E"
O
=
-
I
s
13-
INT
i 3-
R
Gr
X

DOE/BC/14885-5
(DE94000140)

DEVELOPMENT OF COST-EFFECTIVE
SURFACTANT FLOODING TECHNOLOGY

First Annual Report for the Period
September 30, 1992 to September 29, 1993

By
Gary A. Pope
Kamy Sepehrnoori

August 1994

Performed Under Contract No. DE-AC22-92BC 14885

The University of Texas
Austin, Texas

Bartlesville Project Office
U. S. DEPARTMENT OF ENERGY
Bartlesville, Oklahoma



DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Govemn-
~ ment. Neither the United States Government nor any agency thereof, nor any of thek employees, makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefuiness of any information, apparatus, product, or process disclosed, or represents that its
use would not infringe privately owned rights. Reference herein to any specific commercial product,
process, of sefvice by trade name, trademark, manufacturer, or otherwise does not necessarily constitute
or imply ifs endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarlly state or reflect those of
the United States Govemment or any agency therecf.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and
Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available
from (615) 576-8401.

Available to the public from the National Technical Information Service,
U.S. Department of Commerce, 5285 Port Royal Rd., Springfield VA 22161



DOE/BC/14885-5
Distribution Category UC-122

DEVELOPMENT OF COST-EFFECTIVE SURFACTANT FLOODING TECHNOLOGY

First Annual Report for the Period
September 30, 1992 to September 29, 1993

by
Gary A. Pope
Kamy Sepehrnoori

August 1994

Work Performed Under Contract No. DE-AC22-92BC14885

Prepared for
U.S. Department of Energy
Assistant Secretary for Fossil Energy

Jerry Casteel, Project Manager
Bartlesville Project Office
P.O. Box 1398
Bartlesville, OK 74005

Prepared by
The University of Texas
Center for Petroleum and Geosystems Engineering
Austin, TX 78712






TABLE OF CONTENTS

| B R N O) 2 3 (€7 8] 23 21 IO PP iv
LIST OF TABLES .....oiiiitiiiiiiiiiiieetetititiatetteetasttseaacnatassenasasennens viii
PN R ¥ 37N O PPN 1
| 20,4 (0L 0) N A7 S 01, 11 1N 2 PN 1
HIGH-RESOLUTION, FULLY IMPLICIT, COMPOSITIONAL SIMULATION ...... 3
J 110 L1 ot o) | N 3
Physical and Mathematical Model ............ccooiiiiiiiiiiiiiiia, 4
Mass conservation €qUAtIONS......ccceiieereeeeenceancanaererentenscascenncns 4
Pressure €qUatioN.......ccccieiiiiuiiniiiiiininiienneereeeiennenceeaeeasesnenans 7
Energy balance equation...........ccc.ouiiiiiiiiiiiiiiieiiiiieieieeeneee, 7
Initial and boundary conditions...........ccccviiiiiiiiiniiiiiiiiiiiiiieea 8
“Constitutive Telations.......ccoeeiiieniiiiiiniiiniiiniiiniiniinieiceninnenen. 8
Fully Implicit Formulation ...........ccoiiieiiiiiiiiiiiiiieiiiiieiiaeeieiieaeaees 10
Solution of the Nonlinear System of EQuations .........cccceeeiiuiineiinninneinennne. 14
Timestepping Algorithms.........ccciiiiiiiiiiiiiiiiiiiiiiieereee, 15
Simulation Results and Analyses.................. Neeeeeteeeeeecesascennseneatonnsannas 16
Simulator VErifICatioN ... .coiueeueeeieeiiieitiiiiiiiiatiateeaeiaeeaneeneennes 16
Comparison with IMPES formulation...........cccccoeoiiiiiiii.. 17
Comparison with lower-order spatial discretization scheme ............... 18
Effect of TVD fluxX Hmiter.......ccoviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaeaaaes 19
Improvements in computational efficiency ............oooeeeiiiiiiiiil, 19
Summary, Conclusions, and Future Work.......ccoooiiiiiiiiiiiiiinnnnnnnnnnnnie. 19
OPTIMIZATION OF SURFACTANT FLOODING ......cccctiuiiiiiiiniinniniiiiniaanns 20
1111 (014 1 o111 | S PPN 20
Base Case Simulation.......ocoeeiieiieiiiieiiiiiiiiiiiiiiiitieieeaeaieeneaaenans 21
Correlation Length ......cocoiiiiiiiiiiiiiiii it 22
Reservoir HEterOgeneity . ..ououvunineiieiieininiiiinitiitinieeitaceeeeeeeaeenss 23
Multiple Realizations of the Same Permeability Field.......... e eeeeeeenetaieaeaaaes 23
Vertical-to-Horizontal Permeability Ratio ........cccoiiiiiiiiiiiiiiiiiiiiiiii, 24
Simulation of Surfactant Floods with Horizontal Wells........ eeeeeeereecennanans 24
WEIL SPACINE «..eeviniiniiaiiiiiiiiiiiiiiiii i eeeeaeeeaeeeeeee e eaanns 25
Horizontal wellbore length ... 25
Multiple field 1ealizations.........c.oveiiiniiiiiiiieineiaeeaeaeaaeeeenaann, 25
Vertical-to-horizontal permeability Tatio ......cocevniiniiieiiieiiiiiiniinnenss 25
Summary, Conclusions, and Future Work......ccccoorioiiiiiiiiiiiininnnnnnnnnnnne. 26
NOMENCLATURE .....coiniiiiiiiiiiiiiiitrateeietetatentastastatasnransasssesneensennanns 26
(€505 ) 111070) L PPt 28
Subscripts and SUPETrSCIIPLS.......cccuiiiiiiiiiiiiiiiiieine e teeeeeree e e 29
REFERENCES. ... ittt e et e et et et tateateatantanasansanaeaneanaennns 30

iii



Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

[am—y

AW

10

11

12

13

14

15

16

17

18

LIST OF FIGURES
Flux-limiter functions corresponding to different schemes.
Derivatives of flux-limiter functions corresponding to different schemes.
Gridpoints involved in the high-order finite-difference scheme.

Matrix structure of simulating a two-dimensional, two-component problem using the
fully implicit formulation and the high-order method with 5x5 gridblocks.

Simulation of one-dimensional miscible water/tracer flow using the fully implicit
formulation and the TVD high-order scheme with different Courant numbers.

Simulation of one-dimensional miscible water/tracer flow of different Peclet numbers
using the fully implicit formulation with the TVD high-order scheme.

Simulation results of one-dimensional waterflood using the fully implicit formulation
with the TVD high-order scheme.

Simulation results illustrating the capillary end effect (S*=0.65) using the fully implicit
formulation with the TVD high-order scheme.

Simulation results illustrating the capillary end effect (S*=0.5) using the fully implicit
formulation with the TVD high-order scheme.

Profiles obtained simulating Holing's one-dimensional polymerflood problem using the
fully implicit formulation with the TVD high-order scheme.

Simulation results of ideal tracer flow in a homogeneous five-spot pattern using the fully
implicit formulation with the TVD high-order scheme.

Computational efficiency of simulating one-dimensional miscible water/tracer flow using
the TVD high-order scheme.

Error of simulating one-dimensional miscible water/tracer flow using the TVD high-order
scheme at different Courant numbers.

Effect of Courant number on simulating a one-dimensional waterflood using the TVD
high-order scheme.

Effect of Courant number on simulating a two-dimensional waterflood using the IMPES
formulation with the TVD high-order scheme.

Effect of Courant number on simulating a two-dimensional waterflood using the fully
implicit formulation with the TVD high-order scheme.

Profiles of simulating Holing's one-dimensional polymerflood problem using the IMPES
formulation with the TVD high-order scheme.

Simulation results of a two-dimensional polymerflood in a homogeneous five-spot
pattern using the TVD high-order scheme.

iv



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.
Fig.

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
36

Simulation results of a two-dimensional polymerflood in a homogeneous five-spot
pattern using the fully implicit formulation with the TVD high-order scheme.

Simulation results of a two-dimensional polymerflood in a homogeneous five-spot
pattern using the IMPES formulation with the TVD high-order scheme.

Simulation results of a two-dimensional polymerflood in a heterogeneous five-spot
pattern using the TVD high-order scheme.

Simulation results of a two-dimensional polymerflood in a heterogeneous five-spot
pattern using the fully implicit formulation with the TVD high-order scheme.

Simulation results of a two-dimensional polymerflood in a heterogeneous five-spot
pattern using the IMPES formulation with the TVD high-order scheme.

Error of simulating one-dimensional miscible water/tracer flow using the fully implicit
formulation at different Courant numbers.

Profiles of simulating Holing's one-dimensional polymerflood problem using the fully
implicit formulation with one-point upstream scheme.

Simulation results of a two-dimensional waterflood using the fully implicit formulation
with the TVD high-order scheme or one-point.

Simulation results of a two-dimensional polymerflood in a homogeneous five-spot
pattern using the fully implicit formulation.

Simulation results of a two-dimensional polymerflood in a heterogeneous five-spot
pattern using the fully implicit formulation.

Simulation results of a two-dimensional polymerflood in a homogeneous five-spot
pattern using the IMPES formulation.

Simulation results of a two-dimensional polymerflood in a heterogeneous five-spot
pattern using the IMPES formulation.

Profiles of simulating Holing's one-dimensional polymerflood problem using the fully
implicit formulation with the high-order scheme without TVD flux-limiting.

Simulation results of a two-dimensional polymerflood using the fully implicit formulation
with the TVD high-order scheme and different timestepping algorithms.

Courant numbers for simulating a two-dimensional polymerflood using the fully implicit
formulation with the TVD high-order scheme and different timestepping algorithms.

Number of iterations for simulating a two-dimensional polymerflood using the fully
implicit formulation with the TVD high-order scheme and different timestepping
algorithms.

Aerial view of the quarter five-spot grid and well location.

Permeability field for the case of correlation length of 660 feet in x and y direction, 28
feet in the z direction, and Vpp of 0.8 (Base Case).



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55

56

57
58
59
60
61
62

Oil andAwater relative permeability curves for low capillary number.

Qil and water relative permeability curves at high capillary number.

Oil and micro emulsion relative permeability curves at high capillary number.
Polymer adsorption as a function of polymer concentration.

Polymer viscosity as a function of polymer concentration and shear rate.
Polymer permeability reduction factor.

Capillary desaturation curves for oil, water, and micro emulsion phases.
Interfacial tension as a function of solubilization ratios.

Adsorbed surfactant concentration as a function of surfactant concentration.
Phase behavior for the type III region.

Cumulative oil recovered as a function of pore volumes injected (base case).
Cumulative oil recovered as a function of time (base case).

Time versus pore volumes injected.

Oil production rate versus time (base case).

Total injection rate as a function of time (base case).

History of effluent surfactant concentration (base case).

History of effluent polymer concentration (base case).

History of effective salinity for the base case.

Permeability field for the case of correlation length of 330 feet in the x and y direction,
and 28 feet in the z direction (Realization #1).

Permeability field for the case of correlation length of 2640 feet in the x and y direction,
and 28 feet in the z direction (Realization #1).

