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AN ALGORITHM FOR COMPUTING IN-SITU COMBUSTION
OIL RECOVERY PERFORMANCE

M. R. Fassihi, B. D. Gobran, and H. J. Ramey, Jr.

Stanford University Petroleum Research Institute
(SUPRI) Stanford, CA

INTRODUCTION

During in-situ combustion o0il recovery, a burning ffont moves
through the formation displacing all of the water and most of the oil
in the formation. Often, oil recovery from in-situ combus;ion is
computed considering only the oil displaced by the burning front. This
leads to a constant, high value of injected air to oil displaced ratio.
The oil displacement is more complex than this simple model indicates.
Combustion gas and steam and distilled hydrocarbons move ahead of the
burning front. Heat transmission from this vaporizating-condensing
region ahead of the burning front, solution of carbon dioxide from the
combustion gases, and many other mechanisms are involved in oil
displacement. A simple method to consider the frontal displacement,
thermally aided gravity drainage, s;eam distillation, oil swelling and
viscosity reduction, and other significant mechanisms ahead of and
adjacent to the burning front has been published in a correlation of
field and laboratory physical model studies of combustion o0il recovery.l
This method is called the oil-recovery/volume-burned method. This
method indicates that the air/oil ratio passes through a minimum, and
that oil is recovered more rapidly than is indicated by a simple frontal

displacement.



The oil-recovery/volume-burned method can be used to make accurate
engineering and economic evaluations for the design and monitoring of
in-situ combustion projects. In this paper an algorithm based on this
method is presented to provide a quick estimate of the oil recovery,
air/oil ratios, oil rates, and economic limits of in-situ combustion

projects.

OIL-RECOVERY/VOLUME-BURNED METHOD

Figure 1 is a graph of oil displaced vs volume burned for both
laboratory and field combustion experiments.1 The abscissa represents
the percent of the combustion tube's total length travelled by the
combustion front in the laboratory or percent of the total pattern
volume burned in the field. The percent of total oil displaced is
graphed on the ordinate and differs from the original oil in place by
the amount of o0il consumed as fuel.

The straight, dashed line represents the amount of oil displaced
from the burned volume only. However, the data taken in both laboratory
and field show higher o0il recovery and, therefore, a lower air/oil ratio
than indicated by the straight, dashed line. This difference appears
to be due to the o0il recovery mechanisms of in-situ combustion which
affect 0il movement ahead of the burning front. These mechanisms
include hot water, gas and steam drive, vaporization, miscible
displacement, expansion, and gravity drainage. The example cited in
Fig. 1 assumed zero gas saturation.

Similar curves can be obtained for different gas saturatioms.
Obviously, a high gas saturation would require a longer fillup time.

Figure 2 shows this behavior for several combustion tube runs using



San Ardo crude oil.2 The ordinate is normalized with respect to consumed
fuel to yield total oil displacement at total volume burned. As is

shown at the higher gas saturations, the o0il recovery curve is straighter.
These results also match those previously obtained by Gates and Rameyl
which are graphed in Fig. 3. Field and laboratory data were combined

to obtain the results in Fig. 3. These curves are applicable to heavy

oil fields similar to the South Belridge field.

METHODOLOGY

To determine the amount of displaced oil, initial oil and gas
saturations must be determined using conventional well logging, coring,
material balance or tracer techniques. The displaced oil is the initial
0il minus the final oil minus the burned oil. Fuel concentration (Cf)
is another important parameter in evaluating an in-situ combustion
project. Fluid properties, lithology of formation and operating
conditions all affect the value of C_.

