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ABSTRACT

Single-well tracer test as a means of evaluating reservoir in-situ fluid saturation has at-
tracted many interests in recent years. The hydrodynamics of single-well tracer test is based
on the radial flow of a tracer which can partition in the fluid saturations within the reservoir.
At the same time, the tracer is mildly reactive with the mobile phase fluid saturation. This
mild, irreversible chemical reaction results in the formation of another tracer species called
secondary tracer. The secondary tracer is different from the parent tracer in its partition and
chemical reaction characteristics. Typically, the secondary tracer is not reactive with, and has a
near-zero partition coefficient with the immobile phase fluid saturation.

The hydrodynamics of the above tracer system is described by a Radial-Diffusion-
Convection-Reaction (R-D-C-R) type second order differential equation. The use of this equa-
tion to analyze single-well tracer test has, in the past, largely been through the application of
numerical techniques. Since these techniques may suffer from inaccuracies due to adverse nu-
merical dispersion or the problem of uniqueness arising from fitting many unknown parame-
ters, there is a need to develop an exact analytical solution to the R-D-C-R type differential
equation for accurate single-well tracer test analyses.

This research work reexamines the R-D-C-R system of differential equations as it applies
to single-well tracer tests, and obtains an exact analytical solution which heretofore has been
considered impossible. Even though the exact solutions are based on a linear equilibrium ad-
sorption isotherm model for tracer partitioning, it is shown that a solution based on the linear
nonequilibrium adsorption model could also be obtained without much additional mathematical
difficulties.

Using the exact analytical solution as our basic tool, the hydrodynamic models describing
all phases of the single-well tracer test were solved analytically.

Graphs showing the tracer concentration profiles for each of the phases of the single-well
tracer test were constructed.
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1. INTRODUCTION

Tracer studies are important techniques for reservoir characterization, particularly in such
specialized areas of studies as oil reservoir engineering (Baldwin, 1966; Abbaszadeh-Dehghani
and Brigham, 1983), hydrology (Rubbin and James, 1973; Sauty, 1980), and in recent years
geothermal engineering (Vetter, 1981; Fossum, 1982).

In reservoir characterization studies, suitable tracers, be it radioactive or chemical are
flowed through the reservoir. Quantitative or qualitative information can then be deduced from
the nature of the tracer breakthrough concentration profiles at the observation wellbore. This
constitutes the basic principles of the two-well tracer test technique.

A version of the above two-well (well-to-well), single tracer technique is the dual tracer
(Cooke, 1971) test. While the single tracer, well-to-well tracer test (Abbaszadeh-Dehghani and
Brigham, 1983) yields information in respect of reservoir heterogeneity, dual tracer tests can be
designed for information on in-situ fluid saturations. The dual tracer technique relies on the
ability of the input tracers to partition in formation fluids at different rates. If therefore, we
have a system where, for example, the oil saturation is immobile, while the water saturation is
mobile or vice versa, the tracer which preferentially dissolves in the immobile fluid phase
suffers a chromatographic retardation as it moves through the reservoir. On the other hand, the
other tracer which preferentially dissolves in the mobile fluid phase suffers no retardation and
therefore propagates through the reservoir at the same velocity as the mobile fluid phase. As a
consequence of this difference in the propagation velocities of the two injected tracers, a time
lag exists in the arrival times of the tracers at a designated observation wellbore. Such time
lags provide the means of evaluating the in-situ fluid saturations (Cooke, 1971) of the reser-
voir.

An interesting variation of the dual tracer, well-to-well, tracer test is the single-well tracer
test (Deans, 1971; Tomich, 1973). In this test, a chemical tracer, capable of reacting irreversi-
bly with one of the formation fluids to form a second tracer which is substantially different
from the original (primary) tracer in its partitioning characteristic, is used. The irreversible
chemical reaction ensures that the formation of the second (secondary) tracer is never reversed
during the test so that the chromatographic retardation which the primary tracer would suffer as
it is pushed deep into the reservoir is not annulled when the tracer’s flow is reversed for pro-
duction at the wellbore. Here again, as in the case of the dual-tracer test, the ime lag in the
arrival times of the primary and secondary tracers provides the means of evaluating in-situ
fluid saturations.

In this study, the single-well chemical tracer test is the preferred option for fluid satura-
tion evaluation largely because of the convenience of operation and also because of the
economic consideration of using only one test well rather than two. The primary objective of
this work therefore is to model the single-well tracer test analytically and obtain an exact solu-
tion to such an analytical model. It is hoped that the exact analytical solution so obtained can
be used in subsequent tracer test designs.



-2

2. LITERATURE REVIEW

The literature on single-well tracer tests is rather sparse. The first known reports were as
recent as 1971, in two separate patents claimed by Cooke (1971) and Deans (1971). These pa-
tents described techniques for evaluating residual oil saturation from single-well tracer tests. In
the same year, Chase (1971) presented a finite element simulation model for analyzing test
data; while in 1973, Tomich et al. presented a finite difference simulation model. These simu-
lation models are unfortunately prone to error arising from attendant numerical dispersion.
They also suffer from the problem of uniqueness arising from having to fit several unknown
parameters during the simulation run. A comprehensive analysis of the above four reports is
contained in a previous SUPRI report (Antunez and Brigham 1984).

Apart from Antunez, no known reports have shown an attempt to solve the governing
equations of the single-well tracer test analytically. Indeed, no exact solution of the Radial-
Diffusion-Convection-Reaction (R-D-C-R) type differential equation which governs the single-
well tracer hydrodynamics is known to have been reported anywhere in the literature. The
rest of this section will therefore be devoted to examining some of the known previous at-
tempts to solve the R-D-C-R class of second order differential equations.

R-D-C-R equations have wide applications in many specialized fields of study such as
petroleum engineering (Tomich, 1973), hydrology (Sauty, 1980), ecological studies (Saffman,
1962), oceanographic and limnological diffusion studies (Okubo, 1962) to mention a few. In
general, R-D-C-R system of differential equations can be written in the form:

1 0 aC aC -y 3C
lew rD(r) -87} - v(r) > -S(C)=v 3 (1)

where Vv is a constant, S(C) is a source or sink term which can account for such phenomena as
chemical reactions, adsorption processes, physical loss or addition of chemicals, etc. v(r) and
D(r) are the radius dependent convection velocity and hydrodynamics dispersion function,
respectively.

For the simple cases where v(r) and D(r) are constants, and S(C) is either zero or directly
proportional to C, a Fickian solution to Eq. 1 is easily obtained (Carslaw and Jaeger, 1959;
Skellam, 1951). However, where D(r) is radially distributed, no exact analytical solutions to
Eqg. 1 has been reported in the literature.

An attempt to obtain approximate solutions for the radially distributed D(r), R-D-C-R
system of second order differential equations was probably first reported in 1958 by Joseph
and Sendner (See Okubo, 1980, p. 22-24) who presented a solution in terms of a diffusion
velocity P in the form

M r
C=——==exp|—— )
2k T [ Pr}

In the same year, Ozmidov (1958) presented another approximate solution in terms of an ener-
gy dissipation parameter vy of the form

M 3
PR e""{" : } )
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These two solutions were obtained for cases of isotropic diffusion with no shear-diffusion or
convective mixing. In 1959 another approximate solution which accounted for shear-diffusion
was presented by Raimondi et al. (1959). By assuming that the ratio of the hydrodynamic
dispersion represented by D(r) and the convective velocity v(r), is small, Raimondi obtained an
asymptotic solution of the form

052 Q¢

3
N
3 Q

where O’ and o are constants. Brigham and Smith (1965) amplified on the Raimondi solution
and obtained the approximate equation for tracer injection in a five-spot pattern flow in the

form
Y Y
ofes]-£| | 2k-3)3

s

4)

C=%[-erfc

C= - erfe (5)

-Azi erfc

where 7, is the tracer slug injection time while ¢ is the tracer-free water injection time.

Drawing a close analogy between the radial flow and the linear flow systems, along the
lines suggested by Brigham and Smith (1965), Antunez (1984) was able to present an approxi-
mate analytical solution to the R-D-C-R system of differential equation. This he did by decou-
pling the reaction system from the diffusion-convection system using the method of charac-
teristics. The solutions of the decoupled system when multiplied together yielded the approxi-
mate analytical solution in the form

v t S,
x——-———-——
C k, 1-5, S, +a(l-S,
C=-—Oexp[— x [1+ a( )H erfe ol = ow ©)
2 Vo SW 5 KISW
S, +a(l-3S§,,
L o

It is clear from the above analyses that modeling of single-well tracer tests analytically
have consistently been based on solutions largely derived from an empirical analogy between
the radial flow and the linear flow systems. While such analogy might hold well in some very
special cases, it is certainly not always the case as will subsequently be seen in this report.
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3. THEORETICAL BASIS OF THE SINGLE-WELL TRACER TEST

The specifics of operating a single-well tracer test involves:

1.  Injecting a slug of primary tracer into the reservoir with a carrier fluid,

2. The injected tracer is then displaced deeper into the reservoir by continuing to inject
tracer-free carrier fluid.

During the process of injection, the tracer (primary tracer) partitions between the immobile and
the mobile fluid saturations, maintaining a dynamic equilibrium between the partitioned species.
At the same time, some of the primary tracer which partitioned in the mobile fluid phase sa-
turation undergoes an irreversible chemical reaction with the mobile phase fluid, forming
‘another tracer (the secondary tracer). The secondary tracer is normally unreactive with the im-
mobile phase saturation and its partionability with this fluid phase is zero (or nearly zero).

More often than not, the reaction rate involved in the formation of the secondary tracer is
slow. As a result, an appreciable amount of the secondary tracer is not formed during the
tracer injection period. It is therefore always necessary to:

1. Stop injection and shut in the well to allow more time for reaction so that the
secondary tracer concentration can be built up to a level that can easily be detected
by conventional chemical analysis technique.

2. Open the well to flow so that the concentration profiles of the primary and secon-
dary tracers are monitored for characterization.

The characterization of tracer production profiles enables us to calculate the lag in the arrival
times of tracers at the wellbore, and this provides the means of evaluating reservoir in-situ fluid
saturations.

In consideration of the fluid dynamics of the above described system, it is clear that a
limited portion of the reservoir around the test well, can be covered by the test. This limitation
implies two things:

1. The fluid saturation obtainable from the test will be a volumetric average saturation
of the pore volume covered. It is, however, important to note that this average sa-
turation is more representative of the reservoir saturation than any other obtainable
from either well logging or core analysis. (Fluid saturations obtained from well
logging and core analysis are based on much smaller reservoir volumes than is nor-
mally encountered in single-well tracer tests. Furthermore, these conventional tech-
niques also suffer from severe operational handicaps if the hole is cased.)

2. The hydrodynamics of single-well tracer flow is best described in radial flow
geometry. Therefore, the simplest set of differential equations to describe tracer
flow phenomena in a single-well test test must be expressed in radial coordinates.
If the perforated interval of the test well is large, equations must be expressed in
cylindrical coordinates.
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In describing the above process mathematically, certain simplifying assumptions must be made.
For a tracer test designed to evaluate the immobile phase fluid saturation, we can make the fol-
lowing assumptions:

1.  Fluid saturadons of the mobile and immobile phases are incompressible.
2. The reservoir is homogeneous and isotropic.

3. The primary tracer undergoes an irreversible first order reaction in the mobile fluid
phase only.

Using these assumptions, Tomich ez al. (1973) derived a general equation of the form

V(5,0 VC) =V - (SuruC)— Ri (€, O = 2 (5.Ci+ ST ™
where
C; = concentration of tracer i in the mobile fluid phase.
C; = concentrations of tracer i in the immobile fluid phase.
R; = rate of reaction of tracer i.
D = Hydrodynamic dispersion tensor in the porous medium.

If we consider the case of radial, adiabatic core (steady-state flow of the mobile phase W), the
saturation S,, can be considered constant in Eq. 7 thus simplifying to

1 d aCi| 1 9 R{C, C) _ 3 |SuCi+ SoCi
r or [rD(r) or ]— r or Crvn€i) = S, - at[ S, ] ®

For a steady-state flow of phase W, the velocity v, can be based on a radial average defined
from pure material balance consideration as

_[5-6154 ©)
v | 2rhrdS,,

From Eq. 9 it can be seen that the product v, is a constant provided that the volumetric rate
g remains constant as would be the case for a steady-state flow system. Let
rv,, = 0. = constant (10)

Also if we consider that the source/sink term R{(C;, C,) is due to the formation of the secon-
dary tracer as a result of an irreversible first order reaction between the mobile-phase saturation
and the primary tracer dissolved therein, R(C;, C)) can be expressed as

R(C;,C)=k (S.,Ci+ SoC3) (11)



-6 -

where k, is the reaction rate constant. Using Eqgs. 9, 10 and 11 in Eq. 8 yields

ac, ac; So - c)) ac;
12 [rD(r)-—‘J_ﬁ—T‘—k, [c,-+—sﬂc,}= [1+52 o8 ‘)J Ci )

W Sw aC‘ ot
In Eq. 12 we have assumed a general equilibrium relationship of the form
Ci=8(C) (13)

between the tracer concentration C; partitioned in the immobile fluid phase saturation and the
concentration C; partitioned in the mobile fluid phase.

Even though the assumption of a linear equilibrium relation simplifies the problem con-
siderably the same problem could also be solved with equal mathematical ease had we assumed
a linear nonequilibrium relation between C; and C; (See Appendix G).

