derivation I

The total porosity of a set of aligned fractures in the parallel-plate model can be determined

by one-dimensionally summing the porosity contributions of all fractures in the set:

oo

O tota = 2 ¢ N
N=] , (A.ID)

where subscripts are the fracture numbers defined by the power-law distribution of apertures.
The porosity contribution of each individual fracture in the set, as measured along a scanline of
length L oriented perpendicular to the fracture set, is the ratio of the fracture aperture and L.

* Substituting this relation into equation A.I1 yields:
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by

0 total = I
1 L (AI2)

T8

Using the 1D power-law distribution of the fracture apertures and setting N = 1 (i.e., largest-

aperture fracture in the population) we find:

N=LabN_° = La=b1°. (AI3)

Substituting the result of equation A.I3 into the 1D aperture distribution and solving for the

aperture of the Nth fracture gives:

N=b,by°® = by =
toN N7 ONTe (AI4)

Equation A.J4 can now be substituted into equation A.I2 to yield the total porosity of the fracture
set as the product of the porosity contribution of the largest-aperture fracture and an infinite

series:

0 o = T XN =0, z N e
N=1 =1 . (A.I5)

The infinite series is known as the Riemann zeta function (Marrett, 1996), defined as:
£ (x) = 1—x+2_x+3_x+---. (A.I6)

Finally, the total fracture porosity is the product of the porosity contribution of the largest-

aperture fracture and the Riemann zeta function with argument 1/c:
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O tora = C(%)q)l.

The total fracture-parallel permeability induced by a set of aligned fractures in the parallel-

(A7)

plate model can be determined by summing the permeability contributions of all fractures in the
set:

oo

K o = Z kn
N=1 (A.IB)

The permeability contribution of each individual fracture in the set, following the parallel-plate

model (e.g., Lamb, 1932; Snow, 1969), is the cube of the fracture aperture divided by 12 L.
Substituting this relation into equation A.I8 yields:

k = i b N’
4=
tot ol 12L.

(A.I9)
Substituting equation A.I4 into equation A.I9 yields the total permeability of the fracture set in

terms of the permeability contribution of the largest-aperture fracture multiplied by an infinite

series, which we recognize as the Riemann zeta function with argument 3/c:

b3 = _ 3} b3 3
K o1 = ! 2N3/C=C(‘) L =C(_)k1
12 L N=1 c/ 12 L C (A.I].O)

Derivation 11

The total anisotropy that affects elastic shear-waves propagating parallel to a set of aligned

fractures embedded within a solid of volume V can be determined by three-dimensionally

summing the anisotropy contributions of all fractures in the set:

60




N=1 ) (A.IDT)

The shear-wave anisotropy contribution of each individual fracture in the set (Thomsen, 1995)
depends on the cube of the fracture length:
- 1-v 1 N3

V= Nz=1 3 (2—\7) Vv . | (AIIZ)

Using the 3D power-law distribution of the fracture lengths and setting N = 1 (i.e., longest
fracture in the population) we find:

N=Vdiyt? = vd=1p7" (AII3)

?

where e is the exponent of the 2D fracture length distribution. Substituting the result of equation

A.II3 into the 3D fracture length distribution and solving for the length of the Nth fracture gives:

1,
N (ATI4)

N =1 1e+1 1 N—(e+l) = ] N =
Substituting equation A.I14 into equation A.II2 yields the total shear-wave anisotropy of the
fracture set in terms of the anisotropy contribution of the longest fracture multiplied by an

infinite series, which we recognize as the Riemann zeta function with argument 3/(e+1):

1-v 113 - —3/(e+l) ( 3 ) 1-v 113 ( 3 )
= — N = = _—
Y 2 b, 3(2-v) V Clern)

(A.IIS)

61



The three-dimensional determination of total fracture porosity follows the derivation in

Derivation A.L The fracture porosity is the sum of porosity contributions of all fractures in a set:

o0

O ot = Z N
N=1 . (A.TII6)

"The porosity contribution of each individual fracture is the ratio of the fracture volume and V.
Using the ellipsoidal shape of the fractures and linear proportionality between fracture length and

aperture, we may write:

_ w1y

1
V 6gV (A.H:])

¢-fgzﬂgg2
N7 2

Equations A.II7 and A.Il4 may be substituted into equation A.II6 to yield the total fracture

porosity:

= mlyl  mi1d o2 1
0ot = 2 L = . 2
tot. e 6 g \V/ 6 g Vv Nel N 3/(e+1) ’ (A-IIS)
which we recognize as the porosity contribution of the longest fracture multiplied by the
Riemann zeta function with argument 3/(e+1):
N 3Ywmi13 ( 3 )
v =8 () o5 = o(S5) e )

62




Juauodxa Bm_-uoaom ojen[eA? 0] pasn Bjep 2edIpul m—on:;m uado

&wmﬁ “[e 39 BUOA\ ‘PAUIqUIOD SIUIURDS [BLISS € ‘$86°0 = 74 ‘czao - Q (czg'0 WW 901°0) = N) 9Mueid

A121S3M PUE 1(6861 I8 19 SUOAN ‘PAUIGUIOD SOUN[UBDS [BLIAS 6T ‘886'0 =z ¥ ‘L6110~ 9 (1670 WW 91T°0) = N)
onzyrenb puepny {(1aded s1y) (686°0 = 73 ‘gg10 -  (goz0 WW 808°0) = N) BIqUIN|oD) Ysnug ‘ouoispues

"Wy joa1D Jopnog ‘(1oded SI {7L6°0 =73 ‘pos0 - 4 (poso WU 6ZS°0) = N) BIqUIN[OD) YSHIIE “QUOISPUES "W
gunpen {(s661 ‘1op[eduyg pue ssoin 'PaUIqUIOD SoUI[URDS [eLIdS {7 £86'0 =74 ‘[13:0- 9 (1180 WW T6' L) =N)
BIuI0JI[e]) ‘auo)so[op ‘i ASISIUOIA (661 ““1e 19 ASIJEDOIN ‘€660 =z 1 ‘6eg0- G (65870 WM HET) = N) PUB[AI]
‘isodaop pjo3 Jeurydennd {(y661 e 19 AAIJJRDOIN ‘€660 = 7 ‘95,0 - 9 (9g,:0 WW 60€) = N) douelq ‘Wsodap
p[o8 191918YD 977 woij sainjoej uoisuaxe Jo Juydures (1 ‘sjofd ainyiade 'sA Joquinu sApeWND) Iy Indig

:

(vrur) danyaade [RIUBYIIAI

o=
O D
o o S

fu——ry
[es) —_— — —

10000

000°1
001

1
=
p—

| DR

Laa1som 001
puepiny
ysa1D) Japinog
dumpen
Ka1ajuopy
jjeuydern)
1BRIEYD 9]

113 3 % ) | T Lossss o Lusas sy | TTIT WO | FTTT IR —--:- i

JaquInu dApe[numn,)

A

oo¢cmBeLD

==2== 0001

63




Jusuodxe mej-1amod sjenjead o) pasn elep ajedsipui sjoquiks uadQ

(€661 T2 19 UOIRH ‘886'0 =71 ‘1z1-1 (1o1 WIW $0S0 = N) Pue[Ioog ‘ejuiolpouesd sif) Yoo pue
‘(roded s1p p66°0 = 71 ‘ce1-1 (g WW 4, 0 X [6°8) = N) ureds ‘auoisew] eumnbiejy o13aN
+(S861 *S[eD pue NeS[NOY 16L6°0 = ¢ 1 ‘pory- I (yory W 9 OF X G8'E) = N) Udpomg ‘opuesd eding
W01} $2INJoRI} UoIsu9Ixa Jo Jurdwes g ‘sjofd yJuo| 'sA Jaquinu aAne[WIND 7'y dIndig

(urur) yyBuary

oy
8 S —

000°1
['0
100

000°001
=000°01

01

ajuorpouesd
ds1n yoo
auojsawi]
eumbiepy

JIqUINU IAReMUN))

\%

001
ajuesd edmg [

| IYTIFERN YT TIFE Y TR E IR ArA ¥




APPENDIX B: APPLICATION OF SCANNED CL TO RESERVOIR ISSUES

Although the degree to which fractures are open and interconnected in the subsurface
governs their ability to transmit fluid, information on in situ fracture apertures and connectivity
is usually incomplete. Accurate data from areas away from direct observation will clearly be
difficult to obtain with foreseeable remote sensing methods. Even for fractures accurately
measured in core, there is rarely a sound basis for extrapolating aperture patterns.

Although loading conditions are commonly viewed as the prime cause of fracture closure
(or of variations in fracture aperture), core observations from petroleum reservoir rocks show
that fracture pore space usually is strongly modified or destroyed by miﬁeral precipitates
(authigenic cements). We use this observation to suggest a simple parameter based on the
diagenetic character of the host sandstone for estimating fracture conductivity in si]iciclastic
rocks. Diagenesis comprises the physical and chemical changes in sediment after deposition that
converts it to consolidated rock. In sandstones, diagenesis involves compaction, cementation,
dissolution, and replacement of grains and cements. Because diagenetic changes occur under
circumstances of tectonic and burial loading and fluid flow, fracture on a range of scales can be
an integral part of diagenesis. Diagenesis information is potentially a useful indirect guide to
subsurface fracture attributes because specific observations about diagenetic relations can be
gotten more easily than direct i'nf;)rmation on fractures.

Though many diagenetic processes, in particular the duration of cementation events, are
matters of dispute, it is generally possible to treat discréte authigenic cements as being the result
of relatively short (ca. 10 m.y.) precipitation episodes. The relative sequence of cement
precipitation events and volumes of cements in a sandstbne can generally be determined

unambiguously using conventional petrographic methods.
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We define three categories of cementation event that can influence the distribution of
fractures and fracture attributes in a layered sequence. These categories are distinguished on the
basis of the timing of cement precipitation relative to fracture growth. The three categories are:

(1) prekinematic, where cement precipitates before fractures open,

(2) synkinematic, where cement is precipitated during fracturing, and

(3) postkinematic, where cement is precipitated after fractures form.

Sandstones may have several fracture opening events, as well as repetitive sequences of
mineral precipitation, so this classification must be referenced to a fracture event. Because large
fractures are rarely encountered in core, this would make application of the classification
difficult if microfracture observations were not available. Scanned CL observations, however,
can be used to define the timing of fracture opening movements within a diagenetic sequence
where no large fractures are sampled.

Data on cement types compiled on a bed-by-bed basis show a range of values for individual
beds about averages. Proportions of cement types differ for formations and for individual beds.

Fractures are a variety of porosity and thus are suscepiible to being filled with cement. In
sandstone fractures we examined, fractures commonly record sequences of mineral precipitation
that closely match those of diagenetic minerals found filling adjacent sandstone pore space.
However, fractures form at a specific time (or times) in the rock’s burial history, and this governs
what cements can be in fractures: syn- and postkinematic cements. Studies in progress show that
where numerous macrofractures are available for observation, postkinematic cement occludes
intergranular porosity to about the same extent that it fills fracture porosity.

Although large fractures, especially if they are in interconnected networks, likely do not fill
in exactly the same way as small pores, these observations suggest that postkinematic cement
volume is an easily obtained index of fracture porosity preservation. Microfractures and narrow
parts of large fractures are key areas for fracture connectivity (and thus play a key role in overall
fracture-network conductivity), and it is these areas that postkinematic cements can be most

detrimental to the continuity of overall fracture system plumbing by plugging fracture-network
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choke points. In studies of flow and precipitation patterns in pore networks (which might be
analogs for fracture networks) Wu (1992) showed that for pores in series, mineral precipitates
choke off the smallest pores first.

Fractures in areas of synkinematic cement tend to preserve fracture porosity. For example,
in 104 large fractures that are lined and partly bridged with synkinematic quartz in 9 wells from
one Gulf Coast Cretaceous sandstone, those that contained only quartz had visible fracture
porosity, whereas fractures that contained quartz and later (postkinematic) calcite, ankerite,
barite or anhydrite are mostly (>60 percent) sealed. This indicates that substantial (i.e.,
macroscopically visible) fracture porosity existed in most fractures after quartz precipitation
even in fractures that are now filled. Reopening of fractures during cement precipitation (marked
by crack-seal microstructures) tends to preserve fracture channelways in these rocks.

Cement compositions have been measured from a wide variety to petroleum reservoirs
(S. Laubach, manuscript in preparation 1998). These key cement types are widespread and can

readily be recognized and measured.
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APPENDIX C: CLASSIFICATION OF MICROFRACTURES

Microfracture identification and classfication is key to appropriate use of microfractures to
determine macrofracture strike, for use in identification of the timing of cement precipitation,
and for scaling studies. Our classification approach is briefly outlined here. More information is
presented in Laubach (1997).

Tables C-1 and C-2 classify microfractures into three categories and five degrees of
reliability as guides to macrofracture strike. Shape and arrangement are used to rank fractures
into style categories I, II, and II1, as described. Reliability is highest for postdepositional
opening-mode microfractures that have straight traces and steep dips (category I). Fracture-type
designations “a+” through “d” index the certainty with which fractures can be classified as
postdepositional. This is evident in crosscutting relations among fractures and cement that are
readily determined for microfractures that are large relative to grain size (type a+).

For small intergranular and intracement fractures, positive identification of a crosscutting
relationship with cement is progressively more challenging as fracture size decreases, but also
depends on image resolution. Where crosscutting relationships are certain but fractures cut only
one grain, they are rated as moderately reliable (type a), where probable crosscutting relations
are found, they are rated marginally reliable (type b). Reliability is lowest—fractures are
questionably postdepositional—where fractures are intragranular or where ambiguous
intersecting relations with cement are found. Many small and indistinct fractures fall into this
marginally unreliable (type c) classification. Unreliable (type d) fractures have indeterminate
relation to cement, and many may be inherited. Laubach (1997) summarizes the basis for this

fracture classification.
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Table C-1. Microfracture categories and their interpreted origins.

Category Habit Length Shape Distribution Interpretation
(range) (Application®)

| Straight? Isolated; locally pm to mm; Lens;aspect  All formations Equivalent to
paraliel sets gradational to ratios 103, & depths macrofractures

macroscopic  1p-4 (regional)

I Web1:2 Curved, =grainsize & Lensto All formations Primarily due to
intersecting; smaller irregular & & depths grain-grain
crisscrossing & angular interaction
radiating arrays (local)

Nl Truncated!-3 Isolated within = grain size & Simple tabular All formations Inherited
grains; end smaller (noned)
within grains or
at grain
margins

AN categories consist mainly of opening-mode fractures.

2Intersecting arrays of contemporaneous fractures.
3May end within grains and have crisscrossing patterns that resemble category L.
4Appropnate scale for use as a post-depositional structural indicator.
Sinherited fractures may have application as provenance indicators.

Table C-2. Microfracture data-quality index for assessing reliability of macrofracture strike

'Based on crosscutting and abutting relation of vein fill to cement

2Unreliable based on fracture style

®Category il fractures may be mistaken for category | or Il type ¢

“Many type d fractures are also category IlI
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determination.
Mlcrofractu re Type
Decreasing size and/or resolution of relation to cement’ —_—)
Large trans-| Trans-cement, | Probable Ambiguous Indistinct
ol 2 granular intra-cement | trans- relation to
> > 8 cement cement
S| 2| @ | Fractures having
2 _g T straight traces & Highly 2 Reliable ® Marginally | ¢ Marginally | ¢ Unreliable
S @ reliable reliable unreliable
2 g
g > il. Fracturesin n.a. Present Present? Present? Present
g % = crisscrossing (rare)?
O] =1 .8 arrays
S
s S | L. Inherited Possibly Probably
fractures n.a. n.a. na. inherited® Inherited*
Footnotes




APPENDIX D: SYNKINEMATIC CEMENT AND FRACTURE ATTRIBUTES

Fractured sandstone cores from ten sedimentary basins have identical microstructures that
indicate authigenic quartz precipitated during fracture opening. Evidence for repeated fracture
opening and sealing includes quartz that spans fractures in pillar-shaped bridges containing
crack-seal structure, and arrays of quartz-filled microfractures disseminéted throughout the rock
mass that preserve crosscutting relations with cement. Degree of occlusion’by synkinematic
quartz depends on fracture size, with large fractures (mechanical apertures greater than 0.5 mm)
preserving extensive porosity. The probable cause of fracturing is episodic increases in pore fluid
pressure caused by influx of quartz-precipitating fluids and porosity reduction due to quartz
deposition. For sandstones, mechanical and diagenetic models suggest that fractures can form
when burial and diagenetic processes elevate pore pressure to only about 0.5 times overburden,
with or without a reduction in minimum stress due to tectonics or other processes. Thus, regional
fractures may not result from shortening or extension associated with specific tectonic events.

A key petroleum geology problem is the effective use of natural fracture models to infer
properties of subsurface regional fracture arrays between observation points. Establishment of
relationships between regional fractures and their causes can help guide these inferences.
Because elevated pore-fluid pressure can promote fracture develdpment (Secor, 1965) one
approach to this problem is to relate fracture formation to other evidence for elevated pore
pressure, such as is provided by observations of fractures and their relations to microstructure
and diagenesis. Our core fracture data set of more than 50 wells and about 20 stratigraphic units,
primarily from oil and gas reservoirs in well-indurated sandstone, contains what we interpret to
be examples of ‘regioﬁal fractures’ (Nelson, 1985).

Structures within minerals precipitated in the fractures permits us to relate fracture opening
to diagenesis. Sample burial depths extend from several hundred feet to more than 6,000 m for

rocks deposited in fluvial and shallow marine to deep marine environments, and in structural
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settings that include platforms and foreland and passive margin basins mainly distant from large
faults and folds.

| A recurrent relationship between fracture formation and certain diagenetic events is evident.
Most notably, crack-seal structure in fracture-filling quartz shows that fracture opening is
typically coincident with quartz cement precipitation. Review of recent studies of quartz cement
suggest that episodic increases in pore pressure could be associated with precipitation of this
mineral, linking diagenesis and fracturing.

This section focuses on core observations for the following reason. The advent of wellbore-
imaging geophysical logs and horizontal drilling has expanded our knowledge of subsurface
fracture attributes. Nevertheless, most subsurface data sets are incomplete. Measurerhent of the
attributes of large fractures is challenging because such fractures rarely intersect wellbores where
they can be observed. Consequently, our perception of subsurface fractures tends to be biased by
the fractures geologists are most familiar with: those in outcrop.

Although valuable because they provide the only way to measure certain aspects of fracture
patterns (for example, mechanical connectivity), such outcrop observations can be misleading if,
on average, they differ in significant ways from those typical of the subsurface. Core
observations are inherently limited but remain the best way to check the usefulness of our
perceptions of reservoir-scale deformation as guided by outcrop data.

We measured natural fracture and microfracture attributes in sandstone cores from more
than 20 formations as part of a larger study of fracture and microfracture attributes (Laubach and
others, 1995; Marrett and others, 1998; Reed and Laubach, 1998, and unpublished). Cores are
generally from areas distant from recognizable folds or faults. Fractures are opening-mode
fractures (joints). Some are open or locally mineral bridged, whereas others are filled by a
variety of authigenic cements, including quartz. These fractures form regionally extensive arrays
in otherwise undeformed rock. They are typically near vertical or normal to bedding. Where

fracture orientation patterns are known, fracture strikes are apparently uniform over wide (~km?)
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areas. In other words, these structures are regional fractures (Nelson, 1985). Note that figure and
appendix descriptions are ranked independently within parts 1-3.

In our data set, where reliable fracture attitudes have been measured, fractures show
preferred orientations that may reflect uniform regional patterns (Laubach, 1988; Laubach,
1992). However, a wide range of fracture strikes is evident in most of these data sets, and the
presumed trends are based on small numbers of reliably oriented fractures from widely separated
wells, as is typical for data sets of this type. For example, in one of our largest data sets, from the
Travis Peak Formation in the East Texas basin, only 61 reliably oriented macrofractures were
recovered from about 600 m of core in 10 study wells scattered over an area of about 5400 km?.
Although fractures from these wells generally strike east-northeast, they have a range of strikes
of more than 100 degrees. Regional fracture orientation patterns could be more diverse than can
be readily discerned with such sparse samples. Probably mainly because of sampling limitations,
abutting and crosscutting fractures are rarely observed in these sample sets.

Fractures have a wide range of apertures and, presumably, lengths and heights. Apertures
range from microscopic to more 'than 5 mm. Fractures visible only with magnification
(microfractures) are described in the following section. The upper size limit may reflect
incomplete sampling and the tendency for core having large fractures to become disagregated so
that core recovery is impaired. Many fractures end within sandstone beds by gradually tapering
to imperceptible width. Fractures also terminate at shaly interbeds or other slight changes in
lithology within sandstones, reflecting the well-known outcrop observation that mechanical layer
thickness influences fracture properties such as size and spacing (Pollard and Aydin, 1988; Narr,
1991; Ortega and Marrett, 1997).

Fractures visible to the unaided eye are typically lens-shaped in plan view and cross section,
although some fractures that are truncated by or terminate against stylolites or bedding surfaces
have roughly triangular or, locally, rectangular shapes. Stylolites are most commonly subparallel
to bedding, but vertical stylolites are present in core from below 4,000 m in the Green River

basin and elsewhere. Fracture height/width and length/width ratios generally show fractures that
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are much taller and longer than they are wide, but fracture-trace mapping of cores shows that
these ratios can be highly variable even within a given core for fractures that are likely members
of the same set. As discussed in the next section, this can be accounted for in some instances by
differences in growth history among fractures in a set.

Height is the fracture length dimension most readily measured in vertical core. Among
macroscopic fractures, a spectrum of fracture heights (and thus fracture sizes) is present in all
units. The tallest fractures completely sampled in core are more than 5 m high, but the local
presence of taller fractures at the wellbore is suggested by fracture traces on borehole image logs.
Some tall fractures are composed of coplanar segments, ranging in length from centimeters to
tens of centimeters, which are locally arranged in en echelon and relay patterns. Segments may
be separated by intact rock or by short curved or straight subsidiary fractures or microfractures. -

Information on the intensity of fracture development is sparse and challenging to interpret
or to compare from bed to bed or well to well. The number of fractures per length of core is
generaily small but highly variable, ranging from absent or rare to more than 1:1 (Laubach and
others, 1995). Although direct measurements of fracture separation (spacing) and size
distribution are rare because generally restricted to horizontal or slant core or fortuitous
circumstances (e.g., Ortega and others, 1998), available evidence suggests that some fracture
arrays show clustering (fracture swarms), whereas others do not (cf. NRC, 1996). Measuring the
length distribution, saturation, or connectivity of subsurface fractures is highly problematic
because of obvious sampling limitations. Inferring these attributes based on core measurements
is an area of ongoing research that we do not review here (Marrett, 1997).

In summary, the fractures we sampled are mainly simple opening-mode fractures that could
be accounted for by a wide variety of regional (or local) fracture models. Although orientations,
dimensions, separations, and patterns likely vary from unit to unit in ways that are challenging to
measure using conventional methods, these fractures also share a great many attributes. The
simple morphology and uninformative style of these fractures are reasons these features

commonly cannot be explained by a unique basin history or structural model, even where these
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models are guided by appropriate mechanical principles and careful outcrop studies of
subsurface analogs. For example, fractures formed in response to bending-related stretching and
those caused by uplifted-related rock contraction could have identical shapes and orientation
patterns.

In cores we sampled in units listed in Table 1, all of the fractures visible to the unaided eye
are lined, bridged, or filled by quartz. Although other phases locally accompany quartz in these
fractures, quartz evidently precipitated first after (or while) fractures opened. For some fractures,
repeated fracture opening and quartz precipitation indicate these processes operated
concurrently. This is a startling observation since these rocks all have diverse diagenetic mineral
assemblages that evolved over millions or hundreds of millions of years. Moreover, all of these
units have experienced burial and tectonic histories that might have caused fracturing at various
times during the course of diagenesis. At least for the cores we sampled, the histories of
fracturing and diagenesis are more similar and systematic than would be suggested by inspection
of burial history curves. Why has such a unique fracture and diagenesis relationship developed
so consistently in such a wide range of settings? |

Evidence for the timing of quartz precipitation comes from petrographic and other
microstructural observations of the fractures. The most direct evidence is crack-seal structure
revealed by transmitted light microscopy and scanning electron microscope-based
cathodoluminescence (scanned CL). Locally, particles of broken grain are visible, in particular
where feldspar or lithic grains are incorporated in the fracture (Figure Madden example).
Although some pillars have numerous planes of fluid inclusions parallel to fracture walls that
may be symemetric about the fracture centerline, many pillars show no obvious structure in
transmitted light.

The sequence in which minerals precipitated in fractures has been established using
crosscutting relations, where a younger phase grows across and covers a crystal face of an older
mineral. This evidence shows that synkinematic quartz predates various other phases. Typical

late phases in fractures include ankerite, dolomite, chlorite, other clay minerals including dickite,

75



anhydrite, barite, and solid hydrocarbons (dead oil). The sequence in which minerals precipitated
in the intergranular pore space was established using the same criteria, and these sequences
match those in assoicated fractures. Congruence of diagenetic patterns in fractures and
intergranular pore space is further evidence that the quartz in fractures and in pore space is
contemporaneous.

Fractures have preferred orientations over wide regions, but no plausible tectonic ‘event’ to
account for their orientation in passive margin basins (Travis Peak Formation; Laubach, 1988)
and in foreland basins (Frontier Formation; Laubach, 1992).

Crack-seal structure in fracture-filling quartz shows that quartz precipitated during episodic
fracture opening. Rocks can fracture at different times, but still have their orientation influenced
by uniform regional stress orientations. magnitude of load could vary (hooking, clustering);
much will depend on individual rock diagenetic history. Could account for observed shifts in

strike (Laubach, 1992), clustering, and saturation (Olson and others, 1998).
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APPENDIX E: ADDITIONAL BACKGROUND MATERIAL
Natural fractures, diagenesis, and simulation

Little has been published on the relationship between deformation and diagenesis; it is a
subject on the border of two disciplines. A genetic and temporal relation between fracture and
diagenesis was demonstrated for opening-mode fractures in the Cretaceous Travis Peak
sandstone of East Texas (Laubach, 1988), and similar relations are evident in Pennsylvanian
Sonora and Ozona Canyon sandstone of the Val Verde Basin, Texas (Laubach and others, 1994).
Planes of fluid inclusions interpreted to be microfractures were shown to parallel macrofractures
in the Travis Peak Formation (Laubach, 1989). Our subsequent scanned CL analysis
demonstrates that these fluid-inclusion planes are quartz-sealed microfractures that contain
primary fluid inclusions. Explicit documentation of the relationship of diagenesis, changing
rocks properties, stress, and fracture is rare.

A complete description of the attributes of natural fracture systems that can affect fluid flow
requires information on many different variables, including fracture-size distributions, spacing,
porosity, orientation patterns, coﬁnectivity, compliance, in situ stress conditions, etc. (National
Research Council, 1995; Nelson, 1985). In contrast, fractured-reservoir simulators in the oil
industry currently only use a continuum representation of effective fracture transport and storage
properties, along with-an exchange coefficient for flow between fractures and matrix blocks
(Aguilera, 1980; van Golf-Racht, 1982; Dershowitz and LaPointe, 1994). Present Simulators
typically are dual continuum (dual porosity or dual permeability) with matrix blocks divided into
regular patterns by grids of fractures (Kazemi and others, 1976; van Golf-Racht, 1982). In such
simulators matrix and fractures are represented by separate continua with distinct properties. The
extreme geometrical simplification of flow pathways is required to allow numerical solution of
the complex differential equations that are used to simulate such effects as imbibition, residual

saturation, and multiphase flow.
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Conventional continuum simulators cannot explicitly represent many fractures without
creating a model too large for solution. Simulation regions are large (on the order of mi2), and
fractures smaller than the simulation region, if important individually to flow, may be too
numerous to explicitly incorporate.

Recognizing the disparity between real fracture networks and dual-continuum models,
industry and academic researchers in this field have responded by developing reservoir
simulators with ever-increasing capabilities for taking into account the complexities of real
fracture systems. Thus, discontinuum approaches including discrete fracture modeling (i.e.,
Long, 1984; Dershowitz and LaPointe, 1994), and hybrid discrete fracture dual-pbrosity models
(Miller, 1992) increasingly use geostatistics and fractal descriptions of fractures to represent
complex, heterogeneous fracture systems (Dershowitz and LaPointe, 1994). Yet this approach
has a fundamental limitation that has not been widely appreciated. In most cases the requisite

description of the attributes of natural fracture systems in the reservoir is unobtainable.

Fracture Characterization

Subsurface fracture attributes can only be measured imperfectly or not at all with current
technolqu, despite dramatic improvements in technology for imaging fractures in the subsurface
with wireline logging devices. This situation is not likely to improve in the foreseeable future.
The reason is sampling bias. In cases where one fracture set is present, fracture spacing is
regular, and fractures extend vertically across the interval of interest, the probability of
encountering a vertical fracture with a vertical core is the ratio of core diameter to the fracture
spacing. Where the fractures of interest may have irregular spacing on the order of tens to
hundreds of feet (Laubach, 1992), and wellbores have diameters on the order of 10 inches,
fractures will be rarely encountered in the wellbore. Fracture spacing (except in horizontal wells)
and connectivity cannot be obtained, and fracture porosity (i.e., are the fractures open?) and

orientation are commonly inadequately sampled and characterized, even where costly whole core
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is obtained and borehole-imaging logs have been employed. Yet in a typical producing field,
there may be many intervals of interest, each with its own characteristic fracture patterns.

Inadequate characterization of subsurface fractures limits the applicability of both discrete
fracture methods and conventional dual-continuum fractured reservoir approaches. Basic
observations identifying beds that contain open fractures and the strike of those fractures are
typically lacking. Detection of other attributes that are important in outcrop fracture-pattern
characterization, such as fracture length distributions and connectivity patterns, is beyond the
scope of any conventional technology currently envisioned, although it can be derived from the
measurements pioneered in this study.

Thus, to effectively apply any fractured-reservoir simulator to a reservoir, seemingly
insurmountable sampling problems apparently require either an unjustified statistical
extrapolation from limited core or well-log fracture observations, or the use of statistics derived
from situations where fractures can be fully characterized: outcrops or models. Both of these
latter approaches have serious drawbacks. Modeling of fracture formation generally leads to
nonunique predictions of even the most basic fra.cture attributes. The burial, tectonic, fluid-flow,
and rock-property history of most reservoir rocks is too complex and poorly known to yield more
than a range of possibilities (Engelder, 1985; Laubach and others, 1998).

Stress-history models have been used for fracture analysis in several basins (e.g., Engelder,
1985; Laubach, 1989; Warpinski, 1989; Apotria and others, 1994). Duririg burial history,
ﬁthifyiffg sediments undergo variations in burial load, pore pressure, and temperature, and rock
properties that change as a result of episodic diagenetic events. Yet typically stress-history
models assume that rocks are elastic, homogeneous, and isotropic and that their properties vary
linearly with depth during burial until they attain final values at maximum burial. For a number
of reasons, these assumptions are rarely met.

Outcrops offer the best opportunity for characterizing the types of fractures that may exist in
the subsurface. Most of the important attributes of fracture systems can be documented in

outcrop. Moreover, it is possible to identify fractures in outcrop that are representative of the
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subsurface and to obtain statistical attributes of fracture populations from outcrops of reservoir-
facies rocks (Laubach, 1992; Marrett, 1997). Yet this does not imply that statistical data from
outcrops can be directly applied in simulators without the necessity of mapping subsurface
frécture attributes.

Aside from the fact that only a few reservoir rocks are exposed in outcrops in which
representative subsurface fracture patterns can be identified, extrapolation of fracture statistical
data from outcrop to a particular volume of the subsurface is fraught with potential pitfalls.
Inasmuch as many important reservoir-rock diagenetic and natural fracture properties vary with
burial history (e.g., Dutton, in preparation) it is no surprise that fracture statistical attributes
obtained from outcrops also differ from those obtained from the subsurface. This has been
demonstrated for the Austin Chalk, where outcrops (Collins and others, 1992), large excavations
and tunnels (Laubach and others, 1995), and core and well logs from industry oil wells (Belfield,
1994) have highly contrasting fracture-system characteristics. Direct extrapolation of fracture
statistics from outcrop to subsurface—and even from one subsurface location to another—would
be difficult to justify.

Outcrop studies can serve as valuable guides to patterns that may occur in the subsurface,
but clearly methods are needed that allow attributes of subsurface fractures to be identified and
mapped. To accomplishi this the sampling limitation that has so far hindered subsurface fracture
characterization must be overcome—implying the apparent paradox that fracture information
must be obtained from wells in which fractures have not been intersected. This is why indirect

“methods such as those are developing are important.

The importance of mineral precipitation as a cause of fracture occlusion is widely
recognized (Nelson, 1985), and such minerals can govern fracture response to changes in
effective stress during petroleum production (Dyke, 1991). Precipitation reactions can have
surprising effects on the distribution of effective permeability in fractures. In studies of flow and
precipitation patterns in pore networks (which might be analogs for fracture networks) Wu

(1992) showed that for pores in series, mineral precipitates choke off the smallest pores first, yet
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for pores in parallel high flow rates can cause the widest pore to fill first. From this, it might
seem that extending this work to fracture networks is essential to untangling the relations among
cementation patterns, the resulting distribution of fracture apertures, and the effective
permeability of the fracture network, but this is not the case. Addressing such questions is an
aspect of our study, but the success of our approach does not depend on unraveling the infilling
pattern of static fractures. Although data collected in our study has implications for the nature of
diagenetic processes, the success of is not dependent on solving basic problems in diagenesis.
We seek to distinguish average differences in fracture properties between rocks where
cement was precipitated prior to and during fracture opening from rock where dominant cements
precipitated after fractures were open. Preliminary evidence, partly reported in Laubach and
others (1994) and Laubach and Milliken (1996), Marrett and Laubach (1997), indicates that this
distinction can be made and that it corresponds to differences in degree of fracture occlusion.
With indirect evidence of key fracture attributes from subsurface samples, and with direct
observations of microscopic features that scale, appropriate properties and strategies for
simulating the fractured reservoir can be applied. The effecti;fe physical properties of a grid:
block can be approximated by scaling up sub-grid heterogeneities for field-scale simulation

(Kasap and Lake, 1989).

