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ABSTRACT 

In this study, a new procedure was developed to significantly improve the computational 
efficiency and accuracy of upscaling for generating equivalent rock and rock-fluid properties 
under various geological and flow conditions based on multiresolution analysis of wavelet 
transforms. Additionally, a wavelet reconstruction method was explored to provide a basis for 
downsampling fine-scale rock property fields from information at various levels of coarser 
scale. 

A number of tests were performed to verify the applicability of the newly developed upscaling 
procedure under realistic geological context. Test interbeds, interfacies, and geological 
structures were constructed by incorporating measurements from the Almond outcrop. 

The test examples demonstrate that the new upscaling procedure generates excellent equivalent 
interbed rock properties under multiphase flow conditions. Simulation results also indicate that 
the wavelet transform method provides very reasonable upscaled interfacies rock and rock-
fluid properties even for multiple lithologies and multiphase flow conditions. 
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EXECUTIVE SUMMARY 

Although numerous upscaling techniques are reported in the literature, efficiently computing 
reasonably accurate equivalent rock properties from geological data at fine scale remains 
difficult. This is especially true for facies with multiple lithologies under multiphase flow 
conditions. Due to the nature of multiscale heterogeneity inherent to petroleum reservoirs, the 
equivalent rock and flow properties will vary with the scales of heterogeneity. Therefore, 
upscaled properties under multiphase flow conditions cannot be estimated without reference to 
the absolute scales of heterogeneity. 

Wavelet analysis is a multiresolution framework and, thus, it is well suited for upscaling rock 
and flow properties in a multiscale heterogeneous reservoir. The compact support property of 
the wavelet transform assures efficient computation. Choices of regularity provides a flexible 
way to control the smoothness of the resulting upscaling properties.  

In this study, we developed a new procedure to upscale rock and rock-fluid properties under 
single- and multi-phase flow conditions using wavelet transform. The beauty of the method is 
that since the equivalent properties at different length scales are computed recursively, the 
interdependent influences of the heterogeneities on the scales are included effectively. The 
method is demonstrated by successfully applying it to upscale interbedset and interfacies 
outcrop petrophysical data. 

By using the newly developed procedure to upscale the measurements from Almond Formation 
outcrops, we demonstrated that the wavelet transform generates excellent equivalent property 
distributions under multiphase flow within a single geological facies. Simulation results also 
indicated that the wavelet transform method provides very reasonable upscaling results even 
when multiple lithologies are considered under multiphase flow conditions. Because the 
upscaled property images obtained from wavelet transform capture the characters of the 
original property fields, the predicted performance from upscaling property fields matches well 
with the one from the original fine-scale property fields. 
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1.0 INTRODUCTION 

Wavelets constitute unconditional bases for a variety of function spaces. Thus, they can provide 
accurate approximations of functions in such space. An approximate representation of a 
function (or a process) using wavelets is provided by an infinite series expansion of dilated and 
translated versions of a base wavelet. For functions with finite energy this wavelet 
representation is optimal, i.e., it offers the closest approximation to the original function, in the 
least square sense. 

The wavelet transform has become pervasive in diverse areas such as mathematics, physics, 
computerized visualization, digital signal processing (Mallat 1989a, b), numerical analysis 
(Bacry et al. 1993), and geophysics (Davis et al. 1994) since it was formalized by several 
researchers (Morlet et al. 1982a, b; Grossmann and Morlet 1984) in early 1980’s, and later by 
Meyer (1993a, b), Mallat (1989a, b), and Daubechies (1988, 1992). Very recently, wavelet analysis 
also has been used in petroleum engineering to enhance rock property images, denoise the 
measurements of rock properties (Panda 1994), and solve flow equations (Moridis et al. 1995) 
and in environmental engineering to downsample the absolute permeability (Brewer and S. 
Wheatcraft 1994). 

Upscaling reservoir properties is a complicated and challenging problem, and remains an 
unsolved problem, especially for multiple lithologies and multiphase flow conditions. Although 
upscaling problems are traditionally considered a process to upsample the rock properties 
or/and rock-fluid properties to appropriate, coarser grids using fine grid information, the more 
realistic or practical requirements for upscaling should be upsampling the properties for coarser 
grids using all available information at all levels of finer grids. With multiresolution analysis 
properties, compact support, orthogonality, and localized transforms in both space and 
frequency domains, wavelet analysis becomes an ideal candidate for such purposes. 

In this study, we developed a decomposition and reconstruction procedure for rock property 
fields in light of Mallat’s work (1989a). Application of the developed procedure to absolute 
permeability fields presents promising results. When coarsening fine grid permeability to more 
accessible scales, although the number of grids are reduced substantially, the main trends or 
characters of the permeability fields are reasonably well preserved. The flow behavior from the 
original fine grid permeability field is reproduced perfectly by the upscaled permeability field. 
The developed method can also adequately reconstruct the fine-scale properties from coarser 
scale information. 

Encouraged by the above successful application of the wavelet transform, we further extend the 
method to upscale not only rock properties but also rock-fluid properties for multiple 
lithologies and multiphase flow conditions. 
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To verify the applicability of the newly developed upscaling procedure within a realistic 
geological context, we constructed testing problems using measurements from the Almond 
Formation. 
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2.0 THEORETICAL BACKGROUND 

2.1 Wavelet Transforms 

Wavelet transforms, like the extensively used Fourier transform, are also kinds of linear integral 
transforms. To understand the mechanism of the wavelet transforms, one may begin discussion 
with the familiar Fourier transform. Recall that for a given function, , the corresponding 
Fourier transform takes the form, 

f x( )

  (2–1) $( ) ( )f f u e i uω ω= −

−∞

∞

∫ du

Although the above transform gives information about the content of a function in frequency 
domain, it gives no information about the location of these frequencies in the spatial domain. 
Therefore, strictly speaking, Fourier transform is applicable to a “homogeneous” system, or 
otherwise only extracts “blend” properties. 

