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Abstract

Following the development of Mitchell™, this report presents a mathematical study
of 2-D Soft and Stiff String Torque Analysis with pipe rotation, and a 3-D Soft and Stiff
String Drag Analysis with pipe running in and pulling out.

The Torque Analysis has revealed some defects in the conventional formulation.

Compared with conventional formulation, for pipe rotation, the term ,/1+ 4 needs to be

included in the contact force calculation.

Comparing the torque calculation equations of 2D Soft and Stiff models, the
calculated results are very close.

The change in azimuth results in different doglegs of wellbore, which has great effect
on axial force transfer.

Project Status

Tasks Percentage Accomplished
Literature review 80%
Model development 65%
Results / Data analysis 40%
Reports 40%

Tablel  Project Status

Introduction

During the early years of casing running, the hanging weight of the casing was usually
adequate to push it to target depth. Today, more and more extreme long wells are needed
to be drilled according to development needs. For example, typical scenarios involve
developing offshore reservoirs from nearby shore locations, or using long horizontal
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wells to improve oil/gas productivity. Current records for high angle and extended-reach
wells exceed 10 km. Due to excessive frictional force between casing string and
wellbore, running casing is becoming challenging work?. Failure to reach target depth
often has a profound consequence on well production and investment benefit™!.

Because of the increased costs and risks in these well, drag and torque analysis is
recognized as an important part of the risk management process. Currently, during well
planning and drilling operation, two kinds of drag and torque models are mainly used:
one is Soft String model developed by Johancsict in 1984; the other is the Stiff String
model developed by Ho™ in 1988. The Soft String model assumes that the string is a
weighted cable without stiffness, considering well trajectory curvature but not well
trajectory torsion. The Stiff String model by Ho considers the stiffness of drillstrings, but
only provides four equilibrium equations, one for moment equilibrium and three for force
equilibrium. Some casing gets stuck and fails to achieve the planned depth, even when
we are successful in drilling the well. Some problems are a result of inaccurate prediction
from existing models, or not understanding the limitations of existing models.

In 2006, Mitchell provided advanced drag and torque analysis (unpublished results)
based on constant curvature well trajectories, in which he considers the effect of both
wellbore curvature and wellbore torsion.

This report is the second report after my proposal. In my last report, | finished 2-D
drag analysis with Soft and Stiff String models. Based on constant curvature method, this
report presents the 2-D Soft and Stiff String torque analysis with pipe rotation, and the 3-
D Soft and Stiff String drag analysis with pipe running in and pulling out.

General Model with Curvature and Torsionf following the
development by Mitchell

The rectangular coordinate system X, Y, Z with the unit vectorsi, j ,k and a moving

coordinate system with unit vectors t, fi, b are shown in Figure 1.
X (North)

O Y (East)

=l

5l

v

Z (Vertical)

|

Figure 1: Well coordinate system
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The general model for force and moment equilibrium in i, j ,Kk directions including
well curvature and tosiron is as follows!!:

ﬁ?—ﬁx+w£-f+m-f=o (1)
dF, o

; +Fx-Fr+wkefi+w efi+w, efi=0 ()
S

dF, - e

d—+Fnr+wekob+wcob+Wdob=0 (3)
S

th—MnK‘-I-m.f:O 4)
ds

dg/l—”+Mt/(—Mbr—Fb+rﬁ0ﬁ=O (5)
S

d'(\i/lb+Mnr+Fn+rﬁ05:0 (6)
S

where:

x 1s well trajectory curvature;
r is well trajectory torsion.

General Model for Constant Curvature Well Trajectories

Currently, the oil/gas industry is commonly using the constant curvature trajectory
method in planning wellbores:

K = const. (7)
dI\/I')=EId—K=O and M =0 9)
ds ds

Substituting Equations (7)-(9) into Equations (1)-(6), we get the general Stiff String
model for constant curvature well trajectories:
dF,

| —Fx+wt, +W, et =0 (10)
s

dF, .

& +F,x+wn, + W, efi+wW, efi=0 (11)
dF, e

d—+webz+wcob+wdob:0 (12)
S

M, Moxsmet=0 (13)
ds

Mx—-F +men=0 (14)
F.+meb=0 (15)

where:
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t, =kef (16)
n,=kef (17)
b =k eb (18)

Although no stiffness of pipe appears in Equations (10)-(15), the model is applicable
to the Stiff String model. It is because of constant curvature well trajectories that the

stiffness item will not be shown.

From the above governing equations, it is clear that we need to determinet,, n, and
b, in order to calculate drag and torque (see Appendix A).