Simulation Issues and Scaling

One of the pﬁncipal objectives of the proposed research is to quantify distributions of key
fracture attributes (e.g., aperture, length, spacing) and to implement this information in fractured
reservoir simulators. Of particular importance are the fracture contributions to reservoir
permeability and porosity. Estimates of fracture permeability and porosity may be determined
directly from geometric information on open fracture apertures and spatial distribution (e.g.,
Nelson, 1985). Often such estimates are based on simplistic assumptions of regular fracture

spacing and constant aperture, or on average spacings and apertures. Because work to date
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suggests that fracture apertures follow power-law distributions, simplistic approaches to
permeability and porosity calculations are bound to fail. Nevertheless, it is possible to
analytically determine more accurate estimates of fracture permeability and porosity if the
scaling parameters of the fracture attributes are known.

The simplest model relating the geometrical attributes of fractures to their fluid flow
characteristics is the parallel-plate model (e.g., Lamb, 1932; Snow, 1969). The parallel-plate
model is ordinarily applied to average fracture aperture and spacing (e.g., Nelson, 1985);
however, it is not limited to this case. A generalization of the model (Marrett, in review) admits
fracture populations characterized by power-law scaling and expresses the total fracture
permeability and porosity of a fracture set as the product of a factor depending on the exponent
of the appropriate power-law and the permeability/porosity contribution of the largest fracture in
the population.

Fracture aperture populations (ape;'t;lres ranging from 0.03 pm to 0.5 m) commonly are
consistent with power-law exponents of about -0.8, which implies thatvthe total fracture
permeability is about 1.1 times the permeability contribution of the largest fracture and the total
fracture porosity is about 4.6 times the porosity contribution of the largest fracture (Marrett, in
review). Consequently, almost all fracture permeability derives from the largest fracture in a
sampled interval, but most fracture porosity derives from smaller fractures. This is consistent
with the inference of Nelson (1987) that the largest-aperture fractures intersected by a well
controi éhort-term flow rates and that smaller-aperture fractures control long-term flow rates. A
corollary to the model described above is that fracture permeability will show a significant
positive correlation with the size of a sample (i.e., fracture-perpendicular length of a well bore).
This is consistent with permeability observations in fractured crystalline rocks up to sample
lengths on the order of 100 m (Clauser, 1992).

There are two fundamental considerations required to understand the scaling of a fracture
population: the effect of sampling biases and the limits of scaling. A variety of sampling biases

affect the collection and analysis of fracture population data (e.g., Baecher and Lanney, 1978),
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and their effects are now well understood (e.g., Marrett, in review). The limits of opening-mode
fracture scaling are not yet known. At the smallest scales, power-law scaling must break dbwn
because the smallest fractures will have finite sizes. However, fracture apertures less than 0.1 pm
show scaling indistinguishable from that of larger fractures, so the lower limit of scaling is as yet
uncertain. At the largest scales, it is widely recognized that fractures in sandstone are commonly
limited to single sedimentary beds. Consequently, we expect that bedding thickness will impose
an upper limit to the scaling of fractures. Our working hypothesis is that the fractures spanning a
bed will follow scaling distinct from but systematically related to the scaling of smaller fractures.
Data bearing on this idea are summarized in the discussion of the Mesaverde case study, and will
also be addressed in the Spraberry, Tensleep, Wolfcamp, and Frontier cases studies. Testing the
hypothesis will be important to the success of the scaling aspects of tour approach, inasmuch as
the fractures accounting for most permeability will generally span a sandstone bed but

subsurface observations are often limited to smaller fractures.

! Scanned CL Imaging

The stable observing conditions, high magnifications, and sensitive light detection that are
characteristic of scanning electron microscope-based cathodoluminescence (scanned CL)
imaging overcome several of the disadvantages of conventional light-microscope-based CL
systems, allowing more routine application of this petro graphic method for description of
micron-scale textural relationships between detrital grains, cements, and fractures in sandstones.
Scanned-CL imaging has great utility for documenting the interrelation between deformation and
diagenesis at the micrometer scale in siliciclastic rocks. A survey of sandstone units of widely
varyihg age, location,' and burial history suggests that quartz-sealed microfractures are nearly
ubiquitous in lithified quartzose sandstones (Laubach, 1997 and work in progress). Because

fractures formed in association with quartz precipitation are prevalent in quartz-cemented
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siliciclastic reservoir rocks, scanned CL imaging of microfractures can yield important
information on subsurface fracture populations that have engineering and economic significance.

Images in our study were produced using Oxford Instrument’s photomultiplier CL detector
CL302 installed on 2 JEOL T330A SEM and using a P2 CL detector on a JEOL T300 SEM.
Light is collected with the parabolic mirror inserted about 1 mm above an epoxy-impregnated
carbon-coated polished thin section. Panchromatic images are observed on the CRT of the SEM
and recorded on Polaroid film. An accelerating voltage of 10 kV with sample current set near
90% of the maximum for the SEM provides adequate photon emission for examining the
luminescence variations in authigenic (relatively dark-luminescing) and detrital quartz (relatively
bright luminescence).

Since the late 1970s, CL microscopy has been used to address issues in sandstone petrology.
CL has particular utility for examining features in detrital and authigenic quartz. Quartz lacks the
major compositional and textural variability that makes other major sandstone components, such
as feldspars and lithic fragments, amenable to application of petrographic and chemical methods
that depend on large degrees of chemical and textural variation (e.g., back-scattered electron
imaging). |

Large variations in cathodoluminescence intensity however arise from the relatively slight
variations in trace element content or defect structure that characterize quartz of various origins
(Sipple, 1968 and numerous subsequent publications). In the realm of chemical diagenesis, CL
imaging clearly yields superior quantification of quartz cement volumes (e.g., Evans and others,
1994) and CL zoning in quartz cements has been used to study cement timing and paragenesis, in
a manner analogous to CL studies of carbonate cementation (e.g., Hogg and others, 1992). As
recognized by Sipple, CL images are an important key to deciphering the role of local pressure
solution versus silica import as a cause for quartz cementation (Houseknecht, 1984, 1987, 1991).

It has also been suggested that CL colors (Matter and Ramseyer, 1985; Owen, 1991;
Kennedy and Arikan, 1990) and CL textures (Milliken, 1994a) in detrital quartz grains might be

useful as provenance indicators in siliciclastic rocks. With this goal in mind, a number of studies

84




have focused on characterization of CL properties of quartz, especially in crystalline rocks that
represent potentially significant sources of sediment (e.g., Zinkernagel, 1978; Sprunt and others,
1978; Ramseyer and others, 1988; Owen and Garson, 1990). Practical applications of this
approach to provenance determination (e.g., Owen and Anders, 1988) have been few, however,
and additional basic studies on the systematics of quartz CL character in various igneous and
metamorphic rocks and in modern sediments are clearly warranted.

Certain analysis methods in sandstone petrology can be used in combination with scanned
CL to overcome the uncertainties that result from the small-scale and sometimes cryptic mixing
of authigenic and detrital quartz that occurs through cementation and brittle deformation |
(Milliken and Laubach, in preparation). For example, laser-extraction isotope analysis (Hervig
and others, 1995), and fluid inclusion analysis (e.g., Burley and others, '1989) take advantage of

scanned CL to characterize with greater certainty the nature of the material analyzed.
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APPENDIX F: FRACTURE ORIGINS

Fraétures without any observable shear offset are opening-mode fractures. The orientation
of such fractures can be related to past stress fields. Yet mechanisms responsible for fracture
formation can rarely be specified uniquely. For accurate predictions of fracture patterns away
from the wellbore, the relevant (or typical) loading conditions that produce them need to be
better known. Do f'rac‘tures form mainly during burial, at depth after lithification, or during
uplift? Fracture mechanics and diageneis arguments can shed light on this issue.

Fractures primarily accommodating opening displacement propagate along a plane of zero
shear stress, specifically the plane perpendicular to the least compressive principal stress (Lawn
and Wilshaw, 1975). This makes such fractures indicators of past stress orientations, where
vertical fractures include the maximum horizontal stress direction at the time of their formation.
Secor (1965) helped resolve the controversy over how joints form by showing that the concept of
effective stress (Hubbert and Rubey, 1959) could account for opening-mode fracture
development in a compressive stress state if the pore pressure was sufficiently high.

Conditions under which fractures (or other opening-mode fractures) fofm can besf be
described using fracture mechanics. Ky, the opening mode (or mode I) stress intensity factor,
measures the magnitude of the stress concentraﬁon at the crack tip. For a vertic;al, uniformly
loaded, planar fracture whose length is much greater than its height, K; = Ac(nt -h/2)1/ 2, where
Ao is the driving stress and h is fracture height (Lawn and Wilshaw, 1975). When Kj exceeds a
critical value, Ky, the fracture will propagate. For stress concentration to occur, there must be
fracture-opening displacement, which requires a positive driving stress.

Driving stress is defined as AG = (p - Ogpin), Where Gypyiq is the minimum in situ stress
(compression is positive) and p is magnitude of pore pressure acting inside the fracture. Driving
stress can be positive under two conditions—the local minimum stress acting on the fracture is

tensile or the pore pressure in the fracture exceeds the minimum stress. Absolute tension may be
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possible at or near the surface, but for fracturing at depth, where even the minimum stress is
compressive, there must be some contribution from pore pressure.

Most subsurface rocks experience a negative driving stress most of the time. The special
situation of a positive driving stress at depth can come about under three conditions—pore
pressure increases to exceed minimum stress, minimum stress decreases to fall below the
magnitude of the pore pressure, or a combination of both. Numerous processes active during
basin evolution can lead to such conditions. For example, mechanisms that cause a decrease in
minimum stress are uplift, cooling, gentle folding, and regional extension. All of these factors
could potentially induce regional vertical fractures in subhorizontal beds. One diagenetic process
that could contribute to pore pressure increase in sandstone is quartz cementation (Laubach,
1988; Lander, 1998). |

The process by which fractures propagate under the influence of pore pressure is natural
hydraulic fracturing. Pore pressure and in situ stress are not independent variables due to
poroelastic effects in rock. So care must be taken in determining stress and pore pressure
conditions under which opening-mode fracture propagation occurs. However, by properly
combining the driving stress equation with an expression for minimum in situ stress, we can
generalize about conditions necessary for fracture propagation, and this leads to the conclusion
that natural hydraulic fracturing is possible for low pore pressure relative to overburden stress.

Recognizing that the critical stress intensity factor can be small under geologic conditions
for saturated rocks (Atkinson and Meredith, 1987; Olson, 1993), for 1llustration we assume a

positive driving stress is sufficient for crack growth (Engelder and Lacazette, 1990). For a

positive driving stress, the following condition is necessary: p > Gp;,. The expression for
minimum stress due to gravitaﬁonal loading only is: Gy, = V/(1-V) (Goyerburden - OP) + 0P,
where v is Poisson’s Ratio, o is Biot’s poroelastic constant, and Gyyerpurden is Vertical stress
from overburden. Combining these two equations gives the pore pressure required for fracturing

in terms of material properties and overburden stress required for positive driving stress, P >

(VO overburden)/(1-V+2va-ar).
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Inspection of this relation shows that fracturing may require pore pressure from as small as
0.1 times the overburden for v=0.1 and 0=0 to equal the overburden stress for any Poisson’s
Ratio and a=1. Typical numbers for rock are v=0.2 and 0=0.6, which predicts a pore pressure of
0.5 times overburden for fracturing to occur, without reducing minimum stress due to tectonics
or other processes. This value is just slightly over hydrostatic in most basins. If we include the
other effects that can reduce minimum stress, fracture mechanics relations predict that fracturing
can take place at sub-hydrostatic pore pressures.

Aspects of quartz cementation are consistent with transient elevated pore fluid pressure. In
the commonly encountered situation where scanned CL observations rule out local sources of
silica via pressure solution, the low solubility of SiO2 in water and observed large volumes of
quartz cement imply large influxes of extraformational fluid. Yet cement precipitation decreases
intergranular porosity and permeability, creating an increasingly efficient barrier to fluid
movement as cementation proceeds (for example, Gal and others, 1998). =

Cement modeling shows that rates of porosity loss due to quartz cementation can approach
or surpass rates due to compaction, and unlike mechanical compaction, cjuartz cementation'rates
under conditions in sedimentary basins are not sensitive to changes in effective stress (Lander,
1998). Quartz diagenesis modeling based on assumptions of temperature-dependent quartz
precipitation predicts fluid overpressure under a range of typical burial histories (Lander, 1998).
Experimental diagenesis also supports elevated pore fluid pressure due to porosity reduction by
cementation (Scholtz and others, 1995). If episodic, abrupt movements of pore fluid also occur in
sedimentary basins, they will tend to intensify these effects. This interpretation is compatible
with observed regional fracture timing relations and fracture orientations. In the formations we
surveyed, crack-seal structures show that fracturing is typically contemporaneous with quartz
precipitation (Laubach, 1988, 1997; Milliken, 1994; Reed and Laubach, 1998).

For sandstones, favorable conditions for fracturing occur when diagenetic processes
combine to elevate pore pressure, perhaps to about 0.5 times overburden, with or without a

reduction in minimum stress due to tectonics or other processes. Under these circumstances,
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fracture strike is governed by anisotropic regional stress fields, which are persistent but do not
necessarily imply specific tectonic events or significant shortening or extension to account for
uniform patterns of fracture strike over large (~10 km?2) areas.

Our results imply that in many—perhaps most—moderately to deeply buried sandstones,
episodic increases in pore fluid pressure are the most important factor leading to creation of
regional fracture sets. We conclude that fracturing is episodic because crosscutting relations of
fractures with diagenetic phases show that sets of fractures typically cease opening at some time
after fracturing initiates. Subsequently, fracﬁlres may be passively filled with cements that can be
linked to later parts of the rock’s burial history. The duration of fracturing and concomitant
diagenetic episodes is unknown, although diagenetic models suggest that the coinciding
diagenetic episodes could be on the order of tens of millions of years (Lander, 1998).

In the future, it may be feasible to combine tectonic, burial history, and quantitative
diagenesis models to predict pore pressure and rock property changes and the timing of fracturg:
formation. Geomechanical models that predict fracture patterns for given loading and rock
property conditions (Olson, 1993), together with diagenesis models, may lead to progress in
predicting regional fracture attributes. Key to refining such approaches will be more reliable
methods to characterize subsurface fractures and thus test predictions.

Finally, these observations point to a need for caution in the use of outcrops as analogs for
subsurface fracture patterns in some applications. Although many outcrop studies of fractures are -
aimed at understanding mechanical principles of fracture growth, and their objectives are not to
match fracture patterns in a specific subsurface locality, in some studies outcrop observations are
used to augment subsurface fracture observations. An example is conditioning fractured reservoir
simulations. In these situations it is important to assess how closely patterns in outcrop are likely
to match those in the subsurface. Our results suggest that a key ingredient in such an assessment
must be comparison of the diagenetic history of subsurface and outcrop rocks. These
observations point to criteria for evaluating outcrops as exact analogs for subsurface fracture

patterns. The diagenetic history of the outcrop analog must be evaluated and modeled along with
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the fracture attributes if the aim of the study is accurate extrapolation of subsurface_fracture
patterns.

Regional fractures (opening-mode fractures or joints) are commonly said to be ubiquitous
structures in the Earth’s crust, yet the basinal conditions that lead to their formation in the
subsurface is imperfectly understood. A key ingredient in understanding creation of such
fractures is an appreciation of how progressive diagenesis can interact with fracturing, evolving
rock properties and paleo pore-fluid pressure.

Core observations in a variety of settings show an unexpected but repeated association
between precipitation of quartz cement and opening of regional fractures in sandstone. This
association is marked by crack-seal structure and the preservation of fracture porosity in
opening-mode fractures having apertures greater than about 0.5 mm, and by arrays of quartz-
filled microfractures disseminated throughout the rock mass. These observations, in the context
of recent diagenesis modeling results, suggest that for many moderately to deeply buried
sandstones having quartz cement, episodic increases in pore fluid pressure was the key factor
leading to fracture creation. Contrary to some recent models, this conclusion implies that

regional fractures do not necessarily reflect specific tectonic events.
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PART II. CHARACTERIZATION AND SCALING

INTRODUCTION

Fractures are present in all rock masses. The study of fracture systems in rocks has a variety
of applications in human activities. Fractures are in_ajor fluid flow conduits in the subsurface and
they are also important depositories of mineral resources of economic value. The study of
fractures is essential in civil engineering studies and for quality control of man-made artifacts.

Open-mode fracture size distributions have been studied By a few authors (Gudmundsson,
1987, Heffer and Bevan, 1990; Barton and Zoback, 1992; Gillespie et al., 1993; Hatton et al.,
1994; Sanderson et al., 1994; Johnston and McCaffrey, 1996, Marrett, 1997). These authors
show that open-mode fracture systems are organized such that their size distributions follow
power-laws (i.e. fractal relationships). A common characteristic of fractal systems is that they are
governed by the interaction of individuals in a population. In the case of fracture systems, the
growth of individual fractures is affected by their interaction with other growing fractures in the
system (Olson, 1993; 1997).

Deviations from a simple power-law relationship by the smallest and largest observed
fractures have been recognized in fracture populations. Sampling biases have been used to
explain these deviations (Baechef and Lanney, 1978; Laslett, 1982; Barton and Zoback, 1992;
Hatton et al., 1994, Pickering et al., 1995). On the other hand, Marrett (1996) shows how
sampling topology affects observed fracture-attribute scaling giving an alternative explanation
for these deviations. |

The influence of rock heterogeneities on fault scaling has been studied by Wojtal (1994,
1996) and could explain sdme of the "anomalies" observed in open-mode fracture size
distributions. Rock masses are complex materials showing a high degree of heterogeneity at

certain scales. For example, clastic sedimentary sequences are most obviously heterogeneous at
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the scale of the beds (macroscopic scale) and also at the grain scale (microscopic scale). This
report focuses on the influence of these heterogeneities on size distributions of fractures and
explores the possibilities of using microfracture data to characterize the macrofractures.

By definition, microfractures are only visible usihg magnification devices (Laubach, 1997),
in contrast to macrofractures, which are visible to the unaided eye. Yet within these categories,
fractures may have a wide range in size. In this study, microfractures range from 1 micron to
1 mm. Macrofractures range from 1 mm to more than 10 meters.

Structural intuition suggests that accurate extrapolation of fracture characteristics over many
orders of magnitude in size from the microscale to the macroscale is fraught with potential
danger. For example, many different types of mechanical discontinuities, such as grain
boundaries and bed boundaries, are known to exist in sedimentary rocks. It is widely recognized-
that such boundaries can affect the propagation of fractures. Yet the orientation of micron-scale
fractures is consistent with the orientation of meter-scale fractures in some sandstones (Laubach,
1997), suggesting that under some circumstances the extrapolation of some fracture attributes is
justified. Thus this study attempts the first systematic, rigorous investigation of extrapolation of
mMicroscopic data to predict macroscopic scale fracture-size distributions in hydrocarbon
reservoir rocks and their outcrop analogs.

Gas-producing sandstones of the Mesaverde Group in the San Juan Basin, New Mexico,
were selected for the study. These rocks were chosen based on the large amount of high quality
subsurface information available and the high quality of the outcrops. Microfractures in these
sandstones can be revealed in an unprecedented manner using the cathodoluminescence detector
attached to a Scanning Electron Microscope (SEM-CL). Quartz-filled microfractures in
sandstones are almost invisible using optical microscopy but slight differences of the
luminescence of quartz grains and quartz fill in fractures can be detected under the SEM-CL.,

allowing the collection of microfracture data in these rocks (Laubach and Milliken, 1996).
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Hypotheses to be Tested and Approach Taken

The present study tests the following hypotheses:

1. Can microfracture information be used to predict some aspects of macrofracture
characteristics such as: orientation, size and frequency?

2.  Are fracture geometrical parameters, like fracture length and fracture aperture, fractal
systems that follow power laws of the form: N=Sab™; where, N is the cumulative
number of fractures, S is the size of the sampled space, b is the fracture size (fracture
aperture in this case), and a and ¢ are scaling constants?

3. Are the boundaries of the mechanical layer in which fractures develop important limits
on fracture growth and do they have an effect on the scaling relationships of fractures
and fluid flow through them? '

A strategy was established to test the above hypotheses:

1.- Macrofractures were described from large outcrops and from core.

2. Microfractures were described in core and outcrop samples using petrographic
microscope and SEM-CL. | s

3. Statistical analysis and comparison of microscopic scale and macroscopic scale data

were carried out.

Implications and Importance

The use of microfracture data to predict macrofracture characteristics mﬁy have a major
impact on fractured systems characterization with applications to the exploration and
exploitation of oil, gas, minerals and water resources. In the subsurface, cores are the only direct
source of geological macrofracture data and cores are usually scarce, not oriented and represent a
very limited volume of the fractured rock.

Geophysical logs are at present the best way to indirectly detect macrofractures in the

subsurface. Image logs provide information on the fractures intersecting the walls of the borehole
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but only macrofractures can be detected with this tool and there is potential for misinterpretation.
Extrapolations from the well bore to the rest of the rock volume are limited by incomplete
sampling. Additionally, the scarcity of macrofractures in the subsurface puts severe limitations to
the use of image logs in vertical boreholes for the characterization of fracture systems. If size-
distributions vary vertically, the limited sampling that can be achieved in vertical wells is
inadequate for assessing fracture-size distributions.

As this study helps demonstrate, abundant microfracture data can be collected from small
areas (few mm?) of a thin section under the SEM-CL in many siliciclastic rocks. If reliable
predictions of macrofracture characteristics are possible based on microscopic data collected
rapidly from small areas, small oriented samples will augment the information about the
macrofractures in terms of orientation, size distribution and frequency. Beds with different
composition, diagenesis or thickness often show different fracture frequencies and even different
fracture orientations. The prediction of which beds are more likely to have large fractures and -
what orientations and spatial frequencies those fractures have, carries important economic
implications and adds profound insight on the basic physic and mechanic principles of how

fractures develop in buried rocks.
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REGIONAL SETTING

The objectives of this study require the selection of fractured sedimentary units that provide
high quality microfracture and macrofracture data from surface and subsurface. Sandstones of
the Mesaverde Group can be found in the subsurface and in a rim of outcrops around the San
Juan basin of New Mexico and Colorado (Fig. 1). Surface data were collected from sandstone
pavements in the Ute Mountain Reservation to the northwest of Farmington, New Mexico. In
this study a “pavement” is defined as a bedding-plane paraliel exposure that is largely devoid of
vegetation and other surface cover. Subsurface data were obtained from oriented cores of three
wells in the Blanco-Mesaverde gas field, approximately 50 kilometers away from the outcrops,

in the northern part of the basin.

San Juan Basin

The San Juan basin is a structural basin in the Four Corners area of the Colorado Plateau
containing more than 5000 m of sedimentary rocks. The area may have been a depocenter as
early as Early Paleozoic and experienced significant paleogeographic changes which have been
recorded in the strata filling the basin. The deepest part of the basin is located towards its
northern and northeastern margin. The structural contours of the basin at Cretaceous and younger
levels indicate that strata uniformly dip toward the deepest part of the basin and are remarkably
unaffected by folds or faults. The borders of the basin show more complex structural features
like the Hogback monocline, Nacimiento uplift and Archuleta uplift. Triassic and Jurassic
continental sediments were the first sediments to fill the basin. A major Cretaceous transgressive
cycle composed of several minor advances and retreats of the coast line across the basin
followed the continental deposition. During this time the Mesaverde Group, a thick clastic

wedge, was deposited (Reynolds, 1994).
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The end of subsidence and sedimentation of this second stage in the evolution of the San
Juan basin is associated with the Laramide orogeny that affected the western part of North
America from the Late Cretaceous to the Eocene (several authors in Schmidt et al., 1993).
Finally, continental deposits were deposited during the Tertiary (Baltz, 1962; Peterson et al.,
1965).

Fracture Systems in the San Juan Basin

The fracture systems of the San Juan basin have been studied by a number of authors
(Kelley and Clinton, 1960; Gorham et al., 1979; Condon, 1988, 1989; Laubach and Tremain,
1991; Dart, 1992; Hﬁffman and Condon, 1993). These studies primarily focused on description
of the fracture systems in parts of the basin and in a variety of stratigraphic units. Several
hypotheses have been proposed to explain these fracture systems in the context of the evolution

of the Colorado Plateau (Gorham et al., 1972).

Mesaverde Group

According to Molenaar and Baird (1991), the Mesaverde Group can be subdivided in three units
which, from bottom to top, are: The Point Lookout Formation (40-100 m), the Menefee
Formation (50-650 m) and the Cliff House Formation (15-75 m). The Mesaverde Group is Late
Cretaceous in age and it is underlain by the Mancos Shale and overlain by the Lewis Shale, also
Cretaceous in age and laterally equivalent with the Mesaverde Group in part (Baltz, 1962;
Molenaar and Baird, 1991). The Mesaverde Group represents a major regressive-transgressive
cycle in the filling history of the basin from a sediment source located to the south (Fig. 2). In
general terms, the Point Lookout Formation is a seaward-stepping set of nearshore sandstones,
the Menefee Formation is a coastal plain assemblage and the Cliff House Formation is a set of

landward-stepping nearshore sandstones (Reynolds, 1994; Pasternack, 1995).
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Blanco-Mesaverde Gas Field

The Blanco-Mesaverde Gas Fieid isa giant hydrodynamically and stratigraphically controlled
hydrocarbon trap (Berry, 1959; Rice, 1983). The production of gas comes from different
sandstone units of the Mesaverde Group. The accumulation is controlled by the presence of
nearshore sandstones in a belt that runs in northwest-southeast direction for about 120 km and
with a width of about 55 km (Pasternack, 1995).

The sandstones of the Mesaverde Group are characterized‘ in the subsurface by low porosity,
on the order of 0 to 5% (Weir, 1996). The reservoirs have long been recognized as fractured
reservoirs (Hollenshead and Pritchard, 1961). Fractures represent a minor contribution to the
storage capacity of the system but they provide the dominant flow conduits to economically
produce the reservoir (Weir, 1996). Maps comparing sandstone thickness with the locations of
the most productive wells indicate that these wells do not necessarily occur in areas of thickw
sandstones as would be expected if matrix permeability were dominant (Pasternack, 1995). Most
of the production is attributed to less than two percent of all wells. Operators speculate that these
wells intercepted areas of localized permeability enhancement due to the presence of imporfé.nt
fractures (“cracks”). “Crack” wells can produce at rates more than an order of magnitude above

an average well (Pasternack, 1995).

Mesaverde Outcrops in Northwestern New Mexico

A significant geomorphic feature delineating the border of the San Juan basin is the
Hogback monocline, an alignment of cuestas controlled by Cretaceous sandstones of the
Mesaverde Group and adjacent units. The mesas and flat-irons of the Hogback in northwestern
New Mexico develop large pavements of sandstone that allow the study of steeply dipping
macrofractures in cross section and plan view. Westwater pavement and Cottonwood pavement
(Fig. 1) were identified for analyses of the macro- and microscopic fracture systems in these

sandstone pavements because of their large size and exceptional clean exposure.
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OBSERVATION METHODS

Fracture systems of Mesaverde Group sandstones were characterized both macroscopically
and microscopically. The source of subsurface fracture data was three oriented cores taken in
producing intervals within the Mesaverde Group in the Blanco-Mesaverde gas field. Surface
fracture data were collected on outcrops of the same units that were analyzed in the subsurface.
The description of thé fracture systems included measurement of geometrical and cement
characteristics of the fractures as well as observation of cross-cutting relationships between
different fracture sets. Fracture-size distributions and fracture orientations obtained from

microfractures were compared with those obtained from macrofractures.

Macroscopic Data from Cores

The three cores used in this study (Tables 1 and 2) were each oriented using differént
techniques. The core from the Riddle D LS 4A well was the only one oriented before this study
was initiated. The method used to orient this core was unconventional. The borehole was drilled
at approximately 45° relative to bedding along an azimuth of 90°. The elliptical section of the
stratification in the core was used to orient the core, considering that seismic reflection data show
that the stratification is nearly horizontal.

The Sunray H Com #6 core was oriented using the so called “paleomagnetic” method.
Three core segments containing natural macrofractures were selected for magnetic orientation
(Table 3). To orient these cores, core plugs were subjected to progressive alternating field
. demagnetization in 10 steps from 10 to 400 Oersteds (1 to 40 millitesla). The magnetic
remanence was measured with a superconducting magnetometer and the results were analyzed
by the principal component method (Gose, 1996). The magnetic field detected is presumed to be

recent and then the core can be referred to magnetic north.
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Core segments containing macrofractures from the San Juan 32-9 well were oriented using
image logs (Electric Micro Imager, EMI, Halliburton, 1995) Image logs are high-resolution
microresistivity tools that provide an image of the walls of the wellbore from which features like
bedding planes, sedimentary structures and fractures can be interpreted. These logs and the cores
of the San Juan 32-9 well were correlated using sedimentary and structural features recognizable
both in the core and on the image logs. The mismatch in depth was corrected for the core and

true north was marked in the oriented core segments.

Well Core Length Number of Thin Method of
(m) Sections Orientation
Riddle D LS 4A 17.5 35 Inclined Well
Sunray H Com #6 13.1 16 Magnetic
San Juan 32-9 56.8 14 Image Log

Table 1. Summary of subsurface data sources used in the study.

Well Formation Depths of cored interval
(m)
Riddle D LS 4A Cliff House 1502-1537
1472-1480
Sunray H Comp 6 Cliff House 1496-1527
CIiff House _ 1692-1716
San Juan 32-9 . Menefee -~ 1783-1815
" Point Lookout 1814-1840

Table 2. Depth intervals and formations analyzed in wells.
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Sample Group # Sample number Orentation of predefined line in
core plug

5000.3

1 5000.4 1.5°+13.7° W
5000.6
5000.7
4986.7

2 4986.8 30.9°£19.7° B
4986.9
4984.0 Not reliable

3 4984.5 (Possible drilling induced
4984.7 remagnetization)

Table 3. Summary of magnetic analyses for the Sunray H Com #6 well.

Once the cores were oriented, a thorough description of the macrofractures present in them
was made. The description included: depth of the upper tip of the fractures, height, aperture,
strike, dip, and type of mineral fill in the fracture, if any. Natural and drilling induced fractures
were distinguished based on the presence of cement in the fracture or distinctive drilling-induced
fracture shapes (e.g. petal-centerline configurations, Kulander et al., 1990). The depth of
lithologic contacts and the depth and type of samples taken from the core were also recorded.

Appendix A includes tables with the fracture data collected from the cores.

Macroscopic Data from Outcrops

The exposure of fracture systems in sandstone pavements of the Mesaverde Group allowed
the collection of three-dimensional data on the fracture shapes. Scattered lichen patches cover the
top of the exposed sandstone surface and limit the visibility of rn.';lcrofractures shorter than
approximately 10 cm long. On the other hand, weathering helps in the identification of the
fractures due to the difference in weathered color and resistance to erosion between the fracture

fill and the host rock.
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The selection of pavements for the study was a two-step process:

1. A study of 1:30000 scale aerial photographs provided a short list of potential study
areas. Some of these areas were initially visited to determine the potential of the
pavements for a macroscopic fracture study. Sandstone pavements appear in the air
photos as clear patches with little vegetation.

2. An aircraft survey allowed the selection of the best places for study. Even though
numerous pé\}ements exist in the region, many of them are not very extensive, are
partially covered by vegetation or have limited accessibility. Two fracture pavements

were selected for study: Westwater pavement (Fig. 3) and Cottonwood pavement

(Fig. 4).

Areas within the pavements with particularly well exposed swarms of open-mode fractures
were selected for studies of macrofracture properties. Surveys along these areas were ca.rned out
to calculate the surface area of observation (Table 4). The selection of different size observatlon
areas allowed the comparison of macrofractures larger and shorter than the thickness of the

mechanical layer (Corbett et al., 1987).

Pavements Formation Beddmo Area (m”) Samples
Dip (°) Small Large
Westwater Point Lookout 5 2000 13400 17
‘| Cottonwood - | Cliff House 10 200 2050 18

Table 4. Summary of outcrop pavements used in the study.
After highlighting and numbering the fractures using chalk, schematic maps of the fracture

swarms were prepared and descriptions of the fracture properties were made (Fig. 5). Appendix

B contains the data collected in the field, organized in tables.

117



Microscopic Data

Microfracture data were collected from both subsurface and surface samples. Based on
observations in other formations (Laubach, 1997), I assumed that most microfractures related to
macrofractures are oriented at high angles with the stratification. Thus, thin sections were cut
from the samples in an orientation parallel to the stratification to speed collection of
microfracture strike data. Standard petrographic analysis of the sandstones was carried out to
determine texture, composition and paragenetic sequence of cements (Appendix C).

The thin sections were polished with aluminum and covered with a carbon coating (dark
blue degree) for their study under the SEM-CL. The methodology to image microfractures
included random shots throughout the thin section, systematic transects in predefined
orientations Or mosaics covering certain areas. Standard operating procedures are described by
Milliken (1994). Magnification values were set on the order of 200x for general microfractire
detection and 500x for close-ups.

Fracture length, maximum mechanical aperture and fracture strike were determined for each
microfracture in the photographs (Appendix D). The Energy Dispersive x-ray Spectrum device
(EDS) allowed the determination of the composition of microfracture fill. .

Microfractures were classified using Laubach’s (1997) microfracture classification, which
distinguishes two categories of postdepositional fractures and transported fractures inherited
from the sediment source area (éat;egories I, IT and II). A grading scheme derived from
Laubach’s (1997) classification assigned a ranking of microfractures based on the relationships
of microfractures with grains, cement, and other microfractures. This ranking refers to the
likelihood (suitability) that a2 microfracture is a product of the same processes that generated the
macrofractures (see chapter on fracture orientation). Microfracture suitability is a genetic
alternative to the term “reliability” in Laubach’s (1997) purely descriptive classification, where

“reliability” merely refers to the certainty with which microfractures can be documented to post-
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date deposition of grains based on observed crosscutting relationships between fractures and

cement.

