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ABSTRACT

This annual report describes the progress during the fifth year of the project on "Integrafed Approach Towards the
Application of Horizontal Wells to Improve Waterflooding Performance." This project is funded under the
Department of Energy’s Class I program which is targeted towards improving the reservoir performance of mature
oil fields located in fluvially dominated deltaic geological environments. The project involves using an integrated
approach to characterize the reservoir followed by proposing an appropriate reservoir management strategy to
improve the field performance. In the first stage of the project, the type of data we integrated include cross borehole
seismic surveys, geological interpretation based on the logs and the cores, and the engineering information. In
contrast, during the second stage of the project, we intend to use only conventional data to construct the reservoir

description.

This report covers the results of the implementation from the first stage of the project. It also discusses the work
accomplished so far for the second stage of the project. The production from the Self Unit (location of Stage I) has
sustained an increase of 30 bbls/day over more than two years. We have collected available core, log and production
data from Section 16 in the Berryhill Glenn Unit and have finished the geological description. Based on the
geological description and the associated petrophysical properties, we have identified the areas for the most potential.
These areas include Tracts 7 and 9. By conducting a detailed flow simulation on both these tracts, and evaluating the
economic performance of various alternatives, we have made recommendations for both these tracts. At present, we

are in the process of implementing the proposed reservoir management strategy in Tract 9.
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EXECUTIVE SUMMARY

During the last year, we have continued to monitor the reservoir management plan in the Self Unit. Over the last
year, the production from the unit has remained constant up to 40 bbls/day (over 200% increase in the production).
For Stage II of the project, we have evaluated two tracts within Berryhill Glenn Sand Unit. Selection of these tracts
(Tracts 7 and 9) is made based on potential index mapping of the entire unit. Detailed reservoir descriptions of each
of the tracts were constructed, and the performance was flow simulated. After matching part of the historical data,
several scenarios for both the tracts were investigated. Based on the economic evaluation, a selective recompletion
followed by drilling of a deviated well is recommended for Tract 9. For Tract 7, the best scenario is to selectively

plug and recomplete the wells.

We will continue to monitor the performance. We are not satisfied with the water cut in the existing producing wells
in Self Unit. We are going to conduct injection surveys in the injection wells to evaluate the location of formations
where water is entering. We are also in the process of implementing the reservoir management plan in Tract 9.
After monitoring the performance in Tract 9, we intend to conduct several technical workshops to transfer the

technology gained from this project.
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1. OBJECTIVES

The overall purpose of the .proposed project is to improve secondary recovery performance of a marginal oil field
through the use of an appropriate reservoir management plan. The selection of plan will be based on the detailed
reservoir description using an integrated approach. We expect that 2 to 5% of the original oil in place will be

recovered using this method. This should extend the life of the reservoir by at least 10 years.

The project is divided into two stages. In Stage I of the project, we selected part of the Glenn Pool Field - Self Unit.
We conducted cross borehole tomography surveys and formation micro scanner logs through a newly drilled well.
By combining the state-of-the-art data with conventional core and log data, we developed a detailed reservoir
description based on an integrated approach. After conducting extensive reservoir simulation studies, we evaluated
alternate reservoir management strategies to improve the reservoir performance including drilling of a horizontal
injection well. We observed that selective completion of many wells followed by an increase in the injection rate was
the most feasible option to improve the performance of the Self Unit. This management plan is currently being

implemented and the performance is being monitored.

Stage II of the project involves selection of part of the same reservoir (Berryhill Unit - Tract 7), development of
reservoir description using only conventional data, simulation of flow performance using developed reservoir
description, selection of an appropriate reservoir management plan, and implementation of the plan followed by

monitoring of reservoir performance.

By comparing the results of two budget periods, we will be able to evaluate the utility of collecting additional data
using state-of-the-art technology. In addition, we will also be able to evaluate the application of optimum reservoir

management plan in improving secondary recovery performance of marginal oil fields.

Successful completion of this project will provide new means of extending the life of marginal oil fields using easily
available technology. It will also present a methodology to integrate various qualities and quantities of measured data

to develop a detailed reservoir description.

2. STAGE I PROJECT MONITORING

During the summer of 1995, we started implementing the reservoir management plan in the Self Unit. Last year, after
evaluating each individual well, we decided to install electrical submersible pumps to produce three wells. The other
three wells required the use of rod pumps. Production from the field improved significantly once the pumps were
installed. Over the last twelve months, an average daily production has been approximately 40 bbls/day. Compared

to a base line production of 13 bbls/day before the implementation, this is more than a 200% increase in production.



The water cut in producing wells is not as low as predicted. We intend to run injection surveys in injection wells to

determine the location of zones where most of the water is injected.

3. GEOLOGICAL DESCRIPTION (By Dennis R. Kerr and Liangmiao Ye)

3.1 Refinement of Chevron Polymer Flooding Acreage

Analysis of core data and well logs, collected from Hyperion Oil Company of Dallas, was conducted to evaluate
Chevron’s polymer flood in the vicinity of Tract 9. In particular, we were concerned with the oil saturation profiles

before and after the initiation of the polymer flood.

