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Disclaimer: 
This report was prepared as an account of work sponsored by an agency of the United States Government. 
Neither the United States Government nor any agency thereof, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that 
its use would not infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or any agency 
thereof. The views and opinions of authors expresses herein do no necessarily state or reflect those of the 
United States Government or any agency thereof. 
 
 
 
 
 
  
Abstract 
 
 
We are extending and improving our current Compositional Streamline Simulator (CSLS), which is being 
developed for the performance prediction of (near) miscible gas injection processes in heterogeneous 
reservoirs. This report covers the fourth six months of our two-year cooperative agreement. The report 
focuses on relaxation methods to solve for transport along streamlines. We have completed the research in 
this area. We continued our research on grid dependency issues, and have started porting our code to a 
shared memory SUN cluster, but will discuss these areas in a next report.   
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Figure 1: Fractional flow function F1(C1). In the two-phase region, the function is S-shaped. 
 

Figure 2: Derivative 
1

1

dC
dF

of the fractional flow function shown in figure 1. 

 
Figure 3: Binary displacement – test case 1, pure light component (d) displaces pure heavy 
component (a). 
 
Figure 4: Binary displacement - test case 2, mixture of two components (h) displaces pure 
component (a).  The trailing shock has zero speed. 
 
Figure 5: Ternary phase diagram - representation of a ternary composition on an equilateral 
triangle. 
 
Figure 6: Tieline and non-tieline eigenvalues. 
 
Figure 7: Tie-line and nontie-line paths for a ternary system with constant K-values. At equal 
eigenvalue points, the nontie-line path is tangent to tie-line path. 
 
Figure 8: Solution path in the ternary phase diagram and saturation profile of the 3-component 
displacement. 
 
Figure 9a: Results of upwind schemes on test case 1- binary displacement. N= 40, CFL = 0.35. 
 



December 2006                                                                                                                                           4 
 

Figure 9b: Results of upwind schemes on test case 2- binary displacement. N= 40, CFL = 0.35. 
Here, the SPU needs about 200 grid points to resolve as accurately as TVD-RK2 or ENO-RK3. 
 
Figure 10a: Results of component-wise application of upwind schemes on ternary displacement in 
the phase space. SPU is excessively diffusive. N= 80, CFL = 0.4.  
 
Figure 10b: Solution profiles of ternary displacement got by component-wise application of 
upwind schemes. SPU smears the shocks and has a prominent dip in the zone-of-constant state. 
N= 80, CFL = 0.4.  
 
Figure 11: A closer look at the TVD-RK2 and ENO-RK3 composition paths in the phase space, 
near the equal eigenvalue point. The path computed by the TVD-RK2 scheme jumps to an 
incorrect nontie-line near the equal eigenvalue point. N= 200, CFL = 0.4. 
 
Figure 12:  Comparison of 1st order Jin-Xin relaxation scheme and SPU. N= 40, CFL = 0.2. 
 
Figure 13a: Phase space comparison of component-wise application of upwind schemes and 2nd 
order Jin-Xin relaxation scheme on ternary displacement. Composition path of Jin-Xin scheme is 
close to TVD-RK2 but has slightly more numerical diffusion than TVD-RK2. N= 80, CFL = 0.2.  
 
Figure 13b: Solution profile of C1 obtained by 2nd order Jin-Xin relaxation scheme is close to 
TVD-RK2.  N= 80, CFL = 0.2. 
 
Figure 14: A closer look at the 2nd order Jin-Xin scheme in the phase space near the equal 
eigenvalue point. The path computed by the Jin-Xin scheme behaves better than TVD-RK2 near 
the equal eigenvalue point but also has slightly more diffusion on the initial tie-line. N= 200, CFL 
= 0.2. 
 
Figure 15a & 15b:  Results of variable relaxation scheme on binary displacement. N= 40, CFL = 
0.35.  Variable relaxation scheme is less diffusive than Jin-Xin scheme and is quite close to SPU. 
 
Figure 16a: Phase space comparison of ENO-RK3 and 2nd order variable relaxation scheme on 
ternary displacement. Composition path of the variable relaxation scheme is close to ENO-RK3. 
N= 80, CFL = 0.2.  
 
Figure 16b: Comparison of solution profiles obtained by ENO-RK3 and 2nd order variable 
relaxation. N= 80, CFL = 0.2.  
 
Figure 17: A closer look - 2nd order variable relaxation is close to ENO-RK3 and has much less 
diffusion than Jin-Xin scheme. It also behaves well near the equal eigenvalue point. N= 200, CFL 
= 0.2. 
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1.   Introduction 
 
Reliable prediction of the performance of miscible or near-miscible gas injection processes 
requires a simulation tool that can accurately predict both the local displacement efficiency and 
the global sweep. The local displacement efficiency is governed by pore-level interactions 
between the reservoir fluid and the injected fluid. Numerical methods used in compositional 
simulation must therefore accurately represent phase behavior. This means that a sufficiently high 
number of components is used to represent the oil and gas present, and that high order spatial 
discretizations must be employed instead of the commonly used first order upwind scheme 
(SPU). The global sweep depends primarily on the permeability field and gravity segregation. 
The highly mobile low viscosity gas will flow preferentially through high permeability flow 
paths, bypassing oil in less permeable areas of the reservoir. Thus, accurate prediction of global 
sweep requires detailed representations of heterogeneity and therefore a high grid density. As a 
result, the computational costs of compositional simulations can be very high.  

 
Streamline simulation is an attractive approach to simulation these advection-dominated gas 
injection processes. We have developed a Compositional Streamline Simulator (CSLS) that 
shows promise for efficient and accurate performance prediction. In this project we are extending 
CSLS to include three-phase flow, and optimizing the simulator by developing and implementing 
an efficient grid adaptation procedure and code parallelization. This report presents results of the 
second half of the second year of this three-year project. Because this time period covers our 
summer quarter also, during which most of our students have internships, the report covers one 
research area only: relaxation methods.  
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2. Executive Summary  

 
2.1. Personnel 

 
The personnel in this 6-months period included Prof. Margot Gerritsen (PI), Prof. Lynn Orr 
(advisor), Dr. Jim Lambers (research associate) and Ms. Shalini Krishnamurthy and Mr. Jeremy 
Kozdon (PhD students).  

 
Ms. Shalini Krishnamurthy is working on the development of error estimators to aid adaptation of 
the streamline grid and improve the current coverage algorithm. She is also exploring a novel 
numerical method based on relaxation schemes to handle the transport solve along streamlines.  

 
Mr. Jeremy Kozdon has recently started a study on the grid orientation effect that may be 
encountered in gas injection processes. He is partly supported by the Center for Computational 
Earth and Environmental Sciences in the School of Earth Sciences at Stanford University. 

 
Professor Lynn Orr is a project advisors contributing to the general planning and directing of the 
project. 
 
We have hired a postdoctoral student, Henrik Loef, who will start his work with us November 1, 
2006. Dr. Loef will be responsible for the porting of the CSLS code to a SUN shared memory 
system.  

 
2.2. Important accomplishments  
 
This report is succinct for two reasons. First, our postdoc did not yet commence work (he starts 
November 1, 2006). Second, one of our two students, Jeremy, took the period of June 1 through 
to September 15 to work with Chevron Energy Technologies on a summer internship. We will 
therefore only report on the work done by Shalini on relaxation methods. 
 
