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EXECUTIVE SUMMARY

A large regional aquifer system underlies
much of the northern Great Plains
physiographic province. The northern
Great Plains aquifer system consists of a
series of five aquifers that have similar
geohydrological characteristics. In general,
fluid flow in this system is to the north and
northeast. Recharge of the aquifers is from
in the Black Hills and Rocky Mountains to
the west. Aquifers in the system have
significant regional sequestration potential.

For the Madison Aquifer (hereafter referred
to as the Madison “geological sequestration
unit” [GSUJ) of the northern Great Plains
aquifer system, a reconnaissance
sequestration volume of 60 billion tons
(980 trillion cubic feet of gas [TCFG]) has
been calculated (see Methodology Section)
for CO,. The Madison GSU underlies much
of the Williston and the Powder River
Basins.
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BACKGROUND/INTRODUCTION

As one of seven Regional Carbon
Sequestration Partnerships (RCSPs), the
Plains CO; Reduction (PCOR) Partnership
is working to identify cost-effective carbon
dioxide (CO,) sequestration systems for the
PCOR Partnership region and, in future
efforts, to facilitate and manage the future
demonstration and deployment of these
technologies. In this phase of the project,
the PCOR Partnership is characterizing the
technical issues, enhancing the public’s
understanding of CO; sequestration,
identifying the most promising

opportunities for sequestration in the
region, and detailing an action plan for the
demonstration of regional CO,
sequestration opportunities. This report
focuses on briefly describing the Madison
Aquifer (herein referred to as the Madison
“geological sequestration unit” [GSU]) of
the northern Great Plains aquifer system
and reviewing its potential as a regional
CO; sequestration unit. Using published
geological data, a calculated
reconnaissance storage volume shows the
aquifer has significant potential as a
regional sequestration unit.
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Figure 1. Northern Great Plains aquifer system.



The Williston and Powder River Basins are
part of a larger regional geohydrological
province called the northern Great Plains
aquifer system (Downey et al., 1987; Busby
et al., Downey, 1986; Downey, 1989;
Downey and Dinwiddie, 1988; Brown et al.,
1984; Downey, 1984). An aquifer system is
defined as a series of geologic formations
(aquifers) that exhibit similar geohydrology.

The northern Great Plains aquifer system
is a large (approximately 300,000-square-
mile) complex geohydrological system
(Downey et al., 1987; Busby et al.,
Downey, 1986; Downey, 1989; Downey
and Dinwiddie, 1988; Brown et al., 1984,
Downey, 1984). It underlies North Dakota,
most of South Dakota, much of Montana,
northeastern Wyoming, the northwest tip
of Nebraska, southern Manitoba, and
southeastern Saskatchewan (Figure 1). The
general flow direction in the northern
Great Plains aquifer system is to the east
and the northeast. Some of the aquifers in
the system subcrop in the east (Figures 2
and 3). Recharge areas are primarily
highlands, including the Rocky Mountains
and the Black Hills to the west.

The stratigraphic column of the northern
Great Plains has been divided into a series
of five principal aquifers and four principal
confining units (Downey et al., 1987;
Busby et al., Downey, 1986; Downey,
1989; Downey and Dinwiddie, 1988;
Brown et al., 1984; Downey, 1984). Each
aquifer is a potential regional sequestration
unit. The aquifers have been numbered in
ascending order, with the prefix AQ
representing an aquifer system and TK
representing a confining unit or aquitard.
Although not discussed by Downey or
USGS, Bachu and Hitchon (1996)
recognize a similar geohydrological system
in Canada (Figure 4).

USGS has published a Web-based
groundwater atlas that includes the

northern Great Plains system at
http:/ /capp.water.usgs. gov/gwa/ch i/
I-textl.html.

MADISON GEOLOGICAL SEQUESTRATION
UNIT (AQUIFER)

The Madison GSU (aquifer) underlies both
the Williston and Powder River Basins. It
has the potential to be a significant
sequestration unit in the PCOR
Partnership region.

In the Williston Basin, the Madison is
given group status and divided into three
formations, which in ascending order are
the Lodgepole, Mission Canyon, and the
Charles. Rocks of the Lodgepole and
Mission Canyon Formation are carbonates
and have porosity; the Charles Formation
is dominated by evaporites (salts and
anhydrites) and lacks permeability;
together they are classified as the Madison
(AQ2; USGS designation) GSU. These
formations are conformable in the basin
center and unconformable along the basin
margin. The Madison Group is the primary
oil-producing interval in the Williston
Basin. In the Powder River Basin, the
Madison is not subdivided, and the
equivalent stratigraphic unit is called the
Madison limestone.