Saturation profiles vs. depth for 23 cores showed a similar profile with the "upper" and "middle" Glenn having
higher oil saturation compared to the "lower" Glenn. See, for example, Figure 1. Such a profile was also present 2
miles north of the polymer flood area (Crow 9-43 well) and was inferred from the Project’s TDT logs taken in Tract
7. These results also correspond to the Project’s experience in studies of the Self Unit. Thus, it appears the "middle"

and "upper" Glenn still have a high potential for high oil saturation.

Permeability and porosity vs. depth indicate that the entire Glenn Sandstone is of good reservoir quality. See Figures
2 and 3. The "lower" Glenn (approximately DGI F and G) has porosity ranging from 15 to 20% and permeability
from 10 to 100 md. The "middle" (approximately DGI D and E, but may also include C and F in some wells) and
"upper" Glenn (approximately DGI A, B and C, but may also include D and E in some wells) have porosity ranging
from 17-23% and permeability from 30 to 500 md. The poorer reservoir quality of the "lower" Glenn in the polymer
flood area, compared to elsewhere in southern Glenn Pool field, may be the result of a higher mudstone intraclast
content. The good reservoir quality of the "upper” Glenn is encouraging compared to the poor reservoir quality

indicators measured in the Self No. 82 core.

32 Tract 9 Study

The emphasis on studying Tract 9, in this reporting year, was to construct shale maps between sandstones of each

DG]I, and to assist reservoir engineering efforts in estimating petrophysical properties for reservoir simulation.

Shale maps locate erosional windows between DGIs where sand-on-sand contacts are expected. The isolated areas of
sand-on-sand contacts are potential vertical conduits for fluid flow. Thus, these areas need to be incorporated for or

accounted for in any fluid flow simulation. Figure 4 shows an example of such a map between DGI’s B and C.

Little petrophysical property data are available from wells in Tract 9. Gamma ray intensity vs. porosity was

investigated in order to estimate petrophysical properties. Although a number of factors affect gamma ray intensity,



an empirical relationship was sought in order to take advantage of the most commonly available data for Tract 9 (i.e.
gamma ray logs). The Self No. 82 well data were used as this was the most complete data set available to the Project.
The plot is shown in Figure 5. The relationship between gamma ray and core plug porosity is reasonable based on
linear regression (R2 = 0.66); a weaker correlation is evident for low gamma ray values. The relationship between
gamma ray intensity and log-based porosity was also investigated. The well log cross plot shows a weaker
correlation compared to the core plug porosity correlation; the difference is readily explained by the difference in
rock volume investigated by well logs compared to core plugs. See, for example, Figure 6. The empirical
relationship between gamma ray intensity and porosity was deemed reasonable, and used to transform gamma ray

logs to porosity profiles.
33 Structure Study Southeast Margin of Glenn Pool Field

During earlier Project efforts, a well was drilled in the Self Unit, the Self No. 82. Preparation for drilling the Self 82
well included picking the expected depths to the top of the Inola limestone and Glenn Sandstone for establishing a
coring point. Offset wells were about 600 ft apart from the Self 82 staked location. The coring point was picked at
1420 ft drill depth; the point was estimated independently by two geologists whose estimations were very similar.
After coring and logging of the Self 82, it was realized that the estimated and actual depths were 30 ft off. This
discrepancy was most puzzling given the close distance to offset wells. Consideration to the possibility of additional
structural relief within the broad Glenn Pool field closure was discussed, but not given a high priority within the

Project work schedule.

A study area was selected along the southeastern margin of Glenn Pool field (Sections 27, 28, 33 and 34 of T17N
RI12E) for the investigation of this question of localized structural relief. The working hypothesis was that such
structures are large-scale slumps located along the incised valley margin. The study area is located closure to the
margin than the Self Unit. Logs from 21 wells were available for this effort. Well spacing ranges from 2,600 ft to

less than 300 ft apart. Structure cross sections were compiled through the well array.

The stratigraphic interval of interest spanned the Pink limestone to the Brown limestone. Top of the Pink is about 260
ft above the Glenn sandstone. Top of the Brown is about 120 ft below the top of the Glenn sandstone. The interval
thickness between the top Brown and base of Glenn is highly irregular as a result of erosional relief along the base of

the Glenn. Structure maps were produced for top Pink, top Inola, and top Brown.

The top Inola structure map provides evidence of localized structures similar to what would be expected for
slumping. The relief within the study area measured from well log tops is 50 ft over about 1 mile. Locally, however,
the relief is as high as 30 ft vertically in 400 ft laterally; relief comparable to that developed around the Self No. 82

well. From careful correlation, it is clear that stratigraphic section if faulted out of wells where the structural relief is



high. The faults appear to be listric normal in geometry, with associated antithetic faults and roll-over anticlines. The
normal faults trend northeast-southwest (parallel to the local orientation of the incised valley margin) with open
curvature to the northwest and down to the northwest separation. Laterally discontinuous antithetic faults mirror the
normal faults. Structural separation is 30 ft across the listric faults with locallized antithectic faults; is 15 ft across
listric faults without antithetic faults; and is 10 ft across antithetic faults. Separation up through the Pink limestone is

only locally developed.

