
This report is prepared for TUDRP Advisory Board Meeting, November 13-14, 2006, Tulsa-Oklahoma. 
 

Abstract 
 Following the development of Mitchell[1], this report presents a mathematical study 
of 2-D Soft and Stiff String Torque Analysis with pipe rotation, and a 3-D Soft and Stiff 
String Drag Analysis with pipe running in and pulling out.  
 The Torque Analysis has revealed some defects in the conventional formulation. 
Compared with conventional formulation, for pipe rotation, the term 21 fμ+  needs to be 
included in the contact force calculation. 
 Comparing the torque calculation equations of 2D Soft and Stiff models, the 
calculated results are very close. 
 The change in azimuth results in different doglegs of wellbore, which has great effect 
on axial force transfer. 

Project Status 

Tasks Percentage Accomplished 

Literature review 80% 

Model development 65% 

Results / Data analysis 40% 

Reports 40% 

Table 1      Project Status 
 

Introduction 
During the early years of casing running, the hanging weight of the casing was usually 

adequate to push it to target depth. Today, more and more extreme long wells are needed 
to be drilled according to development needs. For example, typical scenarios involve 
developing offshore reservoirs from nearby shore locations, or using long horizontal 
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wells to improve oil/gas productivity.  Current records for high angle and extended-reach 
wells exceed 10 km. Due to excessive frictional force between casing string and 
wellbore, running casing is becoming challenging work[2]. Failure to reach target depth 
often has a profound consequence on well production and investment benefit[3].  

Because of the increased costs and risks in these well, drag and torque analysis is 
recognized as an important part of the risk management process. Currently, during well 
planning and drilling operation, two kinds of drag and torque models are mainly used: 
one is Soft String model developed by Johancsic[4] in 1984; the other is the Stiff String 
model developed by Ho[5] in 1988. The Soft String model assumes that the string is a 
weighted cable without stiffness, considering well trajectory curvature but not well 
trajectory torsion. The Stiff String model by Ho considers the stiffness of drillstrings, but 
only provides four equilibrium equations, one for moment equilibrium and three for force 
equilibrium. Some casing gets stuck and fails to achieve the planned depth, even when 
we are successful in drilling the well. Some problems are a result of inaccurate prediction 
from existing models, or not understanding the limitations of existing models.  

 In 2006, Mitchell provided advanced drag and torque analysis (unpublished results) 
based on constant curvature well trajectories, in which he considers the effect of both 
wellbore curvature and wellbore torsion.  

 This report is the second report after my proposal. In my last report, I finished 2-D 
drag analysis with Soft and Stiff String models. Based on constant curvature method, this 
report presents the 2-D Soft and Stiff String torque analysis with pipe rotation, and the 3-
D Soft and Stiff String drag analysis with pipe running in and pulling out.   
  
 

General Model with Curvature and Torsionf following the 
development by Mitchell 

The rectangular coordinate system X, Y, Z with the unit vectors i
r

, j
r

, k
r

 and a moving 
coordinate system with unit vectors t

r
, nr , b

r
 are shown in Figure 1.  

 
Figure 1: Well coordinate system 
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The general model for force and moment equilibrium in i

r
, j
r

, k
r

 directions including 
well curvature and tosiron is as follows[1]: 

0=•+•+− twtkwF
ds

dF
den

a rrrr
κ                                                                                  (1) 

0=•+•+•+−+ nwnwnkwFF
ds

dF
dceba

n rrrrrr
τκ                                                          (2) 

0=•+•+•++ bwbwbkwF
ds

dF
dcen

b
rrrrrr

τ                                                                    (3) 

0=•+− tmM
ds

dM
n

t rrκ                                                                                                (4) 

0=•+−−+ nmFMM
ds

dM
bbt

n rrτκ                                                                            (5) 

0=•+++ bmFM
ds

dM
nn

b
rrτ                                                                                       (6) 

where: 
κ  is well trajectory curvature; 
τ  is well trajectory torsion. 

