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DERIVING THE SHAPE FACTOR OF A FRACTURED ROCK MATRIX
By Ming-Ming Chang

ABSTRACT

Fluid flow from a fractured rock matrix was investigated for accurately predicting oil
recovery from fractured reservoirs. To relate the oil rate with rock geometry and average rock
matrix pressure, a shape factor is used in the mathematical model of fractured reservoirs. The
shape factor in the transfer function was derived by solving the three-dimensional diffusivity
equation of a rock matrix block under unsteady-state production, in contrast to the quasi-steady-
state condition assumed by most previous studies denoted in the literature. The diffusivity equation
in the X, y, and z coordinate was solved in four cases by assuming different boundary conditions
of (1) constant fracture pressure; (2) constant flow rate; (3) constant fracture pressure followed by
linearly declining fracture pressure; and (4) linearly declining fracture pressure followed by
constant fracture pressure.

Shape factor values are high at the initial depletion stage under an unsteady-state condition.

When the fracture pressure is constant, the shape factor converges to /L2, 2n%/L?, and 3n*/L?
for one-, two-, and three-dimensional rock matrix, respectively, at the dimensionless time (T) of
about 0.1. The 'L’ value in the shape factor equation is the length of rock matrix. The period of 0.1
for T ranges from less than 1 day for commonly encountered fractured reservoirs to months for
large and tight fractured rock.

When the flow rate between the rock matrix and the fracture is constant, the fracture
pressure varies with location on the rock surface. Based on the average fracture pressure, the shape
factor decreases with production time until a T value of 0.1 is reached. The shape factor values
converging at 0.1 are 12/1.2, 24/1.2, and 36/L2, for one-, two-, and three-dimensional rock matrix
flow, respectively. After reaching quasi-steady-state, the shape factors calculated from the case of
constant flow rate are 1.2 times those from the case of constant fracture pressure.

The boundary conditions of constant fracture pressure followed by a constant decline in
fracture pressure are equivalent to the condition of a constant fracture pressure followed by a
period of constant flow rate. The shape factor values in this case for one-dimensional flow are

between /L2 and 12/1.2 at quasi-steady-state.

The shape factor values calculated from unsteady-state production are higher than those
proposed by Kazemi and by Coats, but less than or equal to those by Warren and Roots.

INTRODUCTION

Natural fractures are common in hydrocarbon reservoirs. The fluid flow mechanism in
fractured rocks is critical for producing oil from such reservoirs. The presence of interconnected
open fractures significantly improves the oil production from low-permeability reservoirs using
vertical or horizontal wells. Formation fracture are so important that 70 % of the horizontal drilling
permits issued from May 1991 through April 1992 were targeted to fractured Austin Chalk
reservoirs. Formation fracture is also the major production mechanism for horizontal wells in the
second-ranking Lower Cretaceous Buda Limestone in Texas and the third-ranking Bakken Shale in
North Dakota. At present we do not understand the effects of reservoir fractures on horizontal well
production well enough to provide a reliable performance prediction. The objective of this study is



to investigate fluid flow from fractured rock matrix by solving the diffusivity equation under
unsteady-state production conditions. This analytical solution is then taken to derive the shape
factor to be used in a dual-porosity or dual-permeability numerical reservoir simulator.

Many fractured reservoirs are characterized by an interconnected fracture network dividing
the matrix rock into a multitude of separate blocks. Interconnected open fractures normally
contribute little pore volume to a reservoir, but act as highly conductive flow channels throughout
the reservoir. The rock matrix blocks, which contribute the main portion of the reservoir pore
volume, have much smaller permeabilities than do the fractures. Flow between the matrix block
and the fracture is essential to the productivity of fractured formations. This rock matrix flow can
be accounted for by a shape factor in a transfer function. This transfer function is a form of
Darcy's law expressed in terms of some mean path between the matrix block and the adjacent
fracture*:

q= 6 (pr-pm) )
w
where o, the shape factor, can be rewritten as
qu
O=r——— 2
kV(ps - Pm) @

Equation 1 depends on a discrete gradient given by the distance, AL, between the pressure at the
fracture and the block's average internal pressure. Comparing Eq. 1 to the transfer flow in the
Darcy flow format:

HoAL
we obtain 6 =A/(VAL) 4)
or AL=A/(Vo) 5)

For the linear flow to or from two opposite rock surfaces, the right-hand sides of Egs. 3, 4, and 5
need to be multiplied by 2, respectively. An accurate value of shape factor is needed to properly
account for the fluid flow between the fracture and the rock matrix in model calculations.