2-D Soft Model for torque analysis

wellbore

Figure 2: Contact force Angle with rotation

formation

vV o

From the general equations for constant curvature well trajectories (Equations (10)-

(15)), we have:
dF,
ds

F.x+w,n, + W, coséd+ u,w,sind=0
w,b, —w,sin@+ u,w,cosd =0

dM,
ds
Mx=0

F,=0

Equations (20) and (21) yield:

+w,t, =0

—pew.r, =0

(19)
(20)
(21)
(22)

(23)
(24)
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W, (u; sin@+cos@) = —(F,x +w,n,) (25)
W, (1, cos@ —sin @) = —-w,b, (26)
From Equations (25) and (26), we get:

2 2
- \/ (Fyre+w.n,)° + (w;b,) o
1+ py
Rearrange Equations (25) and (26):
cosd —sin@ -
Hy : _ tgl91 '[99 =tg(01 _0) _ Webz (28)
Hysin@+cosd  1+tgotgo (F,x+w,n,)
where: tg6, = u, (29)
w,b
ezt -1 _t -1 e~z 30
9 u;—1g Fortwn) (30)
Assume:t, fi are in the same vertical plane, which makes b, = (31)
Substituting Equation (31) into Equation (27) yields:
|F K+ W,n |
w, = (32)
\/1+,Uf
0=197" 1, (33)

The 2-D Torque Analysis by constant curvature method has revealed some
defects in the conventional formulation. Comparing with the conventional formulation,

for drillstring rotation condition, the term ,/1+ z? needs to be included in the contact

_ [Fc+w,n,
force calculation: W, = ——
1+

formulation, w, = |F,x +w,n,|).

(In conventional Soft Model

According to Equation (19) and the expression of t, for 2D in Appendix A, we get:

F.(s)=F 4+ e 3 {{cos[x(s; —a)]—cos[x(s —a)]}cos I, + [cos(xs) - cos(xs, )|cos 1, }

(34)
where: F) = F(s,)

Combining Equations (22) and (32), we have:
If F,xk+w,n, 20 =
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r S
st _f(FaK+Wenz)ds
\[1+;u$ Si

/ufrp

=M(s;)- \/m HFa' k(s—s;)+ S:/:—eﬂ{COS[K(Si —a)]cos I, —cos(xs; )cos 1, }(s —s, )}

Mt(S)z M(Si)_

e (o) sinl;seos1, - inf(s - ] sinfs(s, ~aos1.)
et sin(, 1, Yool )} -cosffs, ~lfint, ~[eos(s) st i,

(35)
If F,x+w,nn, <0 =

:ufrp

j (F.x+w,n,)ds (36)
\[1+ /J? Si

M, (s)=M(s, )+

2-D Stiff Model for torque analysis

Also, from the general equations for constant curvature well trajectories:
dF,

-F.x+wt, =0 (37)

ds
dF, :

r +F,x +w,n, +w,cosé+ u,w,sind =0 (38)

S
dF, :
E-FWEbZ—WCSlne'F,UfWC cosd =0 (39)
dM

dSt —pW,r, =0 (40)
Mx—F, =0 (41)
F,=0 (42)

Substituting Equation (42) into Equations (37) and (38), and substituting Equation
(41) into Equation (39), we have:

dF +wt, =0 (43)
ds
F.x+w,n, +w, cosé+ u, W, sind =0 (44)
KL W I, + Wb, —w,sin@+ u W, cosd =0 (45)
dM,

™ = W, (46)
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Equations (44) and (45) give:

W, (u; sin@+cos@) = —(F,x +w,n,) (47)
W, (1, cos@ —sin @) = —(W,b,+xu, w,r,) (48)
So,
cosd —siné - W.b, + Kk, w,.r
My - _ tg@l tgd =tg(91—9)= ez My Wely (49)
uesin@+cosd  1+t9otgo (F,x+w,n,)
where: tgé, = u, (50)
W.b, + &, w,.r
O=tgty, —tgt -~ P 51
g ;-4 (Foc+w,n,) (51)
Also, from Equations (47) and (48), we get:
WE L+ pef + (sp 1)1+ 2Ww, b, e 1) — (Fox +w,n,)? —wiby =0 (52)
So,

W, = _Wesz:uf I’p i\/(Weszluf rp)2 +[1+,Ll$ +(Kluf rp)z][(FaK+Wenz)2 +(Webz)2]
1+ pf + (rpery)?

c

(53)
If r, =0, then Equation (53) will be simplified to the same form as the equation
(27) for unit contact force in 2-D Soft Model of torque analysis.
Assume:t’, fi are in the same vertical plane (that also means no change in azimuth of
well trajectory), which makes b, =0.
Equation (51) is simplified into:
KL W,

