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Disclaimer: 
This report was prepared as an account of work sponsored by an agency of the United States Government. 
Neither the United States Government nor any agency thereof, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that 
its use would not infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or any agency 
thereof. The views and opinions of authors expresses herein do no necessarily state or reflect those of the 
United States Government or any agency thereof. 
 
 
 
 
 
  
Abstract 
 
Accurate simulation of in-situ combustion processes is computationally very challenging because the 
spatial and temporal scales over which the combustion process takes place are very small. In this current 
and eleventh report, we report on the development of a virtual kinetic cell (VKC) that aids the study of the 
interaction between kinetics and phase behavior. The VKC also provides an excellent tool for developing 
and testing specialized solvers for the stiff kinetics encountered in ISC processes. 
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reaction activation energies. 
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1.   Introduction 
 
In-situ combustion, or air injection, is the process of injecting oxygen into oil reservoirs to 
oxidize the heaviest components of the crude oil and enhance oil recovery through the heat and 
pressure produced. The emphasis of this work is to study and model numerically in situ 
combustion processes.  The ultimate objectives are to provide a working accurate, parallel in situ 
combustion numerical simulator and to better understand the in-situ combustion process when 
using metallic additives and/or solvents combined with in situ combustion.  For this purpose, 
experimental, analytical and numerical studies are conducted. 
 
This report presents results of the third quarter of the third year of this project.  
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2. Executive Summary  
 
2.1. Personnel 
 
Current personnel include Prof. Margot Gerritsen (PI), Prof. Tony Kovscek (Co-PI), Dr. Louis 
Castanier (Technical manager), Mr. Rami Younis (PhD student). Mr. Rotimi Awoleke (MSc 
student) is also working on the project, albeit paid from departmental sources. We have also 
continued collaboration with Mr. Morten Kristensen (PhD student) from the Technical University 
of Denmark, and his advisors Prof. Erling Stenby and Prof. Michael Michelsen. Mr. Kristensen’s 
work is the focus of this quarterly report. Finally, research associate Dr. Jim Lambers has been 
instrumental in the development of the integrated upscaling and adaptivity methodology. In the 
next quarterly report we’ll report on the development of several new upscaling methods for 
adaptive grids by Dr. Lambers and Prof. Gerritsen. 
 
 
2.2. Important accomplishments  

 
As discussed in previous quarterly reports, we have proposed the use of implicit one-step 
ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration of the stiff 
kinetics in reactive, compositional and thermal processes that are solved using operator-splitting 
type approaches.  In this report, we discuss the chosen implementation. 
 
To facilitate the algorithmic development we constructed a virtual kinetic cell model. The model 
serves both as a tool for the development and testing of tailored solvers as well as a testbed for 
studying the interactions between chemical kinetics and phase behavior. The idea of the VKC 
was proposed last year. We now have results for two chemical kinetics models for the in-situ 
combustion process. The models have 6 and 14 components, respectively. Through benchmark 
studies using the 14 component reaction model the new ESDIRK solvers are shown to improve 
computational speed when compared to the widely used multi-step BDF methods DASSL and 
LSODE. 

 
Phase changes are known to cause convergence problems for the integration method. We propose 
an algorithm for detection and location of phase changes based on discrete event system theory. 
Experiments show that the algorithm improves the robustness of the integration process near 
phase boundaries by lowering the number convergence and error test failures by more than 50% 
compared to direct integration without the new algorithm. Reactive transport processes  stiff ODE 
solvers  ESDIRK methods  discrete event systems  phase change detection  differential-algebraic 
equations  multi-scale methods  operator splitting  enhanced oil recovery  in-situ combustion  

 
In this work, we assume that the operator splitting method we developed in (Younis & Gerritsen, 
2006) is used for the integration of the ISC process. In a reaction substep, each grid block is now 
effectively treated as a small kinetic cell with homogeneous pressure and temperature and well 
mixed fluids. To solve the kinetics, high computational efficiency is very desirable as a typical 
simulation may involve millions of reaction substeps. 
 
2.2.2 Reaction models 
 
The minimal model 

 
This model includes a minimal realistic set of components and reactions to represent ISC 
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behavior. The components are in the model are light oil ( LO ), heavy oil ( HO ), coke ( C ), 
oxygen ( 2O ), water (W ) and inert gas ( IG ). The model reactions are given by  
 

 

2

2

2

LO O IG W
HO O IG W
HO LO C IG
C O IG W

+ → +
+ → +

→ + +
+ → +

 

 
The first two reactions model oxidation of the light and heavy oil, respectively. The cracking of 
heavy oil is modeled with the third reaction, while the last reaction models complete oxidation of 
the deposited fuel (coke). This minimal model is the common model used in many ISC 
simulations and it is the default model available in the commercial simulator CMG STARS 
(STARS). 

 
The SARA based model 

 
In the SARA (saturates, aromatics, resins and asphaltenes) approach, chemical reactivity and 
phase behavior is taken into account when grouping the components. Saturates are saturated 
hydrocarbons with straight or branched chains, little ring-structure, and only little nitrogen, sulfur 
and oxygen content. Aromatics contain one or more aromatic rings. Resins are the second 
heaviest fraction with high polarity due to considerable nitrogen, sulfur and oxygen content. 
Asphaltenes are defined as the fraction of the crude insoluble in n-heptane. Within each fraction, 
groups are distinguished based on reactivity. A further subdivision of the fractions based on 
boiling point may be used to obtain improved representation of phase behavior.  
 