 

General Model for Constant Curvature Well Trajectories  
Currently, the oil/gas industry is commonly using the constant curvature trajectory 

method in planning wellbores: 
 .const=κ                                                                                                                    (7) 

 0=τ                                                                                                                            (8) 
 

0==
ds
dEI

ds
dM b κ    and 0=nM                                                                                 (9)                 

 Substituting Equations (7)-(9) into Equations (1)-(6), we get the general Stiff String 
model for constant curvature well trajectories: 

0=•++− twtwF
ds

dF
dzen

a rrκ                                                                                    (10) 

0=•+•+++ nwnwnwF
ds

dF
dczea

n rrrrκ                                                                      (11) 

0=•+•++ bwbwbw
ds
dF

dcze
b

rrrr                                                                                (12) 

0=•+− tmM
ds

dM
n

t rrκ                                                                                              (13) 

0=•+− nmFM bt
rrκ                                                                                                  (14) 

0=•+ bmFn

rr                                                                                                             (15) 
where: 
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tktz

rr
•=                                                                                                                    (16) 

nknz
rr

•=                                                                                                                  (17) 
bkbz

rr
•=                                                                                                                   (18) 

Although no stiffness of pipe appears in Equations (10)-(15), the model is applicable 
to the Stiff String model. It is because of constant curvature well trajectories that the 
stiffness item will not be shown. 

From the above governing equations, it is clear that we need to determine zt , zn  and 

zb  in order to calculate drag and torque (see Appendix A).  
 
 
 

2-D Soft Model for torque analysis 
 

 
Figure 2:  Contact force Angle with rotation 

 
       

 From the general equations for constant curvature well trajectories (Equations (10)-
(15)), we have: 

0=+ ze
a tw

ds
dF                                                                                                            (19) 

0sincos =+++ θμθκ cfczea wwnwF                                                                      (20) 
0cossin =+− θμθ cfcze wwbw                                                                                (21) 

0=− pcf
t rw

ds
dM

μ                                                                                                     (22) 

0=κtM                                                                                                                      (23) 
0=nF                                                                                                                         (24) 

 
Equations (20) and (21) yield: 
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( )zeafc nwFw +−=+ κθθμ )cossin(                                                                        (25) 

zefc bww −=− )sincos( θθμ                                                                                     (26) 
From Equations (25) and (26), we get: 

 2

22

1
)()(

f

zezea
c

bwnwF
w

μ
κ

+
++

±=                                                                            (27) 

 Rearrange Equations (25) and (26): 

 
)(

)(
1cossin

sincos
1

1

1

zea

ze

f

f

nwF
bw

tg
tgtg
tgtg

+
=−=

+
−

=
+

−

κ
θθ

θθ
θθ

θθμ
θθμ

                                    (28) 

where: ftg μθ =1                                                                                                             (29) 

)(
11

zea

ze
f nwF

bw
tgtg

+
−= −−

κ
μθ                                                                                 (30) 

Assume: t
r

, nr  are in the same vertical plane, which makes 0=zb .                          (31) 
Substituting Equation (31) into Equation (27) yields: 

21 f

zea
c

nwF
w

μ

κ

+

+
=                                                                                                       (32) 

ftg μθ 1−=                                                                                                                  (33) 
 

 The 2-D Torque Analysis by constant curvature method has revealed some 
defects in the conventional formulation. Comparing with the conventional formulation, 
for drillstring rotation condition, the term 21 fμ+ needs to be included in the contact 

force calculation: 
21 f

zea
c

nwF
w

μ

κ

+

+
= (In conventional Soft Model 

formulation, zeac nwFw += κ ). 
 
 According to Equation (19) and the expression of zt  for 2D in Appendix A, we get: 

 ( )[ ] ( )[ ]{ } ( ) ( )[ ]{ }21 coscoscoscoscoscos
sin

)( IssIasas
w

FsF ii
ei

aa κκκκ
βκ

−+−−−+=  

(34) 
where: ( )ia

i
a sFF =  

 Combining Equations (22) and (32), we have: 
If  ⇒≥+ 0zea nwF κ  
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( ) ( )