Two primary factors are evident in Eq. 12. These are the solute partition factor and the
diffusion-convection factor. For the purpose of analysis we can rewrite Eq. 12 in the form

NOATE T

+ N(C) aC‘Fo 14
|7 o » ©) == (14)

where the diffusion-convection factor is implicit in a flux term f; defined as

oC;
fi=c;- O (15)
a or
and the solute partition factor is contained in the term N(C)) defined as:
So 9g; (C)
NC) = | 1+— 16
(o)) [ S, " ac (16)
If we define a new coordinate system x as
2
= |— 17
x [m (17)

so that

dx _ |1
;-[a} (1)



Then Eq. 14 simplifies to

=0 (19)

of; | 9C; aC Sogi (C)
ox ot '

—a?‘- —+N(Ci)—+k,[cl+ s,

It is easily seen from Eq. 19 that the characteristic velocity of any concentration front within
the medium is given as:

o
oC;
dx _ [}
[’Zi?]q = NG (202

or

8
aC;
—iii = (20b)
[d‘ ]c; [ So ag(c,.>]
1+ =2
S, 0C;

For any equilibrium relation, g(C}), 9g(Cy)/dC; is always positive. Therefore for any given
diffusion-convection factor (3f; /0C;), the solute partition factor N(C;) is greater than 1.0, and
therefore acts to retard the velocity of flow of the partitioning species to values lower than the
propagation velocity of the pure, mobile aqueous phase for which N(C)) = 1.0.

Another important effect of partitioning is due to the nature of the equilibrium function
g(C)). The most general form of the equilibrium function is offered by the Langmuir equili-
brium isotherm where g(C)) is given in terms of the two constants K; and X, as

C)= KG g 21
g(Cy) = 15 K,C, =, 2n

Three distinct types of (C;,C;) equilibrium profiles are possible depending on whether

K, 0 22)

1. For K =0, we have the well known linear isotherm of Freudlich. In this case
N(C) is unity, implying that the tracer front propagates with a velocity which is
independent of tracer concentration for any fixed value of (df; /3C)).

2. For K, > 0, the equilibrium relation function is convex as shown in Fig. 3.1. N(C)
is therefore a decreasing function of C;. This gives rise to a situation where the
tracer concentration profile is self-sharpening thus limiting any tendency of the pro-
pagation front to diffuse.

3. In this case of K, < 0, the equilibrium curve is concave and therefore N(C)) is an

increasing function of C; This implies that the propagation front is severely
retarded and diffusion will therefore enhance front propagation.
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Fig. 3.1 Simulated Equilibrium Isotherm.




-9.

While Cases 2 and 3 described above seem rather interesting, they give rise to nonlinear
R-D-C-R type second order differential equations which may not be amenable to any exact
analytical solutions. In the rest of this report therefore we shall only consider the case of
linear equilibrium relation where K, = 0 and therefore g{C;) is given as:

C;=84C) =K \C; (23)

Using Egs. 23 in Eq. 12 and setting i =1 for tracer species partitioned in all fluid phases (the
Primary Tracer ), we have

1 9 aCy a 9C KiSo| . _ K,So | 9C;
L2 [rD(r) ]— —k,{n 5 ]cl_[u 5 ]T 4)

Equation 24 describes the primary tracer concentration profile in the radial domain.

The secondary tracer formed as a result of an irreversible first order reaction between the
mobile fluid phase and the primary tracer only exists in the mobile fluid phase. Its partition
coefficient with respect to the immobile fluid saturation is zero. For the secondary tracer
therefore, we have the following relations:

ag(C) -0 ‘ (252)

aC;
K;S K;S
k|14 =2 |C=-k | 1+ —= | C (25b)
‘ Sw Sw
and
i=2 (25¢)
using Egs. 25 in Eq. 12 yields
19 aC, a 9C; K;So dC;
12 A T C,=—= 26
r or rD(r) or } r or Sw 17 o (26)

Note that in Eq. 26, the solute partition coefficient is absent in the accumulation term, and
therefore the secondary tracer is not subjected to any chromatographic delay as it propagates
through the reservoir.

Equations 24 and 26 are the basic equations describing the hydrodynamics of the primary
and the secondary tracers respectively. These equations must be solved subject to appropriate
initial and boundary conditions consistent with the various stages of operation of a single-well
tracer test as described earlier.
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4. ANALYTICAL SOLUTIONS TO SINGLE-WELL TRACER TEST EQUATIONS

4.1. PRIMARY TRACER

4.1.1. Tracer-Injection Period

The basic equation for the flow of primary tracer during tracer injection period is given
as Eq. 24.

1 9 dC; a 9C; K1So K;Sp | 9Cy
- = D ———_——k |1+ = |1+ —_— 4
oo | ) or ] r or i’ S, Cl Sw ot 24
The associated initial and boundary conditions are as follows:
Ci(r, t=0)=0 (27a)
Cir—>e, £)=0 (27b)
Cir=r,, )=Cy (27¢)

The boundary conditions expressed in Eq. 27 are only good for a system subjected to a con-
tinuous injection of the primary tracer of concentration C, at a wellbore of radius r,. If we
know the solution to Eqs. 24 and 27, we can easily obtain the corresponding solution to the
slug injection system by using superposition in time.

If we define a dimensionless radial distance rp as

rp = L (283)
rW
and
K;S
d>=r?v[l+§o] (28b)
Equation 24 can be expressed as
aC aC aC
L 9 Dyt |- & gk, = 0 L 29)
14)) BrD arD 14)) arD ot
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On expanding Eq. 29, we have

9°C ’ —o) 9C; ®kC oC
21+D_'_Doz 1 1=_<Il 1 (302)
arD D D"D arD D D at
where
’ d
D" = e [D(rp)] (30b)
D
The associated initial and boundary conditions are
Ci(rp, t=0) = (31a)
Ci(rp > e, ) = (31b)
Cirp=1, 1= (31c)

Equation 30 is a linear second differential order equation with variable coefficients and can be
transformed to a Sturm-Louisville equation by using a Cole-type (Cole, 1951) transformation
of the form

Ci(r, t) = ¢y ¢ (32)

to obtain

0%, k® o 99,
—87%— - I:Ul(rD, D) + ) ]% =D 3 (33)
where
2
1|D’ D-o 1 d D’ D-o

= - |= — 4
Uilrp. D) 4[D+ DrD]+2 er[D+ DrD] 34

From Eq. 33 it can easily be observed that the nature of the function U(rp, D) will largely
determine the form of solution one can expect. Even though U,(rp, D) is r-dependent and
therefore not constant, still, we can say quite generally that there are two fundamentally
different types of solutions obtainable from Eq. 33. For example, if U,(rp, D) were strictly
positive, then only exponential solution are admissible. On the other hand, a negative
U,(rp, D) may give rise to periodic solutions. Thus the function U,(rp, D) or D(rp) needs be
specified before an exact solution to Eq. 33 can be formulated.

It must be mentioned however that in cases where U,(rp, D) can not be specified, an
approximate solution can be obtained by transforming Eq. 33 into the Riccati differential
equation. Such approximate solutions are based on the KWB (Krammer, Wenzel and Bril-
louin) assumptions normally valid for large values of U;(rp, D) (Lanczos, 1961; Lakin et al,,
1970).
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The function U,(rp, D) is completely specified if the hydrodynamic dispersion function
D(rp) is known. It is generally believed that D(rp) is a function of the absolute value of the
convection velocity field v, |, and can be represented by an expression of the form (Raimondi,
1959; Brigham ez al., 1961).

D(rp) = Dp, + Dolv,| ‘ (35)

In Eq. 35, the term D, is the molecular diffusion constant while Dy is the dispersive mixing
constant. Using Eq. 10 in Eq. 35 we can express D(rp) as

oD,
D(@rp) = D, + —— (36)

1))

For all practical purposes, the molecular diffusion constant D,, is relatively very small com-
pared with the dispersive mixing term (Brigham and Smith, 1961). The hydrodynamic disper-
sion function D(rp) can therefore be approximated as:

oD
D(rp) = —= 37)

D

Using Eq. 37 in Eq. 33 yields

02 Ok, ®rp 0
2o ple = 2 2L (38)
ork |4D} oDy aD, ot
In the Laplace space we have
d%9; 1 P —
- + k,+ANrplo; =0 39)

A general solution to the homogeneous Sturm-Louisville Eq. 39 can be found in the form
(Appendix A):

— _ . aw, | oD, |*?
616, 1) = BAi m] @] + 52&[ [m] € (40)
where
Eop, Ny = L+ 2t M - (41a)

4D} oDy
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A is the Laplace parameter. Ai(x) and Bi(x) are the Airy integrals defined as (Luke, 1962):

Aix) = - z[cos [ﬁ + xt] dr (41b)
14 3
- [f__n] - 3
Bi(x) = -;lt- l[e 3 dt+-11? l[sin [? +xt] dt (41¢)

The associated boundary conditions are

|
o
P
N
S
L
N

$l(§ —> oo, l) =

01Erp=1),A] = — (42b)

Using Eq. 42 on Eq. 40 yields a solution in the form

— C
6nE M = Y N oDy 17 . (43)
Yogan| 2=b
In terms of the original variable C;, we use the inverse transform of Eq. 32 to obtain
273
rp—1 . 0Dy
Coe [ 2Do ] Al[ [(D(k, * ")] g}
GE M = A 73 (44)
e
| Mok +n) D=

The Airy function Ai(x) can also be expressed in terms of the Bessel function of second kind
of fractional order K;3(z) as (Abramowitz et al., 1972):

. 1 , x 2 3n

A = ~alX Kk lE8 45
1) n 3 1B [3 ] (43)
Using Egs. 45 in 44 yields

"D—l

Co exp[

2 oDy 7]
. 2D, ] &) K "3[3 [tb(k,+7»)]§ ] )
CiEM) = " Erp=1) 2 [ aDy

3

32, _
K kN }i (rp= 1)]
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Equation 46 describes the concentration profile for a situation where the primary tracer is con-
tinuously injected into the reservoir such that a tracer concentration of value C, is always
maintained at the wellbore. Equation 46 therefore constitutes the fundamental solution with the
other phases of single-well tracer test equations that can be built.

4.1.2. Tracer-Free Water Injection Period

If the tracer was injected at time ¢ and then followed by the injection of tracer-free water
at time ¢, then the primary tracer concentration profile at time ¢ is obtained by superposition in
time using Eq. 46 as the fundamental equation. The solution then is given as:

r

[o—y

— -1
C1(€,A) = Cg exp [ 2D, ]*I

rD,

oDy
Ky [2/3 [—-———q}( p ] £23 (rp, x)]

&(rD = l) ;\')

oDy

Dk, + A)

]ém (rp=1, x)]

B

- - o

2 oDy 3
= Kis|3 [—d)(k +M)]§ (rp=1, 7L1)}

é(rD = 1’ A'l) 2 aD )
(’5@—;1—1)] E P (rp=1,4)

L - J

> 47)

173

where A is the Laplace parameter corresponding to injection time ¢, while A; corresponds to
time #;. Equation 47 is the equation that describes the transport of the primary tracer through
the reservoir during the injection period, in Laplace space.

4.1.3. Asymptotic Solution Valid for Large Values of x = [0Dy/®(k, + A)]*3E

The basic solution function for the R-D-C-R system of differential equation is given by
Eq. 44. If we set

273
oDy
= |—— 4
D(k + A) ] S 48)
Then Eq. 44 can be written as
'p — 1
Cp exp
Clrp, N) = i [ 2Do ] Ai(x) (49)
b A Ai(x))

For large values of A(x;) — 0, therefore Eq. 49 becomes singular and cannot be evaluated.
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If we expand the Airy function Ai(x) asymptotically for large values of x we have
(Abramowitz and Stegun, 1972),

. _ 1 __2_ 2
Ai(x) = T exp[ 3 P ] (50)
Using this in Eq. 49 we have
r'n — 1
— €0 exp[ 2Dg ] Xy v 2 .3 /2
Cip, M) = x =| e -5 @ -AD (51)

Expressed in terms of § we have

rD-—l

2D ] =1 1/4 oD
0 [é(rp )} exp — %_ [ _ oDy [&3’2(@) _ %y = 1)}]

Co exp [

A

Cop 1) = E(rp) Dk, + 1)

(52)

Equation 52 is equivalent to Eq. 46 for large values of x. This same solution could also have
been obtained by going through the Riccati formulation and using the KWB assumptions as
earlier discussed for large values of U,(rp, D).

4.2. SECONDARY TRACER

4.2.1. Tracer Injection Period

During the tracer injection period, the secondary tracer is formed as a result of an irrever-
sible first order reaction involving the injected primary tracer and the carrier mobile fluid
phase. Thus the secondary tracer is subjected to the same conditions of diffusion and convec-
tion as the primary tracer. However, because the secondary tracer flows with the carrier,
mobile fluid phase, it is not subjected to the kind of flow retardation which the primary tracer
suffers. Also, the source term of the R-D-C-R system of differential equations is a positive
reaction term. Considering the above, the secondary tracer flow equation can be written as

r or d S

ae

The initial and boundary conditions can simply be put as:

Cy(r, t=0) (54a)
Co(r = 0, 9 (54b)
Cyr=r,,t) =0 (54c)
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The imports of Eq. 53 are quite obvious since the secondary tracer is formed in-situ from a
primary tracer that is being continuously pushed into the reservoir by a stream of tracer-free
water. There can be no secondary tracer at the wellbore or the outer boundary which is
infinitely located.