Comparison between oil recovery for layered and stochastic reservoir descriptions.
Comparison of injection rate between different correlation lengths (Realization #1).
Permeability field for the case of Dykstra-Parsons coefficient of 0.6 (Realization #1).
Permeability field for the case of Dykstra-Parsons coefficient of 0.9 (Realization #1).
Comparison between oil recovery for different degree of reservoir heterogeneity.
Comparison of injection rate for different Dykstra-Parsons coefficient.

vi



Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

63

65
66

67

68
69
70
71
72
73

74
75
76

77

78
79
80
81
82
83
84
85
86

Comparison between oil recovery for different realizations of the same permeability field.
Comparison between oil recovery for different realization of the same permeability field.
Comparison of injection rate for different realizations of the base case permeability field.

Permeability field for the case of correlation length of 660 feet in x and y direction, 28
feet in z direction, and Vpp of 0.8 (Realization #2).

Comparison of oil production rate between different realizations of the base case
permeability field.

Comparison between oil recovery for different realizations of the same permeability field.
Comparison between oil rate for different realizations of the same permeability field.
Comparison between oil recovery for different kvlkr; ratios.

Comparison between oil recovery for different k,/kp, ratios.

Comparison between oil rate for different k,/ky, ratios.

Areal view of the quarter five-spot grid with a vertical injector and a vertical producer or
with a horizontal injector and a vertical producer.

Comparison of cumulative oil recovery for vertical and horizontal injectors.
Comparison of simulated oil rates between vertical and horizontal injectors.

Comparison of cumulative oil recovery as a function of pore volumes for vertical and
horizontal injectors.

Pore volumes injected versus time from simulations with and without a horizontal
injection well.

Injection rates from simulation with and without a horizontal injection well.
Surfactant concentration with and without a horizontal injection well.
Effective salinity from simulation with and without a horizontal injection well.
Polymer concentration with and without a horizontal injection well.

Effect of well spacing on oil recovery from simulations with vertical wells.
Effect of well spacing from simulations with a horizontal injection well.
Effect of the length of the horizontal wellbore on oil recovery.

Vertical x-z slices of the permeability field (Realization #1).

Vertical x-z slices of the permeability field (Realization #2).

vii



Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

87

89

90
91
92
93
94
95

96

Vertical x-z slices of the permeability field (Realization #3).
Vertical x-z slices of the permeability field (Realization #4).

Effect of different permeability field realizations on oil recovery for a vertical injection
well.

Effect of different permeability field realizations on oil recovery for a vertical well.
Effect of different permeability realizations on oil recovery with a horizontal injector.
Effect of the permeability field realizations on oil recovery for a horizontal injector.
Effect of the vertical to horizontal permeability ratio on oil recovery for a vertical injector.
Effect of the vertical to horizontal permeability ratio on oil recovery for a vertical injector.

Effect of the vertical to horizontal permeability ratio on oil recovery for a horizontal
injector.

Effect of the vertical to horizontal permeability ratio on oil recovery for a horizontal
injector.
LIST OF TABLES
TVD flux and its derivatives.
Comparison of CPU time using direct and iterative solvers.
Comparison of .timestepping algorithms.
Base case input data for surfactant simulations.
Base case injection scheme.

Statistical data for permeability field realizations.

viii



ABSTRACT

This research consists of the parallel development of a new chemical flooding simulator and
the application of our existing UTCHEM simulation code to model surfactant flooding. The new
code is based upon a completely new numerical method that combines for the first time higher
order finite difference methods, flux limiters, and implicit algorithms. Early results indicate that
this approach has significant advantages in some problems and will likely enable us to simulate
much larger and more realistic chemical floods once it is fully developed. Additional improvements
have also been made to the UTCHEM code and it has been applied for the first time to the study of
stochastic reservoirs with and without horizontal wells to evaluate methods to reduce the cost and
risk of surfactant flooding. During the first year of this contract, we have already made significant
progress on both of these tasks and are ahead of schedule on both of them. We have found that
there are indeed significant differences between the performance predictions based upon the
tradlitional layered reservoir description and the more realistic and flexible descriptions using
geostatistics. Our preliminary studies of surfactant flooding using horizontal wells shows that
although they have significant potential to greatly reduce project life and thus improve the
economics of the process, their use requires accurate reservoir descriptions and simulations to be
effective. Much more needs to be done to fully understand and optimize their use and develop
reliable design criteria.

EXECUTIVE SUMMARY

The objective of this research is to develop cost-effective surfactant flooding technology by
using surfactant simulation studies to evaluate and optimize alternative design strategies taking into
account reservoir characteristics, process chemistry, and process design options such as horizontal
wells. Task 1 is the development of an improved numerical method for our simulator that will
enable us to solve a wider class of these difficult simulation problems accurately and affordably.
Task 2 is to apply numerical simulation to better understand and optimize the design of surfactant
flooding to reduce its cost and risk.

A new algorithm that is fully implicit and higher order in both time and space has been
developed. This algorithm combines the best features of several recent numerical schemes since it
is both accurate and stable. Preliminary results on several one and two-dimensional test problems
with known solutions look very good compared to standard finite-difference methods used in
reservoir simulation including our own version of the total variation diminishing (TVD) flux
limited, higher order, implicit pressure-explicit saturation method (IMPES) now used in
UTCHEM. The computational efficiency of several solvers and timestepping algorithms have been
evaluated by simulating two-dimensional waterfloods and polymerfloods. The code is being
extended to three dimensions and additional physical and chemical properties added toward the
goal of a model that is as complete as UTCHEM but computationally more efficient.

UTCHEM development has continued and several significant improvements have been
made in the code during the past year. These improvements have the combined effect of making
the code more versatile and efficient, which serves not only our needs better but that of a large
number of external users. These users consist of not only the industrial sponsors of our enhanced
oil recovery research at the University of Texas at Austin, but also a large and increasing number
of academic users who use our code in a variety of oil recovery research. These users now include
the following organizations:

ADREF Amoco Production Co.
ARAMCO Arco Oil & Gas Co.

BP Exploration, Inc. Chevron Qil Field Research Co.
Conoco, Inc. Cray Research
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DOE Duke University

Elf Aquitaine Exxon Production Research Company
Idaho National Laboratories Institute for Energy Technology
INTERA, Inc. INTEVEP, S.A.

Japan National Qil Corp. Japan Petroleum Exploration Co., Ltd.
Louisiana State University Marathon Qil Company

Mobil Exploration and Producing Services New Mexico Recovery Research Center
Norsk Hydro Oryx Energy Co.

Oxy USA, Inc. Pacific Northwest Laboratories

Rice University Rogaland Research Institute

Sandia National Laboratories Santa Fe Energy Resources

Scientific Computing Associates, Inc. Shell Development Co.

Stanford University Statoil -

Technical University of Clausthal, Germany Technical University of Denmark
Texaco, Inc. Union Pacific Resources

University of Buenos Aires University of Kansas

University of Michigan University of Mining and Metallurgy - Poland
University of Oklahoma University of Wyoming

UNOCAL

A significant effort is required to provide the code and its documentation to these users as
well as some support on its use. However, we do benefit from feedback from these users and
occasionally even new features to the code. In addition to these application users, we also have a
major collaborative research effort with the Computational and Applied Mathematics group led by
Professor Mary Wheeler at Rice University to port UTCHEM to massively parallel computers as
well as to develop new algorithms for future use. This research is sponsored by the High
Performance Computing and Communications program of the federal government. This research
is targeted at the use of massively parallel computers to solve Grand Challenge problems, which in
our case means flow in permeable media problems with applications to both oil recovery and
groundwater remediation. Some of our most recent UTCHEM development targeted to
contaminant cleanup is sponsored by the Environmental Protection Agency. This effort includes
such things as the addition of local mesh refinement, which will be very valuable to all of our
applications. Thus, there is a large leverage on the research funds provided by this grant among
other benefits to this related activity.

UTCHEM has been applied for the first time to the simulation of surfactant flooding using
geostatistical reservoir descriptions. This approach enables us to make more realistic simulations
and lends itself to the assessment of uncertainty in the results far better than the traditional layered
reservoir description approach we and others have used in the past to simulate surfactant flooding.
Although this study is not complete, several important conclusions have already emerged. The rate
at which the surfactant and polymer can be injected inio the reservoir and hence the economically
important project life of the chemical flood varies strongly with the correlation length of the
reservoir. The limiting case of infinite correlation length corresponding to a layered reservoir is
optimistic in this respect. These and other results from our study to date show as expected a much
greater sensitivity of the surfactant flood to reservoir description than waterflooding. This
knowledge can be used not only to better understand the problem but to make good engineering
decisions about which reservoir characterization data and how much data are justified and cost
effective for surfactant flooding.

UTCHEM has also been applied for the first time to the simulation of surfactant flooding
using horizontal wells. This study has just started and is very preliminary and the impact of
horizontal wells is complex since it depends on many variables, but several economically important
conclusions have already emerged from this study as well. The location of the horizontal well is
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extremely important and must be in a reasonably permeable layer of the reservoir to be effective.
Otherwise, both the oil recovery and injectivity may be low. A horizontal injector and vertical
producer is likely to be the optimum combination for most surfactant floods. The injectivity is very
sensitive to vertical permeability at low ratios of vertical to horizontal permeability for both vertical
and horizontal wells, but is even more important for horizontal wells since the more expensive
horizontal wells must be very effective to justify their cost. We have done these studies for both
layered and stochastic reservoir descriptions and have found significant differences. Furthermore,
heterogeneity must be taken into account when simulating surfactant flooding with horizontal wells
to arrive at even qualitatively correct trends. Thus, the limited results in the literature are
misleading and should not be used as an indication of the potential of horizontal wells. The oil
recovery from surfactant flooding using horizontal wells is even more sensitive to accurate
reservoir description than it is with vertical wells and one of our most important challenges will be
to quantify the degree of accuracy needed to use horizontal wells economically.

HIGH-RESOLUTION, FULLY IMPLICIT, COMPOSITIONAL SIMULATION

Introduction

The objective of this research is to develop cost-effective surfactant flooding technology by
using surfactant simulation studies to evaluate and optimize alternative design strategies taking into
account reservoir characteristics, process chemistry, and process design options such as horizontal
wells. Task 1 is the development of an improved numerical method for our simulator that will
enable us to solve a wider class of these difficult simulation problems accurately and affordably.

Compositional simulators with an IMPES formulation solve for pressure implicitly using a
time-lagged mobility function and subsequently update the saturations or concentrations explicitly.
This is the fastest approach on a per-timestep basis, but it can introduce stability problems that
restrict the timestep size. The Courant stability criterion for an explicit scheme always requires a
limited timestep size. The explicit updating of saturations or concentrations is one source of
instability. The time-lagged and pressure-dependent mobility terms in the pressure equation are
also sources of instability. This instability can arise from shear-dependent viscosities in polymer
flooding or from the capillary number dependence of relative permeabilities in surfactant flooding.
The stability restrictions means that the simulation cost for very large field problems is still high or
even not feasible for sufficiently large problems.

The fully implicit method is the most stable method, where the pressure equation and the
component conservation equations are solved simultaneously with the nonlinear functions of the
interface flow terms evaluated at the new timestep. This approach, however, usually requires more
computational work than other methods on a per-timestep basis, particularly for large grids.
Furthermore, the program coding is more complicated and the implementation of the physical
property models is more difficult. Because of these restrictions, standard implicit methods usually
adopt lower-order finite-difference schemes for both the temporal and spatial discretizations and the
advantage of the methods are overshadowed by the increased amount of numerical dispersion
associated with large truncation error. This is important in all reservoir simulation problems, but it
is especially important in surfactant flooding because of its complex behavior and high cost. We
need accurate field simulation so that we can design the floods at a minimum cost and risk.

