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Abstract

This report outlines progress in the first quarter of the second year of the DOE project
“High Resolution Prediction of Gas Injection Process Performance for Heterogeneous
Reservoirs”. The application of the analytical theory for gas injection processes,
including the effects of volume change on mixing, has up to now been limited to fully
self-sharpening systems, systems where all solution segments that connect the key tie
lines present in the displacement are shock fronts. In the following report, we describe the
extension of the analytical theory to include systems with rarefactions (continuous
composition and saturation variations) between key tie lines.  With the completion of this
analysis, a completely general procedure has been developed for finding solutions for
problems in which a multicomponent gas displaces a multicomponent oil.
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1. Executive Summary

This report presents a new approach for constructing approximate analytical solutions for
1D, multicomponent gas displacement problems including effects of volume change on
mixing. The solution to mass conservation equations governing 1D dispersion-free flow
in which components partition between two equilibrium phases is controlled by the
geometry of key tie lines. It has previously been proven that for systems with an arbitrary
number of components, the key tie lines can be approximated quite accurately by a
sequence of intersecting tie lines. As a result, analytical solutions can be constructed
efficiently for problems with constant initial and injection compositions (known in the
mathematical literature as Riemann problems). For fully self-sharpening systems, in
which all key tie lines are connected by shocks, the analytical solutions obtained are
rigorously accurate, while for systems where some key tie lines are connected by
continuous variations in composition and saturation (also known as spreading waves or
rarefactions), the analytical solutions are approximations, but accurate ones. Detailed
comparison between analytical solutions with both coarse- and fine-grid compositional
simulations indicates that even for systems with nontie-line rarefactions, approximate
analytical solutions predict composition profiles far more accurately than coarse-grid
numerical simulations. Because of the generality of the new approach, approximate
analytical solutions can be obtained for any system whose phase behavior can be
modeled by an equation of state. The construction of approximate analytical solutions is
shown to be orders of magnitude faster than the comparable finite difference
compositional simulation. Therefore, the new approach is valuable in areas where fast
compositional solutions to Riemann problems are required. One such area of application
is the utilization of analytical 1D solutions in streamline/streamtube based compositional
simulation.
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2. Introduction

A substantial body of mathematical theory now exists for construction of analytical
solutions to the dispersion-free 1D flow problem.1–6 Those investigations considered
four-component systems primarily, but special case solutions for systems with more than
four components were reported for fully self-sharpening displacements by pure injection
gases. The first systematic attempts to describe multicomponent gas/oil systems were
restricted to calculation of the minimum miscibility pressure (MMP).7-9 Those
calculations were based on identifications of the key tie lines that control miscibility.
Calculation of the full analytical solutions for multicomponent oils and gases was not
required to determine the MMP and was not attempted. In the work of Jessen et al.10, the
results of previous works was integrated in a new approach allowing automatic
generation of 1D solutions for the special case of no volume change on mixing. The
restriction of no volume change on mixing was later relaxed for fully self-sharpening
systems.11,12

 In this report, we complete the analytical theory of gas injection processes by
combining the work of Ermakov11 and Jessen12 with an approach for describing systems
with nontie-line rarefactions. The resulting tool allows automatic generation of 1D
solutions to multicomponent two-phase flow including effects of volume change on
mixing.

3. Mathematical Background

The mass conservation equations for multicomponent, dispersion-free two-phase flow
in one dimension can be written as 6
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where Gi is the molar concentration of component i
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and Hi is the molar flux of component i
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Eqs. (1)-(3) are given in dimensionless form. The dimensionless form is obtained by
introducing the variables
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where uinj is the injection velocity, t is the time, � is the porosity and L is the overall
length of the porous medium. The distance from the inlet is given by z and the molar
density of the initial fluid is denoted �ini. The phase equilibrium of the fluids are
introduced in the flow equations by the molar density of phase j and the corresponding
equilibrium vapor (yi) and liquid (xi) compositions of component i. Finally, S is the
volumetric vapor phase saturation and f is the fractional flow of vapor related to S
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In Eq. (5), �r is the ratio of vapor to liquid viscosity and the exponent n is a constant
depending on the system of interest. In the following examples, the Soave-Redlich-
Kwong equation of state is used to calculate phase equilibrium and the Lohrenz-Bray-
Clark13 correlation is used to predict phase viscosities.