£

Several methods can be used to estimate Cf. These are described
in detail in reference 1. They are: a) coring the reservoir as the
combustion progresses; b) measuring the water cut and correlating with
Cf by material balance; c) averaging the value of Cf obtained from
combustion tube runs with natural core; d) history-matching the combustion
behavior in the field using a numerical simulation; and e) using the
burning velocity/air flux correlation. In the absence of other data,
engineering calculations can be made using correlations of fuel
concentration vs oil gravity to determine Cf.3’4

To compute the cost of air compression, the value of the combustion

air requirement should be determined. This can be calculated if oxygen



utilization (Ut) and the volume of air needed to burn a unit weight of
fuel (AFR) are known. AFR can be computed from the combustion chemistry.5
After the burning front breakthrough, more air must be injected to
compensate for the air produced because of channeling. Figure 4 is a
correlation of excess air with oil recovery.1 Rnowing the AOR, the oil
production rate can be determined if the air compressor capacity is known.
The data for air fequirement, fuel concentration, initial oil and
gas saturations, and oxygen utilization can be combined with an oil-
recovery/volume~burned correlation using the following relationships to

make an estimate of the potential of an in-situ combustion project.

C
- _f , 43560
B = p 350 (1)
f
R = s, -B (2)
N ,%
Excess air = 166 %)
ASR = Cf * AFR (43.56) (5)
Cur. AOR ASR (6)
d(N ,%)
—P . R
a.)
B
(VB) + ASR
Cum. AOR = B E— (7
P
VB .
Air Required = o0 ASR*A*H (8)



Excess air,% )
100

Inj. Air/Prod. 0il = (Cur. AOR)(1 +
9

Air Required

Time (Air Injection Rate)

(10)

where:
A = Pattern Area, acres
AFR = Air/Fuel Ratio, mcf/1b
ASR = Air/Sand Ratio, mcf/ac-ft
B = Fuel Consumed, bbl/ac-ft
Cf = Fuel concentration, 1lb/cf of rock
Cum. AOR = Cumulative Air/0Oil Ratio, mcf, bbl
Cur. AOR = Current Air/0il Ratio, mcf/bbl
H = Thickness, ft
N = 0il Recovered, bbl
N ,%Z = 0il Recovered, % of pore volume
R = Ultimate Recovery, bbl/ac-ft
S = Initial 0il Saturation, bbl/ac-ft

V., = Volume Burned, % of bulk volume

Pg = Fuel Specific Gravity

To facilitate calculations, the suite of oil-recovered/volume-
burned graphs shown on Fig. 3 were curve-matched. It was possible to
correlate the lines on Fig. 3 into one curve using non-linear regression

method so that only one equation was needed.



CURVE-FITTING PROCEDURE

The first step in developing an algorithm is to curve-fit the
0il recovery-volume burned curves shown in Fig. 3. To do this, it was
first assumed that the recovery curves could be approximated by straight
lines with intercepts VB(O) at initial oil breakthrough as shown in

Fig. 5. By redefining the abscissa as:

) VB - VB(O) an
x 100 - v, (0)
all of the straight lines were put into a single line. Then, a

relationship between VB(O) and gas saturation (Fig. 6) was obtained by

curve-fitting:

VB(O) = 0.14714 Sg + 0.01071 ng (12)
The difference between actual oil recovery and estimates obtained
from the straight lines was determined. It was found that for each
level of gas saturation, there is a maximum calculated deviation
(Maximum Deviation). These maxima were correlated with respect to gas

saturation (Fig. 7).

Maximum Deviation = 26.8229 - 0.4678 Sg (13)

The calculated deviations were normalized on the basis of maximum
deviations and were graphed with respect to x (Fig. 8). A fourth order

polynomial fit the data with the following parameters:

Deviation _ 2 3 4
Maximum Deviation 6.7752 x - 15.9478 x~ + 16.1872 x~ - 7.0146 x

(14)



These equations simplify the problem of curve-fitting, and extend the

range of applicability of the correlatioms.

CALCULATOR PROGRAM

the above equations were implemented for us on a Texas Instruments'
TI-59 hand-held programmable calculator. This program calculates Cf and
AFR from the gas analysis data taken from either the combustion tube or

the field. However, if the values of C_ and AFR are available, they can

£
be used independently. Then, cumulative and current AOR, oil recovered,
and time are calculated for each burned volume. The program with the

supplementary equations and procedure are shown in the Appendix.