The solution to this dilemma and what we have done in Task 1 is to develop a new fully
implicit algorithm. It is second-order correct in time and uses a third-order finite-difference method
to discretize the first-order space derivatives and a new total variation diminishing flux limiter to
constrain the gradients of the fluxes to obtain accurate, oscillation-free numerical solutions (Saad et
al., 1990; Datta Gupta et al., 1991; Liu ez al., 1993). This algorithm combines the best features of
several recent numerical schemes since it is both stable and accurate. Unlike many numerical
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schemes in the literature, there are no problems with generalizations of this scheme to
multidimensional, multicomponent, multiphase flow problems such as those arising in the
simulation of compositional chemical flow problems that are the specific focus of this project.
Preliminary results look very good compared to the use of standard finite-difference methods. The
overall increase in accuracy through the use of the TVD flux-limited high-order method and the
fully implicit formulation makes it possible to reduce the overall computational cost by taking larger
timestep sizes and fewer nonlinear iterations without sacrificing accuracy or stability. The effects of
different solvers and timestepping algorithms on the computational efficiency were also studied.
Improved computing technologies, including large-scale vector and parallel architectures, and the
development of more efficient and robust solution solvers have made the application of this fully
implicit algorithm more realistic.

Physical and Mathematical Model

In an oil reservoir, molecular species can undergo transport within phases and exchange
across phase boundaries. For example, many enhanced oil recovery processes rely on the effects
of interphase mass transfer to alter fluid properties in ways that benefit oil production. The
simulation of any of these phenomena requires a fully compositicnal formulation. For a
mathematical model of chemical flooding processes, we simulate multiphase, multicomponent
three-dimensional flow in porous media. The basic governing equations consist of a mass
conservation equation for each component, an energy balance, Darcy's law generalized for
multiphase flow, and an overall mass conservation or continuity equation that determines the
pressure. Various phenomena such as velocity-dependent dispersion, adsorption, chemical
reactions, complex phase behavior, variable phase viscosities and relative permeabilities are
required to model chemical transport in oil reservoirs. The major assumptions used in the
development of our mathematical model for chemical flooding processes are given by Saad, 1989
and Delshad et al., 1994. Various other assumptions and detailed discussions of formulating
specific physical models can be found in Pope and Nelson (1978), Datta Gupta er al. (1986),
Camilleri et al (1987), Bhuyan ez al. (1988), and Delshad et al. (1994).

Mass conservation equations

With the slightly compressible flow assumptions, the mass balance equation for component
k is (Saad, 1989; Delshad et al., 1994)

Ora: (G [1+(CrHCY) APR])

— 0 np —_ = —
+V+(1+C APR) ¥ (Cequg- 08y Kicp-VCyp) = ax
2=1
k=1,..,n;. ¢Y)

The compressibility effects are functions of the pressure change AP, defined as

APR =Pr-Pgro , 2

where Py, is the pressure of a reference phase and Py is the pressure at which all compressibility
reference values are defined. Cs is the pore volume compressibility and C?c is the compressibility of

component K. The overall concentration of each component K is given by
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~ ncy A~ Ny ~
Ck=(1-3% Co ¥ $Cp+Ck, (3)
k=1 2=1

where ncy is the number of volumetric components, Cy is the volume of component k adsorbed on

ncv ~
the rock surface per unit pore volume, and 1- ¥, Ci represents the reduction in pore volume due to

x=1
adsorption.

Physical dispersion is modeled in a precise manner, using the full dispersion tensor. In a
Cartesian coordinate system it is given by:
Kt Kiyxg Kiaxp
Ka=| Kt Kyyr Kz |- @
K szldl Kzz:d.

The elements of the dispersion tensor for multiphase, multicomponent flow in permeable
media including molecular diffusion are:

2 2 2
D OLeu 0Ty (uy2+uzn)
Kyxxs = + (52)
T ¢S 9 luﬁl

2 + 2 + 2
Dldl aL,Quy 9 T (uzp_ u Jl)

Kyves = + (5b)
e S fuyl
D Otuzu2 +0UTy @, +u2,)
KnKP_ _ kL + z0 x2 "yl (50)
T (])S 9 la Ql
u,pu,p (0 p—0erp)
nyldl = nyK,Q = 3 (5d4)
¢S 2 Iu Q'
o, (OLg—0rryp)
KyzKJ'l = sz\dl = e’ (5¢)
([)S 2 h]p_|
u,pu,y (OLp—0erp)
Kok = Kyaxp = 2t > (59

(l)Sp_ luRI



where
— (2 an? 124\1/2
gl = (ux2+uy2+uzn) . 6)

The fluxes u, 2> Uy, and u,y, are modeled through the use of Darcy's law for multiphase flow
through permeable media:
ug =—kAy * (VP)-12VD) @)

where K is a diagonal permeability tensor.

The source terms qy are a combination of volumetric injection/production rate (qyf) per

bulk volume and volumetric reaction rate (qyr) per pore volume for component x and may be
expressed as

Jx = Quftqxr (8a)
with
Qe = OR[1+(Ce+CY) APR] (5 Syrp+Tics) » (8b)
2=1

where riy and rys are the reaction rates in liquid and solid phases, respectively.

.. . £ ...
For tracer components, the total phase saturation includes the flowing (S,) and dendritic

(SE) portions:

SQ_=S§+S;. (9a)

The mass transfer between the two portions is given by a Coats-Smith type capacitance model
(Coats and Smith, 1964; Smith et al., 1988):

d

S Co) =My (Co,~Co)) (9b)

d
ot (S,Q '3

where M, is a constant mass transfer coefficient. The flowing fraction, defined as:
f
Fy=8,/5p (%¢c)

is considered a linear function of the fractional flow function fy (Smith ez al., 1988)

Fp =Fyo+(Fp1-Fpo)fy » (9d)



where Fyq and Fy are the flowing fractions corresponding to the fractional flow function at zero
and one.

Substituting Darcy's law for the volumetric flux up , we can also write the general
conservation equations in the form

Ore: (Cx [1+(CrCQ) APy}

-v-a +c,‘c’APR)§.‘31 [Cegk At » (VP49 VD)+0S; K xp - VCig] = g
) k=1,..,nc. (10)
Pressure equation
The overall material balance equation is the summation of all volumetric component
conservation equations:

orCRR R4 z ug (1+APR>: CCp) = >: % » . an
where C; is the total compressibility defined as
ncv 0
Ci=Cr+ 3 Gl (12)
K=

By substituting Darcy's law for the volumetric flux Hg and using the capillary pressure relations:

P, =Pr+Pp g=1,..m, (13)

the pressure equation is obtained in terms of the reference phase pressure Pp:

0RCe—; Fr _g ¢ i A,n( 1+ APR:g cﬁcd) VPr

2=1
-Vk % {&g( 1+ APRng1 Cgcxn)(vpcm -YJLVD)] = nic‘.‘; ax . (14)
=1 X= x=

ner lan ion

The energy balance equation is derived by assuming that the only sources of energy are
work against pressure, gravity forces, and heat loss to the overburden and underburden rocks
(Delshad er al., 1994). Heat loss to the overburden and underburden rocks is computed using the
Vinsome and Wcsterveld (1980) heat loss method:



%[(l—q»pscvs +03F pgCuST+V % (CuiaT-AVT) =qu,  (15)
2=1 2=1

where ps and pg are the densities of the rock and phase £, T is the reservoir temperature, Cyg and
Cyy, are the constant volume heat capacities of the rock and phase £, Cpy is the constant pressure

heat capacity of phase £, A1is the constant thermal conductivity, and qy is the enthalpy source
term per bulk volume.

The description and the derivation of the conservation equations and the pressure equation
are given in detail in references (Saad, 1989; Delshad ez al., 1994, Liu ez al., 1993).

nitial an ndar ndition

The initial values of the concentration of each component are specified at each point in the
reservoir. For compressible flow cases, the initial pressure distributions are also required. The
pressure equation is parabolic in nature, and requires either the pressure or its normal derivative to
be specified at each point on the boundary. The conservation equations have a hyperbolic element
associated with the convective terms that requires that the composition of any fluid entering
through the boundary be specified, but requires no boundary condition on outflow boundaries, nor
on any boundary through which no flow is allowed. Physical dispersion introduces a parabolic
element to these equations and when present requires composition or its normal derivative to be
specified on all boundaries through which dispersive flux is possible.

The basic boundary condition assumed in the model is no flow and no dispersive flux
through all impermeable boundaries:

n-up=0 (16)
and
i Kyg-VCyy =0. a7

where 1 is the unit vector normal to the boundary. For the inflow boundary, the normal component
of the phase species flux must be known as a function of time. For flow in thermodynamic
equilibrium, this condition can be imposed by specifying the total injection rate for each component
or alternatively the overall composition and one pressure. For the outflow boundary, we require
continuity of fluxes across the reservoir wellbore interfaces and no physical dispersion within the
wellbore. The total flow rate or one pressure is specified.

nstituti lation

The basic governing equations are complemented by a number of constitutive relations that
relate the number of phases present and their compositions, saturations, densities, viscosities,
interfacial tensions, and capillary pressures to the overall component concentrations and pressure
(Lake et al., 1984). Further constitutive relations determine adsorption, residual saturation, and
relative permeability.

A brief list of these relations is given here and the quantities appearing in brackets are the
number of independent equations corresponding to each relation.
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Cc=Cc ©
C is a vector with C, as its elements.

Phase equilibrium relations

-
> -

f(C,C)=0

C is a matrix with C as its elements.

Phase viscosities

Mo =Hp <, 32)

Phase densities

p2=ps (G, Py)

Relative permeabilities
kpp =k ()

S is a vector with S as its elements.
Capillary pressure relations

[

(1]

[np]

[nc]

[nc]

[nc(nc-1)]

[np]

[np]

[np]

[np- 1]



The conservation equations, the pressure equation, and the constitutive relations are the basic
equations describing the isothermal, multicomponent, multiphase flow in permeable media. They

result in 2n¢+ (5+nc)np independent scalar equations equal to the number of dependent variables
listed below:

(1) Total concentration of component K, Cx [nc]
(2) Concentration of component K [nc]
adsorbed on the stationary phase, (”:,c
(3) Concentration of component x in phase 2, Cxg [np-nc]
(4) Phase saturation, Sp [np]
(5) Relative permeabilities, krp [np]
(6) Phase viscosities, pLg [np]
(7) Phase densities, pg [np]
(9) Phase pressures, Py [np]

Fully Implicit Formulation

Our numerical model for the fully implicit simulator is built on the mathematical model. The
simulated spatial domain is a rectangular prism and the Cartesian coordinate system used by the
simulator is referred to as (x, y, z). The finite-difference grid is block-centered and numbered
from 1 to NxNyN;, where Ny, Ny, and N correspond to the number of gridblocks in each

direction. The volume of the mth block (i, J» k) is AVm—AxmAymAzm The delta operator
denotes discrete differences:

5 fn = +l_m
8xfm = fm"fm-l,sxfi = fi—fi-l

8yfm = fm—fm—Nx:Syf:i = f:i_f}-l
O2fm = fm—fm-NxNy, Ozfk = fi—fk-1.