The model we consider in this work contains 14 (pseudo) components, listed in Table 1, and the 
14 reactions following. Details of this model can be found in (Freitag & Verkozcy, 2005, Freitag 
& Exelby, 2006,  and Ren et al., 2005. The reactions include pyrolysis, LTO and HTO of the 
SARA fractions along with HTO of partially oxidized LTO residue and the coke formed by 
pyrolysis. The LTO residues of resins, aromatics and saturates are non-volatile oil components 
whereas the LTO residue of asphaltenes is solid.  
 

 
  

Component Name   Abbreviation Phase 

Water 2H O  water 

Inert oil InertOil oil 

Oxidized resins/aromatics OxdResAr oil 

Oxidized saturates OxdSat oil 

Asphaltenes Asph oil 

Resins Resins oil 

Aromatics Arom oil/gas



July 2006 7 

Saturates Sat oil/gas

Light oil Lites oil/gas

Carbon dioxide CO2 oil/gas

Nitrogen N2 gas 

Oxygen    O2 gas 

Oxidized asphaltenes OxdAsph solid 

Pyrolysis coke PyrCoke solid 
      
Table 1. List of (pseudo) components for the SARA based model.  
 
 

2 2 2

2 2 2

2 2 2

2 2 2

Asph H2O Arom Sat Lites PyrCoke
cracking / pyrolysis Resins H2O Asph Arom Sat Lites

Arom Asph Lites

Asph O H O CO OxdAsph
Resins O H O CO OxdResAr

LTO
Arom O H O CO OxdResAr
Sat O H O CO OxdSat

→ + + + +⎧
⎪ → + + + +⎨
⎪ → +⎩

+ → + +⎧
⎪ + → + +⎪
⎨ + → + +

+ → + +

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

PyrCoke O H O CO
OxdAsph O H O CO
OxdResAr O H O CO

HTO OxdSat O H O CO
Asph O H O CO

Resins O H O CO
Arom O H O CO

⎪
⎪⎩

+ → +⎧
⎪ + → +⎪
⎪ + → +
⎪ + → +⎨
⎪ + → +⎪

+ → +⎪
⎪ + → +⎩

 
 
2.2.3 Building the Virtual Kinetic Cell (VKC) 
 
We model a closed system consisting of 3 fluid phases (oil, water and gas), an immobile solid 
phase and the porous medium. Temperature, pressure and component concentrations are assumed 
to be uniform in the cell. For convenience, we introduce the molar concentration ijc  of a 

component , = 1, , ,… ci i n  in a phase j , { , , }∈j o w g , and the overall molar concentration iC  of 
component i . They are given by  
 



July 2006 8 

 
{ , , }

= ,

= ,
∈
∑

ij f ij j j

i ij
j o w g

c x S

C c

ϕ ρ
 

 
where jS  are the phase saturations, jρ  the molar phase densities and ijx  the mole fraction of 

component i  in phase j . fϕ  is the fluid porosity which varies with solid fuel concentration in 
the pore space according to  
 

 = ,− s
f v

s

Cϕ ϕ
ρ

 

 
where sC  and sρ  are the density and concentration of the solid component, respectively. The 
solid concentration is defined with respect to total volume. The mass conservation of each 
chemical component can be expressed as  
 

 
=1

= , = 1, , .−
+∑ …

n in outr
i i i

ik k c
k

dC F FA r i n
dt V

                                         (1) 

 
Here, in

iF  and out
iF  are the molar flow rates of component i  in and out of the cell, respectively, 

V  is the cell volume, kr  the kinetic expression for the thk  ( = 1, ,… rk n ) chemical reaction and 

ikA  is the stoichiometric coefficient for component i  in reaction k . 
The energy conservation equation is given by  
 

 
=1

= ( ) ,− +
−Δ +∑

n in out extr

k k
k

dU H H QH r
dt V

                                               (2) 

 
where inH  and outH  are the fluxes of enthalpy in and out of the cell, and extQ  is a heat 
source/sink term due to external heating or cooling, which is given by  
 

 = ( ),−ext
a rQ U T T   

 
where rT  is the heating/cooling temperature and aU  is an overall heat transfer coefficient. 
Finally, the total internal energy of the system per unit volume, U , is given by  
 

 
{ , , }

= (1 ) ( ) .
∈

− + − + ∑v r r v f s s f j j j
j o w g

U U U U Sϕ ρ ϕ ϕ ρ ϕ ρ                          (3) 

Since the cell volume is assumed constant, gases are allowed to leak out of the cell when volume 
changes occur due to chemical reactions and temperature changes. When only components in the 
gas phase can leave the cell, the molar flow rates in Eqn. (1) may be expressed as  
 

 = ,out out
i g igF Q xρ  
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where gρ  is the gas density and outQ  is the volumetric flow rate, given by  
 

 ( )= .−out ext
vQ k P P  

  
Here, vk  denotes a valve coefficient. 
 