( ) ( ){ }

( ) ( )[ ] ( )[ ] ( )[ ]{ }{ }

( ) ( )[ ] ( )[ ]{ } ( ) ( )[ ]{ }
⎭
⎬
⎫

−−−−−−+

−−−−−+

⎩
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

−−−+−
+

−=

+
+

−= ∫

21212

12

212

2

sincoscossincoscossin
sin

cossinsincossinsin
sin

)(coscoscos)](cos[
sin

)(
1

)(
1

IssIasasII
w

IasasIss
w

ssIsIas
w

ssF
r

sM

dsnwF
r

sMsM

ii
e

ii
e

iii
e

i
i

a

f

pf
i

s

s
zea

f

pf
it

i

κκκκ
βκ

κκκκ
βκ

κκ
β

κ
μ

μ

κ
μ

μ

(35) 
If  ⇒<+ 0zea nwF κ  

( ) ( ) ∫ +
+

+=
s

s
zea

f

pf
it

i

dsnwF
r

sMsM )(
1 2

κ
μ

μ
                                                              (36) 

  
 
 

2-D Stiff Model for torque analysis 
 

Also, from the general equations for constant curvature well trajectories: 

0=+− zen
a twF

ds
dF

κ                                                                                                 (37) 

0sincos =++++ θμθκ cfczea
n wwnwF

ds
dF

                                                          (38) 

0cossin =+−+ θμθ cfcze
b wwbw

ds
dF

                                                                     (39) 

0=− pcf
t rw

ds
dM

μ                                                                                                     (40) 

0=− bt FM κ                                                                                                              (41) 
0=nF                                                                                                                         (42) 
 

Substituting Equation (42) into Equations (37) and (38), and substituting Equation 
(41) into Equation (39), we have: 

0=+ ze
a tw

ds
dF                                                                                                            (43) 

0sincos =+++ θμθκ cfczea wwnwF                                                                      (44) 
0cossin =+−+ θμθκμ cfczepcf wwbwrw                                                              (45) 

pcf
t rw

ds
dM

μ=                                                                                                            (46) 
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Equations (44) and (45) give: 
( )zeafc nwFw +−=+ κθθμ )cossin(                                                                        (47) 

)()sincos( pcfzefc rwbww κμθθμ +−=−                                                                 (48) 
       So, 

)(
)(

1cossin
sincos

1
1

1

zea

pcfze

f

f

nwF
rwbw

tg
tgtg
tgtg

+

+
=−=

+
−

=
+

−

κ
κμ

θθ
θθ
θθ

θθμ
θθμ

                               (49) 

where: ftg μθ =1                                                                                                             (50) 

)(
11

zea

pcfze
f nwF

rwbw
tgtg

+

+
−= −−

κ
κμ

μθ                                                                            (51) 

       Also, from Equations (47) and (48), we get: 
 0)(2])(1[ 222222 =−+−+++ zezeapfzecpffc bwnwFrbwwrw κκμκμμ                      (52) 
       So, 

 22

22222

)(1

])()][()(1[)(

pff

zezeapffpfzepfze
c r

bwnwFrrbwrbw
w

κμμ

κκμμκμκμ

++

+++++±−
=      

(53) 
 If 0=pr ,  then Equation (53) will be simplified to the same form as the equation 
(27) for unit contact force in 2-D Soft Model of torque analysis. 

Assume: t
r

, nr  are in the same vertical plane (that also means no change in azimuth of 
well trajectory), which makes 0=zb . 

Equation (51) is simplified into: 

 
)(

11

zea

pcf
f nwF

rw
tgtg

+
−= −−

κ
κμ

μθ                                                                                 (54) 

And 

22 )(1 pff

zea
c

r

nwF
w

κμμ

κ

++

+
=                                                                                           (55) 

 
Similarly, according to Equation (43) and the expression of zt  for 2D in Appendix A, 

we get: 

( )[ ] ( )[ ]{ } ( ) ( )[ ]{ }21 coscoscoscoscoscos
sin

)( IssIasas
w

FsF ii
ei

aa κκκκ
βκ

−+−−−+=    

(56) 
Combining Equations (46) and (55), we have: 
If  ⇒≥+ 0zea nwF κ  
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( ) ( )
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⎭
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ssIsIas
w
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r
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dsnwF
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r
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i
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 (57) 

