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GYPSY FIELD PROJECT
IN RESERVOIR CHARACTERIZATION

Objectives

The overall objective of this project is to use the extensive Gypsy Field laboratory and data set as a
focus for developing and testing reservoir characterization methods that are targeted at improved
recovery of conventional oil.

The Gypsy Field laboratory, as described by Doyle, O’Meara, and Witterholt (1992), consists of
coupled outcrop and subsurface sites which have been characterized to a degree of detail not possible
in a production operation. Data from these sites entail geological descriptions, core measurements,
well logs, vertical seismic surveys, a 3D seismic survey, crosswell seismic surveys, and pressure
transient well tests.

The overall project consists of four interdisciplinary sub—projects which are closely interlinked:
1. Modeling depositional environments.

2. Sweep efficiency.
3. Tracer testing.

4. Integrated 3D seismic interpretation.

The first of these aims at improving our ability to model complex depositional environments which
trap movable oil. The second is a development geophysics project which proposes to improve the
quality of reservoir geological models through better use of 3D seismic data. The third investigates
the usefulness of a new numerical technique for identifying unswept oil through rapid calculation of
sweep efficiency in large reservoir models. The fourth explores what can be learned from tracer tests
in complex depositional environments, particularly those which are fluvial dominated.

Summary of Technical Progress

During this quarter, the main activities involved the “Modeling depositional environments”
Project”, for which the progress is reported below:
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1. Introduction. We study the determination of possibly discontinuous reservoir pa-
rameter functions defined on two dimensional regions from sparse pointwise measurements
supplemented with measurements of a nonlinear function of the parameter. The specific
application we have in mind is that of determining a permeability function from core mea-
surements and pressure data, cf [6]. Our approach involves two steps. The first is to detect
the discontinuous behavior, and the second is to isolate and refine the region containing
it. For the first step we use a regularized output least squares procedure in which the
reservoir mapping is approximated by linear combinations of bicubic B-splines. The regu-
larization used is the H! seminorm that is related to the potential energy functional of an
elastic membrane. This regularization gives sufficient compactness to obtain the existence
of a solution to the associated minimization problem while implying minimal additional
smoothing. Moreover, it seems to be well suited for the detection of the discontinuities
and sudden changes so often exhibited by geological mappings [3,6]. Having as least de-
tected an anomaly, we next attempt to isolate it by estimating its magnitude and a region
containing it. The result of the procedure is to obtain a discontinuous function. We then
essentially subtract this function from the model coefficient thereby, at least intuitively,
reducing the discontinuous behavior. Again we consider the detection step to test for
further discontinuous behavior. The procedure is repeated for further refinements.

In Section 2 we discuss the estimation of parameters by a regularized output least
squares method in which there are data available in the form of measurements of perme-
ability and pressure at locations within a two dimensional reservoir. Of interest here is
the detection of the presence of features in the permeability function. The basic existence
and approximation results are presented as well as resolution properties of the estimation
procedure. If one uses a procedure for the purpose of detecting anomalies, the issue of the
sensitivity of the method naturally arises and is discussed in Section 3. In Section 4 we
describe a procedure to isolate the anomalies that have been detected. Essentially we seek
a piecewise constant function possessing a rectangular subregion containing the feature
of interest. Having found such a function, we again consider the regularized output least
squares method to detect further anomalies in the permeability function repeating the
procedure. Finally, Section 5 is devoted to the reporting the outcome of several numerical
experiments.

2. Regularized Output Least Squares Estimation. We study the determination
of a spatially dependent permeability mapping from measurements of the permeability at
various locations along with pressure measurements. Towards this end, let £ be an open
domain in R? representing the reservoir with a Lipschitz boundary I'. Let K = K(z,y) bea
real-valued function defined on {2 denote a permeability function that we wish to estimate.
We suppose that measurements {K;}/°, of K are available at N, locations {z;}}¥, along
with measurements {z;}1°, of pressure p. We assume that fluid is injected at z;. While
at zp,, the condition p(zxy,) = 0 holds. The pressure p is a function of K according to

Darcy’s law
(2.1) -V (KVp)=fin Q,

with the boundary condition




and define the set
Qua={K€cQ,:(¢;, K)=K® fori=1,...N,}.
The linear functionals ¢; may be of the type described above.