The derivation of accurate shape factors in this study can be used to improve the accuracy
of dual-porosity reservoir simulators. This report completes task 2 of DOE Supplemental

Government Project 73 in FY93 for improving the transfer function in the dual-porosity
simulators.

REVIEW OF PREVIOUS WORK

Numerous equations were derived for calculating the shape factor of fractured rock. All
equations developed were based on the assumption of single-phase flow in the rock matrix.

Warren and Root! proposed a equation for the shape factor as
G = 4N(N+2)/L2 (6)

* definition of terms is in the nomenclature section.



where L is the length of the matrix block and N is the number of normal sets of fractures: 1, 2, or
3. If rock blocks have dimensions a, b, and c, then

L=a forN=1
L =2ab/(a+b) for N=2
L = 3abc/(ab+bc+ca) for N=3 @)

The basis of this equation is not known.

The shape factor equation proposed by Kazemi? for a cubic matrix block is 4N/L2.
Kazemi's equation can be derived based on quasi-steady-state (QSS) flow and the assumption that

Pm equals the pressure in the center of the matrix block, or AL is equal to L/2. Kazemi's equation
has been adopted for several dual-porosity or dual-permeability simulators.

Peaceman3 evaluated gas and oil transfer between the fracture and the rock matrix. The
corresponding shape factor of Peaceman's transfer coefficient is 12/1.2, 14.23/L.2, and 16.53/L.2
for the one-, two-, and three-dimensional cubic rock matrix, respectively. The value of Peaceman's
transfer coefficient or shape factor does not increase much with an increase in the number of
normal sets of fractures.

By matching the fracture modeling results with oil recovery through water imbibition from
single-cell experiments, Thomas et al.4 found shape factors of 25 and 0.25 for 1- and 10-ft cubic
blocks, respectively. This is equivalent to a equation of 25/L2 for the shape factor. Using area and
length values corresponding to the centroid of one of the six equilateral pyramids in a cube of side
L, Thomas et al. derived a shape factor of 36.6/L2.

By doubling Kazemi's shape factor value, Ueda et al.> closely matched their modeling
results with their laboratory experimental results or fine-grid simulation results. Ueda et al.
believed that Kazemi's shape factor value needed to be adjusted by a factor of 2 and 3 for one- and
two-dimensional rock matrix flow, respectively.

For single-phase flow at QSS, Coats® solved the diffusivity equation to give a shape factor
of 12/1.2, 28.45/1.2, and 49.58/L2 for the one-, two-, and three-dimensional cubic rock matrix,
respectively. However, Coats recommended to use 8N/L? for calculating the shape factor.

By matching the outflow function of rock matrix, derived from an unsteady diffusivity
equation, at its 50% value, de Swaan’ found approximation to shape factor at QSS for cube and
strata as 60/L2 and 15/L2, respectively. Functions for parallelepipeds within the two extreme
shapes can be fitted by using factors intermediate between the two extreme shape factor values. In
contrast to de Swaan's work, the change of shape factor values with production time was
investigated in this study by solving the unsteady diffusivity equation.

MATHEMATICAL MODEL

Since many fractured reservoirs are characterized by a multitude of separate blocks divided
by an interconnected fractured network, the model investigated in this study was a parallelepiped
rock matrix with lengths of a, b, and c, in three normal directions, respectively. The unsteady flow
of a slightly compressible single-phase fluid of constant viscosity was considered in an anisotropic
rock matrix. The pressure distribution was analyzed for one-, two-, and three-dimensional flow



between the rock matrix and the fracture in the X, y, and z Cartesian coordinate. The diffusivity
equation solved for the flow was:

k

ap . Ip , Ip op
X +k +k, = puc— (8)
a2 oy a2 | ot

The initial pressure was assumed uniform throughout the rock matrix, or

p=p; whent=0 )
The pressure and fluid flow of the rock matrix was solved for four cases by assuming different
boundary conditions of (1) constant fracture pressure; (2) constant flow rate; (3) constant fracture

pressure followed by linearly declining fracture pressure; and (4) linearly declining fracture
pressure followed by constant fracture pressure. For constant fracture pressure,

p=pr aax=0ora; ory=0o0rb; orz=0o0rc (10)
For constant flow rate in the y direction,

d

P _Caty=0orb (11)

dy

where C is a constant. Similar boundary conditions were extended to x and z directions for two-
and three-dimensional flow.