Proceeding as for the primary tracer, we can define the dimensionless radial distance rp
and @ as in Eq. 28 so that Eq. 53 can be written as

oC oC oC
L 0 Doy S22 X2 e, = 252 (55)
rp Orp orp rp Odrp ot
which on expansion yields
d%C ’ —a) 9C; k@ 2 aC
2+D+Da 2 & c, == 2 (56)
ar%) D DI‘D arD D D t
Using the transformation given in Eqs. 32, Eq. 56 becomes
0 g, Dy + 22 g, = T 2 (57)
— — r , — e ——
3 r,z) 2\rp 2 D D &
where
’ 2 ‘ ’
Uz(rD,D)=lD—+D”°‘ +1 4 (D° D-o
4 | D Drp 2 drp | D Drp
In the Laplace space, Eq. 57 becomes
8262 [ w ;"J - qu)&‘l
—= — |Uy(rp, D) + = - 58a
al‘%) 2( D ) ¢2 D ( )
or
8262 - qu)?b_l
- W(rp, A =— — (58b)
¥ (rp, A)o2 D
where

’ 2 g 2
1 |D D -« 1 d D D-a w
[/V = —_— | — -+ — + + 58
(rD 7‘) 4 [ M ] 2 er [D Df'D ] D ( C)
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If as before we take

(XDO
D(rp) = — (37
D
Then, Eqs. 58 simplifies to
9%, Zr |- Dk, rpd
R I LN | A (59)
ok aDg  0Dg oDg

The associated boundary conditions are

|
(=}

Oa(rp = =, A) = (60a)

O(rp=1,1) =0 (60b)

Equation 59 is an inhomogeneous version of Eq. 39 and can be solved by using the method of
undetermined coefficient (staff, 1983) to obtain a general solution of the form (Appendix B ).

[ 273
e
6,(nA) = BaA; Dol - o o+ 2 ,
= LAz Mok +m@ - | T abo %,
NMNowen| 2=t )
(61a)
where
g L Dk, + 1)
B 4D% oDy D
_ 1 M 61b
'ﬂ - 4D(2) + aDo p ( )

subject, of course, to the boundary conditions given in Eq. 60. Application of the boundary
conditions to Eq. 61 yields a solution of the form:

[ eDo ) I epo V7
ok, Ai [[—5] T](ro,l)} Ai [[m E(rp,A)

Aldk, + MD - 72 oD, | &
[Pk, + X ) AiH °] n(rD=1,k)J Ail[———a—D-o—] E(rp = 1,1)J

Ga(rpA) = (62)

A
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Equation 62 can be converted to the concentration functions Cy(rp, A) through using Eq. 32 to

obtain
-1 aD, |12° aD, |**
Ok, exp[ ";Do ] Ai [[R_j] n(rD,x)] Ai [[ﬁ] E(rp,A)
Calrph) = Ak, + M@ — 72)] oD, 120 - oD, | 63)
w. : _ . 0 _
Ai [rzwx ] 1’1("0 - I’X)J Ai [[d)(k, + )‘)] g(’D - lrl)J

Equation 63 represents the concentration profile of the formed secondary tracer when the pri-
mary tracer is continuously injected.

4.2.2. Tracer Free Water Injections Period

When the primary tracer is injected for a time ¢; and then followed by a tracer-free water
injection for a total injection period of time ¢, a solution can be obtained by superposition in
time using Eq. 63 as the basic solution. Proceeding as we did for the primary tracer we obtain
a solution of the form.

Ok, exp [r,;; ! ]

CZ(rD’ )\') = A.[(Dk, + )\.(d) — r‘zv)] [X(rD’ )\.) - X(rD9 )"1)] (643)
where
) O!Do]m . o, |
Al[ [r& Y N(rp, A) Ai DE N E(rp, V)
X(rp, A) = N 322 73 N - - g oD, VL L, (64b)
1 r?v)\' ’f](rD =1, ) A Al m &(VD = l, )

Equation 64 describes the movement of the secondary tracer through the porous medium dur-
ing the injection period.

4.3. SHUT-IN PERIOD

43.1. Primary Tracer

The irreversible first order reaction which gives rise to the formation of the secondary
tracer is normally very slow. Therefore, in order that an appreciable amount of secondary
tracer be formed during a single-well tracer test run, the injection of tracer-free water bank to
push the primary tracer should be stopped, and the well shut-in to allow for additional forma-
tion of the secondary tracer prior to production. During the shut-in period, therefore, shear
diffusion Dylv,| is zero since |v,| = 0. Tracer motions could then be attributed solely to molecu-
lar diffusion. It follows then that the hydrodynamic dispersion function D(rp) given as

D(rD) = Dm + Dolvwl (35)
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must be approximated by the molecular diffusion term only so that
D (I' D) =D m (65 )
Thus the two important characteristics of the primary tracer flow during the shut-in period are:

vl =lal=0 (66a)

D(rp) = D (66b)

Otherwise, the basic equation describing the primary tracer flow remains the same. Using Eq.
66 in the basic Eq. 30 for the primary tracer yields the equation for the primary tracer during
the shut-in period as

azcls 1 aCls (bkr o] acl:
—_—t— =7 (= = 67)
oy rp or D, D, ot
The associated initial and boundary conditions are
Cis(rp, t=0) = Ci(rp, tin)) (68a)
Ci(rp >, 1) =0 (68b)
Ciu(rp=1,1 =0 (68¢c)

The initial condition (Eq. 68a) states that at the time of shut-in, the primary tracer in the sys-
tem is equal to that available prior to the shut-in period. The boundary conditions (Egs. 68b
and 68c) are obvious.

We can seek the solution Egs. 67 and 68 in the form (Carslaw and Jaeger, 1959; 1.14;
Arsenin, 1968):

Cl_,(rD, ) = Wlp(rD' 1+ WZp(rD’ t) (69)
such that C,(rp, f) satisfies the boundary condition at 7, = 1, i.e.,

Cl_,(rD, l) =0 p = 1 (70)

while y,(rp, ?) satisfies equation

_32_!111_,+_1_M_3{c: _© vy (71)
arlz) p arD Dm Vip = Dm ot
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subject to

Wlp(rD —> o, t) =0 (723)

VYip(rp, t = 0) = Cy(rp, tin) (72b)

and y,,(rp, 1) satisfies the equations

e

subject to
Vop(rp, > o0, 1) = 0 (74a)
Vop(rp, t=0) = 0 (74b)

Equations 71 and 72 can be treated as a Cauchy’s problem (Arsenin, 1968), and therefore, the
solution can be written as

> , oo .
Vi ) = 5= | Gilro's ) Cu(rp) drp (75)

m rp=1

where G,(rp’, #) is the Green’s function satisfying Eq. 71 and the one-sided boundary condition
represented by Eq. 72. In the Laplace space, Eqs. 71, 72, 73, 74 can be rendered as follows:

subject to
Vit = = 1) = 0 an
and
d}’ o A SLTA. e
subject to

Yo,(rp = =, &) = 0 (79)
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To obtain a solution to Eqs. 76 and 77 we need to construct the appropriate Green’s function
Gi(rp, M) of Eq. 75 in the Laplace space as follows. The fundamental, independent solutions to
Eq. 76 are in the form (Bowman, 1983) of: |

zo[r,, "/Di (k,+7\.)] and K, [r,, «/Di(k,m)]

Using these two basic and independent solutions to Eq. 76, we can construct the appropriate
Green’s function (Courant and Hilbert, 1953), (Appendix C) as:

r
, - r -

’ , [}
Ko|rp ‘\’T)—(kr*'}») Iy |rp B—(kr“’l) rp 5 IpSTrp

.

Gy(rp, rp’, A) = 9

r -

Ko ’D'\/;"L(kr*‘l) Iy ’D"\"‘D—(kr‘fl) b Ip>Tp
. m J m J

-~

(80)

Also it can easily be shown that the solution {p_z,,(rb, A) to Egs. 78 and 79 can be expressed as

- \/5"’— <k,+x)] 1)

Using Eqs. 75 and 80 in Eq. 69, we obtain the complete solution Ci(rp, M) as

Culron ) = ArKo [rp N x)] + =2 | Gy (' roMCilro ) 82)
m m rD=1

subject to

Yaoo(rp, M) = AKp

Curp=1,2) =0 (83)

Using this boundary condition, the constant A; can be evaluated so that a complete solution is
obtained in the form

Cis(rp\) =
K,

;
{Io[rb‘\/ —;): (kA+A) Ko[‘\’ % (kr+7»)]
\’—D—m (kr+)') KO[rD \’T)-’: (kr+x) }

. .[ Ko rD’ ’ '1—)— (k,+l)} C](I'D')YD' er' ; rp< rD' (843)

rp=l1

’ [+
-D-_m (kr+l)

_IO
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and

_ [_E;JKO["D'\, '1% (k,+A) ]

Cl:(" Ds l) = I Io [r D"\ ’ D_ (k,+l) Ko D— (k,+;b) ]
Ko\/D—(k,m] o " "

—10[\/-5-6 (k+M) ‘Ko [r}n/b—m (k+D) I] Ci(rp)rpdr ; ™D > rp (84b)

In the very special case when there is no molecules diffusion the solution to the shut-in equa-
tion reduces to a simple form as:

Ciy(rp)

Cirp, A) = P

(85)

Equation 85 could also be used for such cases where the values of [®(k, + A)/D,.] would make
Eq. 84 singular. Therefore for programming purposes, Eqgs. 85 and 84 are used together.

4.3.2. Secondary Tracer

The secondary tracer is subjected to same conditions as the primary tracer during the
shut-in period viz:

vl =l =0 (86a)
D(rp) = D,, (86b)

Using the above equations in Eq. 56 the equation of secondary tracer flow during shut-in
becomes

9?Cy 1 0Cy kDC;;, 12 9C,

% "% ¥ D, "D "
The associated initial and boundary conditions are:
Calrp, t=0) = Cy(rp, tia)) (88a)
Coulrp = 0,0) = 0 (88b)
Cyu(rp=1,1) = 0 (88¢c)
In the Laplace space, Eqs. 87 and 88 become
a;f;zs + ';1; aa% + ‘g'w}] Co=- Di;, [krcls + "":')‘1 Cz(fD)J (89)
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Subject to the boundary conditions

(90a)
(90b)

Col(rp > 0, )
éb(rD = 1’ z')

The set of equations (Eqs. 89 and 90) are similar to what we had for the primary tracer
dynamics during shut in, and hence a solution of the form

Coolrps M) = Wi,(rp, A) + Yoi(rp, M) €29)

can be found such that Coi(rp, M) satisfy the inner boundary conditions ( Eq. 90b) while
y1,(rp, A) is a solution of the Cauchy’s problem given as:

i"’—;p" +o % + [%:—] i = - [k,cl, + % Cz(’b)] (922)
subject to
Pirp >, A) = 0 (92b)
and W,,(7p,\) is a solution of the homogeneous equation
dj;:" + -rl; dz:" + {%:—] ¥, =0 (93a)
subject to
Yolrp >, 4) = 0 (93b)

Following a similar procedure as in the primary tracer during shut-in, it can be shown (Appen-
dix D) that

- o , s ,
¥ulp, V) = 5= | Gy M [krcl:(rb') + 5 Crp)| drp %4
m rD=1
where the one-sided Green’s function Gy(rp, A) is given as
. WA |
KoLrD "D—m Io p —D:: rqs rDSrD
GZ(’D9 rlD ’ A') =9 (95)
[ A
w)' ’ ’ ’
Kolrp E" Iy |rp D—,,, Ips Ip>T7Ip
.




-24 -

and

2 A
D

m

Wol(rp, ) = AKp |rp

(96)

Using Egs. 95 and 96 in Eq. 91 yields a general solution of the form

A
D,

~ P e
Cos(rp, M) = AKy |rp _D‘L j Galrp's A) [k Crolrp’) + = Co(rp) | drp”  (97)

Subject to the inner boundary conditions
Co(rp=1,1) = 0 (90b)

Using Eq. 90b on Eq. 97 the constant A, can be evaluated so that a solution to Egs. 87 and 88
can be written as:

_ m A 2\ A
Co(rp,A) = ly|rp Do Ko D =l D Ko |rp Do
m m m
2\

j Ko |rp k Cis(rp) + — Cz(fo) rp’ drp’; rp<rp (98a)

rp=1
and

K, rﬁ,?»
_ - o|'D D, - r2
Caslrp\) = ey j [ Culrp) + o Cilrp)]
D,
2 A 2 % A rmh |l
Iy rp D, Ky o | T b, | o ™ - rp drp

p > rD' (98b)
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In the very special case where the molecular diffusion equals to zero, the solution to the
secondary tracer flow during the shut-in period reduces to

Caslrpr 1) = |Calrp, x>+f"—;— - Culrp M| = 92)

T'w

Equation 99 is also applicable for such values of (AM?/D,,) that make Eq. 98 singular.
4.4. TRACER PRODUCTION PERIOD

4.4.1. Primary Tracer

The hydrodynamics of tracer flow during the production period is basically the same as
during the injection period though the flow velocity is reversed in the latter.

The primary tracer flow equation can therefore be written as:

ac,,,} a 9Cy,
+ ——
arD p arD

1.9 [rDD(rD)

rp Orp

oC
- Ok Cp, =D a:p (100)

where C,, is primary tracer concentration during the production period while @ and rp retain
their usual definitions as

rp=— (2821)

and

®=r [1 + S"K‘] (28b)

respectively.