O=tg ™ty —tgt—°°P _ 54
g u; - (FaK+Wenz) (54)
And
|Fazc+wenz|
w, = (55)

L+ + ()P

Similarly, according to Equation (43) and the expression of t, for 2D in Appendix A,
we get:

F.(s)=F, + ::Ire] y {{cos[x(s; —a)]-cos[x(s —a)]}cos I, +[cos(xs)— cos(xs, )|cos I, }
K
(56)
Combining Equations (46) and (55), we have:
If F,x+w,n,>20 =
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M, (s)= M(s)—\/1+ il j(FHW )ds
i +(K;ufrp) i
=M(s;)- \/1+ Zﬂ; (" = {{F;K(s—si)Jrsivr\:e’B {cos[x (s, —a)]cos |, —cos(xsi)coslz}(s—si)}
My KT
+ Ksmﬂ{[sm( xs)—sin(x;s)]cos I, — {sin[«(s — a)] - sin[«(s, —a)]}cos 1, }
s ﬁsm(l — 1, X{cos[x(s — a)] - cos|x(s —a)]}sinIl—[cos(xs)—cos(xsi)]sinIZ}}
(57)
If F.xk+w,n, <0 =
M, (s)= M(s, )+ alll: j(FK+ n,)ds (58)

\/1—1- ,uf + (ke rp

Comparing the calculation equations for 2-D Soft and Stiff models of torque
analysis, we can see that the torque calculation results using Soft and Stiff models
are very close:

:uf p
V f
s

:ufp .
M, (s)=M(s,)- Fc+w,nlds  (Stiff Model
(s)=Mf(s;) \/1+yf[l+(/<r)]J| K+ Ww,n,|ds (Stiff Model)

For example, if we take a radius of wellbore R=100ft (K =0.01 ft‘l) and pipe OD=9.625
in (r, =0.4 ft),

= 1+ uf [+ (51,) 2] = 1+ 4} (L+0.0047 ) = [1+ 17 (1.000016) = \[1+ 1

M ( j|FK+w |ds (Soft Model)
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3-D Soft String Model for Drag Analysis

Derivation of Governing Equation for Drag Analysis

formation

v o

wellbore

(for running in)

Figure 3: Contact angel with pipe running in and pulling out
Two important assumptions:

(1) Assume that the drag force between pipe and wellbore is linear Coulomb friction.
From Figure 3, we get:

W, of =Fw, =Fu,|w,| (running in for “-”; pulling out for “+” (59)
Vi, efi =0 (60)
W, eb =0 (61)
(2) The shear forces F, and F, equal to zero:

Define @ as the contact angle between i and W, as shown in Figure 8. We have:
v”vcorjzwC cosé (64)
Vi, eb = —w,sin @ (65)
For force equilibrium without pipe rotation:

M, =0 (66)

Substituting the above equations into Equations(10)-(15) yields Equations (67), (68)
and (69). Assume that pipe is being run into the hole. When pipe is being pulled out of
the hole, we only need to change — & into + x in Equation (67).
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a

St — 4w, | =0

F.x+w.n, +w_ cosd =0
w,b, —w_sin@d =0

Equations (68) and (69) yield:
WC2 = (FaK + Wenz )2 + (Webz )2

(67)

(68)
(69)

(70)
(71)

Substituting Equation (70) into Equation (67), we get the governing equation (72):

ddFSa +W,t, — \/(Fax+wenz)2 +(w,b,)* =0

And initial value conditionis: F,(s=s,)=F,

(72)

Because the differential equation (72) is complicated, we can not get the analytical

solution. A numerical method must be used to solve the problem.

3-D Stiff String Model for Drag Analysis

Derivation of Governing Equation for Drag Analysis
From Figure 2, we know:

W, e =W, Cosd

W, eb =—w_sing

Men =Fur,w,sing (running in for “-; pulling out for *“+”
Meb =Fu, r,w, cose¢ (running in for “-”; pulling out for “+”

(79)
(80)
(81)
(82)

For simplification, assume that the pipe is being run into the hole. For the case of pipe

being pulled out of hole, we only need to change — x, into+ «; .
Substituting Equations (79)-(82) into Equations (10)-(15) yields:

dF
E-F.x+wit, —uw, =0
dS n evz /jf| c|
oF, +F,x+w,n, +w,cosd =0
ds
di+webz—wcsin6?:0
ds
met =0

—F, —ur,w sind=0
F,—uer,w cos6 =0

(83)
(84)

(85)

(86)
(87)

(88)
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From Equations (87) and (88), we get:

W, sin@ = — Py (89)

/uf rp
F

W, C0S@ = —" (90)

/uf rp
JFZ+F/

A (o1)
p

0=tg 1(‘F—Fb] (92)