The approach we use to recover K from the data obtained from measurements { K. ,-}f_’_:l

of K and measurements {zi}fvz"l of p is the so-called regularized output least squares method
[7]. Hence, we formulate the following minimization problem

(2.5) Find Ko € Qqq such that J(Ko) = minimum J(K) subject to K € Qa4

where N
JE) = [1K P do + 73 (@) - =)

thereby accomodating the pressure measurements. The linear functional constraints may
be included by penalization. Hence, in the penalized case setting

N,

(26) LK) = JE)+ 2 Y (9 K) — K
=1

we have

(2.7) minimize L(K)

subject to K € Q'

In [7] it is proved that the mapping K — p(K) is continuous from Q.4 with the weak
H(9) topology into H(f2) with the weak topology, see also [2]. Existence of a solution
follows immediately.

Proposition 2.1. For each ¢, v, g, and v greater than 0, there exist solutions to problems
(2.5) and (2.7). As € approaches zero, weak cluster points H!(Q) of the solutions K, of
problem (2.7) are solutions of (2.5).

Because the mapping K — p(K) is nonlinear, problem (2.7) is solved numerically
by iteration. For example, starting with an initial guess for K, the procedure seeks to
update K by means of a descent method. In each step it is necessary to solve a system
that approximates (2.1)-(2.3) as well as a gradient system. The approximating system is
obtained by the finite element method. Let {a;} and {;}M be sets of N and M linearly

independent functions in H1(Q), respectively. Express p and K as linear combinations

N
(2.8) p= Z Ci;
=1
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and

(2.9) K= f: a; ;.
i=1
Define the matrices for k =1,...,M
(2.10) (GR),; = /Q $pVa; - Vajdx
and i,7 = 1,..., N, as well as the column-vector p of length N with k-th component
(2.11) Pk = /Qfakdx.

The discrete analogue of problem (2.1)-(2.3) is given by

M
(2.12) > aG®e = p.
with the additional condition

M

(2.13) > er(®w,,ax) =0.

k=1

Based on the minimization problem (2.4), we may obtain boundary value problems in
which the supplementary condition (2.13) is included by means of a penalization. In this
case equations (2.1)-(2.3) are replaced by the boundary value problem

1
(2.14) -V-(KVp) + E@No,p) oy, =finQ
Op _
(2.15) Bn =0onTl

Where = serves as a penalization of the constraint (®y,,p) = 0 as 7 — 0. Thus, introducing
the N x N matrix G4 defined by

(Go)ks = (®n,, ) (®nN,, ;)

and setting

G= ZakG()-i- ~Gy,

k=1




equations (2.14) and (2.15) are replaced by the equation

(2.16) Ge=p

Therefore, given a vector @ = (a1, ...,apy) (the function K), we may calculate the vector
¢ = (c1,--,cn) (the function p) as the solution to equation (2.16). With these values
we may now evaluate the functional L(a) = L(K). The solution of (2.6) is that vector
ap minimizing the functional L{a) subject to the conditions specifying Q! ;. Define the
matrices and vectors

N,
(2.17) (H)ij =Y _(®k, 0:)(Bx, ;)
k=1
N,
(2.18) Gi= Z(‘I’k, )z
k=1
N,
C,= Z z?
k=1

for:,7=1,..,N,and for¢,5 =1,..., M,

(2.19) (Go)i; = fn Vi - Vipdx
N,
(2.20) (Hx)ij = 3_{$n i) ($n, ¥5)
N,
(2.21) Ki= Y (bn, i) K
N,
(2.22) . Cx =Y (K™)?
k=1

The functional L{a) takes the form
. . \ 1 1, .
(2.23)  L(a) = v{c(a)*Hc(a) — 2¢*c(a) + C,} + a*(Go + ;—HK)a + ;(—2& a+ Ck)
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where c(a) is the solution of (2.16) associated with the parameter vector a. The minimiza-

tion problem is given by
(2.24) minimize L(a)
subject to K € @', ;.