If  ⇒<+ 0zea nwF κ  

( ) ( ) ∫ +
++

+=
s

s
zea

pff

pf
it

i

dsnwF
r

r
sMsM )(

)(1 22
κ

κμμ

μ
                                            (58) 

 
Comparing the calculation equations for 2-D Soft and Stiff models of torque 

analysis, we can see that the torque calculation results using Soft and Stiff models 
are very close: 

 ( ) ( ) )(
1 2

ModelSoftdsnwF
r

sMsM
s

s
zea

f

pf
it

i

∫ +
+

−= κ
μ

μ
 

 ( ) ( ) )(
])(1[1 22

ModelStiffdsnwF
r

r
sMsM

s

s
zea

pf

pf
it

i

∫ +
++

−= κ
κμ

μ
 

For example, if we take a radius of wellbore R=100ft ( )101.0 −= ftκ  and pipe OD=9.625 
in )4.0( ftrp = , 

 ( ) ( ) 222222 1000016.11004.011])(1[1 fffpf r μμμκμ +=+=++=++⇒  
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3-D Soft String Model for Drag Analysis 
 

Derivation of Governing Equation for Drag Analysis 

 
Figure 3: Contact angel with pipe running in and pulling out 

 
Two important assumptions: 
 

(1) Assume that the drag force between pipe and wellbore is linear Coulomb friction. 
From Figure 3, we get: 

cfdd wwtw μmm
rr

==•  (running in for “-”; pulling out for “+”)                            (59) 
0=• nwd

rr                                                                                                                   (60) 

0=•bwd

rr                                                                                                                   (61) 
(2) The shear forces nF  and bF  equal to zero: 

0=nF                                                                                                                         (62) 
0=bF                                                                                                                         (63) 

 
Define θ  as the contact angle between nr  and cwr , as shown in Figure 8. We have: 

θcoscc wnw =•
rr

                                                                                                       (64) 
θsincc wbw −=•

rr                                                                                                       (65) 
For force equilibrium without pipe rotation: 

0=tM                                                                                                                        (66)  
Substituting the above equations into Equations(10)-(15) yields Equations (67), (68) 

and (69). Assume that pipe is being run into the hole. When pipe is being pulled out of 
the hole, we only need to change μ−  into μ+  in Equation (67). 

b
r

 

θ  

cwr  

wellbore 

formation 

nr  

mr  
 (for running in) 
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0=−+ cze
a wtw

ds
dF

μ                                                                                                (67) 

0cos =++ θκ czea wnwF                                                                                          (68) 
0sin =− θcze wbw                                                                                                     (69) 

 
Equations (68) and (69) yield: 

( ) ( )222
zezeac bwnwFw ++= κ                                                                                     (70) 

( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

= −

zea

ze

nwF
bw

tg
κ

θ 1                                                                                           (71) 

 
Substituting Equation (70) into Equation (67), we get the governing equation (72): 

( ) ( ) 022 =++−+ zezeafze
a bwnwFtw

ds
dF

κμ                                                          (72) 

And initial value condition is:   ( ) i
aia FssF ==  

Because the differential equation (72) is complicated, we can not get the analytical 
solution. A numerical method must be used to solve the problem.  

 
 

 
3-D Stiff String Model for Drag Analysis 
 
Derivation of Governing Equation for Drag Analysis 

From Figure 2, we know: 
θcoscc wnw =•

rr                                                                                                      (79) 

θsincc wbw −=•
rr                                                                                                 (80) 

θμ sincpf wrnm m
rr
=•             (running in for “-”; pulling out for “+”)                  (81) 

θμ coscpf wrbm m
rr
=•             (running in for “-”; pulling out for “+”)                 (82) 

For simplification, assume that the pipe is being run into the hole. For the case of pipe 
being pulled out of hole, we only need to change fμ− into fμ+ .  

