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1. Introduction

This report describes research carried out in the Department of Petroleum Engineering
at Stanford University from September 1998 - September 1999 under the third year of a three-
year grant from the Department of Energy on the “Prediction of Gas Injection Performance for
Heterogeneous Reservoirs.” The research effort is an integrated study of the factors affecting
gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory
experiments and numerical simulation. The research is divided into four main areas: (1) Pore scale
modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors
influencing gas injection performance at the core scale with an emphasis on the fundamentals of
three phase flow; (3) Benchmark simulations of gas injection at the field scale; (4) Development
of streamline-based reservoir simulator. The chapters that follow give a detailed account of our
progress in these areas. We have now completed all the work planned in the original proposal, and
in some areas, such as the solution of multicomponent gas injection problems, and the development
of a nested gridding approach to streamline-based simulation, we have considerably extended the
research beyond what was originally planned.

Chapter 2 describes the final phase of our work using CT scanning to measure three-phase
relative permeabilities and represents the completion of our experimental effort under the proposal.
We have extended our previous work to study mixed-wet systems. Here the wettability of a sand-
pack is altered using a physically-based sequence of saturation changes that mimics the displacement
processes observed in oil reservoirs. An initially water-filled and water-wet pack is flooded with a
heavy crude oil/octane mixture. The pack is then left to age for several days. During this time,
surface active components of the oil in direct contact with the solid surfaces of the pore space absorb
to the surface and alter its wettability. Regions that remain water-filled or are protected by a thick
wetting film of water remain water-wet. We then perform a series of three phase displacements and
use CT scanning to measure the three phase relative permeabilities. The results are very infriguing
and are compared with measurements on water-wet, uniformly oil-wet and fractionally-wet media.
We show that having a physically-based pattern of wettability makes a significant difference to
the relative permeabilities, compared to a medium where surfaces are either uniformly water- or
oil-wet.

Chapter 3 represents a major advance in our research on analytical solutions to gas injection
problems. Last year we presented a semi-analytical technique to predict the minimum miscibility
pressure (MMP) for gas injection projects. Here we build on that method and develop an automatic
procedure for finding the one-dimensional composition profile for gas injection below the MMP.
The theory is based on method-of-characteristics solutions to the flow equations coupled with the
phase behavior. The method can be used for gas and oil mixtures containing arbitrary numbers
of chemical components. Injection, initial and cross-over tie lines are constructed for a general n
component system. The method is considerably faster than direct compositional simulation and
suffers from no numerical dispersion. While the method developed applies to systems in which
components do not change volume as they transfer between phases, we are confident that we can
extend the method to account for effects of volume change on mixing.

Chapter 4 reports extensions to our work on streamline-based simulation. We develop-
a nested-gridding technique that offers a direct alternative to upscaling. Both conventional and
streamline-based simulation approaches are limited by the memory and computer time requirements
to solve for the pressure field. We propose a method where the pressure field is found approximately.
First the pressure is computed on a coarse grid using averaged mobilities. This pressure solution
is then used as a boundary condition for finding the pressure within each coarse grid block. In this



way an approximate pressure distribution for the entire domain on the fine grid is computed. The
velocity is everywhere continuous and streamlines are traced throughout the system. The fluids
are transported along these streamlines and we account for the fine grid details of the flow field.
In this way, all small scale details of the flow are captured, while being up to 10 times faster than
streamline simulation on the full grid. Since the streamline method is itself around 100 times faster
than grid-based approaches for displacement-type problems, the nested gridding approach offers
huge speed advantages over conventional methods. Where traditionally upscaling, with its inherent
inaccuracies may have been required to perform a simulation on a fine scale reservoir description,
this approach offers the possibility of running simulations directly on the fine grid.

The work summarized in this report sets the stage for future work to combine better models
of three-phase flow, analytical solutions of gas injection processes, and very fast streamline methods
to create future reservoir simulation tools that are based on the physics of the displacements and
are very efficient. The goal is to build physics-based techniques that give accurate predictions of
displacement processes at field scale.



2. Three-Phase Relative Permeability of Water-Wet,
Oil-Wet, and Mixed-Wet Sandpacks

David A. DiCarlo, Akshay Sahni, and Martin J. Blunt

In this chapter we present experimental studies of three-phase flow in water-wet, oil-wet,
mixed-wet, and fractionally-wet sandpacks. In oil reservoirs, three-phase flow will occur during
immiscible gas injection, gas cap expansion, and thermal flooding among other processes. All of
these processes are affected by the wettability of the reservoir. We use sandpacks as our model
porous medium, and affect the wettability of the sand by aging it in crude oil. We make the
mixed-wet pack by invading a water-filled water-wet pack with crude oil and aging for a week.
This process mimics wettability changes in reservoir settings, leading to a realistic arrangement of
wettability at the pore scale. We characterize the wettability of each sand pack by measuring the
capillary pressure curves. We obtain the oil and water relative permeabilites during three-phase
gravity drainage, by measuring the saturation in-situ using CT scanning. In another experiment,
we measure pressure gradients in the gas phase to obtain the gas relative permeability. Thus we
determine all three relative permeabilities as a function of saturation for each wettability. We
find that under uniform wetting, the relative permeabilities of the most-wetting phase (water in
a water-wet pack, oil in an oil-wet pack) are similar. However, the relative permeabilities of the
intermediate-wet phase {oil in a water-wet pack, water in a oil-wet pack) are very different at low
saturations, with spreading oils showing a characteristic layer drainage regime. The mixed-wet pack
also shows the layer drainage regime. We also find that the gas relative permeability is smaller in
an oil-wet medium than in a water-wet medium. We explain the observations in terms of wetting,
spreading, and the pore scale configurations of fluid.

2.1 Introduction

A knowledge of three-phase (water, oil, and gas) flow in porous media is essential for
predicting enhanced oil recovery and the migration of nonaqueous phase pollutants. In two-phase
flow, one phase will wet the porous medium more than the other phase. This wetting phase occupies
the smaller pores, crevices, and corners while the nonwetting phase occupies the larger pores with
the exact arrangement determined by the capillary pressure. Regardless of which pair of fluids is
used (gas/water, oil/water, gas/oil) the positioning of the fluids are likely to be similar at the same
saturations. In contrast, for three-phase flow there will be an intermediate wetting phase which
will be positioned uniquely in the porous medium, affecting macroscopic properties such as relative
permeability and residual saturation.

‘We measure three-phase relative permeabilities during the gravity driven displacement of oil
and water by gas, which is called gravity drainage. This is an important three-phase process that
occurs during gas cap expansion in an oil reservoir and when nonaqueous phase pollutants migrate
through an unsaturated soil. Gravity drainage is also relatively easy to study experimentally and
its analysis avoids consideration of hysteresis effects, which can be very significant in three-phase.
flow [60, 24].

Several authors[21, 37, 72] have shown that low oil saturations can be reached during three-
phase displacements. Most experiments have been performed on uniformly water-wet media (see

1The material in this chapter will be published in SPEJ.



Baker[5] for a review). Oak et al.[47] studied three-phase relative permeabilities in an intermediate-
wet Berea sandstone. Vizika and Lombard[69] studied three-phase drainage for water-wet, oil-wet,
and fractionally-wet systems. Jerauld[32] developed a model for three-phase relative permeability
based on two-phase measurements for Prudhoe Bay, which is a mixed-wet reservoir.

Sahni et al.[58] used CT scanning to measure oil and water relative permeability in water-
wet media and studied the effect of spreading coefficient. Zhou and Blunt[73] performed three-phase
gravity drainage in fractionally-wet sandpacks. They measured the saturation distribution at the
end of drainage and interpreted the results in terms of the pore scale arrangement of fluid. DiCarlo
et al.[17] measured three-phase relative permeabilities for oil-wet and fractionally-wet packs.

The fractionally-wet media studied in the literature were composed of mixtures of oil-wet
and water-wet grains. While this is a convenient way of varying the wettability, it does not neces-
sarily represent the real distribution of wettability in a natural setting. An alternative approach is
to mimic a physical sequence of wettability changes in the laboratory, leading to a medium whose
pore-scale pattern of wettability represents reservoir rocks. This is achieved by flooding a water-wet
water-filled pack with a crude oil and then aging for several days. This induces a wettability change
on the sand surfaces contacted by oil (see, for example Buckley et al. [12]). Smaller pores that are
water-filled and the corners of the pore space will remain water-wet. We will call such systems
mixed-wet.

In this chapter we extend the work of Sahni et al[58] and DiCarlo et al[17] to mixed-
wet media. The description of the experiments follows DiCarlo et al.[17], and for the sake of
completeness, we present all our results in water-wet, oil-wet, fractionally-wet, and mixed-wet
media. We characterize the wettability by measuring two-phase (water/oil) capillary pressure
curves. We measure the gas relative permeability using an analogue experiment in which we
directly measure the gas saturation and pressure gradient. Thus we obtain all three permeabilities
for three-phase gravity drainage, in water-wet, oil-wet, mixed-wet and fractionally-wet sandpacks.
We explain the results in terms of the pore scale fluid arrangements.

2.2 Materials and Methods

We chose sandpacks as our porous media as they are easy to characterize and they are
easily sectionable for destructive saturation measurements. We used clean industrial sand (no. 60,
Corona Industrial Sand Co., Corona, CA) which was initially water-wet. The sand was sieved with
a size 120 sieve to remove any fine particles. We made 15 kg of the sand oil-wet by soaking initially
dry sand in a mixture of 20% crude oil (Thums Inc., Long Beach, CA) and 80% iso-octane for 24
hours [13]. This oil-wet sand was then rinsed with iso-octane and air-dried. The fractionally-wet
sand was a 50-50 mixture of the oil and water-wet sands.

Mixed-wet sandpacks were created from water-wet packs, by first saturating the pack with a
0.01M NaBr brine (pH 4). We then displaced the brine with 5 pore volumes (PV) of the crude/iso-
octane mixture, yielding a pack with a water saturation of S, =~ 0.2. The column was then left to
age for a week. After the aging the crude mixture was displaced with iso-octane until the effluent
ran clear. Finally, the pack was flooded by n-octane, replacing the iso-octane, then flooded with
the working water phase (either distilled water or 10% NaBr brine, see below) to replace the brine.

For our fluids, we chose n-hexane, n-octane, or n-decane for the oil phase, distilled water
or 10% NaBr by weight brine for the water phase, and air for the gas phase. The density of the’
brine was measured volumetrically, and the density of the oils was taken from the CRC Handbook
[15]. Viscosities were measured using a viscometer. Interfacial tensions were measured using the
pendant drop technique [1]. Table 2.1 shows the fluid properties. All experiments were performed
at room temperature and pressure. :



Table 2.1: Fluid densities [p, = 1069 kg/m?®], viscosities [u,; = 1.23 cP], and interfacial tensions
[vgw = 72.0 mN/m].

Oil Po Ho Yow Ygo
(kg/m®) (cP) (mN/m) (mN/m)
n-hexane 659 0.30 50.5 18.0
n-octane 703 0.51 51.2 21.1
n-decane 730 0.84 51.4 23.7

In all of the experiments, the sandpacks were set to connate water saturation (Sy.) or
residual oil saturation (S,r) by the following procedure. For uniform-wet packs (water-wet and
oil-wet), the core was saturated with the most wetting fluid (water for water-wet, oil for oil-wet)
and then displaced with 5 PV of the intermediate wetting fluid (oil or water). This produced an
initial condition of Sy, for the water-wet pack and S, for the oil-wet pack. Initial conditions
of S, for the water-wet pack and S, for the oil-wet pack were achieved by an additional 5 PV
flooding of the most-wetting fluid. For the fractionally-wet pack there is no most-wetting fluid,
so an initial condition of S, was achieved by flooding a 100% oil-saturated pack with water, and
§,c was achieved by flooding a 100% water-saturated pack with oil. For the mixed-wet pack, since
its last flood was by the water phase, it was already at S,r. An additional flood of oil was used
to achieve Sy For each experiment, a new mixed-wet pack was created from water-wet sand
except for the three-phase drainage from Sy.. In this case, due to a need to recalibrate the CT
scanner, the core that was used for the drainage from S, was dried out completely by flowing dry
air through the column for 4 weeks. The column was then filled with oil. This was followed by 2
PV of isopropanol to miscibly displace the oil, and then 5 PV of brine. Finally, § PV of octane was
injected to produce the initial condition of Sy.. All displacements were performed in a gravitational
stable configuration.

2.2.1 Capillary Pressure Curves

To characterize the wettability changes, we measured two-phase water/oil capillary pressure
curves using a gravitational equilibrium technique. Distilled water was used for the water phase,
and n-octane for the oil phase. The desired medium was packed through a continuous pour into a
72 cm column (2.54 cm inner diameter) and sealed at both ends with rubber stoppers. The column
consisted of 24 separate 3 cm long polycarbonate sections held together with teflon shrink tubing,
which made it easier for accurate sectioning of the column for saturation measurements. For water
injection (which we will call imbibition even for nonwater-wet media), the medium was initially
set t0 Syc (see above). The imbibition began by connecting the bottom of the column to a large
tank of water (whose height and thus the water head did not change during the imbibition) and
the top to a smaller volumetric tank of oil (whose height changed slightly during the imbibition).
Using calculations described below, the oil and water heads were chosen such that the water would
imbibe throughout the porous medium. An identical technique was used for drainage curves (oil
invasion), except that the column was initially set to Sor, and the heads set for drainage. Thus the
curves obtained are for secondary imbibition and secondary drainage.

Once the tanks were attached, the columns were left for roughly 1 week to reach gravitational
equilibrium. Then the columns were sectioned, their contents were dropped into a flask containing '
25 ml of isopropanol, which created a single-phase mixture suitable for analysis, and the oil and



water saturations were measured using a gas chromatograph (GC). From this we obtained the
saturation profile versus vertical position.

Assuming that the column is at capillary equilibrium, the profile can be described in terms
of the capillary pressure. We define z positive downward and z = 0 at the top of the column. Let
z, be the final height of the oil level in the oil tank, and z, the final height of the water in the
water tank. Since the column is at equilibrium, the pressure of each phase 7 as a function of z is
given by

P; = pig(z - z), (2.1)

where p is the density, and g the gravitational constant. Thus the capillary pressure is

P, = Py — Py = (po — pu)9% — (Pog20 — Puwguw)- (2.2)

The water and oil heads were chosen such that the capillary fringe would be roughly in the center
of the column after imbibition. If this did not occur, the experiment was repeated with different
heads.