Measurement of Fracture Orientation

The attitude of most macrofractures is nearly vertical, so only macrofracture strike was
recorded in most cases. Occasionally, individual fractures change in orientation along strike; in
these cases, the visually estimated average orientation of the trace was recorded. Rose diagrams
of fracture strike were made to analyze the macrofracture orientation (see chapter on fracture
orientation).

Microfracture orientations were measured directly from the photomicrographs using a
protractor. Similarly, only the strike of the microfractures were recorded based on U-stage
measurements in other formations which show that microfractures are also nearly vertical in’
most cases (Laubach, 1997). Rose diagrams for the microfractures were also prepared. Diagf;clms

weighted microfracture data based on microfracture’s suitability to predict macrofracture strike.

Measurement of Fracture Length

From core, macrofracture lengths in plan view cannot be obtained in most cases due to
fracture lengths exceeding the diameter of the core. Fracture height (at least a minimum value)
can be obtained in most cases. For the Riddle D LS 4A well, all the height values obtained are
minimums because the core is inclined with respect to the stratification and the fractures are
perpendicular to the stratification.

In outcrop, fracture length measurement is complicated by the challenge of defining what
constitutes an individual fracture where multiple fracture strands are present. Some apparently
long fractures are likely composed of shorter fractures that have become interconnected through
fracture growth. Rock mechanics theory and experiments predict the way fractures can

- interconnect under different driving stress regimes (Olson, 1993), but no specific criteria have
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been proposed to uhiquely determine the lengths of individual fracture segments where they have
become interconnected. Fractures frequently grow through the linkage of small fractures.
Mechanics predicts that in the linkage process some segments of the original fractures are
abandoned or they grow at slower rates than the interconnected segments.

Figure 6 shows the different types of fracture termination observed on the pavements. These
different morphologies can be separated in three basic groups: isolated fractures (not connected),
fractures connected tb another fracture and having one isolated tip, and fractures connected with
other fractures in more than one place.

I Isolated fracture tips are separate from any other fracture.

II. Abrupt connections indicate that branch b terminates against or branches from

throughgoing segment a.
II. Hooked connections indicate that segment b has propagated towards segment a and
terminated against it (Olson, 1993).

IV. Bridge connections indicate that segment b has propagated towards segments a and ¢

and terminated against both.

V. Double-hooked terminations indicate the propagation and termination of en echelon

fractures toward each other (Olson, 1993).

Although linkage is a significant mechanism of fracture growth, distinguishing between
linked and unlinked fractures is commonly difficult. One important reason for this is that in
many cases the recognition of a fracture connection depends on the observation scale. This is
evident in fracture linkage classifications such as Laubach (1992) where “constricted”
connections shift to either “connected” or “dead end” as the connection is viewed at greater
magnification. Ideally, detailed observations would reveal the variation of fracture aperture in the
vicinity of possible fracture connections and provide a basis for detecting the linkage of
fractures. However, in most cases the apertures of macrofractures, especially at connection

points, cannot be readily discerned in the field. None of these approaches addresses the problem
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of mineral fill, which may preferentially clog the narrow connections between fracture segments.
In such cases geometric linkage is not equivalent to linkage of fracture porosity.

The best approach to measuring the length of a fracture is to use criteria that uniquely
identify fracture tips. That is, meaningful determination of fracture length hinges on the
distinction between linked and unlinked fractures. Once the tips of a fracture are identified,
depending on the evaluation of their linkage with other fractures, measuring its length is trivial.
Below are the set of criteria used in this study, in descending order of applicability:

1. At the branch point of three connected fracture segments, the two segments having the
most similar apertures are a throughgoing fracture and the third segment represents a
different fracture.

2. If the material filling two interconnected fracture segments is continuous, then they are
a single fracture. -

3. If a connection between fracture segments is not discernible with the naked eye at a
distance of approximately 1.5 m above a pavement surface, then the fracture segments
are considered to be elements of a single fracture.

These criteria for defining macrofracture tips were also applied to mi;rofractures, although
significantly less fracture connectivity was observed at the microscopic scale. The recognition of
microfracture linkage characteristics is influenced by the difficulties imaging the complete léngth
of the microfractures. For example, some microfractures may be the same as grain boundaries,
they can terminate against pores or they can simply be difficult to identify within the cement.

Rigorous fracture-length data analysis evaluated the type of distribution that best fits the
observed population. The possible causes of artifacts in the fracture size distributions were also
analyzed (see chapter on fracture size distributions). For example, Microfractures that continue
past the borders of the. microphotographs were also measured and their lengths correspond to the
portions present inside the photographs. This procedure introduces an error that most strongly
affects the longest microfractures, and consequently produces a systematic effect in the fracture

length distribution.
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In addition to two-dimensional sampling of fracture lengths, two-dimensional fracture
heights were collected along Westwater Springs canyon to analyze fracture-height distribution
and compare it with the fracture length data obtained from the pavements. This procedure allows
to study the geometry of the fracture surfaces and the influence of fracture geometry on fracture-
size distributions. Fracture length data were also collected along scanlines on Westwater
pavement. The purpose of the one-dimensional data set was to test the approach of estimating
two-dimensional fracture distributions using one-dimensional data (Marrett, 1996).

In order to study the effect of the mechanical layer thickness on fracture size distributions,
fracture lengths smaller and larger than the thickness of the mechanical layer were studied on the
Westwater and Cottonwood pavements. These fracture populations were analyzed separately
using statistical methods. Error analysis allowed the selection of the best mathematical model for
the fracture-size distributions observed allowing to compare the parameters of the fracture-size

distributions of fractures larger and smaller than the mechanical-bed thickness.

Measurement of Fracture Apertures

Thé measurement of macrofracture apertures was done using feeler gauges, rulers and
magnifiers and includes the width of any cementing material filling the fractures. Fracture
aperture measurements correspond to the maximum mechanical aperture of the fracture. This
value is assumed to be recorded by the material filling the space created during fracture
formation and growth. The mechanical aperture is assumed to be a paleohydraulic aperture,
which is the space in the fracture that allowed fluid flow at a certain time in the past. In cases
where synkinematic fill occurs in fractures, marked by crack-seal texture, the hydraulic aperture
at any point in time will be smaller than the final mechanical aperture.

Broken fractures, ones with walls no longer face to face in their original configuration and
physically separated in non-continuous pieces, are abundant in cores. In these cases no reliable
estimate of the fracture aperture can be obtained. Only a minimum fracture aperture can be

estimated from the thickness of the remaining cement on the broken surfaces of such a fracture.
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For these cores, the possibilities for obtaining meaningful fracture aperture distributions are
limited.

Fracture apertures were also difficult to measure in the field because the fracture aperture,
filled with quartz and carbonate, is usually surrounded by a fracture skin of carbonate-cemented
sand grains in which the exact location of the walls of the original fracture is unclear even under
magnification. In order to obtain better values for this fracture property, macrofractures apertures
were measured in thin section using the petrographic microscope.

Microfracture aperture data were measured using optical or SEM-CL photomicrographs.:
These aperture values correspond to the maximum distinguishable apertures measured |
perpendicular to the fracture walls. Widths are exaggerated if fractures are not truly

perpendicular to the stratification as assumed.

Other Data Collected

The type of connection for every fracture termination was recorded in the field, and where
the termination was a branch point, the acute angle of connection was measured. The thickness
of the mechanical layer in which the fractures are developed was also recorded. The definition of
this Jayer depends on the stratigraphic consistency of upper and lower fracture tips within a bed
or group of beds (Corbett et al., 1987; Helgeson and Aydin, 1991; Gross, 1993). The differences
in mechanical properties of adjacent materials in a stratified sequence at the time when fractures
formed controlled the vertical extent of the mechanical layer (Laubach et al., 1995). An estimate
of the thickness of the mechanical layer for both pavements was determined by studying the
fracture system in cross section along the canyons (Figs. 7 and 8). Often, significant changes in
fracture frequency help determine the limits of the mechanical layer. These differences in
fracture frequency can be controlled by compositional or depositional facies variations,
authigenic cement distribution, porosity or a combination of these and other factors. In some
cases the mechanical differences of the layers also correlate with differences in their resistance to

weathering.
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FRACTURE DIAGENESIS

Rock Texture and Mineralogy

Appendix C and Figure 9 show the grain size, sorting and predominant grain contacts for
subsurface and outcrop samples used in this study. The textufal characterization of the
sandstones is based on 100 counts of grains per sample. The petrographic analysis is based on
400 point counts per sample. The sandstones analyzed are medium to very fine. Sandstones from
the Cliff House Formation show larger average grain sizeé in outcrop and in the Sunray H Com
#6 well than in the Riddle well. This result agrees with previous interpretations (Molenaar and -
Baird, 1991) of environments of deposition in terms of the relative position of these areas and the
direction of transport of sediments at the time of deposition. Similarly, the average grain size of
the Point Lookout Formation sandstones in outcrop is larger than in the San Juan 32-9 well,'
located basinward of the outcrops. The degree of sorting of the sandstones also diminishes
towards the paleodepocenter of the basin.

The degree of compaction is low, as indicated by the predominance of point contacts
between the grains, except in the Sunray H Com #6 well where the effects of early compaction
and grain-to-grain interpenetration are more significant (Fig. 9)'. Furthermore, the core from this
well shows macroscopic bed-parallel stylolites that also indicate a greater degree of compaction.

According to Folk's (1980) classification, the sandstones are sublithareﬁites and litharenites
(Appendix C, Fig. 10). Dissolution of feldspar grains and/or their replacement by carbonate
cement suggests that the original rock was more feldspatic, but probably still within the
litharenite-sublitharenite clans. The rock fragments present include chert, argillaceous rock,
detrital carbonates and siltstones.

The subsurface rocks have low permeability, in general less than 1 milidarcy, Weir (1996)

and porosities are in the order of 0 to 5% (Appendix C, Fig. 11, Weir, 1996). The samples from
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outcrops of the same formations are more porous (3-15%, Appendix C, Fig. 11). The porosity is
mainly primary intergranular porosity (2-10%, Fig. 12) and secondary porosity due to dissolution
of feldspar grains (0-2%, Fig. 13).

The volume of cement is greater in the sandstone samples from the subsurface than in
samples from the outcrops (Appendix C, Fig. 11). In both outcrop and subsurface samples,
quartz is the dominant cement, but in some samples carbonate cement is volumetrically more
important (Appendix C, Fig. 14). Vertical and lateral variations in the volume of cements from
subsurface and surfacé samples are complex and require further research. In subsurface samples
from the Point Lookout Formation (San Juan 32-9 well), carbonate cements are volumetrically
more important (24 to 54 percent of the total volume of cement in the sandstones) than quartz
cements (8 to 40 percent) whereas in samples from outcrops of the same formation (Westwater
pavement) quartz cement dominates (28 to 86 percent of the total volume of cement). Carbonate
cement dominates over quartz cement in outcrop sandstones of the Cliff House Formation
(Cottonwood pavement, 38 to 62 percent of the total volume of cement) whereas in the Sun}ay' H
Com #6 well, carbonate cement is less abundant (O to 48 percent) than quartz (18 to 70 per&ant)

but in the Riddle D LS 4A well, carbonate cement dominates over quartz in some Samplesf

Paragenetic Sequence

Figure 15 shows the paragenetic sequence. Diagenetic phases shown in this figure have a
greater or lesser volume in samples from the different units analyzed. Variations also exist
between surface and subsurface samples of the same units, but the sequence of events is the same
in both. Recent dissolution is most pervasive in outcrop samples.

Carbonate cement, probably ferroan-dolomite (CORELAB, 1996), occurs around carbonate
fragments, including reworked dolomite grains. This cement also surrounds some quartz grains
that do not show quartz overgrowths, suggesting that this cement precipitated before quartz

(Fig. 16A). Loose grain packing in areas with ferroan-dolomite cement also suggests early
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precipitation of this cement (Fig 16B). Sabins (1962) interpreted Mesaverde Group sandstones
having similar ferroan-dolomite cement to have been cemented, in the near surface environment.
The lack of evidence for significant grain-to-grain interpenetration suggests that authigenic
quartz also precipitated relatively early in the diagenetichistory of these rocks. Shallow-depth
quartz cements are d_iscussed in McBride (1989). SEM-CL images show that the cements
forming quartz overgrowths and the cement filling post-depositional fractures have the same
luminescence behavior indicating that microfracturing was partially synchronous with quartz
overgrowths when there still was significant porosity in the sandstones (Fig. 17). Additionally,
crack-seal quartz cement in macrofractures of the Riddle D LS 4A confirm this observation (see
chapter on fracture morphology and connectivity). This timing relationship may explain in part
the scarcity of transgranular fractures observed under the SEM-CL device.

Carbonate cement fills remnant primary porosity left by quartz overgrowths, suggesting it
precipitated later. Fractures also show this timing relationship, with carbonate filling spaces
between quartz overgrowth lined fracture walls (Fig. 18). Carbonate cementation was
accompanied by replacement of feldspar grains. Carbonate cement also filled the space left by
dissolved feldspars. Feldspar dissolution was therefore probably earlier and partially
contemporaneous with carbonate cement and replacement. Early migration of gas to the fractures
could have prevented carbonate cement in fractures of the Riddle D LS 4A and Sunray H Com
#6 wells. Gas generation and migration probably occurred during and after the maximum burial
of these rocks (Bond, 1984). Clay cements precipitated in remaining pore spaces indicating their

more recent occurrence (Fig. 19).

Fracture Cement Characterization

The cores from the three wells studied show differences in macrofracture cement volume
and mineralogy. In the Riddle D LS #4 and Sunray H COM #6 cores the surfaces of most
macrofractures lack cement visible to the naked eye. The natural origin of these fractures was

confirmed using the petrographic microscope by the recognition of euhedral quartz overgrowths
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in some areas of the fracture space (Fig. 20). In the San Juan 32-9 well the cement filling the
natural macrofractures is mostly sparry carbonate (Fig. 21).

The samples from macrofractures in outcrops of the Mesaverde Group sandstones show
fractures partially lined with quartz and subsequently sealed by carbonate cement (Fig. 22).
Carbonate cement filling the fractures forms a halo around the fracture which fills adjacent
remnant primary porosity in the matrix of these rocks. This timing relationship contrasts with
subsurface conditions in the surroundings of the wells Riddle D LS 4A and Sunray H Com #6,
where carbonate cement could have been inhibited by the presence of gas in the fracture system.
Virtually all of the microfractures detected under the SEM-CL are filled with quartz. The quartz
filling the fractures is generally continuous with the cement surrounding grains. SEM-CL high
magnification photomicrographs of fracture tips (500x, 750x) at grain borders (Reed and
Laubach, 1996) show evidence of quartz cement nucleation on microfracture surfaces and -
subsequent growth into the intergranular porosity. This supports the idea that, at least in part;
quartz overgrowths start at narrow constrictions between or within grains (McBride, 1989).

From a structural perspective, all cements can be categorized according to when they -
precipitated relative to fracture opening (Laubach, 1988; Laubach, 1997). Prekinematic cements
are formed before fracturing occurs, filling matrix porosity but not fracture space (which does
not exist yet). Synkinematic cements are synchronous with fracture formation and propagation.
They usually show crack-seal features within fractures and'ﬁbrous crystals rooted in both
fracture walls. Crack-seal struct{lré results from repeated cracking and mineral precipitation in
veins (Ramsay and Huber, 1983). Finally, postkinematic cements fill fractures after propagation
ceased; they usually show spatially continuous and homogeneous fracture cements. -

Prekinematic cements cannot occlude fractures, but result in reduced storage capacity in the
reservoir. Postkinematic cements reduce fracture permeability and occlude matrix porosity,
decreasing the potential of the reservoir (Laubach et al., 1995). Synkinematic cements can give
the same results as postkinematic cements if the cement is pervasive, but frequently this type of

cement yields only partially filled fracture space. The presence of mineral bridges in partially
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filled fractures also prevents fracture closure and preserves fracture permeability during the
production history of fractured reservoirs (Marrett and Laubach, 1997).

Differences in fracture opéning agd fracture cement timing can be recognized in samples
from surface and subsurface in this study (Fig. 23). Since the thin sections were not
systematically stained for carbonate identification, the classification of the samples according to
Laubach et al. (1995) for cement precipitation/fracture formation timing was approached in a
qualitative way. Subsurface fracture cements from the Riddle D LS #4A and Sunray H COM #6
wells are predominantly prekinematic. The percentage of the macrofracture space occupied by
synkinematic or postkinematic cements in these wells is minimal. Hydrocarbon migration to
these fractures soon after their formation possibly prevented further cement precipitation. The
San Juan 32-9 well also shows prekinematic cement, but synkinematic quartz overgrowths and
postkinematic carbonate cement are present in important volumes in this well. These
observations indicate that fracture/cement timing relationships in the Riddle D LS #4A and
Sunray H Com #6 wells were more conducive to preservation of fracture permeability than in the
San Juan 32-9 well, resulting in open macrofractures in the Riddle D LS #4A and Sunray H Com
#6 wells and mostly sealed macrofractures in the San Juan 32-9 well.

The macrofractures in samples from outcrops are dominantly filled by postkinematic
cements. Most of the fracturing in these rocks occurred prior to porosity occlusion by cemeﬁts.
This timing relationship did not favor the preservation of fracture porosity and permeability in
these rocks. A seéond possibility is that the cement filling these fractures is associated to surface
processes. In this casé, the cement filling these fractures is not a proxy of the cement filling the
fractures in the subsurface of the same area.

Most of the microfractures in all samples are sealed by synkinematic cement. Most ‘
microfracture cements were contemporaneous with the quartz ovc;,rgrowth (95 percent) and fewer
(5 percent) are contemporaneous with the later carbonate precipitation. Large transgranular
fractures show quartz and carbonate cements. Quartz cement forms bridges sealing the space

between split quartz grains and carbonate cement fills the remnant space (Fig. 24). The
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differences in the degree of occlusion of the microfractures and macrofractures in the samples
analyzed in this study suggests that microfracture cement volume is not a simple proxy of the
degree of occlusion of the macrofractures in the same units. These results also suggest that
microfractures tend to be more readily filled by cement than macrofractures, probably because of

their reduced size, impurity-free fracture walls and greater surface area to volume ratios.
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FRACTURE MORPHOLOGY AND CONNECTIVITY
Macrofracture morphology

Three distinct natural fracture systems were identified in outcrops of the Mesaverde Group:
shear-mode conjugate fractures (faults, Fig. 25), open-mode sealed fractures (veins, Fig. 26) and
surface-related fractures (joints and polygonal cracks, Fig. 27). These fracture systems can be
separated in relative time of formation and they probably occurred under distinct tectonic
conditions related to the evolution of the San Juan basin (Fig. 28).

Shear-mode fractures are commonly rectilinear and crosscut each other showing offsets,
both sinistral and dextral, and forming acute angles of 70 to 25 degrees in conjugate patterns. The
conjugate shear-mode fracture system is also characterized by the presence of gouge. The degree
of mechanical connectivity is highest in this fracture system. Shear fractures were recognized
only in outcrops and not in cores.

Open-mode quartz-carbonate sealed fractures are typically grouped in swarms. They show
more sinuous traces than the shear-mode fractures. This set crosscuts and is younger than the
shear-mode fractures. No shear offsets were identified in plan or cross-sectional view of this
fracture set in the field. Hooked connections between fractures suggest open-mode propagation
under nearly isotropic remote stresses (Olson, 1993).

Long straight joints, probably resulting from surface processes, are also present (Fig. 27A).
They are most abundant near canyons cut through the outcrops, suggesting an association with
unconfinement and gravitational effects due to topographic breaks. These fractures are typically
rectilinear, do not contain minerals, and cross-cut the open-mode sealed fractures without
offsetting them laterally. Polygonal fractures are also present, especially in the slopes of gullies
(Fig 27B). Their formation might be related to weathering, possibly to repeated seasonal or

diurnal changes in temperature helped by the action of ice and water.
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Natural macrofractures in core were more difficult to identify, in part due to the lack of
obvious mineralization on the surfaces of most fractures, but also due to the limited amount of
material available for study. Natural fractures in the Riddle D LS 4A well typically show smooth
surfaces, usually covered with dust from the drilling process. These fractures intersect the
laminations or bedding surfaces at high angle (Fig. 29). On the other hand, induced fracture
surfaces are generally rougher and commonly are parallel or inclined to bedding planes.

In the core of the Sunray H COM #6 well, natural fractures are subvertical and show en
echelon arrangement (Fig 30). The cores from the San Juan 32-9 well show natural mineral lined

fractures and common drilling-induced fractures (Fig. 31) as described by Kulander et al. (1990).

Microfracture morphology

The morphologic characteristics of the open;mode macrofractures and shear-mode
macrofractures under the petrographic microscope are distinctive (Fig. 32). Open-mode fractures
walls are covered by euhedral quartz overgrowths and/or carbonate cements. Partially filled
fractures of the San Juan 32-9, Riddlc D LS 4A and Sunray H COM #6 wells contain
synkinematic cements showing crack-seal features (Fig. 33). The shear-mode fractures exhibit
cataclastic textures with grain-size reduction and concentration of clay and opaque minerals.
Porosity is frequently reduced along these fractures. If present in the reservoir rock these
fractures could act as barriers to fluid flow (e.g. Antonellini and Aydin, 1995) but additional data
would be required to test this hypothesis.

The analysis of microfracture morphology in sandstones has improved due to the capability
of imaging quartz-filled microfractures under the SEM-CL (Laubach and Milliken, 1996).'
Figure 34 shows a comparison of a fractured quartz grain observed under the petrographic -
microscope and under the SEM-CL. In the petrographic image the mineralized fractureé present
in the grain are barely suggested by the presence of fluid-inclusion planes. In the SEM-CL |

image, the fractures are clearly displayed showing details of their morphology, orientation,

connection and relationships with the surrounding cement. Additionally, induced fractures
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produced during the making of the thin section, which dominate in the petrographic image, can
be identified by comparison with the SEM-CL image.

Under the SEM-CL the microfracture morphologies show a high degree of variability
(Fig. 35). Microfracture walls can be rectilinear, curved, wavy, diffuse or crooked. They can be
contained within the limits of a single grain (intragranular), cut the cement or grains and cement
(transcement) or cut several grains (transgranular). They can also be arranged in geometric
patterns like: orthogo.nél, en echelon, parallel, anastomosing, conjugate, radial. Fracture apertures
can be relatively constant or variable along the fractures, showing elliptical, sigmoidal or wedge
geometry.

Several geologic processes can explain the presence of microfractures in sandstones but
only some of these processes produce macrofractures. Laubach (1997) provides a comprehensive
discussion on microfracture morphology and origin. Some microfractures are present in grains
previous to deposition (inherited). Other microfractures are generated during compaction and do
not have macroscopic equivalents. Another group of microfractures are associated with
postdepositional tectonic processes that also produce macrofractures. This last group of
microfractures (tectonic microfractures) are the most significant in this study since they most
probably represent the microscopic expression of the macrofractures.

Morphology and cross-cutting relationships can be used to classify microfractures. inherited
microfractures usually sﬁow wavy and diffuse traces that suggest formation at high temperatures
such as in igneous, metamorphic or hydrothermal environments. These microfractures show
abrupt terminations against the surrounding cement and can be filled with a type of cement
at?sent elsewhere in the rock. These fractures are of no use for macrofracture prediction.

Some particularly brittle grains show a multitude of microfractures in crisscrossihg or radial
arrays. These microfractures have been most probably generated by stress concentration at grain
boundaries (crushed grains). The crushing of these grains might be due to either tectonic or

compaction processes. In areas distant from faults, these microfractures usually end near the
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margin of the crushed grains but they can also cut the surrounding cement. They are rarely
transgranular.

The local stress field applied at grain contacts can also promote fracture propagation at the
same time that rotation of one fracture-bounded fragment occurs. These microfractures usually
show curved traces with variable apertures, most commonly wedge shaped. Such microfractures
are not adequate for macrofracture prediction because point-loading processes do not generate
macrofractures.

Orthogonal, conjugate, en echelon and parallel fracture patterns develop under the influence
of long-term remote stress (Olson, 1993, 1997), probably associated with tectonic events or the
ambient within plate-tectonic stress field. These fractures are characterized by relatively
constant, elliptical or sigmoidal apertures. In quartz-cemented rocks the orientation of most
transgranular and transcement microfractures reflects long-term stress field that also govern the‘
strike of macrofractures. The timing of fracture formation in such rocks is episodic, and appears
to be most closely linked to a combination of decreased porosity and increased pore fluid -
pressure associated with burial and quartz precipitation (Laubach, 1988).

Transgranular and transcement microfractures can show significant yariations in orientation
along their traces due to the heterogeneity of sandstones at the microscopic scale but, as they
grow longer, they tend to maintain a regular average propagation direction which reproduces the
orientation of macrofractures. The identification of tectonic-related microfractures is the goal of

the microfracture ranking scheme adopted in this work (see chapter on fracture orientation).

Fracture Connectivity

Connectivity, or its lack, is a fundamental property of fracture systems. The quantification
of this parameter would allow comparison of the connectivity of different fracture networks and
modelling of fluid flow through fracture systems in ways that are more realistic than currently

used. The relationships between geometric fracture parameters and connectivity will help to
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quantitatively predict the degree of connectivity of fracture networks using more readily
measurable fracture parameters.

The connectivity of a fracture system has different meanings in mechanical and
hydrodynamical contexts. The mechanical connectivity of fractures focuses on the degree of
physical connection among the fractures in a network. On the other hand, in fluid flow
applications, some fractures can be physically connected to the network but isolated in the sense
that they do not contribute to the flow (e.g. mineral filled fractures).

The hydrodynamic connectivity of fractures is affected by physical and chemical factors.
Physical factors include: fracture density, number of fracture sets in the network, variability of
orientation shown by fractures in a set, and fracture size (especially fracture length). Chemical
factors include cementation and dissolution.

Most previous work on fracture connectivity and fluid flow derives from percolation theory
(e.g. Long and Whitherspoon, 1985). In percolation theory the objective is to determine if a
fracture network allows fluid to flow between two points. It has been proposed that natural
fracture networks attain their final geometrical configuration once the network has
interconnected such that it surpasses the percolation threshold. This hypothetical phenomenon is
explained as “stress relief” of the fracture networks (Gueguen et al., 1991; Renshaw, 1996).
However, some fracture networks have been identified that are connected beyond the percolation
threshold (Wilke et al., 1985; de Marsily, 1985), strongly suggesting that a fracture systemcan
continue growing and connecting after the hydrodynamic conductivity threshold has been
reached. In any case, percolation theory yields a positive or negative answer to the question: Is
the network connected?, but no quantification of the connectivity is obtained with this technique
(Lee and Farmer, 1993).

- Some mathematical models have been proposed to evaluate the degree of connectivity of
fracture networks. Robinson (1983) proposed a parameter to quantitatively characterize the

connectivity of fracture networks:
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Number of intersections

Connectivity =
el Number of fractures

This pafameter does not give information about the spatial arrangement of the fracture
network and does not uniquely characterize fracture systems. Figure 36 shows the connectivity
of the open-mode fracture swarms studied in the field. This diagram suggests that fractures are
better connected in fracture swarms of Westwater pavement and more poorly connected in
Cottonwood pavement. Although no indication of the geometry of the fracture connections can
be derived from these diagrams, they suggest that 20 to 30 percent of the fractures have at least
one connection.

Robinson’s (1983) approach was followed by Rouleau and Gale (1985) who proposed a
connectivity index that takes into account the orientation, size, spacing and density of the
discontinuity sets. The connectivity index can be used in randomly generated fracture networks
to perform backbone analysis using the percolation theory. Randomly generated fracture pq#ems
greatly differ from natural fracture systems and this approach is inadequate to model fluid ﬂow
in real fracture systems (Berkowitz, 1995).

La Pointe (1988) studied the effect of the fracture density on the fractal dimension of
fracture systems and used it as an empirical indicator of the degree of connectivity. This method
uses box counting as a basis to obtain the fractal dimension and it is indepcndént of the geometry
of the fracture network. However, the box counting method is inadequate to characterize the
fractal dimension of fracture-size distributions (Walsh and Watterson, 1993) and the geometry of
fracture systems obviously influences the probability of connection of fractures in the network.

Zhang et al. (1992) proposed a methodology to practically quantify the connectivity of
fracture networks based on their geometrical properties. This method characterizes the
connectivity using a connectivity ratio, similar to Robinson’s (1983), and a parameter called the

network extent. The network extent is a measure of the extent of the largest connected network
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in a fracture system. This method adds uniqueness to the calculation of connectivity but no
attention is paid to the geometry of the individual connecting fractures or their terminations.

All the calculations proposed above ignore the effects that cementation and dissolution can
have on fracture connectivity. At present, no studies of these effects on the connectivity of
fracture networks have been carried out.

In this work, an additional approach was taken to characterize connectivity. This approach
takes into accouht the amount of connections of individual fractures with other fractures and the
amount of fractures in the entire system as in Robinson’s (1983) approach, but it also takes into
account the number of fractures with two or more connections, one connection or no connections
in the system.

A single fracture can be isolated, partially connected (i.e. connected with only one other
fracture along its length) or totally connected (i.e. connected in two or more places along its
length). The proportion of connection (null, partial or total) is given by the ratio of the number of
fractures in the population that are isolated, partially connected or totally connected with respect
to the total number of fractures. In this way, a particular fracture swarm or fracture network can
be characterized by the proportion that an individual fracture in the system is isolated, partially
or totally connected. This approach is similar to Laubach’s (1992) approach but substitutes the
“Constricted” fractures by fractures with only one connection to another fracture. Fractures with
only one connection do not significantly contribute to fluid flow through the network and should
be separated from totally connected fractures. As Laubach (1992) pointed out, the
interconnectivity of fracture networks is a scale dependent parameter. This scale effect is
particularly important if we consider that small “invisible” fractures could be connecting large
fractures.

The proportioh of connection calculated for the open-mode fracture swarms studied in the
field are shown in Figure 37. These diagrams characterize the fracture swarms by their locations
within the ternary diagram and allow the comparison of their degrees of connectivity at the

macroscopic scale. Isolated fractures and partially connected fractures are the most common in
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the swarms. As a result, the total connectivity of the open-mode fractures observed in the field is
low. Geometrical information is also embedded in the graph since an indication of the way
fractures are connected complements the characterization of the connectivity.

Map traces of microfractures from samples analyzed under the SEM-CL show that most of
the microfractures are isolated. This implies that their physical connectivity is smaller than that
of the macrofractures in the same rock volume. However, some grain boundaries are almost
certainly “fractures” that we cannot readily identify.

Samples from t'he. Cliff House Formation show that most of the microfractures are
completely filled with quartz cement also indicating that their effective hydrodynamic
connectivity is low. The macrofractures instead show a greater degree of effective hydrodynamic
connectivity and proportionally lower volume of cement. For example, samples from the Point
Lookout Formation show macrofractures lined with quartz cement and subsequently filled with
carbonate cement. Almost all the microfractures in these samples are filled with quartz cement
only. These observations suggest that the hydrodynamic connectivity and the proportions of
cements filling the fractures varies with fracture size in these rocks.

An understanding of the dependence of connectivity with scale might be useful to estimate
an adequate representative elementary volume to model fluid flow through fractured rock. Most
of the flow would be controlled by the degree of connection and effective apertures of large
fluid-flow conducting fractures. Smaller fractures and pores would control fluid flow in the rock

matrix.
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FRACTURE ORIENTATION

Macrofracture information from oil and gas reservoirs is frequently scarce. Cores represent
the best source of direct geological fracture data from the subsurface. Cores provide a limited
sample of the macrofractures but microfractures are present m great abundance even in the
smallest pieces of rock (Ortega and Marrett, 1996; Marrett et al., 1997; Ortega et al., 1997,
unpublished). In this chapter we explore the possibilities of using SEM-CL observations to
record microfracture orientation in sandstones samples and predict macrofracture orientation
from them. If the microfractures were formed under the same conditions as the macrofractures,
they should show similar orientations. Tests of this hypothesis were conducted in the three
oriented cores and two outcrop locations.

If this technique produces accurate data rapidly, we can count on a relatively inexpensive
tool to predict macrofracture orientations in the subsurface without requiring direct observation
of the macrofractures themselves (Laubach, 1997). Only small samples of rock are necessary.
Oriented side wall samples have been used successfully for this purpose (Laubach and Doherty,
1997, unpublished).

Macrofracture Orientation

Macrofracture orientations for the wells in this study were obtained from oriented core and
from image logs. Macrofracture strike is preferentially north to north-northeast in the Riddle D
LS 4A and San Juan 32-9 wells. The Sunray H Com #6 has a preferential fracture strike of 60-
90° (Fig. 38). The orientation of induced fractures in the Riddle D LS 4A and San Juan 32-9
wells suggests that the current maximum horizontal stress trends north-south (Fig. 38).

Conjugate shear fractures (faults) are present in both Westwater and Cottonwood
pavements. Conjugate faults strike east and northwest suggesting that the maximum shortening

axis was oriented WNW during faulting (Fig. 38). The open-mode sealed fractures show
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constant N10—30°E- strike in both pavements. This orientation is consistent with a WNW trending
maximum principal extension qrientation and inconsistent with the orientation of the shortening
axis of the conjugate faults, indicating that the shear and extension fractures formed at different
times. Crosscutting relationships observed in the field confirm that open-mode fractures formed

after the faults.