The minimization problem (2.24) is solved as an unconstrained problem assuming
essentially that the solution strictly satisfies the inequality constraints specifying @’ ;. This
is reasonable from a physical point of view since the bounds  and v are posed primarily
for the mathematical formulation of the problem. Numerically, a steepest descent method

is used decrease the value of L(a) iteratively. In carrying out this procedure it is necessary
to compute the gradient of L(a). The derivative of L(a) with increment h = col(hy, ..., hps)

is given by

K

1

(2.25) DL(a)h = 2{y(Hc(a) — {)*De(a)h + ((Go + ;:'HK)CL - ;)*h}
where the derivative of c¢(a) with increment h, Dc(a)h, is the solution of the equation

M
(2.26) GDe(a)h = =Y hGWc(a)

=1
The derivative of L(a) and the derivative of c(a) are an M-vector and an N x M mairix,
respectively.

By introducing the equation

(2.27) Gn = He(a) — ¢,

we observe that

7*GDc(a)h = (Hc(a) — ¢)*Dc(a)h.

Hence, it follows that

R

(He(a) = ¢)*De(a)h = — > hi(r*G¥le(a))
k=1

and (2.25) may be expressed as

1

M
%DL(a)h =~ ha(n*GPe(a)) + {(G. + ~Hy) - %m}*h.

k=1



Defining the column M-vector
E = [r*GPe(a)iLy,

we may write DL(a)h as follows

1 1
(2-28) 5DL(@)h = {~12 +(Go + -Hx)a — g}*h

1
DIL(a) = 2[~E + (Go + S Hr)a - g].

The optimization algorithm starts with an initial guess a(®). On the k-th iteration
with the parameter vector al*) the procedure is as follows

Compute c(a'®) as the solution of (2.16)

Compute L(a®) by (2.23)
Compute 7 by solving (2.27)
Compute DL(a) by (2.28)
Update a®to find a(**t1) according to the criterion al*+1) = a(F) — BDL(a*))

where 3 is chosen so that
L(a®**1) < L(a®).

Finally, we give the optimality system characterizing solutions of (2.24) that belong
to the interior of Q,q4. These solutions necessarily satisfy the condition DL(a)h = 0 for
any M-vector h. From equation (2.28) we conclude that

1
(2.29) (Go+ =Hg)a— -';i —yE=0

The optimality system is recorded in the following.

Proposition 2.2. The optimality conditions satisfied by interior solutions of (2.24) are
given by
Ge(a) =p
Gr = He(a) — ¢

K

1 =
(G0+ZHK)G’—Z_7‘—"—0

where

E = [r*GPe(a)iLs,

7




3. Uniqueness and Sensitivity In this section we obtain conditions assuring there
is at most one interior solution. We will then see that these conditions also imply the
diffentiability of the solution with respect to the data. The starting point is the system
comprising the optimality conditions given in Proposition 2.2. We assume there two sets
of data distinguished by sub(super)scripts 1 and 2. Defining the vectors :

d=cl—62

5=1r2—7r1
a=ay —ay
(=CG-G

and
R = R3 — Rj,

we obtain the equations

M
God = — Z akG’(k)q
k=1

M
Gd=—( - axG®m + Hd
k=1

1
(Go+ ~Hg)a = g +9{6*GWcy} M +

+’7{7TIG(I)d}tM=1

from the optimality system. To determine estimates, suppose there are positive constants
v, v, Ky, and K; such that

(3.1) d&*Gid>v|dl?
fori=1,2

(3:2) Ko 2| G |,
fork=1,..., M,

(3.3) Ky 2| H |,

and

(3.4) d*(G, + %HK)d > |df?.
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The conditions (3.1) hold because of the positive definitness of the matrix on the left side
in the underlying model. Condition (3.4) is a consequence of the presence of Hx. With
these assignments, we obtain the following estimates for : = 1,2

e bl
(35) l i IS 77
and thus 1
l Gz_l IS )
v
K
(36) ldi< =3 lp]lal,
| Ko 2K1 | ¢
(37) 51 2E 2 o+ 1G D lal + 55,
and
(3.8) | Vgla]<7K0l ’ltﬂ-&—