2.2.2 01l and Water Relative Permeabillities

Before and during gravity drainage, we used a dual energy CT scanner to obtain In-situ
measurements of the water and oil saturations[58]. To achieve good CT contrast, the 10% NaBr
brine was used for the water phase, and either n-hexane, n-octane, or n-decane was used for the
oil phase. The core holders were standard Hassler-type with an overburden fluid (water at 50 psi)
and a rubber sleeve. The sand was packed into the rubber sleeve of diameter 7.6 cm and length 67
cm (87 cm sleeves were used for water-wet sand). The core was mounted on a vertical positioning
system in a Picker 1200X CT machine, which scanned in the horizontal plane. Scans of width 3
mm were taken every 2 cm along the core and at energy levels of 80 kV and 140 kV.

The experiment was calibrated by scanning the core when it was dry, when it was saturated
with brine, and when it was saturated with oil. Using this calibration and a standard linear
interpolation of CT number (i.e. attenuation coefficient), the water, oil, and air saturations could
be obtained during a three-phase experiment. The saturations were observed to be uniform over
each slice, except within 2 cm of the capillary fringe where the scans showed regions of high and
low saturations. In either case, the saturations were averaged over each slice to give the average
water, oil, and air saturation every 2 cm.

We can estimate the accuracy of the saturation by measuring the standard deviation on a
pixel basis, and then assuming the standard deviation of the average saturation is the standard
deviation of the mean. This gives a typical accuracy of AS; ~ 0.0002. This is likely to be too small
due to nonlinear systematic variations such as beam hardening. In practice, when the core is at
its initial condition with water and oil, but no gas, we measure a typical gas saturation value of
Sy =~ £0.01. Thus we estimate our accuracy for each phase to be AS; = 0.01.

Before drainage each core was set to connate water Sy, or residual oil S, saturation as
described before. Once the desired initial condition was reached, gas (air) was allowed to enter the
top of the system, while water and oil drained out of the bottom under gravity. Before entering
the column the air passed through a bubbler filled with water and a bubbler filled with oil to
saturate the air with water and oil vapor. The bubblers also provided a one-way pathway for the
air such that no oil and water vapor could leave the column through the top port. The height of
oil and water that the entering air bubbled through was less than 1 cm, so the pressure boundary
conditions were P; = 0 Pa at the outlet and P, ~ —100 Pa at the inlet.

The pack was periodically scanned over a period of several weeks to record the saturation
distribution versus time. Figure 2.1 shows the saturation profile of octane and water at various
times for a water-wet column that was initially at Sye.
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Figure 2.1: Oil (octane) and water saturation profiles versus time during gravity drainage. The
sand was water-wet and the initial condition was connate water saturation Sy, Oil and water
permeabilities can be calculated directly from the measured distributions.



We can compute the oil and water relative permeabilities at each measured position along
the column and for each time from the known time evolution of the saturation profile S;(z,t). We
begin with Darcy’s law for each phase in a 1-dimensional vertical displacement,

Kk (0P
= (az —mg), (2.3)

where v is the flux, k is the permeability (20 Darcy for our sand), &, is the relative permeability,
i is the viscosity, and z is the vertical distance taken to be positive downward. We calculate the
flux past position z for time interval ¢1,¢; by integrating the change in the saturation of each phase
between scans at times ¢; and ¢,

us(z, by, ) = —2 ) /ZSi(z',tl)—Si(z’,tg)dz', (2.4)

(ta —t1) Jo
where ¢ is the porosity. :

The only remaining unknown is the pressure gradient (0F; / 0z). This can be found directly
using tensiometers, or indirectly by calculating the pressures from the saturations and a known cap-
illary pressure curve[58]. In practice the indirect method has difficulties for column positions near
and below the capillary fringe as the quantity 8.5;/0z is large, and the capillary pressure gradient
is very close to the gravitational gradient. Thus any small errors in the saturation measurement
correspond to large errors in the measured permeability.

Fortunately, we notice that near the top of the column the saturation is roughly constant
with position (8S;/8z =~ 0). Thus we assume that 8F;/0z << p;g and ignore the capillary pressure
gradient for positions over a region were the saturation data satisfies the above condition (between
20 and 50 cm in Fig. 2.1). For the shorter oil-wet, mixed-wet, and fractionally-wet cores, the above
condition was satisfied only between 10 and 30 cm from the top of the chamber. In essence, the
CT scanner allows us to avoid capillary end effects in the determination of relative permeability,
as we can choose a section over which the capillary pressure gradients are negligible compared to
gravity.

For this region the relative permeability as a function of z and time interval ¢,?, can be
found by combining Eqgs. 2.3 and 2.4 and dropping the pressure gradient,

kri(z,t1,t2) = kpgtg—tl / Si( Z b)) — (z tg)d (2.5)
i

Calculating the saturation as a function of z and time interval ¢1,? as the average of the ¢; and 2
saturations,

Si(z,t1,t2) = (Si(z, 1) + Si(z,t2))/2, (2.6)

we can then plot k.; as a function of S;.

The accuracy of the technique is a function of the accuracy of the saturations, fluxes, and
pressure gradients. The saturation accuracy is estimated previously to be £0.01. The flux accuracy
is also likely to be good, as we know the time accurately and by integrating the saturations,
the deviations are minimized further. The largest uncertainty is in the estimate of the pressure
gradient. Simple two-phase simulations suggest that the assumption that the pressure gradient is
small compared to the gravitational gradient is very good for short time scales (< 2 weeks), but
can be in error by up to 30% at long time scales (> 6 weeks).

2.2.3 Gas Relative Permeability

We have developed a procedure to measure the gas relative permeability in the sand packs.
Distilled water was used for the water phase, and n-octane for the oil phase. The sand is packed



Table 2.2: Amott indices, and residual saturations from the two-phase (water/oil) pressure - satu-
ration curves.

Wettability I, I, Sor  Swe
water-wet 1 0 0.20 0.15
oil-wet 0 0.05 0.05 0.20
mixed-wet 010 0 0.0 0.10
fractionally-wet 1.0 0 025 0.20

through a continuous pour into a 60 cm column made out of 20 separate 3 cm long sections similar
to that used in the capillary pressure curve measurements. Additionally, nine of the plastic sections
in the column contain a small port through which the pressure of the gas phase can be measured.
Thus we can measure eight separate pressure drops along the column during gas flow.

We first measure the single phase gas permeability by flowing known rates of COy (between
5 and 10 ml/sec) through the column and measuring the pressure drops across each section using
a water manometer. For two-phase measurements, the column is then filled with degassed water
from below and the water is circulated until all of the original CO» is displaced or dissolved. The
column is then allowed to drain under gravity for about 1 hour, after which air is injected at a rate
between 0.1 and 1 ml/sec at the top of the column, displacing additional water out the bottom.
This injection is continued for several hours until the pressures have stabilized and the gas and
water phases are in equilibrium. Due to capillary effects, the distribution of water varies along the
sand pack, with a high water saturation (and low gas saturation) near the outlet and a low water
saturation (and high gas saturation) near the inlet. The pressure drop is measured between each
section, which in turn gives the gas relative permeability. The column is sectioned and the water
and gas saturations are obtained gravimetrically. Low injection rates retained more water in the
column and were used for low gas saturation measurements. There was no measurable effect on
the gas relative permeabilities from the different gas injection rates.

For three-phase measurements a nearly identical procedure is used. The only differences
are 1) the column is first filled to Sy, and 2) the oil, water, and gas saturations are measured
using the GC rather than gravimetrically. We did not measure the gas relative permeability for
the mixed-wet sands.

2.3 Results

2.3.1 Capillary Pressure Curves

The first column of Figure 2.2 shows the drainage and imbibition curves for the sandpacks of
different wettabilities. The curves are for two-phase water/oil displacements. From these curves, the
calculated Amott wettability indices[2] and two-phase residual saturations are shown in Table 2.2.

For the oil-wet medium, the procedure we used to make the oil-wet pack should produce a
uniform wettability on all the pore surfaces. The large hysteresis when compared to the water-wet
case, the lack of spontaneous water imbibition, and the capillary pressures of the transition zones
suggest that the water/oil contact angle is greater than 90°. Also, Sor is smaller than the water-wet
case, implying that the oil remains connected at low saturations.

Measurements of contact angles in glass capillary tubes that had been treated by crude oil
in the same manner as our sand found an oil/water contact angle of 152°.[25] Contact angles this



Table 2.3: Drainage experiments from which three-phase oil and water relative permeabilities were
obtained. The figure column shows where the data is displayed. The initial condition (I.C.) before
drainage was either waterflood residual (So,) or connate water (Syc)-

Expt. Figure(s) 0il Porous Medium L.C.
1 2.1,22,23,2.9 octane water-wet sand Swe
2 2.2, 2.9 octane water-wet sand Sor
4 2.3 hexane water-wet sand Swe
5 2.3,2.9 decane water-wet sand Swe
6 2.3 octane water-wet sandstone S,
7 2.2,2.9 octane oil-wet sand Sor
8 2.2 octane oil-wet sand Swe
9 2.2 octane fractionally-wet sand S,
10 2.2 octane fractionally-wet sand Sy,
11 2.2,2.9 octane mixed-wet sand Sor
12 2.2,2.9 octané mixed-wet sand Swe

large in a porous medium should result in a significant degree of spontaneous oil imbibition.[20]
However, the low oil Amott index of 0.05 shows that this is not the case. Overall, the oil-wet
sandpack is only weakly oil-wet or almost neutrally-wet. While a direct measurement of oil/water
contact angle on the sand grains is not possible, it is likely to be only slightly greater than 90°.

For the mixed-wet medium, we will assurne that our procedure induced wettability changes
as described by Salathiel [59] and Kovscek et al.[41]. When the crude oil contacts the solid, it can
deposit surface active agents rendering these surfaces oil-wet. The larger pore spaces will tend to
be oil-wet, as the smaller pores and throats remain water-filled. The corners and crevices of the
large pore spaces will also remain water-filled and thus water-wet. Thus the oil-wet and water-wet
portions will be discriminated by pore size.

The irreducible water saturation, Sy is slightly lower than in the water-wet sand, while the
residual oil saturation, S,r, is between the water-wet and oil-wet cases. Also, the capillary pressures
in the transition zone lie between the water-wet and oil-wet sands. The mixed-wet pack does not
imbibe oil, while it imbibes some water. Overall its Amott indices imply a weakly water-wet or
neutrally-wet system. It is possible that in our experiments the crude oil only renders the surfaces
it contacts weakly oil-wet.

For the fractionally-wet media, since each sand grain is either water or oil-wet, each side
of a pore will be either water or oil-wet. There will be no pore size discrimination for oil-wet
and water-wet portions. Also the oil-wet and water-wet surfaces will be connected only randomly,
producing pockets of oil-wet and water-wet regions. This description agrees with the observed large
residual water Sy, and large residual oil S,r, as each fluid can get trapped in their isolated pockets
[73]. But the observed capillary pressures in the transition zones are much closer to the water-wet
sands, which is unexpected.

2.3.2 Three-Phase Relative Permeability

Table 2.3 lists all the three-phase drainage experiments and the figures which display the
data. The experiments studied how the three-phase relative permeabilities varied as a function
of the oil phase, the porous medium, and the initial condition of the pack. The second and third
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Figure 2.2: Measured two-phase (water/oil) capillary pressure curves and three-phase oil and water
relative permeabilities with n-octane as the oil for water-wet, oil-wet, mixed-wet, and fractionally-

wet sand. Open symbols are drainages which started from residual oil saturation (S,r), and closed
symbols are drainages which started from connate water saturation (Swe). ‘
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Figure 2.3: Measured oil relative permeabilities with hexane, octane, and decane as the oil in
water-wet sand and with octane in water-wet sandstone[58] during three-phase gravity drainage.

columns of Figure 2.2 show the measured relative permeabilities for oil and water for the water-wet,
oil-wet, mixed-wet, and fractionally-wet sandpacks with octane as the oil.

The open symbols are from the initial condition of S, while the closed symbols are from
drainages that started from initial condition Syc. Note that we can measure saturations as low
as § = 0.01, with relative permeabilities spanning over six orders of magnitude. The observed
scatter in the data is likely a result of the combination of uncertainty in the pressure gradient
and the natural variations in the porous medium. For ease in viewing the data, each relative
permeability (in this figure and the following figures) is shown as a function of only the particular
phase’s saturation. The relative permeabilitjf can also depend on how the rest of the pore space is
partitioned between the other two fluids. This can appear as additional scatter in the above plots,
and is discussed later. :

Figure 2.3 shows the measured oil relative permeability for hexane, octane, and decane
in water-wet sand, and for octane in a water-wet consolidated sandstone. Figure 2.4 shows the
measured water relative permeability for two-phase (gas/water) and three-phase drainages in water-
wet sand. Figure 2.5 shows the measured gas relative permeabilities for a) the two-phase gas/water
system for different wettabilities and the two-phase gas/oil system for oil-wet media, and for b) the
three-phase system for water-wet and oil-wet media. Notice that for the gas permeability the plots
are on linear axes.
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Figure 2.4: Measured water relative permeabilities for a) the two-phase (gas/water) system and for
b) the three-phase (gas/oil/water) system from gravity drainages in water-wet sand.
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Figure 2.5: Measured gas relative permeabilities for a) the two-phase gas/water system for media of
varying wettability and the two-phase gas/oil system for oil-wet media, and for b) the three-phase
gas/oil/water system for water-wet and oil-wet media. The gas relative permeability in oil-wet sand’
is roughly a factor of two smaller than that for identical water-wet sand for two-phase gas/water

systems.
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The following features are observed in the measured relative permeabilities:

1. Except for the water in the mixed-wet sand, the oil and water relative permeabilities dur-
ing three-phase drainage are independent of initial condition to within experimental scatter
(Fig. 2.2).

9. The three-phase relative permeabilities of the most wetting fluid (water in water-wet media,
oil in oil-wet media) and the two-phase water relative permeability in water-wet media are
similar. All can be well described by a simple power law &, ~ S, where o = 5 (Figs. 2.4a,
2.4b, 2.2¢ and 2.2¢). For the most wetting fluid the permeability is the same for two and three
phase displacements. However, for the most wetting phase, a lower saturation is reached in
the oil-wet medium (Fig. 2.2¢) than in the water-wet medium (Fig. 2.2¢).