Substituting Equations (89), (90) and (91) into Equations (83), (84) and (85), we get
the 3-D Stiff String model for drag analysis:

JFZ+F/.
dF, —kF w12 -0 (93)
ds r,
dF, +xF, +w,n, + P _ 0 (94)
ds il
di+ w.b, + B _ 0 (95)
ds il
And three initial value conditions:
F. (5 =5 ) = Fai
Fn (S =5 ) = Fni

Fb(szsi)z Fbi
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Case Study

Case 1: Axial force F,coupled with torque M, (2D Torque Analysis)

The well trajectory parameters (see Figure 1-Appendix B, which are also same the
parameters used in Case 3 of the first ABM report):

KOP=1312 ft,

Casing OD=9 5/8 inch,

Radius of arc section =1910 ft,

Unit weight in air =40 Ibf/ft,

Arc length=2332 ft,

Mud density=12.8,

Tangent length=14787 ft,

Friction coefficient =0.4.

Tangent angle=70 degrees,

At bottom: torque=2000 ft-Ibf, axial
force=0

Table 2: Well parameters for case 1

The effect of frictional coefficient

measured depth(m)

0 1000 2000 3000 4000 5000 6000

120000 T 160000

-+ 140000

100000

+ 120000

1 ‘ 1

| | |

| | |

al I T

| | |

| | |
~~ [ | |
= 80000 - A - - ~
g : ! ! + 100000 Z
t | | | é
K 60000 |- -~ g~~~ - b - b= L 80000 @
= | | | =]
= | | | g
_ + [e]
S 40000 & - - - _ TR .~ - T 60000 O

| | | 1 40000

20000 - -~~~ d--- -~ o y o
‘ ‘ 1 20000
0 | | | o
0 5000 10000 15000 20000

measured depth(ft)

Figure 4

From Figure 4, if we rotate a 9 */g-inch casing to the bottom of the wellbore, the
surface torque will be very high and reach 97,000 ft-Ibf. This will exceed the maximum
torque that most of top drive facilities can provide, which means we need to select a
larger facility to handle this. The above calculation is based on well quality in which
friction coefficient z, =0.4.

If the well quality is improved, the friction coefficient y, is reduced, and the surface

torque is decreased greatly. Figure 5 shows the different surface torque values when
frictional coefficient is 0.4, 0.3, 0.2 and 0.15 respectively.

It’s unexpected to find that although changing frictional coefficient changes torque
transfer situation, the axial transfer case don’t change (see Figure 6). According to
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. dF
equation
ds

unit pipe weight along the path of wellbore. From Figure 7, we can see that the change of
frictional coefficient does effect the unit contact force, but the difference is small in this

+w,t, =0, the axial transfer is only related to the component of effective

case.
measured depth(m)
0 1000 2000 3000 4000 5000 6000
120000 ‘ ; ‘ 1; ‘ ; ‘ 11 160000
| | |
| | L
100000 g~~~ - Ao | —e—u=0.4 [ - 1%
1 1 120000
—_ |
N [
‘_? : + 100000 Z
£ | £
[} b e - 80000 @
= l &
=4 ! S
5 | ~ feoo0 2
1 40000
s | 20000
-0
0 5000 10000 15000 20000
measured depth(ft)
Figure 5
measured depth(m)
0 1000 2000 3000 4000 5000 6000
300 : : : : : :
1 1200
250
— + 1000
o
g 200 - Z
I} —+ 800 j‘-;
5} 0 o
—_ 15 4
R 1 600 E
= 8
< 100 - 8
é 1 400
50 - 1 200
0 0
0 5000 10000 15000 20000
measured depth(ft)

Figure 6
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40 T T 1
20 1 | | |
2 0 g : : :
S 00 10000 15000 20000
8 -20 T1 T C T T
- | |
o 40 £ bt . :
= 0 ! —o—u=0.4
8 60+-1{-4-1-------- Loooo-- —8—u=0.3
c ‘ —h—u=
o 80+ -t48---1-------- R u=0.2
° | —»%—u=0.15
T 1001-----4-------- N E——
> | |
B T0J M S S
| |
-140 ‘ :
measured depth(ft)

Figure 7
The effect of Pipe OD
Casing Size (in) Casing weight (Ibf/ft) Casing Grade
9.625 40 J55
7 23 L80
5.5 17 P110
Friction coefficient =0.2
Table 3

From Figures 5-7, which depict the effect of frictional coefficient for case 1, we can
see that with the better well quality (smaller frictional coefficient), the maximum torque
needed by the top drive facility is reduced, but the hookload stays at a high value.
Figures 8-10 show the effect of pipe OD on torque, axial force and unit contact force
when running casing.