COMPARISON OF RESULTS

First, the slope of the oil-recovered/volume-burned correlation was
checked for negative values. Then, precautions were taken to prevent
both excess air and maximum deviation from having negative answers.
When these parameters are less than zero, they will be set to zero.
Figure 9 shows the computed results (circles) as well as those of Gates
and Ramey1 (straight lines) for three different gas saturations. 1In

general, the answers are within +1% of the actual ones.

CONCLUSIONS

An algorithm was developed to estimate the in-situ combustion
performance in the field. A calculator program was prepared using this
algorithm. The program is efficient, simple and accurate. Given
estimates of fuel concentration, air/fuel ratio, gas and oil saturatioms,
and injection rate, for each volume burned, oil recovery, air requirement,

and time may be calculated.
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APPENDIX A

Table 1 gives the execution procedure for the TI-59 calculator
program, Either combustion tube data (steps 4 through 10) or field
estimates (steps 12 and 13) may be used for Cf and ASR. If the results
for a different volume burned are desired only step 18 needs to be
repeated.

Table 2 is a listing of the data régisters after execution of the
program. The constants in registers 00-20 are stored on bank 4 of the
magnetic cards (Tabie 3). N

Figure 10 is a listing of the calculatﬁf program.

Table 4 gives all the equations used in the calculator program.

Table 5 gives the ihput data and the output from an execution of

the program. The data is taken from Ref. 1.



Table 1

PROCEDURE FOR PROGRAM EXECUTION

Step Procedure

1 Repartition calculator

2 Read magnetic cards

3 If combustion tube data are
to be used, continue. If
field values are to be used,
go to step 12.

4 Enter tube radius

5 Enter CO2 concentration

6 Enter CO concentration

7 Enter 02 concentration

8 If display value of N, is
incorrect,.enter N2 2
concentration

9 Enter front velocity

10 Enter gas flowrate

11 Go to Step 14

12 Enter fuel concentration

13 Enter air/fyel ratio

14 Enter field gas saturation

15 Enter field oil saturation

16 Enter pattern volume

17 Enter field'injection rate

18 Enter volume burned

Enter

4

L (ft)
CO2 (%)
co (%)

0, (%)

N, (D)
V. (ft/hr)

qg (scf/hr)

C, (1b/cf)

AFR (scf/1b)

S, ¢3)

S, (bbl/acre-ft)
AH (acre-ft)

q (mcf/day)

Vgs ()

10

Press Display
OoP 17 639.39
Clr 1,2,3,4

\ ]
E rt

]
D C02
R/S co
R/S 0,
R/S N,

\ ]
C Vf
R/S ASR

]
B Cf
R/S ASR
A' S

g
A S
o
B AH
c q
D printer
output



Table 2

DATA REGISTERS AFTER PROGRAM EXECUTION

Register Value

00 1541353517
01 3137001332
02 3500640000
03 1541303040
04 13323564
05 3732371327
06 1324350035
07 1734400064
08 3224270035
09 1715400064
10 14142736
11 3724301764
12 16134536
13 0.147143
14 0.010714
15 26.82295
16 0.46787

17 6.775267
18 15.947794
19 16.187187

11

Register Value
20 7.014659
21 Cf
22 ASR
23 V5(0)
24 x
25 Maximum Deviation
26 v

dy
27 ax
28 Current AOR
29 Cumulative AOR
30 S

g

31 R
32 AH
33 q
34 VB
35 Total AOR
36 Air Required

N ,%
37 b
38 Np
39 Time



Table 3

CONSTANTS STORED IN BANK 4

1541353517. 00
3137001332. 01
3500640000. 02
1541303040. 03
13323564. 04
3732371327. 05
1324350035. 06
1734400064 . 07
3224270035. 08
1715400064 . 09
14142736. 10
3724301764. 11
16134536. 12
0.147143 13
0.010714 14
26.82295 15
0.46787 16
6.775267 17
15.947794 18
16.187187 19
7.014659 20