 Substituting Equations (79)-(82) into Equations (10)-(15) yields: 

0=−+− cfzen
a wtwF

ds
dF

μκ                                                                                (83) 

0cos =+++ θκ czea
n wnwF

ds
dF

                                                                           (84) 

0sin =−+ θcze
b wbw

ds
dF

                                                                                       (85) 

0=• tm
rr                                                                                                                  (86) 

0sin =−− θμ cpfb wrF                                                                                           (87) 
0cos =− θμ cpfn wrF                                                                                             (88) 
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From Equations (87) and (88), we get: 

pf

b
c r

F
w

μ
θ

−
=sin                                                                                                       (89) 

pf

n
c r

F
w

μ
θ =cos                                                                                                      (90) 

 
p

bn
cf r

FF
w

22 +
=μ                                                                                                (91) 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
= −

n

b

F
F

tg 1θ                                                                                                        (92) 

 
Substituting Equations (89), (90) and (91) into Equations (83), (84) and (85), we get 

the 3-D Stiff String model for drag analysis: 
  

0
22

=
+

−+−
p

bn
zen

a

r
FF

twF
ds

dF
κ                                                                           (93) 

 0=+++
pf

n
zea

n

r
F

nwF
ds

dF
μ

κ                                                                                 (94) 

 0=++
pf

b
ze

b

r
F

bw
ds

dF
μ

                                                                                           (95) 

And three initial value conditions: 
 ( ) i

aia FssF ==                                                                                                 
 ( ) i

nin FssF ==                                                                                                 
 ( ) i

bib FssF ==                                                                                                 
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Case Study  
Case 1:  Axial force aF coupled with torque tM (2D Torque Analysis) 
 The well trajectory parameters (see Figure 1-Appendix B, which are also same the 
parameters used in Case 3 of the first ABM report):  
 
KOP=1312 ft, Casing OD=9 5/8 inch, 
Radius of arc section =1910 ft, Unit weight in air =40 lbf/ft, 
Arc length=2332 ft, Mud density=12.8, 
Tangent length=14787 ft, Friction coefficient =0.4. 

Tangent angle=70 degrees, 
At bottom: torque=2000 ft-lbf, axial 
force=0 

Table 2: Well parameters for case 1 
 
The effect of frictional coefficient 
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Figure 4 

 
From Figure 4, if we rotate a 9 5/8-inch casing to the bottom of the wellbore, the 

surface torque will be very high and reach 97,000 ft-lbf. This will exceed the maximum 
torque that most of top drive facilities can provide, which means we need to select a 
larger facility to handle this. The above calculation is based on well quality in which 
friction coefficient 4.0=fμ .  
 If the well quality is improved, the friction coefficient fμ is reduced, and the surface 
torque is decreased greatly. Figure 5 shows the different surface torque values when 
frictional coefficient is 0.4, 0.3, 0.2 and 0.15 respectively.  
 It’s unexpected to find that although changing frictional coefficient changes torque 
transfer situation, the axial transfer case don’t change (see Figure 6). According to 
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equation 0=+ ze
a tw

ds
dF

,  the axial transfer is only related to the component of effective 

unit pipe weight along the path of wellbore. From Figure 7, we can see that the change of 
frictional coefficient does effect the unit contact force, but the difference is small in this 
case. 
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Figure 5 
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Figure 6 
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Figure 7 

 
 
The effect of Pipe OD 
 

Casing Size (in) Casing weight (lbf/ft) Casing Grade 
9.625 40 J55 

7 23 L80 
5.5 17 P110 

Friction coefficient =0.2 
Table 3 

 
 From Figures 5-7, which depict the effect of frictional coefficient for case 1,  we can 
see that with the better well quality (smaller frictional coefficient), the maximum torque 
needed by the top drive facility is reduced, but the hookload stays at a high value.  
Figures 8-10 show the effect of pipe OD on torque, axial force and unit contact force 
when running casing. 
 From Figure 8, under the condition of frictional coefficient 0.2, the surface torque for 
9 5/8”, 7” and 5.5” casings are 52 kft-lbf, 23 kft-lbf and 14 kft-lbf, respectively. The larger 
the casing OD, the higher is the surface torque value. This also means that for running 
larger casing to target depth, the friction between casing and wellbore will require more 
torque. From Figure 9, we can also see that the larger the casing OD, the larger is the 
hookload. This means, larger OD casing will require larger “push force” to push casing, 
or larger weight on bit. From Figure 10, it is clear that larger OD casing has larger unit 
contact force when pipe is rotating and the torque loss due to the frictional force will be 
much larger. In addition, the negative values for unit contact forces at arc section means 
that with high tension force, the casing will touch the upper side of the wellbore. 
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Figure 8 
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Figure 9 
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Figure 10 

 
 
 

The effect of radius of wellbore 
 
 We change a few well parameters of Case 1 in the following to study the effect of 
radius (see Figure 2-Appendix B), in which the curvature of the arc is 4.7 degrees/100ft, 
while the original curvature is 3.0 degrees/100ft. The target depth is the same as the 
original. 
 