From Figure 8, under the condition of frictional coefficient 0.2, the surface torque for
9°/g”, 7" and 5.5” casings are 52 kft-Ibf, 23 kft-Ibf and 14 kft-Ibf, respectively. The larger
the casing OD, the higher is the surface torque value. This also means that for running
larger casing to target depth, the friction between casing and wellbore will require more
torque. From Figure 9, we can also see that the larger the casing OD, the larger is the
hookload. This means, larger OD casing will require larger “push force” to push casing,
or larger weight on bit. From Figure 10, it is clear that larger OD casing has larger unit
contact force when pipe is rotating and the torque loss due to the frictional force will be
much larger. In addition, the negative values for unit contact forces at arc section means
that with high tension force, the casing will touch the upper side of the wellbore.
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60000

measured depth(m)
1000 2000 3000 4000 5000 6000

; — 1 80000
| |
50000 T - - - -| ——0D=9.625in |- 70000
|
: —#—0OD=7 in 1 60000
& 40000 +---Q - —A—OD=55 in =
= + s0000 Z
£ £
D 30000 4 --------TRg-- - Ao 1 40000 @
> o
U —_
§ 20000 - . - - - &g 1 T 30000 8
+ 20000
10000
+ 10000
0 : : — 0
5000 10000 15000 20000
measured depth(ft)
Figure 8
measured depth(m)
1000 2000 3000 4000 5000 6000
300000 - T f ; — f
| | |
: ! ! + 1200000
250000 R - - - - - S ——0D=9.625in | -
—~ | ——O0D=7in + 1000000
S 200000 —A—O0OD=55 in =
e 1800000 T
o I
S 150000 S
2 + 600000 =
= <
o %
e 100000 + 400000
50000 4 200000
0 -0
5000 10000 15000 20000

measured depth(ft)

Figure 9
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measured depth(m)

0 1000 2000 3000 4000 5000 6000

40 T T T

456

20 i | | |
E | | | .
"‘_5 0 T T T -44 S
= | =
< 5000 10000 15000 20000 Z
Q  -20 | | | ()
o I I | o
L 40 e P 544 9
= | | | °
8 60 | | | g
< ! ‘ ! 044§
8 -80- e --{—e—0D=0.625in|- - S
- | | =
'S -100 - e __|-—=—OD=7in |- 5
S | | . -1544

_1207777777777: 77777777 :777_‘_()"):5.5"'1 _
| | |
-140 ‘ ‘ ‘ -2044

measured depth(ft)

Figure 10

The effect of radius of wellbore

We change a few well parameters of Case 1 in the following to study the effect of
radius (see Figure 2-Appendix B), in which the curvature of the arc is 4.7 degrees/100ft,
while the original curvature is 3.0 degrees/100ft. The target depth is the same as the
original.

KOP=1312 ft,

Radius of arc section =1200 ft,
Arc length=1465 ft,

Tangent length=15460 ft,
Tangent angle=70 degrees,
Friction coefficient=0.3.

Table 4: Parameters for well trajectory with R=1200 ft

From Figure 11, with the same target depth, when we change original radius of
curvature from R=1910 ft (curvature=3 degrees/100ft) to R=1200 ft (curvature=4.7
degrees/100ft), the needed surface torque will increase from the original 52 kft-Ibf to 55
kft-Ibf, about 6% difference. From Figure 12, there is the higher unit contact force in the
arc section R=1200 ft than in the arc section R=1910 ft.

It is necessary to point out that although the larger radius of arc will be helpful to
torque transfer in this scenario, we will need a longer wellbore. For the scenario of R=
1910 ft, we need to drill a total length of 17120 ft, while for the scenario of R=1200 ft,
we only need to drill a total length of 16925 ft.
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measured depth(m)

0 1000 2000 3000 4000 5000 6000
60000 —— fr * — 1 80000
| | |
| |
50000 TN - - -~ S R=19101t) 1 70000
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: + 60000
< 40000 ! =
$ ‘ 1 50000 £
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& 30000 - + 40000 @
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S 20000 73000 2
1 20000
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1 10000
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0 5000 10000 15000 20000
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Figure 11
measured depth(m)
0 1000 2000 3000 4000 5000 6000
50 . T . o | —t }
| | | —+ 580
| | |
jeun) | | | 1 g0
£ o 1 | | =
=) 5000 10000 15000 20000 £
= [ [ [ +-420 Z
() | | | T
57 R R R g
2 | | 1-920 ©
+— ! | —
Q | | %
g 100 +-fFf4---r------- R e
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o 1. =
s | |—E—R=1200 ft 1920 2
c -150 +-@----+-------- e .
> | | 1 2420
l l
-200 ! ! -2920

measured depth(ft)