3. At low saturations, § < S, (Swc), the relative permeabilities of oil in water-wet media
(Fig. 2.2b) and water in oil-wet media (Fig. 2.2f) are very different. For hexane and octane,
the oil relative permeability remains finite at low saturations with a power law of k- ~ §4,
where o ~ 2 (Figs. 2.2b, 2.3a and 2.3b). The water relative permeability drops off quickly,
tending to zero at water saturations of Sy, & 0.1 (Fig. 2.2f).

4. For the mixed-wet sandpack, the oil relative permeability is similar to the water-wet sandpack
at low saturations (Figs. 2.2h and 2.2b). It has the largest k,, of any wettability at moderate
saturations (S, = 0.2 — 0.4). The water relative permeability is the smallest of all the
wettabilities, and it depended on the initial condition (Fig. 2.2i).

5. When water is the main liquid phase, the gas relative permeability for the oil-wet and
fractionally-wet medium is roughly a factor of two smaller than that for an identical water-
wet medium (Fig. 2.5a). When oil is the main liquid phase, the gas relative permeability is
independent of the wettability (Fig. 2.5a).

6. For the fractionally-wet sandpack, the oil, water and gas relative permeabilities are between
the oil, water and gas relative permeabilities in the water-wet and oil-wet sands (Figs. 2.2k,
2.21 and 2.5a).

Although exact functional forms of relative permeabilities can be dependent on the spe-
cific porous medium, we believe that many of the above features are universal for three-phase
displacements. We discuss this by considering the effects of pore scale configuration on the relative
permeabilities.

2.4 Pore Scale Explanation

1. The oil and water relative permeabilities are independent of initial condition during three-
phase drainage (except for the mixed-wet case).

In water-wet media, the water occupies the smallest pores, regardless of the saturations of
oil and gas. Thus in a drainage-type experiment with the water saturation decreasing, the relative
permeability of water should be insensitive to initial condition. This behavior has been seen by
other researchers [5, 23]. Oil, however, occupies the intermediate sized pores, and its pore occupancy
does depend on the saturations of both water and gas: ina gas/oil displacement, oil occupies the
smaller pores, whereas for an oil/water displacement, oil occupies the larger pores. Reviews of the
literature have shown that the oil relative permeability is sensitive to initial condition [5, 23]. We do
not see this for §, > 0.05, and the oil relative permeability appears to be a function only of its own
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saturation. There is a significant effect of initial condition on kv, for S, < 0.05 in Fig. 2.2b. However,
it is difficult to make a definitive comment because of considerable experimental inaccuracies in
this low saturation region. The lack of sensitivity to initial condition at moderate oil saturations,
could be due to the narrow pore size distribution of the sandpacks, and is consistent with other
results in uniform media [27, 5]. Similarly, for water in oil-wet media, we see no sensitivity to initial
condition, although the water is no longer the wetting phase.

In the mixed-wet media, we do see a measurable dependence on the initial condition for
the water relative permeability. The water relative permeability is noticeably larger when starting
from Sy, then from S,r. The water saturation does not drop below Sy = 0.15 when starting from
S,r, while it reaches less than S, = 0.10 when starting from Sy.. When the initial condition is
Se, water is only present in the smaller pores and corners. In this sense it resembles a water-wet
medium, and as can be seen in Figs. 2.2i and 2.2c, the water relative permeability is similar to the
water-wet case. When drainage (gas invasion) starts from S,,, water is also present in the centers
of larger pores. If these pores are oil-wet, then water can be trapped in them during drainage. In
the oil-wet system, a residual water saturation of around 8y, = 0.10 is observed (Fig. 2.2f). In the
mixed-wet pack, the final water saturation is approximately Sy = 0.15, or the sum of the oil-wet
residual and the remaining water saturation in the corners.

2. The relative permeability of the most wetting phase in water-wet and oil-wet media are
similar.

The most wetting phase occupies the smallest pores, and corners, grooves, and crevices in the
wider pores. If we compare strongly and uniformly water-wet and oil-wet media, we would expect
the configuration of the most wetting fluid to be similar for both systems at the same saturation.
The exact functional form of the relative permeability depends on the porous medium and is not
universal. The only general feature is that k. should asymptotically approach zero saturation at
a sufficiently high capillary pressure, indicating that the wetting phase remains connected, albeit
poorly, through wetting layers in crevices of the medium down to very low saturation.

In the experiments, the lowest wetting phase saturation observed depends on the largest
capillary pressure reached — it takes an infinite capillary pressure to reach zero saturation. It
is possible to show [17] that at the top of the column smaller interfacial radii of curvature are
achieved for oil in the oil-wet system than for water in the water-wet system. This explains why
in our experiments the lowest water saturation reached in the water-wet pack (Su ~ 0.1) is higher
than that reached in the oil-wet pack (S, = 0.04) — see Fig. 2.2.

3. The relative permeability of the intermediate wetting phase (oil in water-wet media, water in
oil-wet media) at low saturation are very different.

At low saturation phases may remain connected through wetting layers in crevices in the
pore space. It is this connectivity which controls &, at low saturation. The pore scale configuration
and connectivity of oil and water is very different for water-wet and oil-wet media. Consider first
flat water-wet and oil-wet surfaces as shown in Figure 2.6.

The most wetting fluid coats the surface. The contact angle between oil or water and gas,
which will control the position of the phase in the pore space, is given by the balance of interfacial
tensions, assuming that the solid is coated with a thick wetting film.

For oil in water-wet media, (Fig. 2.6a)

— C
CoS 690=M=1+_‘50_’ (27)

Ygo Ygo

where
Cso = Yow — Yow — Ygo (2.8)
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Figure 2.6: Configuration of fluids on : a) a flat water-wet surface, b) a flat oil-wet surface (shown
bold).

Figure 2.7: Possible configuration of fluids in a pore space corner of half-angle 3: a) water-wet
surfaces, b) oil-wet surfaces (shown bold). Note that configuration b) is not allowed as 84, > 90°.

is the spreading coefficient for oil. Using our data in Table 2.1 we find Cy, = 3.5, -0.3, and -3.1
mN/m for hexane, octane, and decane, respectively. For octane (the most used fluid) this results
in 84 =~ 10°.

Now consider the three fluids in a corner of the pore space as shown in Fig. 2.7a. If
0o + B < 90° and 8y, + B < 90°, where § is the half-angle of the corner, then a layer of oil may
be present [50, 24]. These layers are on the order of micrometers thick and have been observed in
micromodel experiments [48, 61, 38]. Drainage through oil layers is the mechanism by which very
low oil saturations are reached during gas displacement in water-wet media [21, 37, 72]. Final oil
saturations as low as S, = 0.001 have been reached [72]. For a system with 8y, = 64, = 0, the
oil layers can drain to infinitesimal thickness at a finite gas/oil capillary pressure, meaning that in
theory, S, = 0 can be achieved through gravity drainage[l1, 72]. In our experiments the lowest
saturation obtained is S, = 0.01 after 7 weeks of drainage.

Displacement of oil below the waterflood residual oil saturation, Ser, requires layer drainage.
In our experiments, and others on bead packs, sandpacks and consolidated sandstones a layer
drainage regime consistent with kr, ~ 52 has been observed for S, < S, (see Figs. 2.3a, 2.3b,.
and 2.9a) [58, 46, 27]. This is readily explained by examining the flow in a single angular pore (see
Fig. 2.7a). S, is proportional to the area of the oil in the layer. The oil conductance for Poiseuille
type flow is approximately proportional to the area squared, leading to ko ~ 52 [24, 74]. This may
seem a simple argument, but it is confirmed by more detailed analysis of layer flow that has been
verified against numerical solutions of the Navier Stokes equation and experiments in square|[74]
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and triangular[25] capillary tubes.

We observe layer drainage for a spreading system — loosely defined as one with Cs, = 0, or
640 ~ 0. However, the situation is different for oils with a large and negative spreading coefficient.
For decane in water-wet media, our measurements of interfacial tension result in 6y, ~ 30°. Decane
layers have been seen in micromodels [38]. However, decane layers cannot form in oblique wedges
(8 > 60°), and are present for a more restricted range of capillary pressures than for octane [24]. If
oil layers are not present, oil can be trapped, leaving a residual saturation at the end of drainage.
In our experiments we do not observe a layer drainage regime, as shown in Fig. 2.9b.

For water in strongly oil-wet media, (Fig. 2.6b)

— C
€08 By = Tgo Zow _q 4 ¥ (2.9)

Yow Ygw

where
Csw = Yg0 — Yow — Ygw (2-10)

is the spreading coefficient for water. Using Table 2.1 we find Csyy = —102.1 mN/m and 6gyy = 115°.
Even if the surface is not strongly oil-wet, there is a constraint between the interfacial tensions and
contact angles(74], '

Yqu €08 Bguy = You €08 Oow + Ygo €08 Bgo (2.11)

Using the octane data, if 6o, > 110° then §g,, > 90°. Thus water is less wetting than gas, unless
we have a very weakly oil-wet system (6o < 110°).

Measurements on oil-treated glass surfaces have found 8¢, = 103°, consistent with Eq. 2.9.
In Fig. 2.7b, water layers can occur for 84, + 8 < 90°, and gas layers can occur for 90° + 5 < 8y,
neither of which are possible except for gas in exceptionally sharp crevices. The absence of a layer
drainage regime is evident in Fig. 2.9c.

Note that k,, for decane in a water-wet system is similar to kry, in an oil-wet system. Both
represent cases where the intermediate-wet fluid is nonspreading and there is no layer drainage
regime.

We do not observe the same layer drainage regime for the most wetting phase — instead
of k. ~ $2, we observe k. ~ S°. The most wetting phase occupies the small pores and all the
narrow nooks and crannies, where it is held by strong capillary forces and where it may be poorly
connected. In contrast, oil layers in spreading systems reside over the water, and by construction
therefore, are well connected throughout the porous medium.

4. The mixed-wet sandpack has an oil relative permeability similar to the water-wet pack at low
saturations, while it was the largest of any wettability at moderate saturations (5, = 0.2-0.4).
The water relative permeability is the smallest observed for any wettability.

Figure 2.8 shows schematic arrangements of oil, water and gas in water-wet, oil-wet, and
mixed-wet pores. In both water-wet and mixed-wet media water fills the corners of the pore space,
even if oil fills the pore center. During gas injection, gas is nonwetting to oil, and thus in both
cases, layers of oil between water in the corners and gas in the pore centers may be present. As a
consequence, ko at low 3, is similar for mixed-wet and water-wet media, with a characteristic layer
drajnage regime. This implies a possible universal form for ko at low S, in mixed-wet TeServoir
settings, since the behavior is independent of the oil/water contact angle. Notice that the layers
can form in a mixed-wet system, even if water is in the center of the pores. This agrees with the
observations that k,, at low saturations is independent of the initial condition even when more
water is trapped in the pores when starting from S,r. In contrast, in uniformly oil-wet media, oil is
confined to the corners. The oil is held by strong capillary forces and has a lower &, as discussed
before.
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Figure 2.8: Pore-scale arrangements of fluid for water-wet, oil-wet, and mixed-wet corners. A thick
line represents an oil-wet surface. Notice that oil layers sandwiched between water and gas are
present for both the water-wet and mixed-wet media, leading to similar &y, at low S,. In oil-wet
media, oil is confined to the crevices, leading to a lower kr,.

Although it is difficult to see from the log-log plots of Fig. 2.2, between S, = 0.2 — 0.4,
k., was noticeably the largest in the mixed-wet packs. In this saturation range, the fluids will
be contacting both oil-wet and water-wet surfaces. This being said, it seems most likely that ko
would be smaller than the water-wet case, as the oil is most wetting on some of these surfaces.
Thus, there is not a simple explanation of this phenomena, although it would be interesting what
behavior is seen in a three-phase, mixed-wet network model.

The low water relative permeability is due to the large trapped water saturation during
drainage. As explained in item 1, this is greatest in mixed-wet packs, as the water can get trapped
in the big pores, and held by capillary forces in the small pores.

5. When water is the main liquid phase, The gas relative permeabiltiy is lower in an oil-wet
medium than in a water-wet medium.

For the two-phase gas/water system in water-wet media, the water phase will occupy the
smallest pores and crevices while the gas phase occupies the large pore spaces. In oil-wet media,
the contact angle is such that neither the water phase nor the gas phase wets the pore surfaces and
thus the water and gas phases compete for the largest pores. Thus at equivalent gas saturations,
in the oil-wet system the gas is in smaller pathways leading to a lower permeability.

For the three-phase gas/oil/water system in water-wet media, the gas is nonwetting to both
oil and water, and so &y, is expected to be a function only of gas saturation. In oil-wet media, gas
is nonwetting to oil, but is not strongly nonwetting to water. Thus it is expected that in this case
krq depends on both the oil and water saturations. From Fig. 2.5b we see that the three-phase kg
in the oil-wet system is between the two-phase gas/water k., and gas/oil k,y. Most three-phase
models [62, 23, 5] assume that gas is always the nonwetting phase and is a function of gas saturation
only, which is not supported by these measurements.

We also see that the three-phase krq in the water-wet system is lower than the two-phase
water-wet gas/water kyq and oil-wet gas/oil kry. Since the gas is the most nonwetting phase in all
of these experiments, we expect the gas relative permeabilities to be similar. Why this is not the-
case is currently unknown.

6. The fractionally-wet sand has bebavior intermediate between oil-wet and water-wet sand.

This last observation seems intuitively obvious. However, there are three important points
to make. First, the oil in a spreading system is always connected regardless of the oil-wet fraction,
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Figure 2.9: Comparison of relative permeabilities. (a) A spreading system (8, =~ 0) : Octane in
water-wet sand. (b) A nonspreading system : Decane in water-wet sand. (c) A nonwetting system
: Water in oil-wet sand. (d) A mixed-wet system : Octane in mixed-wet sand. The solid lines in ()
and (d) show ks, ~ S,2. The data, while consistent with this trend, only follows it approximately.

19



since it can reside in corners as the most wetting phase or in layers as the intermediate wetting
phase. Consistent with this is the observation that kr, asymptotically approaches zero residual
oil saturation, for all wettabilities, as shown in Fig. 2.2. However, unless the small pores, corners
and crevices are completely water-wet, an infinite capillary pressure is required to achieve this.
Second, note that the trapped water saturation for the fractionally-wet sand is slightly higher than
for the oil-wet sand. This is because in the fractionally-wet sand, the oil-wet regions are poorly
connected in the pack leading to significant trapping of water. This percolation-type argument
has been explored in more detail by Zhou et al. [73]. Third, the gas relative permeability for
the fractionally-wet sand is very close to the oil-wet case. This shows that the gas mobility is
significantly affected even if a fraction of the pores are oil-wet.