0. 21
0. 22
0. 23
0. 24
0. 25
0. 26
0. 27
0. 28
0. 29

12



Table 4

CALCULATOR EQUATIONS

4[0.2658 N, - CcO, - 0, - 0.5 CO]

2 2~ 9
H/C = Co. + CO
2
1.209 x 10™° ¢ [co, + COJ[12 + B/C]
Cf ) | gv r z
£t
479.7 N,
AFR

(CO2 + C0) (12 + H/C)
ASR = (A‘FR)Cf(43.56)

B = (Cf) (124.4)

VB - VB(O)

X = To0 =V (0T
100 - V;(0)

Maximum Deviation = M.D. = 26.82295 - 0.46787 Sg

N

- Deviation
y Maximum De\_riation

6.775267 x - 15.947794 x

+ 16.187187 x> - 7.014659 x*

(Table Continued Next Page)

13



Table 4 (Continued)

100 M.D. dy
Slope 100 - V, (0) * 00 - V() dx
ASR
Current AOR (Slope) (B)

Np,% = 100 x + (y)(M.D.)

(N _,%) (R) (A) (B)
N = —R
P 100

(ASR) (&) (8) V,
Air Required = 100

Air Required

N
P

Cum. AOR =

Air Required
q

Time

.9(NP,Z) - 15.85
100

Excess Air =

Total AOR = Current AOR(1 + Excess Air)

14



Input data: C

Calculator Output:

TABLE 5

2.1

30.

CURRENT rOR =
10, 72022967

CUMM. HOR=
7. 34770305

TBTHL ROR=
14, 200611437

AIR REGL. =
5049, 4752

DIL REG. =
53, 740122277
687.2181913

TIME=
S043. 4752

15

% FV
BBLS

DAYS
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PATTERN, NOV.
80 {
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NOV. 1959
60 ]

|
TOTAL AREA
NOV.1957 e
!

A/ | |
vy /\‘OIL DISPLACED FROM
5 BURNED YOLUME ONLY

|
2,7 |\LAB. COMBUSTION TUBE DATA

|

20 40 60 80 100
VOLUME BURNED - %

S
o

N
o

OIL DISPLACED -% OF OIL AT START

O
o

Fig. 1: OIL DISPLACED VS VOLUME BURNED
(From Ref. 1)
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! |
OO"RUN 78-2(59-37 %)

o RUN 78-3(Sg=63.2%)

" A RUN 78-4(Sg=60.2%)

O RUN 78-5(Sg=71%)

" v RUN 78-6(Sg=30%)

¢ RUN 78-7 (Sg=41%) /

(o)
o

@
o

~
o

——REF.1 (Sg=40%)

ol
2

()V) (Y H (8]
O @) (@] (@)
T T I T
\\

N

o
j

/

I | 1 ' 1 [ 1

O 10 20 30 40 50 60 70 80 90 100
VOLUME BURNED (%)

TOTAL OIL PRODUCED (% OF TOTAL OIL PRODUCED )

o

Fig. 2: OIL RECOVERY. VS VOLUME BURNED FOR LABORATORY COMBUSTION TUBE RUNS
(From Ref. 2) 17



OIL RECOVERY-9%OF OIL AT START LESS FUEL

T 1 1

% si:‘MZArLumnoﬂ A /7/7
&0 fads // )V/ /
70 \‘. V/ ///// ’ 17
. YA

NN

8

/ A
VY
/

1N/
WYY

0 10 20 30 40 50 60 70 80 SO 00
VOLUME BURNED. - %

N
o

(<]

o

Fig. 3: ESTIMATED OIL RECOVERY VS
VOLUME BURNED (From Ref. 1)