Spatially varying phenomena are quite common in the real world, such as in seismic signal, 
non-stationary geophysical processes, or in reservoir rock property distributions. To extract 
information from such processes, Fourier transform alone is, therefore, quite inadequate. This is 
because although Fourier transform gives the information of certain frequencies, this 
information cannot be effectively used as it is not spatially localized. Ideally, one would like to 
have space and frequency information simultaneously. One of the methods which gives the 
space-frequency representation of a function (or process) but still remains within the Fourier 
transform framework is windowed Fourier transform. By windowed Fourier transform, spatial 
localization can be obtained by convoluting a windowing function with the conventional 
Fourier transform as follows: 

g x( )

  (2–2) Gf x f u g u x e du f u g e dui u
x

i u( , ) ( ) ( ) ( ) ,ω ω
ω

ω= − −

−∞

∞
−

−∞

∞

∫ ∫

where ω  is the frequency, x  is the location of the center of the window. G f x( , )ω  describes the 
spectral content of  around f x( ) x  within the window defined by  g x( ).

Despite an ability to spatially localize information, the windowed Fourier transform suffers 
from several limitations. For example, because the spatial localization precision of the 
windowed Fourier transform is controlled by standard deviation of , , if there are 
important local transient components of differing support size, then one cannot find a 
universally optimal  for effectively and precisely analyzing the process. The wavelet 

g w x, σ g

g x( )
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transform was developed to address such limitations of windowed Fourier transform and other 
similar transforms. 

The wavelet transform is defined as a convolution of a given function, , with a kernel 

function, 

f x( )

ψ
λ
ψ

λλ , ( ) ( )x u u x
=

−1 , and is given as 

 Wf x f x u du f x u x dux( , ) ( ) ( ) ( ) ( ),λ ψ
λ
ψ

λ
λλ= =

−
>

−∞

∞

−∞

∞

∫ ∫
1 0   (2–3) 

Here λ  is a scale parameter, x , is a location parameter, and a family of functions, ψ λ , ( )x u , are 
called wavelet functions. 

In contrast to the constant support length of the windowing function, , in the windowed 
Fourier transform the support length of wavelet functions, , changes proportionally with 
the scale parameter, 

g x( )

ψ λ , ( )x u
λ , i.e., increasing λ  will dilate and decreasing λ  will contract the wavelet 

function. In this way, in small scale, the wavelet function will have small support length, 
therefore wavelet transform will pick up higher frequency components and vice-versa. Just as 
in the Fourier transform, one can also develop discrete version of the above continuous wavelet 
transforms for analyzing discrete data sequences. 

Ideally, one would prefer both the support length and moving incremental step of the wavelet 
function to be small in small scale and vice-versa. This can be easily accomplished by relating 
them to level of scale, , or explicitly define: m

  (2–4) λ λ= 0
m

and 

  (2–5) x nx m= 0 0λ

where λ 0  is a fixed dilation step greater than 1,  is initial step at scale x 0 0 , and  is an integer, 
representing spatial index of data sequence. For the convenience of computation, one may 
assign, 

n

λ 0 2=  and normalize the initial system so that . With the above convention, a 
family of wavelet functions can be rewritten as 

x0 1=

 ψ ψm m

mx,n ( ) ( )= −1
2

2 x n−  (2–6) 

Accordingly, the discrete wavelet transform takes the form: 
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 f f um m, ( ) (,n ,nψ ψ= ∫ u du)  (2–7) 

2.2 Multilevel Approximation with Wavelets 

It was proven (Mallat 1989a) that if subspace ( )V m m z∈  is a multiresolution approximation of 
, then there exists a unique wavelet function, , such that L R( )2 2

)

n

ψ ( ) ( )x L R∈

  (2–8) 2 2− − −m m x nψ (

is a complete orthonormal basis of , i.e., V m

  (2–9) ψ ψ δ δm m m
x x dx,n ,n ,m ,n

( ) ( )' ' ' '∫ =

where δ i j, is the Kronecker delta function. 

This implies that all the functions with finite energy can be approximated, up to arbitrary high 
precision, by a linear combination of the wavelet functions, , i.e., ψ m n x, ( )

 . (2–10) f x D xm m
nm

( ) ( ),n ,n=
=−∞

∞

=−∞

∞

∑∑ ψ

Similar to Fourier series, the coefficients, , are obtained by wavelet transform of , D m n, f x( )

 D f f u u dm m m,n ,n ,n, ( ) (= = ∫ψ ψ u)  (2–11) 

If one lets , a scaling function, be the basis of another subspace, ( ) , which is the 
orthogonal complement of ( ) , then it is further proven that 

φ m n x, ( ) W m m z∈

V m m z∈

 f x f x f x
m

m
m m

nm

m

m( ) , ( ) , ( )* *

*

,n ,n ,n ,n= +
=−∞

∞

=−∞

∞

=−∞
∑ ∑∑φ φ ψ ψ  (2–12) 

where  is an intermediate scale. m*

After a few steps of algebraic manipulation, one can obtain a recursive, multiresolution 
representation of the function,  as: f x( )

 P f x P f x Q f xm m m− = +1 ( ) ( ) ( )  (2–13) 

where 
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 Q f x f x E xm m n
n

m n m n
n

m n( ) , ( ) ( ), , , ,= =
=−∞

∞

∑ ∑ψ ψ ψ  (2–14) 

and  

 P f x f x D xm m n
n

m n m n
n

m n( ) , ( ) ( ), , , ,= =
=−∞

∞

∑ ∑φ φ φ  (2–15) 

are orthogonal projections of  onto subspaces W and , respectively. Coefficients  
and  are conventionally called discrete approximation and discrete detail signals of  at 
scale  and location . 

f x( ) m V m D m n,

E m n, f x( )

m n

Equation (2–13) indicates that the discrete approximation at a finer scale m − 1  can be 
reconstructed from discrete approximation and detail signal at a coarser scale, . m

2.3 Implementation of Discrete Wavelet Transform 

For a given data sequence {  corresponding to a function  and a chosen }cn f x( ) φ( )x , one can 
assume this data sequence is equal to the discrete approximation of  at finest scale level 

 , i.e., 
f x( )

m = 0

 { } { } { }D f n0 0,n ,n,= =φ c . (2–16) 

Referring to Equation (1–15), using one construct in V  0

 P f x D x
n

0 0 0( ) ( ),n ,n=∑ φ . (2–17) 

from Equation (2–13), one can decompose  into its orthonormal components along 
subspaces, V andW , respectively, i.e., 

P f x0 ( )