2.5 Discussion

Recently, there has been renewed interest in predicting capillary pressure curves and relative
permeabilities from basic physics and the pore structure using pore network models (see, for instance
[49]). One of our objectives in this study was to obtain a complete data set (capillary pressure
curves and relative permeabilities) as a function of wettability. We hope that this data can provide
a benchmark with which to test the various three-phase, mixed-wettability network models now
being proposed. In this vein, the data can all be found by following links from our web site:
http://ekofisk.stanford.cdu/supric.html/ .

2.6 Conclusions

We used CT scanning and analogue experiments to measure oil, water and gas relative
permeabilities during three-phase gravity drainage. Mixed-wet sandpacks were made by flooding a
water-filled, water-wet pack with crude oil. The capillary pressure curve of the resultant medium
indicated that it was neither strongly oil-wet nor water-wet. Drainage experiments were performed
on oil-wet, water-wet, mixed-wet, and fractionally-wet sandpacks, Saturations as low as 0.01 were
recorded and the relative permeabilities span six orders of magnitude. The main results are:

1. At low oil saturations (S, < S,r) in water-wet media, spreading systems show a characteristic
form of the oil relative permeability with approximately k-, ~ S,2. This behavior is consistent
with a theoretical interpretation of oil layer drainage at the pore scale. For a nonspreading
decane system, the layer drainage regime was not observed.

2. Mixed-wet media also exhibit an approximate quadratic oil relative permeability at low oil
saturations. The theoretical interpretation is that oil layers are present between water on the
water-wet corners of the pore space, and gas occupies the oil-wet center.

3. In oil-wet media, the oil relative permeability is similar to the water relative permeability in
water-wet systems. This behavior is consistent with the interpretation that the most-wetting
phase occupies the same portion of the pore space In either wetting situation.

4. In oil-wet media, the water has a large and negative spreading coefficient, meaning that
water layers do not form in the pore space. The water relative permeability k., for an oil-wet
medium is similar to k., for a water-wet medium and a nonspreading oil.

5. In oil-wet media, the gas relative permeability is smaller than that for identical water-wet
media. This behavior is consistent with the gas and water phases competing for the largest
pores in oil-wet media, where gas is not necessarily the nonwetting phase.
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2.7 Nomenclature

Cso = spreading coeflicient for oil

Csw = spreading coefficient for water
I, = Amott oil index

I, = Amott water index

g = gravitational constant

k., = relative permeability to phase ¢
P, = pressure of phase 4

S; = saturation of phase ¢

S, = waterflood residual oil saturation
Swe = connate water saturation

u; = flux of phase ¢

Greek Letters
o = power law exponent

Jé) = half angle of pore corner
Yow = oOil/water interfacial tension
Y90 = gas/oil interfacial tension
Yqw = gas/water interfacial tension
p; = viscosity of fluid 4

¢ = porosity

p; = density of fluid 4

B, = oil/water contact angle

840 = gas/oil contact angle

840 = gas/water contact angle
Subscripts

1 = phase

g = gas

o = oil

w = water (brine)






3. Fast Approximate Solutions for 1D Multicomponent
Gas Injection Problems

Kristian Jessen, Yun Wang, Pavel Ermakov, Jichun Zhu, and Franklin M. Orr Jr.

This chapter presents a new approach for constructing approximate analytical solutions
for one-dimensional (1D), multicomponent gas displacement problems. The solution to mass con-
servation equations governing 1D dispersion-free flow in which components partition between two
equilibrium phases is controlled by the geometry of key tie lines. It has previously been proven that
for systems with an arbitrary number of components, the key tie lines can be approximated quite
accurately by a sequence of intersecting tie lines. As a result, analytical solutions can be constructed
efficiently for problems with constant initial and injection compositions (Riemann problems). For
fully self-sharpening systems, in which all key tie lines are connected by shocks, the analytical solu-
tions obtained are rigorously accurate, while for systems where some key tie lines are connected by
spreading waves, the analytical solutions are approximations, but accurate ones. Detailed compari-
son between analytical solutions with both coarse and fine grid compositional simulations indicates
that even for systems with nontie-line rarefactions, approximate analytical solutions predict compo-
sition profiles far more accurately than coarse grid numerical simulations. Because of the generality
of the new approach, approximate analytical solutions can be obtained for any system whose phase
behavior can be modeled by an equation of state. The construction of approximate analytical
solutions is shown to be orders of magnitude faster than the equivalent coarse grid compositional
simulation. Hence, the new approach is valuable in areas where fast compositional solutions to
Riemann problems are required.

3.1 Introduction

Miscible gas injection processes have become a widely used technique for enhanced oil
recovery throughout of the world. The understanding of the multiphase, multicomponent flow
taking place in any miscible displacement process is essential for successful design of gas injection
projects. Due to complex reservoir geometry and reservoir fluid properties, numerical simulations of
the flow processes are usually conducted to obtain such understanding. In principle, compositional
simulation could be used to study such problems. In practice, however, conventional finite difference
simulation is sufficiently slow that three-dimensional (3D) computations are feasible only for very
coarse grids. Such simulations are not useful, however, because they are severely affected by
numerical dispersion.

Recent progress in the application of streamline methods offers one way to overcome the
limitations of 3D finite difference compositional simulations[66, 10, 8]. In the streamline approach,
a one-dimensional (1D) solution is mapped onto streamlines that capture the effects of reservoir
heterogeneity. Thiele et al.[65] described 2D and 3D streamline compositional simulations in which
analytical and finite difference approaches were used to solve the 1D flow problem. Thiele et
al.[65] used a numerical solution of the 1D problem to perform a compositional simulation for a-
heterogeneous 3D reservoir described with 518,000 grid blocks. At that time, analytical solutions
for problems with an arbitrary number of components in the oil and injection gas were not available.
In this chapter, we describe an algorithm to obtain analytical solutions for that problem. Use of the

2The material in this chapter was presented at the 1999 SPE Annual Technical Conference and Exhibition in
Houston, TX, Oct 3-6, 1999, and is published as SPE paper 56608 in the conference proceedings.
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analytical solutions in simulations like those of Thiele et al. [65] could lead to substantial additional
speed-ups in streamline calculations. '

A substantial body of mathematical theory now exists for construction of analytical solu-
tions to the dispersion-free 1D multicomponent flow problem[45, 35, 36, 34, 19, 18]. This theory,
based on the method of characteristics (MOC), illustrates that the behavior of the solution is
controlled by the geometry of key tie lines in compositional space. Wang and Orr[70, 71] and
subsequently Jessen et al.[33] have developed algorithms for approximating the key tie lines. In
this chapter the key tie line approximation is combined with tools from the analytical theory of
gas displacement to obtain fast, approximate solutions to the 1D, dispersion-free two phase flow
problem.

3.2 Analytical Theory of 1D Miscible Displacements

The analytical theory of gas injection processes describes the complex interactions between
two-phase flow and phase equilibrium for 1D dispersion-free miscible displacements. Amnalytical
solutions obtained in this chapter are based on the following assumptions:

e The porous medium is homogeneous.

o Instant thermodynamic equilibrium exists everywhere.

No gravity or capillary forces act on the fluid.

Pressure and temperature are constant throughout the porous medium.

Components do not change volume as they transfer between phases.

The assumption of no volume change is reasonable when pressures are high. For systems
at lower pressures where solubility of light components in undisplaced oil is high but gas density is
low, effects of volume change can be significant[18] and Dindoruk’s formulation of the conservation
equations should be used.

Based on these assumptions, the mass conservation equations are written in the form

8C; OF; .

#+5§=07z=17"'7n67 (31)
where C; is the overall volumetric fraction and F; is the overall fractional flow of component i, t is
dimensionless time, z is dimensionless distance and n, is the number of components in the mixture.
Considering two-phased flow, C; and F; are connected to the phase behavior by

Ci = cu(1 = 8) + e, (3.2)

Fy=cu(l—f)+cuf (3-3)

S is the volumetric vapor fraction and f is the fractional flow of vapor, whereas ¢; and ¢;, are the
volume fractions of component 4 in the liquid and vapor phases respectively. C; and F; are subject
to the constraint

Tig Ne .
SCi=> F=1 (3.4)
i=1 i=1
The fractional flow function used for this work is
SZ
f (3.5)

TSP M1 =8~ Su)?
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where M is the viscosity ratio (vapor/liquid), and S, is the residual oil saturation. Finally the
initial data are specified by

inj
C(z,0)={ g"n z;g i=1,...,ne (3.6)
K3

The specification of constant initial and injection compositions to the mass conservation
equations make the construction of analytical solutions to the flow problem possible. Egs. 3.1-3.6
specify a Riemann problem.

Analytical solutions to Egs. 3.1-3.6 are constructed by solving the eigenvalue problem asso-
ciated with the mass conservation equations. In composition space, the corresponding problem is
to identify the correct (unique) route that connects the initial 0il composition and the injection gas
composition. The composition route that describes the analytical solution geometrically is subject
to the following requirements.

The composition route must have characteristic wave velocities in the two-phase region that
increase monotonically from upstream to downstream locations. This condition is known as the
velocity rule. If the velocity rule would be violated by a continuous variation (rarefaction), then a
shock must be introduced to insure that the solution remains single-valued. The shock must satisfy
the integral form of the mass conservation equations.

Fv — Fd
A=2—"Li=1,....n (3.7)
Cr — C¢

where A is the shock velocity. Upstream and downstream parts of the shock are denoted u and d
respectively. Eq. 3.7 is a Rankine-Hugoniot condition. Any shock present in a solution must satisfy
an entropy condition, which requires the shock to be stable in the presence of a small amount of
dispersion. In addition, solutions must satisfy a continuity condition with respect to initial and
injection data. In other words, small perturbations to the initial or injection compositions raust
result in small changes in the solution.

For all the examples presented in this chapter the Soave-Redlich-Kwong equation of state
was used for phase equilibrium calculation, whereas the Lohrenz-Bray-Clark[43] correlation was
used for calculation of viscosity.

3.3 Self-Sharpening Systems

A Fully self-sharpening systems are characterized by the feature that all key tie lines are
connected by shocks. For such systems the key tie line intersection approach is rigorously accurate
because the extension of a pair of key tie lines connected by a shock must intersect[35, 36, 34, 19, 18].
Two types of shocks occur. When the shock velocity matches the tie-line eigenvalue (df /dS) on one
side of the shock, the shock is known as a tangent shock. When the shock velocity differs from the
wave velocities on both sides of the shock, the shock is called a genuine shock. Both types of shocks
occur in typical solutions. Because the tie lines that make up the solution can be found by the
intersecting tie line approach[70, 71, 33] a full solution can be constructed if the shock composition
points can be determined on each of the key tie lines. The only remaining question is: On which
tie line does solution construction begin. We will refer to that tie line as the “primary” tie line.

Solution construction begins with finding the tangent shocks that connect the primary tie
line to adjacent tie lines just upstream and downstream. For problems in which the injection gas
composition lies on the vapor side of the two-phase region, the composition path lies on the vapor
side of the equivelocity curve (where f = S)[30]. For such compositions, f > S.

25



@ ®) )

Fy

(o
[ew]
—

Gy

(©)

Figure 3.1: Construction of tangent shocks.

We show now that the primary tie line must be the shortest of the key tie lines. To see why
this statement must be true, we consider a simple ternary vaporizing gas drive (Fig. 3.1a) in which
oil (composition a) is displaced by gas {composition e). Two key tie lines make up the solution:
the tie line that extends through the initial oil composition, and the tie line that extends through
the gas composition. In this example, the tie lines are connected by a shock because a rarefaction
between the oil tie line and the gas tie line would violate the velocity rule. The corresponding
overall fractional flow curves for the two key tie lines are shown in Fig. 3.1b, and the saturation
profile for the solution is shown in Fig. 3.1c. In this case, the leading shock is a tangent shock,
found by constructing the chord from point a in Fig. 3.1b that is tangent to the fractional flow
curve for the oil tie line. The shock from point ¢ on the oil tie line is found by constructing a chord
from point X that is tangent to the fractional flow curve for the oil tie line. Point X (Fig. 3.1a) is
the intersection point of the two key tie lines. Point X in Fig. 3.1b lies on the F1 = C1 line. The
composition of point d, the landing point on the gas tie is given by the intersection of the chord
with the fractional flow curve of the gas tie line. Note that point d lies above the composition at
which a chord constructed from the gas composition, point e, would be tangent to the fractional
flow curve for the gas tie line. A continuous variation from point d to that tangent point would
violate the velocity rule, so a genuine shock from point d to point e is required. The velocity of
that shock is given by the slope of the chord from point d to point e.

The tangent drawn from point X to point ¢ in Fig. 3.1b satisfies the following equations [35]:

Ff-F¢ _Ff-Cf Ff-Cf_f-8° §-8% df
Ci=Cf = Ci-Crof-Cf Se-S=  §i-s5% S|

(3.8)
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Figure 3.2: Illustration of downstream solution path construction.

where S and $9% refer to the saturations at point X measured on the tie lines containing points
¢ and d:

5% — Ctf - C‘il de _ G'J:.z - c(fl' (3_9)
. cf'u - Ccl:l ’ ctlz'u - Cclil

Fig. 3.1b shows that the tangent constructed from point ¢ to X intersects the overall
fractional flow curve for the injection gas tie line at point d. If, on the other hand, the chord
had been drawn from point X to the tangent point on the gas tie line, the extension of the chord
would not intersect the overall fractional flow curve for the oil tie line. Thus it is not possible to
satisfy the shock equations if the tangent were constructed to the gas tie line, but it is possible
to do so for the oil tie line. Analysis of the shock equations indicates that it is always possible
to satisfy the shock equations for this example if §° > S9, That restriction is controlled by the
length of the tie lines. In this example, the oil tie line is short, and the gas tie line is longer, so
¢, — &, < c&, — . Because the differences in ¢§, and cf; are small, the length of the tie lines
dominates the saturations in Eq. 3.9. Thus, if a shock between two tie lines is a tangent shock, the
tangent must be constructed to the shorter of the two tie lines.