For constant fracture pressure followed by linearly declining fracture pressure in a one-
dimensional (1-D) model, the boundary conditions at y =0 and y = b were

pr= pi- Apo whent<tg (12)
pr=pi- Apo- K(t - to) whent>tg (13)

where Apy is defined as the difference between the initial matrix pressure (p;j) and fracture pressure
(ps) at t = 0. For linearly declining fracture pressure followed by constant fracture pressure in a 1-D
model, the boundary conditions at y =0 and y = b were

pr=pi- Kt whent<tp (14)
Ps = pi - Kto when t > tg (15

To express the analysis in the dimensionless form, definitions of the following terms were
introduced.

dimensionless distance: xp = % , yp = % , and zp = % (16)
dimensionless pressure: pp = LD (17)
Pi - Pt
dimensionless time Tortp: T = Kt (18)
a2dp ¢



Thus, Egs. 8 through 15 were converted, respectively, into:

2 2 2
0
Ipo g P g IPo O ' (8a)
axDZ ayD2 aZD2 ot
2k 2
where Ky=-Y | and K, = 2% (8b)
b2kx Czkx
initial condition: [Ppl-o=0 (9a)
boundary conditions for constant fracture pressure case:
[PD)xp=0.1 = 1 (10a)
[PDly=01 =1 (10b)
[Pplp=01 =1 (10c)
boundary conditions for constant flow rate case:
dPoy|  _ u (11a)
aYD yp=1
apr
Dy =u (116
9yp yp=0 ¢ )

where uy = Cb/Apo. Boundary conditions similar to those of 11a and 11b were assigned in x and z
directions for the rock matrix having 2 or 3 normal sets of fractures. Boundary conditions for
constant fracture pressure followed by linearly declining fracture pressure were

pr= pi- Apo when 1< 1o (12a)

pr=pi- Apo- K'(T - to) when T > To (13a)
where K’ = Kt/1. Boundary conditions for linearly declining fracture pressure followed by constant
fracture pressure were:

pr=pi- KT when t< 19 (14a)

pr=pi - K'1p when T > T (15a)

SOLUTIONS FOR CONSTANT FRACTURE PRESSURE

Using the method of separation of variables, pp in Eq. 8a was solved for three-dimensional
(3-D) fluid flow subject to conditions 9a and 10a as



oo (== oo ~ t . ‘
pp=1-643Y, > Y, exp(T) sin (21+1)mxp * sin (2m-+1)7yo * sin (204+1)7zp

120 m=0 n=0 2lI+DH(2m+1)(2n+1)
(19)
_ 2kx 2Ky 2kz1_m?
where  F=[Ql+1D)ZX + 2m+1)>-2 + (2n+1)%=2] 2 — (20)
a? b ¢ duc;
The corresponding flow rate at x = a was:
kbe & ¥ N
Gxea = 256 (PmP) 220 >, D, D, 3 exp(-Ft) 21)

nam® 120 me0 ac0 (2m+1)?(2n+1)?

The average pressure in the rock matrix were obtained by integrating pp in Eq. 19:

Do =1-312 1 exp(-Ft) 22
Pp o g{) ,,,Ezo ,E) (21+1)2(2m+1)%(2n+1)? P (22)

and the shape factor was calculated using Eq. 2 as

- % (23)
where
T =n2i i i exp(-Ft) (21+1)? +(2m+1)2 +(2n+1)2] 24)
120 mo0 az0 (21+1)2Q2m+1)22n+1)2 @2 b2 c2

=3 3 > 1 exp(-Ft) (25)

20 im0 a0 (21+1)2(2m+1)?(2n+1)?