1 1

P f x D P f x Q f x0 0 0 1 1( ) ( ) ( ),n ,n= = +

D E
n

k k
1 1 1 1,k ,k ,k ,k= +

∑

∑ ∑φ ψ

φ

}

 (2–18)  

the sequences, and , can be determined as a function of  using wavelet 
transform, 

{ }D k1, { }E k1, {D n0 ,

 D P f D
n

1 1 0 0 1 0,k ,k ,n ,k ,n,= = ,∑φ φ φ  (2–19) 

and 
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 E P f Dk k n k
n

1 1 0 0 1 0, , , ,,= = n,,∑ψ ψ φ  (2–20) 

where 

 φ φ φ φ1 0
1 22 2 2, ,

/, ( / ) ( (k n x x n k= − −− ∫ ))dx  (2–21) 

and 

 ψ φ ψ φ1 0
1 22 2 2,k ,n

/, ( / ) ( (= −− ∫ x x n k ))− dx

−

−

0

 (2–22) 

if one defines 

  (2–23) h n x x n dx( ) ( / ) ( )/= − ∫2 21 2 φ φ

and 

  (2–24) g n x x n dx( ) ( / ) ( )/= − ∫2 21 2 ψ φ

respectively, one can simplify Equations (2–19) and (2–20) as 

 D h n k D
n

1 2,k ,n( )= −∑  (2–25) 

and 

 E g n k D
n

1 2,k ,n( )= − 0∑  (2–26) 

or in matrix form 

 D HD1 0=  (2–27) 

and 

 E GD1 0= . (2–28) 

It is easy to prove that one can recursively determine sequences and from  by D m E m D m − 1
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 D H Dm m= − 1  (2–29) 

and 

 E GEm m= −1 . (2–30) 

The above procedure is usually called decomposition, and H and G are called low pass filter 
and high pass filter, respectively. The reconstruction procedure can be computed as easily as 
decomposition. Since 

P f x D P f x Q f xm m
n

m m m− −= = +∑1 1( ) ( ) ( ),n ,nφ  

 = +∑ ∑D Em
k

m m
k

m,k ,k ,k ,kφ ψ  (2–31) 

hence 

D P f D Em m m m m m
k

m m m
k

− − − − −= = +∑ ∑1 1 1 1 1,n ,n ,k ,n ,k ,k ,n ,k, ,φ φ φ φ ,ψ ) 

 = − + −∑ ∑h n k D g n k Em
k

m
k

( ) ( ),k ,k2 2 , (2–32) 

or in matrix form as 

 D H D G Em T m T− m= +1 . (2–33) 

Overall, decomposition of a data sequence  into the mutually orthonormal subspaces V  and 
W using wavelet transforms can be pictorially represented as in Figure 2–1a, and the 
corresponding reconstruction procedure can be shown as in Figure 2–1b. 

c0

D L DL+1

G

EL+1

H DL DL+1

GT

EL+1

H T

A B
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Figure 2–1 One-Dimensional Recursive Decomposition and Reconstruction 
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The above procedures for one-dimensional (1D) data sequence can be extended to two-
dimensional (2D) multiresolution approximation using the separable assumption which states 
that each vector space V   can be decomposed as a tensor product of two identical subspaces 

 of . Based on this assumption, the scaling function for the 2D case is related to 
corresponding 1D scaling function by 

m

V m
' 2L R( )

 φ φ φ( , ) ( ) ( )x x x x1 2 1 1=  (2–34) 

There are a total of four orthonormal basis for the 2D case. According to Mallat (1989a), the 
other three can be constructed using corresponding wavelet function and scaling function for 
1D case as follows: 

 , (2–35a) ψ φ ψ1
1 2 1 2( , ) ( ) ( )x x x x=

 , (2–35b) ψ ψ φ2
1 2 1 2( , ) ( ) ( )x x x x=

and 

 . (2–36) ψ ψ ψ3
1 2 1 2( , ) ( ) ( )x x x x=

where ψ ( )x  is the 1D wavelet function associated with scaling function, φ( )x . 

Similar to 1D case, the projection of the function, , on scaling subspace V  is obtained by  f x x( , )1 2

 P f x x f fm m nk m n m k( , ) , ,, ,1 2 = =φ φ φ ,  (2–37) 

and projections of  on wavelet subspace are given by f x x( , )1 2

 Q f x x f fm m nk m n m k
1

1 2
1( , ) , ,, ,= =ψ φ ψ , , (2–38) 

 Q f x x f fm m nk m n m k
2

1 2
2( , ) , ,, ,= =ψ ψ φ , , (2–39) 

and 

 Q f x x f fm m
3

1 2
3( , ) , ,,nk ,n ,k= =ψ ψ ψm m . (2–40) 
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The corresponding discrete approximation can be written as 

  (2–41) D HD Hm m
T= −1

and the three detail signals can be given by 

 , (2–42) E HD Gm m
T1

1= −

 , (2–43) E GD Hm m
T2

1= −

and 

 . (2–44) E GD Gm m
T3

1= −

Similar to the 1D case, the reconstruction algorithm can be computed by 

  (2–45) D H D H G D H G E G H Dm
T

m
T

m
T

m
T

m− = + + +1 G

The algorithm for multiresolution analysis using wavelet for 2D data sequence is schematically 
shown in Figures 2–2a and 2–2b for decomposition and reconstruction, respectively. 

DL

EL+1
3
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2
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1

DL+1
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ROWS
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1
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H T

ROWS
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3

EL+1
2

DL+1

H T
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Figure 2–2 A 2D Recursive Decomposition and Reconstruction 
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3.0 DECOMPOSITION AND RECONSTRUCTION OF 
AN ABSOLUTE PERMEABILITY FIELD 

It is well known that petroleum reservoirs are inherently heterogeneous and that flow 
performance of reservoirs is controlled by variability in reservoir properties at various scales. 
The dominant scale effects will vary with the production processes involved. Therefore, to 
accurately describe reservoir performance, one needs to develop a method to first adequately 
reconstruct the fine-scale variability from sparsely distributed, coarser, multiscale samples, and 
then properly coarsen the fine-scale variability whenever necessary. Here, the procedure 
presented in the previous sections is used to upscale and downscale the absolute permeability 
distributions. Reconstruction algorithm begins with the determination of the detail signals at all 
levels of scale. Essentially, such information is not available since full spatial coverage of 
discrete approximation at all scales will rarely occur for practical application. Therefore, one 
usually needs to assign stochastic values for all detailed signals based on a pseudo-fractal 
relationship (Wornell and Oppenheim 1992). Since reconstruction is not our current concern, 
assume that all the detail signals are known. The main issue here is to examine how the 
permeability variability transforms in both directions between the scales. To demonstrate the 
applicability of the procedures, two examples are presented: a 1D permeability distribution and 
a 2D case. 