Similar reasoning can be applied sequentially to each adjacent pair of tie lines, with the
result that in fully self-sharpening systems the shortest of the n, — 1 key tie lines must be a tie
line that is connected to tie lines just upstream and downstream by tangent shocks. The tangents
constructed from the intersection points to the shortest tie line. Therefore, the shortest tie line is
the primary tie line.

The algorithm for construction of fully self-sharpening 1D solutions is:

1. Locate all key tie lines using the tie line intersection approach. The global solution algorithm
of Jessen et al.[33] was used here.

2. Locate the primary (shortest) key tie line and start tracing the solution upstream and down-
stream. For each adjacent pair of tie lines, the possibility of a tangent construction is initially
investigated. The construction procedure is illustrated in Fig. 3.2.

3. Downstream construction: A tangent construction is made by solving Eq. 3.8 for (S1,A1)
on the primary tie line from the first downstream intersection point (I;). The landing point
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on the down-stream tie line (S2, A1) is subsequently found by solving Eq. 3.8 with the shock
velocity fixed.

4. For the next downstream pair, intersecting at Iz, a new tangent construction is examined.
From this point and forward the tangent construction may be invalid due to a violation of
the velocity rule. That is, if the endpoint of the previous construction (S, A1) has a velocity
that is higher than the jump or landing point from new shock construction (S3, A2). In such
a case, the new pair of tie lines is connected by a genuine shock. A genuine shock is followed
by a constant state. If, on the other hand, two tangent constructions are made to the same
tie line the tangent points are connected by either a direct jump or by continuous variation
along the tie line.

5. Step 4 is repeated until the tie line extending through the initial oil is reached. The solution
path often enters (and leaves) the two-phase region by a tangent shock. For some systems,
(Fig. 3.1, for example), however, variation along the tie line violates the velocity rule and a
direct jump is used.

6. From the primary tie line, the solution path is traced upstream by the approach of steps 3
and 4.

3.4 Solution Example for Fully Self-Sharpening System

The algorithm for construction of self-sharpening solutions has been applied for & real
reservoir fluid. The reservoir fluid was characterized by the procedure of Pedersen et al.[54] into
a 15 component fluid description. The properties of the characterized fluid are given in Table 3.1.
The reservoir temperature is 387.45 K at which the bubble point pressure of the original oil (A) is
252 atm. The pure component critical volumes V¢, used for the prediction of phase viscosities, were
calculated by specifying the critical compressibility factor of all components to 0.307. We seek the
1D solution for the displacement of oil A by gas A at 275 atm.

The fourteen key tie lines (those extending through the oil and gas compositions and twelve
crossover tie lines) were determined[33], and the third crossover tie line was identified as the primary
(shortest) tie line, the starting point for shock construction. The saturation profile is shown in
Fig. 3.3, and the details of the solution are given in Table 3.2. The primary tie line is connected
to the first downstream tie line by a tangent shock (d1). The remaining downstream part of the
solution consists of genuine shocks, constant states, and a direct jump from the oil tie line to
the initial oil composition. The upstream part of the solution starts with a tangent shock (d2)
connecting the primary tie line to the next crossover tie line. The remaining upstream shocks
are all genuine shocks with associated constant states, and another genuine shock connects the
injection gas tie line with the injection gas composition. A continuous variation connects the two
shock points (d1 and d2) on the primary tie line.

In order to confirm the analytical solution, a series of finite difference (FD) simulations was
performed. Single-point upstream weighting with a Courant number (Az/At) of 10 was used in all
the simulations which were run on a 450 MHz PC. The new two-phase PT-flash algorithm developed
by Michelsen[44] was used in the FD simulator to speed up the numerical solutions. The numerical
saturation profiles from simulations using 100, 1000 and 10000 grid blocks are compared with the
analytical profile in Fig. 3.3. The CPU time required to construct the analytical solution was 0.9
second, compared to 4.4 seconds, 5.4 minutes and 7.8 hours used respectively by the numerical
simulations. The coarse grid simulation (100 grid blocks) is not able to describe the details but
only the general trend of the dispersion-free solution. More details are captured using 1000 grid
blocks and an excellent agreement is observed when using 10000 grid blocks. However, the CPU
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Comp. T.(X) P.(atm) @ M, (g/mole) x-0il A y-Gas A
N, 126.200 33.6000 0.0400 28.016 0.450 045
CO, 304.200 72.9000 0.2280 44.010 1.640 1.82
CH, 190.600 45.4000 0.0080 16.043 45.850 81.39
) 305.400 48.2000 0.0980 30.069 7.150 9.15
G, 369.800 41.9000 0.1520 44.096 6.740 4.67
i-Cy 408.100 36.0000 0.1760 58.123 0.840 0.50
n-Cy 425.200 37.5600 0.1930 58.123 3.110 1.24
i-Cs 460.400 33.4000 0.2270 72.150 1.030 0.20
n-Cs 469.600 33.3000 0.2510 72.150 1.650 0.26
Cs 507.400 29.3000 0.2960 86.177 2.520 0.09
Cs 632.800 30.2987 0.1842 109.007 12.440 0.19
Ciy 659.605 23.4598 0.4773 175.327 6.320 0.00
Cis 703.646 19.2900 0.8197 256.674 5.024 0.00
Co 766.497 16.7852 1.2114 370.099 3.240 0.00
Css 892.990 15.1302 1.3718 590.374 1.996 0.00
Table 3.1: Characterized fluid description (SRK - Equation of state).
Point | Tieline |  poo/Mon Log (Ky) Zne S 2
0il Initial 0.1719 -5.80352 0.019957 - 1.9972 - o
a Initial 0.1719 -5.80352 0.011376 0321 1.4501 - 1.9972
b 1 0.1758 -5.70171 0.010801 0.344 1.2170 - 1.4501
c 2 0.1740 -5.73387 0.010972 0.338 1.1270-1.2170
d, 3 0.1879 -5.46043 0.008974 0.424 1.1270
d, 3 0.1879 -5.46043 0.008732 0.438 1.0187
e 4 0.1782 -5.64053 0.007761 0.509 0.9505 - 1.0187
f 5 0.1774 -5.65381 0.007727 0.512 0.9086 - 0.9505
g 6 0.1674 -5.83705 0.007376 0.547 0.8407 - 0.9086
h 7 0.1608 -5.95911 0.007205 0.567 0.8155 - 0.8407
i 8 0.1500 -6.16425 0.007001 0.595 0.7360 - 0.8155
j 9 0.1281 -6.60241 0.006702 0.646 0.4823 - 0.7360
k 10 0.0705 -7.72998 0.006246 0.780 0.3521 - 0.4823
1 11 0.0391 -8.54209 0.006109 0.862 0.1630 - 0.3521
m 12 0.0219 -9.01158 0.006151 0.927 0.0351 - 0.1630
n Inj. 0.0150 -9.12906 0.008519 0.960 0.0163- 0.0351
o) Inj. 0.0150 -9.12906 0.000049 1 0- 0.0163
Gas Inj. 0.0150 -9.12906 0.000000 - 0

Table 3.2: MOCQ solution for displacement of Oil A by Gas A at 275 atm and 387 K.
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Figure 3.3: Comparison of analytical and numerical saturation profiles for displacement of Oil A
by Gas A at 275 atm and 387.45 K. The finite difference (FD) solutions were obtained with 100,
1000, and 10,000 grid blocks and Az/At = 10.

cost for capturing the true dispersion-free saturation profile by numerical simulators is substantially
higher.

3.5 Systems with Nontie-Line Rarefactions

The shock solution described in the previous sections can be found even when there is a
rarefaction connecting one or more pairs of tie lines. In many problems, rarefaction segments that
appear are short, and wave velocities change little over the length of the rarefaction. In such cases,
the shock solution is an excellent approximation of the actual solution. For problems with longer
rarefactions, a more accurate approximate solution can be obtained by the procedure described in
this section. '

The mass conservation equations of the 1D flow problem can be rearranged into the eigen-
value problem

(A= Ae =0, (3.10)

where A is a coefficient matrix, I is the unit matrix, X is the eigenvalue and e the corresponding
eigenvector. The elements of the A are given by
oF; | .
Aj,i:a—c%, h,ji=1,...,n.— L (3.11)
2
At any given point in the two-phase region, the n. — 1 eigenvalues represent characteristic
wave velocities of compositions subject to variation in the corresponding eigenvector direction. Tie
lines are eigenvectors and the remaining n. — 2 admissible directions can be integrated to obtain
nontie-line paths. When a nontie-line rarefaction exists in the 1D solution, the solution path
switches from a key tie line path and travels along a nontie-line path to end up at a neighboring
key tie line. The velocity rule dictates that a path switch from a tie line path to a nontie-line path
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can occur only at an equal-eigenvalue point of mixed type. That is a point in compositional space
where a tie line eigenvalue coincides with a nontie-line eigenvalue. For a given tie line the number
of equal-eigenvalue points of mixed type is 2(n. — 2). Half of them can be disregarded immediately,
as they are located on the liquid side of the equivelocity curve. The equal eigenvalue points can
be located directly by solving the eigenvalue problem along a given tie line. The direct approach
is quite time consuming and hence, the indirect method of Dindoruk (p. 64)[18] for location of
equal-eigenvalue points is recommended for problems of the current type.

In the following we assume that two key tie lines, known in advance, are connected by a
spreading wave. The question is then: at what equal-eigenvalue point does the tie line path switch
to the nontie-line path?

The selection of the appropriate equal eigenvalue point can be done by a geometrical in-
terpretation of the displacement problem. When a rarefaction is present, the key tie lines bound
a surface in composition space of tie lines intersected by the path that connects the key tie lines.
The nontie-line spreading wave traverses that surface. Experience indicates that the tie-line sur-
face is only slightly curved, so it can be approximated well by a plane determined by the key tie
lines. Hence, at the correct equal-eigenvalue point only the tie-line eigenvector and the eigenvector
related to the matching nontie-line eigenvalue will point in direction of the plane Q spanned by the
neighboring key tie lines. In practice this is done by checking angles between the normal vector to Q
and the eigenvectors. Note that for systems with 5 or more components in the mixture, the normal
vector to Q is no longer uniquely determined and must be found by a minimization approach.

After the selection of equal-eigenvalue point, the nontie-line path is traced to the next key
tie line by integration of the nontie-line eigenvector. For the general case, however, the presence of
a spreading wave is not known in advance. Hence, a tool for predicting the existence of nontie-line
rarefactions is needed.

3.6 Prediction of Spreading Waves in 1D Solutions

If two key tie lines are connected by a rarefaction, the path switch from the tie line path
to the nontie-line path must occur at an equal eigenvalue point on the tie line located closest to
the critical locus. This is due to the intrinsic symmetric behavior around critical points. In the
work of Dindoruk{18], continuous variation along nontie-line paths is linked to the envelope curve
generating the ruled surface traveled by the nontie-line path. This envelope curve is illustrated in a
9-dimensional projection of the general case in Fig. 3.4. The tie lines belonging to the 1-parameter
family oz (10) on the kth ruled surface are all tangents to the envelope curve Ej. The overall volume
fraction of a given component ¢ at the point of tangency on the envelope curve can be written as

Ci = (civ — cit) Pe(¥) + cits (3.12)

where Py (1) is the superficial vapor volume fraction at the point of tangency. Dindoruk[18] derived
an expression for the variation of the nontie-line eigenvalue A along the nontie-line path in the
vicinity of the equal eigenvalue point

dvy  f=S5 db

& (G- P) db (3.13)

where ); is the tie line eigenvalue at the equal eigenvalue point. While Eq. 3.13 applies strictly
only near the equal-eigenvalue point, the indicated sign of the left-hand side applies over the entire
nontie-line path[18].
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Figure 3.4: Illustration of envelope curve.

3.7 The Fanning Rule (Envelope Rule)

Inspection of Eq. 3.12 indicates that a critical point must be a point on the envelope curve.
This fact makes it possible to predict the sign of the derivative of the superficial vapor saturation
with respect to ¥ and hence the variation of Ax once the orientation of the key tie lines is known.
The absolute distance from the two-phase boundary to the envelope curve increases as the nontie-
line path is traced from an equal eigenvalue point. The sign of the superficial vapor fraction depends
on whether the tie lines of the ruled surface are fanning from the liquid side or the vapor side of the
two-phase region, or equivalently, whether the envelope curve is located in the vapor or liquid side
of the two-phase region. Ultimately the shape of the fractional flow curve and the velocity rule are
used to determine whether a path switch at an equal eigenvalue point is admissible. Recall that
the velocity rule states that a high-speed wave must be found downstream of a low-speed wave.
For systems in which the injection composition lies on the vapor side of the phase envelope and
the initial composition on the liquid side, the solution path (after the leading shock) lies on the
vapor side of the equivelocity curve (f > §). This fixes the sign on the numerator on the right
hand side of Eq. 3.13, and hence the derivative of the nontie-line eigenvalue has the same sign as
the derivative of the superficial vapor saturation Pj. Application of the fanning (envelope) rule in
combination with the velocity rule result in four distinct cases illustrated in Figs. 3.5-3.8.

The first case illustrated in Fig. 3.5 is a vaporizing wave where the envelope curve is located
on the liquid side of the two-phase region. As the nontie-line path is traced from the equal eigenvalue
point located downstream (d) towards the injection point located upstream (u), the superficial
vapor saturation Py decreases. This is consistent with the velocity rule and hence the path switch
is allowed and a spreading wave will be present in the 1D solution.

Fig. 3.6 shows a condensing wave in which P is increasing as the nontie-line path is traced
from a point upstream (u) towards the initial oil. This is consistent with the velocity rule and
hence a spreading wave will form in the solution.

In the condensing drive illustrated in Fig. 3.7, Py is a decreasing function of the nontie-line .
path when traced from a point upstream (u) towards the initial oil. This is a violation of the
velocity rule, as the upstream part of the wave eventually will catch up with the downstream part.
In other words, the wave is self-sharpening. The upstream and downstream key tie lines must
consequently be connected by a shock. Depending on the compatibility with the solution this can
be either a tangent shock or a genuine shock.