KOP=1312 ft, 
Radius of arc section =1200 ft, 
Arc length=1465 ft, 
Tangent length=15460 ft, 
Tangent angle=70 degrees, 
Friction coefficient=0.3. 

Table 4: Parameters for well trajectory with R=1200 ft 
 
 From Figure 11, with the same target depth, when we change original radius of 
curvature from R=1910 ft (curvature=3 degrees/100ft) to R=1200 ft (curvature=4.7 
degrees/100ft), the needed surface torque will increase from the original 52 kft-lbf to 55 
kft-lbf, about 6% difference. From Figure 12, there is the higher unit contact force in the 
arc section R=1200 ft than in the arc section R=1910 ft.  

It is necessary to point out that although the larger radius of arc will be helpful to 
torque transfer in this scenario, we will need a longer wellbore.  For the scenario of R= 
1910 ft, we need to drill a total length of 17120 ft, while for the scenario of R=1200 ft, 
we only need to drill a total length of 16925 ft. 
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Figure 12 

 
 
 
Case 2: Comparison of 2-D and 3-D Soft Drag Models-the effect of 
azimuth 
 

At survey stations 1 and 2, the measured data  is as follows (also see Figure 3-
Appendix B): 
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Point 1 1I =13.4 degrees 1A =255 degrees (S75W) 
Point 2 2I =16.3 degrees 2A =255 degrees (S75W) 

Dogleg=2.9 degrees/100ft 
The length between point 1 and point 2: sΔ =100 ft 
Axial force at pipe bottom  2F =30,000 lbf Effective pipe weight ew =15 lbf/ft 

Friction coefficient fμ =0.3 
Table 5 
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In Figure 15, although the design well trajectory (two dimensional) has a good result 
for axial force transfer (dogleg=2.9degrees/100ft), in real drilling if azimuth changes 
from 1A =219 degrees to 2A =255 degrees (dogleg=9.47 degrees/100ft), the pipe will be 
“locked” and the weight of upper casing can not effectively transfer. From Figure 16, it is 
clear that the higher the dogleg is, the higher the unit contact force will be. 
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Figure 15: The effect of Azimuth on axial force transfer 
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Figure 16: The effect of Azimuth on axial unit contact force 

 
 

Closing Remarks 
 

1. The 2-D Torque Analysis by constant curvature method has revealed some defects 
in the conventional formulation. Comparing with conventional formulation, for drillstring 
rotation condition, the term 21 fμ+ needs to be included in the contact force 

calculation:
21 f

zea
c

nwF
w

μ

κ

+

+
= (Conventional Soft Model formulation, zeac nwFw += κ ). 
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 2. Comparing the calculation equations for 2-D soft and stiff models of torque 
analysis, the torque calculation results using soft and stiff models are very close. 
 3.  Frictional coefficient has very important effect on torque transfer. 
 4. When casing is rotating, larger OD casing produces larger “pushing force” to run 
casing, but the higher contact force causes the higher torque loss. 

5.  The change in azimuth of wellbore results in different doglegs of wellbore, which 
has great effect on axial force transfer. 
 

Future Work 
1. Develop 3-D Soft and Stiff String Models with rotation. 
2. Case Study for 3-D Soft and Stiff String Models using field data. 
3. Try to consider torsion in the 3-D Soft and Stiff String Models.  