To construct an inner-boundary condition to Eq. 100, we can take the simplest route by
setting the effluent concentration equal to the in-situ concentration. Thus the associated initial
and boundary conditions to Eq. 100 are:

Cyp(rp, t=0) = Cy,(rp, 25n) (101a)
Ciplrp = =2, ) =0 (101b)
Ciplrp=1,0=fip(rp=1,19) (101¢)

Equation 101a stipulates that the in-situ tracer concentration at the initial time of production be
equal to the tracer concentration at the end of shut-in period as would be expected. Equation
101b says that the tracer concentration level at an infinitely located position in the system be
zero, while Eq. 101c is a statement of the equality of the effluent concentration and the in-situ
concentration at the wellbore.

The effluent concentration fi,(rp = 1, ) is defined as in Eq. 15 to be:

D(rp) oC
fulrp =1, = [c,,, e TL, a0
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Using Eq. 102 in Eq. 101c and simplifying yields:

aC
[—1ﬂ] =0 (103)
or, D |rp=1

Using basically the same analytical approach that was used during the injection period,
we can expand Eq. 100 to the form

o’C a oC Ok, aC
1p+ D +D+(X lp C]ng 1p (104)
o3 D Drp orp D D ot
Using a transform of type
p
_ 1 D’ D+a
Cip(rp, 1) = &y(rp, 1) exp — > 'DL [? + ‘—D'g—] dg (105)
on Eq. 104, we have
azq)lp qu) L] aq)l;:
87'12) - Ulp(rD’ D) + D p ¢lp = B’ ot (1063)
where
2
1|D’", D+a 1 d |D’, D+a
U y D)= — |— + ———— | + = + 106b
(o> D) 4[0 DrD] 2er[1) DrD] (106b)
subject to the following initial and boundary conditions:
61,(rp, £=0) = C(rp, 25p) (107a)
a ’
Sp LD, Dral, | g (107b)
arD 2 D DYD rp=1
b1p(rp = =2, ) =0 (107¢)

where

1))
A 1 D’ D+ o
Ci5(rps ten) = Cy(rp, 15) €xp r3 J; [F + "'b"g—] dg (1074d)
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Substituting the appropriate functions for D(rp)
oD
D(rp) = — 37)
p

Equations 106 and 107 become

az¢1p 1 (Dkr <DrD a¢lp
53~ |ag * oDo ™| % T D, (109
subject to
01,(rp, £ = 0) = C1,(rp) (109a)
¢1p(rD —) 00, l) =0 (109b)
aq’lp ¢]p _
[ . - oD |1y =0 (109¢)
Equations 108 and 109 can be solved in Laplace space to obtain a solution of the form
(Appendix E):
Ceny = B2 pin B Ai(®)x,Bix) — A0Bi(0)] — WAx)Bix) — Adx)Bi(x1)]
P e, BP2Aix)s, — YALx1)
= , rp=rpl. ., ,
- [ Agx) Cilrplexp [ - wo" ]r,, dry;  x(rp) < X(rD) (110a)
rp=1
and
61p(§’ )\')
. = | BPALx), Bix) — ALX) Bi(x),,) - MALx)B(X) — ALX) — Ax)Bi(x1))
- BllsAi(x) j -
aDy rp=1 BmAi(x)zl—'YAi(xl)
’ 72)—7‘ DW P ,,
- Cis(rp)exp D rpdrp 5 x(rp) > x'(rp) (110b)
0 Y
The effluent concentration is given as
, . 1. .
o a A(x)Cirp) exp[ Dy ]’Dd”o
C = =- v 111
Cp[&(rb 1)7 )\-] aD I BZISA‘(x)xl—yAi(xl) ( )

D=1
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4.4.2. Secondary Tracer
The secondary tracer flow equation during the production period can be written as

;‘; 5% [mD(rD)%%i] + % aafz” + ®kCip =12 ag::,, (112)
The associated initial and boundary conditions are
Coplrp, t = 0) = Col(rp) (113a)
Coplrp > 22, =0 (113b)
foA) = Cop(rp =1, 1) (113c¢)

Using the same procedures as were used for the primary tracer, Eqs. 112 and 113 can be writ-
ten in the Laplace space as (Appendix F):

d2$2p 1 T%V)\. e ’p A A
peaill MG gy = ~ oDy [aCas(rp) + Dk,Cy(rp)] (114a)
where
a p — 1
Cas(rp) = Cys exp aDq (114b)
subject to
Baprp = 0, ) = 0 (115a)
dEZP 5 —
o - 86,, =0 (115b)
where

(115¢)
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Equations 114 and 115 can be solved in the Laplace space to obtain

02*[AL(2), Bi(2)-Al2)Bi(2),,]-B[Al21)B(2)-AL2)Bi(21)
622 A2),~YA(21)

C—z,p@’ x) =

f'D-fD ’ ’ ’ , ;0
2D, ][f‘zvczr(fo) + ®k,Cy,(rp)lrpdrp) ; 2(rp) < 2'(rp)

7“_’.1/3

oDy

Cin® N = 22— Af2) | exp ["’ . "’][r&czxrb) + Dk Cy o)

rp=l 2D0

02} [AL2)B (2 )-ALZ)B (2), 1-O1AL(2), B2 \-Bi(21)AL2)]

drp; ,
C2/314"'(35)21 - GA,'(Zl) D z(rD) > Z(YD)

where
=23 n
L
T\(’D)- 4D2 G-Do rD
and
aDy
g=
VA

The effuent concentration is obtained at the wellbore where x(rp) = x(rp = 1) as:

— - ALGP NP2 Calrp) + Dk, C1,(rp)Irpdrp
=1, Al = 10 i ! p
o5 =D M =5, ,,Jl c¥*A([6**n(rp = D] - 84[6”*n(rp = 1]

(116a)

(116b)

(117a)

(117b)

(117¢)

(118)



-30 -

5. DISCUSSION AND RESULTS

Diffusion models in radial coordinates under conditions of shear mixing and reaction,
here referred to as the radial-diffusion-convection-reaction (or R-D-C-R) systems of differential
equations, are the appropriate models for single-well tracer tests for residual oil saturation
evaluation. Similar models without reaction have been used in other areas of studies such as
miscible flood or tracer test in patterned flow (Brigham and Smith, 1965). Whether applied to
tracer tests or other studies, past usages of the R-D-C-R system of differential equations always
end up with approximate analytical solutions. In the particular case of single-well tracer tests,
there are approximate solutions for the tracer injection phase (Antunez, 1984), but no known
successful attempt has been made to obtain an analytical solution, be it exact or approximate,
to the tracer production phase of the single-well tracer test model. Previous workers have had
to lean rather heavily on intuitive reasoning (Antunez, 1984) or the use of numerical simulation
(Tomich, 1973; Chase, 1971) models, to work out what one can call an "engineering solution."
The exact analytical solution demonstrated in the report is therefore the first known solution in
the literature.

5.1. TRACER INJECTION PERIOD

One of the important achievements of this work is the development of exact analytical
solutions to the R-D-C-R systems of differential equations from which analytical expressions to
all phases of operation for a single-well tracer test can be obtained.

In this section of our report, therefore, we will describe the characteristics of our exact
solution and compare this to known approximation solution of the Antunez-Brigham-Raimondi
models.

Throughout this report, we have found it very convenient to develop our analytical solu-
tions in Laplace space. Because of the nature of these solutions it was not considered prudent
to attempt an inversion to real time space. Instead a numerical inversion procedure using the
Stehfest inversion algorithm (Stehfest, 1970) was used. The numerical inversion was found to
be most stable for the system of equations developed when N = 16 iterations.

Using Eq. 46, the exact analytical solution to the R-D-C-R system of differential equa-
tions and the Stehfest algorithm, tracer concentration profiles were generated for various times
of injection in the range 1.0 to 9.0 days as shown in Fig. 5.1. As should be expected, the
traces penetrates the reservoir deeper and deeper as injection continues but the rate of penetra-
tion decreases a the time of injection increases. This tends to confirm in a qualitative way, our
earlier assumption that

v(r) = = (10)

p

which suggests that flow velocity decreases with increasing radius. It must be mentioned that
Eq. 10 is based on material balance consideration and therefore rp must be the average dimen-
sionless radius of penetration.

Analytical solution represented by Eq. 46 for the tracer injection phase provides a valu-
able opportunity to examine the correctness of some of the known approximate solutions avail-
able in the literature.
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§.1.1. Comparison of Injection Phase Solutions

Equation 46 is a solution to the R-D-C-R system of differential equation. The closest ap-
proximate solutions to similar problems in the literature do not take account of reaction.
Therefore in order to establish a basis for comparing these approximate solution to our exact
solution, Eq. 46 must be evaluated with a reaction rate constant of zero (k, = 0). Under such
conditions, we can validly compare our exact solutions with the approximate solutions of An-
tunez (1980), Brigham and Smith (1965).

The work of Antunez was based largely on the earlier work of Brigham and Smith even
though the former is not presented in radial geometry. In as much as the techniques of solu-
tion are identical, we can present these two approximate solutions in a unified form as:

C. R v
Cr, t) = 70 erfc _2-F_ (119a)
24/ = ar?
3
when 7is defined as
F= \/ N | S— (119b)
1'Ch¢(Sw + OSQ)

The parameter o in Eqs. 119 is the diffusion constant for the flowing system and ¢ is the for-
mation porosity.

Figure 5.2 is a comparison of Eq. 119 with the exact analytical solution when &, =0. It
is clear from this figure that approximate solution is reasonably good for small values of radial
distance from wellbore. However, with the approximation solution, the tracers seem to move
faster than they should be at trailing edge; and, particularly so, at the leading edge of the tracer
concentration profile.

Under normal conditions of operations for a single-well tracer test, a slug injection of
tracer is followed with an injection of tracer-free water. The analytical solutions for this latter
mode of injection are easily obtained from Eqs. 108 and 46 using linear superposition in time,
ie.,

Cr,)=C(r, t) - C(r, ty) (120)

where
t = total time of injection
t; = time of tracer-free water injection

Using the above technique, on Eq. 119, the approximate solution for tracer slug injection was
obtained and compared with the exact analytical solutions presented as Eq. 47, modified for a
system with &, = 0.

Figure 5.3 is a graphical comparison of the exact and approximate solution under condi-
tions described above. As was seen in Fig. 5.2, the tracers remain faster than normal at the
edges particularly at the leading edge. This apparent fast motion at the leading edges may be
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due to excessive spreading in the forward direction. Since the o term is largely associated
with spreading and it derives from the diffusion constant D(r), the diffusion term D(r) must
have been underrated in the models that lead to the approximate solution under consideration.
This is not surprising in that the approximate model was in fact based on the assumption that
o(9%C/9r%) term is relatively small.

An important fact about the approximate solution which is of interest is the fact that the
point of maximum tracer concentration for both exact and approximate solutions are the same.
This may suggest that the approximate solution may still give good test results for single-well
tracer tests even when the predicted concentration values are not correctly predicted. This ar-
ises because analyses of single-well tracer test data are based on points of maximum concentra-
tion rather than the absolution concentration values.

Figures 5.4 and 5.5 show the concentration profiles at various injection times for the pri-
mary and the secondary tracers, respectively. These graphs are based on the exact analytical
solutions for the secondary and the primary tracers under conditions of a slug injection of the
primary tracer as presented in Eq. 64 and 47, respectively.

5.2. SHUT-IN PERIOD

During the shut-in period, the shear-mixing effect is absent, leaving the molecular
diffusion and the chemical reaction effects. In the earlier referenced work of Antunez (1983),
it was convenient to assume a negligible molecular diffusion term so that simple mathematical
relations shown in Egs. 85 and 99 can be used to describe tracer dynamics during the shut-in
term.

In this study we have solved the tracer equation for a system where an effective molecu-
lar diffusion do exist. For cases where the molecular diffusion term becomes rather too small,
the alternative solutions presented in Eqgs. 85 and 99 are used for calculating the tracer concen-
tration profiles.

Equations 84, 85, 91 and 99 are the exact solutions for the primary and secondary tracer
equations during the shut-in period. Figure 5.6 is a composite graph showing the profiles of
the primary and the secondary tracer before and after the shut-in period. A very interesting as-
pect of tracer dynamics during this period is emphasized in Fig. 5.6. During the shut-in
period, tracers are only subjected to uniform molecular diffusion since the convection velocity
is zero. The primary tracer, in particular, is also subjected to an irreversible first order reac-
tion, forming new species of secondary tracers. The consequence of these superimposed
simultaneous actions is that the primary tracer concentration decreases uniformly along its en-
tire profile. The maximum decrease being at the point of maximum concentration as would be
expected from reaction kinetics point of view. Most importantly, the point of maximum con-
centration for the primary tracer remains unchanged throughout the shut-in period. The secon-
dary tracer on the other hand slowly builds up its concentration during the shut-in period.
However, because, newly formed species of secondary tracers are only subjected to very slow
brownian motions, they remain practically at the locality of formation. This localized buildup
of secondary tracer causes the point of maximum concentration of the secondary tracer prior to
shut-in to change continuously during the shut-in period as can be seen in Fig. 5.6. This
phenomena also gives rise to the possibility that the points of maximum concentration of the
secondary tracer can be shifted to coincide with that of the primary tracer by prolonging the
shut-in period.
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5.3. TRACER PRODUCTION PHASE

After the shut-in period, the well is opened up to flow so that the tracer species which
have migrated deep into the reservoir are reversed out to be produced at the wellbore. To be
able to solve the R-D-C-R system of differential equation for this flow period it was necessary
to design an appropriate boundary condition(s) at the wellbore. The most attractive condition
that initially came to mind was the Danckwerts (1953) or Parulekar et al., (1984) boundary
condition. This, basically, is a material balance equation at the wellbore, viz.