Analysis of Microfractures for Prediction of Macrofracture Orientation

Microfracture orientations were obtained from SEM-CL photomicro-graphs taken from
oriented thin sections cut parallel to the stratification in the cores and the outcrops. The varied
morphology and possible origins of the microfractures visible with the SEM-CL were discussed
previously (see chapter on fracture morphology and Fig. 35). I developed a scheme derived from
Laubach’s (1997) classification to rank microfractures by inferred geﬁerative processes and
suitability for predicting macrofracture characteristics. The ranking assesses the likelihood that a
microfracture is a proxy for macrofractures in the same volume (Table 5)

This rank scheme assigns higher suitability to those microfractures most probably formed
after deposition of grains and most probably related to the macrofractures. This scheme is
applicable to Mesaverde Group sandstones only. Ranking of Laubach’s (1997) descriptive
microfracture types could vary for other sandstone units. |

High suitability microfractures are preferred for orientation prediction because we can
assume that they formed under the same remote stress conditions as the macrofractures. In the
rank scheme of Table 5 microfractures with high suitability (1) are partially equivalent to
microfracture types la+ and Ia in Laubach’s (1997) classification. Medium suitability
microf:actures (2) are microfractures in which the material cementing the microfractures is
indistinguishable from the cement surrounding the grains. The cement of these microfractures is

contemporaneous and physically continuous with the cement surrounding the grain. As a result
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no cross-cutting relationships exist between the microfracture and the cement filling the pores.
These microfractures are abundant in Mesaverde Group sandstones.

Low suitability microfractures are identified by their morphologic characteristics and
include microfractures most probably generated by processes that do not generate
macrofractures. Microfractures filled with cement not in physical continuity with the surrounding
cement, microfractures cutting only a portion of the grain and open microfractures are also
included in this group.

Microfracturés pdssibly generated by local point loads at grain contacts (Category II,
Laubach’s (1997) classification) are included in suitability 3 group and were avoided for
orientation analyses. The orientation of microfractures generated at grain-grain contacts might
differ from the orientation of the macrofractures, reflecting local concentration of stress. In
addition to that, point-load generated fractures do not have a representation at the macroscopic
scale. Their inclusion in orientation analysis introduces a degree of dispersion that can obscure
the signal of the microfractures most probably related to the macrofractures.

Microfractures at the tips, borders or corners of angular grains can form by stress
concentration around corners of angular fragments. These fractures can show no morphologic
difference with microfractures formed by a remote stress field, although microfractures affecting
the tips pf the grains are usually smaller and grain restricted. These microfractures are also
included in suitability 3 group.

Fractures restricted to grain boundaries and with no distinguishable relationship with
cement have also low suitability. These microfractures partially include Id microfractures of
Laubach’s (1997) classification. Open micro-fractures with no distinguishable cementing
material are also considered suitability 3 microfractures. The natural origin of these fractures is
questionable;ﬁgpen microfractures can be artificially generated during the making of the thin
section or manipulation of the sample.

Inherited microfractures are restricted to the grains and formed before the grains were

deposited. The cement in these microfractures can differ from the cement surrounding grains and
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filling pores in the rock. The presence of a different cement filling these fractures can be
considered diagnostic but the characteristics of the cement filling the microfractures are
commonly difficult to determine if the cementing material is quartz. Inherited fractures usually
show odd traces, aperture size variations and/or diffuse walls. New-formed fractures (post-
depositional) usually cut inherited fractures facilitating their recognition, but inherited
microfractures can also be reactivated under new stress conditions. Their orientation should only
have fortuitous relationship with the orientation of macrofractures.

Appendix D contains a summary of the microfracture orientations measured, their
classification according to Laubach’s (1997) descriptive classiﬁcatioh and their ranking
according to the suitability scheme in Table 5. Comments about the morphology, cross cutting
relationships, fracture cement characteristics, etc., have also been included in Appendix D.

In some instances, the SEM-CL cannot illuminate the details of the microfracture
morphology necessary to classify the microfractures. The presence of highly luminescent °
minerals in the rock greatly affects image quality. In particular, sandstones from the Mesaverde
Group contain important amounts of carbonate grains and cement which reduce the resolution of
the SEM-CL device by producing blurry photomicrographs. These limitations added uncertainty |
to the classification of some microfractures in the samples.

The highest suitability microfractures according to the classification scheme used in this
study are transgranular, usually the largest onés visible at the microscopic scale. These fractures
are the least common in the thin séctions studied. In samples from the Mesaverde Group, after
taking about 20 SEM-CL photomicrographs of a thin section (approximately 8 mm?® at 200x
magnification), at most 30 rank 3 or higher microfractures could be identified. Of these fractures,
usually less than ten percent (i.e. three microfractures) can be classified as transgranular or
transcement (suitability 1). This small number of microfractures is insufficient to determine the
macrofracture orientation with high confidence. The minimum amount of high suitability
microfractures necessary to obtain the orientation of the macrofractures can vary with the sample

and can be related to the mechanical properties, diagenetic and tectonic history of the rock. It is
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not within the scope of this study to investigate the full extent of this problem, but preliminary
results of collecting increasing amount of microfracture orientation data for macrofracture

orientation prediction are discussed in the next section.

Comparisons of Microfracture and Macrofracture Orientations

Several different approaches were taken to analyze the microfracture orientation data and
compare them with the macrofracture data. All microfracture orientations obtained from the
photomicrographs taken from each sample were initially plotted and compared with the
associated macrofracture orientation. In some cases the preferential orientation of all the
microfractures in a sample (i.e. without discriminating among the microfractures in different
categories) corresponds with the orientation of the macrofractures developed in the same bed. In
cases in which the orientation of all the microfractures did not match the macrofracture
orientation, comparisons were made between the macrofracture orientation and the orientation of
increasing suitability microfractures. In order to avoid subjective interpretations introduced by
the rank schefne, the microfracture orientations were weighted according to lengths. In this way
the longest fractures, i.e. the ones that are most likely to be transgranular or transcement, have

the most influence on the microfracture orientation.

Riddle D LS 4A Microfracture and Macrofracture Orientations

In the cores of thé Riddle D LS 4A well this analysis was carried out in several beds
because most of the core was oriented. In this well, the macrofractures have a consistent N-S
strike, with a secondary fracture set striking E-W (4996' and 5003").

Some interesting observations derive from the comparison 01’c micro- and macrofracture

orientations (Fig. 39):
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Some samples show microfracture orientations similar to the macrofracture
orientations (samples 2-7, 3-3, 3-8, 3-14, 3-18, 4-10 and 4-21). Among them,
microfracture strike in samples 3-3, 3-18 and 4-21 match macrofracture orientation.
Sample 3-20 appears to have been inverted. In this particular case, the macrofracture
and microfracture orientation would match well if the sample were rotated 180°
around the N-S axis. Problems with the orientation of samples are to be expected
because of the various manipulation needed to acquire oriented samples (including
core handling). Flipping the orientation of the samples is easy if care is not taken
during the process of cutting, notching, labeling and attaching the samples to the
glass.

Microfracture orientation is more complex in the lower part of the Cliff House
Formation (samples 4-12, 4-16 and 4-23). In these sandstones an additional set Qf
microfractures with a NE strike is apparent. Similarly, the relative importance éf the
N-S striking microfracture set diminishes.
Most of the microfractures measured in the samples are intragranular nﬁcrofraqfﬁres.
The origin of these fractures is difficult to establish, as I discussed above. In
retrospect, a better approach to address macrofracture orientation prediction from
microscopic observations would be to measure only microfractures that are

considerably longer than the averaige grain size.

Effects of Amount of Data Collected on Macrofracture Orientation Prediction

A test carried out with sample 2-7 explored the effects that the amount of data collected has

on the prediction of macrofracture orientation. This test was also used to study the effect of the

classification scheme on the determination of the microfracture orientation (Fig. 40). The first set

of rose diagrams were obtained after collecting the orientation of 17 microfractures

(approximately 3 mm?). The diagram for all the fractures indicates a preferential northwest strike

and a secondary east-northeast strike. The dispersion in the data is relatively small with these two

143



preferential orientations well differentiated from the background orientation noise. The diagram
considering fractures with suitability 3 or better also indicates a northwest preferential strike with
an equally important east-northeast strike. The dispersion in this group of data has increased with
respect to the rose diagram including all the microfractures. The rose diagram considering only
high suitability fractures (1 and 2) shows high dispersion but maintains the north-northwest
preferential strike. Only six fractures have this degree of suitability and the west-northwest
preferential strike is indicated by the presence of only two fractures in this orientation.

The second row of rose diagrams in Figure 40 shows the orientation of similar groups of
microfractures but in this case the orientation of 51 microfractures, including 34 microfractures
observed on additional SEM-CL pictures taken from sample 2-7, were used (approximately
8.5 mm®). The rose diagram for all the microfractures measured in the sample indicates a
preferential east-west strike not present in the rose diagram of the original set of
17 microfractures. The preferential northwest microfracture strike indicated by the original rose
diagram does not show clearly in the rose diagram for 51 microfractures. In this case, the
northwest strike cannot be clearly differentiated from the orientation noise in the rose diagram.
The rose diagram for the microfractures with suitability 3 or better shows a high degree of
dispersion but the northwest strike is slightly preferential over the background orientation noise,
which indicates fractures in almost all orientations. The signal of the east-west striking
microfractures cannot be differentiated from the background orientation noise. The rose diagram
for the high suitability microfractures of the increased data set shows a preferential northwest
orientation similar to the most reliable fractures of the original data set. The dispersion in this
rose diagram is also very high and the amount of suitable fractures has only increased by two. In
this case there is only one more high suitability microfracture which adds to the northwest
preferential orientation. '

The last row of rose diagrams (Fig. 40) shows the results of length weighting the group of
51 microfracture orientation data. The rose diagram for all microfractures shows two preferential

strikes: north-south and east-west. These are also the preferential orientations obtained for the
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macrofractures in the cores of this well. In this particular bed, from which sample 2-7 was taken,
the four macrofractures measured show a single preferential north-south orientation. This rose
diagram shows a considerable amount of orientation noise but the north-south and east-west
preferential strikes significantly stand out from the background noise. The rose diagram for
length-weighted microfractures of suitability 3 or better confirms the results of the rose diagram
for all the microfractures but shows a considerably higher dispersion, whereas the rose diagram
for the length-weighted microfractures with highest suitability indicates a preferential north-
south microfracture strike with a secondary preferential northwest strike similar to the rose
diagrams obtained for the higher suitability microfractures described above. Notice that the
north-south and east-west striking microfractures that indicate the macrofracture orientation in
this example were not present in the original data set of 17 fractures. These fractures were
measured from the additional SEM-CL pictures taken from sample 2-7.

According to this test, additional data collected from the other samples analyzed might also
increase the agreement between macrofracture and microfracture orientation. Additionally, these
results suggest that a classification scheme for the microfractures might not be necessary to
obtain the orientation signal of the macrofractures when a “sufficiently large” amount of data is

collected.

Other Cases

The results of microfracture orientation analysis for samples from the other two wells in the
study and samples from outcrops are shown in Figure 41. In each of these sainples between 70
and 160 microfractures were measured. A larger population than in any one sample from the
Riddle D LS 4A well. Working with larger microfracture populations allows better assessment of
the applicability of the technique. The Point Lookout Formation sample from the San Juan 32-9
well shows microfracture orientations in excellent agreement with the macrofracture orientation. ;
In contrast, in the same well but about 14 ft higher, the orientation of the macrofractures only

appears clearly in the high suitability microfractures. In this case, two important microfracture

145



sets are recognized, each having its own signature in the sample. Many intragranular fractures
are also present in this sample, adding to the diversity of the orientations of the less reliable
microfractures. The presence of east-west striking macrofractures is possible in this well if the
conditions that formed the macrofractures were similar to those at the Riddle D LS 4A well, but
these macrofracture orientations were not recognized by correlation of the natural fractures
identified in the cores with the image log.

The sample analyzed from the Sunray H Com #6 well exemplifies another kind of
microfracture orientation behavior (Fig. 41). In this well the macrofracture strike is clearly E-W.
A swarm of four fractures is located where this sample was taken from the core. However, the
rose diagrams of microfracture orientation indicates a N-S strike. In this case it is possible that
most of the microfractures are aligned with the regional macrofracture orientation system as seen
in other wells.

Outcrop samples also show interesting microfracture orientations when compared with the
macrofractures. In the Cottonwood sample (Fig. 41) a strong northwest microfracture strike is
produced by a few long microfractures. This orientation is parallel to the shortening direction
associated with the shear-mode fractures. The rest of the microfractures show a preferred NNE
strike, aligned with the open-mode macrofracture system.

Westwater sample WS-13 was intensively studied from a mosaic of SEM-CL photographs.
Microfracture strikes in this sample (Fig. 41) corresponds very well with the strike of the open-
mode macrofractures.

Microfracture orientations are characterized by a high level of complexity. This complexity
in part reflects the material heterogeneity of sandstones at the microscopic scale. Particularly, the
sandstones from the Mesaverde Group have a complex composition, texture and diagenetic
history that created a heterogeneous medium for fracture propagation.

In order to further test the hypothesis that microfracture orientation can be used to predict

the orientation of the macrofractures, some questions will need to be answered:
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What is the minimum amount of observations required to accurately predict
macrofracture orientation and how does this vary with rock type and burial history?
Where multiple macrofracture strikes are present, can the technique accurately
identify each of these orientations or would these strikes become indistinguishable
from thg “orientation noise”? If differentiation of these multiple macrofracture
strikes is possible (for example via cross-cutting relationships), what is the minimum
amount of observations required to accurately predict their orientations using
microfracture data?

How do the diagenetic history, matrix composition and texture affect the predictive -
capability of the technique? Is it possible to use these characteristics of the rock as
an indication of the amount of microfracture data required for macrofracture
prediction purposes?

Image processing software and automation can potentially greatly increase the
amount of data collected. Can scaling analysis specify the minimum analysis area

required to guarantee representative sampling?
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FRACTURE SIZE DISTRIBUTIONS AND FRACTURE FREQUENCY

Geometric fracture attributes span several orders of magnitude in nature from the
microscopic scale to the macroscopic scale. Fracture size data can be obtained at different scales
using various tools. Microscopes and other high magnification devices can be used to measure
microfractures. Macrofracture data can be obtained from cores, outcrops and aerial or radar
photos. In this section, I illustrate how size information was obtained from Mesaverde Group

sandstones at micro- and macroscales and how I interpreted the results.

Fracture Size Population Analysis

For individual fracture sets, the fracture-size distributions recorded at macroscopic scale
usually show internal consistency (Baecher and Lanney, 1978; Gudmundson, 1987; Heffer and
Bevan; 1990; Barton and Zoback, 1992; Gillespie et al., 1993; Hatton et al., 1994; Sanderson et
al., 1994; Vermilye and Scholz, 1995; Johnston and McCaffrey, 1996). Given such internal
organization, it might be possible to extrapolate geometrical characteristics of fractures from
small to large sizes using the physical laws that regulate their size distributions. The scaled
organization of fracture sizes also suggests that simple averages of geometrical properties for
fracture systems are not adequate to model fracture system properties. Aggregate properties that
depend on the geometrical parameters of fractures, such as porosity, permeability and shear-
wave propagation, would also be controlled by this organization (Marrett, 1996).

Not all fracture systems are expected to show scaling distributions. Basalt columnar joints,
surface-related joints and desiccation cracks are examples of fracture populations and processes
that probably do not follow this type of organization because these fractures commonly show
limited variation of fracture sizes.

To obtain the size distribution function of a population of fractures we can construct a

histogram of the frequency of sizes in the population. Histograms of fracture sizes usually show
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a high frequency of small fractures and frequencies that progressively decrease with increasing
fracture size. A more useful representation of a fracture size distribution is the cumulative size
distribution plot. To obtain this graph we plot the cumulative number of individuals in the
population that are larger than or equal to a particular size against the geometrical property that
we measure. A simple way to do this is to sort the fracture sizes from largest to smallest and to
number them accordingly.

Cumulative fracture size distributions are best illustrated using log-linear and log-log
graphs. Linear segmeﬁts can be fit to the data points plot in both types of graphs suggesting that
either exponential or power (fractal) laws, respectively, can be used to model fracture size
distributions. Extrapolations of the linear segments past the scale of observation are different for
exponential and power laws, so it is important to determine which distribution best characterizes
fracture sizes. Different authors have supported one or the other type of distribution with
particular data sets (negative exponential: Snow, 1970; Baecher at al., 1977, power-law:
Gudmundsson, 1987; Wong et al., 1989; Heffer and Bevan, 1990; Barton and Zoback, 1992;
Hatton et al., 1993; Sanderson et al., 1994; Belfield and Sovich, 1995; Clark et al., 1995; Gross
and Engelder, 1995; Marrett, 1997).

We can also plot the fracture size distribution in terms of spatial frequency. This
normalization procedure allows us to study the variation of the fracture density of the same
fracture population as a function of fracture sizé. Fracture measurements in this study were made
over surface areas, so the fracture frequency is obtained by dividing cumulative number of
fractures by surface area in which the observations were made. The observation area for
microscopic data corresponds to the area of the photographs (SEM-CL) used to study the
microfractures. The observation area for the macrofractures corresponds to the area surveyed in
the field.

- Figure 42 shows an example of a fracture data set to which exponential and power law fits
have been applied. Lines fit to the data in a log-linear plot (i.e., exponential laws) predict either

fewer small fractures or fewer large fractures than the numbers observed, depending on which
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line we use to fit the data. Although sampling limitations may result in data that inadequately
represent a fracture size distribution, the errors will result in data points on plots that fall below
the true distributions (i.e., too few fractures observed or measured fracture sizes that are too
small). Under the assumption that one of these lines represents the real fracture size distribution,
the exponential model under-predicts the number of fractures observed and consequently is an
inadequate model] for this fracture size distribution.

The power-law model, on the other hand, overestimates the number of fractures observed at
the smallest and largest scales. The deficiency of observations at the scale of the smaller
fractures could be explained as a consequence of missing small fractures during the collection of
data (truncation bias, Barton and Zoback, 1992). As shown in Figure 42 the difference in the
number of fractures predicted and observed, for the smaller fractures, increases as the size of the
fractures decreases. Smaller fractures would be increasingly more difficult to detect and
progressively more of the smaller fractures would be missed in the count. Another possibility to
explain why the power law model overestimates the amount of small fractures observed is that
the distribution of sizes at this scale is indeed different and it follows another distribution
function.

The deficiency of observations at the scale of the largest fractures is more difficult to
explain. An explanation of this deviation is that the complete length of the longest fractures was
not measured in the observation area (censoring bias, Barton and Zoback, 1992). Some fractures,
especially the longest ones, can continue outside the borders of the observation area. As a
consequence the sizes of the longest fractures can be underestimated (Baecher and Lanney, 1978;
Barton and Zoback, 1992). If this is the case, then the anomaly would disappear when recording
data from larger observation areas.

Alternatively, a real change could also explain the deviation. Real changes in power-law
scaling could reflect differences in fracture growth at different scales and/or changes in the
mechanical properties of the fractured medium at certain scales (Hatton et al., 1994; Woijtal,

1996). In stratified rocks two important mechanical boundaries can be recognized at different
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scales: the boundaries of the individual grains at the microscopic scale and the limits of the
laminations, beds or sequences at the macroscopic scale.

Marrett (1996) suggests thét thesc? changes can be related to sampling topology artifacts. For ‘
example, two-dimensional sampling of fractures that span the thickness of a mechanical layer
would reveal the complete three-dimensional population of fractures in the layer. These fractures
would show the same lengths and frequencies regardless of whether two-dimensional or three-
dimensional sampling domains were studied (assuming that the fractures are rectangular in
shape, perpendicular to the bed and that the two-dimensional sampling domains selected are bed-
parallel surfaces)

An understanding of fracture size distributions at large scales is an important objective of
this study. In addition, a method to objectively choose between exponential and power-law

models for fracture size distributions is presented.

Error Analysis of the Distribution and Selection of Limits for Least Squares Regression

In order to avoid subjective treatment of data sets, selection of the model that best deé;;ﬂbes
a fracture size distribution is based on application of error analysis. This is the first application of
error analysis to the study of fracture size distributions in the literature. This procedure also helps
to determine which part of the data set should be used to obtain the parameters of the least
squares regression that best describes the distribution.

The lines shown on Figure 42 have been visually estimated and served the purpose of the
previous discussion about the “anomalies” found in observed fracture-size distributions. A better
approach to fit lines to the fracture-size distributions in these graphs is to evaluate the error that
derives from fitting exponential and power-law models to the observed fracture size distribution.
A parameter that measures this error is the correlation coefficient of the line fitting the data (r%).
This parameter has been calculated for the exponential and power-law fits to the distributions in

the following way:
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1. The correlation coefficient (%) is calculated for the three smallest fracture sizes in the
cumulative or frequency size distribution considering both the exponential model and
the power-law models. This parameter (r?) is recalculated including the next largest
fracture size in the distribution. The procedure is repeated adding larger fracture sizes
until the largest fracture size of the distribution has Been included in the calculation.
Similarly, this procedure is applied starting with the three largest fracture sizes and
continuing by adding smaller fracture sizes and recalculating the correlation
coefficient. |

2. The results of the calculation of r* can be analyzed in a graph showing the variation of
r* along the range of fracture sizes for different starting points and models. The results
of the error analysis for the data set in Figure 42 are shown in Figure 43. The model
that best explains the observations shows the highest r* values for the corresponding
range of fracture sizes. Significant inflection points in the r* curves indicate fracture
sizes where a particular model starts to depart significantly from the observations.
These points determine the limits of the distribution to be used for the least squares

regression, from which the parameters that describe the distribution are obtained.

Use of Microfracture Frequency to Predict Macrofracture Frequency

In previous chapters I discussed the limitations inherent in sampling macrofractures in the
subsurface. Characterization of macrofracture size distribution and frequency in fractured
reservoirs is even more difficult than sampling orientation because a large and complete sample
inventory of the fractures is necessary. For economically important large fractures such an
inventory is not possible using current technology.

If fracture-size distributions follow simple cumulative distribution functions from the
microscopic scale to the macroscopic scale, then we could use microfracture frequency
observations to predict the frequency of macrofractures. This possibility opens new opportunities

to characterize fractured systems without directly sampling the macrofractures.
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In the next two sections I test the hypothesis that microfracture frequency- size distributions
can be used to predict macrofracture frequency-size distributions. Outcrop data on
macrofractures and microfractures are sufﬁcient to test the hypothesis. In the subsurface, on the
other hand, severe limitations of collecting macrofracture data arise from working with cores and
image logs. Only macrofracture height data can be reliably obtained from vertical cores and
these data are scarce. Macrofracture aperture can be collected from partially or totally

mineralized fractures but this information can also be very limited.

Prediction of Macrofracture Length

Tip-to-tip measurements of macrofracture length in selected areas of bedding-parallel
pavements were collected. Microfracture lengths were collected from SEM-CL
microphotographs. Micro- and macrofracture length distributions for the Westwater and
Cottonwood pavements were normalized by the area of observation and plotted in the samé log-
log graph (Fig. 44). Lines fitting the linear segments of the microfracture length distributiéns and
extrapolated to the macroscale reasonably predict the frequencies of the macrofractures 1n ;ﬁhese
pavements. This result suggests that a prediction of macrofracture frequency might be poégible
using microfracture frequency data. Additionally, this result also suggests that there are no major
changes in the fracture length distributions from the microscale to the macroscale, and that these
two scales of fractures are only two different subsets of the same fracture systems.

In contrast, exponential models for the microfracture length distributions do not accurately
predict the observations at the macroscopic scale (Fig. 44), suggesting that either the exponential

model is an invalid mathematical description of the fracture system, or that the micro- and

macrofracture populations are not expressions of the same fracture system.
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Fracture Height Distributions

Fracture height data were éollect;:d along Westwater Springs canyon by treating the canyon
walls as a two-dimensional sampling space. The size distribution obtained (Fig. 45) can be
adequately represented by a power-law of exponent -1.34. The model reproduces the
intermediate fracture heights up to the scale of the thickness of the mechanical layer. Sampling
truncation appears to have occurred at the smallest fracture heights.

A comparison of the microfracture length distribution with fracture height is possible if wé
assume that the fractures are penny shaped, namely that fracture lengths are comparable in
directions parallel and perpendicular to the mechanical layer. The power-law relationship
obtained from the microfracture length population predicts the fracture height distribution
reasonably well in this case (Fig. 46), up to the scale of the thickness of the bed in which the

fractures are developed.

Aperture-Length Relationships

Only high suitability microfracture data and apertures of partially or completely cemented
macrofractures were taken into account in Figure 47. Even though the data are very sparse in this
graph, aperture-length scaling of the form b=gl™ (Marrett, 1996) can be used as a model for the
observed distribution through nearly six orders of magnitude of length variation. The aperture
data are not sufficiently abundant as to determine if changes of aperture-length relationships
occur at certain scales for each data set studied as reported by Hatton et al. (1994) for volcanic
rocks. Marrett and Laubach (1997) analyzed aperture/length data from different sources and
speculate about the interplay of fracture propagation and diagenesis as a possible explanation for
the dispersion of these types of data. Figure 47 suggests that the macrofracture aperture/length
data collected from cores and outcrops of Mesaverde Group sandstones follow different patterns.
Fractures from cores have a larger aspect ratio than fractures from outcrops. Core and outcrop

fractures also show significantly different diagenetic histories.
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Another explanation for the differences in aspect ratio of subsurface and surface fractures is
that fractures in core generally have a single segment whereas outcrop fractures in many cases
are composed of multi-segments. Differences in the aspect ratio of single- and multi-segment
fractures have been documented by Vermilye and Scholz (1995). Limitations of macrofracture
sampling make it difficult to test this second hypothesis. On the other hand, Johnston and
McCaffrey (1996) showed differences in the aspect ratio for small and large veins that they
explained as a consequénce of differences in vein growth mechanisms. Small fractures from
subsurface samples would show large aspect ratios (inflation mechanism) whereas outcrop

samples would be characterized by small aspect ratios (elongation mechanism).

Scanline Data: 2D-1D Conversions

Fracture data in this study were collected from two-dimensional sampling domains. Tge
fractal dimension, represented by the exponent of a power-law distribution, depends on the
topological dimension of the observational sampling domain. Marrett (1996) derived expressions '
to convert fracture size distributions from one topological dimension to another. To test thlS
topological conversion the lengths of fractures intercepted along 16. scanlines were collected
from the Westwater pavement. Figure 48 shows the cumulative size distributions obtained from
scanline and two-dimensional observation sampling domains. A least-squares power-law fit was
made to fracture lengths observed in two-dimensions, and this empirical two-dimensional model
was uséd to calculate predicted one-dimensional length distributions using Marrett’s (1996)
approach. Predictions match with the fracture size distribution of small fractures. Long fractures
are expected to have a distribution with a power-law exponent similar to the two-dimensional
distribution of the same size fractures because long fractures are likely to be sampled regardless

of the sampling topology.
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Test of Potential Microfracture Sampling Bias

Measurement of microfractures from SEM-CL photographs was potentially biased by the
selection of regions within the thin sections that showed more intense development of fractures.
The effect of such a bias would be to inflate the microfracture frequencies obtained for a sample.
To assess this potential bias, a mosaic of pictures of a continuous area was obtained from sample
2-7 in the Riddle D LS 4A well and its microfracture frequencies determined. The microfracture
frequency of a continuous area of the thin section is not affected by the selection of interesting
fractured places identified while navigating on the thin section with the SEM-CL device. The
microfracture frequency distribution obtained was compared to the one obtained using the
potentially biased procedure. The fracture frequencies determined using the potentially biased
procedure are not systematically higher. It may be that pictures are taken where fractures are
easiest to see (e.g., highly luminescent grains) and not where fractures are most concentrated.

The microfracture intensity affecting highly luminescent grains is similar to the microfracture

intensity of less luminescent grains. There are differences in frequencies for small and large

microfractures for each procedure. When isolated pictures are taken the tendency is to

photograph large microfractures which are also best recognized whenever they cut highly
luminescent grains. The construction of mosaics allows the determination of more realistic

microfracture frequencies for the smallest fractures (usually intragranular).

Effect of Important Mechanical Boundaries on Size Distributions of Fractures

Changes of mechanical properties across boundaries could produce differences in the
fracture size distributions of the fractures that encountered these lirnits. For example, size
distributions of microfractures in sandstones could be affected by changes in mechanical
properties across grain boundaries. Then, the extrapolation of fracture frequencies from
microscale to macroscale across the scale of grain diameters might be invalid. Other important

mechanical surfaces in sedimentary rocks are the boundaries of lithologic beds or mechanical
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units. These surfaces commonly restrict the propagation of fractures across them. Gross (1993)
provides a recent definition of mechanical units for fracture studies.

In order to study the effect of mechanical layering on fracture length scaling, two sets of
data were collected on Westwater pavement and one data set on Cottonwood pavement. All
visible fractures in an area of 2069 m* at Westwater pavement were recorded to obtain the size -
distribution of macrofracture lengths smaller than the mechanical layer thickness (2.9 m). The
criteria used to determine the mechanical layer thickness was explained in the methodology
chapter. A larger area (13000 m?) on the Westwater pavement was selected to measure a large
number of fractures longer than the thickness of the mechanical layer (Fig. 50).

The fracture frequency size distribution was obtained for both large and small observation
areas and compared in the same log-log graph (Fig. 51). The fracture size distribution of the
large observation area, representing fractures longer than the layer thickness, can be adequately
modeled by a power-law. In this case, all fractures longer than the thickness of the bed were used
to calculate the power-law regression line. To select the best model for the fracture frequency
size distribution of fractures shorter than the layer thickness, an analysis of the least-squares
regression errors for the small observation area was carried out. The smallest fractures of this
population are best modeled by an exponential curve. Longer fractures are best modeled using a
- power-law. The starting point to calculate the power-law regression was obtained by the error
analysis shown in the lower part of Figure 51. The ending point of the power-law regression
corresponds to fractures equal to the thickness of the mechanical layer (2.9 m).

The fracture length distributions show a change in the slope of the power-law regressions at
the scale of the thickness of the bed in which the fractures developed. This change is also
suggested by the longest fractures in the small area but the number of fractures longer than 2.9 m
observed does not allow satisfactory definition of a power law for this segment of the
distribution. Previous interpretations of analogous changes observed in the distributions of the

longest fractures related the changes to a bias in the sampling procedure (Baecher and Lanney,
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1978; Barton and Zobach, 1992). The censoring bias is produced by incomplete length
measurements of the longest fractures, because they extend beyond the limits of the map.
Censoring bias has been reduced in this experiment by collecting more than 300 large fractures
from an area more than six times larger than the small observation area. These data are sufficient
to obtain the fracture-size distribution of the large fractures. The exponent of the power-law fit to
the large fractures is greater than predictions of sampling three-dimensional populations of
fractures from a two-dimensional sampling domain (Marrett, 1996), suggesting that other factors
are affecting the size distribution of large fractures in Westwater pavement. Furthermore, the
consistency in the power-law slope of long fractures from the small and large areas suggests that
a real change in the fracture size distribution might happen where the fractures reach the limits of
a mechanical layer. These resuits indicate that when fractures propagate to the boundaries of a
mechanical layer, the fractures grow differently and produce changes in the power-law exponent
of the fracture distribution. Indications of this type of change have been documented for
aperture-length data in columnar basalt (Hatton et al., 1994) and faults (Wojtal, 1996).

In order to confirm these results, a second set of data was recorded from Cottonwood
pavement. In this case the thickness of the mechanical layer is smaller (1.5 m) and the collection:
of macrofracture data in two different size observation areas was not necessary. A single area of
about 2000 m’ was selected to measure all the fractures visible without magnification. A
significant change in the fracture size distribution occurs in this case as well (Fig. 52). Again, the
change occurs at the scale of the thickness of the mechanical layer and the exponent of the
power-law fit to the large fracture sizes is greater than predictions from topological conversions.

Intragranular microfractures might also show a fracture size distribution that differs from
tI;at of transgranular microfractures if grain boundaries are mechanically significant. Plots of
microfracture frequency show changes of the fracture size distribution for fractures longer than
the average grain size of the samples (Fig. 53). These changes might be an artifact produced by
limitations of the observation device (SEM-CL) to illuminate the dimensions of microfractures

where they cross cement (similar to censoring bias of Barton and Zoback, 1992). Another
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explanation for this change is that most microfracture cements are synkinematic and formed
when there was still significant porosity in the rock. Many microfractures probably terminate
against pores that were subsequently filled with cement. The effect of censoring bias and
fracture/cement timing is to diminish the number of fractures longer than the average diameter of
the grains. One way to test if this change really occurs would be to record only the
microfractures longer than the average grain size in a large and continuous observation area. This
approach has not been taken yet due to technological restrictions with the SEM-CL imaging
device.

In spite of observed deviations from a power-law fit for fracture sizes larger than the
average diameter of the grains, the validity of extrapolating fracture frequencies from the
microscopic scale to the macroscopic scale holds as demonstrated in Figure 44. Power-laws
obtained using the linear segment of the microfracture population can adequately predict the
frequency distribution of macrofractures within the mechanical layer in which the fractures

propagated.
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CONCLUSIONS

This study evaluated the use of microfracture data to predict macrofracture properties and
found that useful information can be reliably derived using this approach. Systematic analysis of
the abundance of microfractures in small pieces of rock overcomes the almost complete lack of
subsurface macrofracture data. Fractal models are useful to characterize fractured systems. As
illustrated here, some geometrical characteristics of fractures, such as aperture and length, can be
best modeled using power-law distributions within the range of scales at which observations are
less affected by sampling biases.

This study contributes to understanding the relationships between the characteristics of
microfractures and macrofractures in sandstones and opens new areas of research on fracture
characterization. These areas of research include: improvement of methods for fracture
observation, improvement of methods to measure micro- and macrofracture properties, better
understanding of the effects of mechanical boundaries on fracture-size distributions, better
understanding of the nature and origin of microfractures in sandstones, mgthods to quantitatively
evaluate the connectivity of fracture networks and methods to quantify and predict the volume of
cement filling the fractures.