The implication for reservoir compartments depends on the stratigraphic level within the Glenn sandstone. Faulting
of the braided fluvial section probably has little effect in that fault gouge of this sand-rich interval is not likely to be a
barrier to fluid flow. On the other hand, faulting of the meandering fluvial section could produce reservoir
compartments in that fault gouge of this mud-rich interval will likely produce reservoir barriers/baffles. Thus, DGI A

through E reservoir compartments could be developed locally in these listric faulted areas.
Future work will assess this potentially important architectural element in other areas of Glenn Pool field.
34 Well Log Characteristics

Discussions at technology transfer workshops and at professional meetings raised the issue of objective identification
or discrimination of channel-fill deposits of the braided fluvial vs. meandering fluvial systems. These sandstones
volumetrically dominate the Glenn and have a first-order effect on reservoir quality. Thus, an effort is underway to
attempt to discriminate these sandstones based on their well log characteristics. This has been done in a qualitative

manner already, but here the emphasis is on investigating objective criteria for making such a distinction.
4. ENGINEERING DESCRIPTION (by Sanjay Paranji and Mohan Kelkar)
4.1 Introduction

This section presents the work completed in the last year. In the last year’s annual report' we presented a technique
for grading different areas of the Berryhill Unit to discriminate between high and low potential. Using the potential
index mapping technique, we decided to concentrate on two tracts of Berryhill Unit — Tract 7 and Tract 9. In
addition to those two tracts, we also investigated Cheveron’s Berryhill Lease (Miceller —Polymer flood) which is
directly north of Tract 9. The reason for investigating Cheveron’s lease was to evaluate the reasons for the success in

increasing the oil production in the unit after the implementation of Miceller-Polymer flood.

This section is divided into three subsections. The first section discusses the evaluation of Cheveron Berryhill Lease;
the second section deals with Tract 9 and the third section deals with Tract 7. Based on the evaluation of these three

areas, recommendations are advanced at the end of each sub-section.



4.2 Chevron’s Berryhill Unit

The area of analysis is the Chevron Wm. Berryhill unit which is north of Tract 9 (Figure 7). Chevron implemented a
Micellar/Polymer flood pilot from 1979-1983, which was based on selective isolation of the upper zones. Chevron
initiated field-wide implementation in 1983-1984 that resulted in a remarkable increase in oil production, which will
be discussed later in more detail. The obvious success of the Chevron Micellar/Polymer flood prompted us to analyze
the unit in more detail. Further, the performance and the completion strategies in this unit could be used as a focal
point to compare and contrast it against Tract 9 which is a geologically similar unit with comparable oil saturation

profiles.

4.2.1  Perforation Strategies

Chevron used the prevalent Upper Glenn, Middle Glenn and Lower Glenn divisions of the Bartlesville sandstone to
describe the reservoir. Chevron believed that the Upper and Middle Glenn layers were separated by a continuous
shale barrier and implemented the pilot flood by isolating the perforations in the upper zones. This was later proved
to be untrue. The strategy during the field-wide implementation was to complete the wells both in the Upper and
Middle Glenn layers. Figure 8.a shows the contrast in completion strategies during the Pilot and Field
implementation. The Lower Glenn was avoided since it is known to be water-bearing. This is in sharp contrast to the
completion practices in Section 16 and Tract 9 wherein the completion density is increasing as we progress down to

the lower intervals. Figure 8.b shows this in graphical form.

4.2.2  Effects Of The Micellar/Polymer Flood

The Micellar/Polymer flood implementation resulted in 52 times increase in oil production and a WOR decrease of
almost 10 times as shown in Figure 9. Chevron increased the number of completions dramatically in 1982-83 prior
to Micellar/Polymer flood field implementation. We believe that at least part of the additional oil response could be
attributed to better completion practices. Hence it was decided to conduct a flow simulation to study the effect of
additional completions by waterflooding the reservoir as opposed to a Micellar/Polymer flooding effort. This enables

us to quantify the additional recovery that could be expected out of a similar program in Tract 9.

4.2.3  Chevron Unit Flow Simulation

The following data
a. Core and log data
b. Production data as a function of time
c. Perforation/completion data



were collected for the area courtesy of Hyperion Energy Resources, the current operator for the lease. In general the

porosity in the Chevron area is higher as compared to Section 16 although this is not true for permeability.

The core data at each well location was averaged for each DGI. The average values were then interpolated at
interwell locations to create areal maps of porosity and permeability (Figure 10) for each DGI. The shale barriers
between the DGI’s have been assumed to be continuous since the vertical permeability is observed to be negligible as

compared to the horizontal permeability.

The PVT properties input requires oil and gas properties as a function of pressure. The minimum bottom hole
pressure is known to be around 20 psi and the initial pressure of the reservoir was around 900 psi. Therefore the
working range of pressure is 20-900 psi. All the properties were generated using standard Black Oil model

correlations for the above working range in discrete increments of pressure.