Since pressure and temperature variations and chemical reactions cause volume changes, a 
constraint is needed in order for the fluid and solid volumes, fV  and sV , to match the void 

volume, vV . We set  
 

 = .+v f sV V V                                                                                    (4) 
 

The chemical reactions occurring are assumed to be kinetically driven. They are modeled using 
the Arrhenius rate relations  
 

 = exp ,⎛ ⎞−⎜ ⎟
⎝ ⎠

k
k k

Ek
RT

α   

 
where kα  and kE  are the pre-exponential factor and activation energy for reaction k , 
respectively, and R  is the universal gas constant. We will assume that the reactions are first order 
in all reactants. Oxidation reaction rates for components in the oil phase are modeled as   
 

 2= .⋅ ⋅O
k k g ir k Px C  

  
For solid components the rate expression is taken to be  
 

 2= .⋅ ⋅O
k k g sr k Px C   

 
Finally, for cracking/pyrolysis reactions, we use  
 

 = .⋅k k ir k C   
 

Reaction kinetic parameters for ISC models are normally obtained from laboratory experiments. 
It is still an open question how to upscale kinetics from the laboratory scale to the reservoir scale. 
Lacking better alternatives, we will use the laboratory parameters directly, as is generally done. 
 
We assume that components partition into at most two phases, that components in the solid phase 
exist exclusively in this phase, and that the water phase consists of water only. For simplicity, the 
equilibrium between hydrocarbon components in the gas and oil phases is described by   

 = ,ig
i

io

x
K

x
  

where the equilibrium factors are assumed to vary only with pressure and temperature according 
to  
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 1 2

3

= exp ,
⎛ ⎞

⋅ ⎜ ⎟−⎝ ⎠
i

a aK
P T a

 

  
with 1a , 2a  and 3a  correlation constants. Using this simplified phase equilibrium description the 
flash calculation reduces to solving the Rachford-Rice equation for the molar gas phase fraction, 
β , given by  
 

 
{ } { }

( 1)( ) = .
1∈ ∈

−
−

− +∑ ∑ i i
ig io

i hc i hc i

C Kx x
Kβ β

                                                         (5) 

 
The assumption that the equilibrium factors do not vary with composition is generally valid away 
from critical regions. The simplified phase description is a good starting point for model and 
algorithm development. In future work, we plan to extend the model with an equation-of-state 
(EoS) based phase equilibrium description.  
 
As primary variables we choose temperature, pressure and the cn  overall component 
concentrations. The VKC equations, (1), (2) and (4), comprise a set of differential-algebraic 
equations (DAEs). Including the total internal energy as a variable and Eqn. (3) as an extra 
constraint, we can write the DAE in semi-explicit form. In this formulation, temperature is 
aligned with the energy constraint (3) and pressure with the volume constraint (4). In multi-phase 
regions Eqn. (5) is appended to the equation system and aligned with the gas phase fraction. The 
two ISC reaction models discussed in the previous section are used for testing and benchmarking. 
 
2.2.4 Choice of integration method for reactions 
 
The kinetic cell equations consist of coupled ordinary differential equations (ODEs) and algebraic 
equations (AEs). We will consider the general form of the resulting differential algebraic equation 
(DAE) system  
 

 0 0= ( , ), ( ) = ,uM f u u ud t t
dt

                                                             (6) 

 
where ∈u mR  is a vector of state variables depending on t , and f  is a vector function mapping 
× mR R  into mR . For the kinetic cell model the mass matrix, ∈ ×M m mR R , is simply a 

diagonal matrix. The diagonal elements iiM  are one when the thi  equation is a differential 
equation, and zero when it is algebraic. The initial conditions are assumed consistent with the 
algebraic constraints. In the VKC model, the right-hand-side functions may be discontinuous 
because of phase changes. The number of elements in the state vector is typically between 10 and 
20. We require results to have between 2 and 4 correct significant digits (relative accuracy 
between 2 410 10− −− ). This requirement is based on our expectations of the temporal and spatial 
accuracies in other parts of the equations. As we will show later, the performance of the proposed 
methods is not sensitive to small variations in the required accuracy. 
 
The short integration intervals between operator splitting updates in the VKC and the stiff 
reaction kinetics are the primary characteristics guiding our choice of integration method. When 
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integrating from nt  to 1+nt  one-step methods only use state information from nt  whereas multi-
step methods use information from several previous integration steps, ,−n jt  with = 0,1, ,…j s  
(Hairer et al., 1992). Multi-step methods are often implemented in a variable order formulation in 
which they start out at low order and with small time steps. They build up to higher order as more 
information becomes available, and are, at that stage, generally outperforming one-step methods. 
This suggests that multi-step methods are attractive for problems with long and smooth 
integration intervals, whereas one-step methods are preferable on shorter intervals and on 
problems with frequent discontinuities in the solution. Hence, we will focus here on one-step 
methods. Of the one-step methods, we limit ourselves to the family of Runge-Kutta (RK) 
methods, which are well studied in the literature. Other classes of methods could be considered 
also, such as the Rosenbrock methods (Rosenbrock, 1963) or the extrapolation methods (Hairer et 
al., 1992), but we will consider Runge-Kutta methods exclusively in this paper. For stability 
reasons we shall further limit our search to implicit RK methods that allow efficient integration of 
the stiff kinetics. 
 
A general s -stage Runge-Kutta scheme for solving the DAE system (6) may be expressed as 
 

 =1

1
=1

= ( , ),

= ( , ).+

+ Δ + Δ

+ Δ + Δ

∑

∑

MU Mu f U

Mu Mu f U

s

i n n ij n j n j
j

s

n n n i n i n i
i

t a t c t

t b t c t
  

 
Here, Ui  denotes the solution at the thi , ( = 1, , )…i s , internal stage of integration step n  and 
Δ nt  denotes the time step length.   
 