(18)

Most variables, including pressure, concentrations, adsorbed concentrations, saturations,
capillary pressures, phase properties such as density, viscosity, interfacial tension, and relative
permeabilities are calculated and stored at gridblock centers. Some auxiliary variables, such as
transmissibilities and phase velocities, are evaluated at the faces between gridblocks. We illustrate
the system of finite difference equations by applying the finite-difference approximations to the
species conservation equations (Eq. 10) and the pressure equation (Eq. 14) for a two-dimensional
problem.

The component conservation equation for component K at gridpoint m is

o+ 8™ (F ot Fodmr 12 = (B~ St (Fo+Fq b /2 . (19)
The species accumulation term, Fay, is
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(Fadm = (ORAVI(I-3 COY S,Cep+Cod [1+(CHCOPR-Pro)}m  (20)
2=1

x=1

and the transport term, Fyy, is

Fodm= 5 [1+C,‘§(PR—PRo)]mj:)';1 (CreIm(Txdm
[3x(PR+PepR)ms1 = (2 )mOxD)me1]
+ (Koo DmBxCoepdms1+ (Ko DmBylCoepdmHCpdrmetial)
—8,[1+C,‘(’(PR—P.m)],..:z_'i1 {(CypepmTyD)m

[8y(PR+P¢ g R)m+Nx~ Ty 2)mBy(D)meNod

+ (Kyyk 0 )mOy(CiepIm+Nx+ (Kyxe)mOx[(Cupdm+(Cpdm+11} , (1)

where concentrations Cxxg, Cyxg, and convection coefficients, Txg, and Ty, are computed by

(Crep)m = (Cep)m+Om{Txm(Cic)m] }0x(CiepIme1

(22)
(Cyxpdm = (Cyp)m*t P {Tyml(CicpIm1 }8y(Cicp Im+nx
(Txl)m = (T, p,)m"'(Pm{rxm[(Tx 2)ml }sx(Tx 2)m+1 23)
(Tyﬂ)m = (Ty Q)m"'(Pm { rym[(Ty Jl)m] } 8)'('Ty Q)m+Nx
with (Tx)m and (Ty)m, given by
(Tm = 2(AYyAZ) o/ (AxX /Kt AXms1/Km+1) 24)

(Ty)m = 2(AXAZ)/(Aym/Km+AYm+Nx/Km+Nx)

are transmissibilities.
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@m is the flux function and constrained by

0 < ¢m < QPom = min(l, 1) (25)
with

Txn[(Cep)ml = 8x(Ciep)m/Ox(Cieg)m+1

Tym[(Ccp)ml = Sy(Cicp)m/By(Cycp Im+Nx

Txm{(Krg)m] = Sx(krp)m/Bx(Krp)m+1

Tyml(Kepdml = Sy Im/By(krdmenx - (26)

With the fully implicit formulation, all variables and TVD limiter functions are evaluated using the

values of the new timestep. Besides the flux limiter function @, we also need to evaluate the
derivatives of the flux-limiter functions with respect to the related neighboring gridpoint variables.
Results are given in Table 1. The flux-limiter functions and their derivatives corresponding to the
different schemes are shown in Figs. 1 and 2.

The dispersion coefficients Kxxcp, Kyyxg, Kxyxg, and Kyxcg measure the physical
dispersion:

(K_xxxﬂ)m = AYmAZm/[(AXm+AXm+1)/2] (9rS JlexK,Q)m

(nylc.o.)m = AYmAZy/[Aym+(AYm-Nx+AYm+Nx)/2] (PrS JLnylc 2)m

Ryyxp)m = AxmAzen/[(AYm+AYmx)/2] (9RS 1Ky

(—nyxﬂ)m = AXmAZp/[AXm+(AXp 1 +AXm+1)/2](PrS ,QnyK 9 )m . (27)

The average specific weight of phase 2 is calculated from
(YxIm = [(VREp AX)m+ (Y E g AX )41/ ([(E g AX) ey +(E g AX)m 1]

Oy m = [(VEgAY)m+ (Y Ep AV )m s Ne /B AY)m+ EpAY)mans] (282)

where E is the existence index of phase £ and is defined as

0 SpPm=0

Epm = { 1 (Spm>0 - (28b)
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Phase saturations and phase concentrations in the transport term are the flowing portions of
the total phase saturations and phase concentrations if we consider the capacitance properties. The

dendritric portions, Sg and Ciﬂ’ are calculated from:

(S = [(1-F)Sglm = ([1-Fpo~Fp1-Fy0)f 1S Im 29)
and

(Cpm= (€S P/ S Prm » (30)

where the product (C:QSE)m is evaluated using the Coats-Smith type capacitance model (Coats and
Smith, 1964; Smith ez al., 1988):

(Cy S +84% My (Cyy~Crpr 12 = (Coy S8 Mg Cp=Cp a2 - (31

The flowing phase saturations ijz are determined from

£
Sy)m = FEgSpIm (32)
and the total flowing concentrations C,fc are computed by
S of S d o
(CDm =2, (CySpm=(Cm-2, (CopSpm- (33)
2=1 2=1
The flowing phase concentrations Cfd then can be obtained using the partitioning method.

The source and sink term, Fqy, is expressed as
n
Fadm = (¥ [Qp+PDyPut—Pr-Pg)] Cr
2=1

+ORAV[1+(Cr+C(PR-Pro)i( g Sgrp+1x8) }m - (34
2=1

The pressure equation at gridpoint m is

(B 1 +8™(F+ Fo i /2 = (B~ 8" (Fe+Fo)p/2 » (33)

where the total accumulation Fj is

13



ncv ncy A N ~
(Fa)m = (9RAV)m{Ce+ Zl C(1- Zl CoY SpCep+Cd}m(PR)m » (36)
K= K= 2=1

the total transport F; is

Fdm = ~8:( ¥ (Txn)m[1+(PR—PRo)"§‘; C2C, g1
21 K=

: [Sx(PR"'PcQ R)m+1 —@xﬂ)max(D)mﬂ] }
“8,( ¥ (Tyn)mm(PR—PRo)"i: 2yl
21 K=

*[8y(PR+Pcp R)m+Nx~ ¥y )mOy(D)m+Nxl} (37)

and the total source and sink Fq is

Edm =3 [Qq+PD)y(Put-PR—Pegp)lm - (38)
2=1

The capillary pressure model allows us to simulate intermediate-wettability cases (Ferreira, 1992).
Capillary pressure effects are considered in the well model.

Solution of the Nonlinear System of Equations

At each gridpoint, we have a total of n finite-difference residual equations consisting of nc-
1 component conservation equations and one pressure equation. This means that the total number
of independent or primary variables is nc. Besides the reference phase pressure and saturation, we
choose some relevant phase concentrations as the other primary variables. The remaining phase
saturations, concentrations, pressures, and physical properties are secondary variables and depend
on the primary variables. They can be obtained using saturation constraints, phase equilibrium
relations, capillary pressure relations, and all other constitutive relations.

The nonlinear system of residual equations can be linearized and solved using a Newton
iteration, defined by

JOP = -f, (39)

where J is the Jacobian matrix formed by differentiating the nonlinear system of residual equations
J(P) with respect to the primary variables P. The Jacobian matrix and the residual equations are
updated at the end of each iteration, and the iteration continues until the relative changes in the
primary variables between two successive approximations are small enough to satisfy given
tolerance criteria.

14



For a two-dimensional simulation problem of nc components using NxNy gridblocks, the
total number of equations is ncNxNy. The Jacobian matrix is constructed such that the primary
variable indices are the faster—changmg indices in the solution vector. With the high-order scheme,
a total of 13 gridpoints may be involved in the finite-difference equations (Fig. 3) and 13nc-8
partial differentiation computations are required for each equation to build the Jacobian matrix. The
Jacobian matrix may have the same number of nonzero elements in each row and a bandwidth of
2n¢(2Nx+1)-1. Figure 4 shows the matrix structure for a two-dimensional, two-component
problem using the high-order scheme and 5x5 gridblocks.

The solution of the linear system of equations represents the most costly aspect of a fully
implicit simulator. Using an efficient solution solver can greatly improve the efficiency of the
simulator. Both direct and iterative solvers can be employed to solve the system of equations,
although iterative solvers are preferred for multidimensional problems, where the Jacobian matrices
have a large bandwidth.

Timestepping Algorithms

The choice of timestep size is dictated by accuracy considerations and stability constraints.
Since a fully implicit solution technique is employed, the numerical solution is stable for all
timestep sizes. There are, however, other limitations that must be considered. For example,
Newton's method is guaranteed to converge only from good starting guesses. For a simulation
problem, there may be some times when solution gradients are very large, such as near
breakthrough. Simply using the solution of the last timestep as the starting guess for the current
timestep may not converge. In addition, some important physical phenomena may be missed by
using an arbitrarily large timestep size.

Using the past information of the relative changes in the primary variables to decide the
current timestep size is a strategy employed by most timestepping algorithms. The timestep size
selection is based on the information from the most recent iterations and user-specified maximum
and minimum timestep sizes denoted (Dt)max and (Dt)min, such that the current timestep size dgth
follows

(ADmin A (A" A (At)max. (40)

Besides constant timestepping, which often requires a smaller timestep size to guarantee
convergence and takes more simulation time, we employ three timestepping algorithms for the
simulator.

- Algorithm 1 is the one used in The University of Texas fully implicit steamflood simulator
(UTTHERM) (Brantferger, 1991). The ratio of the current to the previous timestep size is

proportional to the relative changes in the primary variables &p:

(AP o< 21 (AR 1, (41)
€p is expressed as
&= “ﬁ,i" | Poj(Po-PR-1) |, (42)

where Ny, is the total number of gridblocks.
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Algorithm 2 uses the ratio of relative changes in the primary variables between the last two
timesteps to decide the current timestep size:

(A" o< (€ /ey ) (A™ L, 43)

Algorithm 3 simply chooses the current timestep size by comparing the number of iterations
N;j required by the last two steps:

(A" o< (NIY/NT-Z)(Aty™ 1, (44)

More sophisticated timestepping algorithms have been proposed where the timestep size
selection is based on truncation error analysis (Mehra et al., 1983; Rubin and Buchanan, 1985). A
sensitivity vector is computed and used to obtain an optimal timestep sequence for a specified
global truncation error. Considerably extra storage and computational effort are needed to get the
required vector for the algorithm, which may overshadow the algorithm, especially when
simulating difficult problems.

The timestep size chosen by any of the timestepping selection algorithms is not guaranteed
to produce convergence results. A recovery feature is included in the simulator to continue the
simulation in case an iteration fails. It stores the necessary information of the last timestep,
automatically reduces the current timestep size, and restarts the iteration until a successful iteration
is completed with a suitable timestep size.

Simulation Results and Analyses

Simulator_verification

To establish the validity of the formulation of the conservation equations, the results of a
one-dimensional miscible flow are compared with the analytical solution of the convection-
diffusion equation. Figure 5 shows a comparison of the analytical solution and the numerical
solution at 0.5 PV injected for a Peclet number (the ratio of convective to dispersive transport) of
1000. One hundred gridblocks with Courant numbers (measure of dimensionless timestep size) of
0.5, 1.0, and 1.5 are used. The agreement between the analytical solution and the simulation
results is remarkable even at the higher Courant numbers. Similar agreement is also shown in Fig.
6 for the same problem but at a lower Peclet number of 100. Note that with the IMPES
formulation, smaller timestep sizes are required for processes dominated by physical dispersion.
This requirement does not exist with the fully implicit formulation.