3C _
o+ @S- =0 (121)

where f is the effluent concentration defined in Eq. 15 or Eq. 102. The alternative procedure
was to specify that the effluent concentration be the same as the in-situ concentration at the
wellbore, i.e.,

f=Cop=1,1 (122)

The latter was eventually used as the inner boundary condition largely because the Stehfest
numerical inversion routine gave a more stable result than with the former. The mathematics
of using either of these boundary conditions are identical.

Using the inner boundary condition (Eq. 122), the tracer production equation was solved
to obtain the solution expressed in Eq. 110. This equation describes primary tracer distribution
in the reservoir for all the values of time. A similar solution using precisely the same method
was obtained for the secondary tracer as shown in Eq. 116.

For purposes of data analyses, the most important piece of information needed from a
single-well tracer test is the production concentration profiles of the various tracer species at
the wellbore. Analytical relations for these concentration profiles for the primary and the
secondary tracers are easily derivable from Egs. 110 and 116 respectively by setting rp = 1.0.
Such relations are contained in Eq. 111 for the primary tracer and Eq. 118 for the secondary
tracer.

Figure 5.7 is a graphical presentation of Eq. 110 for in-situ tracer distribution after pro-
duction times of 0.0, 0.4, 0.8 and 2.0 days. As can be observed in this graph, the peak con-
centration in the reservoir at any given time falls to lower values as production continues. As
a result of this, the highest concentration produced at the wellbore is always less than the peak
tracer concentration in the reservoir just before production was initiated. This decrease is due
largely to chemical reaction, which continuously converts the primary tracer to the secondary
tracer, and to a lesser extent, to shear-mixing and diffusion as tracer flows back to the
wellbore. In this particular experiment, our peak concentration breakthrough to the wellbore at
about 1.6 days. After this time, the wellbore production concentrations gradually falls as
shown in Fig. 5.8.

The behavior of the secondary tracer during production is somewhat different. Because
new species of secondary tracers are formed as tracer production proceeds the in-situ concen-
tration of the secondary tracer increases sharply initially. Also, because some of the secondary
tracer is being produced at the wellbore, the effect of tracer depletion coupled with shear-
mixing and diffusion tends to push down the peak concentration of the secondary tracer.
These opposing effects of depletion, shear mixing and chemical reaction tend to slow down the
growth of the secondary tracer concentration in the reservoir. The in-situ concentration of the
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secondary tracer is, however, maintained at higher values than it was prior to initiating produc-
tion. This remains so until the peak tracer concentration breakthrough to the wellbore.
Beyond this time, the secondary tracer concentration at the wellbore and in the reservoir fall
gradually to zero as production continues. Figure 5.9 is a graphical representation of secon-
dary tracer production concentration variation with time Figure 5.10 is the corresponding
wellbore concentration history.

5.4. CORRELATION OF TRACER PEAK CONCENTRATION

In single-well tracer test, tracer production curves are usually characterized by evaluating
the arrival times of the produced tracer peak concentrations. These times of arrival (or their
variants) are then correlated to evaluate the required reservoir in-situ fluid saturation.

The times of arrival of the peak concentrations for the primary and the secondary tracers
are known to be influenced by various test parameters (Antunez, 1983) such as:

Fluid injection and production rates gq;, g,

Tracer slug injection time

Tracer free water injection time f;

Total shut-in time ¢,

Convective mixing constant D,

Formation adsorption constant K

Formation in-situ mobile fluid saturations S§,, and possibly
Formation porosity ¢.

In mathematical terms the above can also be presented as
ty =ﬂqia dps s 2y, Lo, DO’ K, S.)

where ¢, is the arrival time of peak tracer concentration. In tracer test correlation, 1, can be
interpreted as the ratio of the arrival times of peak concentrations of the primary tracer to that
of the secondary tracer as will be assumed in this analysis. Any attempt to investigate the
individual effects of the above listed variables on ¢z, will be expensive and time-consuming.
An alternative approach which was tried by Antunez (1983) is to reduce the number of vari-
ables involved by designing tracer tests such that similar variables such as g¢; and g, f,, #; and
ty are related in a prespecified manner. For this approach to be meaningful in terms of yield-
ing a unique result, the governing solution equation must be uniquely expressible in terms of
these predesigned variable groups only. This, however, may unfortunately not always be possi-
ble, particularly in cases such as this work where time is the variable of interest, and solution
equations are only available in the Laplace space.

Figure 5.12 and 5.13 show the concentration production profiles for produced primary
and secondary tracers; obtained for adsorption constants of 2.5 and 5.0, respectively. All other
variables being the same for the two runs. In these experiments, the production rates of fluid
are equal to the injection rates. As is evident in these graphs, the peak concentrations of the
primary and the secondary tracer species move faster towards the wellbore for larger values of
adsorption constants while the primary tracer species is largely unaffected. There may be other
important factors which combine to generate the production characteristics shown in these

graphs.
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Figures 5.11 and 5.13 are another set of production concentration profiles for the primary
and secondary tracers. In this case, the rate of fluid injection or production are the same but
the duration of tracer slug injections and tracer-free water injections are different. This means
that fluid input in Fig. 5.11 is larger than in Fig. 5.13. As could be expected, the tracers move
deeper into the formations at greater fluid input as shown in Fig. 5.11 compared to Fig. 5.13.
This difference in fluid penetration into the formation is of a reflected when the tracers are pro-
duced; the rates for both experiments being the same at 100

Another interesting case is shown in Figs. 5.12 and S5.14. Here, the rate of
injection/production are different at 100 B/D and 75 B/D, respectively, as in the last example.
However, in this case, the ratio of the total volume of fluid injected to the volume of tracer
slug injected are the same. A very casual observation seems to suggest that the production
profiles for both figures look qualitatively the same. Figure 5.14 seems to show that both the
primary and the secondary tracer peak concentrations breakthrough faster than in Fig. 5.12.
However, if the fluid produced is converted to time, it is easily verified that the peak tracer
concentrations for each for the primary and secondary tracers for each of these two experi-
ments breakthrough at the same times of 1.3 and 2.3 days, respectively. This clearly shows
that these two experiments are the same, and therefore, the ratio of the volumes of tracer slug
injected to that of total fluid injected could be a reasonable parameter group to note in tracer
test data correlations.

An efficient approach which could be used in data correlation is along the lines of casting
variables into parameter groups. Such parameter groups which would reduce the number of
variables involved in correlation to about two or three. However, for this parameter to be use-
ful, they should be usable in the solution equations with a view to casting the equation into
parametric form. The effects of the parameter groups could then be investigated in a broad
general sense to cover the range of practical interests without creating any form of variable
redundancy or lack of uniqueness in solutions.

The above approach is suggested as a continuation of this work.
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6. CONCLUSIONS

One major conclusion derivable from this work is that the radial flow, diffusion, convec-
tion, reaction (R-D-C-R) equation which describes the single-well tracer flow test can be
solved analytically.

.Such equations describing the dynamics of the primary and the secondary tracers during
injection, shut-in and production periods were solved for exact analytical solutions in La-
place space.

The exact analytical solutions in Laplace space are in form of the Airy functions which
behave like the exponential functions. Because of these characteristics, the range of argu-
ments usable in these equations needs to be evaluated carefully before computation. For
example, the solutions are singular for very small values of time or very large values of
-distance.

A judicious combination of the parameters constituting the arguments used in the equa-
tion can afford a wide variation of values of these parameters for the purpose of peak
concentration correlation.

It is also shown whether an equilibrium adsorption isotherm or a nonequilibrium isotherm
is used in building the flow model, the mathematical difficulties in obtaining an exact
analytical solutions for either model are substantially the same. However, since a none-
quilibrium model will require the specification of the dynamic adsorption and desorption
constants, which may not be practicable, the equilibrium model is deemed adequate for
this kind of study. '
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7. RECOMMENDATIONS

The main thrust of this work is to obtain analytical solutions to the different equations
describing the single-well tracer test. The solution thus obtained can now be used to construct
a set of correlation curves for the purpose of tracer test interpretation. To achieve this, it is
suggested that the solutions be fashioned into a parametric form of not more than three param-
eter group variables. This will ease the correlation work considerably. -

If the above correlation work can successfully be completed for this model, then one can
consider an extension to the more general, but certainly more difficult cases involving one or
more of the following effects, drift, solution dilution, nonunity mobility, formation
stratification, multi-phase flow.
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8. NOMENCLATURE

Afx) = Airy function

B{x) = Airy function

o = Concentration

C = Primary tracer concentration

C, = Secondary tracer concentration

C; = Concentration of tracer i in the mobile fluid phase (i = 1, 2).
C; = Concentration of tracer i in the immobile fluid phase i = 1).
Ci = Tracer i concentration during shut-in period

Cy = Tracer i concentration at the end of shut-in period
Cp = Tracer i concentration during production period
D(rp) = Hydrodynamic dispersion function

D,, = Molecular dispersion constant

Dy = Dispersive mixing constant

ACYH = Concentration flux

8(C) = Equilibrium function

h = Formation thickness

i = Concentration component number

K = Equilibrium adsorption constant

K, = Equilibrium desorption constant

Ki5(x) = Modified Bessel function of second kind of order 1/3.
k, = Reaction constant

L = Linear differential operator as defined in text

M = Linear differential operator as defined in text

N(C) = Chromatographic delay factor

P = Diffusion velocity of Joseph & Sendner

P(rp) = Some function of rp as defined in text

q = Fluid injection/production rate

R(C;, C)) = Generalized reaction function

r = Radial distance

r, = Wellbore radius

o = Dimensionless wellbore radius

S; = Saturation of component i (i = o, w)

S(rp) = Some function of rp as defined in text

t = total time of injection

t = Time of tracer-free water injection

U = Linear differential operator as defined in text

| % = Linear differential operator as defined in text

v, = Fluid velocity in formation
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W(X, Y) = Wronskianof X and Y

= Transformed distance variable

= Transformed distance variable

= Constant defined in text

= Transformed distance variable as in text

= Transformed distance variable as in text

= Transformed distance variable as in text

= Laplace transform parameter

= Energy dissipation function of Ozmidov

= Constant defined in text

= Constant defined in text

= Transformed function of C; during shut-in period
= Transformed function of C; during production period
= Laplace transform of y;,
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APPENDIX A
ANALYTICAL SOLUTION TO THE PRIMARY TRACER EQUATION

The general equation and the associated boundary conditions for the primary tracer is

1 2 8C1 o E)Cl K;S, _ K;S, 8C1
> rD(r) 5 ] - k. |1+ S Ci=1(1+ S % (A.1)
and
Cir,t)=0 at t=0 (A.2a)
Cir,)=0 at r— oo (A.2b)
Cir,)=0Cy at r=r, (A.2c)

Equations A.1 and A.2 have been transformed and reduced to the Sturm-Louiville equation in
Laplace space of the form (See Eq. 39)

dz6l 1 + q)(kr + }")

a7 - D2 oDy rp| ¢ =0 (A3)

The associated boundary conditions are as follows:
¢, (rp > =, A)=0 (A.4a)
&) (rp1s M) = —C;:g (A.4b)

A closer look at Eq. A.3 reveals that we can construct a comparison equation in the form of
the Airy equation (Lakin et al., 1970). For if we define a new independent variable E(rp) in
terms of rp as:

1 (D(kr + l)f'D

€ (rp) = preoii— (A.5)
The Eq. A.3 reduces to

P o, |*._

d§21 - [(D(k + ) ] &1 =0 (A.6)

Equation A.6 is an Airy equation with a general solution of the form (Jeffrey, 1972; Miller,
1963).

oD, | AT
ok+m | a7

_ on, |
6, E M= BlAz[ m} 4 + B, B;
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where A x) and Bjx) are the Airy integrals defined as

Ax) = % ! cos [—f; + xt] dt (A.8a)
B{(x) = 1 ]: e—[%.x‘] dt + L ]: sin -ﬁ + xt|dt (A.8b)
! T A 3 '

The boundary conditions associated with Eq. A.7 are:

61§ > o, 1) =0 (A.92)

_ C
01[E(rpay), Al = —7:’— (A.9b)

As can be seen from Abramowitz, et al., (1972), A(x) behaves as the exponential function with
negative argument, exp(—x) ; while B{x) behaves as exp(+x). In consideration of the boundary
condition (Eq. A.4a) therefore, the constant B, in Eq. A.7 must be set to zero. The other con-
stant B; in Eq. A.7 can be determined using the remaining boundary condition to obtain

C
By = " -l (A.10)
A,-H—L—] &(rD=1)Jx

D(k,+ A)

In view of (A.10), the exact analytical solution to our problem can written as:

[ a, 1 )
A DO(k+ A) E

_ C ‘
0,16, M) = -5\2 1 TR
Al |=——— € (rp=1)

g

(A.11)

Ok, + )

The Airy function A(x) can also be expressed in terms of the modified Bessel function of frac-
tional order K, (x) (Abramowitz & Stegun 1972):

_1.[z 2 pn
A,{x)_ —\3 K [3 X ] (A.12)

so that Eqs. A.11 can be expressed as

Kin 21 %o &>
CO \IE(rD) 3 q)(k, + A.)