4. Solution Construction

Analytical solutions to Eqs. 1 through 5 are constructed by solving the eigenvalue
problem associated with the mass conservation equations1-6. In composition space, the
corresponding problem is to identify the correct (unique) route that connects the initial oil
composition and the injection gas composition. The composition route that describes the
analytical solution geometrically is subject to the following requirements.

The composition route must have characteristic wave velocities in the two-phase
region that increase monotonically from upstream to downstream locations. This
condition is known as the velocity rule. If the velocity rule would be violated by a
continuous variation (rarefaction), then a shock must be introduced to insure that the
solution remains single-valued. The shock must satisfy the integral form of the mass
conservation equations.
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where � = the shock velocity. Upstream and downstream sides of the shock are denoted u
and d respectively. Eq. 6 is known as a Rankine-Hugoniot condition. Any shock present
in a solution must satisfy an entropy condition, which requires the shock to be stable in
the presence of a small amount of dispersion. In addition, solutions must satisfy a
continuity condition with respect to initial and injection data. In other words, small
perturbations to the initial or injection compositions must result in small changes in the
solution.
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Two types of continuous variation are found in the analytical solutions. The first type is a
continuous variation along a tie line. This type of rarefaction is easily included into the
solution as the key tie lines can be located by the intersection approach7-9. In the second
type of continuous variation, spreading waves connect neighboring key tie lines. For this
type of rarefaction, the eigenvalue problem must be solved for the composition path,
where eigenvalues are characteristic wave velocities of a given overall composition
subject to composition variation in the eigenvector direction. In the following section we
address the eigenvalue problem and demonstrate how to trace nontie-line rarefactions. A
method, referred to as the envelope rule10, is now available for the prediction of nontie-
line rarefactions in a given 1D-displacement process. This tool allows us design a general
algorithm for automatic generation of analytical solutions including volume change on
mixing.  The algorithm is:

1. Locate all key tie lines by the tie-line intersection approach.7-9

2. Apply the envelope rule for each neighboring pair of key tie lines. If no rarefactions
are predicted, switch to the simplified algorithm for fully self-sharpening systems.11,12

3. For each predicted rarefaction, locate the equal-eigenvalue point and integrate the
eigenvector to obtain the corresponding nontie-line path.

4. Locate the primary key tie line (the shortest tie line) and start the shock construction
downstream. Switch points between the nontie-line paths and the tie-line paths are
introduced in the solution requirements in parallel with the velocity rule. The
downstream solution is traced until the initial oil composition is reached.

5. Continue constructing the upstream solution by the approach of Step 4 until the
injection gas composition is reached.

The only remaining question is how to trace the non-tie line paths.

5. Integration of Non-Tie Line Paths

In this section we return to the conservation equations to outline the approach for
including non-tie line rarefactions in the analytical solutions. The mass conservation
equations can be rewritten as an eigenvalue problem by introducing a self-similarity
variable �

�
�

� � . (7)

After variable substitution and rearrangement, the resulting eigenvalue problem takes the
form6

� � 0�� XBA � , (8)

where the coefficients of the matrices A and B are evaluated as



7

 , 1,.., , 1,.., 1,

 , 1,..,  , ,         

j
c c

i
ji

j
c c

D

H
j n i n

Z
A

H
j n i n

u

��
� � �	 �	� 
 �	 � �	 ��

(9)

and

 , 1,.., , 1,.., 1,

  0    , 1,..,  , .         

j
c c

ji i

c c

G
j n i n

B Z

j n i n

��
� � �	� �


	 � ��

(10)

The elements of the eigenvector X are given by
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Zi is the overall composition in mole fractions of component i along the solution path in
compositional space. From a numerical point of view, the eigenvalue problem stated in
Eqs. (8)-(11) suffers from the fact that one eigenvalue, associated with the total velocity,
will be infinite. This is a result of the fact that changes in velocity and density
propagating instantaneously throughout the system. Dindoruk6 developed a method to
decouple the total flow velocity ud and overcome this problem. The decoupling of the
total flow velocity facilitates the evaluation of eigenvalues and is the method
implemented in the current project.