Runge-Kutta methods are classified according to the structure of their Butcher tableau, given by  
 

            

1 11 12 1

2 21 22 2

1 2

1 1 2

=

+

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

c A
b

u

…
…

# # # % #
…
…

s

s

T

s s s ss

n s

c a a a
c a a a

c a a a
b b b

. 

 
For explicit methods (ERK), the matrix A  is strictly lower triangular, which implies that all the 
internal stages can be calculated explicitly, making ERK methods computationally fast and 
straightforward to implement. However, ERK methods generally have poor stability properties, 
which make them unsuitable for stiff problems. The four remaining subclasses of Runge-Kutta 
methods are all implicit, that is, the values of the internal stages are no longer calculated 
explicitly from the values of the previous stages. Each integration step of an implicit method 
requires the solution of a system of ms  nonlinear equations. Normally, an iterative method, such 
as Newton's method, is applied. For diagonally implicit RK (DIRK) methods, the stage values can 
be calculated sequentially. Hence, the computational costs of DIRK methods are lower than those 
of fully implicit RK (FIRK) methods, for which all ms  equations must be solved simultaneously. 
If all diagonal elements of A  are identical and its upper diagonal elements are zero, the method 
is said to be a singly diagonally implicit (SDIRK). If the first stage of an SDIRK method is 
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explicit, the method is said to be explicit singly diagonally implicit (ESDIRK). 
 
For our purposes, the ESDIRK methods, for which the general form of the Butcher tableau can be 
found in e.g. (Kvaerno, 2004), are attractive. The diagonal structure of these methods allows 
sequential evaluation of the internal stages, and because the diagonal elements are equal, the 
iteration matrix for solving the nonlinear stage equations need only be evaluated and factorized 
once per integration step. ESDIRK methods can be constructed such that they are both A - and 
L -stable as well as stiffly accurate (Hairer & Warner, 1996). Stiffly accurate methods avoid the 
order reduction phenomenon observed by Prothero & Robinson (1974) when applied to stiff 
ODEs. Also, the explicit first stage of ESDIRK methods ensures high stage order ( 2≥ ) which is 
important for the order of accuracy in the algebraic components of the DAE. An additional 
advantage of having high stage order is that it allows the construction of high order interpolants to 
be used for generating output between mesh-points. We will exploit these interpolants when 
constructing an algorithm for locating the discontinuities that occur due to phase changes. 
 
The Butcher tableau for ESDIRK methods takes the form  
 

 

2 21

3 31 32

1 1,1 1,2 1,3

1 2 3 1

1 1 2 3 1

0 0 0
0

0

0
1
− − − −

−

+ −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦u

# # # % % %
"
"
"

s s s s

s

n s

c a
c a a

c a a a
b b b b
b b b b

γ
γ

γ
γ
γ

. 

  
Alexander (2003) proposed a four stage ESDIRK method of order 3 with an embedded error 
estimator of order 4. Williams et al. (2002) also published a four stage ESDIRK method suited 
for index 2 DAEs, but with orders 2 and 3 for the error estimator and advancing method, 
respectively. Finally, Kvaerno (2004) recently published a range of ESDIRK methods of orders 3 
to 5 emphasizing strong stability properties of both the error estimator and the advancing method.  

 
We implemented four ESDIRK methods of orders 2-5. The lowest order method is simply the 
trapezoidal rule. When combined with the implicit Euler method we have an embedded pair of 
methods of orders 1 and 2. We refer to this method as ESDIRK12 and use a similar notation for 
higher order ESDIRK schemes. The bulk of the computational costs in an ESDIRK method is in 
the solution of the nonlinear algebraic equations that arise in each internal stage. Efficient control 
of the iterative scheme applied to these equations and of the discretization error by step size 
adjustments are the two main design challenges. 

 
The step size is adapted based on an error estimate for the lowest order method obtained by 
subtracting the two solutions of orders p  and 1−p . This error estimate is essentially free, since 
it involves no additional function evaluations or system solves. Adjusting the step size to meet an 
accuracy requirement is, in essence, a control problem. We implemented the predictive controller  
 

 
2 1

1 1
1

2

/( 1) /( 1)
= − −

−
−

+ +
⎛ ⎞ ⎛ ⎞Δ

Δ Δ⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠

k k

n n
n n

n n n

p p
t rt t
t r r

ε
,  
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suggested by Gustafsson (1992). 1k  and 2k  are the gain parameters for the controller, while ε  is 
the desired tolerance (including a safety factor). Gustafsson suggests using 1 2= = 1k k  based on 
experiments, where the number of integration steps is measured for a given problem as a function 
of 1k  and 2k . The number of steps required is not sensitive to 1k  and 2k  for the interval 

1 2[ , ] 0.5,1.5 ; 0.5,1.5]∈k k . Within this interval, variations in 1k  and 2k  result in changes in the 
number of integration steps of less than 5%. Our experiments using the VKC model show similar 
results, so we choose 1 2= = 1k k . The variable nr  is the norm of the estimated local error at nt , 
given by  
 

 
2

=1

1=
| |

⎛ ⎞
⎜ ⎟+ ⋅⎝ ⎠

∑
m

i
n

i i i i

errr
m atol rtol u

,  

 
in which atol  and rtol  are (componentwise) absolute and relative error tolerances specified by 
the user. Experiments have shown that the controller gives a small reduction in the number of 
failed integration steps along with a smoother variation of step sizes compared to the 
conventional control law ( )1/( 1)

1= / +
−Δ Δp

n n nt r tε  that is commonly implemented in ODE solvers. 
 