T (rp=1) 2 oD, 32, _
Kis [“3' OS] £ (rp=1)

018, A) = (A.13)
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where
1, Dk, + A)
4D} aD,

E(rp) =

p

The solution function $,(§, A) can be converted back to the Cy(§, A) function by using Eq. 32

and noting that
D,b-a|__| L (A.14)
D DI’D Do

to obtain

X
2 oD, n
Kin |3 [(D(k,+ A) ]§ ]

T &M = ]\Fm_
16 A= 3 Erp=D) | oD
&4 Kmlz[ o ]E..m("o=1)]
L

Ag

(A.15)

3| O+ A)

o

Equation A.15 is the exact analytical solution to the radial flow of tracer in a porous medium
under constant and continuous tracer injection in Laplace space.



- 60 -

APPENDIX B
ANALYTICAL SOLUTION TO THE SECONDARY TRACER EQUATION

The general equation and the associated initial and boundary conditions for the secondary
tracer is give as

1 9 8C2 o 8C2 CISW+SOCT _ 8C2

T or [rD(r) or ] r or +h [ S, ]— ot (B.1)
Cr,)=0x@:t=0 (B.2a)
C(r,)=0x@r— o (B.2b)
Cyr,)=0x@r=r, (B.2¢)

Using the definitions, transformations and simplifications already described for the primary
tracer equation, Egs. B.1 and B.2 can be written as:

2 ’ 2 ’ ’.2
a¢2_[i [_p_+D—a] +_1_[£+D—a]]¢2+¢k,¢1=_w%%g_ B3)

a,% 4 | D Drp 2 |D Drp D D
and
0x(rp, t=0)=0 4 (B.4a)
s(rp > o2, ) =0 (B.4b)
O(rp=1,0=0 (B.4c)

Expressing Eq. B.3 in the Laplace space yields

d%§, 1 (00 p-o). 1[D D-a A | —Pke
—— | | e + —-|— + + = (B.Sa)
dr%) 4 |D Drp 2| D Drp D D
or
d2$2 - q)qu)l
—_— W (r , 2_ = - B.5b
pr) (rp, A) & D (B.5b)
where
' 2 ' "2
1 |D D-«a 1 |D D-aqa w
w == |—+ —| +—= |— + + B.5
(ro, M=\ [D Drp ] 2 [D Drp ] D (B.3¢)
Since
oD
D(rp) = —= (37
145
so that

D D-of_ 1
[_+ ]_ = (B.5d)
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the functions W ( rp, A ) reduces to

2
1 Tw M
W(rp, ) = |—= + B.
(rp, A) [403 oD, TD] (B.6)
and Eq. B.S simplifies to
d2$2 _ 1 + rvzv)" r -(-5 - _ (Dker$l (B 7)
@  |apz oD, °|7? oD, '
As before we can define a new independent variable 1\(rp) as :
(rp) = + ru B.8
n rD - 4Dg (X.Do "D ( . )
So that Eq. B.7 reduces to
2 2 -
d*§, _ oD, ", = - aD, |° Dkrpd, (B.9)
am?(Ar) T [AA) oD, '
The associated boundary conditions are
6,(n > =, 1) =0 (B.10a)
$2n(ra=1,A1=0 (B.10b)

Equation B.9 is an inhomogeneous equation with a solution composed of a homogeneous and
particular components, viz

$2(N, A) = d2s(M, A) + 65, A) (B.11)

From our knowledge of the expression for the primary tracer concentration profile 01(E, 1), we
can assume a particular solution to Eq. B.9 of the form

_ ~ GDQ 2/3 ‘
¢zp(11, 1) = Bo Ai{ [m] E,] (B.IZ)

Since this solution must satisfy the governing equation (Eq. B.9) to be admissible, a substitu-
tion of Eq. B.12 into the governing equation (Eq. B.9) provides a means of evaluating the con-

stant B, . Differentiating Eq. B.12 twice yields
D, 273 é
Dk, + A)

2 2
oy _ 5[_2_] g[gg] A
dn O(k, + 1) dan
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or

d2$2p B oD, 2 oD, 213
n? =B, [1&] “"[[_—¢(k,+x) ] € (B.13)

Using this in Eq. B.9 yields

2 23 2 -
Bo[-;l—:zf-] E-mn Ai[ [-&-} ‘P,] = - [w" ] Ph7p0s (B.14)

Ok, + A) A ,%v oD,
but
3
plc=al
— Ok, + A)
61 G A= 7
AA: __q_?"_ Erp=1)
I ok, +A) b
Therefore
- Ok,
B, = ——m (B.15)
A [(Dk, +A(D- r%v)] A,-[[m ] Erp = 1)J
Using Eq. B.15 in B.12 we have
an, | J
Al |l==——<| &
®M, A) = =% O + 1) (B.16)
2p\Ts A) = 73 .
A [¢kr+;"(¢_r\2v)] A[ [_22_] é (rD= l)] )
| | Pk, +A)

Solving the homogeneous part of Eq. B.9 together with the outer boundary condition, Eq.
B.10a, we have

_ o, ??

625N, A) = B3 Az[ [Fo] 11] (B.17)
Using Egs. B.17 and B.16 in Eq. B.11 yields

n Al ¢
% k)—ﬁsAHaD"] n]+ - @k, * <I>(k,+73») |
2 ’ = i 2
M N R SN
I Ok+ A J

(B.18)
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Applying the inner boundary condition, Eq. B.10b, we can evaluate the constant [3; as

Ok,

By =

Using P in Eq. B.18 finally yields:

r

A [(Dk, + MNP - r?,)] A,-[[

(B.19)

o

oD 23
JLrz] n(ro=1)]

oD. 123 oD 23

All=—=| 7 All—2—] &

%A= Ok, { A7 | P& + 1)
T ek v n@ -2 |, J[a0. N R | ™0 ’
lipe N(rp = ox+ny Erp=1)

‘ (B.20)

Expressing the A(x) functions in terms of K;(x) we have
( D,
(Dkr K1/3 [haJ Tlslz]

A

Eh k[(bk, +MD- r?,)]

173

nirp)
N nrp=D) [aD

aD,
[[(D(k + 3‘»)]&/2

g

"D )
=1
N E(rp=1) Ky

(B.21)

i ]&”( rp= 1)]

[cb(k +A)

o

The solution (1, A) can be converted to the C,(n, A) function by using Eq. 32 to obtain

rp—1

@k, exp [ DZD
o

|

)
{2

52(11, )\') =

A[Dk, + M@ - )]

) , n(rp)
n(rp = 1)

Kis

|
5 ]
o [ses 21

'p .
=1
N Erp=1) X,

3 [ [\'D(k, +A)

v

(B.22)

i ] EY%r) = 1)]

/

Equation B.22 is the exact solution to the secondary tracer equation derivable from a continu-
ous injection of the primary tracer in Laplace space.
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APPENDIX C
PRIMARY TRACER CONCENTRATION PROFILE
DURING THE SHUT-IN PERIOD

During the shut-in period, fluid flow velocity within the medium is zero. The hydro-
dynamic dispersion function D(rp) can therefore be modified such that

D(rp) = Dp, ' (65)

Using the above simplifications in the original equation for the flow of primary tracer, we have
an equation for the shut-in period in the form:

azcls 1 acls <l>kr (o) aCls
— 57 Cs=7 €1
ord rp Orp D,, D, ot
Ci(rp, t=0) = Cy(rp) (C.2a)
Cirp > e, )=0 (C.2b)
Cis(rp=1n0=0 (C.2c)
Converting Eq. C.1 into the Laplace space yields
dzé-ls 1 déls D = CDC_‘,(r D)
+ — - k,+ A)Cpy = — —— .
22 o a, "D, Ml D, (C3)
The associated boundary conditions are
Crs(rp = =, A) = 0 (C.4a)
Ci(rp=1,0)=0 (C.4b)

Equation C.3 is a linear, inhomogeneous differential equation. Therefore, if we define a linear
operator L as

L="2 +— 2 _ 2 (k+2) (C.5)

Equation C.3 can be written as

L[ Cutro W) | = -2 Cp) (€6)
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The complete solution to Eq. C.6 subject to the boundary condition (Eq. C4) can be written as
(Carslaw and Jaeger 1958, Arsenin 1968)

CTls(rD’ )") = .{I’;lp(rD’ x) + —\i’-Zp(rD’ k') (C.7)

where 'q-f,P(rD, A) satisfies the following set of equations:

— —®C(rp)
L [‘I’lp("o, 7»)] = —D;D- (C.8)
subject to the boundary conditions
Yiprp = =, A) =0 (C.9a)
Vy,(rp = 1, X) = finite (C.9b)

and -\sz(rD, A) is a solution of the homogeneous equation

L [Glp(rD» 7»)] =0 (C.10)

subject to the boundary conditions
Yaop(rp = o, M) =0 (C.11a)
V,(rp = 1, M) = finite (C.11b)

In view of the fact that neither y, o(rp, A) nor Gzp(rD,X) need to satisfy the inner-boundary con-
dition (Eq. C.4b) exactly, the complete solution given by Eq. C.7 must be made to satisfy this
boundary condition exactly.

Equation C.8 basically is a Cauchy problem (Arsenin, 1968) with a general solution
which can be written in terms of the Green’s function G,(rp,rp’, A) of the linear equation
L = 0; viz.

Yi,(rp, M) = —[)(E I G(rp, rp MCy(rp) drp (C.12)
m  rp=1

CONSTRUCTION OF THE GREEN’S FUNCTION G,(rp, rp, \)

We can construct the Green’s function for the linear equations L ( TV-l;Q under the
prescribed boundary conditions defined by Eqs. C.9 by considering any solutions ,(rp, A) of
the differential equation L ( y;,) = 0 which satisfies the boundary condition at rp — <. As
can easily be verified (Bowman 1958, Watson, 1952) such solution can be written as

—_— , +
Vip,(rps M) = AlKa[ rD'\/ D ] (C.13)
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The other independent solution of the equation LL [Wlp(rg, l)] =0 is

_ . T
Vip,(rD, A) = Agl, ['d‘\/ — ] (C.14)

The solution (Eq. C.13) do not satisfy the outer boundary at rp, — o but satisfies the finiteness
of Cy,(rp, A) as rp — 1. These two solution curves are distinct and independent and form the
basis on which the systems fundamental solution is based. It can be shown that if the con-
stants A; and A, of Eqs. C.14 and C.13 are very carefully chosen, we can construct the desired
Green’s function as (Courant and Hilbert 1953)

o[ e n] o[ e
~ = - = Jp> rD'
WK w10 2
Gl(rDsr'D7)\') = 9 (CISa)
oo | i)
z - ’ rD < rD'
W[Ko(x),lo(x)]x—%

In Eq. C.10, x is defined as

x=rp\ / -;i(k, +) (C.15b)

and W[K (x), I,(x)] is the Wronskian of the Bessel functions K,(x) and /,(x) and is defined as:

W[k 109) = K0 [ 1,) - L0 Koo (C.162)

=1 (C.16b)
X
Using Egs. C.16 in Eq. C.14 yields
-+ , L+ , ,
Ko 1)) _b;_ Io rp T ps T'p > p
G(rpsrps M) = (C.17)

, , + L+
Ko 14)) ——D'— ]o rp 'D—
m m

p: 'p < 4))
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Equation C.17 can be recognized as the instantaneous cylindrical surface source located at
rp = rp at ¢t = 0 in an infinite medium (Carslaw and Jaeger, 1958).