The decoupling of the total velocity result in the following form of the eigenvalue
problem6
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The entries of the vectors E and F are given by
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The decoupled eigenvalue problem stated in Eq. 12 can now be solved in two steps. First
step is to evaluate the eigenvalues/eigenvectors from

� � 0* �� eDC � (18)

Eq. 18 is solved independently from the total velocity uD with e given by
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The new overall composition along the nontie-line path is obtained by taking a small step
�  in the eigenvector direction

  ,  1,.., 1new old
i i i cZ Z e i n�� � � � , (20)

and
1

1

1
cn

new new
nc i

i

Z Z
�

 

� �� . (21)

Subsequently the change in the total velocity can be evaluated from

JG�� euu old
D

new
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where the exponent � is evaluated as

� �eFE *�	 �� . (23)

After updating the overall composition and the total flow velocity, the stepwise procedure
is repeated for the new overall composition and the nontie-line path is constructed. For
details on the decoupling procedure, the reader is referred to Dindoruk (sec.3.4.1,pp. 35)6.

In the following, we assume that all key tie lines have been determined by the
intersection approach. If a pair of neighboring key tie line is connected by a nontie-line
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rarefaction, according to the envelope rule, the integration of the nontie-line path begin
on the shortest of the two tie lines. The equal-eigenvalue points of interest (nc-2) are
located by the approach outlined by Dindoruk6. The equal-eigenvalue points are points
where a tie line path can change to a nontie-line path without violation of the velocity
rule. Only one of the equal-eigenvalue points is associated with the appropriate nontie-
line path that connects the two key tie lines in question. For regularly S-shaped fractional
flow curves, the values of the nontie-line eigenvalues stay ordered on either side of the
inflection point (maximum value of df/dS). As the solution for oil-gas systems is
restricted to the region of f>S., this fact enables us to select the correct equal-eigenvalue
point by evaluating the eigenvectors for composition points between two equal-
eigenvalue points. Between two equal-eigenvalue points on a key tie line, only one
eigenvector will point in the direction of the neighboring key tie line. Hence, the ordering
of eigenvalues (eigenvectors) allows selection of the proper equal eigenvalue point from
which the nontie-line path integration is started. Once the appropriate equal-eigenvalue
point has been determined, stepwise numerical integration of the eigenvectors is used to
trace the nontie-line path. In the vicinity of the equal-eigenvalue point, small steps must
be used to ensure appropriate accuracy, whereas larger steps can be used away from this
point. The typical behavior of a nontie-line path integration is shown in Fig. 1.

Fig. 1.  Variation of wave speed, saturation and total velocity along a non-tie line path.

Fig.1 shows the variation in wave velocity (eigenvalue), vapor saturation and total
velocity along a nontie-line path. The location on the nontie-line path is given as the
distance L at a given location on the path to the target tie line (neighboring tie line). The
distance is defined as
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In Fig.1, the stepwise integration of the non-tie line path starts from the right hand side of
the figure and terminates on the neighboring key tie line at the left hand side. The slope
of the eigenvalue vs. distance curve is steeper in the vicinity of the equal eigenvalue
point. Hence, using small initial steps minimizes the error introduced by the stepwise
integration.

As the total flow velocity varies along nontie-line paths, special care must be taking
in including this effect in the analytical solution. For each nontie-line rarefaction, the
total flow velocity at the equal-eigenvalue point is assumed to be unity. The total velocity
along the nontie-line path can then be rescaled later following the approach outlined in
Ermakov11 and Jessen12.

6. Example Solutions

In this section we demonstrate some results obtained by the general algorithm for
generating analytical solutions including volumetric effects. Two examples are reported.

