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Abstract

A major goal of this project is to evaluate the impact of fracture porosity on
performance of the South Wasson Clear Fork reservoir. Our approach is to use subcritical
crack (SCC) index measurements and a crack-growth simulator to model potential
fracture geometries in this reservoir. We have measured the SCC index on representative
rock samples and are proceeding with other pertinent rock measurements. An approach
for modeling coupled matrix and fracture flow using nomeighbor connections in a
traditional finite-difference simulator has been tested and found to be feasible. Accuracies
within 10 % of an analytical solution for a test problem are obtained if there are four grid
cells between parallel fractures. We are proceeding with estimating the effective
permeabilities of different fracture patterns obtained from the crack-growth simulator.

Introduction

We have completed 30 months of this project and are in the simulation phase. A
reservoir model of the matrix petrophysical properties has been constructed, and
simulation studies are in progress. A goal of this project is to evaluate the effect of
fracture porosity on production performance, and we have gathered fracture information
from outcrop and core materials. This report summarizes our efforts to introduce fracture

porosity and permeability into our reservoir model.



Fracture-Pattern Generation

_ Fracturing in undeformed strata can be attributed to subcritical crack (SCC)
growth, i which propagation occurs at crack-tip stress intensities, K;, below the
material’s fracture toughness, K;c (Atkinson and Meredith, 1987). The subcritical
velocity is given by the formula

where Vmax is the maximum propagation velocity at K; = K;c and » is the SCC index.

It has been observed from crack-growth simulations that the value of the SCC
index affects fracture-pattern development with regard to spacing, clustering, and length
distributions (Olson, 1993). The SCC index has been measured with the dual torsion
beam apparatus (Williams and Evans, 1973; Pletka et al, 1979) for samples from six
representative layers of the South Wasson Ckar Fork reservoir (table 1).

Table 1. Mean values of the SCC index for six representative layers of the South Wasson

Clear Fork reservoir.
Sample depth (ft) | Type oftest: | No. oftests | Mean value of SCC index
Dry 7 43
6091 Wet 5 37
Dry 11 40
6138 Wet 3 34
Dry 6 60
6367 Wet 12 53
Dry 6 81
6385 Wet 3 70
Dry 5 43
6484 Wet 1 37
Dry 8 38
6520 Wet 10 30




Young’s modulus and fracture toughness of rocks from these layers will also be
measured and used as input for conducting fracture-growth simulations using a fracture-
mechanics-based crack-growth simulator (Olson, 1993). The resulting fracture patterns
will be gridded and flow simulations conducted to obtain an effective permeability
multiplier for each layer.

Modeling Flow through Fractures

Flow through fractures can be modeled using nomneighbor connections in a
traditional finite-difference simulator (Hearn et al, 1997). The fracture patterns are
gridded such that the fractures lie at the boundary between grid cells.

The matrix flow transmissibility between any two grid cells is

kA
Tx(mat)= xACx ’

where A, is the area perpendicular to flow in the x direction, i.e., AvZ, and k, is the
permeability in the x direction (fig. 1).

—>
ky
————— -->@
Ky >
Ay \5/ ®

Figure 1. Schematic of grid cells indicating dimensions and permeabilities.

If there is a fracture embedded between the cells as shown in figure 2, an
additional transmissibility for fracture flow can be assigned:

T(f )= kyAy - kyA)’

x( frac s
~ & &
2( 4)

where A4, is the area perpendicular to flow in the y direction, ie., AcZ, and £, is the

permeability in the y direction.



P
k
e - >
Ay/Zt 5y o
® ®

Figure 2. Schematic of grid depicting the location of a fracture.

The total x direction transmissibility, accounting for both matrix and fracture flow

Tx(total) = Tx(mat) + Tx(ﬁac)

Ax

1 Tiz(maf) | 2
>

L [ ) Row 1
Tl,z(frac)T

Ay/2

Row 2

Figure 3. Array of grid cells depicting nomeighbor connections to model flow in a
fracture.

The transmissibility between adjacent cells due to matrix flow is computed
automatically by the simulator. Thus, for a given row, cell i is connected to cell i-1 and
cell i+1. The transmissibility between cells due to fracture flow can be entered explicitly
using nomneighbor connections. Thus, cell i could be connected to cells i-1 and i+1, as

well as to all other cells on that same fracture, using an appropriate transmissibility. The



connection between cell i and its neighbors i-1 and i+1 is in addition to that existing
because of normal matrix flow.