In addition to the above, we need to obtain a complementary solution for the set of Egs.
C.10 and C.11. Itis easily verified that the appropriate solution for these equations is

— , +
sz (rD, )\,) =A1Ko ["D '—D'———] (C.18)

Using Egs. C.12 and C.18 in Eq. C.7, we can therefore write the general solution to the system
of Egs. C.3 and C .4

-+

Ci(rp, M) = AiK, [’D —#

oD < , — .
] t o I Gi(rp, rp, MCy(rp) drp (C.19)
m rp=1
The general solution (Eq. C.19) must now be made to satisfy the inner boundary condition

Ciu(rp,M)=0 at rp=1 (C.20)

Using Eq. C.20 on Eq. C.19, we can evaluate the constant A; as

G 1 NE G dr,
-5 I Gi(rp, 1, M)C\(rp) drp

Ay = — T (C.21)
K r
o Dm
Thus
— Q = — ’ , ’,
Cilrp M = o= | Cwrp)Gitrp, rp, M) drp
m rp=1
K,,[rp o (e + 1) .
- = - -Di | Cirp)Gi(rp, 1,0 drp (C.22)
) m rp=1

m

Ko[ T)—(kr"'l)

where G,(rp, rp, A) is given by Eq. C.17 and G(rp, 1, A) is given as

Gi(rp» 1, M) = rbKa[rb \/7? k + M] I, [\/-l‘)’; (hr + A)] ;<7D (C.23)
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Simplifying Eq. C.22 yields

¥y

C—ls(r Dsl) = 7y J‘ C—l(r ;))K o [r 'D \/ Di (kr"'l)]
rp=1 m
K, [’\ / D. (kr+}")J

r

: [10 [ro‘\ /Di(k,ﬂ.)]l(o [\ /l)i(k,-f-k)] AR /—;(kﬁl)]l(a [rD'\ ’-l—)?—(k,-l-?\,)ﬂrb dry!

rp<rp (C.24)

Equation C.24 is valid for rp < r'D. For a solution in the range rp > rb, we simply interchange
rp and rp in Eq. C.24 to obtain

<L
— Dy, T o
Cisrp, M) = [ Cirpik, m/—,;— (k + 1)
K3 m

K K+ o
P) D ( )

m

- [10 [rb\ / = (k,m]xa [\ [2 G ] -1, [\ (2 (k,+x)] K, [r}n [2 (k,+x)] } rp drp;

rp>rp (C.25)
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APPENDIX D
SECONDARY TRACER CONCENTRATION PROFILE DURING THE SHUT-IN PERIOD

As earlier discussed in Appendix C for the primary tracer concentration profile during
shut-in, the hydrodynamic dispersion function D(rp) degenerates to the molecular diffusion D,,
and the equation describing the secondary tracer behavior can be written as:

0?C,; 1 0C, @k, 2 9C,
o o | D, “u=5, T D

The associated initial and boundary conditions are

Cos(rp, t =0) = Cy(rp) (D.2a)
Col(rp > o0, 1) =0 (D.2b)
Czs(rD =1, t) =0 (D.ZC)

Converting Egs. D.1 and D.2 into Laplace space yields:

d@Cy 1 dCp A - Q| = !
+ - - = - — [k,C + —C D.
d '% D er Dm C?.v Dm r ls(r D) o) 2(’ D) ( 3)
The associated boundary conditions are
Col(rp > =, A) =0 (D.4a)
Co(rp=1,A)=0 (D.4b)

Equations D.3 and D.4 are similar to Eqs. C.3 and C.4 of Appendix C. Therefore the solution
to Egs. D.3 and D.4 can immediately be written down by straight analogy with the known
solution to Egs. C.3 and C.4. Thus

5Zs(rD1 )") = '2 GZ(rD’ r'D7 )")
D

m rp=1

—_ .. 7 . .
k,ClS(rD) + '6 C?_(rD):l er (DS)

where in this case, G,(rp, r'D, A) is the one-sided Green’s function for the system, and defined
as

.
X N ; A2 <
—_— _— i rp<r
o|"p \/J. D, o|’D D, p D D
Gy(rp, rpy A) =3 (D.6)
A2 . A7 ,
Kolrp \| = \lo|rD — |m; rm>rp
m Dm
.
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In addition to Eq. D.5, a complementary solution to the homogeneous part of the differential
equation must be generated. Such solution which is consistent with the boundary condition at

infinity is
K Xrﬁ,
o |"D \/ D,

Thus the complete general solution to Eq. D.3 is

VA7

< ’ —— ’ ﬁw ’ 4
Caslrps M) = AzKo['D ] 'b?; f Gy(rprps M) [krcls("o)"' Ecz(ro)] drp (D.7)
rp=1

Proceeding as in Appendix C, we can evaluated the constant A, and hence obtain a solution for
Ca(rp, A) in the form

& :
~ [Dm] POl P A ca | MR
Cos(rp, M) = ‘[1 kCis(rp) + — Calrp) |Kolrp \ 5=
K,

Zn |

N . /V A2 . /xrz, .. ,
rp KO — - 10 — Ko 1)) — p er; D < p (D.8)
D, D,, D,, D,,

A
and
<
Co(rpy A) = O }[kC_(')+’%'C(l)]K My
rp, A) = L Crs(r —_ r r —
2s\"D 5 1s\"D @ 2D o "D Dm

.\/r?v?» "
Dm
ca | A2 A7 A2 A | M2 .o ,
“\lolrp —5— Ky — |- D Kolrp D rpdrp ;rp>T1p (D.9)
m m m
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APPENDIX E
PRIMARY TRACER CONCENTRATION PROFILE
DURING THE PRODUCTION PERIOD

The equation governing primary tracer dynamics during the production period is the same

as during injection though the flow velocity is reversed. Thus

19 [’DD("D)

oC
- Ok Cy, = O —2

p arD at

3y, |, o 3y
rD arD

The associated initial and boundary conditions are

Cip(rp, t = 0) = C1(rp)
Clp(rD —> oo, t) =0
flp = Clp(rD =19

(E.1)

(E.2a)
(E.2b)
(E.2c)

In Eq. E.2c, the term fj, represents the effluent concentration at the wellbore, and is defined as

fip = |Cyp = Do 22
LA 0 orp rp=1

(E.3)

Making appropriate transformations and substitutions as were used in Appendix A, Egs. E.1

through E.3 become

az¢lp _ 1 + (Dker _ q)rD aq’lp
2 2 Ip~
arD 4Dg oD oDy ot

oDg
¢lp(rD —> oo, t) = 0

90, 91, ~0
orp 0Dy Jrp=1

p = 1 a
¢lp(rD’ t=0) = Cyrp) - exp = Cs

Converting Eqs. E.4 and E.5 into the Laplace space we have

QrDéls
oDy

d%§y, 1 @ —
- + k, + A =-
dr% 4D(2) oDy ( |91

$lp(rD =, A)=0

@ - .6& =0
drp oDy Jrp=1

(E4)

(E.Sa)
(E.5b)

(E.5¢)

(E.6)

(E.7a)

(E.7b)
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Defining a new independent variable &(rp) as:

1 @

rp) = —= + k, + A)r
&(rp) 03+ abg ( Y g
Equations E.7 and E.6 become
@y _[_opy Voo [ _aby P ®rpCiy(rp)
dt? Dk, + 1) 4 Dk, + ) aD,
or
dg? v Do
where
P
T @k, + L)
subject to the boundary conditions:
$lp(rD —> oo, l) =0
b, —
‘igp - Yq) lp = O
where
‘Y = _ﬁ—
2D,

(E.8)

(E.9a3)

(E.9b)

(E.9%¢)

(E.10a)

(E.10b)

(E.10c)

Equations E.9 is a nonhomogeneous, linear, second order, differential equation of the Airy
type. To this, we must construct a solution subject to the boundary conditions Egs. E.10.

We can define linear operators L and U defined as

Using Eq. E.11 on Egs. E.9 and E.10 we have

L [6];7(&! x')] =- p(fD)
where )
qu)rDcls(rD)

p(rp) = oD,

(E.11ay

(E.11b)

(E.12a)

(E.12b)
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subject to
61, >0,4)=0 (E.13a)
and
U 6,8, M), =1 =0 (E.13b)

Using the method of variation of parameters (Jeffreys and Jeffrey, 1972) on Eq. E.12, we can
define a general solution of the form:

$1,E, &) = viE)ALBPRE) + vo(E)BABYE) (E.14)

In Egs. E.14, A(P¥3t) and B(B**E) are the two independent solutions of the homogeneous
Airy equations:

L[6;,(E M1, =0 (E.15)

while v{£), i = 1, 2; are undetermined coefficients to be chosen such that

VIE)ALB?RE) + va()BABYE) = 0 (E.162)
Vi(E) = gdg [V{(E)] (E.16b)
Differentiating Eq. E.14 once w.r.t. £, we have
FipE ) = ViEIALR) + V2BAx) + ViEVALR) + Vo(E)B()] (E.17a)
where
[ﬁ}g €17

Using Eq. E.16 in E.17 we have
81, A) = [Vi(E)A() + Vo(E)B(¥)] (E.18)
Differentiating Eq. E.18 once again yields
Fip(Es N = ViBIALR) + V1(E)B{(x) + [V1(E)A; (x) + Vo(§)B; (%)) (E.19)
Using Eqgs. E.19 and E.18 in E.12 yields

L [§,[EM] = viEL [A)HvoEL [BMHVIE)AX)+AE)B(X)] = —p(rp) (E.20)
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Since A(x) and Bfx) are independent solutions of the homogeneous equations given by Eq.
E.15 it then follows that

L [A(x)] = 0 = L [B(x)] (E.21)
Therefore, Eq. E.20 reduces to
Vi(©)A[) + VyB)Bi(x) = = p(rp) (E.22)

Equations E.14 is therefore only a valid solution to the problem posed when the restrictions ex-
pressed by Eqs. E.22 and E.16 hold on v,(§) and v,(§), viz

Vi(E)A (%) + VoE)B(x) = 0 (E.16)

ViB)Ax) + vaE)Bi(x) = = p(rp) (E.22)

The simultaneous equations (E.16) and (E.22) in vi(§) and vy(€) can easily be solved using
Cramer’s rule to obtain

¢ en _ Bix)p(rp)
vi(§) = WA, Bk (E.23a)

and

Len ___ Al0p(rp)
V(&) = WiAG), Bk _ (E.23b)

where W[A(x), B{(x)]¢ is the Wronskian of A{(x) and Bj(x) with differentiatons w.r.t. & From
Eqgs. E.23, v,(§) and v,(§) can be obtained by integration as:

g ’ ’
_ B; (x)p(rp) ,
i®) ‘afo WA, Bl T (E.242)
and
4 ’ ’
vi®) = | ACPID) ey ¢, (E.24b)

WIA(x), Bi(x)]g

o

C, and C, are constants of integration. The Wronskian W[A(x), Bi(x)]g of A(x) and B,(x) is
here defined as

4008 (W) — AWEBLO] = — (E25)
When this is expressed in terms of x rather than &, Eq. E.25 becomes
ax
23y B’ (R23 23 23g\y dX dg
[A; (BE) B; (B*°E), — AiBi™E)x B; (B7E)] E = (E.26)
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or
ax
WIAGD), Bl = -

Using Eq. E.26 in E.24 gives

3
vi§) = —= [ B: (B%) p(rp) &€ + C
75 K
Vo) = - —— j Ai (B¥3€)) p(rp) &' + C,
d&, “

Expressing Egs. E.28 in terms of rp and recalling that

x=pP¢
1 Dk, + A)
= +
s 4D} @Dy P

we have
1)

vilE(rp)l = 3’5‘7; [ B: 1B% E(rp)] p(rp) drp + €

)

valt(rp)] = == 5 | [ ;1B E(rp)) plrp) drp + C;

Using Eqgs. E.29 in E.14, we have

p

B1p (€ V) = C14; (B¥%) + B (B%0) + —7 ) = [ [A(B*¢) B(B?%)

— B; (B¥3) A(B¥*E)] p(rp) drp

Equation E.30 can be written in a more compact form as

4]

¢1p(§. M) = ClA(x) + CoB(x) + —5 | H(x, X')P(’lo) d’l)
BS/3
9

(E.27)

(E.28a)

(E.28b)

(E.29a)

(E.29b)

(E.30)

(E.31)
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where H(x, x") is a one-sided Green’s function for the system under consideration and is
defined as

[A(x) B(x)]
H(xx") = | |
A(x) Bl

Since H(x, x’) is the one-sided Green’s function for the equation
L (91, W] = —p(rp) (E.12a)
and p(rp) is continuously distributed within the interval (1, o), we naturally expect that a func-

tion A€, A) given as

>

£& M) = [ Hex, Xp(rp) drp (E.32a)
should behave like
o
fE N = [ Hxx)p(rp) drp (E.32b)
1

as rp — 1 while as rp — oo, it should behave like
f& W) == HxxX)p(rp) drp (E.32¢)
o

In view of Egs. E.32, we can define a modified Green’s function g(x, x") (Miller, 1963;
Arsenin, 1968) such that

©o

M= | g Xp(rp) drp (E.33)
rp=1
where
Hx, x); x>x '
g(x, x) = { (E.34)
-Hx,x)=HX,x); x<x

Then Eq. E.31 becomes
F1p6 V) = CiA) + CB(0) + == [ g(x, X)p(rp) drp (E.35)
B rp=1
Applying the boundary condition as rp — e= we can further reduce Eq. E.35 to

B, ) = A + —= [ g(x, X)p(rp) drp (E.36)
35/3 ]

rD=
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Subject to the inner boundary condition given as

U6,E MI=0 ar rp=1 (E.13b)
Using Eq. E.13b we can evaluate the constant C; as

[ U e x),pm1 - pUrp) drp

c, === |2 E.37
SR U [A(®)], o1 (=31

In Eq. E.37, it must be noted that the linear operator U only operates on x and not on X’ in any
given situation. Using Eq. E.37, Eq. E.36 can be written in the form:

It Ai(x)U[g(x»x,)]rDzl - g(x’ x')U[A‘(x)],D=1

¢1p(§ A) = [35’3 rDL Y. - p(rp) dry  (E.38)
where
U AW] = ';45 [A()] - YA) (E.39)
and
U[A; U[B;
[Ax)] [Bix)] x>y
Afx) B(x)
Ulg(x, x)] = (E.40)
UlA(x)] U[Bx)]
AK) B | G *S¥
Alternatively, Eq. E.38 can be written in the form:
GipE M) = ﬁm ’ j G(x, X)p(rp) drp (E41)
where G(x, X) is the system’s Green’s function definable as
1 A,(x) U [Ai(x)]rfl
G, ¥) = ————— (E.42)

U [A(x)lrp=1 g(x, x) U [g(xX)]); =1
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G(x, x’) can be expanded and expressed in terms of A(x) and B{x) in the form

[A"(x))B(x) — A(x)B'(x)] — YIA(x))B(x) — AX)B(xy)]