The nonlinear equations arising in each internal stage of the ESDIRK methods are solved using a 
modified Newton's method given by   
 

 

1
( ) ( )

=1

( 1) ( )

= ( , ) ,

= .

−

+

∂⎡ ⎤− Δ Δ + + Δ −⎢ ⎥∂⎣ ⎦

+ Δ

∑fM U Mu f U MU
u

U U U

i
k k

i n ij n j j i
j

k k
i i i

t h a t c tγ
 

 
The iteration matrix /− ∂ ∂M f uhγ  is evaluated and factorized once per integration step. We 
construct an initial guess for the stage value at each internal stage by continuous extension of the 
method as suggested in Enright et al. (1986). The continuous extension is given by   
 

 
=1

( ) = ( ) ( , ),∗+ Δ + Δ + Δ∑u u f U
s

n n n n i n i n i
i

t t t b t c tθ θ  

 
where the quadrature weights, ∗

ib , depend on θ  according to  
 

 2
,1 ,2 ,( ) = .∗ ∗ ∗ ∗+ + +… p

i i i i pb b b bθ θ θ θ  
 

The coefficients for the continuous extension are determined by requiring that the set of order 
conditions used to determine the coefficients of the ESDIRK method itself is satisfied. A 
prediction of the stage value at the thi  internal stage is then obtained by substituting 

1= 1 /++i i n nc h hθ . 
 
The iterations are terminated when  
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 ( )

2 ,≤ ⋅R k rtolκ  
  

with R  the scaled vector of residuals, rtol  the relative error tolerance for the local discretization 
error. The parameter κ  is normally chosen between 0.5  and 0.01 . For reasons of robustness we 
chose = 0.01κ , such that the errors allowed in the iteration process are much smaller and do not 
interfere with the estimation and control of the local integration error. Experiments show that the 
cost of the extra iterations needed using = 0.01κ  compared to, for example, = 0.1κ , is minor, 
since the tighter value of κ  also reduces the total number of integration steps. 
 
During iterations the convergence rate is estimated as  
 

 
( )

2
( 1)

2

= .−

R
R

k

k kα  

If for some k  during iterations > 1kα , the iterations are terminated and the step size decreased. 
The estimated convergence rate is also used by the step size controller to limit the step size if 
convergence in the previous step was too slow.  
 
2.2.5 Phase changes 
 
Phase changes in the VKC cause discontinuities in the right-hand-sides of the kinetics equations. 
Straightforward integration across these discontinuities may lead to non-physical phase changes, 
poor convergence and repeated step failures.We propose an algorithm for robust detection and 
location of phase changes by considering the kinetic cell as a discrete event problem. The 
appearance or disappearance of a fluid phase marks the occurrence of a " discrete event", e.g. a 
change from a single phase region to a two-phase region, or vice-versa. The time of the phase 
change can not be determined a priori. The detection of a phase change and subsequent location 
of the exact time of change are the main components of the proposed discrete event algorithm. 
 
We will represent the discrete event DAE system in the form 
 

 

0 0

0 0

= ( , , ), ( ) = ,

0 = ( , , ), ( ) = ,
0 < ( , , ), = 1, , .

v f v w v v

g v w w w
v w …j ev

d t t
dt

t t
q t j n

  

 
The DAE system has been reformulated in semi-explicit form. Now, ∈v mdR  is the vector of 
differential variables and ∈w maR  is the vector of `algebraic' variables. f  and g  are vector 

functions mapping × ×m md aR R R  into mdR  and maR , respectively. We will assume that /∂ ∂g v  
is non-singular (index one DAE). The jq 's are event functions associated with the current system 

state and evn  denotes the number of event functions. In general, the system may change between 
many different states. If the attainable states are indexed as ∈ statep I  then each state is 
represented with { , , }d a ev pm m n . 
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To illustrate the concepts we consider the discrete event formulation of the VKC. We neglect 
changes associated with the water phase and consider only the two-phase equilibrium between 
hydrocarbon components in the oil and gas phases. Three attainable states exist for this system: 
(1) single phase oil, (2) single phase gas and (3) two-phase oil-gas. In the two-phase region, the 
active equations for the VKC are    
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Here, = 1+d cm n , = 3am  and = 2evn . The two event functions associated with the two-phase 
region are   
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∑
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corresponding to disappearance of the gas phase and the oil phase, respectively. Our event 
detection algorithm is based on the principle of discontinuity locking (Park & Barton, 1996). 
Within each integration step the system is locked in its current state, even if one or more event 
functions are satisfied. The event functions are evaluated at the end of each step, and if any of 
them are satisfied, the exact time of occurrence is located. The approach is based on the 
assumption that the system of equations is mathematically well behaved in a small neighborhood 
of the phase changes. 
 