Solutions of pp, q, and © were also obtained from two-dimensional (2-D) and 1-D flow
diffusivity equations, respectively. For the 1-D matrix-fracture flow in the x-direction, the
shape factor was

oo

z exp[-(2m+1 i

2 —
oip = & —1=0 (26)
a oo

1 2
— < _expl-Cm+1)nT
IE‘O (2m+1)? pl ]

The shape factors shown in Egs. 23 through 26 were time-dependent under the unsteady
flow condition. As flow time proceeded, the shape factor value for 1-D flow in Eq. 23 converged

to m2/a2 at QSS. This convergence was seen by the sharp decline of values of the second (m=1)
and following (m>1) terms in comparison to the first term (m=0) for both numerator and
denominator series as T value increased. Thus, the numerator and denominator series in Eq. 26
were canceled out at large time values. For the same reason, the shape factor for 3-D flow in the

fractured rock converged to n2(1/a2 + 1/b% + 1/c2) with time.



SOLUTIONS FOR CONSTANT FLOW RATE

Under the constant flow rate condition, the diffusivity equation was solved for the pressure
and flow in the one-direction case first. The solutions to the 2- and 3-D diffusivity Eq. 8 were then
derived from the "1-D" solution based on the principle of superposition.

The diffusivity equation for the y-direction flow was given by

2 2 2
a Poy + Kya Poy + Kza Poy — aPDy (27)
aXD2 ayD2 aZD2 ot

Equation 27 was solved in two steps. In the first step, boundary conditions of Egs. 28a through
28e were assumed in addition to the initial condition 9a and boundary condition 11a.

Poy| g (282)
| OXD Jxp=0

Pyl 0 (28b)
L aXD _XD=1

9Poy] 0 (28¢)
L aZD 1zp=0 ‘

9Ppy| 0 (28d)
L aZD Jzp=1

9Poy|  _ 0 (28e)
L 9YD Jyp=0

Equations 28a through 28e assumed no flow to the fracture at xp = 0,xp=1,zp=0,zp=1, and
yp = 0, respectively. Flow was allowed only at yp = 1 at a constant pressure gradient uy (Eq. 11a).
Using the Laplace transform method, the dimensionless pressure was solved from Eq. 27 as:

> K -(2n+1 - yp)? -(2n+1 + yp)*
=u 21/ 22 (ex + exp( )
Poy yn% [ V = ( R 4Kt ) exp 4Kyt )

(2n+1 - yp) (2n+1 + yp)
- (2n+1 - )rf(—__)-(2+1+ )efc____
(2n Yp) eric ‘(7 n Yp) €r 21/_;;

In the second step, Eq. 27 was solved based on conditions 9a, 11b, 28a through 28d, and 28f:

9Ppy

=0 28
D (281)

yp=1

These conditions assumed a constant flow rate at yp = 0 and no flow at xp =0, xp = 1,zp =0, zp
=1, and yp = 1, respectively. The solved dimensionless pressure ppy- was



- K -(2n + yp)* -(20+2 - yp)°
- 2 e yo Yo
poy= uyS, [ 2 (ex e i ))

(2n+1 - yp) (2n+2 - yp)
- (2n+ yp) erfc (——==) - (2n+2 - yp) erffc ————
? 2YKyT ? 2V Kyt ]

(30)

Based on the principle of superposition, the solution pp to Eq. 27 and conditions 9a, 11a, 11b, and
28a through 28d was

PD = PDy + Ppy- 31

Similar pressure solutions (ppx + Ppx-» PDz + Ppz-) t0 Eq. 27 could be obtained for "1-D" flow in
x and z directions, respectively. Thus, the solution for Eq. 8a was

PD = PDx + Ppx- + PDy + Ppy- * PDz + Ppz- (32)

The shape factor was calculated using Eq. 2. For the case of a cubic rock matrix with the pressure
gradient of uy, uy, and u, in X, y, and z direction, respectively, the shape factor was

2(u+u,+uy) (33)
a2(Poy=0 - Po) Apo

SOLUTIONS FOR CONSTANT FRACTURE PRESSURE FOLLOWED BY
LINEARLY DECLINING FRACTURE PRESSURE

Using Duhamel's theorem and conditions 12a and 13a, the 1-D diffusivity equation in the y
direction was solved8 to obtain

= . N7 b . nmy ./
po=1- %n§1 exp(-n2K,m?t/b?) smTy { J 0 sm—gy—dy

(34)

T
+ nliy“ J’ exp(n2K,i2A/bA)[F1(A) - (-1)"¥o(W)] dA }
0

where ¥, and ¥, were boundary conditions at y = 0 and y = b, respectively. When ¥, =¥ = K A,
this resulted in a solution for the case of constant fracture pressure followed by linearly declining
fracture pressure in the 1-D model:

= . (%)  4Be op-1

1A U Gy + K 2P 01 Gnontg 35
pp - E)ZMI (2n+1)myp T §(2n+1)3 (2n+D)myp (35)
where @ = exp|-(2n+1)?K,n2t/b?] (362)
[O)er, = O (36b)
[0zheot, = €xp [-(20+1) 2K, mA(T-To)/b?] (36¢)

_ K'b2

__xb® 36d

P K,m*Apo (36d)



Based on the method of separation of variables, the pp solution of Eq. 8a for 3-D flow was:

TV S -Ft)
=1 - 64n3 exp(-Ft)
°P " E‘) ,,,2;0 E) (21+1)(2m+1)(20+1)

* sin (Z+1)mxp * sin (2m+1)7yp * sin(2n+1)mzp

(37)
I(T—‘Co) 64](, c v o2-1
+ K+ 2
Apy T3 Apog) mz=0 ng(’) 21+1)(2m+1)(2n+1)F
* sin (21+1)7txp * sin (2m+1)Typ *© sin(2n+1)nzp
The 1-D average dimensionless pressure and flow rates were calculated from pp as
oo ST 8 oo _
p—D=1-§—Z (04 .,.K(TTO).,._B _Op-1 (38)
72 0=0 (2n+1)>2 App  T2n=0 (2n+1)*
4k.ac Apo [« < on-1
=—==——| X u-pY 21— (39)
! n=0 n=0 <2n+1)2]
Based on Egq. 2, the 1-D shape factor is
, o - By el
_m2 __ 0= n=0 (2n+1) (40)
b2 oo )
o _ o -1
n=0 (2n+1)> n=0 (2n+1)*

SOLUTIONS FOR LINEARLY DECLINING FRACTURE PRESSURE
FOLLOWED BY CONSTANT FRACTURE PRESSURE

The diffusivity equation in the y direction subject to boundary conditions 14a and 15a was
solved by the same method used in the previous section,

o0 b ,
b n=0 b o b
’ 4 o
where @ =K% + -EZ ou-1 in(2m+1)1ty @)

Ape T a0@m+l b
and the shape factor was calculated from Eq. 2 based on pp in Eq. 41.

DISCUSSION

Computer programs were written for calculating dimensionless pressure, flow rates, and
shape factors shown in Eqgs. 19 through 26 for the constant fracture pressure case, in Eqs. 29
through 33 for the constant flow rate case, and in Eqgs. 35 through 42 for the case of combination
of constant fracture pressure and declining fracture pressure. The calculation of the infinite series in



the above equations was considered complete in the program calculation when the series terms
contributed to less than 107 of the series.

Constant Fracture Pressure

The 3-D distributions of dimensionless pressure in a quarter of a rock block are shown in
Fig. 1 for T of 0.008 and in Fig. 2 for T of 0.04, respectively. The pressure contours are somewhat
parallel to the rock surface due to the boundary condition of a constant pressure in the fracture. At
the early depletion stage (T = 0.008) Fig. 1 shows a sharp pressure gradient near the rock surface.
More than 90% of initial pressure was depleted near the fracture, whereas only 10% pressure
depletion occurred halfway from the fracture to the center of the rock matrix. As T increased to
0.04, 50% of the pressure was depleted near the center of the rock matrix (Fig. 2).

Figure 3 illustrates the distribution of pressure depletion at different T values in a 2-D rock
matrix. The pressure depletion spreads from the rock surface to the rock center with the depletion
time. At T of 0.18 more than 95% of pressure was depleted everywhere in the rock matrix. The
pressure depletion in 2-D rock matrix (Fig. 3) was less than that in 3-D rock matrix (Fig. 2).

The pressure depletion profile in 1-D rock slab (Fig. 4) for T values ranged from 0.0002 to
0.78. The rock pressure depletion was developed from the surface to the center of rock with
depletion time. As the T value exceeded 0.26, most pressure was depleted, and a nearly straight-
line profile was obtained. Compared to the central layer of 2-D and 3-D rock matrix, 1-D rock slab
had the lowest pressure depletion profile (Fig. 5). The average pressure depletion within the rock
matrix was also the lowest for 1-D rock slab, followed by 2-D rock matrix, at various depletion
times (Fig. 6). This was attributed to a faster depletion from six rock surfaces from a 3-D rock
matrix than four surfaces from 2-D and two surfaces from 1-D rock matrices.