3.1 One-Dimensional Case 

The original permeability distribution is shown in Figure 3–1a. Notice that there is a peak in 
permeability around x = 73 . After three steps of decomposition following the procedure 
depicted in Figure 2–1a, we obtained the upscaling permeability distributions at each coarser 
scale, which is shown in Figures 3–1b, 3–1c, and 3–1d, respectively. Notice that although the 
decomposition process tends to blend the property details, and the permeability distribution 
gradually becomes smoother and smoother, the permeability peak still exists even at scale level 
3. Furthermore, when decomposing the permeability field, the higher frequency components 
will gradually disappear, but such information is never lost. The permeability differences 
between the different scales are kept as detail signals. Figure 3–2 shows the detail signals at 
different levels of scale. It is known that the equivalent value for a 1D permeability in a series 
arrangement is equal to the harmonic average of the permeabilities. Because the harmonic 
average of the permeability at each coarser scale is 1013.7 md, 1023.1 md, 1028.6 md, and 1066.3 
md, which are all very close to the harmonic average of the original permeability field, 1012 md, 
one should expect that the flow behavior for the upscaling system will match the behavior of 
the original system. The small deviations in the harmonic average may be from the imposed 
periodic boundary conditions. 
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Figure 3–1 Decomposition of 1D Permeabilities 
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Figure 3–2 Detailed Signals at Each Step of Reconstruction 

To examine the reconstruction procedure, reconstruct the permeability distribution at original 
scale using discrete approximation at final step shown in Figure 3–1d and the detail signals 
shown in Figure 3–2. The comparison between the original and the reconstructed permeability 
distribution is shown in Figure 3–3. Notice that the match between the two distributions is 
almost exact. 
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3.2 Two-Dimensional Applications 

This section presents the results of decomposing and reconstructing a 2D permeability field 
following the procedure shown in Figure 2–2. The original permeability field shown in Figure 
3–4 is composed of three lithologies with the means for each lithology being 100 md, 10 md, and 
1 md, respectively. The upscaling permeability distributions at different scales generated from 
the proposed procedure are shown in Figures 3–5 and 3–6. Analogous to the 1D case, after 
decomposition, the details of the permeability distribution gradually disappeared; however, the 
main characters of the original distribution are well captured. Using discrete approximation and 
three detail signals (not shown here) at each scale, the permeability distribution at original scale 
is reconstructed, as shown in Figure 3–7. Except for slight differences along the boundaries, the 
reconstructed permeability image matches the original one very well (Figure 3–4). 
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Figure 3–3 Comparison of the Original and Reconstructed Permeability Distributions 
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Figure 3–4 Original Permeability Distribution for Three Lithologies Case 
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Figure 3–5 Upscaled Permeability Distribution at Level 1 for Three Lithologies Case 
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Figure 3–6 Upscaled Permeability Distribution at Level 2 for Three Lithologies Case 
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Figure 3–7 Reconstructed Permeability Distribution for Three Lithologies Case 
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4.0 WAVELET ANALYSIS FOR TWO-PHASE FLOW 

Upscaling properties for multiphase flow is much more complicated than that for single-phase 
flow. Unlike the case of single-phase flow, where only absolute permeability affects the steady-
state flow behavior, the flow properties for each phase and phase pressure difference within 
each geological facies and, probably more important, the rock-fluid property contrasts between 
the facies will also play a vital role for multiple lithologies and multiphase flow situations. 
Therefore, besides effective absolute permeability as in the case of single-phase flow, one needs 
to determine two additional equivalent properties: effective relative permeabilities and effective 
capillary pressure for the coarse-scale grid model. Such equivalent properties are flow-regime 
sensitive, making the problem more complicated. It is well known that flow regime in a 
multiphase flow is determined by the relative ratio among three major driving forces: viscous 
force, gravitational force, and capillary pressure. Roughly speaking, such a relative ratio among 
various driving forces will depend on flow velocity, scale of heterogeneity, size of grid block, 
and fluid properties. Considering that flow velocity and heterogeneity in a reservoir are 
spatially and/or temporally varying, therefore the equivalent relative permeability and 
capillary pressure will generally be spatially and temporally dependent and cannot be 
constructed without reference to geological structure and dominant flow regime. 

In this section we propose a new two-phase upscaling method based on wavelet analysis 
techniques which, in contrast to conventional multiphase upscaling methods, does not require 
fine-scale simulation because it moves effects of the fine scales into coarser scales by multiscale 
wavelet transforms. The procedure begins with a fine-scale system which is populated with 
porosity, absolute permeability, and rock-fluid properties, such as phase relative permeabilities 
and capillary pressures. The rock and rock-fluid properties may vary substantially among 
different lithologies. The first step of the procedure is to upscale absolute permeability, and then 
upscale the phase permeabilities and capillary pressure based on hypothesis of capillary 
pressure dominant and viscous flow dominant, respectively. The third step of the procedure is 
to average the two groups of generated phase permeabilities and capillary pressures 
corresponding to each hypothesis weighted by ratio of capillary-viscous forces. The final step is 
normalizing the upscaled phase permeabilities using upscaled absolute permeability to obtain 
scaled-up relative permeabilities. The following sections will first present each step in detail and 
then present application examples under various geological contexts. 

19 



 

4.1 Upscaling Two-Dimensional Absolute Permeabilities 

For a given fine-scale absolute permeability distribution, one can arrange the block permeability 
as a matrix, 

  (4–1) K
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k k
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where  represents absolute permeability for block, and ki j, i j,  are the indexes for rows and 
columns, respectively. The superscript 0  for matrix K  indicates that one assumes the original 
permeability distribution as a discrete approximation at scale 0 . 