Tests carried out on samples from intervals where macrofracture orientation and frequency
are known showed that in some cases the predictive capability of the microfractures is high (i.e.
microfractures are an expression of the macrofracture system at the microscopic scale). Fracture
orientation remains constant through different scales in many cases. Classification of
microfracture data in terms of their relationship with macrofractures, weighting with respect to
fracture length and thé collection of statistically significant amount of data are important to
successfully predict macrofracture orientation.

Outcrop data analysis indicates that extrapolations of fracture frequencies from the

microscopic scale to the macroscopic scale are possible and reliable at least up to the scale of
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mechanical layers. The size-distributions of fractures that span the mechanical layer follow
power-laws of greater exponent than followed by smaller fractures. At least three aspects can
contribute to this change in fracture size distributions: 1) censoring bias, 2) sampling of three-
dimensional populations in two-dimensional sampling domains and 3) real differences of
fracture-size organization above and below the scale of the mechanical layer.

Experiments carried out on large fractured pavements in which fractures larger and smaller
than the scale of the mechanical thickness were measured, demonstrate that the presence of
mechanical boundariés affects the fracture-size distribution. Namely, the parameters of the
power-law for fractures that span the mechanical layer thickness differ from predictions of three-
dimensional sampling (Marrett, 1996) when censoring bias are avoided. An indirect support for
this conclusion is the common observation that fractures terminate at the boundaries of
mechanical layers, suggesting that fracture propagation is modified once fractures reach the
boundaries of the layer in which they grow.

Fractures longer than the thickness of the bed show less size heterogeneity than smaller
fractures. An increase in the homogeneity of the fracture sizes at large scales helps to constrain
the maximum fracture size in a sampling domain. Once the dimensions of the mechanical Tayer
are determined a theoretical approach to calculate fracture permeability can be addressed,
knowing that the permeability is fundamentally controlled by the largest fractures in the reservoir
(Marrett, 1996). |

Structural intuition suggest; that grain boundaries can modify microfracture size
distributions. In this study, fractures longer than the average grain size of the samples show an
increase in the slope of their power law distributions. Censoring bias related to limitations of the
observation device (SEM-CL), the synkinematic character of the cement filling the
microfractures, high porosity present at the time of microfracturing and complex diagenetic
history involving dissolution of framework components and precipitation of late cements in the
pore space are some of the factors that could explain these changes at the scale of the average

diameter of the grains, but a systematic study of sampling bias is required to test this hypothesis.

161



The quantification of fracture connectivity and cement kinematics can help to evaluate the
capacity of a particular fracture system to allow fluid flow and adequately drain fluids stored in
the rock matrix. In this study, the characterization of fracture connectivity was approached using
new concepts. The proportion of connections of individual fractures in the fracture network, as a
function of the number of fractures, number and type of connections, can be obtained for any
fracture system. This parameter takes into account the geometrical characteristics of the fracture
network and complements previous approaches to quantify fracture connectivity (Robinson,
1983).

Subsurface sandstones of the Mesaverde Group show important volumes of prekinematic
cements and small volumes of postkinematic cements indicating that fractures in the sampled
intervals should be open, as inferred from production data. The volume of postkinematic cement
in outcrop samples is greater than in subsurface samples possibly due to regional variations in
diagenetic history and fracture timing. Microfractures are mostly filled with cement and do not

contribute to porosity and permeability in the reservoir.
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Figure 1. Location map of study areas. White area represents the area of the
basin surrounded by the hogback, a topographic feature around the
basin containing outcrops of weather resistant units of Cretaceous
and Tertiary age (Black). Light gray area represents gas fields
included in the Blanco-Mesaverde giant gas accumulation. The
enlarged area in the upper figure shows the detailed locations of the
pavements studied in the Ute Mountain Reservation.
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Figure 2. Schematic stratigraphic diagram of the Mesaverde Group and the depositional
architecture of the sandstone units studied. Modified from Reynolds(1994).
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Figure 3.  Oblique aerial view of Westwater pavement. Westwater Springs arroyo cuts the
pavement allowing study of the fractures in cross section. A strike-slip fault is
present in the northern part of the pavement. Bushes and small trees grow along

. the fault trace.
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Oblique aerial view of Cottonwood pavement. This pavement is one of a set
of flat-irons on the forelimb of a regional-scale monocline called the
Hogback. A strike-slip fault is also present in the northern part of this
pavement.
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Figure 5. Sketch map of fracture swarm A, Cottonwood pavement.

The table in the lower part of the figure shows an example
of the parameters collected from the macrofractures in

the field.
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Figure 6.

Fracture termination types observed in the field. The identification
of fracture termination is the basis for the selection of fracture tips.
Fracture length is the distance between the tips of the fracture
measured along the trace of the fracture.
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Figure 7. Mechanical layer in Westwater pavement.
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Figure 8. Mechanical layer in Cottonwood pavement.
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Figure 11.  Grains+matrix-cement-porosity ternary diagram for samples
analyzed.
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Figure 12.  Photomicrograph of primary intergranular
porosity. Sample 3-20, plane light, Riddle D LS
4A

Figure 13.  Photomicrograph of secondary porosity associated
to partial dissolution of feldspar grain. Sample 3-
20, plane light, Riddle D LS 4A.
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Contribution of quartz and carbonate cements to
the total volume of cement in the sandstones

analyzed.

185




H-wEo

TIME

\/

Figure 15.

Speculative paragenetic sequence for Mesaverde Group sandstones
based on the samples analyzed. Fractures probably formed during
burial and subsequent uplifting. Timing is based on crosscutting
relationships between fractures, cement and dissolution/replacement

events. Gas migration and schematic burial history are interpreted
from Bond (1984).
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Figure 16. Scanned CL (a) and transmitted light (b) images of rock
microstructure. Fe, iron-rich carbonate mineral; Qz, quartz; D,
detrital grain; Ca, detrital carbonate material.
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Figure 17.

Scanned CL images of microfractures. Qz, quartz; Ch, chlorite; O,
overgrowth quartz cement; Ca, calcite; P, porosity; F, fracture.
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Figure 13.

Late carbonate cement in sandstones of the Mesaverde
Group. A) Carbonate cement (Ca) surrounding quartz over
growths (O). Sample FI-29, Cottonwood pavement,
crossed polars. B) Late carbonate cement (Ca) lining frac-
ture wall. Notice euhedral quartz (E) rooted in matrix

quartz grains and surrounded by carbonate cement. Sample
6008, San Juan 32-9 well, plane light.’ '
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Figure 19.

Late clay cement. Sample 3-8, SEM photomicrograph. Riddle D
LS 4A. This cement is usually found in association with partially
dissolved feldspar grains clogging remnant porosity left by late
carbonate cement.
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Figure 20. Euhedral quartz in fracture that appears no
mineralized at macroscopic scale. Sample
5009.3, plane light, Riddle D LS 4A.

Figure 21. Sparry carbonate cement on fracture wall. Sample
6008, plane light, San Juan 32-9.
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Figure 22. Quartz- and carbonate-filled open-mode fracture. Sample FI-
18, cross-polarized light, Cottonwood pavement.
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Figure 23..

Cement classification of samples analyzed according to
macrofracture formation/cement precipitation timing. Riddle
D LS 4A and Sunray H Com #6 wells macrofractures are
lined with small volumes of synkinematic and postkinematic
euhedral quartz but most of the cement is prekinematic. San
Juan 32-9 well macrofractures are filled with synkinematic
euhedral quartz and variable amounts of postkinematic
carbonate cement. Outcrop samples show important volumes
of postkinematic carbonate cement. Most microfractures in
the samples analyzed are filled with synkinematic quartz
cement
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Figure 25. Shear-mode fractures (faults, marked in white)
showing interpreted kinematics. Westwater
pavement.

Open-mode fractures. Westwater pavement. Ruler
(rectangle) indicates location of double hook
. fracture terminations (type V in Fig. 6). Another

fracture, showing a hook termination (type III)
appears 1n the upper right side of the photo.

Figure 26.
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Figure 27.

Joints at the border of a canyon in Westwater pave-
ment (A) and polygonal cracks next to a creek, Co-
ttonwood pavement (B).
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Riddle D-LS-4A N
San Juan County. New Mexico

e ‘Broken natural fracture -

Figure 29. Open-mode natural fractures. Laminations are dark
and light bands at high angle with the fractures.
Riddle D LS 4A. Ruler is graduated in centimeters.

* En echelon‘fractures. -

Figure 30.  En echelon natural fractures and stylolites. Stylolites
are dark, irregular and serrate surfaces at high angle

with the axis of the core. Sunray H Com #6. Ruler is
8 centimeters long.
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Microscopic morphology of open-mode and shear-mode macrofractures.

Figure 32.

L A R
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Figure 33.

Definitive evidence for synkinematic crack-seal texture
in quartz crystal. Partially filled fracture. Light gray
patches next to eubedral quartz are fracture-porosity
remnants. Sample 5009.6, plane light, Riddle D LS 4A.
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Petrographic (A) and SEM-CL image (B) of a fractured quartz grain.

Sample FI-20. Cottonwood pavement.

Figure 34.




B. Riddle D LS 4A. Sample 3-3. 48951 5

Crushed:
~Orains. .

S
‘Siylolite -

C. Riddle D LS 4A. Sample 4-12.5027.1". D. Sunray H Com #6. Sample M4974. 4874.95",

Figure 35.  Microfracture morphologies under the SEM-CL. Fractures show varied morphologies
at this observational scale. Microfracture generation processes are also diverse.
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Figure 36.

Westwater Pavement

0.45
0.40

0.35 |
0.30 |
0.25 |
0.20 |
0.15 |
0.10 |
0.05 |
0.00

A B CLC2 C3 DI D2 D3 D4 Total
Swarms :

Cottonwood Pavement

A B C D E F Tota

Swarms

Degree of connectivity in fracture swarms, following
Robinson (1983). The degree of connection of fracture
swarms in Westwater pavement is higher than in
Cottonwood pavement.
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WESTWATER / @
COTTONWOOD

50%

s
MEDIUM /
MEDIUM
Partially Connected HIGH Fully

e
Partlally Connected Connected

Figure 37.  Proportion of connection of fracture swarms in pavements studied.
(Modified from Laubach, 1992)
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A)

Riddle DLS 4A @ @

Sunray H Com #6

San Juan 32-9 @ @

Natural  Induced

(N=38, Circle=60%) (N=18, Circle=20%)

(N=7, Circle=50%)

(N=17, Circle=70%) (N=5, Circle=100%)

B)

€1
Cottonwood \@\ %
Westwater ;\ %

Open Mode
Faults Sealed

(N—12 Circle=40%) (N=558, Circle=45%)

(N=12, Circle=40%) (N=528, Circle=30%)

Figure 38.

‘Macrofracture strikes from cores (A) and outcrops (B)
of Mesaverde Group sandstones. N is the number of
macrofractures measured; Circle indicates approximate
size (as a percentage of the total population of
fractures) of largest petal inrose diagrams; g, is the
interpreted horizontal projection of the maximum

principal shortening direction for the conjugate fault
systems.
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Original set of microfracture data

FRACI'URES\I-*—Z FRACTURES1+2+3 ALL FRACTURES
N= N= 13 N= 17
Clr018= 34 % Circle = 24% Circle= 30%

Results after increasing data set

FRACTURES 1+2 FRACTURES1+2+3
% = 38 % N= 351
ercle =25% C1rcle =11% Circle= 12 %

Results after i mcreasmg data set and length-welghtmg

FRACI'URES 42 1 +2+3
CIRCLE =12% ercle =6% Cu'cle =8%
Figure 40. Microfracture orientation abundance data test.

Sample 2-7, Riddle D LS 4A. Black circles outside
the rose diagrams in lowest row indicate the strike

of the macrofractures at the depth of sample 2-7.
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Cumulative Frequency (m'2)

10000000000

‘Westwater (microfracture power-law prediction)
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Cottonwood (microfracture power-law prediction)
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Figure 44.
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Westwater)
Cottonwood)
Westwater)
Cottonwood)

Fracture size distribution, Westwater Canyon pavement.




1000

Cumulative number = 1.77 x 10° m?mm**
* Height “*%; r* =0.96

100 A

Cumulative number of fractures

i
[
Ll

Bed Thickness

1 — .

100 1000 . 10000
Height (mm)
[0 Data used for least -squares regression line ]

Figure 45. Fracture height distribution. Westwater Springs
Canyon. Fracture height distribution data can be
adequately modeled using a power-law up to the scale
of the bed thickness. ‘
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Figure 46.

Fracture height frequency prediction. Westwater
Springs Canyon. The parameters of the power-law fit to
the nicrofracture size distribution in Figure 44 also give
a reasonable prediction of the macrofracture height
distribution at least up to the scale of the bed thickness.
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5 | Aperture = 0.02 Length®®
& ool ] £=0.67
0.001 1
] o Jeol /
0.0001 S —— :
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Length (mm)
A Core macrofractures o Core microfractures :
@ Outcrop macrofractures ¢ Outcrop microfractures |
Figure 47. Aperture vs. length. Core and outcrop data. Only

transgranular and transcement microfractures are
considered. Only mechanical apertures of filled
macrofractures (veins) are shown. A least squares
regression line to all data points yields a low-confidence
correlation coefficent of 0.67. Core and outcrop
macrofracture data plot in slightly different places.

219



10

1
i
5

E 01
g
S
g
=
L

2 001
=
E
=
Q

0.001

0.0001

Figure 48.

Predicted 1D model (long fractures)

; \\ F=3140 m-lmml.37 * L-I.37

: N

. N\

: \ Predicted 1D model! (short fractures)
Y . by

? Tt F=2 m” mm®7 % L%
%;o SO0 0T,

i .~

] 0

§ Model! for the 2D data set

j =745 m?mm" * LY, #=0.98

O R By WY SR & R

10 100 1000 10000 100000
Length (mm)
O 1D data set (16 scanlines of total length: 491m)
e 2D data set (Area 2069 m"2)
Power-law fit to 2D data set
------- Predicted 1D distribution (short fractures)
= = == ~ =Predicted 1D model (long fractures)
|| Data used for least-squares regression (2D)
Test of 2D-1D sampling domain conversion, Westwater

pavement. The predicted 1D distribution using formulas in
Marrett (1996) adequately predict the smallest fracture sizes
from scanlines. The slope of the size distribution for relatively
long fractures is similar to the slope of the 2D distribution
because the probability of sampling relatively long fractures
with fracture-perpendicular scanlines repeatedly crossing the
study area is similar to sampling the fractures in the 2D

observation area.
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Figure 49. Test of bias in microfracture frequency calculations.

Microfracture frequencies of systematicaly (mosaic) versus
non systematicaly (isolated) microphotographs do not show
significant variations. This result suggests that there is no
bias in the procedure used in photographing the sample.
More luminescent grains are frequently selected for isolated
pictures because they show better contrast with the cement.
This also facilitates microfracture measurement and
classification.
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] \\\ Fracture size distribution in small area (2069 m®):
7 ~
] S~ ¢ F=310 mPmm'*+L#; r=0.99
~
-ooo o..”,”‘
0.1 3
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=] ] ~
= ]
E Fracture size distribution in large area = !
= i 13365 m2): o
S 0.001 ( ) 3 |
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O ] = i
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Figure 51. Fracture size attributes for part of study area (“small” area).
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APPENDIX A. CORE MACROFRACTURE DATA

This appendix contains data from cores, including operational data, top of

stratigraphic units, cored intervals, lost and unmeasurable zones, orientable

pieces, samples for magnetic analysis, bed plane depths, samples for petrographic

analysis and macrofracture data in general.

Total

Total

Total

Core acquisition data Riddle DLS 4A

Top core (') “Bottom core ( ) "Cut ()] O Recoveredﬂ [ Horizontal |
_ Projection ()
4936 4957 21 12 . 849
4993 5016 23 21 14.85
5016 5040 24 24 16.97
68 57

Core acquisition data. Sunray H Com #6 _

[Start core () [Finish core O Cut( O Recovered (T)
4964.2 4978 13.8 12.3
4978 5008.8 30.8 30.8
44.6 43.1
Core acquisition data. San Juan 32- S
Start core () | Finish core ()] Cut () Recovered ()
5551 5569 18 16.5
© 5569 5580 11 9
5580 5603.5 235 20
5603.5. 5628.8 25.3 25.3
5850 5877 27 16.8
5877 5899 22 21.5
5955 6013 58 55.7
6013 6034.5 21.5 21.5
206.3 186.3
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The following table explains the meaning of abbreviations used to

describe different aspects of the fractures in the cores.

[EXPLANATION

B: Broken. Separate walls

DI: Difficult to recognize. Diffuse
I: Induced

C: Closed

PO: Partially open

PI: Possibly induced

M: Mineralized

NM: Not mineralized
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APPENDIX B: OUTCROP MACROFRACTURE DATA

This appendix contains fracture data collected in the field. The following

table explains the meaning of abbreviations used to describe the fractures.

EXPLANATION

Type

c: closed

0: open

po: partially open

ts: tip termination south

tn: tip termination north

hts: hooked termination south
htn: hooked termination north
tas: abrupt termination south
tan: abrupt termination north
Xs: covered to the south

xn: covered to the north

Observations

Di: Diffuse trace

I: Irregular trace

An: Anastomosed trace
ee: en echelon

Fractures are assumed to be near vertical.

Angles are the acute angle in the respective termination relative

to the orientation of the intersected fracture. Angle (°N) is the angle
in the northern termination and Angle (°S) is the angle in the
southern termination of the fracture, in degrees.

Connectivity parameters are calculated based on complete

fractures (no xs or xn fractures counted).
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Westwater Springs

Southern pavement. All fractures in small area
Swarm A

Frac. # |{Type Length (mm) Orientation | Angle(°N) | Angle(°S) |Observatiohs
1 c.is hin 965.2 3080 F 50
2 c,hts tn 1066.8 2090 E 25
3 chistn 406.4 2290 E 40 Bi
4 c.is.tn 609.6 3490 E
5 cts.tn 355.6 1090 E Di
6 c.ts.tn 139.7 16 90 E Bi
7 c.istn 774.7 22 90 E Di
8 C.XS,tn 508 2880 E Di
9 c,xs:htn 1270 2480 E 45 ee
10 ctastan 76.2 690 E 25 45
11 c,hts tn 965.2 1490 E 45
12 c.ts.xn 355.6 2490 E
13 c;hts,xn 1371.6 2480 E 30 same as 97
14 c.hts xn 177.8 46 S0 E 45
15 ctastn 609.6 1080 E 20
16 c.xs.tan. 1422.4 1880 E 15
17 c.ts.tn 1397 1290 E
18 c;hts.tn 558.8 1090 E 35 1
18 c.ts.htn £685.8 2490 E 40
20 ctastn 127 346 90 E 25
21 c.tas.tan 50.8 335 90 E 45 45
22 c.ts htn 1574.8 890E 30
23 cts,tn . 355.6 890E
24 cts.tan 1600.2 1290 E 15 An
25 c.ts htn 5994.4 2090 E An -
26 c.tas.tn 330.2 344 90 E 50
27 c,in.hts 660.4 890E 60
28 c.ts.tn 304.8 490E
29 c.ts.tan 660.4 1890 E 15
30 ¢hts xn 1371.6 1690 E 45
31 c,ts.in 63.5 290F
32 c.tas.htn 152.4 354 90 E 40 15
33 C.ts.tn 152.4 3590 E
34 cis.tn 152.4 B90E
35 c.ts.tn 114.3 690 E
36 €.xs.tn 939.8 356 90 E
37 ctas.tn 203.2 090 E 35
38 c.ts tn 584.2 090 E
39 ctas.tan 76.2 40 90 E 35 35
40 chts.tn 482.6 090 E
41 c.ts.tn 381 358 90 E
42 cts.tn 152.4 16 90 E
43 [RER 1] 254 2590 E
44 c,ts.tn 177.8 1290 E
45 c.ts.tn 101.6 1290 E
46 c.tas.tn 304.8 1490 E 15
47 c,hts tn 152.4 22 90 E 40
48 c,its htn 355.6 1490 E
49 c.is.xn 863.6 1890 E
50 ctastan 138.7 2690 E 30 45
51 ctas.tn 304.8 1490 E
52 c,ts.tn 101.6 1290 E
53 c,1s,xn 330.2 26 90 E
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Frac. # |Type Length (mm) | Orientation | Angle(°N) | Angle(°S) |Observations
54 c,xs,tn 279.4 2090 E
55 ctstan 406.4 3090 E 40
56 c,istan 76.2 890 E 40
57 ¢,ts.hitn 1905 356 90 E
58 c.ts.tan 165.1 090 E 40
59 c,ts.tn 76.2 890 E
60 c,ts.tn 25.4 890 E
61 cts.tn 38.1 358 90 E
62 c.ts.tn 63.5 340 90 E
63 c.ts.tn 762 350 90E
64 cis.tn 838.2 16 90 E
65 c.las tan 203.2 354 90 E 50 30
66 cits.tn 2921 10 80 E
67 c.ts.tn 152.4 2080 E
68 | ctshtn 2159 680 E
69 c.ts.hin 558.8 490E
70 cistn 457.2 290E
71 c.is.in 76.2 330 80 E
72 c,his,tn 381 1490 E
73 c.is.htn 381 890 E
74 c,ts.in 660.4 2090 E
75 c.ts.tn 660.4 890 E
76 c.is.tn 114.3 358 90 E
77 cts.tn 431.8 090 E
78 c.is.tn 431.8 090 E
79 cts.tn 101.6 1290 E
80 c,xs.tn 431.8 348 S0 E
81 c,is.tan 76.2 3090 E 45
82 c,ts.tn 177.8 2890 E
83 c.xs.in 381 2290 E
84 c,is tn 2463.8 354 S0 E
85 ctas.tan 330.2 350 90 E 30 45
86 c,tas tn 50.8 1290 E 35
87 c.tas.tn 63.5 1290 E 30
88 c.tastn 203.2 1290 E 15
89 | ctstan 203.2 1490 E 35
90 ctsin 381 1090 E
91 clas.tan 203.2 1290 E 30 30
92 | ctstan 101.6 2590 E 45
93 ctstan 63.5 2090 E 35
94 | ctstan 152.4 1090 E
95 cts.tin 914.4 345 80 E
96 c.ts.tan 101.6 890 E 35
97 c,ts.tn 914.4 358 90 E
98 cts.tn 1295.4 1090 E
99 c,is.tn 1803.4 690 E
100 cts.tn 1041.4 1290 E
101 c.hts.tn 1625.6 16 90 E 40
102 c.tsxn 1422.4 1590 E
103 c,ts,tn 533.4 20 90 E
104 c.tas tan 101.6 3590 E 35 35
105 cts.xn 660.4 18 90 E
106 c.xstan 304.8 14 90 E 30
107 ctas.tn 81.28 46 90 E 50
108 &.xs.in 152.4 3090 E
109 c.tas.tn 76.2 356 90 E 40
110 c.ts,tn 63.5 1090 E
111 c.tstan 93.98 26 90 E 30
112 c.ts.tn 304.8 890 E Di
113 c.ts tn 330.2 1490 E Di
114 c.ts.tn 457.2 16 90 E Di
115 c.tstn 609.6 1080 E
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Frac. # |Type Length (mm) ([Orientation | Angle(°N) | Angle{°S} {Observations
116_ | ctastan 127 890 E 15 30
117 ctastan 50.8 690 E 30 30
118 c,ts.tn 787.4 14 90 E

Connectivity Parameters
Number of connection points

# %
22 11 11%
1 37 37%
0 52 52%

Type of termination

# %
Tip 136 68%
Hooks 20 10%
Abrupt 44 22%
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Westwater Springs

Southern pavement. All fractures in a selected area

Swarm B
Frac. # |Type Length (mm) |Orientation | Angle(°N) |Angle(°S) | Observations

1 po,tn,Xxs 1955.8 30 90 E

2 po.tn.hts| 914.4 10 90 E 45

3 po.tstn 2082.8 3290 E

4 po.ts,xn 279.4 50 90 E

5 c.xn.tas 127 30 90 E 45

6 C,XS.Xn 482.6 16 90 E

7 c.ts tan 635 22 90 E 30 same as 82

8 c.ts.tn 4689 2590 E

9 c.ts.tn 838.2 32 90 E

10 c,ts.tan 63.5 14 90 E 25

11 c.ts.tan 1244.6 52 90 E 45 Di

12 c.tas;tan 254 32090 E 60 60 Di

13 c.ts.tn 228.6 8390 E cement around
14 c,is.tn 1498.6 1090 E cement around
15 c,tas.tn 38.1 32 90 E 15

16 c.tas.tn 38.1 342 90 E 15

17 po.ts,tn 584.2 42 90 E Di

18 c.ts.tn 355.6 22 90 E Di

19 c.tas.tn 965.2 3090 E 50 Di

20 po.ts.in 330.2 350 90 E

21 c.ts.tn 355.6 322 90 E Di

22 c.tas;tn 1524 346 90 E 50 Di

23 c,xs.tn 3327.4 24 90 E

24 c.tas.tn 889 7280 E 45 Di
24A | citas;tn 304.8 10 90 E 20 Di

25 c.tn.tas 609.6 78 80 E 50

26 c.ts.tn 254 3090 E Di

27 c.is.tn 431.8 3290 E Di

28 c,ts.tn 11176 1890 E same as 297
29 c:hts tn 787.4 22 90 E 40 same as 30?
30 c,hts.tn 1016 1490 E 35

31 c.tas.tan 25.4 340 90 E 15 15

32 c.tn ts 4826 18 S0 E An

33 c.tas tan 63.5 340 90 E 35 35

34 c.intas 69.85 330 90 E 35

35 cts.tan 63.5 18890 E 15

36 c.tas.tan 31.75 1290 E 30 30

37 c.tas.tn 50.8 090 E 30

38 c.tastn 152.4 30 90 E 20

39 c,tas tn 101.6 2090 E 15

40 c,tn.ts 838.2 090 E

41 c,htn.ts 254 1090 E 50

42 c.tn hts 711.2 10 80 E 50

43 c,tn.ts 292.1 1290 E

44 c.ts,tn 101.6 14 80 E

45 c.hts.tn 1041.4 6 90 E 35 ee

46 c,hts.tn 711.2 24 90 E 50

47 c.hts tn 685.8 1090 E 10

48 pots.tn 3632.2 28 SO0 E

49 c.tas.tn 190.5 18 80 E i5 Di

50 c.tan,ts 190.5 34 90 E 20

51 c.tan,ts 139.7 3290 E 15
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Frac. # |Type Length (mm) |Orientation | Angle(°N) |Angle(°S) |Observations
52 po.ts.tn 5105.4 25 90 E
53 c.tan.ts 457.2 10 90 E 15
54 c.tn.tas 177.8 2890 E 40
55 ctas tan 254 2090 E 45 15
56 c.ts,tn 1384.3 10 90 E
57 c,tan.ts 50.8 090 E 30 bi
58 ctan,ts 50.8 35290 E 30
59 c,tas tan 63.5 40 90 E 15 15
60 c.tants 457.2 18 9C E 15
61 c.tan,ts 88.9 12980 E 20 Di
62 c.hts,tn 1270 680 E 35
63 c;hts,tn 279.4 18 90 E 35
64 c.tas tn 101.6 0890 E 10
65 po.ts.tn 3911.6 3090 E
66 c,tas.tn 203.2 12 90 E 15
67 c.tas.tan 304.8 090E 40 40
68 ctas.in 114.3 50 90 E 40
69 c,tan.tas 38.1 14 90 E 35 35
70 c.tnts 2971.8 1090 E cement around
70A [ctastan 381 2090 E 30 45
71 c.ts,tn 304.8 2090 E
72 c.tas tn 482.6 16 90 E 45
73 c.tas.tn 241.3 1090 E 45 Di
74 cts.tn 101.6 350 90 E Di
75 c,ts.tn 88.9 10 90 E Di
76 | ctstan 152.4 090 E 45 Di
77 po.tn.ts 4292.6 2590 E
78 c.tas tan 190.5 18 80 E 35 35
79 | ctas.tn 177.8 1580 E 20
80 c.is.tn 279.4 358 90 E 2]
81 po,ts.htn 4064 3090 E 40
82 c.tas.tn 355.8 26 90 E 10
83 cts.tan 203.2 3590 E 35
84 c.tn. hts 279.4 24 90 E 60 Di
85 po.hts,tn 2006.6 20 80 E 15
86 ctas,tn 177.8 20 90 E 45
87 po.tas.tan 812.8 3090 E 55 55
88 po.ts.tan 50.8 45 90 E 25
89 po.ts.tn 203.2 2090 E
90 po.tn.hts 1117.6 28 80 E 35
91 0.tas, tar 177.8 3680 E 15 30
91A |po.ts.htn 1625.6 1490 E 35
82 c.ts.tn 190.5 10 90 E Di
83 c,ts.tn 30.48 090 E Di
93A chtstn | 241.3 1590 E 60
94 cts,tn 152.4 18 90 E Di
95 c.tn.tas 101.6 2090 E 30
96 c.tnhts 1193.8 20 90 E 30
97 ctas.tan 279.4 20 90 E 15 15
98 c.tantas 508 1290 E 55 30
99 po.hts xn 2082.8 3090 E 35
100 tpotastn 127 2090 E 20
101 ipo.tas.tn 38.1 25 90 E 20
102 po.ts.tn 241.3 2590 E
103 c.ts xn 101.6 20 90 E
104 | po.xs.tn 1651 16 90 E Di
105 A | citas.tn 381 28 90 E 30 Di
105 | po.ts.xn 15189.2 56 90 E
106 po.ts,t 812.8 090 E Di
107 c.ts.tn 685.8 2080 E Di
108 c.ts.tn 1219.2 18 90 E
109 | cts.tan 76.2 12 90 E 15
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Frac. # [Type Length (mm) |Orientation | Angie(°N) |Angle(°S) |Observations
110 c,tas tn 228.6 2090 E 35
111 c.ts.tn 990.6 16 90 E
112 c tas. tn 76.2 3590 E 10
113 c.ts.th 990.6 16 90 E Di
114 c.ts.tn 1397 2090 E
115 |ctastan 279.4 1490 E 15 15
116 c.ts,xn 762 2490 E
117 c,xn,hts 228.6 3590 E 35
118 c,xs,htn 939.8 1090 E 60
119 | ctstan 101.6 490 E 30
120 c.ts.tn 4826 18 90 E
121 |ctastan 241.3 1890 E 15 15
122 |ctastan 152.4 26 90 E 45 35
123 ctastn 12.7 1290 E 15
124A | ctas.tn 38.1 1090 E 15
124 | ctastn 1193.8 1290 E 35 Di
125 c.ts.tan 254 12 90 E 35
126 c,ts,tan 127 20 90 E 30

Connectivity Parameters
Number of connection points

# %
22 18 15
1 68 56
0 35 29

Type of termination

# %
Tip 141 58
Hooks 19 8
Abrupt 82 34
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Westwater Springs

Southern pavement. All fractures in a selected area
Swarm C1

Frac. # |Type Length (mm) {Orientation | Angle(°N) |Angle(°S) ]Observations
1 c.xs.tn 4495.8 2090 E
2 c.tas tan 88.9 2090 E 35 20
3 c;his tn 177.8 1890 E 30
4 c,ts.tn 266.7 1490 E
5 c.tan.tas 88.9 26 90 E 15 30
(3] c.tntas 76.2 1090 E 30
7 ctas.in 76.2 1490 E 20
8 ctas.in 177.8 2090 E ' 35
9 c.tas.tn 127 16 90 E 30
10 ctas.in 101.6 1490 E 30
11 c.tas tan 50.8 890 E 30 30
12 {ctastan 50.8 890 E 15 15
13 c.tas tan 95.25 490 E 10 10
14 ctlan,ts 69.85 290 E 45
15 ctasitn 25.4 1490 E 30
16 c.is.tn 711.2 1280 E
17 ctas.tan 177.8 2590 E 15 30
18 ctastan 31.75 358 90 E 30 30
19 c,ts tn 177.8 890 E 3]
20 c,ts tn 279.4 490E
21 [ Rk 584.2 490 E
22 po,ts.tn 609.6 3290 E
23 po.ts.tan 177.8 8590 E 80
24 po.ts.tn 330.2 4090 E
25 po.ts.tn 609.6 3290 E
26 po.ts.in 1168.4 18 90 E
27 c.ts.tn 965.2 24 90 E Di
28 po.tn.xs 1016 1490 E
29 po.xn.ts 457.2 24 90 E
30 PO, XN,XS 4724.4 090 E
31 po.in.xs 660.4 880 E
32 po,ts.tin 3530.6 16 80 E
33 C,its.tn 2565.4 2090 E Di
34 C,xs,tn 304.8 3490 E
35 c.xshin 9067.8 2290 E 35 An
36 | ctants 139.7 2690 E 10
37 ctants 254 3090 E 15
38 | ctants 177.8 2290 E 20
39 ctants 241.3 28 90 E 15
40 ctas.tn 520.7 1080 E 20
41 ctants 1092.2 1480 E 15
42 ctlas.tn 1016 348 90 E 35
43 ctastn 558.8 24 80 E 15
44 c.hts.in 558.8 1890 E 45
45 ctas.tan 431.8 1280 E 35 35
46 | ctstan 254 2090 E 35
47 cts.tan 241.3 2090E | 15 N
48 c.his.tn 685.8 3090 E 25
49 c.htstn 4038.6 26 90 E 35
50 c.las tan 127 16 90 E 15 15
51 c;tas,tn 1244.6 2690 E 25
52 ctlas.tn 812.8 2890 E 25
53 c.tas,tn 254 20 90 E 15
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Frac. # |Type Length (mm) |Orientation | Angle(°N) |Angle(°S) |Observations
54 c.ts.tn 533.4 3090 E
55 po,ts.tn 7391.4 490 E
56 c,xn,hts 6350 2290 E 45 An
57 | ctants 254 3290 E 25
58 _|ctastan 457.2 2290E 30 30
58 c,tas.tn 444.5 3490 E 20
60 _|ctastan 76.2 1890 E 10 25
61 ctastn 393.7 2490 E 45
62 ctas.tn 279.4 2090 E 30
63 | ctstan 558.8 3090 E 30
64 c.ts.tn 660.4 24 90 E
65 po.is.tn 1549.4 3090 E
66 c.ts.tn 368.3 2290 E Di
67 c,ts.xn 1041.4 2890 E
68 c,ts.tn 215.9 18 90 E Di
69 c.ts.xn 508 2090 E
70 c,xs.in 7238 3090 E
71 c.tas.tn 330.2 3590 E 15
72 ctantas 101.6 490 E 35 35
73 c.tas.tn 508 2590 E 15
74 c,tas.tn 457.2 2580 E 30
75 po.tas.in 4851.4 320 90 E 70 Di
75 po.tas.tn 4851.4 320 90 E 70 Di