100

WELL TROUSLE
80— Jar 2P AND 3P

60— /
o 4

20

EXCESS AR -%

°
0 L3 N
o 20 40 60 80 [o]o]

OlL RECOVERY -% OF OiL AT START LESS FUEL

UNUSED AIR
EXCESS AR .AIR USED TO BURN FUEL = 100 % (CURRENT)

Fig. 4: EXCESS AIR VS OIL RECOVERY
(From Ref. 1)
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Fig. 5: OIL DISPLACED FROM VOLUME BURNED ONLY
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DEVIATION
MAXIMUM DEVIATION

MAXIMUM DEVIATION, %

GAS SATURATION, % PV.
Fig. 7: MAXIMUM DEVIATION VS GAS SATURATION

1.2

Vg~ Vg (O
100-Vg (0)

Fig. 8 : NORMALIZED DEVIATION VS NORMALIZED
VOLUME BURNED.
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OIL RECOVERY, % OF OIL AT START LESS FUEL
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00}
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Fig. 9: COMPARISON BETWEEN THIS ALGORITHM AND
GATES AND RAMEY'S RESULTS
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Tme pee_3_oF_4 _ T| Pogrammable @
PROGRAMMER DATE Coding Form
toc jcooe] xev | comments [[roc fcooe] kev | comments [[Loc fcope| ke | commenTs
| 320 01 1 375 00 O - 420 93 .,
[ 321 00 C© 37E 01 1 421 00 O
32z 00 O 377 95 = 422 €5 +
[ 323 55 « 37 z &TD a3z 01 1
- 224 53 ¢ | 37 38 3E 434 54
j 325 01 1% | 580 43 RCL 425 €5 =
326 00 O 381 2z 22 4z¢ 4% RCL
327 00 O ez €5 437 28 z&
[ 328 75 - 383 43 ROL 438 95 = .
[ 329 43 ROL 384 32 32 | 433 42 570
[ 330 23 == 385 €5 X 440 35 35
[ 331 54 388 42 RCL 441 €9 0OF
[ 332 95 = 387 34 324 442 00 OO0
f33: 27 cE 388 €5 X 443 43 RCL.
- 334 02 Z 389 93 |, 444 00 Q0
[ 335 39 39 3%0 00 O 445 69 OF
[ 233 00 © 391 01 1 446 01 01
| 337 92 . 39z 95 447 43 RCL
| 33& 00 O© 29z 42 STD 448 01 01
329 42 sTO 294 28 3¢ 449 €< 0P
340 28 28 395 55 = 450 0z 02
241 42 RCL 396 43 RCL 451 42 RCL ]
24z 2z 2z 397 38 3@ 452 02 02 ]
@4z 55 o+ 29z 95 453 €9 OF o
344 43 FRCL 399 42 STU 454 032 03
345 2& 2g 400 29 29 455 €9 0P
346 55 = 401 43 RCL 45¢ 05 05 ] i
347 42 RCL 402 36 3¢ 457 4 RCL | |
346 31 21 40z 55 = 458 28 28 | ]
249 95 404 43 RCL 459 99 FRT | ]
350 4z STD 405 33 33 460 98 ADY
351 28 2z& 40 95 = 4c1 €9 OF ]
3S2 01 1 407 2§70 462 00 (00
35z 00 0O 408 2% 39 462 432 RCL
354 00 0O 409 93 ., 4¢4 03 03
355 6% = 410 09 9 4¢5 €9 OF
35¢ 42 pCL 411 65 = 4ce 01 01
357 24 24 : 412 4% RCL 467 4% RCL
358 €5 + 412 37 37 468 04 04
352 43 RCL 414 ?5 - 49 €9 DF
360 25 25 415 01 1 470 02 Oz
361 €5 41¢ 0% S 71 €9 DF
362 42 RCL 417 3 . 472z 0% 0S
363 26 26 4ic 08 & 472 43 RCL
364 95 = 419 05 © 474 29 29
365 42 STD 420 95 = 475 99 PRT
266 37 27 421 5% = 47¢ 98 RIDV
367 €5 x 42z 01 1 47 43 RCL
368 42 RCL 42z 00 O 478 0% 05
369 31 21 424 00 479 €9 OF
330 €5 425 9% = e nsr;g{ezocg.wes R
37 2 RO 2¢ 7?7 G 55 &m
7z 3 55 pi 4 ¥ s@mo "E@ 4on
372 €5 % 4zg 3z 3z tERm Mem Pl
74 95 . 429 00 O szA§i23L§3y£NTs
© W77 Toms Suvvment Scepennd * Ti-24181