The implementation presented in this report is only interested in equivalent properties at 
coarser scale, and does not intend to use information carried by the detailed signals. Therefore, 
one can simplify the procedure proposed by Mallat (1989a). Generally speaking, one only need 
to convolute the permeabilities along one direction with low-pass filter first, followed by a 
convolution application using the same filter to the permeabilities along another direction. 

For a chosen wavelet function, the filter matrix can be constructed from the coefficients of the 
basis function. For all the examples given here, a standard Daubechies filter, , is used 
(Wickerhauser 1993). The following is the general makeup for the low-pass filter matrix for a 
four coefficients basis function that has a scale-to-scale relationship of 2. 
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Notice that the dimension of the column for the dimension of the matrix H  is always twice as 
large as that of the row. For clarity in multiresolution analysis, from now denote a matrix X  
with dimension  at scale level  as . Using this notation, a decomposition of 
permeability distribution at scale level 

L n× m X L n,
m

0  along j direction can be written as 

 ( )K H KL n

j

L L L n/ , / , ,2
1

2
0=  (4–3) 
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Note that the number of permeability values along j direction is reduced by a factor of 2 after 
the above decomposition. The final permeability matrix at scale level 1 can be determined by 
decomposing the resulting intermediate permeability matrix ( )K L n/ ,2

j1 along  direction in a 
similar manner, 

i

 ( )[ ]K H KL n n n L n j

T T

/ , / / , / ,2 2
1

2 2
1= ⎧

⎨
⎩

⎫
⎬
⎭

 (4–4) 

Combining Equations (4–3) and (4–4), a recursive procedure can be constructed to compute 
equivalent absolute permeability values at an arbitrary coarser scale  from information at 
finer scale  as follows: 

m
m − 1

 ( )K H K HL n
m

L L L n
m

n n

T

/ , / / , , / ,2 2 2
1

2= −  (4–5) 

Note that after one level decomposition, the dimension of the system and accordingly the 
number of the permeability values are reduced by a factor of 4. The above procedure can be 
generalized for decomposing any 2D data set by denoting the matrix, K , as a corresponding 
properly ordered data matrix. 

4.2 Upscaling of Relative Permeabilities and Capillary Pressures 

To avoid fine grid simulation, consider a steady-state incompressible, immiscible flow of water 
and oil in a heterogeneous permeable system which may consist of multiple geological facies. 
Further, assume rock-fluid properties within different facies may be substantially different so 
that saturation and capillary pressure discontinuities may exist between different facies. It is 
realized that the equivalent rock-fluid properties for coarser grids are not only a function of the 
spatial arrangement of the geological structure but also sensitive to relative ratios among 
driving forces within the flow medium system. In the following sections, the procedure is 
discussed in detail. 

4.2.1 Normalizing Saturation 

Suppose there are n types of rock-fluid properties, i.e., n sets of relative permeability curves and 
capillary pressure curves. First normalize saturation for each set of curves by 

 S S S
S S

iDi
i r i

r i r i
1

1 1

1 21
1 2= n−

− −
=, , , ,L  (4–6) 

where subscript 1 represents water phase and 2 represents oil phase.  
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4.2.2 Determining Saturation Distributions 

Saturation distributions are determined based on the hypothesis of flow regime made. When 
the flow regime is viscous dominated where capillary pressure number is small, water 
saturation distribution is controlled by viscous force and can be estimated from fractional flow 
curves, i.e., 

 . (4–7) S f fDi v i i1
1

, ( )= −

On the other hand, saturation distribution can be determined by capillary pressure while the 
flow is capillary pressure dominated, 

 . (4–8) S P PDi c c i c i1
1

, (= − )

4.2.3 Upscaling Saturation 

Equivalent saturation for coarser scale blocks are determined by arithmetic average weighted 
by pore volumes as: 

 S
VD

pi
m

Di

pi
m

1

1

=
V S∑
∑

 (4–9) 

where  is the number of the finest grid blocks contained in each final coarsest scale block. m

4.2.4 Upscaling Capillary Pressures and Phase Permeabilities 

For each generated saturation distribution from Equation 4–7 or Equation 4–8 depending on the 
assumed flow regimes, one can determine the corresponding phase relative permeabilities and 
capillary pressures for each fine-scale grid from the sets of rock-fluid curves, and then compute 
phase permeability distributions for fine-scale system by multiplying the resulting relative 
permeabilities by corresponding absolute permeability. For each property distribution, 
construct the property matrix as was done in Section 4.1 and upscale the property for coarser 
scale using Equation 4–5. By this method, one can determine the phase permeabilities and 
capillary pressures for coarser scale corresponding to viscous-dominated and capillary pressure 
dominated flow regimes, respectively. For easy reference, denote them here by 
( )k jv i

, ( ) ,k jc i ( and )Pcv i ( )Pcc i
, respectively. Here, the subscripts v  and c  are used to denote 

viscous and capillary pressure dominated, respectively. 
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4.2.5 Weighting the Capillary Pressures and Phase Permeabilities 

In the above sections, the equivalent properties have been determined for each coarser block for 
two extreme flow regimes, namely, viscous dominated and capillary-pressure dominated. The 
“true” equivalent properties can be approximated by a weighted average of above two extremes 
(Li et al. 1995). 

 ( ) ( ) ( )k kj i jv i jc i
= − +( )1 α ω k  (4–10) 

and 

 ( ) ( ) ( )P Pc i cv i cc i
= − +( )1 α ω P  (4–11) 

where weighting factor is a function of capillary number, , and can be computed as follows: N pc

 α =
+log N pc 4

5
        for− ≤ ≤4 log N pc 1 . (4–12) 

4.2.6 Upscale Relative Permeabilities 

To obtain the scaled-up relative permeabilities, simply divide the resulted scaled-up phase 
permeabilities by corresponding scaled-up absolute permeability, i.e., 

 ( ) ( )
k

k

krj i

j i

i

=  (4–13) 

where subscript j w o= ,  represents phase, and i   represents grid index of coarser scale system. 