2.2.1. Solving transport equations along streamlines: relaxations methods 

 
Solving the transport equations along the streamlines is challenging due to strong non-linear 
coupling and weak hyperbolicity of the problems in phase space. Relaxation schemes aim to 
overcome these problems by reformulating the governing equations as a linear system of 
hyperbolic equations, with the specific intent of controlling hyperbolicity; the nonlinearity is 
restricted to the source term only. As we also discussed in our first semi-annual report, we are 
investigating whether these methods are useful in the context of miscible gas injection processes. 
They may provide a robust way to avoid problems with the loss of strict hyperbolicity 
commented on earlier. We have now completed this investigation. 
 
For completeness, we have included the full discussion of relaxation methods and related 
schemes for solving hyperbolic systems of equations.  
 
Relaxation schemes (Jin & Xin 1995) and central schemes (Nessyahu & Tadmor 1990, Kurganov 
& Tadmor 2000) avoid the use of nonlinear Riemann solvers and do not rely on the specific 
eigenstructure of the problem. Relaxation schemes overcome the dependency on Riemann 
solutions by solving an approximate problem, called the relaxation system, instead of solving the 
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original problem. The relaxation system replaces the original nonlinear and homogeneous 
conservation system with a linear hyperbolic system, with a stiff nonlinear source term.  
 
As an example, consider the scalar conservation law 
 

0     )(    =+ xt ufu , )()0,( 0 xuxu = .              (1) 
                                                                                                             
The relaxation system as proposed by Jin and Xin for Equation (1), takes the form  
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)()0,( 0 xuxu = , )()0,( 0ufxv = , 
 
where the relaxation rateε  is a constant satisfying 10 <<< ε , and the parameter a , which is also 
a constant and referred to as the sub-characteristic speed, is chosen so that a(u)fa <<− ' , u∀ , 

i.e. )('max ufa =  . 
 
The relaxation system approximates the original problem with a small dissipative correction 
controlled by ε . For ε  sufficiently small, the original system is recovered. Numerically solving 
the relaxation formulation has one special advantage. Characteristic decomposition, though still 
the modus operandi, is now done on a linear hyperbolic structure with a full set of eigenvectors 
that is constant throughout the entire domain. 
 
Although the relaxation system seems simpler to solve than the original nonlinear system, it now 
has a stiff source term, additional numerical diffusion and is twice as large as the original system. 
The stiff source term can be effectively handled by operator splitting (Jin 1995, LeVeque 2002), 
wherein the system is solved in two separate steps, an advection step, and an ODE step, as 
explained below. This introduces a splitting error, but it is of the order ( )rt∆Ο , where r  is the 
number of RK stages used for time-stepping.  The overhead of computing the additional unknown 
v  can be avoided by resorting to sudden relaxation, i.e. simply setting )(ufv =  in the ODE step. 
The numerical diffusion however, depends on the magnitude of the sub-characteristic speed a . If 
the sub-characteristic speed is constant for the entire domain, as in the Jin-Xin scheme, the 
numerical diffusion will always be greater than that of the corresponding upwind schemes. 
 
Governing equations 
 
The phase compositions for 2-phase systems are often expressed in terms of equilibrium ratios 
(K-values), given for each component p by               
                                     

phase liquid in component  of fraction volume
phase vapor in component  of fraction volume

 
p
p

c

c
K

pL

pV
p == .                                            (3)      

 
Generally the K-values are variable and computed as a part of the flashes. For our test cases we 
use systems with simplified phase behavior and assume that the K-values are constant. This 
assumption alters neither the nonlinear nature nor the weak hyperbolicity of the systems. The 
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phase viscosities can be computed by Lohrenz-Bray-Clark correlations (Lohrenz et al.1964). The 
viscosity ratio can also be assumed to be constant without altering the primary behavior. Volume 
occupied by a component can change as it transfers between the phases. Volume change on 
mixing does not change the character of the displacement; only the wave velocities change. 
Although in realistic settings volume change on mixing is taken into account, and is accounted for 
by a pressure correction after components are advected (Dindoruk 1982), we will ignore it here to 
simplify the mathematics and numerics.  
 
To summarize, our simplifying assumptions are that 

• the flow is advection dominated, that is, diffusion is negligible, 
• the equilibrium ratios (K-values) are constant, 
• the viscosity ratio between the two phases is fixed, 
• the mixing is ideal, that is, volume change on mixing is negligible. 
 

The conservation equations in 1D, with the above assumptions, are represented by, 
 

0=
∂

∂
+

∂
∂

x

F

t

C pp , for 1,2,1 −= cnp �        (4) 

                                                                                                     

where cn  is the number of components, pC  is the overall volume fraction of 

component p described by )1( VpLVpVLpLVpVp ScScScScC −+=+= , pVc  and pLc  are the 

volume fractions of component p in vapor and liquid phases, VS  and LS  are the vapor and liquid 

saturations, pF  is the overall fractional volumetric flow of component p described by 

)1( VpLVpVLpLVpVp fcfcfcfcF −+=+= , and Vf and Lf  are the vapor and liquid fractional 

flows. In the single phase region we have pp CF = . Henceforth we will drop the subscript on the 

vapor saturation and the fractional flow and represent them as S and f .  
 
An additional constraint is that the volume fractions of each component must sum to 1, so we 
have 
 

1
1

=�
=

cn

p
pC ,  1

1

=�
=

cn

p
pVc , and 1

1

=�
=

cn

p
pLc .       (5) 

                                                                                                        
The fractional flow function is given by  
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−

=
θ

,                                                                                (6) 

 
where rVk  and rLk  are vapor and liquid relative phase permeabilities that depend on saturation 

S . We use quadratic permeabilities. gN  is the gravity number, θ  is the dip angle and M  is the 

constant viscosity ratio. A typical fractional flow function for horizontal flow ( )0=θ , using 
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quadratic relative permeabilities, assuming zero residual liquid saturation, and assuming zero 
critical vapor saturation looks like 

�
�

	

�
�
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phase. liquidin                         0
 phase,in vapor                          1

region, phase in two   
)1( 22

2

SMS
S

f                                                               (7) 

 
 
Two-component displacements 
 
 
At the simplest level we have two component (binary) displacements, where a light gas displaces 
a heavy hydrocarbon. This is a generalization of displacement of oil by water, the Buckley-
Leverett problem (Lake 1989). Studying two-component displacement is useful because the 
solution to the two-component problem reappears as segments of the solution in systems with 
more components. We use the binary problem to analyze the behavior of the relaxation schemes. 
Since this is a scalar conservation law we do not have points of weak hyperbolicity. 
 
The governing equation for binary displacement, given in terms of the injected component is 
 

 011 =
∂
∂+

∂
∂

x
F

t
C

,                            (8)                                                                                                                          

with the initial condition 
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0 if 
0 if 
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1

1
1 xC

xC
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J

, 

where 1C  and 1F  are described as )1(111 ScScC LV −+= ,  ))(1()( 111 SfcSfcF LV −+= ,                                                                                   

and ( )Sf as given in Equation (7) . 
 
Note that for the Buckley-Leverett problem, each component exits only in one phase, and hence 
the volume fraction of the displaced component and the fractional flow reduce to ScC V11 = , 

)(11 SfcF V= , respectively, and the governing equation becomes 0=
∂
∂+

∂
∂

x
f

t
S

. Figures 1 and 2 

show the fractional flow curve and the propagation velocity for the binary displacement problem. 
In the single phase regions, 11 CF = . In the two-phase region, the curve is S-shaped, similar to the 
Buckley-Leverett flow curve. 
 