Since the changes often occur between mesh points, we need to interpolate the differential and 
algebraic variables of the DAE in order to evaluate the event functions. For differential variables 
we use the continuous extension provided by the ESDIRK methods. The algebraic variables 
could, in principle, also be interpolated by a suitable polynomial. However, after location of the 
event, a consistent initialization calculation is required to restart the integration in the new system 
state. That is, based on values for the differential variables, the algebraic constraints are solved to 
find consistent initial values for the algebraic variables. This consistency calculation may result in 
the numerical phenomenon referred to as discontinuity sticking. The problem is illustrated in 
Figure 1. Assume that the event function ( , , ) > 0∗ v wq t  was satisfied in the integration step 

1[ , ]+n nt t . The exact event time, ∗t , may than be located by solving the scalar equation 
  

 ( , ( ), ( )) = ,∗ ∗ ∗ ∗v wp pq t t t δ   
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where ( )v p t  and ( )w p t  are interpolating polynomials for the differential and algebraic 
variables, respectively. δ  is a small tolerance employed to ensure > 0∗q  at ∗t . However, a 
consistent initialization at ∗t  may result in values of the algebraic variables that are different from 

( )∗w p t  if ∗t  does not coincide with the mesh points or the internal quadrature nodes of the 
ESDIRK scheme 
  

 ( ) ( ), if , = 1, , .∗ ∗ ∗≠ ≠ +w w …p
n it t t t c h i s  

 
Consequently, the value of the event function may have changed  
 

 ( , ( ), ( )) ( , ( ), ( )),∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗≠v w v wp p pq t t t q t t t   
 
and the event function may no longer be satisfied ( ( , ( ), ( )) < 0∗ ∗ ∗ ∗v wpq t t t ). If this is the case, 
the same event is detected again immediately in the next integration step. 
To avoid discontinuity sticking problems, we locate the phase changes by solving the system of 
equations   
 

 
* * *

* * * *

( , ( ), ( )) = 0,
( , ( ), ( )) = ,

g v w
v w

p

p

t t t
q t t t δ

                                                                    (7) 

 
where the unknowns are the algebraic variables, w , and the event time, *t . Only few Newton 
iterations are required to solve the system (7), since good starting guesses are available.  
 
 
3. Experimental 
 
No experimental work is reported this quarter. 
 
4. Results and discussion 
 
4.1 Ramped temperature experiment 
 
As a first example, we illustrate the VKC by simulating a ramped temperature experiment using 
the minimal reaction model. Ramped temperature experiments are often carried out in the 
laboratory to determine burning characteristics for different oils. 

 
Initial conditions 
(moles) 

Operational conditions 

Water 0 Total cell volume 0.0014 m3 
Light oil 0 Air feed rate 2.78.10-6 m3/s 
Heavy oil 0.55  Rock porosity 0.4 
Oxygen 0 Heat transfer coefficient 60 kJ/(mole K) 
Inert gas 0.45  Valve coefficient 11 32.74 10 m /(s Pa)−⋅ ⋅  
Coke 0 Temperature 373 K 
  Pressure 13.88 MPa 
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Table 2.  Initial and operational conditions for simulating the ramped temperature experiment 
using the VKC. 
 
The simulated setup consists of an oil sample placed in the kinetic cell which is heated externally 
from 373K  to 873K  over a period of 10 hours with a constant feed of air of 6 32.78 10 m /s−⋅ . 
Initial and operational conditions are summarized in Table 2. Figure 2 shows the cell temperature, 
oxygen consumption rate and concentrations of light oil, heavy oil, coke and oxygen at 3 different 
concentrations of oxygen in the feed. 
 
The minimal reaction model used in this experiment does not include LTO reactions in the 
traditional sense of oxygen addition reactions, but we still observe two peaks in oxygen 
consumption rate originating from direct oxidation of the oil based components and oxidation of 
coke which occurs at a higher temperature. The variation with oxygen feed concentration shows 
that, as expected, a low oxygen concentration promotes cracking of heavy oil whereas a high 
oxygen concentration favors the direct oxidation which leads to a significant increase in 
temperature. 

 
In the second example we study the influence of the activation energy. We again simulate the 
ramped temperature experiment with an oxygen feed concentration of 21%. We perform a base 
simulation using the original reaction parameters and two perturbed simulations, in which we first 
increase and then decrease activation energies for all reactions by a factor of 2. We choose the 
pre-exponential factors such that the nominal and perturbed reaction rate constants coincide at a 
specified temperature, so that  

 ( )
.

1= exp .
⎛ ⎞

⋅ −⎜ ⎟
⎝ ⎠

perturbed nominal perturbed nominal
coin

E E
RT

α α  

Here, nominalE  and perturbedE  refer to the nominal and perturbed activation energies, respectively, 

and .coinT  is the temperature at which the two rate expressions coincide. We choose 

. = 623KcoinT , which corresponds to the mean temperature during the simulation. 
 

Figure 3 shows the cell temperature, oxygen consumption rate and concentrations of light oil, 
heavy oil, coke and oxygen at the three different activation energies. Again, we see two peaks in 
oxygen consumption rate originating from direct oxidation of the oil components and oxidation of 
coke. Increasing the activation energies results in an initial delay of the reaction onset time, but a 
more rapid oxidation of oil and coke after onset, which is also reflected in the increase in oxygen 
consumption rate. 

 
The phase change algorithm improves the integration robustness when crossing phase boundaries. 
For the case with 20% oxygen in the feed, a change from single phase oil to two-phase oil-gas 
occurs at = 3.15hrst . Attempting to integrate directly across the phase change results in 
repeated step failures in the solver. Each time the solver attempts a step across the phase 
boundary, a convergence or error test failure results forcing the solver to reduce the step size. The 
solver fails 8 times and reduces the step size by a factor of 100 before stepping across 
successfully. Using the phase change detection algorithm, the change is detected and consistently 
located without failed steps. Initialization in the new two-phase region, however, results in 4 step 
failures and a step size reduction by a factor of approximately 30. Completely avoiding step 
failures and step size reductions is difficult since a change into the two-phase region changes the 
dynamics of the problem. 
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4.2 Performance comparison 
 
To evaluate the performance of the new, tailored ESDIRK implementations we have compared 
them to two stiff ODE solvers that are commonly used: DASSL (Petzold, 1982) and LSODE 
(Hindmarsh, 1983). Both solvers are based on backward differentiation formulas (BDF), and are 
variable order. We show results for four ESDIRK12, 23, 34 and 45.  
 