The parametrisation of the relative permeabilities was done using the power law model with reasonable end point
permeabilities suggested by the Kuykendall’. The exponents of the oil and water curves were varied as a function of

time.

A commercial simulator, ECLIPSE, was used for simulation purposes. The primary depletion stage simulation was
carried out so as to approximate the field oil production response by standard hyperbolic decline with a reasonable
guess value of initial oil production. The secondary recovery stages of the simulation were constrained to match the
oil rates. The relative permeabilities were fine tuned as a function of time to get the observed water cuts. Every effort
has been made to closely monitor the number of active wells and the average reservoir pressure at any time to get a

reasonable forecast.

The areal expanse of the Chevron unit is 160 acres. It was decided to divide the area into 132 ftx132 ft gridblocks so
that any layer is split in 400 gridblocks. The thickness of each gridblock is assigned to be the thickness of the layer
itself, which is obtained by interpolating at interwell locations. The system has 11 layers, which is the sum of all

DGI’s B through G and the intermediate shale layers between any two DGIs.

The results are as shown in Figure 11. The simulated water flooding response shows a much lower kick in the field
oil production (FOPR) as compared to the actual Micellar/Polymer flood response. Similarly the WOR plot shows
decrease by a larger factor for the actual Micellar/Polymer flood response as compared to the simulated water

flooding response. The table quantifies the responses observed.



Response Miceller/Polymer Waterflood

Field Oil Production (bls/d) 51 Times Increase 15 Times Increase

WOR (bbl/bbl) 10 Times Decrease 4 Times Decrease

424  Summary of Simulation of Chevron’s Unit

Based on the simulation results from Berryhill Unit, it is clear that the favorable response observed during Miceller-
Polymer flood is partly due to better completion strategies and partly due to the addition of chemicals.
Conservatively, if only water flooding would have been used in the Berryhill Unit, the oil production would have
increased by 15 times as compared to 51 times. The WOR would have decreased from 200 to 50 instead from 200 to
20. Although not as impressive, re-completion of upper zones would have added significant oil production. This
type of completion strategy is relatively cheap as compared to injecting expensive chemicals. We will evaluate the

usefulness of these strategies for Tracts 9 and 7 in the following two sub-sections.
4.3 Tract 9 Evaluation

Tract 9 is located south of the Chevron-William Berryhill unit and has an areal expanse of 160 acres (Figure 7). The
unit is operated by Uplands Resources Incorporated and has very similar reservoir conditions to the Chevron-William
Berryhill unit. The well schedule information was very difficult to reconstruct. It is known with a fair degree of
certainty that number of wells that have been drilled so far from the time of discovery is close to 65. The unit
currently has six active producers and ten active injectors providing pressure support. Tract 9 is one of the units that
rank high with respect to the original oil in place (15 MMStb). From the report compiled by Welch’® it was observed
that Tract 9 had produced cumulatively 6.058 MMStb of oil through primary depletion and secondary recovery

operations as shown in Figure 12. This amounts to a recovery of 40% of the original oil in place.
4.3.1 Geostatistical Estimation of Petrophysical Properties’

The A-G DGI model provided by the geologist was directly used as input for a thirteen layer system into the
simulator with each DGI constituting one layer with shale interbedding between successive DGIs. The facies

divisions used within each DGI are channel sand, splay sand and flood plain mudstone as provided by the geologist.

A well base map for each DGI is constructed with the facies code assigned at the well locations. The facies type is
determined by the type of SP or Gamma ray log response observed at the well. The facies code is assigned based on

the following convention




1. Channel sand
2. Splay sand
3. Flood plain mudstone, Shale

Indicator variograms are then generated for each facies, which are then input into the indicator simulation program-
Sisimpdf’ for constructing the areal facies map. The Sisimpdf program honors the input proportion of each facies. In
this study a multi-layered model is used which compromises the variability of the petrophysical properties to a
certain degree but the depositional hierarchy is strictly honored. Unlike the Chevron-William Berryhill unit study an
attempt is made to simulate the shale layers between successive DGI layers to identify areas where the shale barrier

is discontinuous permitting sand upon sand stacking.

The thickness of sand in each DGI at well locations is estimated from the data provided by the geologist. These
estimates are then kriged at interwell locations using the ordinary kriging procedure to generate thickness maps for
each DGI. It should be noted that the thickness of sand is explicitly forced to zero for interwell locations where the

simulated facies is known to be shale.

The porosity at each well location was estimated based on the Gamma ray logs due to insufficient Density-Neutron
or sonic logs. A gamma ray to core porosity regression relationship was established based on data from the Self 82
well located in the Self unit (Figure 13). This is the only physical core situated proximal to the study area. The
gamma ray values were then averaged within each DGI and then kriged at interwell locations to produce gamma ray
maps for all DGIs. The kriging is performed with the previously simulated facies maps as external drift.” The

regression relationship is then used to translate this to a porosity map.