~ Thus, if there is a fracture extending between cells 1 and », then cell 1 is
connected to cells 2 through n, cell 2 is connected to cells 3 through 7, and so on. The

total number of normeighbor connections per fracture is

(n(nz—-l))2 _n(n-1),

The multiplication by 2 accounts for cells on both sides of the fracture. Because the

nonneighbor list can become quite large, a Fortran program has been written to create it
from the endpoint locations of fractures in a fracture-pattern simulation.
Thus, for a fracture between rows 1 and 2 and extending from cells 1 to n, the x
direction transmissibilities for cell connections in row 1 are
(1) between cell 1 and the others
(a) for matrix flow

ky (A)’AZ )

T x)=
1,2 (matrix) Ax

T1,3’T1,4 ....... Tl,”(malrix) =0

(b) for fracture flow

ky,(Ac2)

Ty Ty Tyrecire) = =

(2) between cell 2 and the others

(a) for matrix flow
k Va4
T2,3(malrix)=—x%—) T2,4,T2'5 ....... Tzrn(malrix)=0
(b) for fracture flow
ko (Acs)
T2'3 ,T2'4 ....... Tz,” ( fracture) = 4}

The transmissibilities for cell connections in row 2 are computed similarly.



EEEEEREEERE

In order to verify the validity of this method, 2-D, single-phase, flow simulations
were compared with an analytical solution for effective permeability in a staggered
periodic array of fractures (Chirlin, 1985; Nakashima et al,, 2000).

RER

Figure 4. Chirlin’s solution for a staggered array of fractures.

The effective permeability ratio &, is given by

_kefr _ 2wk (r)

k= —M[m)

where K is the complete elliptic integral of the first kind and » is the modulus of the
elliptic integral given by

2
é _2m(P-1) i \][Zm(P—])Z . 1] _

(mP+1)? (mP+1)?

with

)



where dn is a Jacobian elliptic function and m is the modulus of elliptic integral, obtained

by solving

I—m2
2w

h

K(m)

The equations have been implemented in Mathematica, and the solution is plotted n
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Figure 5. Chirlin’s solution for effective permeability ratio for flow parallel to fractures.

Flow simulations were run until steady-state flow conditions were achieved. The

effective permeability was computed from the steady-state flow rate and Darcy’s law,

qHL 5
AAP

is the steady-state flow rate; w is the fluid viscosity; AP is the steady-state

keﬁr:.

where ¢
pressure drop across the system; A is the area perpendicular to flow, ie., L&*(4* no. of y
cells); and L.y is the length of the model minus the x dimension of one grid cell, i.e., L -

A



k,
Values o k. = @ obtained in this manner are compared with those obtained

matrix

from the analytical solution.

First Test Case: Two Staggered Fractures at the Edges of a Gridded Region:
(Effect of Grid Refinement)

For the first test case, we used a width, W, of 4.5 ft, a fracture spacing, 4, of 4.5 ft,

and a fracture length of 3 ft [=(/—c)*W]. This gives an o value of é (fig. 6). For

a=§ and —Zh—W= 2.0 the analytical solution is k,; = 1.947. The simulation results are as
follows:
(a) 9 x 9 grid: Ax, Ay =0.5 ft; ky =1.732

(b) 18 x 18 grid: Ax, Ay=025ft; Kk, =1.872
(©) 36 x 36 grid: Ax, Ay =0.125 f;  k,, =1.927

yy
—
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—
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—

—

—

< W >

Figure 6. Gridded 9 x 9 array with two edge fractures.



As the grid becomes finer in resolution, the effective permeability obtained by the

flow simulation approaches the analytical solution.
Second Test Case: Multiple Fractures in a Staggered Array

For the second test case we had multiple fractures inside the gridded region. The

dimensions were the same as for the previous 'case, with a width, W, of 4.5 ft and an oV
of 1.5 ft, which implied that azé. The fracture spacing, 4, however, varied according to

the number of fractures. We modeled this case using three gridding schemes, 9x 9, 18 x

18 and 36 x 36. (fig. 7)
The simulations reveal that with approximately four grid cells between fractures
it is possible to obtain an accuracy within 10 % of the analytical solution.