We split the total integration interval into N  subintervals. We assume the pressure is constant 
throughout the entire integration. The temperature is kept fixed in each subinterval. Its value is 
obtained by sampling the characteristic ISC temperature profile as shown in Figure 4. Thus, we 
mimic implementation of the solvers within an operator splitting environment for the full ISC 
equations.  

 
Component Mole fraction
Water 0 
Inert oil 0.0005 
Oxidized resins/aromatics 0 
Oxidized saturates 0 
Asphaltenes 0.0229 
Resins 0.0914 
Aromatics 0.2680 
Saturates 0.5625 
Light oil 0.0547 
Carbon dioxide 0 
Nitrogen 0 
Oxygen 0 
Oxidized asphaltenes 0 
Pyrolysis coke 0 

    
  

Table 3.   Initial overall oil composition for the SARA based model. 
 
We use the SARA based reaction model. In terms of number of components and reactions we 
think that this model best represents the requirements in realistic ISC simulations. We assume 
ideal fluid phases and use a pressure and temperature correlation for the equilibrium K -factors. 
Initial compositions are listed in Table 3. A pressure of 2.023MPa is used in all subintervals . 
Air is cycled through the cell at a constant rate. The total simulation time is 100hrs  and two 
experiments are carried out using = 25N  and = 100N  subintervals, respectively. 
 
The numerical results are compared to a very accurate reference solution computed by 
ESDIRK34 using 14= = 10−atol rtol . The measure of accuracy is based on the max-norm of the 
relative error at the end of the integration interval. The accuracy is represented as the minimum 
number of significant correct digits, SCD, in the solution, defined as  
 

 10
( ) ( )SCD := .log max ( )

⎡ ⎤−
− ⎢ ⎥

⎣ ⎦

ref
i end i end

ref
i i end

u t u t
u t
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Solver comparisons are presented as work-precision diagrams where efficiency is measured using 
CPU time. Thus, to produce the diagrams the problem is solved using a range of input tolerances 
for each of the solvers tested. All codes are compiled using the Compaq Visual Fortran compiler 
with the same optimization settings. The CPU time for each case is averaged over 25 runs on a 
Pentium 4, 3GHz PC with 512MB RAM. The input tolerances are chosen as 

(1 /3)= = 10− + jatol rtol , = 0, ,21…j . The initial integration step size is computed internally by 
the solvers. For this purpose, the ESDIRK solvers use the algorithm suggested by Hairer & 
Wanner (1996). Between subintervals the last step of the current interval is passed as a guess for 
the first step in the next interval. All solvers require the Jacobian of the ODE right-hand-side 
functions. These are computed analytically using automatic differentiation. 

 
Figure 5 shows the work-precision diagrams when solving the SARA based reaction model using 
25 and 100 subintervals. The resulting accuracies in the solution are, of course, different from the 
local tolerances provided as input to the solvers that govern the local error and step size control. 
In the high accuracy range (4-6 significant correct digits) the methods perform according to their 
order: The high order methods (DASSL, LSODE and ESDIRK45 (fourth order)) outperform the 
lower order methods (e.g. ESDIRK12 (first order) and ESDIRK23 (second order)). However, we 
are mainly interested in the accuracy range corresponding to 2-4 significant correct digits, since 
we expect the accuracies obtained in other parts of the equation to fall in this range. The low and 
intermediate order methods perform best in this range. For example, with 100 subintervals and 3 
significant correct digits the ESDIRK23 solver is two times faster than LSODE and 3-4 times 
faster than DASSL. 
 
The work-precision curves for the ESDIRK solvers settle at a constant level in the low accuracy 
range instead of continuing the linear trend found for high accuracies. Moreover, the behavior in 
this range is more erratic. This can be partly attributed to the error and convergence controller. 
Consider, for example, ESDIRK45. An input tolerance level of 1= = 10−atol rtol  gives better 
than expected results (SCD = 2), but this comes at the cost of increased computation time. 
Inspection shows that the step size is limited by convergence in the nonlinear solver and not by 
the local error. The relatively large step sizes allowed by the error controller lead to convergence 
failures in the nonlinear solver, which then forces a step size reduction. This shows that ODE 
error control devices perform best when operating at low tolerance levels. 
 
Comparing the results for = 25N  and = 100N  shows that all solvers need more time when the 
integration is interrupted frequently. The BDF methods have the largest restart overhead because, 
when restarted, they revert to first order requiring small time steps, and slowly build up higher 
order information. Both DASSL and LSODE manage to integrate across the phase changes. 
Inspection of the process shows, however, that both methods experience a high number of step 
failures, and lower their order before successfully stepping across. The loss in efficiency 
associated with these step failures alone is difficult to isolate but is reflected in the results shown 
in Figure 5. The differences in performance are relatively small when using only 25 subintervals. 
The advantage of one-step methods over multi-step methods is, however, clearly observed when 
the number of subintervals is increased, the difference between DASSL and the ESDIRK solvers 
being the most notable. 
 