Connectivity Parameters

Number of connection points

# %

22 12 28

1 35 54

0 18 18

Type of termination

# Y%

Tip 72 55
Hooks 5 4
Abrupt 53 41
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Westwater Springs

Southern pavement. All fractures in a selected area

Swarm C2
Frac. # {Type Length (mm) |Orientation | Angile(°’N) ]Angle(°S) |[Observations
1 c,is.tn 6451.6 2090 E
2 c.tas tn 38.1 4590 E 15
3 ctas;tn 139.7 2590 E 30 Di
4 ctas.tn 152.4 2890 E 45 Di
5 c,tas,tn 190.5 1490 E 30
6 c,tas tn 25.4 350 90 E 30
7 po.tants| 63.5 30980 E 30
8 ctants 241.3 3590 E 15
9 ipotants 114.3 1680 E 10
10 po.tants 12.7 3090 E 40
11 ctantas 76.2 1280 E 30 30
12 c,is.tn 3022.6 1280 E Di
13 po.ts.xn 635 1280 E
14 po.ts,xn 1092.2 2890 E

Connectivity Parameters

Numnber of connection points

# %

22 1 8%

1 g 75%

4] 2 17%

Type of termination

# %

Tip 13 54
Hooks 0 0
Abrupt 11 46
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Westwater Springs

Southern pavement. All fractures in a selected area

Swarm C3
Frac. # Type Length (mm) |Orientation | Angle(°’N) |Angle(°S) |Observations

1 pots.tn 2819.4 1290 E

2 c, tastn 38.1 3290 E 30
3 clasin 114.3 3890 E 45
4 c.las.tan 88.8 1290 E 15 15
5 ctas;tan 76.2 1490 E 40 40
6 c.ts.tn 685.8 290 E

7 cts.tan 63.5 352 90 E 40

8 c.tn.tas 101.6 1290 E 20
9 cis.tn 2260.6 1080 E

10 ctn.tas 279.4 1280 E 35
11 cistan 457.2 18 90 E 30

12 | cistan 304.8 1890 E 20

13 | cistan 152.4 890 E 35

14 c;ts.tn 2489.2 890 E

15 cis.tan 50.8 348 80 E 30

i6 cis.tn 215.9 348 90 E

i7 cts.tn 3454.4 18 90 E

18 c.tas tan 50.8 10 90 E 40 40
19 c.tas tan 355.6 18 90 E 15 35
20 c.tas.tan 50.8 1490 E 20 20
21 c.tas tan 63.5 1090 E 15 15
22 ctas,tan 101.6 1080 E 30 30
23 c.ts.tan 203.2 28 90 E 30

24 c.ts.tn 812.8 490E

25 cts.in 330.2 18 S0 E

26 c,ts.xn 203.2 090 E

g 27 c;ts,xn 177.8 090E Di

28 po.ts.tan 11684 45 90 E 45

28A po.ts.tn 3302 55 90 E

29 po.tn,xs 1574.8 1490 E Di
30 c,xs,tn 4191 2590 E

31 ctas,ts 63.5 1080 E 35

32 c,ts.xn 1981.2 18 90 E

33 c.tants 63.5 2090 E 45

34 ctan.tas 139.7 18 90 E 15 15
35 po,xs,tn 660.4 1590 E

Connectivity Parameters
Number of connection points

# %
>2 7 23
1 14 47
9 30

Type of termination

# %
Tip 43 72
Hooks 0 0
Abrupt 17 28
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Westwater Springs

Southern pavement. All fractures in a selected area
Swarm D1

Frac. # |[Type Length (mm) |Orientation | Angle(®N) {Angle(°S) [Observations

1 c.is,in 2057.4 3090 E

2 C.is.tn 990.6 45 90 E Di
3 clants 152.4 24 90 E 30 Di
4 chts.tn 393.7 5590 E 15

5 ctants 88.9 1880 E 60 Di
6 c.ts.tn 1117.6 2890 E

7 c.ts.tn 2286 3490 E

8 c.tants 228.6 56 90 E 30

9 c,is.tn 711.2 2290 E

10 c.ts.tn 533.4 2090 E Di
11 c;ts.tn 203.2 1490 E Di
12 c.ts.tn 533.4 690 E Di
13 c,ts.tn 914.4 4590 E Di
14 c.ts.tn 1955.8 3490 E

15 c.ts.tn 406.4 4090 E

16 C.is.tn 3124.2 3590 E

17 c.ts.tan 3175 3590 E 45

Connectivity Parameters
Number of connection points

# %
=2 0 0
1 5 29
0 12 71

Type of termination

# %
Tip 29 85
Hooks 1 3
Abrupt 4 12
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Westwater Springs

Southern pavement. All fractures in a selected area

Swarm D2
Frac. # |Type Length (mm) |Orientation | Angle(°N) |[Angle(°S) |Observations

1 c.xs tn 190.5 2290 E

2 c,tas,tn 38.1 36 90 E 10

.3 c,ts.tn 88.9 1490 E Di
4 c,ts.in 419.1 3590 E . Di
5 c.tan.ts 76.2 2290 E 30 Di
6 ctsin 1905 2490 E Di
7 ctastan 50.8 24 90 E 35

8 ctastan 25.4 26 90 E i0 10
9 cistn 863.6 26 90 E

10 c,is.tn 1143 3090 E

11 cis.tn 660.4 10 90 E Di
12 c,ts.in 1422.4 1490 E

13 po.ts.tn 457.2 080 E

14 _po,ts.tn 533.4 22 90 E Di
15 c,ts,tn 635 350 90 E Di
16 c.ts;tn 406.4 352 90 E Di
17 ctas.tn 177.8 090 E Di
18 c,istn 2895.6 352 90 E

19 po.tas,tn 965.2 22 0 E 40 Di

Connectivity Par

S

Number pf connection points

# %

>2 1 <]

1 4 22

0 13 72
Type of termination

# %

Tip 28 78

Hooks 0 0

Abrupt 8 22

249




Westwater Springs

Southern pavement. All fractures in a selected area

Swarm D3

Frac. # |Type Length (mm) |Orientation | Angle(°N) [Angle(°S) |Observations
1 po.Xs.tn 533.4 2880 E
2 citstn 330.2 2280 E Di
3 cis.tn 241.3 24 90 E
4 c.hts htn 1270 3890 E 15 35
5 ctasin 165.1 2490 E 20
6 c.htn ts 457.2 2090 E 15
7 c;hts.tn 2590.8 2290 E 10 Di
8 ctan s 76.2 4590 E 10 Di
g ctan,ts 177.8 4290 E 10 Di
10 cts.in 508 090 E Di
11 c.tn,ts 939.8 2890 E Di

Connectivity Parameters

Number of connection points

# %

>2 1 11

1 5 56

0 3 33
Type of termination

# %

Tip 11 61

Hooks 4 22

Abrupt 3 17
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Westwater Springs

Southern pavement. All fractures in a selected area
Swarm D4

Frac. # |Type Length (mm) |Orientation | Angle(°N) [Angle(°S) |Observations
1 C,XS. XN 190.5 1290 E Di
pPo,XS, XN 228.6 340 90 E

3 po.xs.tan 1117.6 28 0 E 35
4 c.tn.tas 114.3 4590 E 40
5 po,tstn 381 4590 E
6 po,tn.ts 2743.2 3590 E
7 po.tn hts 584.2 24 90 E 60
8 po,ts.tn 1066.8 2090 E
9 po.ts.tn 914.4 2490 E
10 po.tas.tn 1473.2 3090 E 10
11 po.ts.in 609.6 1290 E
12 po.ts.tn 1143 2090 E ee
13 c.ts.tn 279.4 24 90 E e
14 c.is.in 1600.2 24 90 E €e
15 c.is.tn 1549.4 090 E
16 c,ts,in 177.8 490 E Di
17 c.ts.tn 608.6 18 90 E Di
18 c.tas,tan 381 1090 E 35 35
19 ctan,ts 1930.4 2090 E 35
20 ctantas 152.4 2080 E 15 15
21 chtnts 762 3430 E 15
22 c,his.tn 1955.8 28 90 E 15
23 c,ts.tn 533.4 2090 E
24 c.tas tn 812.8 2080 E 35
25 c.tan,ts 330.2 1290 E 15
26 c.tn.ts 241.3 1890 E
27 chtnts 1447.8 2290 E 10
28 |ctastan 76.2 1890 E 15 15
29 c.ts.tn 190.5 26 S0 E
30 c,htn,ts 177.8 26 90 E 35
31 c.hts tn 1270 22 90 E 15
32 ¢ htn.ts 1016 2490 E 20
33 c.tn tas 50.8 2090 E 10 10
34 c,tas.tn 63.5 4090 E 35
35 c,hts,tn 1981.2 16 90 E 20
36 c.tas.tn 431.8 1290 E 15
37 ctas,tn 406.4 2090 E 50

- 38 c.ts.tn 431.8 2090 E Di
39 cts.tn 1117.6 280 E 15
40 c.tas tn 304.8 36 90 E 30
41 po.ts.in 2540 690 E
42 c,ts.tn 177.8 350 90 E

42 A jcitnts 508 1890 E
43 c.hints 177.8 1080 E 20

43 A ¢.hto,ts 952.5 2290 E 15

43 B c;htn, ts 711.2 1490 E 45
44 c;hts htn 685.8 24 90 E 15 15

44 A ¢ tants 406.4 1290 E 15
45 ctastan 1854.2 3290 E 30 30
46 ctas tan 241.3 42 90 E 30 30
47 c,ts,tn 406.4 3290 E Di
48 c,ts.tn 406.4 3090 E Di
49 ctnts 711.2 24 90 E
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Frac. # |Type Length (mm) |Orientation | Angle(°N) {Angle(°S) |Observations
50 c tas in 1016 2290 E 35
51 ctnts 914.4 16 80 E
52 c.ts.tn 228.6 1590 E Di
53 ¢.ts.tn 711.2 1080 E Di
54 c,htn,ts 1117.6 1590 E 30
55 clastan 127 890 E 15 15
56 c,ts.tn 152.4 B9 E Di
57 c.tas.tn 50.8 2890 E 30
58 c.hin,ts 914.4 890 E 35
59 c,ts.tn 1625.6 16 90 E
60 c.hts.tn 254 2290 E 35
61 ¢, xn hts 533.4 2090 E
62 cin.xs 304.8 1490 E
€3 c,in xs 965.2 358 90 E An
64 c,tan,is 114.3 16 90 E 15
65 c;htn ts 241.3 490 E 15
66 | chinxs 990.6 2290 E 30
67 ctastan 76.2 16 80 E 15 15 Di
67 A c.is.tn 469.9 2090 E
68 clistn 203.2 2890 E
63 c,ts.tn 1092.2 3890 E

Connectivity Parameters

Number of connection points

# %

>2 7 10

1 32 48

0 28 42
Type of termination

# %

Tip 84 63

Hooks 20 15

Abrupt 30 22
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Westwater Springs

Southern pavement. All fractures in a selected area
Infilling fractures between Swarms A and B

Frac. # |Type Length (mm) |Orientation | Angle(°N) |Angle(°S) |Observations |
1 po,xs.tn 2108.2 3590 E
2 po,xs.tan 2082.8 1590 E 45
3 c.tastn 177.8 1890 E 35
4 c.tas.tn 457.2 3690 E 30
5 po,ts.tan 88.9 3090 E 35
6 cts.in 228.6 3280 E
7 po.tas.xn 2387.6 338 90 E 45
8 c.tas.tn 457.2 55 90 E 40
g poxntas| _ 736.6 31490 E a0 Di
10 po.ts.tn 406.4 6090 E
11 po,ts.tn 1346.2 5490 E
12 ctas.tn 127 490E 45 Di
13 cs.tn 584.2 1080 E Di
14 ctas.tn 190.5 3290 E 45
15 c.tas.tn 495.3 2490 E 45
16 c,ts.in 203.2 26 90 E
17 cts.tn 127 26 90 E
18 c.tas.tn 203.2 352 90 E 35
19 c.ts.xn 381 2090 E
20 po,ts.tn 1117.6 5590 E
21 ctas.tn 736.6 26 90 E 35
22 c.tants 190.5 3290 E 20
23 c.ts.in 1016 690 E
24 cts.tn 495.3 2690 E
25 c,ts,tn 2362.2 28 S0 E
Connectivity Parameters
Number of connection points
# %
>2 Q 0
1 13 68
0 3 32
Type of termination
. # %
Tip 22 79
Hooks o] 1]
Abrupt 8 21
Southern pavement. All fractures in a selected area
Infilling fractures between Swarms C1 and D1/D2
Frac. # [Type Length (mm) |Orientation | Angle(°N) | Angle(°S) | Observations |
1 c,xs.tn 1879.6 1890 E
2 o.is,xn 431.8 1480 E
3 o.tastan 304.8 8090 E 90 35
4 0,XS.Xn 508 24 90 E
5 po.xs.tn 1752.6 1690 E
6 po.is.in 787.4 12 90 E
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Cottonwood Flat tron

Large area. All fractures

Swarm A
Frac. # |Type Length (mm) |Orientation | Angle(°N) |Angle(°S) |Observations

1 c.ints 787.4 3290 E
2 c.xn,tas 660.4 22 90 E 30
3 cxn ts 457.2 24 90 £
4 c,tn.ts 330.2 3290 E
5 c.tstn 444.5 3590 E
6 c,tn.tas 571.5 3090 E 35
7 ctants 101.6 2690 E 15
8 c.tn,ts 1574.8 52 90 E same as #4?
9 c,tn ts 584.2 3290 E
10 c.tan htn 787.4 2080 E 35 40
11 c,tan ts 165.1 4280 E 60
12 c.tnts 279.4 3490 E
13 ctants 355.6 2490 E 30
14 c.tants 254 2890 E 20
15 clants 114.3 2090 E 30
16 c.tn.hts 304.8 26 90 E 40
17 c.tn.hts 965.2 2090 E 30
18 c.hts htn 304.8 1890 E 50 35
19 c.tn,ts 1041.4 28 90 E
20 ctan,ts 330.2 2290 E 35
21 clan,ts 114.3 26890 E 20
22 ctn.ts 1574.8 3090 E
23 ctantas 33.02 28 80 E 40 40
24 cintas B8B8.9 28 90 E 35
25 ctnhts 1397 3090 E 15
26 c.is.tn 1168.4 3080 E
27 |ctastan 38.1 3290 E 15 45
28 ctnts 355.6 2590 E
29 c,tn,ts 1676.4 3290 E
30 c.tntas 139.7 2290 E 35
31 ctnts 228.6 2280 E
32 ctn.ts 228.6 2090 E
33° ctnts 152.4 1280 E
34 ctn.xs 736.6 090 E
35 c.xn.hts 2794 3490 E 40
36 c;htn.hts 381 3290 E 45 45
37 c.hints 762 3490 E 35

. 38 cints 660.4 1890 E
39 c.tnts 355.6 2890 E
40 c.hin ts 558.8 3890 E 30
41 ctnts 635 3090 E
42 c.tn ts 660.4 3490 E
43 c,tn,ts 838.2 18 90 E
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Connectivity Parameters

Number of connection points

# %
22 5 12
1 17 41
0 19 47

Type of termination

# %
Tip 58 71
Hooks 9 11
Abrupt 15 18
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Cottonwood Fiat Iron

Large area. All fractures

Swarm B
Frac. # |Type Length (mm) |Orientation | Angile(’N) jAngle(°S) |Observations

1 cxnxs 1803.4 3290 E
2 c.xnts 1701.8 3290 E
3 ctantas 38.1 8090 E 45 45
4 c.tnts 1574.8 3290 E
5 c,htnts 508 3490 E 35
6 citnts 939.8 2890 E
7 c.tn,ts 1371.6 2890 E
8 chints 1524 3290 E 35
9 c.ints 1600.2 2690 E
10 c,tn,ts 2159 2290 E
11 c,tn,ts 1422.4 2890 E
12 c.ints 1143 3490 E
13 c.tants 914.4 3090 E i5
14 c,tnts 711.2 2880 E
15 c,tn,ts 1168.4 3080 E
16 c ints 482.6 3880 E
17 c,tan,ts 190.5 5290 E 35
18 ctantas 254 3290 E i5 30
19 c,tn,ts 584.2 18 90 E
20 chtntas 558.8 2090 E 35 40
21 c.ints. 482.6 2080 E

Connectivity Parameters

Number of connection points

# %

22 3 16

1 3 16

0 13 68

Type of termination

# %

Tip 28 74
Hooks 3 8

Abrupt 7 18
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Cottonwood Flat iron

Large area. All fractures
Swarm C

Frac. # (Type Length (mm) |Orientation | Angle(°’N)} |Angle(°S) |Observations
1 C,XN,XS 3022.6 2490 E
2 c.xn.ts 1955.8 3690 E
3 €, XN,XS 1244.6 3890 E
4 ctnxs 330.2 3290 E
5 cints 279.4 3490 E
6 c,tn,ts 685.8 24 90 E
7 C,XN,XS 381 3890 E
8 po.xn.ts 381 3490 E
9 c.xn,is 965.2 3890 E
10 c.htnts 762 2080 E 25
11 chtn.ts 406.4 2280 E 35
12 ctn.ts £58.8 3490 E
13 c.tants 180.5 3080 E 35
14 c,tn.ts 355.6 3080 E
15 c.htn.ts 355.6 3090 E 15
16 ctntas 228.6 3590 E 15
17 citn.ts £685.8 26 90 E
18 c.in.ts 584.2 3290 E
19 c.htnts 1143 46 90 E 35
20 c,tan,ts 711.2 3890 E 10
21 c.tn.ts 685.8 4290 E
22 c.tn.ts 406.4 3880 E
23 c.tn.ts 241.3 3880 E
24 cinhts 508 4290 E 40
; 25 ctnts 381 4090 E
26 c,in,ts 965.2 4590 E
27 cin hts 2057.4 2890 E 35
28 c.tnts 431.8 4090 E Di
29 c.tn,ts 381 3890 E Di
30 ctntas 381 2890 E 25
31 c,tin,ts 3708.4 2590 E
32 ctn.ts 635 4090 E
33 c,in.ts 2616.2 2290 E
34 c.tnts 2286 3290 E
35 ctintas 152.4 42 90 E 20
36 c.tntas 381 1490 E 35
37 ctn.ts 990.6 3090 E
38 cints 533.4 3090 E
38 c.tantas 190.5 2880 E 20 15
40 ctants 355.6 4080 E 20
41 ctnhts 1803.4 4080 E 30
42 c,tn hts 330.2 26 90 E 30 Di
43 chin.tas 1651 2490 E 20 10 Di
44 ctantas 63.5 230 90 E 60 60
45 c.tnts 2463.8 3490 E
46 ctn hts 1752.6 26 S0 E 35
47 { cinhts 1117.6 3490 E 35
48 c,tn,ts 889 3290 E
49 c.tnts 889 2890 E
50 c,tn,ts 914.4 3290 E Di
51 c.tn.hts 330.2 3090 E 40
52 c,htn.ts 355.6 3290 E 40
53 c,htn,ts 685.8 28 90 E 35 Di
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Frac. # |Type Length (mm) {Orientation | Angle(°’N) [Angle(°S) |Observations
54 c.tnts 533.4 2280 E
S5 ctants 406.4 2490 E 10
56 ctnts 736.6 3280 E
57 ctn s 939.8 3290 E
58 c,tnis 812.8 2490 E
59 c,hin,ts 406.4 1890 E 80
60 ctn ts 1600.2 2590 E
61 c,tn,ts 228.6 34 90 E

Connectivity Parameters

Number of connection points

# %

>2 3 6

1 22 41

0 29 53
Type of tenmination

# %

Tip 80 74

Hooks 15 14

Abrupt 13 12
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Cottonwood Flat lron

Large area. All fractures

Swarm D
Frac. # |Type Length (mm) |Orientation | Angle(’N) |Angle(°S) {Observations
1 c.xnts 508 42 90 E
2 c.htn ts 457.2 42 90 E 35
3 ctn ts 381 1090 E
4 c,ints 63.5 52 90 E
5 po.tnts 88.9 52 90 E
6 po.ints 38.1 3890 E
7 c.ints 76.2 5890 E
8 c,tnts 76.2 5490 E
9 po.tn,ts 127 2490 E
10 po.tn,ts 127 2490 E
11 c.tn.ts 304.8 2490 E
12 c;tn.hts 177.8 2890 E 40
13 ctants 304.8 2290 E 10
14 c.xn,ts 635 3290 E
15 cin,xs 609.6 2890 E
16 c.tn hts 330.2 3890 E 35
17 cin.xs 508 2890 E
18 C.XN,XS 660.4 2890 E
19 ctn.xs 355.6 24 90 E
20 ctants 165.1 3490 E 30
21 ctnts 990.6 3290 E
22 c,tn.ts 279.4 2890 E
23 ctanxs 1143 26 90 E 45
24 c.tn.xs 355.6 28 90 E
25 [ RGN 279.4 4590 E
26 c,tn ts 304.8 3080 E
27 c.tntas 228.6 6590 E 40
28 C. XN XS 990.6 3290 E same as #187
29 po.tn.xs 482.6 26 90 E
30 c.xn.ts 2590.8 3490 E
31 c,xn,ts 1955.8 3090 E
32 c,xnts 1320.8 3290 E
33 c.xn.tas 2006.6 3290 E 20
34 c.tntas 1752.6 3490 E 10
35 c.tntas 330.2 3490 E 20
36 c.ints 1244.6 2890 E
37 ¢lantas 38.1 346 G0 E 35 35
38 clants 139.7 5290 E 40
39 ctnts 457.2 28 90 E
40 c.tn hts 431.8 S090 E 45
41 ctants 279.4 3490 E 30
42 ctants 330.2 2890 E 15
43 c.tn tas 241.3 3580 E 30
44 chin,ts 1016 3490 E 35
45 ctntas 203.2 26 90 E 30
46 c.in.tas 50.8 36 90 E 20
47 c.tn.tas 101.6 294 90 E 80
48 c.tas,tn 38.1 24 90 E 30
49 c.ts.tan 228.6 3490 E 80
50 c.ints 482.6 3090 E
51 cints 228.6 4590 E
52 c,ints 101.6 3090 E
53 c.tan,ts 381 26 90 E 30
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Frac. # |Type Length (mm) |Orientation | Angle(°N) Angle("s) Observations

54 c.tstan 76.2 3290 E 20

55 c.ints 177.8 3590 E

56 ctants 203.2 3890 E 40

57 ctn.ts 241.3 2890 E

58 ctants 457.2 3290 E 15

59 c.tn.is 139.7 28 90 E

60 c.ts.tn 330.2 3090 E

61 c.intas 279.4 3590 E 80
62 clants 139.7 280 90 E 80

63 c,tants 203.2 3590 E g0

64 c,tn hts 1041.4 3390 E 35
65 c.ts.tan 1016 3090 E 45

66 ctnts 304.8 2690 E

67 c.tn.hts 685.8 2890 E 30
68 c,tas htn 1016 3890 E 40 15
69 ctas,tn 63.5 358 80 E 50
70 c.tantas 50.8 357 90 E 45 45
71 c;tntas 1524 3290 E 20
72 c.in tas 215.9 40 90 E 20
73 c.htn.tas 939.8 3090 E 20 50
74 ctantas 152.4 352 90 E 45 45
75 c.htn.tas 254 3590 E 40 20
76 chin ts 1371.6 3290 E 15

77 c.htn hts 1092.2 3680 E 35 45
78 c,tn.hts 203.2 45 90 E 20
79 c,tn hts 152.4 3890 E 15
80 c,tnts 63.5 1080 E

81 c,hts tan 406.4 4890 E 20 45
82 ctantas 609.6 2490 E 15 15
83 citntas 787.4 3680 E 45
84 ctants 304.8 3090 E 60

85 c,ts.tan 558.8 3490 E 35

86 ctas.tan 304.8 8490 E 60 45
87 c.tnts 177.8 3090 E

88 c,tn,ts 431.8 1690 E

89 c.tnts 1143 3290 E

90 c.tnts 406.4 3290 E

91 c.htstn 215.9 2890 E 35
92 cints 304.8 4290 E

93 ctantas 45.72 295 90 E S0 90
94 cints 635 3490 E

95 c.htn ts 939.8 2080 E 20

96 citn ts 635 2690 E

97 chtntas 889 1280 E 45 40
98 chts.tn 330.2 S290 E 60
99 |chtstan 1143 42060 E 35 45
100 | ctangs 203.2 358 90 E 45

101 cilastn 152.4 3090 E 45
102 ctastn 88.9 270 90 E 60
103 c,tastn 330.2 2490 E 30
104 lctastan 177.8 2290 E 35 50
105 c,las tn 584.2 3190 E 40
106 c.ts.tan 3073.4 3090 E 35

107 c,tn.tas 203.2 254 90 E 35
108 ctants 330.2 5290 E 35

109 c.ints 736.6 2690 E

110 ctants 4572 2890 E 50

111 c,ts.tan 482.6 54 90 E 45

112 c,ts.tan 254 4490 E 35

113 cts tan 177.8 14 90 E 45

114 |ctantas 215.9 6390 E 35 45
115 c,tants 76.2 5590 E 60
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Frac. # |Type Length (mm) |Orientation | Angle(°’N) |Angle(°S) |Observations
116 cints 889 3380 E
117 c.tn.ts 1447.8 3490E
118 c.ts htn 889 2290 E 45
119 c,tn.hts 203.2 3090 E 45
120 | ctants 431.8 2490 E 30
121 c,in ts 304.8 3290 E
122 c.tnts 355.6 2790 E
123 lc.tanhts 482.6 3090 E 45 15
124 chints 939.8 3590 E 45
125 c,ints 241.3 2090 E
126 c,tan;ts 203.2 14 90 E 45
127 c;htn,ts 431.8 40 90 E 45
128 ctnts 203.2 1890 E bi
129 cintas 1473.2 3080 E 30
130 chts.tn 2768.6 3390 E 35
131 ctints 457.2 3180 E
132 c,htn hts 406.4 3190 E 45 45
133__lctantas 203.2 58 90 E 35 35
134 c,tn.tas 990.6 2090 E 15
135 c.lants 762 33890 E 10
136 ctn.ts 1549.4 3490 E
137 | ctants 127 3690 E 30
138 c.tnts 152.4 3290 E
139 clants 812.8 3890 E 15
140 c,tn.ts 1498.6 33 90 E
141 c,htn ts 635 3490 E 45
142 c.tnts 508 36 90 E
143 chtstn 508 3490 E 45
144 c.tn.ts 279.4 3190 E
145 cints 304.8 3490E
146 c.tnts 1701.8 2890 E
147 ¢ htstn 1828.8 3090 E 45
148 ctantas 177.8 3080 E 45 30
149 ctas.tn 381 2990 E 30
150 ctn.ts 1854.2 3290 E
151 ctnts 533.4 26 90 E
152 c.ltstan 457.2 3290 E 30
153 c.tn.ts 406.4 3890E
154 c,itn.ts 330.2 2490 E
155 citnts 711.2 42 90 E
156 |ctantas 127 2290 E 35 35
157 c,tnts 609.6 40 90 E
158 c,tn.ts 228.6 41 90 E
159 c.tnts 127 36 S0 E
160 c.tas,in 101.6 40 90 E 20
161 ctlas,.tn 279.4 42 90 £ 40
162 | ctstan 88.9 2790 E 15
163 | ctastan 38.1 1890 E 30 35
164 c,is.tan 838.2 1590 E 45
165 c.ints 990.6 3590 E
166 ctastan 152.4 41 90 E i0 10
167 citants 101.6 342 90 E 60
168 clants 139.7 3090 E 60
169 c,tnts 203.2 34 90 E
170 ctants 6426.2 3290 E 30
171 c.tnts 152.4 18 80 E
172 c.ints 139.7 28 90 E
173 c,ints 215.9 2090 E
174 ctants 419.1 3090 E 40
175 ctnts 1727.2 26 S0 E
176 c,in.t 787.4 3790 E
177 c,tn,ts 355.6 36 90 E
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Frac. # |Type Length (mm) (Orientation | Angle(°N) |{Angle(°S) |Observations
178 c,tan,ts 584.2 2890 E 15
179 c.tas.tn 127 3080 E 30
180_ | ctas.tan 254 3690 E 30 45
181 ctn.tas 254 3390 E 25
182 |ctantas 304.8 3290 E 10 10
183 c.tants 1803.4 3390 E 25
184 ctntas 25.4 5290 E 35
185 ctnts 431.8 3890 E
186 c,in.ts 254 3490 E
187 c,in.ts 152.4 3290 E
188 c.tan,ts 101.6 3690 E 70
189 c,tn.ts 584.2 44 90 E
190 ctants 152.4 3790 E 45
191 c.tn tas 406.4 3290 E 15
192 c,ins 228.6 3890 E
193 c.tan.ts 279.4 3990 E 30
194 c.tn;ts 5B4.2 40 90 E
195 c.tantas 38.1 1080 E 45 45
196 c.ts.tn 888 37890 E
197 c.ts,tn 63.5 37890 E
198 c.ts.tn 508 S380E
199 c.ts.tn 76.2 3590 E
200 c.htn.ts 114.3 4090 E 30
201 c,tn.ts 304.8 44 90 E
202 c,in.ts 431.8 4190 E
203 c,tn,ts 304.8 3990 E
204 c.tn.ts 1803.4 3090 E
205 | ctants 76.2 3990 E 30
206 c,tn.s 1524 3290 E Di
207 c,hts.tn 1387 29 90 E 45
208 c.xn.ts 406.4 3090 E
209 cts.xn . 1219.2 3590 E
210 c.tants 355.6 38 90 E 30
211 cints 203.2 3890 E
212 c.ints 63.5 26 90 E
213 c.ints 177.8 36 90 E
214 c.tnts 254 24 90 E
215 c.tn tas 508 3790 E 10
216 c,tn ts 279.4 3090 E
217 citants 304.8 2290 E 30
218 c,ilants 254 1090 E 10
219 c.tants 38.1 3890 E 10
220 c.in ts 558.8 3490 E
221 c.htn,ts 812.8 3490 E 45
222 ctants 762 3890 E 30
223 | ctants 101.6 090 E 10
224 ctas;tn 127 10 90 E 15
225 c,hts tn 736.6 3290 E 35
226 c.in.ts 812.8 26 90 E
227 | ctants 203.2 2890 E 30
228 ctants 1016 3290E 35
229 c,tn.tas 177.8 2090 E 30
230 c.tn.ts 457.2 2990 E
231 ctantas 88.8 46 90 E 25 25
232 c.tnts 431.8 26 90 E
233 |chtstan 381 36E 15 15
234 c;htn. ts 1117.6 3490 E 20
235 cints 228.6 3190 E
236 c,in.ts 127 38 90 E
237 c,in.ts 279.4 2290 E
238 c,ints 152.4 2490 E
239 c.tn,ts 609.6 20 90 E
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Frac. # |Type Length (mm) |Orientation | Angle(°N) |[Angle(°S) |Obhservations
240 cin.ts 76.2 2890 E
241 cin.ts 355.6 1890 E
242 cintas 203.2 3290 E 35
243 c.tan tas 114.3 3290 E 20 30
244 ctn.tas 88.9 2990 E 25
245 c.tn.ts 1625.6 2890 E
246 ctants 609.6 22 90 E 35
247 c.tn.ts 304.8 290 E
248 ctn.ts 1498.6 26 90 E
249 ctan,ts 228.6 3490 E 35
250 ctntas 457.2 42 90 E 35
251 c.in.ts 406.4 2590 E
252 cin.ts 355.6 680E
253 cints 558.8 2490 E
254 ctn,ts 12985.4 2090 E
255 ctas.tn 355.6 1890 E 35
256 ctas.tn 1016 1090 E 15
257 c.tas,tn 152.4 1290 E 20
258 c.tn ts 50.8 1980 E
258 ctn.ts 736.6 2090 E
260 c.tan,ts 127 1890 E 15
261 clants 381 1990 £ 15
262 ctlas.tn 330.2 24 90 E 15
263 clas.tn 203.2 22 90 E 1S
264 | ctants 482.6 2090 E 15
265 c.htnts 533.4 19 80 E 35
266 ctnts 711.2 1890 E
267 chtn.ts 508 16 80 E 30
268 ctas.tn 76.2 1080 E 40
269 c,ints 558.8 36 90 E
270 c.tnts 381 20 90 E
271 c;htn ts 1270 2290 E 60
272 cints 736.6 24 90 E
273 c,tn,ts 533.4 20 90 E
274 c.las,tn 558.8 2090 E 15
275 c.tants 330.2 46 90 E 40
276 ctnts 381 2490 E
277 c.tn.ts 381 18 80 ER
278 ctantas 431.8 1890 E 60 60
2789 ¢, htn.ts 431.8 1990 E 45
280 ctlastn 584.2 2690 E 20
281 c.tantas 101.6 78 90 E 60 70
282 c.tants 889 2090 E 60
283 |ctantas 38.1 76 90 E 60 60
284 ctas.tn 736.6 3590 E 35
285 lctastan 127 3880 E 15 15
286 |ctastan 406.4 2290E 45 45
287 cinhts 406.4 2490 E 25
288 c;hin,ts 863.6 24 S0 E 25
289 cth.ts 279.4 1890 E
290 ctn, ts 304.8 1880 E
291 ctas.tn 63.5 6590 E 70
292 ctn.ts 254 3090 E
293 cts htn 203.2 1890 E 40
294 c.tn,ts 787.4 1890 E
295 c.tnts 533.4 1890 E
296 c,tn ts 609.6 27 90 E
297 ctan.xs 431.8 3090 E 15 Di
298 citnts 254 3090 E
299 ctn.ts 228.6 2090 E
300 ctn,ts 254 1890 E
301 c,tas.tn 812.8 18 90 E 15
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Frac. # |[Type Length (mm) |Orientation | Angle(°N) Angle("S) Observations