9%x9

18 x 18

.......

< \%Y% >
Figure 7. Gridded array with multiple fractures.




Table 2. Values of kg values and comparison between analytical solution and simulation

results.
No. of h | 2W/h k. values
fractures Anal.so Simulation results: various grid sizes
In. 9x9 18 x 18 36 x36
4 151 6.0 5.84 4.195 5.084 5.518
5 1.0 9.0 10.78 6.654 8.353 9.231
10 0.5 18.0 | 34.944 20.262 27.489 31.419

Simulated Fracture-Pattern Cases

Sample crack-growth simulations were run for two test cases. All parameters for
the crack-growth simulations were identical except for the SCC index. For case 1 it was 5
and for case 2 it was 40. The other parameters that were required as input to the crack-
growth simulator were Young’s modulus, £ = 20000 Mpa, fracture toughness, K;c = 1.5
MPa 1, fracture initiation threshold, X”; = 0.15 MPa ni’*, number of initial flaws in the
modeled area = 50, strain rate = 8.33E-19, and total time of loading = 3.17 million years.
The resulting fracture patterns are shown i figures 8 and 9. It is evident that the higher
SCC index leads to a more “clustered” fracture pattern.

Fracture end points from the simulated crack patterns were used to create the list
of nommeighbor comnections. Flaws that did not grow were removed from the flow
simulation. With a 60 x 120 gridding scheme, the number of nomeighbor connections for
cases 1 and 2 were 18848 and 8322, respectively. Single-phase 2-D flow smmulations
were carried out with constant pressure boundary conditions and flow in the x direction.
For the same 60 x 120 gridding scheme, the values of %, obtained for cases 1 and 2 were
4.82 and 3.52, respectively. As expected, the more fractured pattern (case 1) was found to
have a higher effective-permeability ratio.

The effect of grid refinement in the y direction was also studied. A constant x
gridding size was maintained (120 for case 2 and 60 for case 1). The results are shown in

10




Figure 8. Case 1 simulated fracture pattern.

Figure 9. Case 2 simulated fracture pattern.
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tables 3 and 4 ,as well as gotted in figures 10 and 11. It is evident that grid refinement
does affect the effective-permeability ratio. Satisfactory results are obtained when the y
gridding is 600 cells.

Table 3. Case 1. Values of kg, for various gridding schemes.

Gridding scheme, Effective permeability
X’ x ‘Y’ no. of cells Ratio, &,

60 x 60 ) 4.984

60 x 120 ’ 4.820

60 x 240 4.743

60 x 300 4.724

60 x 600 4.680
60 x 1200 4.662
60x 2400 4.652

Case1

5.05

B
N
\

438

4.75 \\
47

Effect Perm/ Matrix Perm(ratic

ki
S
4

0 5;)0 1(;)0 1500 2(;30 2500
y discretization (no. of cells)
Figure 10. Case 1. Effect of y grid cell refinement on & (constant x discretization of 60

cells).
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Table 4. Case 2. Values of k,; for various gridding schemes.

Gridding scheme, Effective permeability
‘X’ x €Y’ no. of cells Ratio, &
120 x 120 341
120 x 240 3.33
120 x 600 3.276
120 x 1200 3.253
120 x 2400 3.244
120 x 4800 3.239
Case 2
342

g 34 !

g,

‘é’ 3.38 \

n;_ 3.36

T

% 334

R

E 332 \

& 33

§ 328 \

£

L:;' 326 \\0\

£ 3.24 $

3.22 T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

y discretization (no. of cells)

Figure 11. Case 2. Effect of y grid cell refinement on 4 (constant x discretization of 120

cells).
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Summary and Conclusions:

(1) We have measured the SCC index on representative rock samples and are proceeding

with other pertinent rock measurements.

(2) An approach for coupling matrix and fracture flow using nomneighbor connections in
a traditional finite difference simulator has been tested and found to be feasible.
Accuracies of within 10 % of the analytical solution are obtained if there are four grid
cells between parallel fractures.

(3) We are proceeding with estimating the effective permeabilities of different fracture
patterns obtained from the crack-growth simulator.
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