Fig. 3.8 shows a vaporizing wave with the envelope curve located on the vapor side of
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Figure 3.5: Vaporizing wave with liquid side envelope. Upstream (u), Downstream (d).
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Figure 3.7: ‘Condensing wave with liquid side envelope.
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dp,

—= >0
dW (d)-> ()
Figure 3.8: Vaporizing wave with vapor side envelope.
Type Tie line length Intersection Wave
Upstream Downstream
Vaporizing Long Short Liquid side Rarefaction
Vaporizing Long Short Vapor side Shock
Condensing Short Long Liquid side Shock
Condensing Short Long Vapor side Rarefaction

Table 3.3: Summary of the fanning (envelope) rule.

the two-phase region is inspected. As the nontie-line path is traced from a point upstream ()
towards the injection point, the nontie-line eigenvalue increases. Again this behavior will result
in a sharpening wave, a path switch at the equal eigenvalue point is not allowed and a shock is
required.

The general feature of the four cases presented above is that a spreading wave only will form
if the nontie-line path, starting at the equal eigenvalue point, is moving away from the envelope
curve. Whether a rarefaction appears between two key tie lines can be summarized easily in terms
of tie line length and whether the intersection point lies on the liquid or vapor side of the two-phase
region. Table 3.3 reports that summary. Vaporizing segments occur when a longer key tie line lies
upstream of a shorter key tie line (see Figs. 3.5 and 3.8), and in vaporizing segments, a rarefaction
occurs when the intersection between the key tie lines lies on the liquid side of the two-phase region.
In condensing segments, a shorter key tie line is upstream of a longer one (see Figs. 3.6 and 3.7),
and a rarefaction occurs when the intersection is on the vapor side. Additional analysis is required
to determine whether rarefactions appear if either the initial oil or the injection gas composition is
in the two-phase region. :

3.8 Algorithm for Systems with Nontie-line Rarefactions

The algorithm for constructing 1D solutions, honoring the existence of spreading waves, is:
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1. Locate all key tie lines by the tie line intersection approach.

2. Apply the fanning rule for each neighboring pair of key tie lines. If no rarefactions are
predicted switch to the simplified algorithm for fully self-sharpening systems.

3. For each predicted rarefaction, locate the equal-eigenvalue point and integrate the eigenvalue
problem to obtain the corresponding nontie-line path.

4. Locate the primary key tie line and start the shock construction downstream. Switch points
between the nontie-line paths and the tie line paths are introduced in the solution requirements
in parallel with the velocity rule. The downstream solution is traced until the initial oil
composition is reached.

5. Continue constructing the upstream solution by the approach of step 4 until the injection gas
composition is reached. '

3.9 Solution Example with Nontie-line Rarefaction

The appearance of nontie-line rarefactions is commonly observed in the solution path for
displacements when Ny is present in the injected gas. To illustrate the limits of the algorithm
used for constructing fully self-sharpening solutions, pure Ny is now injected into the reservoir fluid
(oil A) at the same temperature and pressure as previously. The saturation profile generated by
the algorithm for fully self-sharpening systems is compared with coarse and fine grid numerical
simulations in Fig. 3.9. The saturation profile from the fine grid simulation clearly indicates a
nontie-line rarefaction between the initial tie line and the first crossover tie line. Fig. 3.9 further
ilustrates the saturation profile obtained by combining an integration of the nontie-line path with
shock constructions as described previously.

For this system, the tie line extending through the initial oil is the primary tie line. Appli-
cation of the fanning rule indicates that a nontie-line rarefaction connects the initial tie line and the
first crossover tie line. The nontie-line path ends at an overall composition approximately located
on the adjacent tie line. The inaccuracy of the approximation introduced by assuming intersecting
key tie lines is quite small, as Table 3.4 shows. The observed deviation is of an order of magni-
tude where the numerical evaluation of the coefficient matrix A and the step by step integration
may contribute significantly. To avoid any violation of the mass conservation equations, the first
crossover tie line was connected to the end point of the nontie-line path by a genuine shock. The
downstream solution consists of a continuous variation along the initial tie line and a tangent shock
to the initial oil. Genuine shocks and constant states make up the upstream part of the solution
until the injection tie line is reached. Finally the solution is completed by a direct jump to the
injection composition.

Fig. 3.9 indicates that the fully self-sharpening solution is a much more refined approxima-
tion than the one obtained by a coarse grid numerical simulation.

3.10 Conclusions

The analysis and examples presented lead to the following conclusions:

1. The tie line intersection approach can be applied to find solutions for 1D-gas displacement
problems with an arbitrary number of components in the initial oil and injection gas.

2. The solutions obtained are rigorously correct for fully self-sharpening systems.
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Figure 3.9: Comparison of analytical solutions (with and without integration) with numerical
saturation profiles for the displacement of Qil A by pure n; at 275 atm and 387.45 K. The finite
difference (FD) solutions were obtained using 100 and 10,000 grid blocks and Az/At = 10.

Comp. x {shock) x (rarefaction) Error % y (shock) y {rarefaction) | Error %
N, 0.23695463 0.23657449 0.16 0.86905145 0.87052697 0.17
CO, 0.00892119 0.00896803 0.52 0.01255008 0.01262557 0.60
CH, 0.00000000 0.00000000 .- 0.00000000 0.00000000 -
C, 0.06295753 0.06196958 1.59 0.05199391 0.05114823 1.65
Cy 0.07434362 0.07361960 0.98 0.03517118 0.03476156 1.18
i-Cy 0.01007617 0.00998769 0.89 0.00333684 0.00329854 1.16
n-Cy 0.03922843 0.03896883 0.67 0.01076864 0.01066283 0.99
i-Cs 0.01382016 0.01374001 0.58 0.00260091 0.00257527 1.00
n-Cs 0.02260102 0.02248533 0.51 0.00376605 0.00373032 0.96
Cs 0.03645991 0.03630629 0.42 0.00382992 0.00379312 0.97
Cy 0.20213968 0.20233382 0.10 0.00585749 0.00531241 0.78
Cyy 0.10787320 0.10827271 0.37 0.00095891 0.00095155 0.77
Cis 0.08952057 0.09020739 0.76 0.00011148 0.00011053 0.86
Cy 0.05901420 0.05964260 1.05 0.00000305 0.00000300 1.37
Cs3 0.03608969 0.03692364 2.26 0.00000009 0.00000009 0.88

Table 3.4: Comparison of tie line found by MOC integration and by the tie line intersection

approach. Gas A displaced by pure N» at 275 atm and 387 K.
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3. The presence of a rarefaction between key tie lines can be determined easily from the lengths
of the upstream and downstream tie lines and whether the intersection point lies on the vapor
side or the liquid side of the two-phase region.

4. For displacements that include nontie-line rarefactions, the solutions obtained by the tie
line intersection approach are approximate, but they are much more accurate than solutions
obtained by conventional finite difference compositional simulation unless impractically fine
computational grids are used.

5. Times required to obtain approximate analytical solutions by the key tie line method are or-
ders of magnitude lower than corresponding times for conventional compositional simulation.

3.11 Nomenclature

A = Coefficient matrix

C; = Overall volumetric fraction of component 7
¢y = Volumetric fraction of ¢ in liquid phase

¢y = Volumetric fraction of ¢ in vapor phase

e = Eigenvector

F; = Overall fractional flow of component 4

f = Fractional flow of vapor

I = Identity matrix

M = Viscosity ratio (vapor/liquid)

ne = Number of components in mixture
P = Superficial vapor saturation

S = Volumetric vapor saturation

At = Tieline eigenvalue

Ax = kth nontie-line eigenvalue

A = Shock velocity
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4. Nested Gridding and Streamline Simulation

Yann Gautier, Martin J. Blunt, and Michael A. Christie

Detailed reservoir models routinely contain 106 o 108 grid blocks. These models often
cannot be used directly In a reservoir simulation because of the time and memory required for
solving the pressure grid on the fine grid. In this chapter, we propose a nested gridding technique
that efficiently obtains an approximate solution for the pressure field. The domain is divided into
a series of coarse blocks, each containing several fine cells. Effective mobilities are computed for
each coarse grid block and the pressure is then found on the coarse scale. The pressure field within
each coarse block is computed using flux boundary conditions obtained from the coarse pressure
solution. Streamline-based simulation is used to move saturations forward in time. We test the
method for a series of example waterflood problems and demonstrate that the method can give
accurate estimates of oil production for large 2D models significantly faster than direct simulation
using streamlines on the fine grid, making the method overall approximately up to 1,000 times
faster than direct conventional simulation.

4.1 Introduction

Reservoir models containing millions of grid blocks frequently cannot be used directly in
reservoir simulation since the time and memory cost is too high. Instead the reservoir simulation is
performed on & coarser grid on which average multiphase flow properties are defined. The process
of finding effective properties is called upscaling and in recent years many different methods have
been proposed (see {14, 51] for recent reviews).

For single-phase flow problems, the absolute permeability has to be upscaled. Several
reliable methods can be found in the literature [51]. In contrast, upscaling for multiphase flow
is not so well established although several methods of “pseudoization” have been developed (see
Barker [6] and references therein for a review on that subj ect). However most of the time the results
are not robust and depend highly on the particular boundary conditions used.

Recently another approach has been considered: instead of doing the simulation only on
a coarse gridding of the reservoir, both the fine and the coarse scales are considered. Gautier
and Neetinger [26] used this idea for single phase flow problems. They upscaled the full absolute
permeability tensor using renormalization and they proposed an algorithm to construct the fine
grid fluxes based on the the upscaled grid properties. The preferential flow paths were well detected
but the orientation of the fluxes wasn’t accurate due to a bias of the algorithm.

Ramé and Killough [57] used a multiscale method to solve miscible flow problems. They
interpolated on a fine grid the pressure obtained from a coarser grid solution. They first used a
collocation finite element method to interpolate, which leads to non physical oscillatory variations
of the pressure. The results were then improved using a a spline method. The main problem of
their method was that the mass conservation was not ensured from their interpolation scheme.
Moreover the fine grid heterogeneities were not directly considered.

Verdiére and Guérillot [29, 67] applied a dual scale approach for waterflooding problems
that overcome the limitations of the method developed by Ramé and Killough [57]. As before,
saturation was computed on a fine grid and the pressure on a coarser grid. They also associated
two different time scales to the pressure and to the saturation equations. The algorithm they used

3The material in this chapter will be published in Computational Geosciences.
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can be divided in different steps. First, considering the fine grid information, they upscaled values
of the product of the absolute permeability and of the mobility (the transmissivity) using a simple
algebraic rule. They then solved the pressure equation on the coarse grid. In the next step they
computed the fine grid pressure and the fluxes using flux boundary conditions derived from the
coarse grid pressure. With this information they updated the saturation solving the associated
hyperbolic equation. All their computations were done using a finite difference simulator on a 2D
field with simple boundary conditions: prescribed rates or pressures on two opposite corners of the
reservoir. They neglected gravity and capillary pressure. The results were on good agreement with
the fine grid simulation leading to a precision gain over typical upscaling methods. Guedes and
Schiozer [28] used a similar method with a different upscaling step. Instead of an algebraic rule,
they used a pseudo method to obtain the upscaled transmissivities. They showed the improvment
of their methods with respect to coarse grid simulations using upscaled absolute permeabilities or
pseudo relative permeabilities.

In a subsequent paper, Verditre and Vignal [68] showed mathematically that their method
converges to the exact solution using a finite volume formalism. They also computed numerical
error estimates on a few test cases. In a more general framework, Hou and Wu [31] have developed
a multiscale finite element approach for solving pressure-like equations. This is a mathematically
rigorous technique whereas the method developed by Verdiére and Guérillot is approximate and
broadly corresponds to the first step of a multigrid method.

In this chapter, we will apply this type of algorithm to solve the pressure equation within a
streamline-based multiphase flow simulation [7, 65]. Streamline-based simulation has been shown to
give fast and reliable estimates of the solution of different low simulation problems. The streamline
method is briefly as follows. The grid pressure is first computed and the velocity field is derived
using Darcy’s law. Streamlines are then traced from injectors to producers. The next step is to
solve the one-dimensional saturation equation on every streamline and map the saturations back
to the original grid. The grid properties are finally updated and the pressure is solved for the next
time step.

A multiscale approach for streamline-based simulation is appealing for several reasons. The
first motivation is to increase the speed of the streamline method. Streamline methods can be
up to 100 times faster and require less memory than a typical finite difference simulation (7, 65].
As we will see the new method will provide an additional speed-up factor of nearly one order of
magnitude, with a saving of up to 40% of the memory cost. Hence, bigger problems can potentially
be considered than by using conventional simulation. Another motivation is that using a multiscale
method to solve the pressure equation can provide a fully parallel method since all the upscaling
problems and the computation of the fine grid pressure are independent and can be made parallel
easily. This is also the case for the saturation equation which has been split into series of small
one-dimensional problems.

We will implement this nested gridding streamline-based flow simulation within a more
general framework than the one used by Verdiere and Guérillot {29, 67]. We will show how to treat
wells and how to incorporate 3D effects by computing an equivalent gravity transmissivity. To
upscale fine grid transmissivities, we will use the pressure solve technique which has been shown to
be more robust than other upscaling methods [51, 53]. This step requires the solution of small linear
systems to obtain the fine grid block pressure with prescribed boundary conditions. The exiting
flux is then computed and the effective transmissivity is derived using Darcy’s Law. To optimize
the CPU cost of a pressure evaluation we will select different solvers for the different problems we
encounter. For the small problems that we have to solve during the upscaling step and during the
pressure computation on the fine grid we use a band solver that is particularly efficient for small
linear systems. A multigrid or an iterative solver is used for larger problems on the coarse scale.
Therefore nested gridding provides us a flexible way to save CPU time for the computation of the
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pressure since we adapt the type of solver used to the size of the problem considered.
First, we briefly review the streamline method, then we develop our new technique, and
lastly, we present results in 2D and 3D with and without gravity.

4.2 The streamline method

‘We consider multiphase flow with the following assumptions: we neglect capillary, compress-
ibility and dispersion effects. The streamline method is an IMPES method (IMplicit in Pressure
and Explicit in Saturation). The pressure p is solved using the following differential equation [4]:

V-k (AVp+2,VD) =Q (4.1)

D represents the depth, () the source terms due to wells, k the absolute permeability tensor, A
and ), the total mobility and total gravitational mobility respectively for n, phases, defined as:

P 2
=Y T, =) 42
j=1 Hi =1 HMi

where g is the gravitational acceleration constant and p; is the density of phase j. The material
balance for phase 7 leads to the saturation equation:

85,
¢—87’+ut'ij+v-Gj = Qufjuw (4.3)

where f; represents the Buckley-Leverett fractional flow of phase j:

ij / M

fi= =it 4.4
! zf:l k?‘m //lm ( )
and Gj is the velocity due to gravity effects:
Np k
Gj =g fikVD Y~ (pm — p;) (4.5)
m=1 #m
The total velocity u; is computed from the pressure solution of Eq. 4.1, using Darcy’s law:
u; =k (AVp+ A, VD) (4.6)

In a conventional finite difference method, the saturation equation, Eq. 4.3 is solved directly
on the 3D field. With the streamline method, the problem is decoupled into a set of 1D problems
along streamlines.