We look at the solution profiles of two test cases shown in Figures 3 and 4. In the first case, a 
pure light component (point d on the fractional flow curve) displaces a pure heavy component 
(point a). The solution for the first case, shown in Figure 3, consists of a leading shock, a 
spreading wave and a trailing shock. In the second case, a mixture of two components (located by 
the point h on the flow curve) displaces the pure component (point a). The solution, depicted in 
Figure 4, has a leading shock with unit velocity and a trailing shock with zero velocity. The zone 
between the two shocks is called a zone of constant state. Here the composition remains constant 
(point i) but has two velocities, the leading shock velocity and the trailing shock velocity. 
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Ternary systems 
 
For ternary systems, in addition to the composition profiles, we also study the ternary phase 
diagrams to obtain more information about the phase behavior of the compositions. Ternary phase 
diagrams represent the component concentrations of all possible mixtures of the three 
components in a two-dimensional space. Because the volume fractions of the three components 
sum to one, the phase compositions can be conveniently represented on an equilateral triangle 
(Lake 1989). Each vertex represents 100% of the component associated with that vertex, and the 
opposite vertex 0% (Figure 5). Each point within the triangle represents a mixture of the three 
components; the volume fractions are read from the perpendicular distance from that point to the 
three sides of the triangle. For gas/oil systems, the component associated with the top vertex of 
the triangle is usually the lightest, and the component associated with the bottom left vertex is 
usually the heaviest. 
 
The conservation equations for 3-component nonlinear systems are given by 
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,                               (9)                                                                                                                         
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and ( )Sf  as given in (7) . 
 
This system has two eigenvalues given by (Figure 6) 
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The corresponding eigenvectors are 
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The eigenvectors correspond to the possible paths a solution can trace in the phase space. The 
eigenvector te

�
corresponds to the straight line paths in the phase space, known as the tie-line 
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paths (Figure 7). The eigenvector nte
�

corresponds to the curved paths in the phase space, known 
as the nontie-line paths. Within the two-phase region only certain specific volume fractions of 
liquid and vapor phase ( pLc  and pVc ) can be in equilibrium, and the tie-lines connect these 

equilibrium volume fractions. So, on a given tie-line, pVc   and pLc   remain constant for all the 

components.  Tie-lines also connect the vapor locus and the liquid locus in the phase space. The 
point at which a tie-line intersects the vapor locus has 1=VS  and 0=LS ; the point where it 

intersects the liquid locus has 0=VS  and 1=LS . Nontie-line paths connect the various tie-lines.  

When the eigenvalues ntt λλ = , the eigenvectors ntt ee
�� = , the system has dependent 

eigenvectors, and hence is no longer diagonalizable. That is, the system becomes weakly 
hyperbolic and any numerical method which depends on the existence of a full set of independent 
eigenvectors may not perform well at such points. This behavior is only for systems with two 
phases; with three-phase systems we encounter elliptic regions instead (Juanes & Patzek 2004). 
 
The solution to the ternary problem looks like a combination of two binary displacements. 
Consider the test case shown in Figure 8, which illustrates the salient features of a ternary 
problem. There are two key tie-lines, one extending through the initial oil (point a), and another 
extending through the injection gas (point f). In the two-component case, the entire displacement 
occurs on a single tie-line. Hence on each tie-line of the ternary system the solution has, like a 
binary solution, a shock and a rarefaction. As gas is injected, there are two transitions from the 
single-phase region to the two-phase region: a leading shock (a-b) on the initial tie-line, and a 
trailing shock (e-f) on the injection tie-line. Inside the two-phase region there is a small 
rarefaction (b-c), as the composition varies along the initial tie-line. At the point (c), the initial 
tie-line is tangential to a nontie-line curve. Here, the eigenvalues and the eigenvectors coincide, 
and the system becomes weakly hyperbolic. The composition then traces the nontie-line path as a 
rarefaction (c-d). At point d the solution encounters the injection tie-line, where the velocity 
jumps from the nontie-line eigenvalue ntλ  to the tie-line eigenvalue tλ . The composition remains 
constant at d for the entire jump, forming a zone of constant state. On the injection tie-line there 
is one more rarefaction (d-e) which connects to the trailing shock (e-f). 
 
In practical settings the initial and injection conditions are rarely constant, and the problem has to 
be solved numerically. In a component-wise numerical method with a constant grid spacing ( )

2
1

2
1 −+ −=∆=∆ jjj xxxx , and a time-step t∆ , we update the solution in the jth cell, at time level 

n+1, according to 
 

1. Set [ ]n
j

n
j

n
j

n
j x

t
2
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2
1

1
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+ −
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∆−= FFCC ,   where [ ]

cnCCC �21,=C   and  [ ]
cnFFF �21,=F , 

2. Iteratively solve the nonlinear set of equations-of-state to obtain 1+n
jS  (the most expensive 

step), 
3. Compute 1+n

jf , 1+n
jF , 1

2
1

+
+

n
jF   using the newly computed 1+n

jS . 

 
Figures 9a and 9b show the results of upwind schemes on the two-component displacements. The 
excessive numerical diffusion of the first order upwind scheme, which is also called the Single 
Point Upstream weighting scheme (SPU), is more apparent in the leading shock of the second 
example. SPU requires about 200 grid cells to obtain the same resolution as TVD-RK2 or ENO-
RK3 scheme with 40 grid cells. At lower speeds, the numerical diffusion of the upwind schemes 
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decreases. For example 2, where a mixture of components is injected, the trailing shock has zero 
speed and the upwind schemes resolve the trailing shock with almost no smearing.   
 
With the ternary system, the numerical diffusion of the first order scheme not only smoothes the 
shocks, but also seems to cause errors in the shock speeds. This can be explained by observing 
the discrepancy between the computed compositional path and the MOC path in the phase space. 
The numerical diffusion pulls the computed path away from the MOC path, thus altering the 
speeds of the computed solution. This error mimics the behavior of the system in the presence of 
physical diffusion. The nonlinear system can also introduce other errors not seen in the scalar 
two-component problem. For example, the solution may show a dip in the zone of constant state, 
in other words, too much oil is left behind. This error is frequently seen with nonlinear systems 
when a discontinuity is present in the initial data and occurs due to the fact that the Hugoniot 
locus for the nonlinear systems is not a straight line as it is in the scalar case (LeVeque 2002). If 
MOC is used to compute the solution up to a small time 1t , and this solution is used as the initial 
state for the numerical scheme, there is a clear reduction in the error at zone of constant state. 
Though we do not see it in the relatively simple test cases here, component-wise application of 
upwind schemes may also increase or introduce errors (Qiu & Shu 2002). 
 
Higher order schemes (second order TVD-RK2 and third order ENO-RK3) contain much less 
numerical diffusion than the first order scheme (Figures 10a and 10b). The shocks are captured 
more accurately and the error in the zone of constant state is reduced. The solution path in phase 
space is also closer to the MOC path. Figure 11 gives a closer look at the numerical composition 
paths in phase space near the equal eigenvalue point. The numerical path computed by the TVD-
RK2 scheme jumps from the initial tie-line to an incorrect nontie-line near the equal eigenvalue 
point. This path is different from the path that would have been traced in the presence of physical 
diffusion. This error is observed when grids are refined and there is very little numerical diffusion 
in the scheme. ENO-RK3 behaves better at the equal eigenvalue point. 
 