Madison sediments were deposited in a
relatively stable, broad, and shallow
epicontinental sea. Depositional facies of
the Madison are carbonates and
evaporites. They were deposited in a series
of shallowing, upward-regressive cycles in
an offlapping or regressive relationship.
The Mission Canyon and Charles
Formations are further subdivided into
informal intervals. In ascending order, the
intervals of the Mission Canyon are the
Tilston and the Frobisher Alida. The
Charles Formation is subdivided into a
lower Ratcliffe interval and upper Poplar
interval. In addition, these intervals are
further subdivided into informally named
beds (Harris et al., 1965; Voldseth, 1987).


http://capp.water.usgs.gov/gwa/ch_i/I-text1.html
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EXPLAMATIONMN

Water enters the Paleozoic aquifers
in recharge areas on the flanks of structural
uplifts, moves through the Wil-listan Basin,
and discharges mostly as saline springs and
seeps in eastern North Dakota. Most of the
water moves around the southeastern and
northwestern margins of a bady of brine.

Recharge area
Discharge amea for up per Paleozoic aquifers
Discharge amea for lower Paleomic aquifers

Body of water with di
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Flow Direction
in the Northern Great Plains Aquifer System
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Figure 2. Flow direction in the northern Great Plains aquifer system.
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Figure 4. Regional stratigraphic column including hydrogeological systems.
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Figure 5. Generalized Madison depositional sequence.

Each bed represents an individual
shallowing, upward cycle, culminating in
evaporite deposition of the Charles
Formation (Figure 5).

Madison-age sediments are present
throughout most of the northern Great
Plains. The Madison GSU (AQ2) underlies
over 200,000 square miles of the northern
Great Plains (Downey, 1984). Sediment
thickness is in excess of 2000 feet in the
center of the Williston Basin (Figure 6).
Generally, the lower portion of the Madison
is described as being limestone, massive to
thinly bedded, argillaceous, and cherty in
part (Peterson, 1984). The middle portion
of the section is generally limestone, with
some dolomites. The dolomites are better
developed along the depositional margins
and best developed along the northeast
flank of the Williston Basin. The upper part
of the Madison comprises bedded
limestones, dolomites, anhydrites, and

halite. The anhydrites are thought to
represent shoreline (sabkha) deposition.
The halites most often are found in the
basin center and represent restricted
marine conditions.

Porosity distribution in the Madison GSU
is highly variable and discontinuous
(Peterson, 1984). In general, the porosity
appears to be best developed in dolomites
along the eastern portion of the Williston
Basin. Better porosities are often found in
association with nearshore or island
shoaling (Hendricks et al., 1987). USGS
has prepared a regional reconnaissance
porosity thickness and distribution map of
the Madison Aquifer (Figure 7).
Understanding the distribution of porosity
is the critical factor in calculating CO»
sequestration volume. The currently
available data will only allow for a rough
estimation (order of magnitude) of a
sequestration volume. In order to calculate
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Figure 6. Thickness of the Madison in the northern Great Plains.

more exact sequestration values, more
detailed mapping of the porosity
distribution will be needed. Determining
the competency of upper and lower
confining units for the Madison GSU is not
straightforward.

With respect to the lower confining unit, all
but the eastern part of it is underlain by a
regional confining unit that consists of
tight limestones of Silurian and Ordovician
age and impermeable shales of the Bakken
Formation of Mississippian/Devonian age
(TK1; USGS designation). No confining
beds underlie the aquifer in the very
eastern portion of the basin. In this area,
water flow will occur from the AQ2 into the
underlying AQ1 and eventually be
discharged into surface sediments in
eastern North Dakota (Figure 3).

There is not a single continuous seal above
the Madison. Overlying much of the AQ2
are evaporites of the Mississippian-age
Charles Formation (TK2; USGS
designation). Where present, these
evaporites may represent a very competent
primary seal. Beyond the depositional limit
of that seal in central North Dakota,
Downey (1984) suggests the overlying
confining layer is absent or thin (Figure 8).
Downey et al. (1987) recognize potential for
vertical leakage from it (Figure 3).

Beyond the limit of the primary confining
unit are rocks of Jurassic and Triassic age.
Primarily impermeable carbonates and
clastics, they have been classified as the
TK3 (USGS designation). Work done by the
International Energy Agency (IEA)
greenhouse gas (GHG) Weyburn CO,
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Monitoring and Storage Project (2004) has
concluded that rocks of the Jurassic and
Triassic (TK3 equivalent) “form a regionally
extensive and competent aquitard.”
Additional work will be needed to
determine the stratigraphic relationship
between the sequestration unit and the
potential top seals to determine the
regional competency of that seal. Fluid flow
is also possible through faults and
fractures that may be associated with
lineaments. Flow in these conduits, if
present, will be faster than regional flow
rates.