4.3 Application Examples 

The proposed upscaling procedure using wavelet analysis has been tested in fine grid flow 
descriptions generated by a geostatistical simulation based on absolute permeability 
measurements from the Almond outcrop. Waterflooding simulations are run on Computer 
Modeling Group (CMG) Imex95 black-oil simulator. Numerical tests consisted of the following 
steps: 

1. Injecting water under constant rate or constant pressure at one end of the system using 
a fully penetrated well, and then record the water and oil production histories from 
fully penetrated producing well at another end of the system for original find scale 
system using original rock and rock-fluid properties. 

2. Use the same settings and simulation procedures on the upscaled flow system which 
was generated by the procedure described in previous sections. 
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3. Compare the two simulation results. 

4.3.1 Geological Constraint on Outcrop Permeability Mapping 

In order to characterize the lateral and vertical distribution of porosity and permeability within 
tidal-channel, tidal-delta, and foreshore facies, core plugs were taken from Almond outcrops 
located immediately north of Highway 430, Sweetwater County, Wyoming. The foreshore 
samples included both beach and swash bar components. More than 1,000 plugs 1 inch in 
diameter and up to 6 inches long were collected using a gasoline-powered motor and air-
cleaned diamond-impregnated core bits. Horizontal and vertical (stratigraphic) coordinates 
were recorded for all samples, and the sample locations were correlated to a large strike-
oriented stratigraphic cross section of the outcrop (Figure 2-2 from Chang et al. 1994). The 
distribution of major bedsets within tidal-channel (see Fig. 4–1) and tidal-delta facies (see Fig. 4–
2) was determined using a series of photomosaics and observations recorded in the field. A map 
of the distribution of permeability within the bottom 5 ft of the tidal delta facies (see Fig. 4–3) 
shows that permeability trends within major bedsets tend to follow the overall depositional 
“grain” as delineated by the cross bedding direction, that permeability changes quite rapidly in 
the vertical direction, and that the permeability trends are often truncated at bedset boundaries. 

 

517

517635

635

5 ft

5 ft

NORTH SOUTH

 

Figure 4–1 Almond Formation Outcrop G Tidal-Channel 1 Bedset Boundaries. Datum is 
base of outcrop; 517 and 635 represent distance in feet north of the  
southernmost extent of the outcrop. Figure was reconstructed from an outcrop 
photomosaic.
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Figure 4–3 This Figure Is a Reconstruction of the Geologically Constrained Distribution 
of Permeability within the Bottom 5 ft of the Tidal Delta Whose Major Bedsets 
Are Outlined in Figure 4–2. Note the northward dip and rapid changes of 
permeability in the vertical direction. Extreme vertical exaggeration causes the 
major bedset boundaries to assume a sinusoidal geometry. 

Medium-scale geological constraints (including major bedset distribution, the direction and 
thickness of cross bedding, and the degree of preservation of the major bedforms) to a large 
extent determine the trend and complexity of the interfacies permeability distribution which 
could not be accurately modeled in the absence of such data. 

The foreshore facies consisted of 90% thin-bedded, parallel-to-subparallel lamination typical of 
a beach setting. Major bedsets were not distinguished within this facies except for a 1-ft-thick 
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planar cross-laminated bed representing an accreting spit or a shoreline-welded tidal swash bar. 
Detailed sampling from this interval allowed us to reconstruct the fine-scale variations of 
permeability within the planar cross-laminated unit Figure 4–4. Cross lamination and the trend 
of the permeability dips toward the north in a pattern that is both very fine in scale and is 
strongly controlled by the bedding. The fine-scale distribution of permeability can only be 
mapped with a detailed knowledge of the geological constraints that here consist of 
monotonously northward-dipping cross lamination. It should be noted that the top of the 
bedform has generally greater permeability than the bottom of the bedform and that thin high 
permeability “streaks” dip northward into the bedform parallel to the cross lamination. 
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Figure 4–4 Closely Spaced Core Plug Samples from a 1-ft-Thick Northward Dipping, 
Planar Cross-Bedded Tidal Swash Bar within the Foreshore Facies Illustrate 
the Fine Detail of Permeability Variations within the Bedset and That Is 
Parallel to the Bedding Direction. Individual Sandstone Laminae are Less than 
1 cm Thick. 
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The distribution of data from two tidal channels did not lend itself to valid mapping of 
permeability within the bedsets. The bedset units tend to be thin within the tidal channels 
(typically less than 2 ft thick) and usually only a single value was taken from a unit at any 
distance along the outcrop. Permeability among bedsets for the two tidal channels can be 
compared in Tables 4–1 and 4–2. Data from these tables indicates that permeability for the 
bottom-most bedset in each tidal-channel deposit is significantly greater than other bedsets 
from a given tidal channel. The average permeability for the upper bedsets from each tidal 
channel, as a whole, are similar, with the average for all bedsets in tidal channel 2 about twice 
that from tidal channel 1. Based on these data, the major tidal-channel bedsets should be 
modeled with a high permeability base and a lower permeability upper region where absolute 
permeability values average only a few hundred md. 

 

Table 4–1 Comparison of Permeability between Major Bedsets within Tidal Channel 1 
Bedset Number Mean 

Permeability 
Range Standard 

Deviation 
Number of  

Points 

5 (Bottom) 835.2 428.9–1570.2 332.9 9 

6 199.6 17.8–825.5 148.0 43 

7 123.2 3.5–574.5 87.5 139 

8 (Top) 170.9 45.2–348.5 99.5 13 

All Bedsets 173.1    
 
 
 
 

Table 4–2 Comparison of Permeability between Major Bedsets within Tidal Channel 2 
Bedset Number Mean 

Permeability 
Range Standard 

Deviation 
Number of 

Points 

18 (Bottom) 612.6 546.3–678.9 93.7 2 

19 229.1 132.8–287.1 49.2 7 

20 250.9 40.1–1223.0 154.62 175 

21 237.7 117.5–726.4 220.1 7 

22 271.8 87.7–680.6 151.3 36 

23 256.1 69.4–443.8 108.2 19 

24 335.0 137.7–770.5 171.9 22 

25 (Top) 306.7 110.0–486.4 142.2 6 
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All Bedsets 263.7    
 

Average petrophysical properties are summarized for depositional facies in Table 4–3. Tidal 
channel and foreshore facies have a few hundred md average permeability with porosity 
ranging from 25% to 27%. Within the foreshore facies the swash bar/spit depositional setting 
has about half the permeability of the beach setting. Significantly greater petrophysical 
properties are present in the tidal delta facies where average permeability is greater than one 
Darcy and porosity is greater than 30%.  