The improved accuracy of the higher order schemes comes with a price of increased 
computational cost per time step. For every RK stage introduced in order to maintain a higher 
temporal accuracy, an additional flash is required. TVD-RK2 requires two flashes per time step 
and ENO-RK3 requires three flashes per time step. But since the higher order methods allow the 
usage of coarser grids, these schemes are more efficient than the first order scheme.  
 
 
Jin-Xin relaxation 
 
The Jin-Xin relaxation scheme replaces the original system of conservation laws (Equation 4) by  
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Here A  is a positive diagonal matrix given by, ( )121, −=
cnaaadiag �A , where the diagonal 

elements { }pa  are the so-called sub-characteristic speeds. We refer to the parameter ε  as the 

relaxation rate. In the limit 0→ε , ( )CFV →  and the relaxation system (Equation 12) reduces 
to the original conservation law (Equation 4). Using a Chapman-Enskog expansion (Chapman 
and Cowling 1970) to represent V , the relaxation system can be seen as an approximation to the 
original conservation law with a small dissipative correction. The Chapman-Enskog expansion                                                                                             
 

�  ),( ),( ),(  )),((     ),( 3
3

2
2

1 ++++= txtxtxtxtx VVVCFV εεε  ,    (13) 
                                                              
is motivated by the fact that ( )CFV →  for small ε .   
 
Substituting this expansion for V  in Equation (12), the first order approximation to the relaxation 
system becomes   
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C(C)FAF(C)C

,                                            (14) 

where  ' (C)F is the Jacobian of the flux function .  F(C)          

In Equation (14),  )  )' - ( ( 22

xx ∂
∂

∂
∂ C(C)FAε is a ( )εΟ  dissipative term, with )' - ( 22 (C)FAε  

being the diffusion coefficient matrix. Equation (14) is well-posed only if  )' - ( 22 (C)FA is 
positive semi-definite for allC . This requirement on the diffusion coefficient matrix 

 )' - ( 22 (C)FA of the relaxation system is called the sub-characteristic condition. In 1D, it is 
equivalent to   
 

22     a≤λ ,   where  p
cnp

λλ
11
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−≤≤

=    and   paa
cnp 11

min
−≤≤

= ,      (15) 

                                                                       
where pλ  are the eigenvalues of  the Jacobian (C)F' . 

 
For C  in a bounded domain, the sub-characteristic condition can always be satisfied by choosing 
sufficiently large sub-characteristic speeds. However as we see in the next few paragraphs, the 
sub-characteristic speeds are the velocities { }pa±  of the characteristic variables of the relaxation 

system. Larger { }pa  imply a reduced CFL number and hence smaller time-steps, i.e. more 

computational effort. Also, large sub-characteristic speeds increase numerical diffusion. Hence it 
is desirable to choose the smallest { }pa  that meet the stability criteria (Equation 15). For the Jin-

Xin scheme, typically { }pa  is set to λ, the maximum eigenvalue of the Jacobian (C)F' . 

 
The stiff source term introduced by the relaxation formulation can be handled by operator 
splitting, a simple and a popular technique used in advection-reaction and advection-diffusion 
problems (LeVeque 2002, Hundsdorfer and Verwer 2003, Younis and Gerritsen 2006). The 
relaxation system is split into two sub-problems, a homogenous advective system and an ODE 
system, that can be solved independently. 
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V
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,                         �
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�

�

−=��

�
��

�
)(1

0        
  VF(C)V

C
t ε

 .   (16) 

 Homogenous advective system                         Stiff system of ODEs 
 
This technique allows the use of high resolution methods for the advective system and standard 
ODE solvers for the stiff system of ODEs. Though Jin and Xin (1995) solve the stiff ODE system 
with an implicit RK method, the ODE part in our case can in fact be solved exactly. Using an 
explicit method would have resulted in very small time steps, dependent on ε. With implicit 
methods, it would have been necessary to solve a large system of algebraic equations. With 
operator splitting we avoid both pitfalls. Splitting does introduce an error, and since the source is 
stiff, naively using either a Godunov or a Strang splitting with a higher order time-stepping 
introduces an ( )t∆Ο  error. A splitting scheme introduced by Jin (1995) ensures the error to be of 

order ( )rt∆Ο , by interspersing splitting steps with the time-steps of an r-stage RK scheme. 
 
The homogenous advective part of the split relaxation system (Equation 16) has the form 
 

��

�
��

�=��

�
��

�+��

�
��

�
0
0

V
CBV

C
xt

       ,    where �
�

�
�
�

�=
0  A
I     0

B 2  .              (17)                                                                                   

The matrix B has eigenvalues{ }   pa± and eigenvectors of the form [ ]T00001 .., ,a,, p… and 

[ ]T00001 ..,a ,,, p−… . For example, for the scalar conservation law the matrix B, the eigenvalues 

and the right eigenmatrix are given by 

�
�

�
�
�

�=
0
1   0

2  a
   

B , ��

�
��

�=
-a

a
   0

0    
� , ��

�
��

�=
a   -a

1     1   R    where  1R�RB −=   . 

 
The spatial discretizations in the jth grid cell, for the homogenous system, with a uniform grid 
spacing ( )

2
1

2
1 −+ −=∆=∆ jjj xxxx , can be written as  

 ( )
0       2

1
2
1

=
∆

−
+

∂
∂ −+

j

jjj

xt

VVC
,                                                                     (18a) 

( )
0       2

1
2
12 =
∆

−
+

∂
∂ −+

j

jjj

xt

CC
A

V
.                                (18b)                                                                                       

To get the point values 
2
1+jC , 

2
1+jV , whose upwind direction cannot be determined directly, we 

use a characteristic decomposition on the constant relaxation matrix B . The advective system 
can be diagonalized as 
 

 �
�

�
�
�

�=�
�

�
�
�

�+�
�

�
�
�

� −−

0
0

        
x

1

t

1

V
C

BR
V
C

R ,                 (19)                                                                                                         

0W � W xt     =+ . 
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The vector W  is made up of the characteristic variables{ }pppp  a CVW ±=±  that travel with 

speeds { }pa  ±  respectively. While the original system has waves moving only from left to right, 

in the relaxation system, information flows in both directions. The characteristic 
variables{ }pppp  a CVW ±=±  can be solved by upwind schemes to obtain 

2
1+jC  and 

2
1+jV . For 

example, with a first order upwind scheme the point values 
2
1+jC , 

2
1+jV   are obtained by 

 
( ) ( ) jj ACVACV       2/1 +=+ + ,         ( ) ( ) 12/1       ++ −=− jj ACVACV ,         (20)                                                        

( ) ( )jjjjj VVACCC −−+= +++ 1
 1-

12/1 2
1

     
2
1

   ,           (21a)                                                                                            

( ) ( )jjjjj CCAVVV −−+= +++ 112/1  
2
1

     
2
1

   .             (21b)                                                                                                                                                                                      

Using Equation (21), the first order semi-discrete approximation can be written as 
 

 ( ) ( )    ,0      2 
x2

1
      

x2
1

    1111 =+−
∆

−−
∆

+
∂

∂
−+−+ jjj

j
jj

j

j

t
CCCAVV

C
         (22a)                                                    

( ) ( ) 0     2 
x2

1
      

x2
1

    1111
2 =+−

∆
−−

∆
+

∂
∂

−+−+ jjj
j

jj
j

j

t
VVVACCA

V
.                 (22b)                                           

Using forward Euler for time integration Equation (22a) is similar to the Lax-Friedrichs scheme. 
If we choose the sub-characteristic speeds { }aap =  such that ( ) 1=∆∆ xta , this scheme 

collapses to the Lax-Friedrichs scheme.  
 