The streamlines are traced from injectors to producers. Their paths are determined from
the total velocity computed for each grid block face using an analytical method developed by
Pollock [56]. The saturation is then moved along each streamline using a numerical solution of the -
1D problem. Finally, the saturation is mapped onto the grid blocks. The pressure field is then
recomputed and new streamlines are traced. The different steps are pictured in Figure 4.1.

The streamline method has two main advantages over conventional finite difference simula- .
tors [7, 65]. It requires fewer simulation time steps and it is less sensitive to numerical diffusion. The
maximum time step between two pressure solves in a conventional IMPES simulator is conditioned
by a global CFL constraint which requires that the fluid cannot move more than one grid block per
time step. Typically, the CFL constraint is determined from the largest flow velocity in the whole
field leading to unnecessarily small time steps. In the streamline method, a local CFL constraint
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Figure 4.1: Description of the streamline method. Consider a permeability map (e) with injector
and a producer wells. Solve the pressure field (b). Compute the velocity field and trace streamlines
(c). Move saturation along streamlines and compute the values of the saturation on the grid (d).
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is defined for every streamline and the saturation is updated using a 1D solver. Large global time
steps can be taken between pressure solves. The most time consuming step for both streamline and
conventional approaches is the solution of the pressure equation Eq. 4.1. In our proposal method
we use an approximate pressure solver based on nested gridding in order to decrease the CPU time
of the simulation.

4.3 Description of the new method

The basic idea of the nested gridding method is to decouple the pressure problem into
a set of smaller problems on two scales: we consider a coarse grid superimposed on a fine grid
(Figure 4.2). We assume that the initial petrophysical properties are defined on the fine grid. The
first step of the nested gridding method is to upscale these properties on the coarse scale. The
pressure equation Eq. 4.1 is solved on the coarse scale. The next step is to go back to the fine grid,
solving a set of local problems within each coarse grid block using boundary conditions derived
from the previous step.

Figure 4.2: Representation of the coarse grid superimposed on a fine grid. The right figure repre-
sents a particular coarse grid block

Let us first recall the finite difference equation related to the pressure equation. Using a
seven point stencil, the pressure is determined from the classical relation [4]:

T, -1 k=1 Ty i 1Pk + T 1Pk

7 vi—% zi—}%
— Pi,jk(Tzk 1+TJ__+T +T 1+Ty,j+%+T )

-’1”—— T,z
+ Tz k+1P,3,k+l+ yg+lP,y+1k+Tmz+ Piy1jk

= Qijk+ G, p_1Dijh—1~ G, 1 Dijk (4.7)

where the right hand side contains source terms induced by the boundary conditions @ and by
the difference of elevation between the considered grid block and its neighbors (for a cartesian grid
only the neighbors in the vertical direction have a nonzero contribution). 1,j,k are respectively
the indices of a block in the z,y, z directions. T, ol represents the inter-block transmissivities

which is the harmonic average of the block transm1531v1tles For example, in the z direction, with
(Az;, Ay;, Az;) representing the size of the grid block:
2
Ty =TT 1 (4.8)
Teyi ' Tziqn
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where the transmissivity of each fine grid block is:

_ AyiAzi
TI’I - Az;

Atike (4.9)

Gyt 1 represents the inter-block gravity transmissivities which is the harmonic average of the block
gravity transmissivities. For example, in the z direction,

2
G, . 1= ———F (4.10)
ity i 1
ot ? G:,i + Ga:,i+l
where the transmissivity of each fine grid block is:
Gy = Zz Ag.ikzs (4.11)
Eq. 4.7 can also be represented in a matrix form
TP + GD = Q; (4.12)

where T and G are the transmissivity and gravity transmissivity matrices, P and D are vectors
containing the pressure and the elevation of the different grid blocks.

4.3.1 The upscaling step

In the following we will focus on one particular type of upscaling: the pressure solve tech-
nique [9, 51, 53, 55, 42]. This method is widely used and it has been shown to be more robust than
other faster techniques such as simple averaging rules and renormalization [51, 40, 26].

In our nested gridding method we compute two different upscaled quantities: the transmis-
sivities and the gravity transmissivities. Let N be the number of coarse grid blocks and m the
number of fine grid blocks contained in each coarse grid block. We take an isolated coarse grid
block (I,J, K) and solve the pressure equation (Eq. 4.7) on the underlying fine grid with suitable
boundary conditions. To compute the effective transmissivities in the direction d = z,y, 2, Eq. 4.7
is solved using constant pressure boundary conditions on the d direction and no-flux boundary
conditions on the other directions. We neglect gravity for these computations. Once the pressure is
obtained inside the coarse grid block, the exiting flux ¢° is computed and the effective transmissivity
of each coarse grid block is derived using Darcy’s law. In the z direction:

e _ ¢
T7, = AXAP. (4.13)
where AP, is the pressure drop and AXy is the length of the coarse grid block in the z direction.
This process is repeated in the two remaining directions to obtain T¢ = (Tg,Tyc,Tf) for all the
coarse grid blocks. The upscaling process in the z direction is depicted in Figure 4.3.

To compute the effective gravity transmissivity, we are using the same method as before
but with different boundary conditions. Since a Cartesian grid is considered, only the z direction
effective gravity transmissivity will have a nonzero value which we call G ,. To solve the fine scale
problem, we consider no-flux boundary condition on the z and y faces of the block and a constant
gravity g along the z direction. No pressure drop is applied on the two opposite faces in the z
direction. G§ , is computed from the exiting flux with:

ge -4 (4.14)
Iz g AZ]‘
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Figure 4.3: Upscaling of the transmissivities: the fine transmissivity map is divided into coarse
grid blocks. The pressure equation is solved independently on each coarse grid block with a no
flux boundary on all the faces except two opposing faces across which a prescribed pressure drop
is applied. The upscaled values of the transmissivities are then obtained from the computation of
the flux across the system.

The upscaling is repeated for every coarse grid block. Each coarse block is characterized
by three upscaled transmissivities and one upscaled gravity transmissivity. Note that the effects of
the fine grid saturation distribution is accounted for in T and G7 ,, and that, in order to compute
the different effective parameters we split the influence of the viscous and gravitational forces. The
different upscaling steps are described in Figure 4.4.

(=)

Figure 4.4: Upscaling of the transmissivity in the three directions (a-¢) where a constant pressure
drop AP, is applied on the direction d and the gravity is set to g = 0. (d) depicts the upscaling of
the gravity transmissivity where AP, =0 and g # 0.
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4.3.2 Pressure solve on the coarse grid

The second step of the method is to compute the pressure on the coarse scale using Eq. 4.7
with the effective transmissivities T¢. Here the right hand side contains the source terms induced
by the wells. To represent the wells we use the Peaceman model [52]. In the next step, the pressure
at the coarse scale will be used to derive the pressure field at the fine scale.

4.3.3 Computation of the pressure on the fine grid.

Figure 4.5: Computation of the fine grid pressure field using the pressure of the coarse grid and
the fluxes coming from the neighboring coarse grid blocks. The fluxes are computed using Darcy’s
law and are weighted by the inter-blocks transmissivities.

The pressure on the fine grid is obtained from the former step by solving the pressure
equation on each coarse grid block. Let us consider a particular coarse grid block. It contains
m fine grid blocks whose pressures will be derived from Eq. 4.7 using the following boundary
conditions: the pressure at the central fine grid block is assumed known and equal to the pressure
of the coarse grid block. Furthermore, the fluxes at the boundaries of the fine grid are assumed to
be equal to ¢° (the flux computed from the coarse pressure solution using Darcy’s law) weighted
by the inter-block transmissivities T, .1 [67]. For instance, the fine grid flux in the z direction for

a particular grid block (4, 7, k) located on the right boundary is:

i oo Toarbgk
Qxi - Q.'l: X E T 1
lj stk $:7‘+5)l]— e

(4.15)

In the sum, (I;,1;) are the indices in the y and z directions of the grid blocks located on the
boundary. The upscaling step is described in Figure 4.5. :

For coarse grid blocks perforated by a well, we modify slightly the above algorithm. The
fluxes along each faces are still considered to be computed with Eq. 4.15. We will require that
the pressures at the grid blocks perforated by the well are defined such that the rates are globally
the same on both the fine grid and the coarse grid. Let ¢ be the rate flowing from the well
from a particular coarse grid block containing n; layers. We assume that the well rate coming from
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each perforated layer [ is equal to ¢©* weighted by the well transmissivity of the layer T} which is
defined in Peaceman’s well model [52, 4]. We thus have:

)
2-} c,w

fow
o = s X 47 (4.16)
: Yia T
qlf “ is related to the well pressure at the top well grid block completion (k*), Pg:
12
q" =T | P ~B+5 > (-1t (Di—Diy) (4.17)
ik 41
where the wellbore specific gravity is defined by:
A .
1,2
Using Eq. 4.16 and Eq. 4.17 we obtain the pressure of the fine grid block:
go 3
P =PFi - ST + Y, (fic1+7w) (D — Dimy) (4.19)
=1 "1 i=k*+1

This method ensures that the flow will preferentially exit the well through high transmissivity
layers.

Once the pressure is defined on the fine grid, we compute the velocity field in order to
trace streamlines. To ensure continuity of the fluxes, the velocity field is computed from the fine
grid pressure within each coarse grid block volume, and from the coarse fluxes on the boundaries,
Eq. 4.15, that were used in the pressure solution on the fine grid. Once the streamlines are defined,
the saturation is moved forward in time as in a standard streamline method. The pressure field and
streamlines are periodically recomputed during the displacement. The saturation is always defined
on the fine grid and is used in the computation of T and G for the coarse grid.

Figure 4.6 summarizes the different steps of the nested grid method. Note that only the
steps (2-4) are different from the classical streamline method where they are replaced by a pressure
solve over the entire fine grid.

4.4 CPU cost evaluation for the nested gridding method

We will present in this section a comparison of the CPU cost for the conventional streamline-
based simulation against our new nested gridding approach. We compare the CPU time needed to
solve Eq. 4.7 for both methods. The other steps in the simulation are similar for the two methods.
The CPU time needed to solve directly the pressure equation on the fine grid is:

(direct) — (" x m) (4:20)

In the nested gridding method, the time ¢(nested) required to solve the pressure equation in d = 2, 3
dimensions is the sum of three terms:

c(nested) _ (d+1,) Nt(m) (4.21)
+ N (4.22)
+ Nt(m) (4.23)

47



a) Fine grid transmis- {b) Coarse grid trans- {c} Pressure oun the
ivity map missivity map coarse grid

{

{d) Pressure on the fine {e) Streamlines on the {f} Saturation on the
grid fine grid fine grid

Figure 4.6: Description of the different steps of the nested gridding method. We first consider a
fine description of the reservoir (a). The transmissivities are then upscaled on a coarse scale (b)
and a pressure solution on the coarse grid is computed (c). The next step is the computation of
the pressure on the fine grid (d) which leads to the velocity field. The streamlines are traced from
the injector to the producer (e) and saturation is moved using the classical streamline method (f).
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The first term Eq. 4.21, represents the amount of time necessary to solve the N small linear
systems needed to perform the upscaling in d directions of the transmissivities and the upscaling of
the gravity transmissivities assuming that the time required to get the solution is t(m). 14 is equal
to 1 or 0 depending on whether or not gravity is considered. The second term, Eq. 4.22, represents
the time needed to solve the pressure field on the coarse scale and the last term Eq. 4.23 is the
time needed to solve compute the pressure inside all the different coarse grid blocks. Adding these
terms we obtain:

gloested) — (74 1) + 1) Nt(m) +¢(N)  withd=2,3 (4.24)

For the upscaling step, for 8D problems, three or four linear systems have to be solved to compute
the effective transmissivities in the three directions and the gravity transmissivities. But, since the
same transmissivity matrix, is used three times and is stored in memory, the required time is less
than 3 or 4 Nt(m).

The nested gridding method requires us to solve multiple linear systems whose sizes are
highly different: typically for the upscaling step and the computation of the fine grid pressure, the
system will contain 10 — 100 unknowns, whereas for the computation of the coarse grid pressure
the number of unknowns is 10% — 10°. One key issue of the nested gridding method is its ability
to use the most appropriate solver at each scale to obtain the lowest CPU time cost. In the next
section different solvers are presented and tested. We will see that their performances are sensitive
to the number of unknowns as well as to the available computer memory.

4.5 CPU requirements of different pressure solvers

The pressure is solved from Eq. 4.7. Typically, considering all the grid blocks, we obtain
a banded linear system of equations. The bandwidth depends on the total number of grid blocks
and on the numbering of the grid blocks. Figure 4.7 and Figure 4.8 represent the shape of the
matrix formed with the transmissivity of the reservoir in 8D and 2D (only nonzero elements are
represented). Adding well constraints leads to additional off-diagonal terms.

Figure 4.7: 2Dgrid with n, = 5, ny = 5 and the corresponding transmissivity sparse matrix. Only
nonzero elements are represented.

We will use three different public domain solvers:
e a band solver DGBSV from the LAPACK library [3].
e an iterative solver from the ITPACK library [39].
¢ a multigrid solver AMG [63].

The performance and memory requirements of these two solvers are very different. For the band
solver, the data are stored in an N, x Ny array, where N, and NN; represent respectively the bandwidth
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Figure 4.8: 8Dgrid with ny = 2, ny = 5 and n, = 5 and the corresponding sparse matrix. Ounly
nonzero elements are represented.

and the total number of grid blocks. The storage space increases quickly with the system size and
makes this method only suitable for problems containing less than 30,000 grid blocks in 2D using a
DEC alpha workstation with 512MB RAM. The iterative solver and the multigrid solver both use
a storage which is proportional to a weighted sum of the number of nonzero elements and the total
number of grid blocks, N;. The iterative solver takes also advantage of the symmetric properties of
the transmissivity matrix. Only one half of the nonzero elements are stored. A 500,000 grid block
problem was the largest case we could rur with our computer using the multigrid solver, whereas
problems with up to two million grid blocks were possible using the iterative solver.

muftigrid solver —=m1 (N - NeH
Hermtve solver —> 1{MNgG ~ Mt

[ B

band sohves i 1 (N - N

CGPU Time {s)

i 10° ¢ 1 100 10
s number of grid blocks

(b)

Figure 4.9: Heterogeneous permeability fields (a), in a log-scale, used to compare the CPU time
needed to solve the pressure. There are all extracted from a 500 x 500 permeability field. (b) is the
CPU time comparison for a pressure solve using different solvers for 2D problems.