Nomenclature 
I = inclination angle at an arbitrary point of well trajectory, radians 
A = azimuth at an arbitrary point of well trajectory, radians 
κ  = wellbore curvature, 1/ft 

 τ  = well trajectory torsion, 1/ft 
β  = dogleg between point 1 and point 2, radians 
 a = the total arc length between point 1 and point 2 
s = the arc length between point 1 and point M, ft 
mr  = unit moment caused by friction 
i
r

 = unit vector of X direction 
j
r

 = unit vector of Y direction 
k
r

 = unit vector of Z direction 
t
r

 = unit vector in tangent direction of pipe 
nr  = unit vector in normal direction of pipe 
b
r

 = unit vector in binormal direction of pipe 
aF  = axial force, lbf 

nF  = shear force in normal direction, lbf 

bF  = shear force in binormal direction, lbf 

ew  = buoyant weight of pipe per unit length, lbf/ft 

cw  = unit contact force, lbf/ft 

dw  = friction force per unit length, lbf/ft 

tM  = moment in tangent direction, ft-lbf 

nM  = moment in normal direction, ft-lbf 

bM  = moment in binormal direction, ft-lbf 

1I  = inclination angle at point 1, radians 

2I  = inclination angle at point 2, radians 

1A  = azimuth at point 1, radians 
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2A  = azimuth at point 2, radians 

fμ  = friction coefficient 
i

aF  = initial axial force at iss = , lbf 
1+i

aF  = initial axial force at 1+= iss , lbf 

References 
1. Mitchell, Robert F., “Advanced Torque-Drag Analysis”, 2006. 
2. Colin J. Mason, Jesse Lopez, Sigve Meling, Robert Munger, “Casing Running 

Challengers for Extended-Reach Wells”, the SPE Annual Technical Conference 
and Exhibition held in Denver, Colorado, 5-8 October 2003. 

3. C.J.Mason, D.C.-K. Chen, “The Drilling and Casing Running Enigma”, the 2006 
SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 24-27 
September 2006.  

4. C. A. Johancsik, D.B. Friesen, Rapier Dawson, “Torque and Drag in Directional 
Wells-Prediction and Measurement”, SPE 11380, IADC/SPE Conference, New 
Orleans, 1993. 

5. H-S. Ho, “An Improved Modeling Program for Computing the Torque and Drag 
in Directional and Deep Wells”, the 63rd Annual Technical Conference and 
Exhibition of SPE, Houston, Texas, October 2-5, 1988. 

6. D. A. Cocking, P.N. Bezant, P.J. Toms, “Pushing the ERD Envelope at Wytch 
Farm”, SPE/IADC 37618, the 1997 SPE/IADC Drilling Conference, Amsterdam, 
The Netherlands, 4-6 March 1997. 

7. Viktorin, R.A., McDermott, J.R., Rush Jr., R.E., and Schamp, J.H., “The Next 
Generation of Sakhalin Extended-Reach Drilling”, IADC/SPE 99131, IADC/SPE 
Drilling Conference, Miami, Florida, USA, 21-23 February 2006. 

8. Mason, C.J. and Chen, D. C-K., “The Wellbore Quality Scorecard (WQS)”, 
IADC/SPE 98893, IADC/SPE Drilling Conference, Miami, Florida, USA, 21-23 
February 2006. 

9. R.Rezvani, and B. Techentien, “Torque and Drag Modelling for Horizontal 
Openhole Completions”, the 2005 SPE Annual Technical Conference and 
Exhibition, Dallas, Texas, 9-12 October 2005. 

10. Rezmer-Cooper, I., Chau, M., Hendricks, A., Woodfine, M., Stacey, B. and 
Downton, N., “Field Data Supports the Use of Stiffness and Tortuosity in Solving 
Complex Well Design Problems”, SPE/IADC 52819, SPE/IADC Drilling 
Conference, Amsterdam, Netherlands, 9-11 March 1999. 

11. Maidla, Eric E., Wojtanowicz, Andrew K., “ Prediction of Casing Running Loads 
in Directional Wells”, the 20th Annual OTC in Houston, Texal, May 2-5,1998. 

12. Tom Gaynor, Doug Hamer, David C-K Chen, Darren Stuart, “Quantifying 
Tortuosities by Friction Factors in Torque and Drag Model”, the SPE Annual 
Technical Conference and Exhibition, San Antonio, Texas, 29 September-2 
October 2002. 