One hundred gridblocks and a Courant number of 0.5 are used to simulate an example one-
dimensional waterflood problem with zero capillary pressure and a mobility ratio of 3. Figure 7
shows the simulation results along with the analytical solution at 0.2 PV injected. The simulated
solution matches the analytical solution very well except for small numerical smearing at the
displacement fronts.

The boundary conditions on the outflow boundary coupled with the requirement that the
phase pressure be continuous across the boundary results in a phenomenon called the "capillary
end effect" (Richardson et al., 1952; Amyx et al., 1960). An analytical solution of the saturation
profile along a one-dimensional, homogeneous porous medium is given by Richardson er al.
(1952). A one-dimensional simulation example simulated by Chang (1990) is used to check the
implementation of the outflow boundary condition in the simulator. The problem has a Rapoport
and Leas number (the ratio of viscous to capillary force) of 2.78 and a residual oil saturation of
0.35. Figure 8 shows the good agreement between the analytical solution and the simulation
results. One hundred gridblocks and a Courant number of 1 are used.
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The capillary pressure model in our simulator allows us to simulate intermediate-wettability
cases (Ferreira, 1992). A water saturation S* is defined where the capillary pressure is zero. The
capillary end effect of the intermediate-wettability case with S*=0.5 and Rapoport and Leas
number of one was tested. Figure 9 shows the water saturation profiles at times of 1, 5, 10, and 50
PV injected. As time increases, the profiles approach the analytical solution, which is derived
under the assumption of infinite flooding time or steady-state. One hundred gridblocks and a
Courant number of 1 are used.

Figure 10 shows the results of Holing's one-dimensional polymerflood problem at 0.5
pore volumes injected (Holing et al., 1990). One hundred gridblocks and a Courant number of 0.5
are used. The porous medium was initially filled with 70% oleic-phase fluid and 30% aqueous-
phase fluid with 0.9 wt% polymer, then injected with 100% aqueous-phase fluid with 0.1 wt%
polymer. The analytical solutions of the saturation and polymer concentration profiles were
calculated using fractional flow theory (Pope, 1980). Good resolution in both the water saturation
and polymer concentration fronts is obtained and the numerical solution matches the analytical
solution well. '

An analytical solution is available for an ideal tracer flow at unit mobility ratio for a
homogeneous five-spot well pattern (Abbaszadeh-Denghani and Brigham, 1984). The simulation
domain is one-quarter of the well pattern with a length of 330 ft. A 30x30 grid and a Courant
number of 1 were used to simulate the flow of a 2% PV tracer slug with a longitudinal dispersivity
of 0.66 ft and a Peclet number of 500 (Po=8.33). The effluent tracer concentration is normalized
by the product of slug size and the square root of the Peclet number. Figure 11 shows a
comparison of the analytical solution with the simulation results. The overall match is very good,
and the small discrepancy between the two solutions can be reduced using finer grids and smaller
timestep sizes.

Comparison with IMPES formulation

The simulation results of the one-dimensional convection-diffusion, one- and two-
dimensional waterflood, and one- and two-dimensional polymerflood problems are compared with
those obtained using the IMPES formulation. Figure 12 compares the absolute errors and
computation times (VAX 3540) of simulating the one-dimensional convection-diffusion problem
(Npe=100) using the two formulations with 100 gridblocks. The fully implicit formulation
demonstrates its computational efficiency by producing smaller errors compared to the IMPES
formulation for the same CPU time. Figure 13 plots the absolute errors corresponding to different
Courant numbers. The IMPES formulation has larger errors for Courant numbers greater than one
and becomes unstable as the Courant number approaches one. The errors of the fully implicit
formulation are almost identical at small Courant numbers. This can be explained by the second-
order accuracy of the Crank-Nicolson time derivative approximations. The errors caused by time
derivative approximations are small and the total error is mainly from spatial truncation errors for
small Courant numbers.

The higher-order scheme with the IMPES formulation is less stable when simulating both
convection-dominated and dissipation-dominated problems. The dissipation is mainly provided by
dispersive forces for miscible displacements and by capillary forces for immiscible displacements.
The one-dimensional waterflood with a Rapoport and Leas number of 5 is simulated using both
formulations with 100 gridblocks and Courant numbers of 0.1 and 0.5. Figure 14 shows the
instability of the IMPES formulation when a Courant number of 0.5 is used. Figures 15 and 16
show the simulation results of oil recovery, water-oil ratio, and water cut for the two-dimensional
waterflood. The reservoir dimensions, properties, and well pattern and conditions are the same as
those for the tracer flow in a five-spot pattern. The reservoir has an initial oil saturation of 0.8 and
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is then flooded by water. The mobilities of water and oil are characterized by S2 and (1-S)%/2,
where S is the water saturation. A 10x10 grid is used for both formulations. Figure 15 shows the
results of the IMPES formulation, which failed at a Courant number of one, while the results of the
fully implicit formulation are almost the same at Courant numbers of 0.1 and 3.

The time-lagged and pressure-dependent mobility terms in the pressure equation are another
source of instability in the IMPES formulation. For a polymerflood, this instability can arise
because of the explicit treatment of both the relative permeability and viscosity terms. Figure 17
shows this instability when simulating Holing's one-dimensional polymerflood problem. The
IMPES formulation becomes unstable at a Courant of number of 0.5. The results using the fully
implicit formulation with the same Courant number given in Fig. 11 show that they are stable and
close to the analytical solution. A simulation of a two-dimensional polymerflood in a five-spot
pattern is also conducted to compare the two formulations. All input data are the same as those of
the waterflood except that the aqueous phase viscosity becomes 1+10C4, where Cy, is the polymer
concentration in the aqueous phase, and 0.1 wt% polymer is injected instead of pure water. The
results of oil recovery, water cut, and effluent polymer concentration are obtained using the TVD
third-order scheme with a 10x10 grid. At a Courant number of 0.1, the two formulations give
almost same results (Fig. 18). At larger Courant numbers, the results of the fully implicit
formulation show nearly no change (Fig. 19) while the IMPES formulation becomes unstable,
which is characterized by oscillations and late polymer breakthrough (Fig. 20). To test the effect of
heterogeneity, we then simulated the same problem using a heterogeneous permeability field with a
Dykstra-Parsons coefficient of 0.8 (Dykstra and Parsons, 1950). The Dykstra-Parsons coefficient
is a measure of the variability of permeability values and is defined as

Ve =1=(k)gga / (K)os » (45)

where (k)g s is the median of the permeability and (k)g 841 is one standard deviation below the
median. A Dykstra-Parsons coefficient between 0 and 1 represents the degree of heterogeneity.
From the results shown in Figs. 21 to 23, we can draw similar conclusions to those of the
homogeneous case with regard to the comparison of the two formulations. We also observe that
for both formulations smaller Courant numbers are required to simulate the heterogeneous case
than to simulate the homogeneous case.

mparison with lower-order ial discretization schem

The lower-order space discretization one- and two-point upstream schemes are available in
our fully implicit simulator for comparison purposes. These are the conventional finite-difference
schemes employed by most fully implicit simulators. Figure 24 compares the errors simulating the
one-dimensional convection-diffusion problem using the one-point upstream scheme with those
using the TVD flux-limited third-order scheme at different Courant numbers. The number of
gridblocks used for both schemes is 100. The one-point upstream scheme produces larger errors in
practical Courant number regions. The differences become smaller at larger Courant numbers
where time-truncation errors dominate. Figure 25 shows the results of the one-dimensional
polymerflood simulated using the one-point upstream scheme. In contrast to the third-order scheme
(Fig. 11), both the water saturation and polymer concentration shocks are spread out, which
results in inaccurate prediction of both recoveries and breakthrough times and leads to erroneous
conclusions. This can be illustrated by the results of the two-dimensional waterflood (Fig. 26) and
polymerflood (Fig. 27). Water cut, water-oil ratio, and effluent polymer concentration curves
given by the one-point upstream scheme show early breakthroughs of both water and polymer.
The differences between the lower-order scheme and the higher-order scheme can also be observed
from the simulation results of the two-dimensional polymerflood of heterogeneous case (Fig. 28).
For reference, the comparisons between the lower-order scheme and the higher-order scheme
using the IMPES formulation are shown in Figs. 29 and 30.
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Eff f D flux limiter

We have given numerous examples to show the improvements in simulation results using a
TVD flux limiter with the third-order scheme for the IMPES formulation. One example is given
here to show the flux limiter effect on the third-order scheme using the fully implicit formulation.
Figure 31 shows the water saturation and polymer concentration profiles of Holing's one-
dimensional polymerflood problem simulated using the third-order scheme without flux limiting.
Comparison with the flux-limited results (Fig. 11) clearly demonstrates the importance of flux
limiting to the high-order scheme for the fully implicit formulation.

Improvements in computational efficiency

To study the effects of the linear equation solvers on the efficiency of the simulator, tracer
flow in a five-spot pattern is simulated up to 1.3 PV injected using both direct (LU decomposition) -
and iterative (OMIN algorithms, a truncated and restarted method for nonsymmetric systems)
solvers with 30x30 grids and a Courant number of 3. The iterative solver is provided by the
NSPCG package (Oppe ez al., 1988). Table 2 shows a comparison of the two solvers. The ratio of
the total CPU time (CRAY Y-MP) using the iterative solver to that using the direct solver is 0.56
and the total time saving is 42%. The iterative solver is definitely preferred here. Since solving the
linear system of equations is the most costly part of total simulation time (95% using the iterative
solver and 98% using the direct solver), using the more efficient solver greatly improves the more
computational efficiency of the fully implicit simulator.

The timestepping strategy was studied simulating the two-dimensional polymerflood. A
5x5 grid was used for the test. The oil recovery, water cut, and effluent polymer concentration
results are shown in Fig. 32. The three timestepping algorithms are compared with same initial
Courant number of 1. The maximum and minimum Courant numbers are 3 and 0.01, respectively.
Simulation using a constant timestep size using a Courant number of 0.5 is also conducted for the
purpose of comparison. The Courant number and the iteration numbers corresponding to different
algorithms over the entire simulation period are shown in Figs. 33 and 34. After breakthrough,
the curves of algorithm 1 change more dramatically compared to those of the other algorithms. The
simulation time (CRAY Y-MP), total number of timesteps, total iterations, and average Courant
numbers are listed in Table 3. Algorithm 1 takes more iterations, more timesteps, more computer
time, and smaller average Courant number to complete the simulation. The comparison emphasizes
the importance of using a suitable timestepping algorithm.