Fluid flow in the Madison Aquifer is from
the west, southwest to the north, northeast
(Figure 2). Recharge of the aquifer occurs
in highland areas to the west, in the Rocky
Mountains and the Black Hills. Flow
direction appears to be reversed in a
portion of southwestern Manitoba
(LeFever, 1998). This anomaly is due to
pseudorecharge associated with the local
disposal of produced oil field brines into
the aquifer. Flow rates in the Madison vary
from a few feet a year to about 75 feet a
year (Figure 9).

Water quality in the Madison Aquifer varies
greatly. Dissolved solids range from less
than 500 mg/L near the Black Hills uplift
to in excess of 300,000 mg/L in the center
of the Williston Basin (Figure 10). Flow
direction in the AQ2 aquifer system may be
modified by an area of high-density brine
(Figure 2) in the central portion of the
basin (Downey et al., 1987; Brown et.,
1984; Downey, 1984). Downey considers
three hypotheses regarding hydrologic flow
in the brine area. The first is that the brine
is static. Second, the brine area is static,
with low but consistent flow velocities
through it. The third is that the brine area
is migrating with regional waterflow to the
northeast in an “attempt to adjust to
changes to recharge and discharge
associated with the end of Pleistocene
glaciations.” Downey et al. believe that the
second hypothesis seems to be the best fit

10

to his digital models. Each hypothesis will
have to be considered in modeling CO,
sequestration in these aquifer systems.
Downey (1984) prepared a detailed
simulation model for the Madison GSU. In
this model, he calculated the
transmissivity (Figure 11) as well as the
vertical hydraulic conductivity of the
overlying TK2 confining unit (Figure 8).

METHODOLOGY FOR CALCULATING
SEQUESTRATION VOLUME

In order to calculate the sequestration
potential for the Madison GSU, a model
was developed to produce a continuous
gridded surface representing the volume of
CO; that could be sequestered per square
kilometer. In general, the model is based
on existing data relating to hydrological
studies of regional aquifer systems; oil,
gas, and water well data; and existing GIS
(geographic information system) map data.

The calculation used is a straightforward
estimate that relates the pore volume in
the reservoir (area x thickness x porosity)
and the solubility of CO; as a function of
NaCl concentration in the reservoir water
at spatially varying pressures and
temperatures. Solubility factors for
temperatures and concentrations in excess
of 200°F and 200,000 ppm NaCl,
respectively, were not readily available at
the time of this study (temperatures and
concentration values are routinely above
these values in the Powder and Williston
Basins). As such, data were extrapolated to
above S500°F and 300,000 ppm from tables
provided through personal communication
with the Indiana Geological Survey (April
2004) in order to attain the necessary
solubility correction factors. This
methodology is a modification of the
MIDCARB CO; sequestration tool. The
MIDCARB CO; sequestration tool was
modified by extrapolating the solubility
parameters of CO; in water to account for
the higher temperature and salinity
present in the study area.
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Figure 9. Rates of water movement in the Madison.
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The calculation is as follows: producing interval thickness (ft), ® =
average reservoir porosity (%), and COss =
Q=7758 * (A) * (T) * (p) * (CO2s) solubility of CO» (ft*/bbl).
where Q = CO; remaining in the aquifer Surfaces of continuous data were
after injection (ft3), 7758 = (43,560 ft?/acre) generated from digitizing specific analog
x (0.178 bbl/ft?), A = area (acres), T = maps of the Williston and Powder River
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Figure 11. Transmissivity distribution of the Madison.

Basins. The natural neighbor method of
grid generation was applied to the digitized
data. This method was used for both
interpolation and extrapolation of results,
as it generally works well with clustered
scattered points. A list of the maps used is
shown below:

* Porosity/thickness distribution
(Downey, 1984)

* Total dissolved solids (Downey, 1984)

e Structure contour map (Peterson,
1984)

The depth to the top of the Madison Group
(North Dakota definition), or equivalent,
was obtained from log top databases for
Montana, North Dakota, and South
Dakota. Data for the northern portion of
the Powder River Basin were derived from
an analog map of the Madison Formation
(Peterson, 1984). The combined data set
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was used to create a continuous surface
depth map. From this, a new set of maps
was generated for pressure and
temperature of the Madison throughout
the region. It should be noted that these
maps are based on average temperature
and pressure gradients of (15°F/1000 ft) +
60°F and 0.46 psi/ft, respectively, obtained
from Schlumberger oil field services Web
site (www.glossary.oilfield.slb.com). The net
result of the exercise was the creation of a
continuous surface map at 1-kilometer
resolution (based on the above discussion)
that represents an estimate of the total
storage capacity of the Madison GSU.