Figure 5 also shows that none of the solvers are very sensitive to the required accuracy. Although 
with some irregularities in the low accuracy range, the computational cost increases linearly with 
the required accuracy in the solution. 
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4.3 Discussion 
 
The work presented in this paper addresses time integration of reactive, compositional and 
thermal porous media processes, and focusses in particular on the design of specialized solvers 
for integration of stiff chemical kinetics subject to phase equilibrium constraints. 
 
To facilitate the algorithmic development we constructed a virtual kinetic cell. The VKC allows 
us to study the kinetics and phase behavior of reactive transport processes in an isolated setting. 
Through user prescribed inflow and outflow boundary conditions, interactions with the reservoir 
can be studied. Two ISC reaction models with 6 and 14 components, respectively, were 
implemented and tested. The VKC was demonstrated with a ramped temperature experiment 
using the 6-component model. Ramped temperature experiments are routinely carried out in the 
laboratory. In future work we will validate the simulation results against experimental data. 
Although not explored in this work, the VKC can also be applied to help determine optimal 
experimental conditions in the design phase. 
 
Because of the stiff chemical kinetics, the low to medium accuracy required in the solution, and 
the short integration intervals experienced in an operator splitting environment, we selected the 
class of ESDIRK methods for the temporal integration of the chemical reactions. To increase 
computational efficiency, we select the time step size with a predictive controller for the local 
integration error, and generate starting guesses for the modified Newton iterations using 
continuous extensions of the ESDIRK methods. Performance comparisons between the ESDIRK 
solvers and the popular stiff ODE solvers DASSL and LSODE, show that the higher order 
ESDIRK solvers are at least comparable if not superior in terms of computational speed, 
especially over the relatively short integration intervals that are generally required in an operator 
splitting environment. If we aim for two to four correct digits in the solution, which we expect to 
be of practical interest in ISC simulations, the low and medium order ESDIRK methods 
(ESDIRK12, ESDIRK23 and ESDIRK34) are two times faster than LSODE and three or four 
times faster than DASSL. Apart from the ESDIRK methods, other classes of integration methods 
could be of interest, such as the Rosenbrock methods Sandu et al. (1997), which we will consider 
in future work. 
 
We extended the ESDIRK methods to handle the discontinuities that arise due to phase changes. 
Phase changes are detected by monitoring sign changes of special event functions. The proposed 
algorithm proved robust in detecting and locating phase changes, and lowered the number of 
convergence and error test failures by more than 50%. The DASSL and LSODE solvers that are 
not equipped with a phase change algorithm will, in most cases, successfully integrate across the 
change after repeated step size reductions caused by convergence and error test failures. Overall 
efficiency gains from using the phase change algorithm when measured over a long integration 
interval with only one or two phase changes occurring are modest, but the improved robustness 
near phase boundaries is certainly valuable. 
 
The VKC model uses a simplified constant K-value phase equilibrium description. We are 
currently working on the extension to full equation-of-state based phase equilibrium. In a rigorous 
flash algorithm the phase state depends on the outcome of a stability analysis which cannot be 
expressed in closed form and, hence, does not directly fit into the framework of event functions. 
For transitions from a two-phase region to a single phase region, we can still detect changes by 
monitoring phase fractions. In the reverse situation the problem is now more complicated. In 
principle, this would require a stability analysis to be performed each time conditions change to 
check if the new single phase state is unstable. A possible solution is to exploit shadow regions as 
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in Rasmussen et al. (2006) to speed up flash calculations, which will reduce the number of 
stability analyses required. 
 
5. Conclusions 
 
The virtual kinetic cell (VKC) is a novel and useful tool for analyzing kinetics and phase behavior 
in reactive, compositional and thermal processes. It can provide simulation support for laboratory 
kinetic cell experiments, and be used for studying interactions between kinetics and phase 
behavior as well as interactions with the reservoir through specialized boundary conditions. 

 
ESDIRK methods are well-suited for integration of the stiff kinetics due to their strong stability 
properties. In particular, when implemented in an operator splitting environment, the ESDIRK 
methods outperform stiff multi-step methods. Experiments show that the methods lead to 50-75% 
reductions in computational costs compared to multi-step methods. 
 
Phase change detection using a discrete event system approach is an attractive tool which 
significantly reduces integration step failures and therefore computational time.  
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Figure 1.  Illustration of discontinuity sticking resulting from inconsistent algebraic variables.  
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Figure 2.  Simulation results from a ramped temperature experiment using the minimal reaction 
model. The temperature is raised from 373K  to 873K  over a period of 10 hours. Cell 
temperature, oxygen consumption rate and component concentrations are shown for 3 different 
oxygen feed concentrations. 
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Figure 3.  Simulation results from a ramped temperature experiment using the minimal reaction 
model. The temperature is raised from 373K  to 873K  over a period of 10 hours. Cell 
temperature, oxygen consumption rate and component concentrations are shown for at 3 different 
reaction activation energies. 
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Figure 4.  The temperatures for the integration subintervals in the performance comparison are 
obtained by sampling the characteristic ISC temperature profile. The continuous temperature 
profile is shown along with a zero-order parametrization corresponding to = 25N  equidistant 
subintervals. 
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Figure 5.  Work-precision diagrams for the SARA based ISC reaction model. The tailored 
ESDIRK implementations are compared to the widely used DASSL and LSODE codes. 
Comparisons are made for 25 and 100 subintervals. 
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