Gamma-ray values have a direct dependence on the shale content of the reservoir, which is inversely proportional to
the porosity of section. Since gamma-ray logs show a pulsating response as opposed to the blocky response shown by
SP logs, feet by feet measurements of gamma ray logs may be misleading. When they are averaged over the
thickness of the DGI itself the value should be representative of the shale content and in turn porosity at a particular

location.

Figure 13 shows a large scatter identified by the lines A-A and B-B around the trendline for which the equation is
provided. Hence it was proposed to feed the straight-line equations of A-A and B-B and use a random number
generator for determining the porosity value for a given gamma ray measurement. For example a gamma ray
measurement of 30 API units could be representative of a porosity value between 15% and 26% marked on the plot
as Lower and Upper bounds respectively. It should be noted that lower the gamma ray value, higher the uncertainty

in the correlation.



Even though the correlations between In(k) and porosity are quite good it has not been used since the regression
relationship may yield unreasonable values when extrapolated beyond the input porosity range used to construct the
correlation. Once the porosity maps were generated for all DGIs the values in each DGI were transformed into a
Standard normal Gaussian distribution. It is known that the porosity values are related to permeability without a
large scatter. So the values in the Gaussian domain obtained from porosity are back transformed into permeability
(real space) using the cumulative distribution function (cdf) from Chevron core data as input. This is done DGI by

DGI with the input cdf for the corresponding DGI generated from the Chevron-William Berryhill unit.

Figure 14 presents a composite diagram of the facies, thickness, porosity and permeability map. It can be observed

that the thickness and the petrophysical property maps carry the geological facies imprint.
4.3.2 Flow Simulation Procedure

Tract 9 simulation study uses total liquid production as the flow constraint instead of oil production. The rationale
used is that if the total liquid production were matched, discrepancies in simulated water cuts compared to the actual
field values would result in unacceptable errors of simulated oil production. This should be understood in light of the
fact that typical water cuts in producing wells are 99 %. If a small difference in simulated vs. observed water cut is
observed, it results in significant difference in water production. It will happen if we use oil rate as a constraint. On
the other hand, if we maintain total liquid rate as a constraint, small differences in water cut do not significantly

influence the oil production rate, and the water rate is close to the observed value.

Another difference from conventional history matching procedure was the entire history of Tract 9 was not matched.
Significant uncertainty exists as to the well locations during the early life of Tract 9. Further data on individual wells
— production, completion, abandonment — are not available. Even the total production on tractwide basis is missing
for many years. This makes it very difficult to simulate the historical performance. Instead of trying to match an
“estimated” historical performance, it was decided to concentrate on the last five years of production history for
which better quality data were available. We initialized the model in 1992, and estimated the prevalent conditions at

that time using available data as described below.

The areal expanse of the Tract 9 is 160 acres. It was decided to divide the area into 66 ft. x 66 ft. gridblocks so that
any DGI is divided in 1600 gridblocks. The thickness of each gridblock is assigned to be the thickness of the DGI
itself, which was obtained by interpolating the values at interwell locations. The system has 13 layers, which is the

sum of all DGI’s A through G and the intermediate shale layers between successive DGI's.

The PVT properties input requires oil and gas properties as a function of pressure. The minimum bottom hole

pressure is known to be around 20 psi and the initial pressure of the reservoir was around 900 psi. Therefore the



working range of pressure is 20-900 psi. All the properties were generated using standard Black Oil model

correlations for the above working range in discrete increments of pressure.

The well test data provided an estimate of the average reservoir pressure around the well. Four well tests were
conducted within Tract 9. These average pressures were gridded using the kernel smoothing technique to generate an
areal base map of pressure for the year 1992. Since all the DGISs are in vertical communication with the exception of
DGIs A and B vertical equilibrium was assumed to calculate the areal pressure profile for each DGI. It should be
noted that the base pressure map is tied to DGI E since this layer represents a median depth in the vertical structure
of Glenn sand. All other DGI pressure profiles are determined based on the hydrostatic pressure difference. Figure
15 shows the base pressure map that is tied to DGI E. It can be seen that the southwestern corner pressures are lower
as compared to other areas. It is theorized that the pressure dip around p38 is created since the pressure support from

injéctors K4 and J3 is mostly absorbed by producers p54, p33 and p61 which are situated closer to the injectors.

The saturation profile is derived from resisitivity logs. It is then scaled using a multiplier to make it representative of
the year 1992. The methodology used to determine the multiplier is as follows. The effective permeability (product
of relative permeability and absolute permeability) was estimated from the model at all wells where well testing was
carried out. The effective permeability, which is a function of saturation, is then compared with the observed
effective permeability derived from the well test. Since the effective permeability has a direct dependence on
saturation, the saturation is scaled so as to bring the model derived effective permeability closer to the well test

derived effective permeability at all the wells.
4.3.3 Flow Simulation Results

The well map is presented in Figure 16. It shows only the active wells for clarity and does not include all the wells
that have been drilled in this unit. Initially it was proposed to restrict the recompletion/redrilling program to the area

marked by dotted lines in the well base map. In accordance the following scenarios were proposed.
Scenario Base