Gix, x') = A{(x") A — YA (E.43)
where
Ax) = % 46> ] = B~ (40] (E.442)
and
(AL, o1 = Ar) (E.44b)
Using Egs. E.44 in E.43 yields
8 e B - AB - vaeB - AcEe)
Gxx) = A) - (E.45)
BZA(x)); — YALxD)

using Eq. E.45 in Eq. E.41 we have

N 5 (A B —A.(x)BZ(xl),] - Y[A‘(xl)Bl(x) - 4B ()
P& = g rrj—l B Az — YA(x)

: A,(x')p(rb) dr'D ; x<x (E.46)
But
—1
B2@rpCy(rp) exp | - r; D,
p(rD) = aDo (E47)
Therefore
onp® 5 |B” [Akxl),Bm - A.(x)BI(xl),] - Y[A.(xl)B.(x) - AAx)B,(xl)]
01, = |

oD, B2 ALx)e — YALx)

-Al(x')Ch(rb)exp[— D }r}, drp ; x(rp) € x(rp) (E.48)

o

For computational consideration, Eq. E.48 is good within the region x < x. The equivalent
equation for use within the region x > x” is obtained by interchanging x and x” in Eq. E.48.
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Equation E.48 could be converted to the concentration C; (&) by using appropriate
inverse transform of Eq. E.48. Thus

5 (Al a1 — A0IBx)) - v[A B - AB )

i) = Z2p13

oD, BY2ALx)); — YALx)
= , , ro—r P ,
. I A{x)Cy4(rp) exp [ DZD D ] rpdrp ; xp<x(rp) (E.49a)
rel o

and

. o - - | g3 [A:(xl) Bi(x) - A‘(x')B:(xl)x] - y[A‘(xl)B‘(x') - A;(x')B.'(x1)]
&M = 5B K"),DL , B*2Ax): - YA)

o=
2D

‘st(rb)exp[ £ } rpdrp 5 x(rp)>x(rp) (E.49b)

o
The concentration at the wellbore is obtained by evaluating Eq. E.49 x = x(rp = 1) to obtain,

~ I8 A B s,

- A,{x')C s(r' ) ex
B3A (x)) — YALx)) rD'[=1 1s7D) EXP

r’D -1
2D,

Cipl&(rp=1).A] =

} rp drp  (E.50)

Evaluating W [Al(x)’Bi(x)Jx=11 and simplifying Eq. E.50, we have
= APBPE)C (rp) exp

rb -1 ]r'D
) _ o 2D,
C =1),Al = ’
1pl&(rp = 1), A] oD, , Dj= : BY3ALx)), — YALx1)

er
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APPENDIX F

SECONDARY TRACER CONCENTRATION PROFILE DURING THE PRODUCTION PERIOD

The equation governing the secondary tracer flow during the production period is similar
to that of the secondary tracer during injection, and is given as:

1 d aCZP o BCZ,, 8C2
- D + — + Ok,Cy, =1 4 1
'p arD [rD (rD) .arD 'p 8rD rlp v at (F )
The associated initial and boundary conditions are
Cop(rp, t=0) = Coi(rp) (F.2a)
C2p(rD — oo, )=0 (F.2b)
fop(rp) =Cyp @ rp=1 (F.2¢)
Here, as in Appendix E, f,,(rp ) is the effluent concentration at the wellbore defined as
20(rp) = C2p p PR (F.3)
Using the same arguments as in Appendix B, Eq. F.1 can be written as
az“'5)2;7 (DkC : r)2v a¢2
- W 4+ — Cpp= — —2L F.4
ar% (rD)q)Zp D 1p D ot ( a)
where
2
1| D’ 6 D+a 1 d D  D+a
124 = |=|—+ +=-— | =+ F.4b
("p) [4[0 DrD] 2 ar, [D DrD” (F.4b)
p
‘ 1 D' D+«
C,P(rD, )= C,p (rp, ) -exp D) 'DL [D + Drp ] drp (F.4c)
since
oD,
D(rp) = (37
p
Equation F.4 simplifies to
%0y, 1 rrp 99, Dk, .
- |— | ¢, = P rp C1,(rp) (F.5)
o, (4D |'® op, o oD, O P
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Converting Eq. F.5 into the Laplace space and taking cognizance of the initial conditon Eq.
F.2b we have

d2$2p 1 A - ) - .
dr% - 4D‘2, + (X.Da 1)) ¢2p == . [’%VCZS(rD) + (Dkrclp(rD)] (F6a)
where
Cp=C o1 F.6b
2s = Los €Xp oD, (F.6b)
Furthermore, if we define 1 as
2\
N(rp) = D2 oD, ™ (F.8)
Then Eq. F.6 becomes
&, [0, - ,aDZrD[~ .
- = - 2 2C + ®k,C ] F.
d]’]z ),r?v n¢2p lra aDo w Zs(rD) kr lp(rD) ( 9)
The associated boundary conditions are
$2p(rD —> oo, }\.) =0 (FlOa)
d$2p oD, $2&
- =0 =1 F.10
n [lra 2D, @ rp (F.10b)

The set of Eqs. F.9 and F.10 is not substantially different from the set of Eqs. E.9 and E.10
and therefore the same procedure of solution described in Appendix E can be used to obtain a
solution to the set Eqs. F.9 and F.10.

If we define the following variables in the manner of Appendix E,

oD,
o= %2 (F.11a)
GzrD 2 4 - .
srp) = —=2 [erZ_, (rp) + (Dk,C,P(rD)] (F.11b)
and
5= =2 (F.11c)




-82-

Equations F.9 and F.10 can be written as

d%. _
Lo _ oMby, = — s(rp) (F.12)
an,
$2p['ﬂ("o) —> oo, )\'] = 0 (F.13a)
db,, -
) =0 F.13b
n $2p ( )

2
M= Q% - o™ _A (F.14)
and
d
V=—-39% F.15
an (F.15)
Equations F.12 and F.13 become
M [62,,(11, ») J = - s(rp) (F.16)
62 [T](fu) — oo, 7&] =0 (F.17a)
\ [?62P(n, x)]% =0 (F.17b)

Equation F.16 is directly analogous to Eq. E.12 of Appendix E. Also, the outer boundary con-
dition given by Eq. F.17a is the same as Eq. E.10a of Appendix E while Eq. F.17b for the
outer boundary condition is analogous to Eq. E.13b of Appendix E. The above strong analogy
between our equations of this appendix and those of Appendix E which has been solved makes
it easy to write down the solution to the secondary tracer production profile in line with the
earlier solution obtained for the primary tracer production profile. The secondary tracer pro-
duction concentration profile can therefore be written as:

_ o |HOMV [A,(o”n)],w - Ae®n) v [H(nm’)],b:,
B M = =55 |
M v [A.(o“n) ]

: S(r’D) dr'D

(F.18)
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where

v [Ai(c”m] = 7;% [A‘(omn)] - 84(c*’n) (F.19a)

Ac?®n)  B(o*n)

Hn, M) =- (F.19b)
A(c®n)  B(o*n)
\4 [fucmn)] \ [B.-(c”n)]
v [H(n, n')} =- (F.19¢)
A{o*) B{(c*n)
Substituting for s(rp) in Eq. F.18 we have
&M, M) = ?:T ¢® [ Gmm) [rgvéb(r'D) + cpk,élp(r'D)]r'Ddr'D (F.20)
o TD=1
where G(1,1) is the system’s Green’s function defined as
1 Hnn") A(c?*n)
G, )= (F.21)
V [A(c?? ,
[A{c n)]r[):l VvV [H(n,n )]’D=1 \Y [AI(GZ/Sn)],Dzl
Expanding G(n,n’) in terms of A(Z) and B(Z) yields
(442 B - 4(2)5; @) -8 kB2 - ADB(2)]
G, M) = A(Z F.22a
m, ") (Z) A Z) — SALZ) ( )
where
Z=0o" (F.22b)
Z,=cn@p=1 (F.22¢)

Thus Eq. F.20 can be written as:

= | o4 208@ - A@E (@) - 8[a20BD - ADB @)
oD, oPA(Z)) - 8A(Zy)

APl ) + @ 6ot dr (F.23)
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Converting Eq. F.23 back to concentration yields:

c* [A,-(zn B@) - 4(2) B2 - S[A.(Zo B(2) - A(2) B{Z, )]
o*PA(Z)) - 8A(Z))

Ezp("o, A=

’}) — D
2D,

oo
ne!B
. j exp

D A(ZNr2Co(rp) + ®hCi(rp)Fp drp s rp < 1r'p (F.24a)

o rD=l

The corresponding equation valid in the range rp > rb is obtained by interchanging Z and Z’ in
Eq. F.24a; thus

11'01/3

@p(rD: A ) =

A{2) J' exp[’_D_:ll}

o rp=1 2Do

o [A'le) B{Z)) - A(Z) B',»<21)J _5 [A,(Z]) B(Z) - A(Z) szl)J
' GZ/BA,[ (Z)) - 34(2))

. {,& Cys (Fp) + ® &, Cy,, (r}))] rpdr'p; rp > r'p (F.24b)
The produced concentration is obtained from Eq. F.24a by setting Z = Z; to obtain

wlaens@) -

C = 1, 7\. = * - A" Z, [’WC ! + (Dk,C ! } ! d g }‘25
or

— A (o} 30’ 7 C o y t Q kr C y ! d y

C (r I,X) [¢] |‘ 1( n )[ w! Zs(rD) lp(rD)]rD D (F2 ))

oD, L1 o6PPAlcPn(rp = 1)] - 8A[c?n(rp = 1)]
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APPENDIX G
NONEQUILIBRIUM MODEL

In our earlier model it was necessary to specify an equilibrium relation between tracer
species adsorbed in the immobile fluid phase and those in the mobile fluid phase. This
assumption may be true and valid for cases where the rate of adsorption is instantaneous and/or
the fluid flow velocity is low. However, in cases where the fluid flow rate is high, and/or the
rate of adsorption is finite, a nonequilibrium adsorption isotherm would be more appropriate.

For the nonequilibrium adsorption isotherm, we can, in general, specify that

dEi—CE G.1
E-_f(b i) ()

For a system with a finite rate of adsorption, we can formulate a simple first order rate equa-
tion of the form

RCi C) =k Ci =k C; (G.2)
where k; and k, are the finite adsorpton and desorption rate constants respectively. Thus

aC; k, C: -k, C (G.3
o Chati—kG 3)

From Eq. 1 of the main text, the hydrodynamics of tracer is described by the equation

L3 oy oL 2 0y rec, Ty = Sk 4 S0 3G (G.4)
o [PO% | T o e REG CO= gt '
Expanding Eq. G.4 in terms of rp and simplifying, we have for species i =1,
0°C ’ _ 9C; R{C;, C, 2 | dCc; S, oC,
1 |D, D-o 1 R(G 1)'%= 1, S0 9% (G5)
ar% D DrD arD D(rD) D(rD) ot Sw ot

where the reaction term can be written as

— S —
R(Cy, Ciy=k, [Cl + ng Cl] (G.6)

w
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The associated initial and boundary conditions can be written

Ci(rp,) =0 (G.7a)
Cyrp,t=0)=0 (G.7b)
Ci(rp=1,0=Cy (G.7¢)
Cirp > o, )=0 (G.7d)
Considering Egs. G.3, G.5, and G.7 in the Laplace space we have
0%C] ’ —o] 9CT Pk | . Sy = ML L . So
N PR ) R S B P I ] I C+2 ¢ (G.8)
a;% D DY'D arD D(VD) Sw D(rD) Sw
Equation G.3 becomes
AC] = kC] - kyCy (G.9a)
or
o} kG G.9b
7 A+ k (G-9b)
where C; is the Laplace transform of C; as
Ci=L [Cl(rD,t)] = j Cl-(rD,s)e‘?“9 ds (G.10)
o
The associated boundary conditions are
Co
Cirp=1, Q)= N (G.11a)
Cirp > =, 1) =0 (G.11b)
Eliminating 5; from Egs. G.8 and G.9a we have
&C} ’ _ acy  kr S k .
! 2‘ + D o ! - 1+ _0' Cl
d;% D Drp er D(rp) Sw A+ k2
AP S k .
= 1+ =2 ! ; (G.12)
D(rD) Sw >\. + k2
Using transformations
1 ¢ (b’ . D
. — —Q
Ci(rps &) = Wi(rp, A) exp| — B} rn";l - —Dé } d& (G.13)
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and
Doa
D(rp) = —— (G.149)
™D
we have
d*y 1@ _
- + k, + A)r =0 G.15a
py [ 203 | by ( ol W1 ( )
where
. So k,
O =|1+— 7 G.15b
Sw [ A+ kz]jl ( )

Equation G.15 is similar to Eq. 39 and hence the solutions are similar. The only difference is
that the delay factor ®" is now time dependent unlike @ for the equilibrium model which is
time independent.

Thus, an exact analytical solution for the nonequilibrium model can immediately be writ-
ten by mere analogy with the equilibrium model viz.

p — 1 2 (XD 273
C’ —_— | ——
— LR BTN = 3 (D(k +x)]é (7p) G168
o, A) = 4’ (D) .16a
I\'D A é(rD =1) 2 §2/3( N
3|0k, +A) D=
where
cp‘(k,+ A)

G.16b
E(rp) = 4Do oDy D ( )

Therefore, the nonequilibrium model is not substantially different from the equilibrium
model. The nonequilibrium model is, however, only useful to the extent that the adsorption
and desorption rate constants k; and k, can be found with reasonable accuracy.
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