As shown in Fig. 7, shape factors were calculated at various depletion times using Egs. 19
through 21 for 3-D and Eq. 22 for 1-D rock matrices. Shape factors for 2-D rock matrices were
also included for comparison. Shape factor values were high at the initial depletion stage under

unsteady-state production. As depletion proceeded, the shape factor converged to n/L2, 2m?/L2,

and 3w2/L.2 for 1-, 2-, and 3-D rock matrix, respectively, at T value of about 0.1. The increase in
shape factor values with the number of sets of normal fractures was in agreement with the number
of depletion surfaces of the rock matrix. The T value of 0.1 ranged from less than 1 day for
commonly encountered fractured reservoirs to months for large and tight fractured rock.

The equivalent depth, AL, where the average rock pressure was located in the rock matrix
from the fracture surface, was calculated using the shape factor value and Eq. 5. The

corresponding AL to shape factor n%/L? during QSS was 0.2L. This AL value was less than 0.5L
assumed by Kazemi and 0.25L associated with Coats's shape factor. For shape factor values

greater than Tt2/L? at the initial depletion stage (T < 0.1), the AL value was less than 0.2L. This can
be seen in Fig. 4 from the sharper pressure gradient at the early depletion than the late depletion

stage.

The rock matrix flow declined with time because of the decline of average pressure in the
rock (Fig. 8). It showed a linear decline for the rock pressure with time in a semi-log plot. Initially,
the matrix flow declined sharply at the transient stage for T value less than 0.1. The flow then
declined linearly with T in a semi-log plot, showing a slope of -4, -8, and -12 for 1-, 2-, and 3-D
flow rock matrix, respectively (Fig. 9). These decline slopes might be used to distinguish the
number of normal sets of fractures associated with the rock matrix. By matching the production
history of a fractured rock in a semi-log plot with Fig. 9, the size (length) of the rock matrix can be

10



calculated by comparing production time with the value of matched dimensionless time when other
rock-fluid properties in Eq. 14 are known.

Figure 10 shows the log-log plot of flow rates with dimensionless time T. Compared to 1-
and 2-D flow rates, the 3-D flow was higher at the transient stage and lower at QSS due to a faster
pressure depletion. The slope value of -0.5 in the transient stage (Fig. 10) was characteristic to the
linear flow between the rock matrix and the fracture. When the T value exceeded 0.1, flow rates
declined exponentially at different rates for 1-, 2-, and 3-D flow.

Constant Flow Rate

When the flow rate between the rock matrix and the fracture was constant, the fracture
pressure varied with location on the rock surface (Figs. 11- 12). Figure 11 displays a quarter of
the 3-D dimensionless pressure distribution at different cross sections for T of 0.032. The top or
surface layer (zp = 0) showed higher pressure depletion than the central layer (zp = 0.5) and the
inside layer (e.g. zp = 0.25). High pressure depletion occurred in the diagonal direction in the rock
matrix due to the combination of flow at the junction of two sets of fractures. Similar distribution
patterns of pp in Fig. 11 were obtained for T of 0.158 in Fig. 12. As expected, the pp values in
Fig. 12 are greater than those in Fig. 11 due to a longer depletion time.

Figure 13 shows the distributions of pp for 2-D flow rates at three different depletion
times. The distribution pattern in Fig. 13 is similar to that of the 3-D flow case in Figs. 11 and 12.
The pp value increased with time without a limit for the case of constant flow rate at the rock
surface. The pp value reached 16 for T value of 4. The pp distributions for 1-D flow from a rock
slab, illustrated in Fig. 14, had similar profiles at various depletion times. For examining pp at the
early stage pp profiles were shown in a semi-log plot in Fig. 15.

The average pressure drop of rock matrix increased linearly with time as plotted in a log-log
scale (Fig. 16) and in a linear scale (Fig. 17).

Based on the average fracture pressure, shape factors (Fig. 18) were calculated using Eq.
29. Similar to that for constant fracture pressure, the shape factor in Fig. 18 started at a high value
and decreased with production time until a T value of 0.1 was reached. The shape factor values
converging at 0.1 were 12/L2, 24/1.2, and 36/L2, for one-, two-, and three-dimensional rock
matrix flow, respectively. After reaching QSS the shape factors calculated from the case of
constant flow rate were 1.2 times those from the case of constant fracture pressure (Fig. 19). The

corresponding AL for shape factor 12/L.2 at QSS was 0.167L.