FyKo( ot lp |+ 'Cl')|d1+' =l

It follows that

wmzmwm+ﬁnuﬂmwmmwmw
Set

K, K
(3.10) ﬂwWWﬁMHMWL

Proposition 3.1. If 8 given by (3.10) is positive where the constants are assigned ac-
cording to (3.1)-(3.4), then

al<5CInl+ S2pl¢D.

If ¢(; = (2 and k1 = kg, then uniqueness follows.

Corollary 3.2. If 8 > 0, then there is at most one solution a belonging to int Q..
Remark 3.3 Observe that the condition 8 > 0 may be satisfied by choosing the vector p
associated with the forcing term to be sufficiently small.

9




In order to detect changes in the optimal parameter obtained by means of the regu-
larized output least squares technique in response to changes in the data, it is useful to
examine the differentiability of the optimal estimator with respect to the data. Hence,
we next consider conditions under which the mapping associating an optimal estimator
a with a data vector ( is differentiable. Let us suppose then that ¢ € Q = RM and
pand ( € X = RY. In fact we suppose that a is a regularized output least squares
solution in the interior of Qgq. Thus, define the function a — G(a) from R to the linear
space of N x N real-valued matrices by

M
Gla) =) axGW,
k=1

and set

G = G(a) + %G¢.

We assume that a is associated with the system of equations given in Proposition 2.2. To
examine the differentiability of a with respect to {, define the mapping F: @ x X = X
by
1 K
F(a,() = (Go + —Hg)a - — = v{n(a, ()*GHe}L ).
By the implicit function theorem (1] the function { — a(() is differentiable with respect to

¢ if the Frechet partial derivatives of F with respect to a and ¢, D, F(a,() and D¢ F(a,()
exist and the linear operator D, F(a,() : @ — @ is nonsingular. '

To calculate the required derivatives, it is necessary to calculate the derivative of each
of the functions a — ¢(a) and (a, () — 7(a, (). Setting G(h) = E,‘:‘{__l hxG¥) | we note that

GDc(a)h = —G(h)c(a)

so that
Dc(a)h = -G 1G(R)c(a).

Further,
GD,n(a,(}(h) = =G(h)r(a,{) + HDc(a)h,

and from Proposition 2.2,
Dun(a,$)(h) = GGG H + HG'G(h)le(a) + GLG(R)GIC.
Hence, we may write

M
De(a)h = =Y hiG'G¢(a),
=1

and

M
Don(a,Oh =Y hAGIGIGT¢ — GTUGWG'H + HGT'GW]c(a) }

=1

10




On the other hand the Frechet partial derivative with respect to a is given by
DF(a,0)h = (Co + 2 Hx)h —{(Darn(a, QRGP + 7 G (De(alh)} L.
Defining the M x M matrix
Kii={G1@¥¢ -G Y(GWG'H + HGGW)c}*'GWe — n*aWa—1al,

then we may write

DuFla,()h = (G, + %HK — K)h.

To calculate the partial derivative of F' with respect to { with increment J, we first

note that
D¢m(a,()d = -G,

It follows that the partial derivative with respect to ¢ with increment § is given by

(3.11) D¢F(a,¢)6 = {crG®G 16},

Defining the M x N matrix H, in which the k-th row is given by c*G(*)G~!, we have
D¢F(a,()d = Hd.

With these observations, we have the following.

Proposition 3.4. If the matrix G, + %H k — K is nonsingular, then’

(3.12) Da(¢)6 = ~D,F(a,() " D¢ F(a, ¢)S.

Remark 3.5. Observe that for given G, + I;H K, the nonsingularity of G, + %H xk—K
may be controlled by the forcing vector p.