Table 4–3 Average Petrophysical Properties for Horizontally Oriented Plugs 
Facies Average Ø, % Average K, md Number Samples 

Beach 27.1 421.8 172 

Swash Bar/Spit 25.3 219.0 183 

All Foreshore 
   (beach + swash bar) 

26.2 317.2 355 

Tidal Channel 25.6 225.2 480 

Tidal Delta 31.5 1036.6 144 

All Data 26.8 377.9 979 

 

All the measurements served as hard data points and were also used to infer statistical 
parameters which characterize the fine-scale variations within the tidal-delta, tidal-channel, and 
foreshore facies. Realizations of each facies were constructed using the LU (low up) conditional 
simulation constrained by all the a priori geological information. Using this method, all the 
realizations used for upscaling procedure will be in a more realistic geological context in that 
they honor all the hard data and statistical parameters inferred from outcrop measurements. 

Using absolute permeability measurements from the Almond outcrop, we constructed 
semivariograms for tidal-channel, tidal-delta, and beach facies, which are shown in Figure 4–5, 
4–6, and 4–7, respectively. The fitted variogram models are inserted in the figures, and 
logarithm means and logarithm variances for each facies are summarized in Table 4–4. Note 
that while tidal-channel and tidal-delta facies present a geometric anisotropy (semivariograms 
have one sill), the beach facies indicates a zonal anisotropy (semivariograms have two sills) 
(Kelkar 1990).  
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Figure 4–5 Semivariogram of Permeability for the Tidal-Channel Facies 
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Figure 4–6 Semivariogram of Permeability for Tidal-Delta Facies 
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Figure 4–7 Semivariogram of Permeability for Beach Facies 

 
 

Table 4–4 Statistical Parameters of Facies 
Parameters\Facies Tidal-Channel Tidal-Delta Beach 

Log Mean 5.51 6.94 5.89 

Log Variance 0.462 0.3 0.614 

To accomplish geostatistical simulation, construct covariance matrix C  from normalized 
semivariogram models, 

M

γ ( )h  (Kelkar 1990) by the following relationship, 

 C h C h( ) ( )= −0 γ  (4–14) 

The a posteriori covariance matrix after conditioning to all the hard data can be computed by 
(Chu et al. 1995b): 

 . (4–15) C C C G G C G C G Cmh M M h
T

h M h
T

h h= − + −( ) 1
M
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Realizations honoring the semivariogram model and hard data can be generated from the 
following equation: 

 m m L Zr r= +0  (4–16) 

where  is mean of the model,  is a vector of independent normal deviates, and lower 
diagonal matrix, 

m 0 Z r

L , is determined by Cholesky decomposition of the a posteriori covariance 
matrix, , C Mh

  (4–17) C LLM h
T=

The realizations for tidal-channel, beach, and tidal-delta facies on a  grid system with 
grid size of  ft are shown in Figures 4–8, 4–9, and 4–10, respectively. 
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Figure 4–8 A Realization of Permeability Distribution within the Tidal-Channel Facies 
Based on Outcrop Samples 
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Figure 4–9 A Realization of Permeability Distribution within the Beach Facies Based on 
Outcrop Samples 
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Figure 4–10 A Realization of Permeability Distribution within the Tidal-Delta Facies 
Based on Outcrop Samples 
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4.3.2 Rock-Fluid Properties 

We have used the following exponential forms of original rock-fluid properties for the flow 
modeling, 

 , (4–18) k S k Sr D r D
n

1 1 1
0

1
1( ) ( )=

  (4–19) k S k Sr D r D
n

2 1 2
0

1
2( ) ( )=

and 

 . (4–20) P p Sc c D
n pc= −0

11( )

Two types of relative permeability curves and capillary pressure curves, denoted as type 1 and 
type 2, are used for upscaling, and the associated parameters for them are given in Tables 4–5 
and 4–6, respectively. 

Table 4–5 Parameters for Relative Permeabilities 
Type No. Sr1  Sr 2  n1  n2  kr 1

0  kr 2
0  

1 0.37 0.18 4.0 1.5 0.1 0.84 

2 0.25 0.26 3.25 2.25 0.23 0.81 

* All the symbols used in this table are defined in Section 1.5, Nomenclature. 

 

Table 4–6 Parameters for Capillary Pressures 
Type No Sr1  Sr 2  npc  Pc

0  

1 0.37 0.18 2.0 15.0 

2 0.25 0.26 3.5 18.0 

* All the symbols used in this table are defined in Section 1.5, Nomenclature. 

4.3.3 Interbedset Upscaling 

The absolute permeability realization for beach facies outcrop was evaluated using the 
proposed wavelet upscaling method. As shown clearly in Figure 4–9, there exist lower 
permeability beddings inserted in the relative high permeability background in the beach facies. 
Close examination also revealed crossbedding with about a 30° dip angle within the bedsets. 
After three levels of wavelet upscaling, the number of grids in the system was reduced from 
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1344 to 21 with a factor 64. Figures 4–11 and 4–12 compare oil production and water production, 
and water cut histories from simulations of the original and upscaled systems of beach facies, 
respectively. Here, type 2 rock-fluid properties in the simulations are used. The upscaled 
system, although with substantial reduction of grids, gives flow behavior which matches the 
fine grid system simulation almost perfectly. Considering that the beach facies presents the 
most difficult situation for upscaling among the three facies encountered (tidal-delta, tidal-
channel, and beach), the above excellent results almost ensure, without further testing on the 
other two remain facies, that wavelet upscaling method is an efficient and accurate technique 
for upscaling interbedding properties. Nevertheless, similar flow simulation tests on the other 
two facies were still made. As expected, the upscaled system reproduced the production 
performances from the corresponding original system very well as demonstrated by Figures 4–
13, 4–14, 4–15, and 4–16. 
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Figure 4–11 Comparison of Production Performances from Original and Upscaling 
Systems (Beach Facies) 
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Figure 4–12 Comparison of Water Cut at Production Wells from Original and Upscaling 
Systems (Beach Facies) 
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Figure 4–13 Comparison of Production Performances from Original and Upscaling 
Systems (Tidal-Delta Facies) 
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Figure 4–14 Comparison of Water Cut at Production Wells from Original and Upscaling 
Systems (Tidal-Delta Facies) 
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Figure 4–15 Comparison of Production Performances from Original and Upscaling 
Systems (Tidal-Channel Facies) 
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Figure 4–16 Comparison of Water Cut at Production Wells from Original and Upscaling 
Systems (Tidal-Channel Facies) 