The algorithm for the first order scheme is given by the following steps 

1. Obtain �
�

�
�
�

�
*

*

V
C

 by solving analytically the ODE system 
�
�

�

�

�
�

�

�

−=�
�

�
�
�

�

)(
1
0

  nn

t
n

n

V)F(CV
C

ε
, 

2. Solve the homogenous advective system 
            

           ( )***1

2
1

2
1      −+

+ −
∆
∆−= jj

j

n

x
t VVCC , 

           ( )**2*1

2
1

2
1      −+

+ −
∆
∆−= jj

j

n

x
t CCAVV ,  

            using *

2
1+jV  and *

2
1+jC as given in (21). 

 
Jin and Xin present a second order scheme by using Van-Leer’s MUSCL (Van Leer 1979) 
scheme for the spatial discretization and a RK-2 time stepping. Instead of using a piecewise 
constant reconstruction as in the first order method, the MUSCL scheme uses a piecewise linear 
function. An adaptive limiter controls the linear function used based on the upwind direction. 
Here the characteristic variables are updated as 
 

( ) ( ) +
+

∆++=+ jjjpppjppp �xaa
2
1

        
2/1

CVCV             (23)                                                                                         
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( ) ( ) −
++++

∆−−=− 1112/1 2
1

       jjjpppjppp �xaa CVCV  , 

                                                                                                     
where  
 

( ) ( )( ) )(    
1

  
1

±
+

± ±−±
∆

= jjpppjppp
j

j aa
x

θφσ CVCV .      (24a) 

Here )(θφ is the limiter. A popular choice is the van Leer limiter
1

  )(
+
+

=
θ

θθ
θφ . θ  is a measure 

of smoothness given by  
 

( ) ( )
( ) ( )

jpppjppp

jpppjppp

j aa

aa

CVCV

CVCV

   

   
  

1

1

±−±

±−±
=

+

−±θ .       (24b) 

                                                                     
Some other common high-resolution limiters are the minmod and superbee limiters (LeVeque 
2002). The minmod limiter is known to be diffusive and will lead to smeared shocks. The 
superbee limiter resolves the shocks with little smearing but also tends to steepen and square off 
smooth variations. The van Leer limiter which resolves shocks well, but does not artificially 
steepen the smooth slopes is usually is a good choice for a wide class of problems, including ours.   
 
Using the above, the algorithm for the second order scheme, with Jin’s splitting, can be 
formulated as 
 

1. First RK- Stage: Obtain �
�

�
�
�

�
*

*

V
C

 by solving analytically the ODE system 

�
�

�

�

�
�

�

�

−=�
�

�
�
�

�

)(
1
0

  nn

t
n

n

V)F(CV
C

ε
, 

2. First RK- Stage: Solve the homogenous advective system using the MUSCL scheme 
 

           ( )***1

2
1

2
1      −+ −

∆
∆−= jj

jx
t VVCC , 

           ( )**2*1

2
1

2
1      −+ −

∆
∆−= jj

jx
t CCAVV ,  

            where *

2
1+jV  and *

2
1+jC are obtained using given in (23) and (24), 

3. Second RK- Stage: Obtain �
�

�
�
�

�
**

**

V
C

by solving the ODE system 

�
�

�

�

�
�

�

�

−=�
�

�
�
�

�

)(
1
0

  111

1

V)F(CV
C

εt

, 

4. Second RK- Stage: Solve the homogenous advective system  
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      ( )******2

2
1

2
1      −+ −

∆
∆−= jj

jx
t VVCC , 

      ( )****2**2

2
1

2
1      −+ −

∆
∆−= jj

jx
t CCAVV ,  

       where **

2
1+jV  and **

2
1+jC are obtained using given in (23) and (24), 

 
5. Take the RK-average 
 

       �
�

�
�
�

�

+
+=�

�

�
�
�

�
+

+

)  (
)  ( 

2
1

 2

2

1

1

VV
CC

V
C

n

n

n

n

.      

 
 
The modified equation (27) for the relaxation scheme indicates that the numerical diffusion can 
be reduced if the sub-characteristic speed a  is varied to closely track )(' uf . There are two 
possible ways to construct a relaxation system with varying sub-characteristic. One is derived 
using a non-conservative form of the equations, the other using a conservative formulation, 
written as 
 
 
Non-conservative form                                                   
 

, )(
1

  ),(    

    ,0       

2 VF(C)CAV

VC

−=
∂
∂+

∂
∂

=
∂
∂+

∂
∂

εx
tx

t

xt
      

 
Conservative form 
 

( ) ,)(
1

  ),(    

    ,0       

2 VF(C)CAV

VC

−=
∂
∂+

∂
∂

=
∂
∂+

∂
∂

ε
tx

xt

xt
 

 
written compactly as,  
 

       s)qB(q =+ xt x,t   ,        
or 

s)qB(q    )(  =+ xt x,t , 

where ��

�
��

�= V
Cq  and    �

�

�
�
�

�=
0  A
I     0B 2 as before. 
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For simplicity we use the non-conservative form. Of course, we can go back and forth between 
the forms at the expense of adding source terms. Since we have a stiff source term and we use 
operator splitting, using either form does not affect our numerical calculations.   
 
 
Analysis of the variable relaxation scheme 
 
Using a Chapman-Enskog expansion to represent V , the first order approximation to the variable 
relaxation system becomes   
 

)(   )' - ),((        222 εε Ο+�



�
�
�

�

∂
∂

∂
∂=

∂
∂+

∂
∂

x
tx

xxt
C(C)FAF(C)C

.                       (28)                                                    

 
Again the term )' - ),(( 22 (C)FA txε  plays the role of diffusion coefficient matrix. Equation (28) 

is well-posed only if  )' - ),(( 22 (C)FA tx is positive semi-definite for all C; this defines the sub-
characteristic condition for the variable relaxation system. In 1D, this requirement reduces to   
 

22 ),(    ),( txatx ≤λ ,             (29) 

where  ),(max),(
11

txtx p
cnp

λλ
−≤≤

=  ,        ),(min),(
11

txatxa p
cnp −≤≤

= ,   

                          
and  ),( txpλ  are the local eigenvalues of  the Jacobian (C)F' . 

 
The local eigenvalues of the Jacobian (C)F'  represent either the rarefaction speeds or the shock 
speeds. The sub-characteristic speeds must be chosen so that the positive semi-definiteness of the 
diffusion coefficient matrix is guaranteed in either case (Liu 1987). In the Jin-Xin relaxation this 

was done by setting the sub-characteristic speed ( )txtxa p
cnp

, ,),(max
11

∀=
−≤≤

λ . For the gas 

displacement example, the tie-line eigenvalue is given by 
1

1

C
F

∂
∂

 (Equation 10a). The nontie-line 

eigenvalues hover around 1 and an estimate of the maximum nontie-line eigenvalue can be 
obtained (Dindoruk 1982). The sub-characteristic speeds are then chosen as  

 }. )( 
)−(−)+(
)−(−)+(

),(
∂
∂

≥
∆∆

∆∆

tx
txCtxC
txFtxF

tx
C
F

 txa
txxx

xx

p ,max,
,,
,,

, { max  ),( NTL
),(

2121

2121

1

1 λ        (30)                                          

 
 
Numerical solution 
 
Like before, we use operator splitting where the relaxation system is split into two sub-problems, 
a homogenous advective system and an ODE system. The only difference here lies in the way the 
homogenous system is solved. 
 