By applying the estimates previously used, we may obtain sufficient conditions for
differentiability. Towards this end, observe from (3.4) that

1

1
| (Go+ ~Hg)™" < —.
€ 1 244

Thus, it follows by estimating the terms in the expression for K; that

2K,2 3K’ K,y

[Cllpl +———1r .

| Kri 1< (

v3
We have the following.

11




Proposition 3.6. If

K,?
5

3K,

“L1p] +21¢D) | pl<m,

then Da(({) exists.

Proof. Under the hypothesis, it follows a norm of v(G, + —i—H k) 1K is less than one.
Hence,

1
(I = %(Go + —Hx)'K)™

exists and

1
Go + ZHK—’)/K:

is invertible. This implies that D,F(a,() is invertible. Since Da(() exists, the differentia-
bility of a with respect to { follows.

Remark 3.7. The conditions of Propositions 3.1 and 3.5 are the same. Hence, it fol-
lows that under (3.1) that there is at most one solution and the function { — a(() is
differentiable.

Remark 3.8. The differentiability of the mapping ¢ + a(() provides a tool with which
we can investigate the sensitivity of the interior optimal estimators with respect to pertur-
bations in the data (. We shall develop these ideas further in a later paper. However, we
note that for a perturbation § of the N-column data vector (

a(¢ +8) = a(¢) + Da(()é + o] 4 |).

Hence, if the M x N matrix Da(() has a nontrivial null space A, then it is not possible to
detect the perturbation § € N as a first order effect. Define the N-vectors 8; = c*G(F)G—1
for k = 1,...,M From (3.11) and (3.12), we see that A is determined as the orthogonal
complement of the span of the vectors {8}, . It follows, for example, that if M ; N there
always are vectors § that are not detectable.

4. Estimation of the Discontinuity. Having detected a discontinuity, our next step is
to isolate and obtain some estimate of it. We proceed by considering an example in which
the admissible permeability functions K have a discontinuity determined by two regions
within Q parameterized by 2 real numbers a and b. We denote these two regions by Q(a, b)
and © \ Q(a,b). An admissible permeability K is also parameterized constants K; and K»
modelling the magnitude of the discontinuity between the regions. Hence, K takes the
form

(41) K(:B, y) = Ko(m, y) + Ke(:l:,y)

where

Ke(z,y) = K1 if (z,y) € Q(a,b), and K, otherwise.

12




It is assumed that the function Ky is known. Introducing the characteristic function Z of
the set Q(a,b), we may write

(4.2) K.(z,y) = (K1 - K2)E(z,y) + Ko.

and equations (4.1) and (4.2) may be thought of as replacing equation (2.9). To fix ideas
let us suppose that Q(a,b) is a rectangle of the form (2o — a, 2o + a)x(yo — 8,30 + b). The
stiffness matrix is now given as

zot+a pyotb
(G)ij = / (Ko + K3)Va; - Vajdedy + (K — Kz)/ / Va; - Vajdedy
Q z Y

o—a o—b
Setting
(Go)ij :/ Va; - Va;dzdy,
Q
(G1)ij = / KyVa;- Va;dedy,

Q
and

zota pyo+b
(4.3) (G2)ij(a,b) = / / Va; - Va;dedy,

Zo—a yo—-b

we have
(4.4) G=G, + (Kl — Kg)Gg(a, b) + K2Gg.

Thus, we obtain an equation analogous to (2.16) given by

(4.5) Ge = p.
with the approximating solution u expressed as u = EN 1 Ci0%.

1=

Define the criterion
N,
J(a, b, K1,K2) = Z((@j,u) —_ Zj)2
=1

and the functional ¥
K
N(a,b,K1,K2) = Y ((¢;,K) — K;)*.
i=1

Under discretization, the functional J takes the form

J(a,b,K1,K3) = c*Hpc — 2(*c + ¢,

13




Note that A (a,b, K1, K3) is a discontinuous function and is, in fact, a piecewise constant
function of @ and b. Hence, we look for a, b, Ki, and K> that minimizes J while keeping
N(a,b, K1, K>) at its minimum value, call it Ag. That is, we seek

a, b, Ky, and K> minimizing J(a,b, K7, K») subject to N = Nj.