Constant Fracture Pressure Followed by Linearly Declining Fracture Pressure

For illustration, Apo of 10 psi, to of 0, and X of 1 psi/day were used for calculating pp in
Eq. 35. Figure 20 shows these pD profiles at various depletion times. Because of the initial
pressure drawdown assigned at the fracture, the pD profile at the early time (T = 0.002) was similar
to that in the case of constant fracture pressure shown in Fig. 4. As the depletion time proceeded,
the pressure declining at the fracture resulted in a higher pressure drop throughout the rock in Fig.
20 compared to that in Fig. 4. To display pD values at longer depletion times Fig. 20 was replotted
in the semi-log scale in Fig. 21. When the dimensionless depletion time T exceeded 0.01, the pD
profiles were similar to those depleted at a constant flow rate shown in Fig. 15.

The histories of the flux rate per unit pressure (psi) drop and the average pp of the rock
matrix are shown in log-log scales in Fig. 22. The flux rate declined at an initial slope of 0.5 when
the value of dimensionless time was less than 0.04, matching the early declining behavior for the
case of constant fracture pressure (Fig. 10). This indicated that the early depletion behavior in Fig.
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22 was dominated by the constant pressure assigned at the fracture. When the T value was greater
than 1, the flux rate converged to a constant value. The linearly declining pressure in this case
resulted in a constant flux or flow rate at the later depletion time. This corresponded to the case of
the constant flow rate condition which resulted in a linearly declining fracture pressure. Thus, the
boundary condition of a constant fracture pressure followed by a linearly declining fracture
pressure is equivalent to a combination of conditions of a constant fracture pressure at the early
time and a constant flow rate at the late depletion time.

The time-dependent shape factor for the studied example is shown in Fig. 23. Having
declined with time, the shape factors had similar values to those of constant fracture pressure for T
value less than 0.04. The shape factor value increased slightly from about ©%/L? to 12/L2 for 1
value greater than 0.04. The shape factor values at the late stage agreed well with those calculated
based on the constant flow rate condition.

Linearly Declining Fracture Pressure Followed by Constant Fracture Pressure

For the illustration case study, the fracture pressure was assumed to decline at a rate of 1
psi/day for 10 days before the fracture pressure was set at a constant value of 10 psi below the
initial rock pressure. As shown in Fig. 24, the shape factor value converged to 12/L? before the
fracture pressure was fixed after 10 days of depletion (or a T value of 1.6). The shape factor value
then decreased slightly from 12/L2 to ©%/L? in response to the switch of the boundary condition
from the constant flow rate to the constant fracture pressure.

Comparison of Shape Factors

After reaching QSS, shape factors calculated from the case of constant flow rate were 1.2
times those from the case of constant fracture pressure. Subject to the production condition, fluid
flow between the rock matrix and the fracture might be between the cases of constant fracture
pressure and constant flow rate. Thus, the shape factor at QSS might be between Nn?/L? and
12N/L2, depending on the dominant flow condition.

The shape factor values calculated from the unsteady-state production were higher than
those proposed by Kazemi and by Coats, but less than or equal to those by Warren and Roots. For
1-D rock slab flow at QSS, as an example, the shape factor obtained in this study was n3/L2 for
the constant fracture pressure case and 12/L.2 for the constant rate case, in comparison to 4/L2,
8/L2, and 12/L.2 used by Kazemi, Coats, and Warren and Roots, respectively. Table 1 compares
shape factors obtained from different sources.

TABLE 1
Comparison of shape factors.
cL?
Warren Kazemi Peaceman Thomas Ueda Coats de Swaan
N_ & Roots et al. et al. et al. et _al.
1 12 4 12 - 8 8 12
2 32 8 14.23 - 24 16 -
3 60 12 16.53 25 - 24 60
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cL2

This work
Constant Constant
Fracture Flow
N Pressure Rate
1 2 12
2 2n? 24
3 3n2 36

The shape factors of Warren and Roots had the highest values among the equations
developed in the Cartesian coordinate, whereas the basis of their shape factors was not clearly
explained.! Shape factors derived in cylindrical and spherical coordinates based on material balance
and Darcy flow at QSS (see Appendix) happened to show similar forms to Warren and Roots's
shape factors:

6 =15/r2=60/d;2  for spherical flow (43)
o = 8/r2 = 32/d;2 for cylindrical flow (44)
o = 12/d2 for linear flow (45)

Equations 43 through 45 agree with Eq. 6 if d;'s in Egs. 43 through 45 can be replaced by L. The
equivalent location of p, from the edge of rock matrix were back-calculated to be 0.1d, 0.125d,

and 0.167d for AL in Eq. 43, 44, and 45, respectively. These values of py, location were less than

the assumption of 0.5d in Kazemi's Eq. and most AL's solved from diffusivity equation under
unsteady-state production.