In the Jin-Xin relaxation system the matrix B  is diagonalizable and the values of pC  and pV  at 

the interfaces { }
2

1+jx  are obtained by using the characteristic variables{ }pppp  a CVW ±=± .  

With the variable system, we cannot diagonalize the homogenous system as easily as before. The 
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eigenmatrix R  of this system depends on its eigenvalues. When the eigenvalues are variable in 
(x,t) the eigenmatrix also becomes variable in ),( tx , and ),(),(),(),( 1 txtxtxtx −= R�RB . For 
example, for the 2-component displacement (the scalar conservation law), we have 
 

 

. 
),(),(

1       1   t)(x,   ,  
),(     0

0    ),(),(   ,  
0,

1   0
),( 2 ��

�
��

�=��

�
��

�=�
�

�
�
�

�=
tx   atxa

-    
tx-a

txatx
  t)a(x

   
tx R�B  

  
Multiplying the homogeneous advection system   0     =+ xt x,t)qB(q  with R-1, we get  
 

0qBRqR =+ −−
xt txtxtx ),(),(),( 11 .  

 
This can be written as 
 

( ) w)R(R�Rw)�(w   ),(),(),(      11 x,ttxtxtxx,t xtxt
−− +=+ , where qRw ),(1 tx−= , 

 
because qRqRqR ),()),((),( 111 txtxtx ttt

−−− −=  and qRqRqR ),()),((),( 111 txtxtx xxx
−−− −= . 

 
The advection equations are now coupled together by the source terms, and the left and the right 
going waves do not propagate independently. Rather than working with this system, we rather 
view the system as a set of Riemann problems at the interfaces{ }

2
1+jx  (LeVeque 2002) that can 

be easily solved numerically. 
 

Define [ ] [ ] n
j-

n
j

n
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n
,jn

n
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n
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n
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n
,j

n
j

n
j

n
j cc

  V   , V,   V  C    , CC 1

T

121121

T

2
1  ,    qqqVCq −=∆== −− �� . 

Also, define the right eigenmatrix ]       [  1)-2(n
-j

2
-j

1
-j-j

c

2
1

2
1

2
1

2
1 rrrR �=  and the left eigenmatrix 

( ) ( ) ( ) ]      [  
T1)-2(nT2T1 c

2
1

2
1

2
1

2
1 j-j-j-j- ����=L . 

 
Set +

2
1j-� and −

2
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2
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2
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2
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2
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2
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2
1

2
1    j-j-j-j-j-j-j-j- L��RL�RB −+ +== ,  

2
1

2
1

2
1

2
1   j-j-j-j- L�RB ++ = ,   and 

2
1

2
1

2
1

2
1   j-j-j-j- L�RB −− =  ,   where ( )( )+

−
+++ = 1n221 c2

1 , λλλ �diagj-�    with  

)0,max( kk λλ =+ ,  and ( )( )−
−

−−− = 1n221 c2
1 , λλλ �diagj-�    with   )0,min( kk λλ =− . 

 
 
We write the update at every time step as 
 

)(
1

      )(
1

2
1

2
1

2
1

2
1

2
1

2
1

n
jj

n
j-j-

n
j

n
j

n
j xx +

−
+

+
−++ ∆+∆

∆
=−

∆
= qBqBqqqD .              (31)                                                             

 
The first order variable relaxation method can now be constructed as 
 
1. Choose ),( njp txa  as given in Equation (30) so as to satisfy the sub-characteristic condition,  
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2. Obtain �
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3. Solve the homogenous advective system 

      *1  jj
n
j t q  q  q *

+
+ ∆−= D  where *

jq+D   is the update as given in Equation (31). 

 
If implemented in matrix form, as given above, the method can be computationally expensive. 
But the right and left eigenvectors have a simple analytical form, which can be exploited to arrive 
at updates to individual components, in a manner similar to Jin-Xin updates. The right 
eigenvectors corresponding to the thp  component have the form, 
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and the left eigenvectors corresponding to the thp component are of the form 
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Here k  is related to p  as  12 −= pk . Using this information, the update for the thp component 
of C  and V , in the 3rd step will be 
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High resolution variable relaxation 
 
A second order high resolution method can be obtained by extending the first order method with 
appropriate wave limiters as before. But, in this case, the limiters, which depend on the 
characteristic variables and the magnitude of change in the characteristic waves, must be 
constructed using the left and right eigenvectors as follows 
 

• Find the change in each of the 2(nc-1) characteristic variables using the corresponding  
left eigenvectors as n

j-
k
j

k
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2
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2
1 q∆•= −− �α  and the jump in the characteristic waves 
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j

k
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k
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1
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2
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• Set the smoothness parameters of van Leer limiter equal to k
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•
=
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ww
θ , where 

1−= jI  for waves moving right ( k odd)  and  1+= jI  for waves moving left  ( k  
even).  

 
• Compute the second order updates as 
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            where the higher order correction terms h
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We now define  the update operator   
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With this, the second order variable relaxation scheme can be given by the following algorithm 
 

1. Choose  ),( njp txa  as given in Equation (30) so as to satisfy the sub-characteristic 

condition                  
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3. First RK- Stage: Solve the homogenous advective system using the update operator given 

in Equation (35) 
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5. Second RK-Stage: Solve the homogenous advective system using the update operator 

given in Equation (35) 
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6. Take the RK-average 
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Again, the update of Equation (35) can be implemented in terms of individual components 
without matrix-vector operations as 
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The limiters are computed as 
 

( ) ( ) ( )

( ) ( ) ( )
  ,   

1 
1

 

1 
1

 

,,1,,
1,,

1,,
1,,

1,

1,,2,1,
2,1,

2,1,
2,1,

2,

, 2
1

jpjp
n

jp
n

jp
jpjp

n
jp

n
jp

jpjp

jp

jpjp
n

jp
n

jp
jpjp

n
jp

n
jp

jpjp

jp

jk

aaVV
aa

CC
aa

a

aaVV
aa

CC
aa

a

+�
�




�

�
�

�

�
−

+
+−

+

+�
�




�

�
�

�

�
−

+
+−

+
=

−
−

−
−

−

−−−
−−

−−
−−

−

−θ                           

( ) ( ) ( )

( ) ( ) ( )
.   

1 
1

 

1 
1

 

1,1,1,,
1,,

1,,
1,,

,

1,1,,1,
1,,

,1,
1,,

1,

,1 2
1

−−−
−

−
−

+−+
+

+
+

+

−+

+�
�




�

�
�

�

�
−

+
−−

+

+�
�




�

�
�

�

�
−

+
−−

+
=

jpjp
n

jp
n

jp
jpjp

n
jp

n
jp

jpjp

jp

jpjp
n

jp
n

jp
jpjp

n
jp

n
jp

jpjp

jp

jk

aaVV
aa

CC
aa

a

aaVV
aa

CC
aa

a

θ                                   



December 2006                                                                                                                                           24 
 

 
 
 
 
3. Experimental 

 
We have been unsuccessful so far in attracting a student or postdoctoral student to complete the 
experimental part of this project, despite interviewing several candidates over the last year.  
 
4. Results and discussion 
 
This report covers the second six months of the second year of our research grant. The six months 
were used primarily to investigate important numerical and computational issues related to 
compositional streamline simulation for gas injection processes: accurate simulation of the 
strongly nonlinear systems governing transport, and grid orientation effects.  