Summary, Conclusions, and Future Work

We have developed a fully implicit algorithm for compositional, chemical flooding
simulation and a simulator with all the numerical features. The pressure equation and the
component conservation equations are solved simultaneously. The temporal derivative is
discretized using a Crank-Nicolson-type scheme. The interface concentration and mobilities are
computed using the third-order scheme with TVD flux limiting. The finite-difference
approximation has overall second-order temporal accuracy, third-order spatial accuracy for
convection problems, and is total variation diminishing. The resulting nonlinear system of residual
equations are solved for the primary variables which consist of a reference phase pressure, a
reference phase saturation, and relevant phase concentrations. For the fully implicit formulation,
besides the flux-limiter functions, we also need to evaluate the derivatives of flux limiter functions
with respect to the related neighboring gridpoint solutions. The corresponding evaluation formulas
are given in this study. The nonlinear system of residual equations are linearized and solved using
Newton iterations. The Jacobian matrix of the Newton iteration and the flux-limiter functions and
their derivatives are updated at the end of each iteration.
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Test cases are shown to verify both the mathematical formulations and the finite-difference
schemes and to ensure the correctness of the program coding. Verification cases with analytical
solutions include problems of one-dimensional convection-diffusion, waterflood, polymerflood,
capillary end effects, and two-dimensional ideal tracer flow in a five-spot pattern. The results of
one-dimensional convection-diffusion, one- and two-dimensional waterflood, and one-dimensional
polymerflood problems were used to compare the accuracy and efficiency of different simulation
methods. With both using TVD high-order schemes, the fully implicit formulation is compared
with the IMPES formulation. Using the fully implicit formulation, the first-order spatial
discretization scheme is compared with the high-order spatial discretization scheme, and the high-
order scheme is compared with the TVD high-order scheme. The computational efficiencies of
different solvers and timestepping algorithms have been studied simulating a two-dimensional
polymerflood and ideal tracer flow in a five-spot pattern.

The simulator is verified by the good agreement between the numerical results and
analytical solutions. The results demonstrate that the TVD high-order scheme with a fully implicit
formulation is more stable than that with an IMPES formulation. Using the fully implicit
formulation, the TVD high-order scheme is more accurate than the lower-order spatial
discretization scheme and the high-order spatial discretization scheme without TVD flux-limiting.
The computationally efficiency of the simulator can be greatly improved by using suitable
timestepping algorithms and effective solution solvers to solve the linear systems of equations,
which represents the most costly aspect of a fully implicit simulator.

We are now testing our implicit method on two-dimensional problems involving more
physical-chemical properties such as heterogeneity, capillarity, dispersion, adsorption, etc. We will
continue testing our solution schemes by using different solvers-and timestepping algorithms. We
will later extend our implicit method to three-dimensional polymer and surfactant flood problems.

OPTIMIZATION OF SURFACTANT FLOODING

Introduction

The main objective of Task 2 is to develop the knowledge and capability of how to use
simulation effectively to lower the risk and cost of surfactant flooding. The reduction of the risk
and cost of surfactant flooding are closely related tasks, since any reduction in risk will directly
improve the economics of a commercial field application. Affordable reservoir simulation
realistically taking into account reservoir characteristics is the only method that the reservoir
engineer has to optimize the design of surfactant floods. The importance of good reservoir .
characterization and the large impact of reservoir characteristics on surfactant flooding as well as
other tertiary oil recovery processes have been well-established during the past twenty years.
Improved means to assess the risk and performance of surfactant flooding taking into account
realistic reservoir characteristics are clearly needed. The most important of these reservoir
characteristics is heterogeneity. :

In the past, we and others have used the traditional layered-reservoir description in our
simulations of surfactant flooding. Although the theoretical basis for using more flexible and
realistic reservoir descriptions based upon geostatistical methods has been available now for
several years, and we and many others have applied these methods to the simulation of other
processes such as waterflooding, their application to surfactant flooding has not been attempted to
date. This is unfortunate since surfactant flooding is generally more sensitive to reservoir
characteristics than simpler processes and the need for cost and risk reduction much greater.
Clearly, the use of stochastic simulations lends itself to the quantitative assessment of uncertainty,
since multiple realizations of the same statistical description can be made and some idea of the
probability distribution of outcomes computed. In addition, the stochastic approach can be used to
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better understand the impact of reservoir characteristics and then to improve the design of the
surfactant flood so that it will be more robust and efficient and our predictions more accurate.

We illustrate a few of our simulation results in this report based upon our initial efforts to
accomplish this goal, which is part of task 2 of our research project. Using geostatistics, we
perform a systematic evaluation of the impact of heterogeneity on surfactant flooding. Permeability
fields as a function of the variance and correlation lengths are generated using geostatistical
methods. When well data and other deterministic information about the reservoir are superimposed
on these descriptions, the process is known as conditional simulation. Conditional simulations
have been used in waterflooding and miscible flooding but not in surfactant flooding.

To study the effect of stochastic modeling on surfactant flooding, several multiple
realization studies were conducted. To generate different realizations only the random number seed
is changed, keeping other statistical parameters the same. To quantify the uncertainty, various
geostatistical parameters such as correlation length, reservoir heterogeneity (Dykstra-Parsons
coefficient), and vertical-to-horizontal permeability ratio were chosen. All of the above parameters
have been studied with multiple realizations of the same permeability field.

Surfactant floods should benefit from the improved injectivity brought about by horizontal
wellbores. Simulation could help us in determining the benefits and drawbacks of horizontal
wellbores when used in surfactant floods. In this report, simulation is used to study the effect of a
horizontal injection wellbore on the injectivity and sweep efficiency of surfactant floods under a
variety of reservoir conditions. These conditions are different well spacings, different wellbore
lengths, different vertical-to-horizontal permeability ratios, and different permeability field
realizations.

Base Case Simulation

All simulation runs were carried out using UTCHEM, a three-dimensional chemical
flooding simulator developed at The University of Texas at Austin. A quarter-symmetry element
of a 40-acre five-spot pattern is considered. The simulated quarter five-spot is 660 ft in the x
direction, 660 ft in the y direction, and 140 ft in the z direction. The simulation grid, as shown in
Fig. 35, is 11x11x5, so the gridblocks are 60 feet each in the x and y directions and 28 feet in the
z direction. The porosity is uniform and equal to 0.136. The permeability field was generated
stochastically. The Dykstra-Parsons coefficient (Vpp) is 0.8 and the geometric mean permeability
is 50 md. This description is an idealization of an actual mid-Continent U.S. sandstone oil
reservoir that is a potential candidate for surfactant flooding since it has already been waterflooded
to near its economic limit and is otherwise subject to abandonment. The stochastic reservoir
description was generated using a University of Texas program based upon the matrix
decomposition method (Yang, 1990). A spherical variogram and a log normal permeability
distribution were used. The permeability distribution for correlation lengths of 660 feet in the x
and y directions and 28 feet in the z direction, Vpp = 0.8 (the standard deviation of the logarithm
of the permeability is 1.609), and Realization No. 1 are shown in Fig. 36.. Permeability values
range between 0.17 and 2,550 md.

Physical properties used in all the simulations described here are shown in Figs. 37
through 46. Figures 37 and 38 show the oil and water relative permeability curves used at low and
high capillary numbers, respectively. Figure 39 shows the relative permeability for microemulsion
and oil at high capillary number. Polymer properties are typical of a xanthan gum solution. Figure
40 shows the polymer adsorption modeled by a Langmuir-type isotherm as a function of polymer
concentration. Polymer viscosity as a function of polymer concentration and shear rate is shown in
Fig. 41. Figure 42 shows the plot of permeability reduction factor against polymer concentration.
Figure 43 shows the capillary desaturation curves for oil, water, and microemulsion phases, which
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indicate the mobilization of these phases as a function of a dimensionless capillary number.
Interfacial tensions for oil and microemulsion and water and microemulsion are shown as a
function of solubilization ratios in Fig. 44. Figure 45 shows the surfactant adsorption as a
function of surfactant concentration. The ternary diagram for the Type III phase environment of
the oil, water, and surfactant mixture at a salinity of 0.611 meg/ml (35,700 mg/l) is plotted in Fig.
46. Although the surfactant and polymer properties are extremely important and have been
carefully selected to be close to optimal for these conditions, but still realistic based upon the best
of recent chemical research developments, we do not go into this aspect of the process simulation
since we want to focus on the stochastic simulation aspect in this report. The simulated chemical
properties will be varied in future reports. A detailed description of the physical property modeling
in UTCHEM is given by Saad (1989).

To mimic conditions before the start of tertiary oil recovery, the reservoir was first
waterflooded with a low initial water saturation of 0.2, and the simulation ended when a water cut
of 98% was reached. In the future, we plan to study the effect of variable residual saturations and
initial saturations in the reservoir, which is more realistic as the permeability is stochastically
distributed. The resulting pressure and saturation distributions were then used as the initial
distributions for the surfactant flood simulations. The average oil saturation was 30.97% at the
end of the waterflood for this base case. After waterflooding, 0.25 pore volumes of 2.5 vol.% of
surfactant was injected. The surfactant slug contained 1,000 ppm polymer and was followed by
another 0.5 pore volumes of polymer at the same concentration and finally by water for another
3.25 pore volumes. The wells were vertical and pressure-constrained, and a total of 1,000 psia
pressure drop between the injector and the producer was used. The input parameters and the
injection scheme for the base case are given in Tables 4 and 5.

The results of the surfactant flood are shown in Figs. 47 through 54. Cumulative oil
recovery as a fraction of oil in place at the time of chemical flooding is shown versus pore volumes
injected in Fig. 47 and versus time in Fig. 48. The fraction of oil recovered is about 0.6 at 4 pore
volumes and it takes about 33 years to reach this value. The results are shown as a function of
both time and pore volumes, since the wells are pressure-constrained and therefore the injection
rate varies with time. The pore volumes injected as a function of time is shown in Fig. 49, which
indicates the increased injectivity during the postflush (pore volumes > 0.75). The plot of oil
production rate (Fig. 50) shows that the surfactant/polymer slug and polymer drive have
effectively displaced the oil bank with an oil rate peak of 200 B/D. The history of total injection
rate (Fig. 51) indicates a low injectivity of about 650 B/D during the injection of
surfactant/polymer slug and polymer drive, and the injectivity increases to about 4,700 B/D for the
injection of low-viscosity water during the chase waterflood. Total surfactant and polymer
concentrations at the producer are plotted in Figs. 52 and 53, respectively. Figure 54 shows the
effective salinity.

Correlation Length

To investigate the effect of correlation length on surfactant flooding, the - and y-direction
correlation lengths were varied simultaneously keeping other statistical parameters the same as
those of the base case. The spatial correlation length is the distance over which neighboring
permeability values are related to one another. The correlation length can be determined from the
variogram, which is the variance of the differences between the permeabilities at two locations
separated by a distance h (Kerbs, 1986). The value of h at which the variogram levels off is the
correlation length. Correlation length of zero indicates a fully random distribution where the
permeability at a given location is independent of its neighbors. With increasing correlation length,
the range of influence of one permeability on its neighbors increases up to a distance equal to the
correlation length. As the correlation length approaches infinity, the permeability field becomes
layered.
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Correlation lengths were 330 ft, 660 ft (base case), 1,320 ft and 2,640 ft in the x and y
directions. Figures 55 and 56 show the permeability distribution for realization 1 and correlation
lengths of 330 feet and 2,640 feet. We also compared a surfactant flood in a reservoir described
with uniform permeability layers. This layered reservoir had the same average permeability and
standard deviation of permeability to those of the stochastic reservoir. The five vertical gridblocks
for the layered description had permeabilities from top to bottom of 275 md, 4.5 md, 197 md, 12.8
md, and 104 md and a uniform porosity of 0.136.