CONCLUSIONS

The following conclusions were drawn from this study for the unsteady flow of a slightly
compressible single-phase fluid from a rock matrix.

1. Shape factor values are time-dependent under the unsteady-state condition. The shape factor
decreases with depletion time in the transient stage and converges to a constant value in QSS at a
T value of 0.1. Except for large and tight fractured rock, the period of T of 0.1 is less than 1 day
for commonly encountered fractured reservoirs; therefore, using a shape factor value based on
QSS is a decent approximation.

2. When the fracture pressure is constant, the shape factor converges to Nn?/L? for N-dimensional
flow in the rock matrix.

3. When the flow rate between the rock matrix and the fracture is constant, the fracture pressure
varies with location on the rock surface. Based on the average fracture pressure, the shape factor
converges to 12N/L2 for N-dimensional rock matrix flow.
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4. After reaching QSS, the shape factors calculated from the case of constant flow rate are 1.2
times those from the case of constant fracture pressure. The shape factor values calculated from
unsteady-state production are higher than those proposed by Kazemi and by Coats, but less than
or equal to those by Warren and Roots.

5. The 1-D shape factor values at QSS are between n2/L? and 12/L.2 when the rock matrix is
produced at a constant fracture pressure followed by or following a constant flow rate.
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NOMENCLATURE

a, b, ¢, = length of rock matrix in x, y, and z direction, respectively
¢t = compressibility

d; = diameter of the spherical or cylindrical matrix

k = permeability of rock matrix

K = coefficient defined in (8b)

L = length of rock matrix

1, m, n = integer number

N = number of normal sets of fractures

p = pressure

Pm = volumetric average pressure of rock matrix block
q = flow rate between fracture and rock matrix

r = radius
re = outside radius of the spherical or cylindrical rock matrix
t=time

uy, Uy, U, = constant pressure gradient in X, y, and z direction, respectively
V = bulk volume of rock matrix block

u = fluid viscosity

O = shape factor

T or tp = dimensionless time, defined in Eq. 14

¢ = rock porosity

p = density
K = pressure declining rate
T = 3.14159....

Y1, Y2 = defined by Egs. 24 and 25, respectively

o1, Oz, P = defined by Egs. 36a through 36e, respectively
Subscripts:

D = dimensionless term

f = fracture
i = initial condition
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m = rock matrix
X, y, z = Cartesian coordinates
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APPENDIX
For the spherical flow, we have following material balance equation:
0
A(qu) = 4mr2) (a—p> ar (A1)
t
in which
Darcy law: q= % (31—13 (A2)
s dp
bility: =1-F A3
compressibility Ct > dp (A3)
and QSS condition: d___ 9 (A4)
dt ¢ r2 ho

are incorporated to give

d  .dp, M
19 2% _H 39 A5
r2 Jr ¢ ar) k (47tr§’) ( v)
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Eq. AS is solved for p as
2

P=pro+ (hT ) (A6)

8mkr3

And the average rock pressure is obtained by

Te
f P 3qu
= T P o (A7)
J av )
0
Thus, shape factor can be calculated using Eq. 2 to give
c=13-60 (A8)

2 42
Similar procedureslcan be used to derive shape factors of 32/d;% and 12/d? for cylindrical and linear
flow, respectively.
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Figure 1. - 3-D dimensionless pressure drawdown for constant fracture pressure
(tp = 0.008)
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Figure 3. - 2-D dimensionless pressure drawdown for constant fracture pressure
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Figure 11. - 3-D dimensionless pressure drawdown for constant flow rate
(tp = 0.032)
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Figure 12. - 3-D dimensionless pressure drawdown for constant flow rate
(tp = 0.158)
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Figure 13. - 2-D dimensionless pressure drawdown for constant flow rate
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