 
4.1. Relaxation schemes  

 
We have closed our investigation of 1D relaxation schemes, and have moved on to two spatial 
dimensions.  
 
Tables 1 and 2 give the comparison of the results of the Jin’s splitting and the Strang splitting 
with RK-2 scheme on the linear advection equation and Burgers equation with periodic initial 
data. For the linear advection equation, the Strang splitting behaves just as well as Jin splitting. 
But for the Burgers equation, the order of accuracy of the Strang splitting reduces to ( )t∆Ο , 

while Jin’s splitting maintains ( )2t∆Ο . 
 

TABLE 1 
 
                               L1 and ∞L - rate of convergence for the linear advection equation 
                                                   (x)u(x,uu xt sin)0    ,0 ==+ , CFL = 0.5 
S-RK2: 2nd order relaxation scheme with Strang splitting,  
J-RK2: 2nd order relaxation scheme with Jin’s splitting, 
TVD-RK2: 2nd order upwind TVD-RK2 scheme 

 L1 rate of convergence ∞L  error convergence 

N S-RK2 J-RK2 TVD-RK2 S-RK2 J-RK2 TVD-RK2 
80 2.0155    2.0155    2.0155    1.4120    1.4120    1.4120    
160 2.0159    2.0159    2.0159    1.3576    1.3576    1.3576    
320 2.0299    2.0299    2.0299 1.3587    1.3587    1.3587    
640 2.0277 2.0277 2.0272 1.3213 1.3213 1.3200 
 
 
                                                                   TABLE 2 
                     L1 and ∞L - rate of convergence for Burgers equation (pre-shock solution) 
                                                   (x)u(x,uuu xt sin)0    ,0 ==+ , CFL = 0.5, T = 0.35 
S-RK2: 2nd order relaxation scheme with Strang splitting,  
J-RK2: 2nd order relaxation scheme with Jin’s splitting, 
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TVD-RK2: 2nd order upwind TVD-RK2 scheme 
 L1 rate of convergence ∞L  error convergence 

N S-RK2 J-RK2 TVD-RK2 S-RK2 J-RK2 TVD-RK2 
80 1.0624    1.9230    1.9227    0.7684    1.3972     0.9893    
160 1.0162      2.0039       1.9689        0.9083        1.2919       0.9973    
320   1.0143        2.0069      1.9787       0.9521    1.3357        0.9993    
640 1.0095   2.0183 1.9918   0.9748   1.4094 0.9998 
 
 
Figure 12 shows the result of first order relaxation schemes on the two-component displacement 
(Equation 8). Since this is a scalar system we have only two characteristic waves moving with 
sub-characteristic speeds a± .  By the sub-characteristic condition (Equation 15) the magnitude 
of the sub-characteristic speed must be at least ( )Sf 'max . 
 
The effect of increasing the sub-characteristic speed can also be seen in Figure 12. It is clear that 
as the sub-characteristic speed is increased the numerical diffusion increases. While SPU resolves 
the zero-speed trailing shock sharply for test case 2, the relaxation scheme smears this shock. 
These behaviors can be better understood by comparing the modified equations for SPU and the 
first-order relaxation scheme. We performed the analysis on a linear advective system for 
simplicity. The system is given by 
 

0          =+ xt f(u)u ,   with cuuf =)( ,   where c  is a constant.                                                                      
 
The modified equation for SPU is given by 
                     

)())'('(
2
1

          22 x�uftxff(u)u xxxt ∆+∆−∆=+ ,                                                                                          

while the modified equation for the first order relaxation scheme is of the form      
                       

)())'((
2
1

          22 x�uftxaf(u)u xxxt ∆+∆−∆=+ .                                                                                            

The modified equations show that while the diffusion coefficient of SPU decreases as )(' uf  
decreases, the diffusion coefficient of the relaxation scheme depends on the sub-characteristic 
speed a . It increases when a  increases, and when )(' uf  decreases. When the speed )(' uf  
tends to zero, the diffusion coefficient of  SPU also tends to zero, but the diffusion coefficient of 
the relaxation scheme tends to ( )xa∆5.0 . The diffusion of the relaxation scheme also increases 

with the relaxation rate ε . However, as shown by Equation (14), this is of magnitude ( )εΟ  and 
since we always take ε  very small, this is negligible. 
 
For the ternary systems, the sub-characteristic speed must be decided based on the tieline and 
non-tieline eigenvalues (Equation 10). The sub-characteristic speeds must be at least 

 }. )( ),(= xx a p NTLTLx
 { max λλ As before, the first order relaxation scheme exhibits more 

diffusion than SPU. The higher order relaxation scheme has less diffusion and the solution profile 
(Figure 13b) shows that the results are very close to component-wise upwind TVD-RK2 scheme. 
However, in phase space (Figures 13a and 14) we see differences in the behavior of the upwind 
and relaxation schemes. For finer grids, at the equal eigenvalue point the relaxation scheme, 
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unlike the upwind TVD –RK2 scheme, stays close to the MOC path.  Along the initial tieline 
however, the relaxation scheme exhibits slightly more non-physical diffusion. Our goal in the 
next section is to modify the relaxation scheme to reduce numerical diffusion while retaining 
strong hyperbolicity. 
 
Figures 15a and 15b show the results of the first order variable relaxation scheme for the two-
component displacements (Equation 8). The numerical diffusion of the first order variable 
relaxation scheme is reduced significantly when the variable sub-characteristic speed is very close 
to the eigenvalues of the original system. In particular in test case 2, the variable relaxation 
scheme resolves the zero-speed trailing shock with very little diffusion. 
 
For the ternary systems, the solutions of the first order variable relaxation scheme are very close 
to those of SPU. The higher order variable relaxation (Figures 16a and 17) scheme has no 
nonphysical diffusion along the initial tie-line and stays close to the MOC path at the equal 
eigenvalue point in phase space. In fact, the results are very similar to those obtained with third 
order ENO-RK3. In general, we have observed that in many cases the second order variable 
relaxation scheme was competitive with third order component-wise ENO-RK3 reconstruction, 
and at least as good as the second order component-wise TVD-RK2 with van Leer limiting. 
 
 
Would α−β  relaxation help? 
    
A more general form of the relaxation system can be formulated for the scalar conservation law 
as 
 

 ( )( )�
�

�

�

�
�

�

�

−−=�
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1    0

                  (39)                                             

 

where ��

�
��

�= βα   
1    0B  is the coefficient matrix.                 (40)                                                                                   

Here, 21λλα −=  and  21 λλβ +=  with � 21,λλ  being the eigenvalues of the coefficient 
matrix B . 
  
If B  is constant, we can diagonalize the system as before. The characteristic variables are now 

uv 2λ−  and uv 1λ− , moving with speeds 1λ  and 2λ  respectively. Note that, when 

a=−= 21 λλ , that is 2
21 a=−= λλα  and  021 =+= λλβ ,  this system reduces to the Jin-Xin 

relaxation system and when a=1λ ,  02 =λ , it reduces to the upwind scheme of the same order.  
  
The ( )εΟ diffusion term, that arises as a result of using the Chapman-Enskog expansion  for v , is 

( ) ( )( )21 )(')(' λλεεβ −− = ufufu . For a system with positive speeds, '
max)('0 fuf ≤≤ , the 

sub-characteristic condition requires 02 ≤λ  and '
max1 f≥λ . To be as close as possible to the 

physical flux and yet obey the sub-characteristic condition, we can set '
maxf=1λ and τλ −=2 , 

where τ  is a positive number. Based on the choice of  2λ , the performance of this new scheme is 

between Jin-Xin relaxation ( '
maxf=τ ) and the upwind scheme ( 0=τ ). Finding optimal negative 
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eigenvalues that minimize numerical diffusion and yet ensure that the scheme behaves well at the 
weak hyperbolic points like the Jin-Xin system, is problem dependent. Therefore, the constant 
version of the general βα −  relaxation is impractical . 
  