Simulations were conducted as described above for the base case with only the permeability
field varied. Figure 57 shows the effect of correlation length on cumulative oil recovery as a
fraction of oil in place after the waterflood for the layered description and for the four stochastic
cases. We have elected to represent these results as a function of time rather than pore volumes to
emphasize the impact of correlation length on injectivity. Both the injector and producer are
pressure-constrained wells, so the injection rate varies with time (Fig. 58) as a sensitive function of
the reservoir description, and this has a major impact on the project life and thus the economics of
the project. As the ratio of the correlation length in the x and y directions to the length in the z
direction increases, the reservoir looks more and more like a layered reservoir, and this is clearly
reflected in the oil recovery curves of Fig. 57. This shows that there is indeed an incentive to
consider reservoir descriptions other than the layered description traditionally used to simulate
surfactant flooding. As correlation length increases, the recovery is accelerated but the ultimate
recovery decreases. These results can be explained by examining the permeability distribution for
each case. This is because, with increase in correlation length, there is channeling in the reservoir
through high-permeability layers, and this causes oil to be bypassed in low-permeability layers,
resulting in lower oil recovery (Fig. 56). In lower correlation length reservoirs, injectivity is
lowered as there are no channels of high permeability (Fig. 55). Low permeability causes more
uniform distribution of the injected fluids, and hence higher oil recovery, but at a lower rate.

Reservoir Heterogeneity

To study the effect of reservoir heterogeneity, permeability fields were generated for
Dykstra-Parsons coefficients (Vpp) of 0.6, 0.8 (base case), 0.85, and 0.9. We selected these
values of Vpp because they are representative of oil reservoirs that are potential targets of
surfactant flooding in the U.S. The simulations were carried out as the base case using these
permeability distributions in both waterflood and surfactant/polymer floods. Figures 59 and 60
show the permeability distributions for Vpp of 0.6 and 0.9 and realization 1. These figures show
the contrast in heterogeneity for the two extreme cases.

Figure 61 shows the effect of reservoir heterogeneity on the cumulative oil recovery. This
figure shows that the increase in reservoir heterogeneity accelerates the oil recovery but the ultimate
oil recovery is less. Higher Vpp means higher variance in permeability. Hence the difference of
permeability in neighboring blocks will be greater than for the case of lower Vpp. Because of this
permeability distribution, oil in low-permeability zones is bypassed, which results in lower
cumulative recovery. Lower Vpp has higher cumulative recovery because of better sweep
efficiency caused by relatively more-uniform distribution of permeability. Accelerated recovery for
high Vpp is because channeling of the injected fluids results in higher injectivity (Fig. 62). Low
permeability constrains the path of injected fluid and hence fluids take path of the least resistance,
causing accelerated recovery.

Multiple Realizations of the Same Permeability Field
To study the effect of multiple realizations of the same permeability field on surfactant

flooding, four realizations were generated with the same log-normal statistics as the base case but a
different random seed number. The statistics of these permeability fields are listed in Table 6.
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Similar simulations to those of the base case were repeated using these permeability distributions.
The results comparing the oil recovery versus time and pore volumes injected are shown in
Figs. 63 and 64. Realizations 1 and 4 give similar results, whereas realizations 5 and 2 show the
fastest and slowest recovery rate, respectively (Fig. 63). The oil recovery versus pore volumes
plot shows that realizations 1 and 2 have the same ultimate recovery while realization 4 shows the
lowest ultimate recovery. Ultimate recovery for realization 2 was about the same, but it took about
132 years for that recovery. Total injection rates are shown in Fig. 65, which shows a similar
injectivity for realizations 1, 4, and 5 but an extremely low injectivity for realization 2. This was
because the injector was located in a low-permeability layer (Fig. 66). Figure 67 shows the oil
production rate for these realizations. Figures 68 and 69 show the effect of multiple realizations on
the cumulative oil recovery and oil production rate for a permeability field with Vpp = 0.9. Figure
69 shows that the oil rate peaks at different times even for the same statistical properties, similar to
the trend observed for the heterogeneous base case with Vpp of 0.8.

These unconditioned simulations show a very large variation in oil recovery and project life
that can result by simply using different random assignment of permeability to the reservoir
gridblocks from a permeability distribution with the same statistical parameters and variogram. By
conditioning this reservoir distribution with reservoir data such as core data, well logs, pressure
data, or tracers, this variation can be reduced. Conditional simulations are in progress.

Vertical-to-Horizontal Permeability Ratio

The vertical-to-horizontal permeability ratio (k,/ky) was varied from 1, 0.1 (base case),
0.01, to 0.001 to examine the effect of crossflow on the recovery. The permeability field was
generated as before, but in each simulation only k,/k;, was changed. These simulations were the
similar to the base case. The major changes were that the salinity of the postflush was kept the
same as that of the slug and drive (0.611 meq/ml) and the maximum injection rate was constrained
to 2,000 B/D.

Figures 70 and 71 show the cumulative oil recovery plotted against pore volumes injected
and time, respectively. Figure 70 shows that the ultimate oil recovery is not very sensitive to k/ky,
ratio, but Fig. 71 shows that the oil recovery is greatly accelerated for higher k,/kj, ratios.
Increased crossflow causes better sweep of the reservoir and thus better recovery. Figure 72
shows the oil rate for different k,/ky, ratios. This figure shows that oil rate is higher and the peak
rate is accelerated for higher k,/ky, ratios. This emphasizes the need for accurate reservoir
description, since the k,/ky, ratio affects the project economics.

Simulation of Surfactant Floods with Horizontal Wells

A series of surfactant/polymer simulations very similar to the above base case (except the
skin was changed from -1 to -3) were made as a preliminary evaluation of the use of a horizontal
rather than vertical injector. The areal location of the horizontal injector within the five-spot well
pattern symmetry element is shown in Fig. 73. The horizontal injection well is linked to the
vertical injection well and placed in the highest-permeability layer (layer 2). The high viscosity of
injected polymer solution and the economic incentive for a short project life tend to drive us in the
direction of horizontal injectors rather than producers.

The results of the simulations with vertical and horizontal well arrangements are plotted in
Figs. 74 through 81. Cumulative oil recovery as a fraction of oil in place at the beginning of
surfactant flooding is plotted versus time in Fig. 74 and versus pore volumes injected in Fig. 76.
These plots show that the addition of a horizontal injection well reduced the ultimate oil recovery
from 57.1% to 52.7%. However, the project life decreased significantly from 22.7 years to 11.3
years because of the greatly improved injectivity. The plot of the oil rate (Fig. 75) shows that the
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surfactant flood has effectively displaced an oil bank. With the horizontal injection well, the oil rate
has increased from about 40 B/D to a peak of 370 B/D. With just the vertical wells, the rate has
increased from about 15 B/D to a peak of about 150 B/D. Simulation of the surfactant flood with
the horizontal injection well reaches a peak higher and earlier than simulation without the horizontal
well. The plot of the injection rate (Fig. 78) and the plot of the pore volumes injected (Fig. 77)
show that, as expected, the injectivity is much lower during injection of polymer than during
injection of the low-viscosity chase water. It is during injection of polymer that the benefit of a
horizontal injection well in reducing the project life is very apparent. Plots of the surfactant
concentration and polymer concentration show the expected delays in the peaks. The peaks from
simulation with only the vertical wells are slightly lower. The plot of effective salinity indicates
that the effective salinity has been within the lower and upper limits for most of the simulation time
and therefore near optimum until chase water is injected at a salinity lower than the lower limit.

11 in

Simulations were carried out using the same base case data except that the well pattern was
reduced from 40 acres to 10 acres. Waterfloods and then surfactant floods with and without the
horizontal injection well were made with this reduced pattern to see its effect. As expected, the
lower acreage resulted in much shorter project lives. In the case of the vertical wells (Fig. 82), the
surfactant-flood project life was reduced from 22.7 years to 6.2 years. With the horizontal injection
well (Fig. 83), the project life was reduced from 11.2 years to 3.6 years.

rizontal llbore length

To see the effect of the horizontal wellbore length, additional simulations were carried out
with the length of the wellbore equal to 3/4, 1/2, and 1/4 of its full length. The results of these
simulations are shown in Fig. 84. The results for this specific case show that only half of its length
was needed to obtain the full benefit of the horizontal well.

Multiple field realizations

To investigate the effect of multiple permeability-field realizations on surfactant flooding,
several realizations were generated with the same log-normal statistics. The characteristics of these
permeability field realizations are listed in Table 6. Vertical x-z cross sections of realizations 1
through 4 are plotted in Figs. 85 through 88. Simulations were made with each of these
permeability fields with both vertical and horizontal injectors. The results comparing the oil
recovery versus time and pore volumes injected are plotted in Figs. 89 through 92 for the vertical
injector cases. As seen from Fig. 89, realizations 1, 4, and 5 give results relatively close to each
other. Realization 3 gives a lower ultimate oil recovery at a significantly earlier time. This is an
indication of poor sweep due to channeling. Realization 2 shows a very low injectivity, although
the sweep is relatively good, as seen in Fig. 90. This is due to the injector being completed in a
very low-permeability zone. A different situation happens when a horizontal injection well is used
in these surfactant flood simulations. As seen in Fig. 91, realization 2 shows an improvement in
injectivity. Realization 4 shows a decrease in sweep efficiency. Realization 3 shows poor sweep.
Realizations 1 and 5 are still close and give good sweep and injectivity.

Next, the effect of the vertical-to-horizontal permeability ratio was studied. Using the base
case data, only the vertical-to-horizontal permeability ratio was varied. The values studied were 1,
0.1, 0.01; 0.001, and 0.0001. Results are shown in Figs. 93 through 96. These results show that
there is no major difference in the cumulative oil recovery at a given injected pore volumes (see
Figs. 94 and 96). However, the injectivity decreases significantly with decreasing vertical-to-
horizontal permeability ratio for both vertical and horizontal injectors (see Figs. 93 and 95). The
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decrease for the case of a horizontal injector is greater than for a vertical injector. The decrease in
injectivity with lower vertical-to-horizontal permeability ratio is a general and very important trend
in all cases that we have studied to date, which include waterfloods, polymer floods, miscible
floods, and now surfactant floods. Thus, it is very important to have an accurate estimate of
vertical permeability of any reservoir that is a candidate for improved oil recovery, yet this is
generally a poorly known value, and techniques for measuring it are not well-known or routine to
say the least. Some of our related research on the use of interwell tracers for reservoir
characterization has addressed this important problem, and the reader is referred to our DOE
reports on this subject for additional information.

Summary, Conclusions, and Future Work

Based on our study of surfactant flooding using stochastic reservoir descriptions, we have
concluded the following: an increase in correlation length accelerates oil recovery but decreases
ultimate oil recovery; the simulation results for a layered reservoir are overly optimistic compared
to those of complex and realistic reservoirs that are generated stochastically; an increase in reservoir
heterogeneity (as measured in this context by the variance of the permeability field) accelerates oil
recovery but decreases ultimate oil recovery. Multiple realizations have shown that the oil recovery
is sensitive to the uncertainty in the permeability field distribution, even when statistical properties
are kept the same, and crossflow accelerates oil recovery but has little effect on ultimate oil
recovery. Since all of these results used just one variogram and kept all other reservoir properties
fixed (for example porosity and residual oil saturation), many variables remain to be studied.