SEQUESTRATION POTENTIAL

A reconnaissance sequestration volume of
60 billion tons (980 trillion cubic feet of gas
[TCFG]) has been calculated (see
Methodology Section) for CO, dissolved in


www.glossary.oilfield.slb.com

saline water for the Mississippian Madison
GSU in a portion of the northern Great
Plains, including a large part of the
Williston Basin and the Powder River Basin
(Figures 12 and 13). Additional data will
need to be collected in order to calculate a
sequestration volume in Saskatchewan
and Manitoba and to refine this
calculation.

Areas of maximum sequestration potential
are coincident with the depositional margin
of the basin during Madison time. Porosity
distribution and water salinity appear to be
the primary mechanisms in controlling
sequestration volumes in the northern
Great Plains. Porosity in the Madison is
better developed along the basin margin
(Peterson, 1984; Hendricks et al., 1987)
associated with increased dolomitization
and/or shoaling events. Salinity may be
the single most critical factor in adversely
affecting the solution of CO; in a brine in
the region, certainly in the Williston Basin.
A large area of very dense brine (in excess
of 300,000 ppm TDS [total dissolved
solids]) is present in the center of the
Williston Basin. The effect of high salinity
is to decrease the solubility of CO; in the
water by severalfold.

In general, the location of major CO;
sources is a good match with the
maximum Madison sequestration potential
(Figure 12). A concentration of power-
generating plants in central North Dakota
is located favorably for sequestration of
CO; in the Madison GSU. The potential is
present to sequester 2 billion tons within a
S50-mile radius of the approximate center of
the plant grouping (Figure 14). Normal
lateral groundwater flow rates in the
Madison in central North Dakota are to the
northeast and are less than 2 feet per year.
Transit times are, therefore, favorable for
long-term regional storage. Locally,
evaporites of the TK2 and, more regionally,
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impermeable rocks of the TK3 confining
units overly the top of the Madison
sequestration unit and may represent a
competent top seal.

RESULTS

The estimated storage capacity of the
Madison, as calculated using the method
described previously, represents 700 years
of CO; production from all sources in
North Dakota, Montana, South Dakota,
and Wyoming that lie above the aquifer.
Practically speaking, the actual volume of
CO; that may be stored in the Madison will
be significantly lower than the calculated
estimates shown above. Large portions of
the Madison may be ruled out for a variety
of reasons, including regions with
incompetent seals that may allow leakage,
areas of inadequate porosity and
excessively high salinity that will limit
dissolution to the point of impracticality,
and prohibitive distance of some areas
from large CO; sources. Additional work
will be necessary prior to development of
more exact sequestration volume
calculation. Specifically, a more detailed
porosity thickness and distribution map is
required. Detailed porosity data are not
available and will need to be generated.

The regional leakage potential, although
likely small, will have to be further
investigated. Tectonic zones of weakness
(refer to PCOR Partnership topical report:
An Overview of the Tectonic History of the
Williston Basin) will have to be investigated
for leakage potential prior to large-scale
regional sequestration. Detailed
stratigraphic study will have to be done to
determine the areal extent, character, and
relationship between the beds confining
the sequestration unit and the unit itself.
More detailed geohydrodynamic modeling
may also be required to better characterize
inter- and intraformational fluid flow.
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CONCLUSION

The Madison GSU of the northern Great
Plains aquifer system primarily lies within
the boundaries of the Powder River and
Williston Basins. Carbonates are the
primary rock type present in the interval,
with limestone the prominent lithology.
Dolomites are present and more common
along the margin of the interval and in
particular along the northeast flank of the
Williston Basin. Porosity in the Madison is
erratic and discontinuous, although
porosity pods may be interconnected
through fractures. The Madison is the
primary oil-producing interval of the
Williston Basin, which means some of the
infrastructure necessary for large-scale
CO:; injection may already be in place in
some areas. Regional calculations based
largely on USGS reconnaissance mapping
indicate that the Madison may be a
significant candidate for CO-
sequestration. The calculations suggest
that the total CO, storage capacity of the
entire Madison may exceed 60 billion tons
(980 Tcf). The volume that may be
practically and safely sequestered is likely
to be much lower, but still represents a
significant regional sink. There may be
some potential for leakage along the
northeast flank of the Williston Basin,
where the formation subcrops, and along
some tectonic features.

Prior to sequestration, additional detailed
porosity mapping will be required. Porosity
data will need to be acquired. It is
recommended that that data be derived
from digital well logs converted to LAS (Log
ASCII standard) format.
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