It was proposed to plug the lower DGI’s (E, F, G) and then complete upper DGI’s (A, B, C, D) for all existing wells
within dotted area namely p33, p54, p60 and K4. Two new injectors and three new producers 70, 71 and 72 are
proposed. It is intended that the injectors Z1, Z2 and K4 would form a water bank and sweep the oil east and west of

the line of injectors toward the producers as shown by the green arrows in Figure 16.
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Anisotropy Favorable/Unfavorable

It was proposed to investigate the effect of anisotropy K, ; = 3xK , for the base case. This would be favorable for the
proposed intent since the water bank formation is promoted owing to the North-South permeability being higher. It
was also decided to consider the adverse case where K, ; = (1/3)xK;, to get an idea of the possible downside if the

truth is an exact converse to the favorable case.

The history matching for all the cases is done from the year 1992-1997. The forecasting is done from May 1997. It
should be noted that the history matching was done with total liquid production as the flow constraint. Hence the oil

production curve during the history matching stage would be case dependent because of variations in the oil cuts.
Scenario Plug/Recomplete All Wells

Scenario base did not yield a good response. Hence it was decided not to restrict the scope of operations to the
dotted area mentioned in the base scenario. It was proposed to plug all injectors and producers in the lower DGI’s (E,

F, G) and complete them in the upper DGI’s (A, B, C, and D) without redrilling new wells.

The proposal does not look attractive on first glance (Figure 17) since the incremental oil production on
implementation of recompletion/redrilling program is not significantly higher as compared to the case in which
existing conditions are allowed to prevail. This is indicated by the closeness of the two curves in the oil production
plot. The water cut plot shows a decrease of 98.7% to 97.3% that translates to a considerable reduction in water
production. Hence despite the fact that incremental oil production is not encouraging the proposal is economically

viable since the water production is cut drastically resulting in a remarkable reduction in operating costs.
Scenario Plug/Recomplete Old Well and Drill New Vertical Wells

This scenario is a combination of the base case and the scenario detailed in the previous section. The proposal for
new wells is not changed. Hence in this scenario the new wells are p70, p71 and p72 as producers and Z1, Z2 as
injectors. The intention is to capture the advantages of plugging the lower intervals in terms of reduction in water cut

and still gain incremental oil production by virtue of the new wells drilled.

The incremental oil production after implementation of the proposal over the existing condition case is at best about
35 bbls/d. The water cut goes down from a value of 98.7% before implementation to a low of 97.8% which is a

reduction of 0.9% as compared to a cut of 1.4% brought about by the plug/recomplete program.
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Scenario Plug/Recomplete Old Wells and Drill New Multilaterals

It was proposed to drill multilateral wells (Figure 18) with lateral sections penetrating each of the upper DGIs A, B,
C, D. The well will penetrate the formation in the North-South direction. Well Z1 would be a multilateral injector
and well 71 would be a multilateral producer. The intention is to gain advantage of the horizontal sections of the
multilateral wells. It is hoped that multilateral injector would provide good sweep and that the multilateral producer

would yield more incremental oil production as compared to vertical wells.

The incremental oil production after implementation of the proposal over the existing condition case is at best about
70 bbls/d which is considerably larger than the vertical well scenario (35 bbls/d). The maximum reduction in water

cut is about 1%.

The reservoir being very shallow (1,500 feet) it is not essentially advantageous to drill a multilateral well since the
cost of drilling a vertical well is much lower than the cost for a multilateral well. A multilateral well would perhaps
be more appropriate for deep reservoirs in which case it is more cost effective to penetrate a layered reservoir with

laterals from a single vertical section as opposed to drilling multiple vertical wells.
Scenario Plug/Recomplete Old Wells and Drill Deviated Wells

Since the multilaterals proved not to be cost ineffective it was proposed to investigate a scenario wherein the
multilateral wells are substituted by deviated wells. The idea is drill at an angle of 80 degrees to the vertical (almost
horizontal) and penetrate all upper DGI’s namely A, B, C, D with an approximate span of 80 feet in each l‘ayer. The

principal direction of penetration will be North-South.

The incremental oil production after implementation of the proposal over the existing condition case is at best about
70 bbls/d, which is lower as compared to the scenario in which multilaterals were proposed. The maximum
reduction in water cut is once again about 1%. Since the cost of drilling a deviated well is a cheaper proposition as

compared to the cost for a multilateral well, it is economically more attractive.
Ancillary Scenarios

In addition to the above scenarios, we also considered scenarios which were based on our understanding of potential
index mapping of Tract 9. Based on the mapping of potential index, we had noted that all the areas of Tract 9 were
not equally explored. Based on the potential maps, we investigated three additional scenarios which involved either
drilling vertical producing wells, or either drilling deviated injection or production wells. These scenarios are shown

in Figure 19.
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The response from these scenarios is shown in Figure 20. The results are compared with the base line where
existing conditions are allowed to prevail. The best response is given by drilling a deviated producing well — P76,

and is second only to the scenario when all the individual scenarios are implemented simultaneously.
4.3.4  Economic Evaluation

A simple economic evaluation was conducted to identify the most favorable scenarios.’ The rate of return histogram
is presented which is a compilation of all scenarios (with the exception of ancillary scenarios) together arranged in
ascending order. It was decided to incorporate sensitivity analysis on the oil price with variations as shown in Figure
21. The ROR figures do not show a large variation for any given scenario. It can be noted that the plug lower DGIs/
recomplete upper DGIs flow scenario stands out among all the proposals. However, it should be noted that the
production increase in plug/re-completion scenario is not significant. Most of the cost savings are achieved by

reducing the water cut, and hence cost of lifting.