Figure 12

Case 2: Comparison of 2-D and 3-D Soft Drag Models-the effect of

azimuth

At survey stations 1 and 2, the measured data

Appendix B):

is as follows (also see Figure 3-



18 Yi Zhang
TUDRP

Point 1 I,=13.4 degrees A =255 degrees (S75W)
Point 2 I,=16.3 degrees A, =255 degrees (S75W)

Dogleg=2.9 degrees/100ft

The length between point 1 and point 2: As =100 ft

Axial force at pipe bottom F,=30,000 Ibf Effective pipe weight w, =15 Ibf/ft

Friction coefficient «, =0.3

Table 5
length(m)
0 10 20 30 40
18 T + T + T a — 18
| | | | |
%;: 16+ ----- R Tt ‘ > L 16
8 14 | J‘ L‘ 14 g
[@)) i T T T ] I o
S 1wl S I S N I L 8
E’ | | | | | )
5 10{-——- S S . — 10
c | | | | | %
S 8 e
c | | | | | o
o 64+ ----- [ [ [ [ (TR — L6 =
= | | | | | ©
@© | | | | | £
c 4 +----- - === == === 4----- +- -1 4 G
% | | | | | c
Py B S e 2
0 1 1 1 1 3 0
0 20 40 60 80 100 120
length(ft)
Figure 13
260 T T T T
| | | |
255 - —--- -~ -- -
|
250 1 1 l
@ l l
S 245 1 | |
= | |
g 240 - I |
ho] | |
E 235 4 : ,,,,,, i‘ 7777777
E | |
E 230 +------- - —&—dogleg=2.9 degrees |
o 295 ! —— dogleg=3.86 degrees
| | —aA— dogleg=8.1degrees
220 +------- PR ==~ ——dogleg=9.47degrees |
215 3 : 3 3
12 13 14 15 16 17
inclination angle(degrees)

Figure 14
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In Figure 15, although the design well trajectory (two dimensional) has a good result
for axial force transfer (dogleg=2.9degrees/100ft), in real drilling if azimuth changes
from A =219 degrees to A,=255 degrees (dogleg=9.47 degrees/100ft), the pipe will be
“locked” and the weight of upper casing can not effectively transfer. From Figure 16, it is
clear that the higher the dogleg is, the higher the unit contact force will be.

31200 T T T —&—dogleg=2.9 degrees 1 ;a0c5,
| |
31000 L - - - - O~ -1 ____1_____ ——dogleg=3.86 degrees |
— —a&—dogleg=8.1degrees || 137550 e
5 30800 +----- - r z
= —>»—dogleg=9.47 degrees |+ 136550 o
830600 -----r-—————1- g &g - T o
S + 135550 2
i 30400 +-----f-----7- B~ =
o— | —
<>(< 30200 - - 14 _a____= ,,,,,,:’1345502
30000 4 - - - = ! ! _ -+ 133550
| | |
29800 1 1 1 ; ; 132550
13 135 14 14.5 15 15.5 16 16.5
Inclination angle (degrees)
Figure 15: The effect of Azimuth on axial force transfer
—e&—dogleg=2.9 degrees
60 —— dogleg=3.86 degrees
£ g0l —aA— dogleg=8.1degrees 800
:\é/ —»—dogleg=9.47degrees 0
© 404 - - N S 600 2
et | | 8
S | | 500 5
s S e N 400 §
S ! | S
c 20+----—-—- o 4 300 2
o | | c
S ! I 200 °
g 10 77777777 T 7777777777777 4: 100
0 f T f 0
10 11 12 13 14 15 16 17

Inclination angle (degrees)

Figure 16: The effect of Azimuth on axial unit contact force

Closing Remarks

1. The 2-D Torque Analysis by constant curvature method has revealed some defects
in the conventional formulation. Comparing with conventional formulation, for drillstring
rotation condition, the term ,/1+x’ needs to be included in the contact force

_|Fazc+wenz|

calculation: w, =
L1+ uf

(Conventional Soft Model formulation, w, =|F,x +w,n,|).
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2. Comparing the calculation equations for 2-D soft and stiff models of torque
analysis, the torque calculation results using soft and stiff models are very close.

3. Frictional coefficient has very important effect on torque transfer.

4. When casing is rotating, larger OD casing produces larger “pushing force” to run
casing, but the higher contact force causes the higher torque loss.

5. The change in azimuth of wellbore results in different doglegs of wellbore, which
has great effect on axial force transfer.

Future Work

1. Develop 3-D Soft and Stiff String Models with rotation.
2. Case Study for 3-D Soft and Stiff String Models using field data.
3. Try to consider torsion in the 3-D Soft and Stiff String Models.