13. Eric Maidla, Marc Haci, “Understanding Torque: The Key to Slide-Drilling 
Directional Wells”, the IADC/SPE Drilling Conference, Dallas, Texas, 2-4 March 
2004. 

 



22                                                                                                                      Yi Zhang                                                
TUDRP 

Appendix A: 
 

Determination of zt , zn  and zb  
 
1. Minimum Curvature Method 
 

Constant curvature wellbore trajectories are commonly described using the minimum 
curvature method. In this method, unit binormal vector b

r
and curvature κ  are constant, 

and torsion τ  is zero, which greatly simplifies the equations. 
For the survey data of two adjacent survey points (measured depth, inclination angles 

1I  and 2I , azimuth 1A  and 2A ), the unit tangent vectors 1t
r

 and 2t
r

 at the arc’s start and 
end points can be calculated by Equation (A-1) and Equation (A-2), respectively. 
 

( ) ( ) ( )111111 cossinsincossin IkAIjAIit
rrrr

++=                                                       (A-1) 
( ) ( ) ( )222222 cossinsincossin IkAIjAIit

rrrr
++=                                                     (A-2) 

 

 
Figure 1: Well geometry of the minimum curvature 

      between two adjacent survey points 
 

The angle between the unit tangent vectors 1t
r

 and 2t
r

 is β  (dog-leg). We can derive 
the expression of unit binormal vector 12b

r
 from Equations (A-1) and (A-2). 

R 
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r
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For the whole circular arc between point 1 and point 2, b

r
 is constant because 

inclination angles 1I , 2I  and azimuths 1A  and 2A  are known according to survey data. 
From the above equations, we can get the expressions of 1nr  and 2nr  at point 1 and 

point 2: 
1121 tbn
rrr

×=                                                                                                               (A-4) 
2122 tbn
rrr

×=                                                                                                               (A-5) 
 
 
2. Determination of zt , zn  and zb  at any position M on a circular arc 
  

 
Figure 2: Interpolation at a point on a circular arc 

 
 

Consider an arbitrary point M at any position on a circular arc (see Figure 2).The unit 
tangent vector t

r
 at point M is: 

( ) ( ) ( )IkAIjAIit cossinsincossin
rrrr

++=                                                              (A-6) 
The unit binormal vector can be expressed as: 

ββ sinsin
21

*
1 tttt

b
rrrr

r ×
=

×
=                                                                                                 (A-7) 
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where: *β  is the dogleg between unit tangent vectors 1t
r

 and t
r

. 
Taking the cross product of both sides of the equation (A-7) with 1t

r
: 
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Multiply the numerator and denominator of the first term in Equation (A-8) by βsin  
and collect terms in 1t

r
 and 2t

r
: 
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Substituting Equations (A-1) and (A-2) into Equation (A-9): 
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(A-10) 
Because the radius of the arc is fixed, and the unit vectors 1t

r
 , 2t
r

 and t
r

 are in the same 
spatial plane, we get: 

ββ
as

=*                                                                                                                  (A-11) 

where: a is the length of arc between point 1 and point 2; 
       s is the length of arc between point 1 and point M. 
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Combining Equations (A-10) and (A-11) gives: 
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(A-12) 
Based on Equation (A-7), we can see that b

r
 is constant for the whole circular arc 

between point 1 and point 2. 
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According to Serret-Frenet equations, we get:    
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zt ,  zn and zb  for 3-D well trajectory  
 
From Equations (A-12)-(A-14), we get: 
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( )[ ]1221 sinsinsin AAIIbz −=                                                                               (A-17) 

 
For example, if 21 AA = , zt , zn and zb  for 2-D well trajectory  
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Appendix B: 

 
Figure1: The well trajectory-Chirag A16 T2 of British Petroleum Company 

(casing size=9.625”, unit weight=40 lbf/ft, mud density=12.8, friction coefficient=0.4) 
 
 

 
Figure 2: The well trajectory (R=1200 ft) with the same target depth as Figure 1 
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Figure 3 : Well geometry of the minimum curvature  

between two adjacent survey points 
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