The ancillary scenarios are investigated separately because of the method with which locations of the wells were
selected. The results of the economic analysis are presented in Figure 22. The deviated producer results in an
impressive ROR with a positive NPV at both 15 % and 25 % interest rate. In these scenarios, we have assumed that
the existing wells were selectively plugged/re-completed for three months, and the new wells were drilled following

the three month obsevation period.
4.3.5 Summary from Tract 9 simulation

The flow simulation of Tract 9 is presented. Several scenarios have been evaluated. Economic analysis shows that
plug/recomplete scenario shows high ROR. Combination of plugging/re-completion followed by drilling a deviated

producing well should result in a high rate of return.
44 Tract 7 Evaluation

Tract 7 is located north and east of Tract 9 and is also operated by Uplands Resources, Inc. The well density is
higher as compared to Tract 9, and the unit has a history of good response to water flooding. The present well
locations are shown in Figure 23. It is estimated that Tract 7 has close to 15 MMStb of Original Oil in place(OOIP).
From Welch® it was noted that Tract 7 has produced about 3.9 MMStb through primary depletion and secondary
recovery operations. This means that the total recovery is about 26% of the OOIP, implying there is still a lot of
untapped potential in the reservoir as compared to Tract 9 which has a cumulative recovery closer to 40%. The well
density being high, it is perhaps not advisable to drill new wells, but a plugging/recompletion program to exploit the

upper zones may yield significant additional oil recovery.
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44.1 Data Input and Flow Simulation Technique

The facies maps for all DGIs are generated using indicator using similar methodology as discussed in the previous
sub-section. Several realizations are performed, and the realization which closely matches the map generated by the
geologist, is chosen for petrophysical property estimation. In this work, this selection is done by visual observation.

Automation of the selection of an optimal set of realizations is a topic of ongoing research.

As discussed in the previous sub-section, we used gamma ray values to estimate the porosity data. Although gamma
ray logs are common in the field, one of the major drawbacks of estimating porosity from gamma ray logs in mature
fields is as follows. The engineer has to contend with the fact that calibration of the gamma ray tool is not uniform

since the logs are performed by different service companies.

Open hole logs always give a higher gamma ray reading as compared to cased hole logs. Since gamma ray logs
measure the natural radioactivity of the formation, cased hole logs are affected by the presence of the casing between
the recording tool and the formation. Conceptually, if two different wells are logged with the same tool, a pure shale
interval in the two wells would have the same reading of gamma ray API units. This is not observed in practice since
the shale found at two different vertical sections may have different sand content, varying organic material content,

contrasting compaction levels, all of which affect the value of the gamma ray readings.

If the raw values of gamma ray readings from different wells are translated to porosity without accounting for the
facts mentioned above, it would lead to under or over estimation of porosity. It should be noted that the gamma ray to
porosity regression correlation is one single relationship and the same relationship is used for all the wells uniformly.
By itself, the correlation does not take into account the variations in the gamma ray readings between the wells. To

overcome this problem, we used a procedure of multiwell normalization.

The objective of the procedure is to bring the shale base line for different logs in alignment so that all deviations
from this base line, which are indicative of sand, are referenced from a common base datum, thus making the use of
gamma ray-porosity relationship more reliable. It is observed that most of the wells in this study area are cored in the
lower interval. Gamma-ray logs are transformed into porosity values for wells which are cored in the lower intervals.
Then the gamma-ray derived porosity is compared with the core porosity. Only those gamma-ray logs are selected
which demonstrate a good comparison. Foot by foot gamma-ray readings for such logs are pooled together to
construct a probability density function (pdf) and this pdf is termed as the standard distribution. Individual well
gamma-ray logs are then used to construct pdf(s) for the respective wells. The well pdf is then plotted against the
standard distribution to determine the amount of linear shift in Gamma-ray absolute value required to bring the shale

base lines in alignment.

14



Figure 24 graphically exhibits the procedure. It can be observed that pdf curves exhibit two peaks, one for a range of
gamma ray values between 15-60 units and the other centered around 90 API units. The first peak represents the
range of possible gamma ray values representative of sand and splay. The range of values exhibited by the second
peak is representative of shale. The underlying principle in shifting individual well pdfs is that even though the
probability of occurrence of a gamma ray value representative of shale may not be the same in two different wells,
the range of gamma-ray values which represent shale should be centered approximately around the same gamma ray
reading. For well E-9 it was determined that a linear correction of -25 API units is appropriate. It can be seen that
originally the center line of the shale peak, which was 125 API units, after adjustment is about 100 units. This is done

for all the wells other than those which were used to generate the standard distribution.