To carryout this program we calculate the partial derivatives of J and c. We find that
d; = Dk, ¢ and dy = Dk, c satisfy the equations

(4.6) Gdy = Ga(a,b)c
and
(4.7) Gd2 = (Go - Gg(a, b))c,

respectively. To compute d, = D,c and dp = Dy, it is necessary to differentiate the
integral in (4.3). Observe that the partial derivatives of the matrix G are matrices whose
entries are given by

Yo+b

(DoGa)is = [ (Ve Vay)(ao +a,9) - (Ve Vay)(eo — a,9)}dy
and sota
(DGa)i =/ _ AVes- Vay)(z,y0 +8) — (Vai - Vay)(z, 30 — b) M.

Thus, we find that d, and dp must satisfy the equations
Gda, = —(K1 - Kg)DaGQC

and

Gdb - —-(K1 — Kg)DbGzc,
respectively. The partial derivatives of J now are calculated by the chain rule.

5. A numerical example. We consider a problem in which we specify a coefficient
K(x,y) and generate pressure data based on that function by solving the problem (2.1)-
(2.3)for p with a specific forcing function f by finite elements. Using this data we then
attempt to recover K. Let € = (0,1)x(0, 1) and suppose that measurements of pressure and
permeability can be made at locations (0.175,0.175), (0.835,0.175), (0.5,0.5), (0.175,0.835),
and (0.835,0.835). For a test permeability function we use the following

8 + 3.5cos(z + y) for (z,y) € (0,0.3)x(0,0.3),
Kiesi(z,y) = { 4+ 2.5cos(x + y — 2), for(z,y) € (0.75,1)x(0.75,1), .
2 + cos(z + y), otherwise

14




shown in Figure 1. Further, we suppose that p = 0 at the point (0.835,0.835) and that fluid
is injected at the point (0.175,0.175). The resulting pressure function obtain by means of
a finite element solution is portrayed in Figure 2. For the approximations to the pressure,
we use tensor products of cubic B-splines [5] defined on a uniform mesh determined by
subdividing (0,1) into seven subintervals. Since imposing Neumann boundary conditions
improves accuracy, we use 64 basis functions for approximating pressure adjusted to in-
corporate the Neumann boundary condition. For approximating the parameter, we again
use tensor products of cubic B-splines but defined on a mesh determined by subdividing
(0,1) into 5 equal subintervals. Imposing no boundary conditions, we then use 64 basis
functions to approximate the parameter. Using data at the observation points, we apply
the regularized output least squares method as a detection procedure resulting in Figure
3. Based on this result, we search for a coefficient of the form

K1if(z,y) € (0,a) x (0,8),

Ki(z, ={
1(2,9) 2 otherwise

using the technique discussed in the previous section. The result is illustrated in Figure
4. We then apply further detection by again using the regularized output least squares
method to estimate the coeflicient K2 where the permeability has the form

K(x’y) = Kl(x,y) + K2(zay)'

The result is portrayed in Figure 5. Based on this computation, we again use the proce-
dure for discontinuous coeflicients by searching for discontinuities based on the rectangle
(b,1)x(b,1). This yields the Figure 6. Again, we use the regularized output least square
method to look for further discontinuities and background with the outcome given in Figure
7. The resulting pressure from the estimated coefficient is given in Figure 8.

6. Conclusions. We have formulated the output least square estimation technique
and have discussed its use as a detection tool for problems with pressure data by giving
conditions for uniqueness and differentiability of optimal estimated permeability function
with respect to perturbations of the data. In addition we introduced a method to estimate
the location and magnitude of a jump discontinuity. We also presented a numerical example
for the location of discontinuities in a permeability function in the presence of a background.
By alternating detection and discontinuity estimation procedures, it seems to be possible
to construct coefficients with discontinuities in the presence of a background function.

15
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