4.3.4 Interfacies Upscaling 

To demonstrate the applicability of the newly developed wavelet upscaling method for a 
multiple facies system under multiphase flow conditions, we artificially constructed two-facies 
systems by combining parts of two different facies into one model. Two systems were 
constructed, one by combining beach and tidal-delta facies and another by combining tidal-
channel and beach facies, as shown in Figures 4–17 and 4–18, respectively. As illustrated in 
Figures 4–17 and 4–18, the contrasting two facies contact each other along a diagonal line of the 
constructed rectangular systems. 
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Figure 4–17 A Realization of Permeability Distribution within the Tidal-Delta and Beach 
Facies Based on Outcrop Samples 
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Figure 4–18 A Realization of Permeability Distribution within the Tidal-Channel and 
Beach Facies Based on Outcrop Samples 
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The first test was run on the tidal-channel and beach composite system and assumed type 1 
rock-fluid properties for beach facies and type 2 for tidal-channel facies (refer to Tables 4–5 and 
4–6). A constant injection rate (0.5 bbl/d) is imposed on a fully penetrated injector at one end of 
the system, and a constant pressure producer (2770 psi) produced oil and water at another end. 
Figures 4–19 and 4–20 show the comparison of the production performances from the original 
and upscaling systems. Although there are slight discrepancies between the water productions 
and water cuts from original and upscaled system after breakthrough, the breakthrough time, 
oil production history, and main characteristics of the water production history have been well 
captured. 
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Figure 4–19 Comparison of Production Performances from Original and Upscaling 
Systems (Tidal-Channel and Beach Composite System) 
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Figure 4–20 Comparison of Water Cut at Production Wells from Original and Upscaling 
Systems (Tidal-Channel and Beach Composite System) 

The second test was run on tidal-delta and beach composite system. We assigned type 1 rock-
fluid properties for beach and type 2 for tidal-delta facies. The simulation scheme is the same as 
for the previous example, except for changing the injector to a constant pressure well with a 
2900-psi bottomhole pressure. As shown in Figures 4–21 and 4–22, the production histories of 
the original system were well reproduced by the upscaled system. 
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Figure 4–21 Comparison of Production Performances from Original and Upscaling 
Systems (Tidal-Delta and Beach Composite System) 
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Figure 4–22 Comparison of Water Cut at Production Wells from Original and Upscaling 
Systems (Tidal-Delta and Beach Composite System) 
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5.0 CONCLUSIONS 

A primary purpose of this initial study is to investigate the applicability of wavelet analysis 
techniques to information transfer between different scales in petroleum reservoir rock property 
distributions, with a final goal being generation of realizations which incorporate all available 
information at different scales. A secondary purpose of this study is to use, for the first time, 
wavelet multiresolution analysis to scale up rock-fluid properties under multiple lithologies or 
facies and multiphase flow conditions. The ultimate goal is to determine an optimal grid system 
which can reasonably well capture the main characters of the original fine-scale system with 
known uncertainties. Based on our preliminary results discussed within previous sections of 
this report, the following conclusions can be stated:  

1. We have presented a new scale-up method based on wavelet analysis for upscaling 
rock properties and rock-fluid properties. Compared to existing scale-up methods, 
implementation of this new method is easier, and computation is more efficient. 

2. Excellent decomposition and reconstruction results of absolute permeability fields 
provide a promising basis for future work on generating realizations by incorporating 
all available information on different scales. 

3. The new method falls in the category of the “effective properties method” (Chu et al. 
1995a). By incorporating driving force information and complexity of geological 
structure into the new scale-up procedure, the degree of temporal, rate, and process 
dependencies is reduced. 

4. Preliminary results demonstrate that the new upscaling method generates excellent 
equivalent properties for multiphase flow within a single facies and very reasonable 
upscaling interfacies properties in a multiple facies context. 
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6.0 NOMENCLATURE 

  
  a  =  constant 

  c  =  data sequence 

  C  =  sill of semivariogram 0

   =  covariance matrix for hard data measurement errors C h

   =  covariance matrix C M

   =  a posteriori covariance matrix C M p

   =  discrete approximation at scale  D m m

   =  discrete detail signals at scale  E m m

  f  =  water fractional flow 

  G  =  matrix relating model hard data to model h

   =  coefficients (elements) for low-pass filter operator (matrix) h n( )

  H  =  low-pass filter operator or matrix 

   =  coefficients (elements) for high-pass filter operator (matrix) g n( )

  G  =  high-pass filter operator or matrix 

  k  =  absolute permeability, md 

  k  =  relative permeability r

   =  relative permeability exponent of phase n j
j 

   =  capillary pressure exponent n pc

   =  capillary number N pc

   =  capillary pressure,  Pc psi

   =  projection on scaling subspace at scale  Pm m

  Q  =  projection on wavelet subspace at scale  m m

  S  =  saturation of phase j
j 

  u  =  coordinate 

  V  =  scaling subspace 

  V  =  pore volume p

   =  wavelet subspace W

  x  =  coordinate 
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Greek: 
  α  =  weighting factor 

  δ  =  kroneclor delta function 

  γ  =  semivariogram 

  λ  =  scale parameters 

  μ =  viscosity, cp 

  ω  =  frequency 

  φ  =  scaling function 

  σ  =  standard deviation 

  ψ  =  wavelet function 

Superscript: 

  -1 =  inverse 

  - =  equivalent, averaging or pseudo properties 

  T =  transpose 

Subscript: 

  1  =  aqueous phase 

  2  =  oleic phase 

  c  =  capillary-pressure related or capillary-pressure-dominated properties 

  i  =  directional index 

  j =  directional index or phase index 

  k  =  direction index 

   =  spatial index L

  m  =  level of scale or dimension of matrix 

   =  spatial index or dimension of matrix n

  r  =  relative properties 

  v  =  viscous dominated 

  w  =  water phase 

  o  =  oil phase 
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