TmeE moee_s_oF 4 T| Pogrammable é@
PROGRAMMER DATE Coding Form

LOC KEY | COMMENTS |[1oC |cope] ey | comments J[Loc|cooE] ey | comments
480 01 01 535 €9 DF Se0 07 7
481 €S OF 536 0& 06 :g} gg z
48z 05 05 S37  9¢ alv “ w9z 3
483 43 RCL 538 €9 OF 593 03 3
484 35 25 S22 00 00 994 0S5 S
485 99 PRT 540 4% PCL 59§ €9 DP’
486 9& ADY 541 11 11 396 02 0z 7 ]
487 €9 OF 542 €9 OF 57 04 4
488 0OC OO 4z 01 01 %8 01 1
489 43 RCL 44 €% DF 9% 00 ©
490 06 06 545 05 05 €00 00 O
491 €% DP 546 42 RCL €01 04 4
49z 01 01 S47 12 12 | 602 05 S
492 4¢3 ECL | 41 S48 €S OF | il 60z ﬂi 1
494 7 -0O7 : 549 Q4 (4 &04 ,05 7
495 69 DP S50 43 RCL | 605 03 3
4%¢ 02 2 551 39 39 (] 9? I
497 €9 OP 552 69 OPF | €07 69 OP
.49¢ 05 05 552 0¢ D¢ | €08 04 04
499 2 RCL 594 9¢ ADY | 608 €9 DF
SO0 36 36 555 9& ADV | 610 0S5 OS
501 99 FRT 5568 i R-S €11 9& ADY
S0Z  9¢ ADY 557 7€ LEL [ €12 98 ADY ] —
S0z €9 DF 552 38 SIN [ €12 98 ADY
S04 00 0OC S8 69 BF | €14 91 RS
S05 3 RCL 560 0G 00 sT.
S0 08 0% - 56l I 6
S07 69 OP 562 01 1 7 "
S0 01 01 563 3 8 ]
S09 42 RCL 1l Se4 02 2 ol | 1 — - i
510 09 09 565 00 O© 0
511 69 DO0F 1566 00 O ] __ﬁ
S51z 0z 0O2 S67 02 3 2
12 &9 DOP | 568 0z 2 3
514 05 05 569 0z 2 4
S15 0¢e ¢ Sv0 04 4 5
5i¢ 01 1 571 €9 QP 6
517 00 0 —_______ 1l 57z 01 o1 7
51¢ 00 © 572 2 2 s
S19 08 3 | SF¢ 07 7 [
Se0 03 3 57 00 O o
S21 D4 4 ?e¢ 00 O 1
S22 02 2 1| s7? o1 1 2
522 &9 OF S°8 04 4 3
524 04 04 S79 03 3 4
S525 43 RCL 'S80 0% S s
526 37 37 S81 01 1 6
527 €% DF Sgz T 7 7
528 D& 0 582 &9 OF 8
529 43 RCL S&4 2 0z ) ,
S30 10 10 8% 01 1 &nnue;nzsgcaossnan
53 S OF 588 02 3 &=
532 g-% 024 :'-g:? 2 3 Smm n=E@ 400
533 4% RCL s8¢ 0 6 tmn “Eo FEE
534 38 36 S8% 0% = TEXAS INSTRUMENTS
[ g 1 = e——y * vi-aaie
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