302 c.tnts 431.8 1690 E

303 c.tants 381 1490 E 25

304 c,hints 584.2 16 90 E 35

308 ctants 139.7 54 90 E 40

306 {ctantas 1117.6 1490 E 15 10
307 ctnts 584.2 2290 E

308 c.ints 990.6 24 90 E

309 c.tn.his 1955.8 2490 E i35
310 c.tn.ts 279.4 2290 E

311 Jchtnhts 254 1690 E 20 15
312 c.htn.ts 381 1890 E 20

313 |ctanhts 228.6 2890 E 15 20
314 |c.htntas 1244.6 36 90 E 30 40

Connectivity Parameters

Number of connection points

# Y%
22 35 12
1 138 47
0 123 41

Type of termination

# %
Tip 384 64
Hooks 51 9
Abrupt 159 27
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Cottonwood Flat Iron

Large area. All fractures
Swarm E

Frac. # |Type Length (mm) |Orientation | Angle’N) |Angle(°S) |Observations
1 cxn.is 330.2 1890 E
2 c.tn,ts 279.4 3290 E
3 c.tnts 508 2890 E
4 c.tn.ts 533.4 3090 E
5 ctnts 533.4 3590E
6 cin.xs 2235.2 2990 E
7 c,tn.xs 304.8 26 90 E
8 C,XN,XS 355.6 3290E
9 po,Xn,xs 1320.8 2880 E
10 ctn.ts 279.4 2490 E
11 cxXnxS 431.8 SO0 E
12 0,XN,XS 406.4 2290 E
13 cinxs 457.2 2490 E
14 c,tn.xs 990.6 3890 E
15 c;xn,hts 1600.2 1890 E 30
16 c.xnts 406.4 3090 E
17 ctnts 177.8 3490 E
18 c,tn hts 241.3 3090 E 20
19 c;htnts 177.8 2790 E 20
20 ctants 635 2690 E 10
21 c;tn ts 1270 3490 E
22 c,in ts 965.2 3290 E
23 c.tn,ts 609.6 44 90 E
24 ctn,ts 431.8 2090 E
25 ctants 1676.4 3280 E 25
b 26 c,tn.ts 3225.8 3590 E
! 27 ctnts 355.6 3490 E
28 cints 838.2 3890 E
29 c,tn.ts 355.6 4390 E
30 c.ints 139.7 4290 E
31 c,tn.hts 812.8 3480 E 35
32 c,itn,ts 1041.4 3090 E
33 cints 241.3 3290 E
34 ctn,ts 1016 3190 E
35 | ctants 330.2 3890 E 25
36 ctn,ts 685.8 319 E
Connectivity Parameters
Number of connection points
# %
>2 0 0
1 7 28
o] 18 72
Type of termination
# %o
Tip 43 86
Hooks 4 8
Abrupt 3 6
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Cottonwood Flat ron

Large area. All fractures

Swarm F
Frac. # |Type Length (mm) |Orientation | Angle(’N) |Angle(°S) |Observations

1 C, XN, XS 1193.8 3290 E
2 c.tn.xs 330.2 4090 E
3 c.xn,ts 1270 S280E
4 c.xn.ts 508 26 90 E

: 5 c.tn,t 914.4 29 90 E
6 c.xn ts 558.8 34 90E
7 ctants 215.9 49 90 E 35
8 c,tas.tn 279.4 39 90 E 35
] c.tn.ts 355.6 47 30 E
10 c.tn.xs 533.4 36 90 E
11 C.XN.XS 1320.8 3090 E
12 c,tn,xs 381 25 30°E
13 cin.xs 330.2 2890 E
14 ctn.xs 241.3 3080 E
15 Cis.xn 1041.4 3280 E
16 c.xnts 152.4 3590 E
17 c,xn ts 152.4 1790 E
18 c,tn ts 355.6 36 80 E
19 ctn,ts 482.6 26 90 E
20 c;htn.ts 355.6 34 90E 35
21 clnts 482.6 3090 E
22 c,tn,ts 355.6 3680 E
23 c,xnhts 1498.6 3880 E 35
24 c,tn,ts 990.6 3390 E
25 c,xn.ts 1371.6 3080 E
26 c.tnts 1701.8 3380E
27 c,tnts 533.4 3090 E
28 ctnts 1219.2 3290 E
29 c.ints 431.8 3890 E
30 ctants 330.2 36 90 E 40
31 c.tn.ts 1066.8 3790 E
32 ctnts 609.6 41 90E
33 ctants 203.2 3790 E 25
34 c.ints 508 3080E
35_ | ctants 533.4 4290 E
36 c.tnts 203.2 45 90 E
37 c.tn,ts 203.2 48 S0 E
38 c.tnhts 508 3290 E 25
39 c.htn,uts 292.1 2690 E 25 45
40 ctntas 228.6 1890 E 35
41 c,tnts 1092.2 26 80 E
42 c,tn,hts 1397 3290 E 35
43 c.tn,hts 635 3080 E 30
44 c.tnts 330.2 1690 E
45 c;iints 215.9 1590 E
46 c.ints 787.4 2890 E
47 ctnts 1879.6 3090 E
48 ctnts 914.4 18 90 E
49 c.tn,ts 355.6 4290 E
50 ctnts 304.8 3080 E
51 ctnts 381 36 90 E
52 c,tnts 1422.4 36 90 E
53 c.tn.ts 8965.2 36 90 E
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Frac. # |Type Length (mm) {Orientation | Angle(°"N) |[Angle(°S) |Observations
54 c,tn his 980.6 24 90 E 45
85 c.xnts 304.8 28 90 E
56 cints 406.4 2490 E
57 c;htn.ts 1041.4 3190 E 30
58 c.tants 279.4 4290 E 30
59 c,htn ts 304.8 2590 E 35
60 c.tnts 711.2 3390 E
61 ctnts 228.6 1290 E
62 c,in hts 1422.4 28 90 E 40

63 c.tn.hts 457.2 26 90 E 30
64 citnts 457.2 36 90 E
65 ctnts 762 3490 E
66 ctantas 101.6 34 90 E 30 30
67 citnts 177.8 2290 E
68 c.tn hts 2540 3280 F 35
69 ctntas 203.2 3590 E 10
70 c.tn.hts 304.8 3690 E 25
71 c.htnts 2844.8 40 90 E 30
72 c.tan tas 355.6 3890 E 25 15
73 c.tants 165.1 3490 E 20
74 c.tntas 482.6 3490 E 15
75 cints 2413 24 90 E
76 c.intas 152.4 3290 E 30
77 c.ints 533.4 3590 E
78 c.tnts 838.2 3590 E
79 cints 431.8 3280 E
80 c.tn,ts 1244.6 30 90 E
Connectivity Parameters
Number of connection points
# %
>2 3 5
E 1 24 37
0 38 58
Type of termination
# %

Tip 100 76

Hooks 15 12

Abrupt 15 12
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APPENDIX C. TEXTURAL AND PETROGRAPHIC
ANALYSIS OF SAMPLES

This appendix contains tables that summarize textural characteristics and
point-counted compositional data of the sandstones studied. The average grain
size values are the average minimum and maximum diameters of framework
components without measuring overgrowths from 100 grains in SEM-CL
photomicrographs. Sorting and proportion of grain contacts were estimated
visually using a petrographic microscope. Percentages in petrographic tables are

based on 400 points per sample.

269



Petrographic summary of surface samples.
(All the values are percentages of the total rock volume)

Rock § Authigenic
S cltls A c
r

a Fla]gii I c a Z P

P Qler]if! clt c M c Qjrjo t1]°

L ull bl ]t rla e al /v b xlalr

E ajdlo}l s el s t alatjelifli|®

THHEEH R HHEHERE

E z : tlein t ? i x{S]z}t]s cl t

M rle]oije s e e s|Y

B sluls s s

E s

R
WESTWATER PAVEMENT
WS-1 45 8 2 25 27 Bio. 3 1 5 1 7 10
WS-2 55 2 15 15 Chlo., Zr. 3 2 8 10 15
WS-3 50 7 1 23 24 Musc. 1 5 1 7 12
WS-4 40 12 15 15 Glaue.,Bio. 3 1 1 2 15
WS-5 40 12 3 5 15 23 Glauc. 3 5 2 7 15
WS-6 40 10 5 5 15 25 Bio. 3 3 2 2 7 15
WS-7 5310 3 2 5 10 20 5 1 6 10
WS-8 55 10 2 3 5 10 20 Giaue. 4 1 5 10
WS-9 53 10 2 2 10 14 Glauc. 2 2 5 3 10 10
WS-10 54 7 2 2 15 19 Bio. 3 3 5 6 14 3
WS-12 48 7 5 10 15 10 10 5 2 17 10
WS-13 45 8 2 5 15 22 Glauc.,Musc. 3 3 5 2 10 10
WS-14 45 13 2 18 20 Bio. 2 2 8 10 12
WS-15 40 7 2 2 3 25 32 Musc, Bio. 3 3 5 1 9 8
WS-16 40 3 5 3 2 20 30 Pir. 10 2 8 5 15 3
WS-17 40 7 2 5 5 10 22 Chlo. 10 10 8 5 23 &
COTTONWOOD PAVEMENT
FI-11 489 3 5 5 10 20 5 5 5 10 5 25 5
FI-18 55 2 3 10 13 ZrBio, Glauc § § 5 10 20 7
FI-18 40 4 6 2 15 23 Musc. 6 3 5 8 5 21 6
FI-20 40 5 10 3 8 21 Gar. 6 2 3 5 3 13 15
FI-21 60 2 10 3 8 21 Zr, Apat. 6 2 3 6 3 14 3
Fl-22 50 2 6 12 18 Glawe.,Gar. 5 5 8 2 15 10
Fi-23 52 3 8 3 5 16 Musc. 6 2 3 10 3 18 5
Fi-24 63 2 5 10 15 Chlo., Zr. 3 2 3 2 7 10
Fl-25 52 2 3 5 2 3 13 Phos 5 5§ 5 8 2 20 8
Fi-26 48 2 6 3 5 14 8 & 3 10 3 22 6
FI-27 40 3 8 2 10 20 10 5 2 10 2 t9 8
Fi-28 45 2 5 8 13 2Zr. 10 5§ 5 10 5 25 5
Fl-23 45 5 10 10 20 Zr.Bio. 5 2 3 12 3 20 5
EXPLANATION

RFs: Rock fragments
AMs: Authigenic minerals

Accesories:
Bio.: Biotite
Chlo.: Chlorite
2r.: Zircon
Musc.: Muscovite
Glaue.: Glauconite
Pir.: Piroxene
Gar.: Gamet
Phos.: Phosphate
Apat.: Apatite
Anf.: Anfibol
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TEXTURAL PARAMETERS. SURFACE SAMPLES

% of grain contacts

Formation | Study| Sample | Grain size Sorting Sutured | Concavo Point
area | Number (um) convex
Fl-11 100-200 moderate 10 90
C Cc Fl-18 60-120 well 30 70
L (o] Fl-19 100-250 moderate 20 80
| T FI-20 100-250 moderate 30 70
F T Fi-21 100-250 well 10 30 60
F (o] Fl-22 150-250 moderate 10 40 50
N FI-23 150-300 well 30 70
H w Fi-24 50-200 moderate 40 60
(o] (o] FI-25 150-250 well 40 60
U 0 FI-26 150-250 moderate 40 60
S D FI-27 100-200 well 10 90
E Fi-28 70-180 well 10 90
FI-29 80-150 well 10 90
WS-1 150-300 well 30 70
P w Ws-2 150-300 well 20 80
(o] E WS-3 150-250 well 30 70
| S WS-4 150-500 well 10 90
N T WS-5 150-500 well 100
T w WS-6 150-500 well 100
A WS-7 150-500 well. 30 70
L T WS-8 150-500 well 30 70
(o] E WS-9 150-400 well 40 60
(o] R WS-10 20-300 poor 10 90
K Ws-12 50-300 moderate 20 80
0 WsS-13 150-300 moderate 40 60
U Ws-14 150-250 well 30 70
T WS-15 150-300 moderate 50 50
WS-16 30-150 poor 10 90
WS-17 200-500 well 10 40 50
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APPENDIX D. MICROFRACTURE DATA

This appendix contains the description of individual microfractures in petrographic and
SEM-CL photomicrographs from outcrop and core samples. Microfractures were numbered
consecutively and classified using Laubach’s (1977) descriptive classification scheme. A degree
of suitability for macrofracture properties prediction is also assigned to each microfracture.
Microfracture length ahd microfracture aperture are indicated, as well as the microfracture strike.

Comments complement or emphasize the characteristics of microfractures.
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PART III. ENGINEERING APPLICATION OF RESULTS

INTRODUCTION TO PART III: INCORPORATING GEOLOGIC INFORMATION IN
DUAL-POROSITY SIMULATORS

Numerical simulation of fluid flow in hydrocarbon-bearing reservoirs has evolved so that
few significant decisions are made without it. Numerical simulation, as most commonly
practiced, consists of dividing up the flow domain into many cells or grid blocks around which
discretized forms of species-conservation equations are solved. The solutions change with time
as each cell loads and unloads with fluids. Some of these cells can contain wells, and it is from
these that we gain predictions on rates or pressures with which to make economic forecasts.

Even though simulations are quite large—I0,000 cells is fairly common, and some types of
simulators can reach 100,000 or more—the detail representable by simulators is still far less than
what is known to exist in reservoirs. Even for a simple simulation, each cell must start off with
three scalar components of permeability, a porosity component, a pressure component, and at
least one saturation component. Pressure and saturation tend to be smoothed by physical effects,
but porosity, and especially permeability, vary widely. Determining the scale on which these
variations take place and how to represent them in simulators has been the subject of intense
research over the past few years.

The difficulties imposed by disparities of scale are especially present in simulations of
fractured reservoirs; in many cases, nearly all of the flow capacity in these reservoirs passes
through features that are so small that they are difficult to detect. Yet fractured reservoirs
compose a large (and ever-increasing) fraction of United States resources in both carbonate and
sandstone facies.

There are two ways to model flow in fractured media. The first is the dual porosity

approach. In this method, the pore space in each cell is divided into flowing and nonflowing
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regions. The two regions can exchange mass with each other, but only the flowing region
supports flow (that is, directly communicates to the wells). Some simulators assign a limited
amount of flow to the second region as well. The second method is the explicit fracture method.
In this, each fracture (its geometry, size and frequency of occurrence) is put into a simulator and
the conservation laws solved along them allowing (usually) for varying degrees of mass transfer
from the surrounding matrix.

Superficially, it would appear that the explicit method is the best approach because it
directly accounts for the actual physical nature of fractures. In truth, neither method is entirely
satisfactory. The detail required by the explicit method means that it is impossible to solve flow |
fields larger than a few square meters in extent, an area that is far smaller than even the smallest
hydrocarbon reservoirs. The dual porosity models can model quite large areas, but their cell-by-
cell representations are not based on the local fracture distributions. In fact, most of the
parameters in dual porosity simulators are assigned through history matching in current practice.
Our goal was to develop a procedure to assign the parameters of dual porosity simulators based
on the actual local (that is, on the same scale as the cells) fracture patterns. The method combines
the best features of the two approaches.

Figures 3 and 15 through 19 in Part I of this report schematically represent how this might
be accomplished. We first imagine that the volume of a cell has been independently selected,
usually a practical limit on time and/or expense. We further imagine that camulative distribution
functions (cdf) of fracture attributes (fig. 17 shows only the attributes of aperture width, length,
and orientation) are known, as is a cdf that gives the frequency of occurrence of fractures in the
volume.

We randomly select the number of fractures in the volume; figure 17 shows this as picking a
random number RN uniformly distributed between zero and one and taking the inverse of the
distribution cdf. This process would normally be repeated several times (fig. 17 shows only one
sampling) until a target fracture porosity for the block is met. The next step is to spatially

distribute the fractures within the cell. After this, we sample the appropriate cdf’s for the
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attributes of each fracture. In general, the fractures will intersect within the cells and this must be
corrected for as indicated. Finally, the entire ensemble of fractures is converted into a single
porosity, three permeabilities and, perhaps, a mass transfer coefficient for the cell. The entire
process would be repeated for each cell. Since each of the attributes for a swarm of fractures is a
random variable, the cell properties will be so also.

Such a laborious process as illustrated in figure 17 would be computationally intensive—
maybe even rivaling the expense of the flow simulation. However, it seems equally clear that, if
the cdfs are representative of the cell volume and the effective property generation algorithm is
accurate, this procedure is the blend of the dual porosity and explicit approaches discussed
above.

The key elements—and the ones focused upon in this report—are (1) insuring that the cdfs
are consistent with the underlying state of stress in the medium, (2) seeing that measured cdfs
have been adjusted so that the scale of the original measurements (the cdfs are normally taken
from outcrop measurements but can be acquired from core measurments) agrees with the cell
volume and (3) developing a scale-up procedure that lumps all of the aforementioned detaikinto
a summary that is both useful and accurate.

Part 11 of this report describes resuits of a novel technique based on scanned CL observation
that allows inference of fracture attributes at scales ranging over three orders of magnitude. The
first part of Part HI discusses the attempts to generate fracture distributions from solutions to the
loading equations based on randomized initial conditions and a prespecified state of stress. This
section shows that a variety of cdfs are possible, but that most of these are in reasonable
agreement with those measured in outcrop. And, finally, the last part of Part III describes
attempts to derive the actual population statistics from those measured in the previous section.
This approach holds the key for the adjustment of the fracture statistics from one scale to
another. This section also describes results in converting the fracture statistics on a particular

scale to a cdf of permeability.
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Geomechanical Modeling

Modeling Concepts

Natural fracture patterns are difficult to characterize in the subsurface and at the surface. In
the subsurface, only limited information is available, typically acquired from wellbores. Fracture
systematics are not well constrained from these data, thus it is challenging to generate a
comprehensive fracture network that can be used for fluid flow modeling. Surface outcrops are
more amenable to characterization but still represent significént challenges. If the outcrop is
being examined to characterize near surface flow, joint traces may be evident, but a fracture's
opening and its extent in three dimensions are still difficult to discern. If the outcrop is being
used as an analog for a subsurface reservoir, another difficulty is extrapolating the surface
fracture pattern to the subsurface, subtracting out any weathering or uplift-related features and

accounting for subsurface stress conditions on fracture opening.

The Model

Ideally, a characterization model should be able to incorporate a priori information such as
mechanical and fluid flow boundary conditions as well as be conditioned by observations. Thus,
if observations are made at one locality (the sufface), they can be applied to another locality with
different “fracturing conditions™ by the application of a transform. The advantage of a
mechanically based model (Olson, 1993; Renshaw and Pollard, 1994) over stochastic realization
techniques (Dershowitz and Einstein, 1988; Kulatilake and others, 1993) is that the mechanical
model intrinsically includes relationships between fracture processes and boundary conditions. If
surface data are to be applied to the subsurface, the modification of fracture parameters can be
investigated by varying boundary conditions in the model. If insufficient data are available to

characterize a fracture network, that data can be augmented with other parameters such as bed
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thickness, stress state, and mechanical properties to be included as a priori information to obtain
a more complete realization.

The model is based on two-dimensional, plane strain elasticity, using a displacement
discontinuity technique (Crouch and Starfield, 1983) to represent the fractures. The conceptual
framework for fracture propagation follows Segall (1984, 1984a) and its implementation is
described in detail in Olson (1993). Briefly, propagation is controlled by linear elastic fracture
mechanics assuming a subcritical fracture propagation law (Atkinson and Meredith, 1987),
where propagation velocity, v, is given by

v = A (KI/KIc)n ¢))
where KI is the mode I stress intensity factor, Klc is the fracture toughness of the material, n is
the subcritical growth index of the material, and A is the maximum possible propagation velocity
at critical propagation (KI = KIc). Mixed-mode I-II fracture propagation is implemented using
the maximum circumferential stress criterion of Erdogan and Sih (1963). Mixed-mode joint
propagation results in curving crack paths which are sensitive to fracture spacing, in situ stress
and bed thickness and fracture surface roughness (Pollard and others, 1982; Olson and Pollard,
1989; Renshaw and Pollard, 1994). Strain rate effects can also be significant in determining
fracture network geometry (Segall, 1984a; Wu and Pollard, 1993).

Simulations were fun on a finite-size body dimensioned 10 x 10 m. Propagation was limited
to a slightly smaller area within this body that measured 8 x 8 m. A translational symmetry was
employed to reduce the edge effects of the finite body (Renshaw and Pollard, 1994),
incorporating the effects of equivalent fracture patterns immediately above and below the
modeled pattern (about symmetry planes at y=4 m) and to either side in x (about symmetry
planes at x=4 m). The x boundaries (x=5 m) were discretized into 10 boundary elements and
were constrained to zero normal displacement and zero shear stress. The y boundaries (y=5 m)
were discretized in the same manner and had a constant rate extensional strain applied. It is this
extension that drives crack propagation. Simulations were run until fractures stopped propagating

or until a pre-determined maximum strain was reached. The strain rate in all cases was
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1x10-20/s. The final strain at the end of the simulation, unless otherwise noted, was 1x10-4,
chosen based on a strain measurement on jointed granite by Segall and Pollard (1983).
Following Segall (1984), this loading can be generalized to other conditions by superposing
an 1sotropic, compressive stress state. Crack propagation occurred incrementally with addition of
constant length patches when required according to the fracture mechanics propagation criterion.
Because of computational limitations, starter cracks that are randomly seeded into the model
have a considerable length (0.3 m). Because all of the patches need to be of the same length
(Crouch and Starfield, 1983), greater initial lengths reduce the total number of patches for a

complete simulation.

Model Results

Several simulations were carried out to demonstrate the sensitivity of fracture propagation
to various boundary conditions and material properties. Figure 1 demonstrates the impact of bed
thickness on fracture spacing. Crack paths are straight, based on the assumption that the in situ
stress anisotropy is great and prevents crack path curving (Olson and Pollard, 1989). Bed
thickness was varied from 2 to 10 m, with the expected increase in spacing with increased bed
thickness. This bed thickness/spacing effect is related to the stress shadow around the fractures.
The same subcritical growth index of 40 was used for all bed thicknesses, with the unexpected
result that spacing became more clustered with increased bed thickness. This is an interesting
result in that previoué work (Olson, 1993; Renshaw and Pollard, 1994) suggested that clustering
was, primarily controlled by the subcritical index (high values, greater than 3, resulted in
clustering). This previous work also suggested that values of n >10 would result in non-physical
fracture patterns. The discrepancy here is probably due to the incc;rporation of bed thickness
effects in this work, whereas the previous studies were strictly two dimensional.

Figure 2 is displayed alongside figure 1 and represents two changes in the simulation. The

starter cracks for figure 6-1 are all parallel, whereas those in figure 2 have two possible

366



orientations that are orthogonal (either parallel to x or y). Secondly, mixed-mode propagation is
allowed, and since the loading is a uniaxial extension in y with zero displacement in X (no other
stress anisotropy present), there is significant crack path curving. However, as fracture stress
perturbation scales with the shortest dimension of a 3d crack (Olson, 1993), there is less crack to
crack interaction in the thinner bedded examples and thus straighter overall propagation. This
suggests that thinner beds, in general, might be expected to have straighter cracks. This would be
in addition to stress anisotropy (Olson and Pollard, 1989) and surface roughness effects
(Renshaw and Pollard, 1994). Crack path curving increases as bed thickness increases, and
general fracture density decreases similar to that shown in figure 1.

Figures 3 and 4 are meant to investigate the effects of the subcritical growth index. Both
examples are loaded at the same rate (1x10-20/s) and to the same final strain (1x10-4). The only
difference is that for figure 3 a large subcritical growth index was used, n=40, whereas for figure
4, n=5 was used. As a lower subcritical index minimizes the velocity contrast between fraéfﬁres
of different stress intensity (seé equation 1), more fractures are able to grow prior to the créék
inhibiting effect of stress relief of neighboring fractures with n=5. Atkinson and others (1§§7)
reported a wide range of subcritical growth indices from 1 to over 100 (depending on fracture
mechanism and rock type), so a wide variety of fracture patterns could result under similar
loading conditions depending on this material property.

The simulation conditions to generate figures 5 (bed thickness = 5 m) and 6 (bed thickness -
= 2 m) were similar those for figure 2 except that 80 starter cracks were used instead of 40. The
general relationship of lower fracture density for larger bed thickness holds, although the
difference between bed thicknesses is stronger for high subcritical growth index (part B in each
figure) than for low (part A in each figure). A single event uniaxial extension was imposed as
loading, as with all the other cases, but the results imply all around extension on first glance
because of the apparently chaotic fracture pattern. Upon closer examination, there is a sub-linear
fabric that appears to have developed first in the simulated patterns but stress relief in the y

direction favored stress rotation and local changes in the favored propagation direction. Figure 7
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shows the sequential development of the pattern from figure 6A, and it is apparent that the
advance of crack propagation in this example tends to divide the body up into smaller and
smaller pieces, until all of the fracture initiation sites have been exhausted and all of the fracture
tips intersected. This progressive division of rock into smaller pieces is similar to that observed

in outcrop by Barton and Hsieh (1989).

Implications for Fracture Geometry

Results from the forward modeling indicate that there is a systematic relationship between
boundary conditions and final fracture geometry that can be exploited for the purpose of fracture
pattern inversion from observed data. For example, the generation of orthogonal fracture sets
with a single, coaxial loading is demonstrated. Preexisting fracture sets remain open throughout
the deformation history, and subsequent fracture generations divide the body into smaller and
smaller domains. Multiple switches in fracture direction can result if stress relief due to
fracturing overcomes any stress anisotropy that might otherwise restrict opening mode fractures
to one orientation. Such patterns probably indicate near surface or uplift-related fracture
propagation. Such guidelines based on mechanical modeling can help in the interpretation of
outcrops and the extrapolation of their fracture patterns to the subsurface.

Also, results presented here potentially expand the range for the subcritical growth index
that will generate physically reasonable fracture patterns. The probable reason for this difference
from previous results is the incorporation of three dimensional effects in the modeling for this
study. Further work is needed to explore this point more fully, and to examine other rate limiting

effects such as fluid flow (Segall, 1984)._
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CHAPTER 1: INTRODUCTION

Significant oil and gas have been produced from the various types of fractured reservoirs
across the world (Saidi, 1987). Fractured rocks, therefore, constitute an important type of
Teservoir rock.

The behavior of naturally fractured reservoirs is very different from that of conventional
reservoirs (Aguilera 1980, van Golf-Racht 1982, Saidi 1987). The primary cause of this |
difference is the inherent character of naturally fractured reservoirs: most hydrocarbon resides in
the pore space of the matrix whereas the flow of hydrocarbon towards wells is dominated by
flow through networks of fractures. Consequently, the behavior of naturally fractured reservoirs
is dominated by the properties of the individual fractures and the networks formed by the = .
fractures.

One of the biggest difficulties in studying naturally fractured reservoirs is that available data
are limited, usually to one spatial direction (i.e., along a wellbore). Furthermore most fractured-
reservoir simulations are based on simplified idealized models (Saidi, 1987). The assumptions of
these models are sometimes clearly different from the conditions of underground reservoirs.
Therefore, it is desirable to find a more accurate, efficient, practicable simulation method baSed
on actual data for the fractures in a given field.

Making use of the latest findings in structural geology, this study attempts to relate, through
numerical simulation, certain properties of fractures and their statistical distributions to the flow
properties of naturally fractured reservoirs. Thus, ultimately, the performance of commonly-used

sirulators for fractured reservoirs can be improved.
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1.1 Characterization of Naturally Fractured Reservoirs

1.1.1 Basic Properties of Fractures

The spatial variation of fracture features, such as aperture, size, orientation and nature, are
so complicated and irregular that characterization of a fractured reservoir is substantially more
difficult than that of a conventional reservoir. Thus the characterization of a fracture reservoir
should follow a certain pattern. First of all, the local characteristics of single fractures should be
examined. Afterwards multi-fracture systems should then be evaluated.

- Parameters for individual fractures include fracture aperture, size, nature and orientation.
Fracture aperture is the gap between the fracture walls. Fracture size is related to the shape of
fractures in space. When a fracture is defined as a disk in space, the radius of the disk quantifies
the size of the fracture. The “nature” of fractures refers to the state of fractures, including open,
filled with minerals and wall characteristics. Fracture orientation is the parameter relating the
fracture to its environment. Fractures with similar orientation can be grouped together as a
fracture set.

Parameters for a population of fracturés include fracture property distributions (aperturé,
size, orientation), matrix block size and shape, and fracture density. Fracture density expresses‘
the extent of rock fracturing. It can be quantified using either volumetric fracture density, i.e., the
ratio of fracture area to bulk volume, or areal fracture density, i.e., the ratio of cumulative length

of fractures to matrix bulk area in a flow cross-section.

1.1.2 Outcrop Study

Outcrop study is one important means to investigate fractured reservoirs. It involves the
collection of various data along the face of the outcrop, including all single-fracture and fracture-

population parameters, such as the orientation of fracture systems and layer strike, fracture
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density, fracture aperture and size, lithological data, etc. The fracture scaling equations used in
this research are the results of an outcrop study that is detailed in Section 1.3.2.

One of the disadvantages of this method is that surface outcrops may have experienced
geological procésses different from those of the underground reservoir, and the nature of the
fracture system might have dramatically changed thereby. Although outcrop study is currently a
very important means to study fracture systems and can provide some valuable information, it is

not sufficient to obtain a complete description of underground fractured reservoirs.

1.1.3 Detection and Evaluation of Fractures

The characterization of naturally fractured reservoirs underground relies heavily on’ the
detection and evaluation of fracture systems. The detection and evaluation of fracture systems is
not a one-step task. It is a procedure that continues through the exploration and developmeﬁt of
fractured reservoirs. It is the result of information obtained during various phases of field v&;ork,
such as exploration, drilling, coring, logging, testing and production. Some of these resultsk‘
represent direct information, such as observations on outcrops, core analysis in the laboratory,
and images obtained in borehole televiewer logging.

Drilling operation can sometimes provide useful information to describe the fracture system
qualitatively (van Golf-Racht, 1982). Indications of fractured zones in drilling operation include
unusually high drilling rates, loss of drilling fluids, very poor core recovery and significant
increase of wellbore size.

In the past several decades, much effort has been made to make the detection of fractures
easier and more accurate through well logging. However, the qualitative and quantitative
evaluation of fracture systems was found to be much more complicated than expected, due
mainly to the technical difficulties regarding the identification of fractures (Saidi, 1987).
Generally, the various logging techniques are based on an anomaly in the normal tool response in

a fractured zone. A log tool is usually sensitive to the presence of a high-permeability path
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(formed by fractures) in a low permeability porous medium (rock matrix). From this sensitivity
fracture systems can be evaluated. Available log options for evaluation of fracture systems
include lithology logs (SP and gamma ray), caliper logs, temperature logs, resistivity logs,

dipmeter logs, porosity logs (density, neutron and sonic), and their combinations.

1.1.4 Core Analysis

Core analysis can provide direct information on underground fracture systems (van Golf-
Racht, 1982). Information expected from core analysis includes single-fracture parameters such
as aperture, size, orientation and morphology (open, partially open, filled, closed, etc.), and
fracture-population parameters. Unless the core is altered in the coring and recovery process, the
information from core analysis reflects the actual state of the fractured TESeIvoir. .

Unfortunately, for macrofractures (those visible macroscopically), some parameters like
size distributions and fracture density are not available or reliable through core analysis, because
the core only samples a few macrofractures. These properties can be determined for a large
population of microfractures (those visible only under magnification), however, from

examination of thin sections as discussed in Section 1.3 below.

1.1.5 Definition of Dual Porosity

In general, the porosity of fractured reservoirs can be classified as matrix porosity ¢, and

fracture porosity ¢. The two porosities are expressed as

_ matrix void volume

™ " matrix bulk volume

_ fracture void volume
f total bulk volume (1.1)
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As noted above, the prominent feature of fractured reservoirs is that ( 1) the fractures have a
negligible storage capacity but extremely high permeability; and (2) the matrix has an important
storage capacity, but a very small permeability.

Matrix porosity can be measured by using conventional techniques like core analysis.
However, measurement of fracture porosity is complicated because of the very small fracture
volume. In some fractured reservoirs, fracture porosity is of the order of 0.1% of the rock volume
(Saidi, 1987). Such a value of porosity is less than the accuracy range of most methods available
for measuring porosity. The main methods for measuring or estimating fracture porosity are well

testing and history-matching of reservoir performance.

1.2 Simulation of Naturally Fractured Reservoirs

Current simulation technology for naturally fractured reservoirs is based on either
continuum or discrete-fracture models. Discrete-fracture flow models represent each fracture
individually and can incorporate many of the characteristics of real fracture systems (Wolff et
al., 1990; Dershowitz and Doe, 1988; Long et al., 1985), such as complex fracture geometry.
However, their use is limited by the large number of fractures that may be present and the
capacity of simulators and computer resources..In a real fractured reservoir, there are numerous
fractures in-situ connecting one another to form complicated fracture networks. On the other
hand, most geological and engineering data available are limited in a single space direction (for
instance, in a wellbore) or at scattered blocks (coring in different wells). Thus crucial
information on the locations and properties of fractures is usually poorly known.

Therefore, continuum-fracture models (or dual-porosity models) are more commonly used.
An advantage of this type of model is that it can simulate complex recovery mechanisms.