Would a variable βα −  give improved results?  Again looking at the variable βα −  system for 
the scalar conservation law, we see that the Chapman-Enskog requires the sub-characteristic 
condition 12 )(' λλ ≤≤ uf . One way to reduce numerical diffusion would be to vary both 

eigenvalues 1λ  and 2λ  such that they are close to the local speeds. For example, we could set  

( )xuf ∆Ο+= )('1λ  and  ( )xuf ∆Ο−= )('2λ . This method however fails because the 

eigenvectors of the relaxation system are [ ]T
1  1 λ  and  [ ]T

2  1 λ , and with ( )xuf ∆Ο+= )('1λ   

and  ( )xuf ∆Ο−= )('2λ , the eigenvectors are almost parallel to each other, which re-introduces 

weak hyperbolicity in the system. A more promising way is to vary only 1λ  so that it is close to 

the local speeds and keep 2λ  constant and close to '
maxf− . This version is competitive to the 

variable version of Jin-Xin scheme. Note that for small 2λ  however, we end up with a nearly 
singular relaxation matrix and the scheme behaves just like the corresponding upwind scheme.  
 
 
5. Conclusions 

 
Although we are happy with the results we have obtained so far, we are behind schedule. This 
delay is caused by the difficulties we’ve experienced in finding appropriate postdoctoral students 
in both the computational and experimental area. Fortunately, we managed to attract Dr. Henrik 
Loef who started his postdoc with us November 1, 2006 on the no-cost extension we received for 
this project. As you are aware, funding for this project was cut by DoE last year as part of a 
general reduction of funding in the EOR related research areas. We will therefore focus in the 
coming year solely on finishing the projects listed as part of year 2 in our proposal.   

 
Relaxation schemes 
 
The main conclusions of this work are: 
 

• The constant sub-characteristic Jin-Xin scheme is attractive for two-phase 
multicomponent systems in that it removes the dependency of the numerical solver on the 
eigenstructure of the system and nonlinear Riemann solutions. But, the necessary 
restriction on the sub-characteristic speed results in excessive numerical diffusion that 
can significantly reduce solution accuracy in strongly nonlinear compositional problems. 

 
• The new constant βα −  system does not offer sufficient improvement and behaves like 

the Jin-Xin scheme for eigenvalues with equal magnitude, or the corresponding upwind 
schemes when small negative eigenvalues are present.  

 
• The variable version of the Jin-Xin relaxation maintains all the advantages of standard 

the Jin-Xin scheme, while reducing numerical diffusion considerably by locally imposing 
the sub-characteristic condition. For ternary gas-oil displacement system, our extensive 
testing showed that in many cases the second order variable relaxation scheme is 
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competitive with component-wise ENO-RK3 and that it is always as least as good as 
component-wise TVD-RK2.  

 
• Variable βα −  relaxation, where all eigenvalues are chosen to closely follow the 

physical speeds of the system, will result in an ill-conditioned problem. A better 
alternative is to vary only the positive eigenvalues of the βα −  relaxation system, while 

keeping the negative eigenvalues close to '
maxf− . This results in a scheme with 

performance similar to variable Jin-Xin relaxation. 
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Figures 
 
 
 

 
 
 
Figure 1: Fractional flow function F1(C1). In the two-phase region, the function is S-shaped. 
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Figure 2: Derivative 
1

1

dC
dF

of the fractional flow function shown in figure 1. 
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Figure 3: Binary displacement – test case 1, pure light component (d) displaces pure heavy 
component (a). 
 
 
 

 
 
Figure 4: Binary displacement - test case 2, mixture of two components (h) displaces  pure 
component (a). The trailing shock has zero speed. 
 
 
 



December 2006                                                                                                                                           35 
 

 
 
 
Figure 5: Ternary phase diagram - representation of a ternary composition on an equilateral 
triangle. 
 
 
 

 
 
Figure 6: Tieline and non-tieline eigenvalues. 
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Figure 7: Tie-line and nontie-line paths for a ternary system with constant K-values. At equal 
eigenvalue points, the nontie-line path is tangent to tie-line path. 
 
 
 

 
 
 
Figure 8: Solution path in the ternary phase diagram and saturation profile of the 3-component 
displacement. 
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Figure 9a: Results of upwind schemes on test case 1- binary displacement. N= 40, CFL = 0.35. 
 
 

 
 
Figure 9b: Results of upwind schemes on test case 2- binary displacement. N= 40, CFL = 0.35. 
Here, the SPU needs about 200 grid points to resolve as accurately as TVD-RK2 or ENO-RK3. 
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Figure 10a: Results of component-wise application of upwind schemes on ternary displacement in 
the phase space . SPU is excessively diffusive. N= 80, CFL = 0.4.  
 
 

        

                   
 
 
Figure 10b: Solution profiles of ternary displacement got by component-wise application of 
upwind schemes. SPU smears the shocks and has a prominent dip in the zone-of-constant state. 
N= 80, CFL = 0.4.  
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Figure 11: A closer look at the TVD-RK2 and ENO-RK3 composition paths in the phase space, 
near the equal eigenvalue point. The path computed by the TVD-RK2 scheme jumps to an 
incorrect nontie-line near the equal eigenvalue point. N= 200, CFL = 0.4. 
 
 
 
 
 

 
 
Figure 12:  Comparison of 1st order Jin-Xin relaxation scheme  and SPU. N= 40, CFL = 0.2. 
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Figure 13a: Phase space comparison of component-wise application of upwind schemes and 2nd 
order Jin-Xin relaxation scheme on ternary displacement. Composition path of Jin-Xin scheme is 
close to TVD-RK2 but has slightly more numerical diffusion than TVD-RK2. N= 80, CFL = 0.2.  
 
 
 
 
 

         
 
 
Figure 13b: Solution profile of C1 obtained by 2nd order Jin-Xin relaxation scheme is close to 
TVD-RK2.       N= 80, CFL = 0.2. 
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Figure 14: A closer look at the 2nd order Jin-Xin scheme in the phase space near the equal 
eigenvalue point. The path computed by the Jin-Xin scheme behaves better than TVD-RK2 near 
the equal eigenvalue point but also has slightly more diffusion on the initial tie-line. N= 200, CFL 
= 0.2. 
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Figure 15a & 15b:  Results of variable relaxation scheme on binary displacement. N= 40, CFL = 
0.35. Variable relaxation scheme is less diffusive than Jin-Xin scheme and is quite close to SPU. 
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Figure 16a: Phase space comparison of ENO-RK3 and 2nd order variable relaxation scheme on 
ternary displacement. Composition path of the variable relaxation scheme is close to ENO-RK3. 
N= 80, CFL = 0.2.  
 
 
 

    
 

    
 
Figure 16b: Comparison of solution profiles obtained by ENO-RK3 and 2nd order variable 
relaxation. N= 80, CFL = 0.2.  
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Figure 17: A closer look - 2nd order variable relaxation is close to ENO-RK3 and has much less 
diffusion than Jin-Xin scheme. It also behaves well near the equal eigenvalue point. N= 200, CFL 
= 0.2. 
 
 

 
 
 