1. Pure N2 displacing a mixture of CH4, C4 and C10 at 344 K and 108.4 atm. In this
process the parameter n entering the fractional flow function (Eq. 5) is set to 3 and the
residual oil saturation Sor is set to 0.05.

2. Pure N2 displacing a multicomponent reservoir fluid (represented by 15 pseudo
components) at 387 K and 275 atm. In this process n= 2 and Sor = 0.2.

Input to the thermodynamic model can be found in Refs. 6 and 12 respectively.
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6.1 Quaternary System

Figure 2.  Analytical solution and FD simulations for System 1, a quaternary system.

Fig. 2 shows the result of applying the new algorithm to the quaternary system. Four
different solutions a reported:

1. the MOC solution, which is obtained by assuming that all key tie lines are
connected by shocks (fully self-sharpening system);

2. the MOC solution combined with integration of the nontie-line rarefaction
connecting the initial tie line to the first cross over tie line;

3. a coarse grid finite difference (FD) solution obtained by using 100 grid blocks and
a 
�/
� = 10 in a one point upstream formulation of the conservation equations;
and

4. a fine grid FD solution obtained by using 5000 grid blocks and 
�/
� = 10.

The analytical solution combined with integration of nontie-line paths is in excellent
agreement with the fine grid FD simulation. Another important observation is that the
fully self-sharpening solution is a better approximation to the exact solution than the
coarse grid FD simulation. The coarse grid numerical solution describes the general
variation of the dispersion-free solution but fails to capture the details of the shock fronts
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and the non-tie line rarefaction. This is due to the strong effects of numerical dispersion
in coarse grid numerical simulations.

6.2 Multicomponent System

Next we apply the general analytical approach for the displacement of a real reservoir
fluid by pure N2. The result of this test example is reported in Fig. 3.

Fig. 3.  Comparison of analytical solutions and FD simulations for a 15 component
system.

Analytical solutions with and without integration of nontie-line rarefactions are compared
with numerical simulations using 100, 1000 and 5000 grid blocks in Fig.3.
Fig. 3 demonstrates again that the fully self-sharpening analytical solution is a far better
approximation to the true dispersion-free solution (MOC + integration) than the coarse
(100 grid block) grid FD solution. An increasing amount of the detail in the dispersion-
free solution is captured as the number of grid blocks is increased. However, the CPU
requirement increases rapidly as Table 1 shows.

Example MOC (shock) MOC (general) FD 100 FD 5000
1 <1 <1 4 1506
2 1 7 3 5965

Table 1: Comparison of CPU (sec.) requirement for the MOC and FD approaches. All
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7. Discussion and Conclusions

A general approach for automatic generation of dispersion-free solutions for 1D-gas
injection processes has been developed and demonstrated. The previous restriction of no
volume change as components transfer between phases has been relaxed without adding
substantial complexity to the algorithm. The CPU time required for generating the
analytical solutions is still small compared to the time required for FD simulations of
comparable accuracy.

A comparison of the FD simulator performance for the two test examples
demonstrates the fact that a system becomes increasingly sensitive to numerical
dispersion as the displacement pressure approaches the minimum miscibility pressure.
This behavior strongly suggests that dispersion-free 1D solutions should be used in
connection with streamline and streamtube simulators when the transfer of components
between phases interacts strongly with two-phase flow to determine displacement
efficiency.  It is just those situations where the effects of numerical dispersion cause FD
simulation results to be misleading.

The examples and analysis presented in this report establish that:

1. The analytical theory of multicomponent gas injection processes has been extended to
include systems with nontie-line rarefactions connecting key tie lines.

2. Results of fine grid numerical simulations based on one point upstream weighting are
in excellent agreement with the presented algorithm.

3. Coarse grid numerical simulations are strongly affected by numerical dispersion and
may lead to a misleading interpretation of the displacement process.

4. The analytical approach is orders of magnitude faster than fine-grid numerical
simulations. Coarse grid numerical simulations can be faster than the general
analytical approach but at a significant loss of accuracy.

5. The new general approach for generating 1D dispersion-free solutions is highly
suitable for combination with streamline simulators, which would allow very fast
assessment of displacement performance.
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