Nomenclature

I = inclination angle at an arbitrary point of well trajectory, radians
A = azimuth at an arbitrary point of well trajectory, radians

k = wellbore curvature, 1/ft

7 = well trajectory torsion, 1/ft

S = dogleg between point 1 and point 2, radians

a = the total arc length between point 1 and point 2
s = the arc length between point 1 and point M, ft

m = unit moment caused by friction

i = unit vector of X direction
j = unit vector of Y direction

k = unit vector of Z direction

t = unit vector in tangent direction of pipe

i = unit vector in normal direction of pipe

b = unit vector in binormal direction of pipe

F, = axial force, Ibf

F., = shear force in normal direction, Ibf

F, = shear force in binormal direction, Ibf

w, = buoyant weight of pipe per unit length, Ibf/ft
w, = unit contact force, Ibf/ft

w, = friction force per unit length, Ibf/ft
M, = moment in tangent direction, ft-1bf
M, =moment in normal direction, ft-1bf
M, = moment in binormal direction, ft-1bf
I, = inclination angle at point 1, radians

I, =inclination angle at point 2, radians
A, = azimuth at point 1, radians
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A, = azimuth at point 2, radians

u, = friction coefficient

F. =initial axial force at s =s,, Ibf

F.** = initial axial force at s =s,_,, Ibf
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Appendix A:

Determination of t,, n, and b,

1. Minimum Curvature Method

Constant curvature wellbore trajectories are commonly described using the minimum

curvature method. In this method, unit binormal vector b and curvature x are constant,
and torsion 7 is zero, which greatly simplifies the equations.

For the survey data of two adjacent survey points (measured depth, inclination angles
I, and I,, azimuth A, and A,), the unit tangent vectors t, and t, at the arc’s start and
end points can be calculated by Equation (A-1) and Equation (A-2), respectively.

f =i(sinl,cos A )+ j(sinl,sin A )+k(cosl,) (A-1)
£, =i(sinl,cos A, )+ j(sinl,sin A, )+k(cosl,) (A-2)

2

o

12

Point 1

Point 2

t

Figure 1: Well geometry of the minimum curvature
between two adjacent survey points

The angle between the unit tangent vectors t, and t, is A (dog-leg). We can derive
the expression of unit binormal vector 512 from Equations (A-1) and (A-2).
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) :ﬁ:i[f(sinl cosl,sin A —cosl,sinl,sin A))—j(sinl, cosl,cos A —cosl,sinl,cosA,)
12 Sinﬂ Sinﬂ 1 2 1 2 2 1 2 1 2 2
+K(sinl,sin1,cos A sin A, —sin |l sinl,sin A cosAz)]
1 = - - - - = - -
:'—ﬂ{l (sinl,cosl,sin A —cosl,sinl,sin A))—j(sinl,cosl,cos A —cosl,sinl,cosA,)
sin
+k[sin 1, sin1,sin(A, - Ai)]}
(A-3)
For the whole circular arc between point 1 and point 2, b is constant because
inclination angles 1, , I, and azimuths A and A, are known according to survey data.
From the above equations, we can get the expressions of fi, and fi, at point 1 and

point 2:
A, = by, xt, (A-4)
n, =b, xt, (A-5)

|

—

2. Determination of t,, n, and b, at any position M on a circular arc

z!

Point 1
(s=0) ,

Figure 2: Interpolation at a point on a circular arc

Consider an arbitrary point M at any position on a circular arc (see Figure 2).The unit
tangent vector t at point M is:

f =i(sinlcosA)+ j(sinlsin A)+k(cosl) (A-6)
The unit binormal vector can be expressed as:
6: tlxt _tlxtz (A‘?)

sing”  sing
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where: S is the dogleg between unit tangent vectors f, and f .
Taking the cross product of both sides of the equation (A-7) witht, :
fx(fxE) _Ex(fxt,)

sin sin B
B 9 R T [ 4 R (R

sin 8° sin 3
I S Y
sin g sin g

e e SIS e e\ s
== (tl of )tl - Sinﬂﬂ [(tl .tZ)tl _tz]
So,

f:ﬂcosﬂ*—%(ﬂcosﬁ—t}) (A-8)

Multiply the numerator and denominator of the first term in Equation (A-8) by sin g
and collect terms in t, andt,:

. Sin ing" . .
cos S!—ﬂ—s'_ﬂ(tlcosﬂ—tz)
sin sin

_sin(g-p7) - sing’ (A-9)
=1 - +1, —
sin g sin 8
Substituting Equations (A-1) and (A-2) into Equation (A-9):

f :%}f*)[ﬂsin I, cos A )+ j(sinl,sin A )+ k(cos Il)]

sinfB’ [/ . o _ )
sin 8 [I (sin1,cosA,)+ j(sin1,sin A, )+ k(coslz)]