We now compare the CPU cost of different solvers for 2D problems. We consider a per-
meability field (500 x 500 grid blocks) generated using a sequential gaussian simulation [16]. The
pressure equation is solved for permeability fields extracted from it with a prescribed pressure on-
two opposing faces and no flux boundary on the two other faces. The construction of the different
permeability fields is depicted in Figure 4.9(a). The CPU time needed for the pressure solve is
plotted as a function of the total number of grid blocks NV} in Figure 4.9(b) for the three available

solvers. ,
For a sufficiently large number of grid blocks the time for a pressure solve using the multigrid
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Table 4.1: CPU time (in s) and memory (in MB) comparisons for a pressure solve on D perme-
ability fields of varying size.

Dimension (nynyn,) ITPACK AMG
RAM CPU RAM CPU
30° 11 4.4 27 4.1
50° 35 52 110 63
708 86 250 294 275
90° 178 703 - -

solver scales as N2, as N}8 for the iterative solver and as Nj* for the band solver. The band solver
uses less CPU time than the two other methods. The drawback is that the memory requirements are
so high that it can be use for only relatively small problems, such as the computation of the pressure
within each coarse grid block during the upscaling step. The multigrid solver is always faster than
the iterative solver when considering more than ten thousand grid blocks for 2D problems.

In the nested gridding method, the band solver is used for the upscaling step as well as for
the computation of the pressure back to the fine grid. The pressure on the coarse grid is computed
using the multigrid method, or the iterative method if the memory requirements are too high. As
an example, we can evaluate a first approximation of the speed-up factor for 600 x 600 grid blocks.
The time required to solve the pressure equation directly on the fine grid, using the AMG solver,
is about 80 s. For the nested gridding approach, using a 3 x 3 upscaling factor, the time to solve
the pressure field from Eq. 4.24 is:

¢(mested) (500 « 600) = 3% 200 x 200 x £(9) + (200 * 200)
= 3% 4.2107% x 40000 + 6.2
6.7s

The speed-up factor is around 10 for this example.

Table 4.1 shows some comparisons of the solvers for 3D problems. Here, the iterative solver
is as fast as the multigrid solver. Hence, the iterative solver will be used to solve the pressure field
on the coarse scale since the memory requirements are lower. As an evaluation of the speed-up
factor, let us consider a permeability field containing 90 % 90 x 90 grid blocks with an upscaling
factor (3 x 3 x 1) (The effective transmissivity in the z direction is simply the arithmetic mean of
the fine grid transmissivities and the factor (d + 1) in Eq. 4.24 is actually close to 3). We neglect
gravity effects. Using Table 4.1 and Figure 4.9(b) (since each pressure solve for a single coarse grid
block is a 2D problem), the time needed for the upscaling method is 20 s leading to a speed-up
factor equal to 35. In all these evaluations, the construction of the different transmissivity matrices
on the coarse and on the fine scale and the different data manipulations involved by the nested
gridding method were not considered. Therefore, the speed-up factors may be overestimated.

4.6 Results

In this section, we will compare the results provided by the streamline method with the
new nested gridding method. The streamline simulator is 3DSL [7, 65], and the subroutines for the
pressure solve have been updated for the new nested gridding method.

The permeability fields used in this part are generated with a indicator algorithm (SISIM)
from the GSLIB library [16]. These fields are characterized by three (3D) or two (2D) correlation
lengths I, ly, I, and by the different value of the permeability facies. The cases study are waterflood
problems with two wells, a producer and an injector with prescribed pressure. The fluid viscosity
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ratio between oil and water is fio/ it = 10. The relative permeability curves are quadratic functions
of the saturations. We will compare saturation maps and recovery curves for three methods:

1. The nested gridding method.
2. Streamline simulation on the fine grid.

3. Streamline simulation on the coarse grid where the absolute permeability is upscaled as de-
scribed in this chapter. There is no upscaling of relative permeability. We call this the
upscaling method.

Figure 4.10: Permeability field containing 270 x 270 grid blocks with two facies. Permeability:
k(black) = 100 mD and k(white) = 0.1 mD. Proportion of black facies: 90%. Correlation length:
10 grid blocks in the z and y directions with an anisotropy angle of 45°

-~ Reference -— Refarence % — Reference
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Figure 4.11: Fractional flow of oil at the producer for different upscaling factors and for the three
methods (fine grid, nested gridding and upscaling). Case RESI.

4.6.1 Numerical results for two-dimensional reservoirs

Figure 4.10 represents a permeability field RESI containing two facies with ng = ny = 270
grid blocks, le; = lo = 10 (in grid block units). The black facies represents grid blocks with a
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{(a) Fine grid simulation

{(b) Nested gridding method

i

{<) Upscaling method

Figure 4.12: Water saturation maps from the fine grid simulation (4), from the nested gridding
simulation (b) and from the simulation on the upscaled absolute permeabilities (¢) for 0.35 PV I.

The upscaling factor is 9 x 9. Case RESI.
53



permeability equal to 100 mD. The white facies permeability is 0.1 mD. The proportion of the
black facies is 90%. Water is injected from the lower-left corner well and the fractional flow of oil
is observed at the producer (upper-right corner). Results are shown in Figure 4.11 for the three
methods and for three upscaling factors (each coarse grid blocks contains 3 x 3, 9 x 9 or 27 x 27
fine grid blocks). We can see that for the smallest upscaling factors, both the nested gridding and
the upscaling give good approximations of the reference fine grid simulation. When we coarsen,
the difference increases between the fine grid simulation and the two approximate methods. The
nested gridding is slightly better than upscaling. The saturation maps for the three methods are
shown in Figure 4.6 for a 9 x 9 upscaling factor for 0.35 PVI. Fine grid details are captured by
the nested gridding methods, while only the main features of the flow are detected by upscaling.

We now consider a more demanding problem with greater channeling. Figure 4.13 represents a

ED

Figure 4.13: Permeability field containing 270 x 270 grid blocks with two facies. Permeability:
k(black) = 100 mD and k(white) = 0.1 mD. Proportion of black facies: 90%. Correlation length:
20 grid blocks in the z and 2 grid blocks in the y direction.
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Figure 4.14: Fractional flow of oil at the producer for different upscaling factors and for the three
methods (fine grid, nested gridding and upscaling). Case RES2

layered permeability field on the (z, z) plane containing two facies with ny = n, = 270 grid blocks,
lep = 20 1., = 2 (in grid block units). The proportions and permeability of the two facies are similar
to the case RESI.
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{¢} Upscaling method

Figure 4.15: Water saturation maps from the fine grid simulation (a), from the nested gridding
simulation (b) and from the simulation on the upscaled absolute permeabilities (c) for 0.8 PVI.
The upscaling factor is 27 x 27. Case RES2

55



Table 4.2: Speed-up factor and memory requirements of the nested grid method for & pressure solve
and for the whole simulation on the two 2D examples presented in the chapter.
Upscaling factor Speed-up factor Memory
P solve sim RAM % saved

RES1 3x3 3.8 1.2 19 61
9x9 4.3 1.5 13 73
RES2 3x3 5.6 21 19 61
9x9 6.2 1.6 13 73

Water is injected from the left well and oil is produced from the right. A constant pressure
difference is prescribed between the two wells which are fully penetrating. Gravity is neglected.
Production curves are shown in Figure 4.14 for the three methods and for three upscaling factors
(3 x 3, 9 x 9 or 27 x 27 fine grid blocks). We can see that as the grid is coarsened the results
from upscaling get worse. In contrast, nested gridding gives results almost identical to fine grid
simulation, even for high upscaling factors. To understand better this behavior we present in
Figure 4.14 three maps representing the saturation for 0.7 PV derived from the three different
simulations with an upscaling factor equal to 27 x 27. The preferential fiow paths induced by the
permeability pattern are well represented by the nested gridding method since it retains an explicit
description of the saturation distribution on the fine grid. The upscaling method gives poor results
with an overly smooth saturation profile. Thus fine grid details are not taken into account.

Table 4.2 shows the CPU time and memory comparisons for the nested gridding method
and the classical streamline method. The multigrid solver was used to compute the pressure field
for the reference case. The average speed-up factor for the pressure solve is 5 and decreases to 1.5
for the entire simulation. This is because there are no time savings for tracing streamlines and
moving saturations, since these steps are performed on the fine grid. Up to 73% of the memory is
saved since we don’t have to store the transmissivity matrix related to the fine grid (N x m grid
blocks) but only the transmissivity matrix related to the coarse grid (IV grid blocks) and to the
fine grid within a coarse grid block (m grid blocks).

4.6.2 Numerical results for three-dimensional reservoirs

We will now present a 2D example. We consider a 99 x 99 x 99 permeability field containing
two facies. Small low permeability clusters (0.1 mD), characterized by a correlation length of 2
grid blocks in every direction, are embedded into a matrix of higher permeability (100 mD). The
proportion of the low permeability clusters is 20%. The permeability map and the well locations
are represented in Figure 4.16.

In this 8D example we will show two different results with and without gravity. We define
for that purpose a gravity number which compares the relative contribution of the viscous forces
over the gravity forces [22, 64]: ,

ApglL
Ny = AP H (4.25)
where Ap represents the density difference between water and oil, L? and AP, are the distance and
the pressure difference between the two wells and H is the height of the reservoir. We will consider’
the case where the gravity can be neglected (IVy = 0) and the case where the effects are important
(Ng = 2).

Water is injected in the injector and we observe the oil fractional flow at the producer

for Ny = 0 and 2 in Figure 4.17 and Figure 4.18 respectively. Clearly in all the cases, and for
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Figure 4.16: Case RES3. 99 x 99 x 99 permeability field. The two wells are located on two opposing
corners of the reservoir and they penetrate all the layers. The correlation length is equal to 2 grid
blocks in all 3 directions. The permeability of the black facies is 100D and 0.1 m.D for the white
facies.

all the different upscaling factors, the nested gridding is more accurate than the upscaling which
overestimated the breakthrough time and the overall oil production.

Figure 4.19 represents a zoom of the saturation maps for the case RES3 when Ny = 0.
The figure shows four slices of the 3D array. Only one third of the reservoir is shown. The upper
left corner represents the injector. Once again, we can see that the water front advance and fine
grid details are accurately captured by the nested gridding method. The upscaling method gives a
smoothed representation of the flow pattern.

Finally, saturation maps for the entire reservoir are presented for the case where Ny, = 2
(Figure 4.20), which shows clearly the important effects of gravity which segregates the two ﬂulds
Here, water which is denser than the oil preferentially moves to the bottom of the reservoir. Gravity
effects are also well accounted by our method.

Table 4.3 compares the CPU time and memory requirements of the nested gridding simula-
tion with the fine grid simulation for the 3D examples. The multigrid solver was used to compute
the pressure field for the reference case. In the third column, the numbers shown in parenthesis
correspond to the case where gravity is considered. For the pressure solve, the speed-up factor can
go up to 37 for an upscaling factor of 3 in all directions. Note that the maximum speed-up factor
does not correspond to the maximum upscaling factor. The overall speed-up factor is only 8.5.
This is because we have only modified the pressure solve. When adding gravity, the overall speed-
up factor is approximately halved mainly due to an additional step used to solve the saturation.
equation [7].

We have also performed CPU time comparisons between the nested gridding and the up-
scaling method for the 3D examples. For a pressure solve, the upscaling method is about 5-7 times
faster than nested gridding. For the whole simulation upscaling is between 30-60 times faster than
nested gridding.
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Figure 4.17: Fractional flow of oil at the producer for different upscaling factors and for the three
methods (fine grid, nested gridding and upscaling) for the case RES3. The gravity number is set

to Ny = 0.
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Figure 4.18: Fractional flow of oil at the producer for different upscaling factors and for the three
methods (fine grid, nested gridding and upscaling) for the case RESS. The gravity number is set

to Ny = 2.
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a) Fine Grid

o

{b} Nested Gridding

Figure 4.19: Saturation maps for 0.15 PV I using the three methods (fine grid, nested gridding and
upscaling) with an upscaling factor equal to (3 x 3 x 3). The gravity number is set to Ny =0
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(¢) Upscaling

Figure 4.20: Saturation maps for 0.15 PV using the three methods (fine grid, nested gridding and
upscaling) with an upscaling factor equal to (3 x 3 x 3). The gravity number is set to [V, = 2
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Table 4.3: Speed-up factor and memory requirements of the nested gridding method for a pressure
solve and for the whole simulation on the 8D example presented in the chapter. The numbers in
parenthesis in the third column are speed-up factors for the case where Ny = 2
Upscaling factor Speed-up factor Memory
P solve sim RAM % saved

3x3x1 14 58 (3) 200 20
RES3 3x3x3 37 85 (4) 164 35
Ix9x3 17 62 (3) 146 2
Ix9x9 2.2 2.1 150 40

4.7 Discussion and conclusions

We have proposed an approximate method, using nested gridding, to estimate recovery
directly from a fine grid. We showed some simple examples that demonstrated that the method
was more accurate than using coarse grid simulation with upscaled permeabilities, while being
faster than direct fine grid simulation.

The method used streamline-based simulation to move the saturations on the fine grid. For
large 3D problems it has been shown previously that streamline-based simulation is up to 100 times
faster than conventional finite difference methods [7]. Our nested gridding method is almost up to
another factor of 8.5 faster for large problems giving an overall speed-up up to 850 while retaining
reasonable accuracy.

While the nested gridding method has been shown to give accurate results for the cases
studied, the speed-up compared with direct fine-scale simulation is modest. This is because the
transport of fluid along streamline on the fine grid dominates the overall CPU time for large 3D
problems. Our streamline code has not been optimized, however. Furthermore the movement of
Auid along streamlines is easy to implement in parallel, offering potentially substantial time savings.

Many upscaling techniques are applicable only to a given set of boundary conditions (well
rate or locations) [14]. The nested gridding method, since it retains an explicit representation of
the saturation distribution on the fine grid, automatically accommodates changing well rates and
location.
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