Warren and Root (1963) presented a dual-porosity model composed of cubic matrix blocks,

each of which is surrounded by fractures in three orthogonal directions. The flow towards the
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wellbore is considered to take place in the fractured network, while the matrix continuously
feeds the system of fractures. The two media, fracture network and block, are considered to be an
overlapping continuum. The fundamental fluid flow equations (continuity equation, flow
equation and equation of state) are written independently for each medium, and transfer of fluid
between the two media is taken into consideration by a transfer function in the continuity
equations.

Naturally fractured reservoirs are extremely complex. Consequently, it is often difficult to
have sufficient, reliable input data. The input data required for dual-porosity simulation of
fractured reservoirs include matrix and fracture permeability, matrix and fracture porosity,
matrix block size, initial saturation for each phase, initial pressure, matrix and fracture
compressibility, fluid properties, relative-permeability functions for each phase in matrix and
fractures. Each of these parameters or functions might vary with position through the reservoir.

The better the input data, the more reliable and accurate will be the simulation results.

1.3 Advances in Characterization of Fracture Systems

Field observations and laboratory studies have revealed important aspects of natural fracture

systems, described in this section.

1.3.1 Correlation between Microfractures and Macrofractures

Fracture properties are often poorly known because most macrofractures do not intersect the
wellbore where they can be detected and characterized. Yet the numerous macrofractures not
intersecting the wellbore play a critical role in overall behavior of fractured reservoirs. Most
current fracture detection methods — when they yield any information at all — commonly do not
provide statistically significant data sufficient to establish fracture abundance and porosity
patterns. However, microfractures are more common and can be effectively sampled even in

small volumes of rock (e.g., cores). This implies that a study of microfractures not only avoids
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the fracture-sampling problem but also may provide useful information about critical attributes
of macrofractures.

Recent technology development allows the easy and cost-efficient analysis of
microfractures in cores. This technique, called photomultiplier-based imaging of electron beam-
induced luminescence (scanned cathodoluminescence or scanned CL) (Milliken, 1994), can be
used to image the microfractures by highlighting the cement that fills most microfractures.

In many cases, observations show that microfractures have a diagenetic history of
mineralization similar to that of macrofractures (Laubach et al., 1997). This result indicates that
the relative timing of micro- and macrofractures is similar, and that their roles in conducting
mineralizing fluids are analogous. Many data also show that microfractures share common
orientation patterns with mcarofractures. This suggests that the same differential stresses control
the orientations of both very small and very large fractures.

Several studies have shown that the length and aperture of macrofractures in outcrops
follow power-law distributions over various length scales (Odling, 1997; Laubach et al., 1997,
Marrett, 1997; Gross and Engelder, 1995). The power-law distributions for length and aperture

observed in outcrops can be written as

N =ab~°¢ (aperture) (1.2)

N =mL™°  (length) | (1.3)
where N is the cumulative number of fractures in a given outcrop with aperture equal to or
greater than b (for Equation 1.2), or with length equal to or greatér than L (for Equatioh 1.3);
a, ¢, m, e are positive empirical factors, that depend on the particular formation. The power-law
distribution is a straight line in a log-log plot. Figure 1.1 is a study of fracture length distribution

in one outcrop (Laubach et al., 1997). Figure 1.2 is another outcrop study of fracture length
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distributions on various scales (Odling, 1997). Each curve in the figure represents a different
scale in the same region. The fracture length distribution for all scales follows the same power-
law distribution. Figure 1.3 shows the power-law distribution for aperture in various formations
(Marrett, 1997). For most of these distributions, there are two deviations from the power-law
(straight line), at the top and bottom portions of the distributions. Geologists (Marrett, 1997;
Odling, 1997) argue that the upper deviation is due to truncation error of sampling, in other
words, the inability to observe small fractures in outcrops, and the lower deviation (which we
call falloff) is due to censoring error, i.e. infrequency of observation of large fractures in a finite
sample.

Laboratory core analysis also reveals that microfractures follow the same power-law
distribution as macrofractures observed in outcrops (Laubach e? al., 1997). Figure 1.4 shows the
distribution relationship between microfractures and macrofractures in the Mesaverde formation,
San Juan basin, New Mexico. This implies that microfractures and macrofractures are simply
different size fractions of the same fracture sets. This insight offers the potential for using scaling
relations to quantitatively link fracture size attributes across the gap between microfractures and
macrofractures. In addition, microfracture data can be extrapolated by scaling to obtain
macrofracture properties in cases where outcrops are unavailable for a particular formation.

This new microfracture analysis and scaling method is important for characterizing
fractured reservoirs because a very small volume of rock is statistically sufficient to obtain
microfracture data, which is related by scaling to the macrofractures which dominate the fluid
flow in the rock. It is a more accurate and cost-efficient approach for getting information needed

for simulation of fractured reservoirs.

1.3.2 An Outcrop Study

An outcrop study conducted by Laubach et al. (1997) further verifies the correlation

between microfractures and macrofractures. The study focuses on the fractured sandstones of the
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Mesaverde Group in the San Juan Basin, New Mexico. Large amounts of natural gas have been
produced from these sandstones. Fractures represent a minor contribution to the storage capacity
of the system but they provide the dominant flow conduits in production from the reservoirs.
Laubach et al. performed both surface and subsurface investigations for this formation.

One large well-exposed pavement (the Westwater Springs Pavement) was selected to
perform surface investigation. A smaller area within the pavement was also identified for a
detailed survey of macrofracture properties. Data were collected for each fracture including
fracture orientation, ffacture length, fracture aperture (where possible), fracture termination type,
angle of connection with other fractures, fracture cement type and other characteristics.
Additional data were collected along scan lines in the Westwater pavement to test the
relationship between the fracture distributions in one and two dimensions.

Figure 1.5 shows the power-law distribution for the length of microfractures and
macrofractures in the Westwater pavement. Laubach et al. (1997) attribute the curvature in
individual data clusters to a combination of truncation and censoring errors. Marrett (1996)
shows that short and long fractures (shorter or longer than height of the mechanical layer) differ
in their apparent power-law exponent based on outcrop sampling (cf. also Rossen (1998),

reproduced in Appendix B). The exponents of the two distributions differ approximately by one.

1.4 Delineation of Research Motivations and Objectives

1.4.1 Research Motivations

In Figure 1.3, some curves exhibit falloff from the linear (power-law) trend at large fracture
aperture, but some do not. Geologists believe that the falloff is due to censoring error of
sampling (Marrett, 1997). One other explanation for falloff is that there might be a largest
aperture existing in the population. In addition, a deviation above the straight line in the curve

was almost never observed in outcrops, but should be just as common as falloff if falloff is the
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result of random sampling. A Monte Carlo study was conducted to test these issues, as reported
in Chapter 2.

Fracture aperture has a significant impact on the properties of fractured reservoirs. Based on
various studies (Figure 1.3), the distribution of fracture aperture fits a power law, implying a
great number of fractures with small apertures within the population. The capacity for fluid flow
in fracture is proportional to cubic power of aperture (Bird et al., 1960). Marrett ( 1996) shows
that aperture scales roughly with fracture length. His study (1997) also suggests that few largest
fractures in the population greatly affect the permeability anjsotropy and porosity of fractured
rock. It is desirable to test how the power-law distribution affects the permeability and porosity
of fractured reservoirs. This motivates a Monte Carlo study on this issue also described in
Chapter 2.

Fractures have significant impact on fluid flow primarily when fractures connect up to form
a high-permeability conduit for flow. Therefore, the calculation of permeability of fractures is
meaningful only when there are fractures interconnecting to form a flow path in the direction of
flow. For a given distribution of fracture size, the interconnectivity of fractures must be
determined before the permeability of the fracture system can be calculated. This is discussed in

Chapter 3.

1.4.2 Research Objectives

The ultimate airﬁ of this research program is to incorporate the results of new approaches
for quantifying the occurrence of open natural fractures and fracture-controlled permeability
anisotropy, outlined in the previous section, into commonly used dual-porosity simulaths for
naturally fractured reservoirs. |

The goals of this report are more modest, however: (1) testing the effect of a power-law
distribution for fracture aperture on the permeability and porosity of fractured reservoirs using a

simplified model; and (2) testing the connectivity of fracture networks based on a power-law
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distribution for fracture length using Monte Carlo study and numerical simulation. These efforts
represent a first step toward relating statistical data for individual fractures to values for effective

permeability and permeability anisotropy for grid blocks in dual-porosity simulation.
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Figure 1.1. Power-law distribution for fracture length in the Westwater
Pavement (Laubach ez al., 1997).
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formation, San Juan basin, New Mexico (Laubach et al., 1997).
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CHAPTER 2: A SIMPLIFIED MONTE CARLO STUDY OF FRACTURE
APERTURE AND PERMEABILITY DISTRIBUTIONS

Open fractures have significant impact on fluid flow in rock. Fracture aperture can be
related to permeability by Darcy’s law (Lake, 1989) and the equation for fluid flow in a slit (Bird
et al., 1960). The key characteristic of fractured reservoirs is that fluid flow in the reservoir is
primarily in fractures, éspecially in the fractures of large aperture; the matrix and small fractures
with most of the porosity contribute little to flow. Therefore, the distribution of fracture apertures
in a fractured reservoir should have an important impact on distribution and anisotropy of

effective permeability.

2.1 Fracture Aperture Distribution

A basic problem for theories of fluid flow in fractured rock has been that fracture systéms
comprise many individual fractures collectively ranging over many orders Qf magnitude in_}é{y
aperture and length. Many recent analyses have suggested that aperture and length distributions
in populations of open fractures follow power-law scaling (Odling, 1997; Marrett, 1996; Clark et
al., 1995; Gross and Engelder, 1995). For those models that are based on average properties of
fractures, meaningful averages can not be defined for phenomena that follow a power law. Small
values compose most of the power-law distribution, but a few large values play a very important
role in the overall properties of the population. Moreover, the variation in properties expected
from one location to another (one grid block to another in dual-porosity simulation) is large.

The next several sections discuss a Monte Carlo study of the impact of fracture aperture

distribution on the permeability and porosity of naturally fractured rock.
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2.2 A Simplified Fractured Reservoir Model

2.2.1 Model Assumptions

Figure 2.1 shows a simplified fractured-reservoir model. The fracturedireservoir is defined
as rectangular, with ileight H, length in the direction of flow L, and width normal to these two
directions W. All fractures are assumed open and parallel, and extend across the region. The
fractures are showﬁ as horizontal but could be vertical without altering the results below. We
assume that the occurrence and properties of the fractures are uncorrelated, and, for simplicity,
we assume that the matrix without fractures has zero permeability.

Based on this simplified model, Rossen (1997) has derived the probability distribution
function for observed fracture aperture in a sub- interval of height h (for assumptions and
derivation see Appendix A)

p(b)=1-E(n)h forb=0
p(b)=hn(b) forb>0 (2.1)

where
h = a small interval in height; the total number of intervals in the selected region is H/h.
b = aperture of fracture; b=0 means no fracture is observed in the small interval of height h.

n(b) = expected number of fractures with aperture b per unit length of scanline, given by

ac ;¢
n(b)=—b (2.2)
H

where a, ¢ are empirical factors for power-law distribution; H' is the length of the measured
scanline. Equation 2.2 is derived from the cumulative number frequency function N(b) observed

in outcrops (e.g., Figure 1.3)
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1 dN
nb)=———— 2.
(b) = db (2.3)

where N(b) has the form

N(b)=ab™* 2.4)

E(n) = expected number of fractures of all apertures per unit length of scanline, is given by

b mgx
E(n)= J'n(b)db 2.5)
b min
where b, and b__, are the upper and lower limits on aperture b. In Figure 1.3, the data deviate
from the power-law relation for very large and very small values of b. In the model, however,
there are no values of b above b, or below b_, . In principle, for a real power-law distribution,
b, is infinite and b,,, is zero. One purpose of this study is to explore the relation between b__,

b, and the sort of deviations from power-law behavior in data observed in Figure 1.3.

The cumulative distribution function P(b) corresponding to Equation 2.1 is

b
P(b)=01-E(n)h)+ |kn(b’)db’
' Bin
Bix b
=1- [ Zpap+ jﬁ‘ff-b'—c-ldb'
b 11 b 11
= 1+_;7}:=—(b;12.x -5 | 2.6)
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2.2.2 Effective Permeability and Porosity

The fracture porosity ¢, for the region of the model is given by

i=1 @2.7)

The expected value of fracture porosity E(d,), derived from Equation 2.2 is

b

‘max ac bl—c _b}n‘l"ﬁz'
E(9;)= | bn(b)db= H( e ] 28)
’ bmin

The effective permeability of the entire region is

H/h_

SE
ko= izl (2.9)

H/h

ki
Where k; is the effective permeability of each interval, given by
_ p3

ki =— 2.10
12 h - @10
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The expected value of permeability for the region is

_ e 3
E®) = | p(b)-db

12h
bmm
_ A baw —buin @1
12 3—-c

2.3 Monte Carlo Study of Fracture Aperture Sampling

2.3.1 Computational Approach

For a particular formation, we assume that Equation 2.2 applies and its parameters are
known. E(n) can then be calculated using Equation 2.5. One point should be noted here. For a
real power-law distribution, b, is zero and b, is infinite. But the computer has limited capacity -
and can not represent an infinite number of fractures in the region; for b_,_ = 0 it is impossible to
find a finite sub-interval height h such that only one fracture appears in the region, as required by
the model (Appendix A). Thus we use a finite b_,_ corresponding to the minimum aperture
observed in the outcroi) on the power-law treﬁd (Figure 1.3). We also use a finite b__ to test how
a finite b, value affects deviations from the power-law trend at large values of b. In the
simulations, b_ ranges from small values to very large values.

In our spreadsheet program, a random number generator generates a random value x
between 0 and 1 for each interval. If x is less than the value of (1-E(n)h) (Equation 2.1), there is
no fracture in this interval. If x is greater than (1-E(n)h), this implies that there is a fracture in the
interval. In Equation 2.6, P(b) is replaced by x and then the aperture of the fracture in this

interval can be calculated by
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1

(1-x)H" J_:

P (2.12)

b={b,;§x+

This calculation is repeated for all (H/h) intervals. For each realization, the total number of
fractures and the aperture of each fracture in the region of height H can thus be obtained. The
aggregate properties (effective permeability and porosity) of the region can then be calculated by
using Equations 2.7 and 2.9.

In this study, a power-law distribution of fracture aperture observed in the Boulder Creek

sandstone formation (Laubach ez al., 1997) is used

N(b)=0.851p7978 (2.13)

For this formation, a = 0.851, ¢ = 0.758, H = 90.5 mm (Equations 2.3 and 2.4). In Figure 1.3, for

=0.0067 mm. Different b__, values are selected as part of the

min

the Boulder Creek formation, b

study.

2.3.2 Results and Analysis

A series of 'realizations for the Boulder Creek formation have been run. Figure 2.2 — 2.5
show the results for ciifferent values of b__.

The aperture distributions resulting from these realizations have a great deal of variation in
shape. The shapes (large b) can be grouped to three cases: (1) power-law (straight line in log-log
plot); (2) falloff as observed in some of the outcrops (deviation b'elow straight line at large b);
(3) deviation above the power-law (straight line). For each case in Figures 2.2 to 2.5, a power-
law straight line is drawn with slope —~0.758 for this formation as in Equation 2.13. The straight

line is fit to the upper portion of the curve. Because this study is very elementary, the three cases
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are identified only qualitatively. The underlying rule for identification of the three cases is the
trend of lower portion (large b) of the curve relative to the straight line. For illustration, the
trends in Figures 2.2 — 2.5 are identified by type.

For small values of b, (0.3 mm), the simulated aperture distributions all deviate below the
straight line trend of the power law as shown in Figure 2.2 (a) and (b). A similar deviation is
seen in outcrop data (Figure 1.3).

In Figure 2.3 - 2.5, b__ increases from 1000 to 10° mm, and the data follow the straight-line
trend more closely, but there are still many realizations showing falloff or deviation-above in the
lower portions of curves. From these results, we can conclude that whether or not a simulated
aperture distribution is a straight line in a log-log plot is a stochastic event. The deviation of data
from the straight-line trend in several of the cases in Figure 1.3 may reflect a finite b__, or may
be a random result with an essentially infinite b__.

To further study the effect of b_, on fracture aperture daia, a Monte Carlo study was

conducted over a range of b, values. For each value of b__, 30 realizations were run and the

percentage of realizations following a straight-line distribution was calculated. Figure 2.6 shows
the result of this Monte Carlo study. In the legend, “straight line” represents the percentage of
realizations, out of 30, having a straight-line trend, as in Figure 2.3 (b). The “falioff” curve
represents the percentage of realizations having “falloff” observed at large b as in Figure 2.3 (d).
The “deviation above” curve indicates the percentage of realizations having a deviation above
the str;clight-line trend at large b, as the one in Figure 2.3 (a). Note that the horizontal axis in
Figure 2.6 is a log scale.

In Figure 2.6, with increasing of b

max?

the probability that one observes a power-law trend
over the whole range of aperture values increases. The probability of having a falloff in the lower
portion of the curve of aperture distribution dramatically decreases as b__ increases to around
1000 mm and then levels off at around 20% as b__ becomes larger. The probability of

“deviation-above” the trend increases at low values of b___ and then levels off.
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2.4 Monte Carlo Study of Fractured-Reservoir Permeability

The purpose of this portion of the research is to determine the effective permeability
distribution of a region of a fractured reservoir with a power-law distribution of fracture aperture

2

using the same simplified fractured-reservoir model as above.

2.4.1 Computational Approach

For each realization described in the section 2.3, we obtain the total number of fracturés,
effective permeability and porosity of the region. We can also find the largest aperture in the set
of fractures. Repeating the realizations one thousand times gives results for all these parameters
(number of fractures, largest aperture, permeability and porosity) that approach the true
probability distributions for these random variables.

Rossen (1997) has derived an equation for predicting the probability of largest observed

aperture b, (Appendix A)

P ax (by ) =[probabilty thatat least one aperture> b, ]
=1-[probabilty thatall apertures<b, ]

=1- [probabilty thataperture<b, in oneintervalh]™®
=1-[1- (probabilty tha; aperture> b, in oneinterval h)]H/h)

=1-[1- J.p(b')db']H’h =1-[1-h J n(b")db’]H
b, b

- _ 3 ¢
=1_[1+ach(b,,m b, SLe

T (2.14)

The permeability of the region can be calculated using Darcy’s law (Lake, 1989) and
Equation 2.10

=21?,- (h/H) (2.15)
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where Q is flow rate, A is cross sectional area of the region ((HW) in this case), [t is fluid
viscosity, A® is difference in total flow potential (pressure and hydrostatics) in the flow
direction, and L is given in Figure 2.2. A simple estimate, k,, counting only the single fracture

with the largest aperture, b,, is given by

o 1 1 BPWA® \pL 1 B
"TEHW|\12 0 uL A% 12H (2.16)

In the following Monte Carlo study, one thousand realizations were run for each case with
different parameters (e.g. H, h, b_,, etc.). For each case, results for fracture frequency, largest

observed aperture, permeability and porosity are compared to Equations 2.14 — 2.16.

2.4.2 Results and Analysis

Figure 2.7 shows cumulative statistics for 1000 realizations, each like those in Figure 22—
2.5 for one Set of parameters. Each of these 1000 realizations represents one region of height H
in which there are 1000 intervals of height h. The number of fractures observed in the 1000
realizations (Figure 2.7 (a)) is normally distributed, that is, the data for the number of fractures
observed fall on a straight line in the probability plot. On average, about 418 fractures are
observed in the 1 m height of the region.

These results violate the strict assumptions in the mathematical derivation of the model
(Appendix A) in two ways. First, with nearly half of the intervals of height h containing a
fracture, the odds of one interval containing two fractures is not virtually zero, as assumed.
Second, individual fractures of aperture up to 1000 mm (Figure 2.7 (c)) are observed, albeit
rarely. This clearly violates the assumption that interval height h is larger than any individual
fractures. As a result, permeabilities and porosities calculated with those assumptions are

enormous.
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These occasional wide fractures have a large impact on permeability. Therefore, the shape
of the distribution of permeabilities in Figure 2.7 (c) fits nearly exactly the shape of the
distribution of largest fractures in Figure 2.7 (b). Figure 2.8 shows the correlation between the
largest fracture aperture and permeability for the simulation results. They have a linear
correlation in the log-log plot with the slope of 3 approximately, which is in agreement with
Equation 2.16. This implies that the analytical formulae for the largest observed fracture,
Equation 2.14, predicts effective permeability of the region as well. The single largest fracture
controls effective permeability because it is much larger than the rest and permeability scales as
the third power of aperture.

The value of b__ has substantial impact on permeability. Figure 2.9 shows results for a
larger value of b__. Most of the distribution is unchanged, but the single largest observed
aperture increases as b__ becomes larger. That is, no difference would be observed in most
individual cases (realizations), but occasionally, large values of b are possible with larger values
of b_,.. For relatively small b, the largest observed aperture is sensitive to increasing b__. With
b_.. approaching infinity (e.g., b__ > 100 m), the largest observed aperture is no longer sensitive
to increasing b_,.. The effective permeability and porosity change nearly exactly as the largest
observed aperture does, but the fracture frequency does not change much. Equation 2.11
indicates that the expected value of effective permeability diverges to infinity as b_, approaches
infinity. That s, the bulk of the probability distribution for permeability is unaffected as b_.
approaéhes infinity, but the tail of this distribution with huge values increases, which causes the
expected value of permeability to diverge.

- Figure 2.10 is the same as Figure 2.9 except h = 2 mm; that is, there are 500 intervals in the
region instead of 1000. Changing the value of h does not substantially change the results over
most of the distribution, but extreme, unusually high values of permeability are higher with
larger h. Figure 2.11 compares results for different values of h. Note a larger value of h gives less
variation in fracture frequency. Since h is an artificial parameter of our computational model, this

represents a numerical artifact in our technique.
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Figure 2.12 shows how H affects the results. There are two groups of curves with different
values of b, in the graphs. One group of results is for H = 1 m, the other for H = 10 m. For both,
h = 1 mm. There are 10000 intervals for the case of H= 10 m, 10 times as for H = 1 m.
Increasing the height of the region substantially increase the value of the largest observed
aperture, and thus alters the distributions of effective permeability and porosity. For fixed h,
increasing the height of the region means more intervals in the region, and thus there is an
increasing chance of observing an extremely wide aperture. Figure 2.13 is the same as
Figure 2.12 except h = 2 mm.

We also compare the distribution of largest observed aperture with that predicted by
Equation 2.14. The results are shown in Figure 2.14 - 2.17. All cases show good fits. This
implies that the Equation 2.14 can be used to predict the distribution of largest aperture, and
therefore the distribution of permeabilities.

These results reflect the simplifying assumptions made in our model, especially that all
fracmfes extend across the region of interest (Figure 2.1). In reality, fracture length is finite'and
flow is through interconnected networks of fractures. The next chapter introduces a model for

these effects.

2.5 Conclusions

(1) For small values of the upper limit to aperture size, b__, the simulated aperture

distributions all deviate below the straight-line trend of the power law (Figures 2.2
(2) and (b) and 2.6). For large values of b__, that a simulated aperture distribution
follows a power-law trend is a stochastic event. Therefore, a finite value of b__ may

exist and céuse the falloff in occurrence of large aperture observed in three cases by

Marrett (1997) (Figure 1.3); or the observed falloff may be a stochastic result.
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The Monte Carlo study of fracture aperture distribution shows that with increasing of
b,..» the probability that one observes a power-law trend over the whole range of
aperture values increases.

As Rossen (1997) predicted (Appendix A), the number of fractures observed in a given |
interval is a normally distributed random variable.

Simulation results for the Boulder Creek sandstone violate the initial assumptions
(Appendix A) that h is larger than any fracture apertures observed and so small that the
probability of two fractures in the interval h is virtually zero. As a result, permeabilities
and porosities calculated with those assumptions are enormous.

For the Boulder Creek formation, with large b__, effective permeability is dominated
by the single fracture with largest observed aperture. Increasing the value of b_,_ does
not change most of the aperture distribution, but increases the single largest observed
aperture.

The simulated results fit the analytical equation for the largest observed aperture
(Equation 2.14) very well. Thus, this equation can be used to predict the distribution of
effective permeability.

Interval height h does affect the simulation results. In some cases (large values of b,.)»
effective permeability is higher with larger h. Since h is an arbitrary parameter
introduced in the model, this is a numerical artifact in the model.

As predicted (Equations 2.14 and 2.16), the expected value of permeability increases

(approaching infinity) as the size of the porous medium H increases (Figure 2.12).
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Figure 2.1. Schematic of a simplified fractured reservoir model
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Figure 2.2. Realizations of power-law aperture distribution for the
Boulder Creek formation with b__=0.3 (a, b) and 10 mm (c, d). Type of
trend: (a) falloff; (b) falloff; (c) falloff; (d) falloff.
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Figure 2.3. Realizations of power-law aperture distribution for the Boulder
Creek formation with b, = 1000 mm. Type of trend: (a) deviation above;
(b) straight line; (d) deviation above; (d) falloff.
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Fonmation: Boukder Creek; Intenal: 2nm
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Formation: Boulkder Creek; Helght: 1m; Interval: Tmm; brmax: tm
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(b) Formetion: Boulder Creek; Helght: 1m; interval: 1mm; bmex 100m
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Figure 2.14. Comparison of simulated and predicted maximurm aperture
distribution for different values of b,. H=1m, h=1mm. (a) b_, = 1 m;
()b, =100 m; (c) b__ = 100 km.
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(a) Formation:Boulder Creek; Heght: ny; interval:2mm; bmac 1m
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Figure 2.15. Comparison of simulated and predicted maximum aperture
distribution for different values of b_,. H=1m, h=2mm. (a) b = 1 m;
(b) b, =100m; (c) b_, = 100 km.
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Formetion:Boulder Creek; Helght: 10 Interval:imm; bmeoc10m
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Figure 2.16. Comparison of simulated and predicted maximum aperture
distribution for different values of b,.. H=10m, h=lmm. (a) b__ = 10 m;
(b)b,, =1km.
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Formation:Boulder Creel; Helght:10m; Interval:2mm; bmeoc10m
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Figure 2.17. Comparison of simulated and predicted maximum aperture
distribution for different values of b_,. H=10m, h=2mm. (a) b_, = 10 m;
(b)b_, =1km.
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CHAPTER 3: 3-D FRACTURE NETWORK INTERCONNECTIVITY

In reality, fractures of limited length are dispersed in a reservoir in 3D space. Fractures have
significant impact on the fluid flow primarily when they connect up to form a high-permeable
conduit for flow. Therefore, before the permeability and permeability anisotropy of grid blocks
in dual-porosity simulation are calculated, the interconnectivity of fractures in 3D space must be

determined.

3.1 Generation of 3-D Fracture Network

3.1.1 FracMan™ Program and Conceptual Geometry Models

A commercial fracture simulator called FracMan™ was selected to study the
interconnectivity of the fracture system. FracMan™ is a software package developed by Golder
Associates Inc. (Seattle, Washington) to model the geometry of discrete features. It provides
functionalities such as raw data analysis, generation of fracture networks according to the given
input parameters and conceptual geometry model, connectivity analysis for the fracture network
generated, finite-element mesh generation and output post-processing to facilitate flow and
transport modeling in networks of fractures using companion program Mafic™.

There are nine conceptual geometry models in the simulator that can be used to generate
fracture networks. They are Enhanced Baecher, Nearest Neighbor, Levy-Lee Fractal, War Zone,
Poisson Rectangle, Non-Planar Zone, Fractal POCS, Fractal Box and Geostatistical models.
Several of these models are briefly described here. This description is not an exhaustive
description of features in FracMan™, which can be found elsewhere (Dershowitz et al., 1995).

The Baecher model was one of the first well-characterized discrete-fracture models. In this

- model, the fracture centers are located randomly and without autocorrelation in space using a

Poisson process, and the fractures are generated as disks with a radius and orientation selected
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randomly using statistical distributions chosen by the user. The Enhanced Baecher model
(Dershowitz et al., 1989) extends the Baecher model by providing a provisio/n for fracture
terminations. We did not use the fracture termination option in our study.

The Nearest Neighbor model is a simple, non-stationary model in which fracture intensity
decreases exponentially with distance from “major features” identified by the user.

The Levy-Lee fractal model utilizes a process based upon “Levy flight” (Mandelbrot,
1985). The Levy-flight process is a type of random walk, for which the length L of each step is
given by the probability function

P [L>L]=L7" (3.1)

where D is the fractal mass dimension of the point field of fracture centers, and L, is the distance
from one fracture to the next for the previous step in the generation sequence.

The War Zone model (Dershowitz, 1989) simulates regions of increased fracture intensity
which cannot be represented by abstract statistical or mathematical processes such as fractals. In
the War Zone model, regions with different geologic characteristics are classified as “war
zones”. The boundaries of war zones are defined by large, sub-parallel fractures. These “war
zones” have a higher fracture intensity, such that the “war-zone intensity factor” is the ratio of

fracture intensity inside war zones to the intensity outside war zones.

3.1.2 Constraints on Modeling

For a given power-law distribution of fracture length in a particular region, whether or not
the fractures link up is a stochastic event. In this sense, the connectivity of fractures is a
percolation problem.

From Equation 1.3, a power-law distribution for fracture length can be expressed as

N _m —-e __ ’y—e
Ve v, - T mt (3.2)
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where V|, is the volume of the outcrop region in which Equation 1.3 is obtained; and m, m’ and e
are constants. Strictly, N in Equation 1.3 represents the cumulative number of fractures with
exposed length greater than L in a given area of outcrop; in Equation 3.2 it is cumulative number
in a given volume of reservoir.

In principle, the number of fractures N in a power-law distribution such as Equations 1.2,
1.3 or 3.2 is infinite, if the power-law extends to zero aperture or length. But, because the
resources of the computer are limited, it is not possible for the computer to generate all the
fractures in the region. Therefore, only fractures of length greater than some cut-off length L__
are represented. Thus, the total number of fractures represented in a region with volume of V can

be expressed as

N =Vm'L% (3.3)

where L, is the minimum fracture length modeled in the region. The computer represents ?’c‘mly
the finite number of fractures in the Equation 3.3 with length greater than some given leng{il L.
In other words, there is a truncation error in the model because of excluding the smaller
fractures. This implies that one has difficulty determining connectivity for sure at any given
scale, because one cannot generate all the infinite number of fractures in that region. According
to Equation 3.3, for given N, the smaller the region volume V, the smaller L can be and the
smaller this truncation effect. Therefore one goal in this research was to study the fracture
connectivity at the small scale and then attempt to upscale those results to larger scale.

However, the connectivity of fractures at one scale does not necessarily determine the
connectivity of fractures at another scale. Figure 3.1 illustrates this physical restﬁction
schematically. This restriction implies that one cannot necessarily scale-up results for small
regions to larger regions. This conjecture is confirmed by simulation in Figure 3.2. The details of

the simulation method and parameter values used are discussed below. In Figure 3.2 (b) each

sub-region has a connected pathway but the region as whole has none. Figure 3.3 shows the trace

417



maps of fracture intersections with the trace plane located in the middle of the region in the two
cases.

Rossen (Appendix B) has studied the scaling of fracture frequency and length with the
volume of observation for power-law distributions of fracture length (Equation 3.2). There are
three important cases:

(1) For e > 3, the fractures appear to grow longer (relative to the size of region) as the size
of a cubic region decreases. Thus, fractures are guaranteed to link up and/or cross the
region individually if the size of region shrinks sufficiently. Interconnectivity of the
fracture network is guaranteed on the microscopic scale.

(2) For e < 3, the fractures appear more numerous and larger as the size of the cubic region
increases. Thus fractures are guaranteed to link up on the megascopic scale as the size
of the region increases sufficiently. The outcrop data for the Westwater pavement
(Laubach et al., 1997) used in much of this research reflects an exponent e of 2.85 < 3.

(3) For aregion confined to a bed of fixed thickness, the height stays fixed as the cross-
sectional area of the region increases. In this case, the fractures are not guaranteed to
link up on either the microscopic scale or megascopic scale. This suggests that the
search for connectivity focus on regions of size equal to the thickness of the layer,
where the probability of connectivity among the finite number of fractures that can be
modeled on a computer is greatest.

Tb Averify these three conclusions, a series of realizations of fracture systems using
FracMan™ have been generated. Figure 3.4 shows case (1), i.e. a power-law distribution with
exponent ¢ > 3. Both 3D cube and 2D horizontal intersection planes, one midway through and
one at the top of the region, are shown in the figure. Fractures appear longer, relative to the size
of the region, as the cube shrinks. Only the 50 largest fractures in the region are shown in

Figure 3.4, but the whole distribution scales as illustrated here.
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Figure 3.5 shows case (2), i.e. with exponent e < 3. Fractures in the cube appear longer,
relative to the size of the region, as the size of the region grows. This case corresponds to the
Westwater pavement data, for which e = 2.85.

Figure 3.6 shows case (3), a region of fixed thickness of 2.9 m. In Figure 3.6, a layer with
fixed thickness of 2.9m is defined in the middle of the cube. The exponent e of power-law
fracture size distribution is 2.85, as in the Westwater pavement data. The fractures appear shorter
as the size of the region increases. Thus it is not guaranteed that fractures link up at the
megascopic scale for finite-width regions with e < 3. (This is clearest from comparing Figure 3.6
(2) and (b) (10 km and 100 m). For Figure 3.6 (c) (10 m), the fractures appear longer, but not all
of them intersect the horizontal planes at the middle and top of the region.) As the size of the
region shrinks below the thickness of the layer, the region becomes cubic in shape. This
corresponds to case (2); i.e., the fractures do not link up in the microscopic scale either.

(Equation 3.3) relative to the size of the

‘min

Table 3.1 shows the fracture cutoff length L
region ‘for the various cases. Table 3.1 includes also a fourth case, a system of fixed thickness
with e > 3. For this case fractures appear longer as the size of the region increases, and therefore
fractures link up on the megascopic scale. According to Equation 3.3, for a cubical medium, the
total number of fractures in the system can be expressed as

N = Lym’L;}

min

-b
L