For the base case simulation, a horizontal injection wellbore was found to improve the
injectivity of a surfactant flood and to reduce the project life. The project life was reduced from
22.7 years to 11.3 years. Well spacing and pattern size directly affect the project life. A smaller
well pattern results in a proportionately shorter project life. When well spacing was decreased by a
factor of four, project life was reduced from 22.7 years to 6.2 years for the case of vertical wells
and from 11.2 years to 3.6 years for the case of the horizontal injection well. A full-length
wellbore may not be necessary. Simulation results show that only half of the full length is needed
to obtain the full benefit of the horizontal injection wellbore for the case studied. Injectivity
decreases with decreasing vertical-to-horizontal permeability ratio. A horizontal well helps remedy
the problem of a low-injectivity vertical well that is completed in a low-permeability zone, such as
in the case of realization 2 in our study. Obviously, a horizontal injection well may not improve the
problem of severe channeling, since most of these cases already have a high injectivity such as in
realization 3. A horizontal injection well may even worsen the sweep efficiency and lower the
ultimate oil recovery at the economic limit if it enhances channeling and creates a shorter flow path
to the production well, such as in the case of realization 4 of our study. The spatial variation of the
permeability should be estimated as accurately as possible before initiating any surfactant field
project. In case of large heterogeneity, horizontal wells should be drilled and completed in such a
way that sections that could reduce sweep because of their high injectivity could be shut off .

At the present time we are studying the effect of various parameters on conditioned
reservoirs, as well as the effect of process parameters on the surfactant flooding process using both
horizontal and vertical wells.

NOMENCLATURE

aj = Coefficients in the flux limiter functions

b; = Coefficients in the flux limiter functions
C4a = Concentration of polymer in aqueous phase
Cs = Pore compressibility, M-1LT2
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Total compressibility, M-1LT2
Overall concentration of component K

Adsorbed concentration of component K
Compressibility of component k, M-1LT2
Concentration of component K in phase £

Constant volume heat capacity of rock, L2T-2K-1
Constant volume heat capacity of phase £, L2T-2K-1
Constant pressure heat capacity of phase £, L2T-2K-1

Distance between node points, L
Molecular diffusion, L2T-1

Fractional flow function of phase 2

Flowing fraction of phase 2

Flowing fraction of phase 2 at fractional flow of zero
Flowing fraction of phase £ at fractional flow of one
Overall accumulation of component x, L3

Overall transport of component k, L3T-1

Overall source or sink of component k, L3T-1
Overall mass flux of component x, ML-2T1-1

Jacobian matrix
Permeability, L2

Permeability tensor

Horizontal permeability, L2
Relative permeability of phase 2
Permeability deviation coefficient

Endpoint relative permeability for phase 2
Dispersion coefficient, L3T-1

Dispersion tensor

Diagonal elements of the dispersion tensor for
component x in phase £, L2T-1

Off diagonal elements of the dispersion tensor for

component x in phase 2, L2T-1

Mass transfer coefficient, T-1
Total number of components

Total number of volume occupying components
Total number of phases

Capillary pressure exponent
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Wk

Ax, Ay, Az

Greek Symbols

o, B,y

Total number of gridblocks

Number of iterations

Peclet number (L/a)

Rapoport and Leas number

Number of gridblocks in the x, y, and z directions

Capillary pressure between phases £ and £' , ML-1T-2
Phase pressure, ML-1T-2
Reference pressure, ML-1T-2

Well flowing pressure, ML-1T-2

Exponent for calculating shear rate dependence of polymer
viscosity

Cell Peclet number (Ax/o)

Productivity index, M-1L4T

Unit volumetric source or sink of component X, T-1

Unit volumetric injection/production rate of component x, T-1

Unit volumetric reaction rate of component k, T-1
Unit enthalpy source term, MLT-3

Rate, L3T"1
Ratio of consecutive gradients

Unit mass source or sink of component X, ML-3T-1
Reaction rate of component x in phase 2, L-3T-1

Reaction rate of component ¥ in stationary phase £, L-3T-1

Expansion ratio
Permeability reduction factor
A random number with a normal distribution

Saturation value at zero capillary pressure
Phase saturation

Normalized phase saturation

Exponent for calculating salinity dependence of polymer
viscosity

Residual saturation of phase 2

Initial water saturation

Timestep size, T

Transmissibility, L3, Temperature, K

Convection coefficient, M-1LAT

Flux, LT-!

Overall mass concentration of component k, ML-3

Gridblock sizes in the x, y, and z directions, L

Coefficient for nonuniform grids
28



49 = Longitudinal dispersivity of phase £, L

Ot = Transverse dispersivity of phase £, L

Bp = Effective salinity parameter for polymer viscosity

&1 2 = Shear rate at which polymer viscosity is one-half the polymer
viscosity at zero shear rate, T-1

".{c = Coefficient in equivalent shear rate equation

Yy = Specific weight of phase 2, ML-2T-2

€ = Error between numerical solution and analytical solution

& = Relative changes in primary variables
Courant number

Aa = Relative mobility of the aqueous phase, M-1LT

Ao = Relative mobility of the oleic phase, M-ILT

A = Relative mobility of phase 2, M-1LT

AT = Constant thermal conductivity, MLT-3K-1

Hy = Phase viscosity, ML-1T-1

(1] = Intrinsic polymer viscosity

M, = Water viscosity, ML-1T-1

Py = Density of component ¥, ML-3

Pyca = Density of component  in phase 2, ML-3

PR = Reference density of component k, ML-3

Py = Density of phase 2, ML-3

P = Density of rock, ML-3

(0} = Porosity

o = Porosity at reference pressure

(0} = Flux limiter function

®b = Upper bound of TVD flux limiter function

(o)} = Potential, ML-1T-2

Subscripts and Superscripts

Accumulation term index

Aqueous phase index

Arithmetic mean

Dendritic fraction

Flowing fraction

Spatial indexes in the x, y, and z directions
Component index

Phase index
Longitudinal
Timestep index
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o = Oleic phase

q = Source or sink term index

T = Residual, or relative property
t = Transport term index

T = Transverse
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Table 1. TVD flux and its derivatives

TVD Flux
fir12 = fi+Qi(ri)Oxfis1

@i(1i) = ajr;+b;
1; = Oxfi/dxfist1

Derivatives of TVD Flux

ofivpe _ _, .
afi_l - ((Pr)l
afi+1 ,2 — 1. g X
of; = 1-@j+ (1417 (Pp);
ofi1 2_ . -
-afi+_l-- =@ rl((Pr)l

Flux-Limiter Functions and Their Derivatives

Scheme T ¢i (®p)i
Without TVD (-o0, +00) ajri+bji aj
With TVD (-0, 0) 0 0
(0, bi/(1-aj)) I 1
(bi/(1-aj), (1-bi/a;) ajri+bj aj
((1-bp/aj, +e°) 1 0
Van Leer (-o0, +00) 2r;/(ajri+b;) 2bi/(ajri+b;i)2
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Table 1. TVD flux and its derivatives (cont'd.)

Coefficients in the Flux Limiter Functions and Their Derivatives

Scheme aj b;
One-Point Upstream 0 0
A .
Two-Point Upstream s S 0
AXx;.1+AX;
Leonard 1/6 1/3
Saad Ax; 2Ax;
3(Axi_1 +Axi) 3(Axi+Axi+1)
High-Order AX;AXi+1 Ax;(2Ax;+AXi1)
(Axi +Axi_ 1 )(ZAXi-*-AXi_l +Axi+1) (Axi+Axi+1 )(2Axl +Axi_1 +Axi+1)

Van Leer 1+ ﬁ(—”—l 1+ Axi-1

Ax; Ax;
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Table 2.  Comparison of CPU time using direct and iterative solvers

Iterative Solver

CPU Time (sec)
Solver

Total
Solver/Total (%)

Iterative Solver/Direct Solver

OMIN

1961.2
2071.6
94.6

Direct Solver
LU Decomposition

3569.6
3653.6
97.7

0.567

Ideal tracer flow in five-spot pattern
Peclet number: 500

Number of gridblocks: 30x30
Courant number: 3.0

Pore volumes injected: 1.3
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Table 3. Comparison of timestepping algorithms

Constant

Timestep
CPU (sec) 2.5
Number of Successful Iterations 493
Number of Failed Iterations 0
Total Number of Iterations 493
Number of Timesteps 50
Average Number of Iterations
Per Timestep 2.2
Average Courant Numbers 0.5

17.2
934
2552
3486
85

41.0
0.29

Algorithm

2

2.2
401
36
437
26

154
0.96

3

1.9
389

389
29

13.4
0.86

Polymerflood in homogeneous five-spot pattern
Number of gridblocks: 5x5

Maximum Courant number: 3.0

Minimum Courant number: 0.01

Pore volumes injected: 1.0
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Table 4. Base case input data for surfactant simulations

Dimensions of reservoir simulated 660 ft x 660 ft x 140 ft
Number of gridblocks in the x, y, and z directions 11x11x5
Uniform gridblock sizes 60 ft x 60 ft x 28 ft
Porosity 0.136
Arithmetic average of the permeability 148.1 md
Reservoir depth 3,500 ft

Initial reservoir pressure 900 psia
Average initial water saturation 0.709

Initial salinity expressed in total equivalent anions 0.611 meg/ml
Initial divalent ions concentration 0.1275 meqg/ml
Residual water saturation 0.14

Residual oil saturation 0.25

Endpoint relative permeability of water 0.106
Endpoint relative permeability of oil 0.8

Exponent of the water relative permeability curve 2.1

Exponent of the oil relative permeability curve 1.7

Water viscosity 0.74 cp

Oil viscosity 7.78 cp

Water specific weight 0.433 psi/ft
Oil specific weight 0.3882 psi/ft
Surfactant specific weight 0.42 psi/ft
Longitudinal dispersivity 0.16 ft
Transverse dispersivity 0.04 ft
Wellbore radius 0.2 ft

Skin factor of injection well -1

Injection pressure 1,250 psia
Production pressure 250 psia
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Initial conditions

End of waterflood criterion
Anion concentration
Divalent ion concentration

urfac 1 1 slu
Slug size
Surfactant concentration
Polymer concentration
Anion concentration
Divalent ion concentration

Pol r drive sl

Slug size

Polymer concentration
Anion concentration
Divalent ion concentration

hase water driv
Anion concentration
Divalent ion concentration

Economic limit of surfactant flood

Base case injection scheme

98% water cut
0.611 meg/ml
0.1275 meg/ml

0.25 PV

0.025 volume fraction
0.10 wt%

0.611 meq/ml

0.1275 meqg/ml

0.5 PV
0.10 wt%
0.611 meg/ml
0.1275 meg/ml

0.2 meq/ml
0.1275 meq/ml
99% water cut
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Table 6.
Realization
#1
(Base case)
Dykstra-Parsons 0.8
coefficient
Geometric average 50.55
(mnd)
Arithmetic average 181.8
(md)
Minimum (md) 0.289
Maximum (md) 4,358
X correlation length 660
()
Y correlation length 660
0y
Z correlation length 28
(fv)

Realization

#2
0.8

50.55

156

0.289
2,444
660

660

28

38

Realization
#3
0.8
50.55

211.8

0.272
13,923
660

660

28

Statistical data for permeability field realizations

Realization
#4
0.8
50.55

155.7

0.816
3,107
660

660

28

Realization
#5
0.8
50.55

167.5

0.136
6,218
660

660

28
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Fig. 3 Gridpoints involved in the high-order finite-difference scheme.
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Fig. 4Matrix structure of simulating a two-dimensional, two-component
problem using the fully implicit formulation and the high-order method
with 5x5 gridblocks.
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numbers using the fully implicit formulation with the TVD high-order scheme.
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implicit formulation at different Courant numbers.
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