_ i{sin(ﬁ—ﬁ*)sin I, cos A, +sin 87 sinl, cos A, } . J{sin(ﬂ—ﬂ*)sin I, sin A +sin B sin 1, sin Az}

|

t

Il
—
<

—+

sin sin g
s E[Sin(ﬂ —ﬂ*)cos I, +sin 8" cosl, }

sin g

(A-10)
Because the radius of the arc is fixed, and the unit vectorst, ,t, and t are in the same
spatial plane, we get:

> -2 (A-11)
BB
where: a is the length of arc between point 1 and point 2;

s is the length of arc between point 1 and point M.
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Combining Equations (A-10) and (A-11) gives:

- = 1 . S . . (S . - 1 . S . .
t=i Sinﬁ{sm{[l—ajﬂ}sm I, cos A + sm(aﬂjsm I, cos Az} +] Sinﬁ{sm{[l—ajﬂ}sm I, sin A
+yn(sﬂjﬂnlzﬂnA%}+Efl{ﬂ%ll—Sjﬂ}unll+sm(slﬁcosb}
a sin g a a
(A-12)

Based on Equation (A-7), we can see that b is constant for the whole circular arc
between point 1 and point 2.

b =by,

l = - - - - = - -
='—ﬂ{l (sinl,cosl,sin A —cosl,sinl,sin A))+ j(cosl,sinl,cos A, —sinl cosl, cos A, )
sin

+k[sin I, sin 1, sin(A, - Al)]}

(A-13)
According to Serret-Frenet equations, we get:
A=bxt
- : : : S . S
=1 Sin? 5 {(cos I,sinl,cosA, —sinl, cosl, cos Al){sm(l—g)ﬂcos I +sm(gﬂ) Ccos IZ}

- {sin(l—%)ﬂsin I,sin A +sin(§ﬁ)sin I, sin Az}sin [,sinl,sin(A, - Al)}

+ ] — 12 ; {sin I,sinl,sin(A, — Al)[sin(l—i)ﬂsin I, cos A +sin(§,6’)sin I, cos AZ}

Sin

—(sinl cosl,sin A —cosl, sinl,sin AZ)[sin(l—g)ﬂcos I +sin(§,8) cos IZ}}

+k

1 . . . . . S . . . S . .
sin? ﬂ{(sm I,cosl,sin A, —cosl; sinl,sin Az)[sm(l—g)ﬁsm I,sin A +S|n(gﬁ)sm I,sin Az}

+(sinl,cosl,cosA —cosl, sinl, cos Az)[sin(l—i)ﬂsin I, cos A +sin(iﬂ)sin I, cos Az]}
a a

(A-14)

t,, n,and b, for 3-D well trajectory

z 1

From Equations (A-12)-(A-14), we get:

t, :;{sin{(l—ijﬂ}cos l, +sin(iﬂjcos Iz} (A-15)
sin a a
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n, =—— {(SinIlcoslzsinAl—cosIlsinIzsinAz)[sin(l—i)ﬂsinIlsinA1+sin(i,B)sinIzsinAz}
sin® g a a
+(sinl,cosl,cos A —cosl,sinl, cos AZ){sin(l—i),Bsin I,cos A +sin(§ﬂ)sin I, cos AZ}}
(A-16)
b, =[sinl,sin1,sin(A, - A )] (A-17)

For example, if A = A,, t,, n,and b, for 2-D well trajectory

t, = L{sin{(l—gjﬁ} cosl, +sin[§ﬂj cos |2} _ sin[x(a —s)]cos 1, +sin(xs)cos |,

sin 8 sin B
(A-18)
: : S\ | s
. sin(l, - IZ){sm[(l—a)/}}sm 'y FsinC, A)sin IZ} ~sin(l, - 1, fsin[x(a - s)]sin I, +sin(xs)sin 1, }
T sin? - sin? B

(A-19)
b, =0 (A-20)

z
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Appendix B:

KOP=1312ft

2333 ft

14787 ft

Figurel: The well trajectory-Chirag A16 T2 of British Petroleum Company
(casing size=9.625”, unit weight=40 Ibf/ft, mud density=12.8, friction coefficient=0.4)

KOP=1312ft

1465 ft

15460 ft

Figure 2: The well trajectory (R=1200 ft) with the same target depth as Figure 1
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F.
Point 1

Point 2

F,=30,000 Ibf

Figure 3 : Well geometry of the minimum curvature
between two adjacent survey points