Once the normalization procedure is completed the gamma ray values are averaged within each DGI at all wells.
These average values are then kriged at all interwell locations DGI by DGI to produce areal maps of gamma ray

readings with the simulated facies maps as external drift.

The areal gamma ray maps are transformed into porosity maps by using the gamma ray-porosity relationships with
the use of a random number to aid the reproduction of the scatter seen in the gamma-ray vs. porosity plots (Figure
25). The correlations were generated with the use of digitized gamma ray values and density-neutron log porosity
values. It can be observed that the wells show a fairly consistent relationship. In this study a cutoff is used with
respect to the gamma ray values beyond which transformation of gamma ray values to porosity is meaningless. The

cutoff in this case was fixed as 140 API units. Beyond this range, the porosity is fixed as 1%.

Regression relationships between log(K) and porosity are used to generate the permeability distribution from the

porosity maps.

The thickness maps for all DGIs are generated by using the ordinary kriging procedure at interwell locations. The
thickness of all gridblocks for which the facies type is known as shale/flood plain mudstone is forced to zero. Since
thickness is a continuous variable as opposed to facies which is a discrete variable kriging on thickness even with
zero thickness points need not necessarily capture the facies boundary between sand and shale. It is therefore
necessary to use explicit procedures to make the simulated facies and kriged thickness maps consistent with each

other.
4.4.2 Flow Simulation Process

The conventional history matching procedure involves reconstructing the well history from inception time to present
time. A deterministic initial pressure and saturation profile is mapped, and then field flow performance is matched by

tuning the input parameters. In this case study the saturation and pressure profiles are derived for the year 1993 and
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history matching is initiated at this time. This eliminates the need for reconstructing the well schedule history from
inception time of the field. The history matching is performed for a short segment of time 1993-1997, during the
course of which the input model is calibrated. It should be noted that the production and injection data were provided

by the operator for this unit and is far more reliable than public sources of data.

The areal expanse of the Tract 7 is 160 acres. It was decided to divide the area into 66 ftx66 ft gridblocks so that any
DGI is split in 1600 gridblocks. The thickness of each gridblock is assigned to be the thickness of the DGI itself
which was obtained by kriging at interwell locations. The system has 13 layers, which is the sum of all DGIs A

through G and the intermediate shale layers between successive DGIs.

The PVT properties used for this case study are essentially the same as those used for the Chevron-William Berryhill
unit study. The saturation profile derived from the resistivity logs is scaled up so as to match the water cuts. It can be
recalled that the Tract 9 case study uses well test data to match the effective permeability calculated from the model
with the effective permeability derived from the well test. In this simulation study, this approach could not be
realized since only a single well was tested within this study area. Hence the reserves in place and the saturation
multiplier used for Tract 9 were used as a guidelines for estimating the possible range of scaling coefficients of

saturation.

First, a multiplier of 1.4 which was used for Tract 9 was used for this study also. The ratio of oil phase effective

permeability to water phase effective permeability is similar in both the study areas justifying use of the same multiplier.

Second, a multiplier of 1.2 is chosen based on the fact that it is the lowest possible multiplier that would still yield a good

history match with regard to the accuracy necessary in simulated water cuts.

It is known that reserves in place at the time when history matching is started (1993) is around 11.1 MMstb. Based
on the use two multiplier coefficients 1.2 and 1.4 on the water phase saturation S , the reserves in place were
calculated as 10.653 and 9.43 MMstb respectively. These numbers are consistent with the estimated reserves (11.1
MMStb) which were based on initial oil in place and cumulative oil production so far. The objective is to get an idea

of the incremental oil production obtainable with a worst case (S x1.4) and best case (S _x1.2) scenario.

The pressure profile is guessed for DGI E, based on which all the other DGI pressure maps are generated assuming
that the pressure difference between DGIs is equal to the hydrostatic head. The guess profile is then input into the
simulator and the performance of this profile is gauged by determining if it satisfies the field injection and production
rates. If not, the pressure data are altered so as to be able to match the production and injection data. It should be
noted that the BHP for producers (pumping wells) is about 20 psi and the BHP for the injectors is known to be 1250

psi. Hence there is only a certain range of input average reservoir pressure (year 1993) for which the production
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data/injection data can be matched. This obviously assumes that there is no leverage with regard to alteration of the
petrophysical property fields. If a typical fracture gradient of 0.75psi/ft is assumed, the formation fracture pressure is
calculated as 1163 psi. It was found that the BHP of injectors is very close and sometimes above the fracture
pressure. This is taken into account in the simulator by multiplying well transmissibility based on the instantaneous

pressure difference between BHP and the calculated fracture pressure.

It should be noted that the single well test (well 7-111) that was performed in this study area demonstrated an
average reservoir pressure of 1050 psi. It is also known that the row of injectors located in the southern part of the
study area take in water at very high pressures only. Considering these facts there is enough reason to believe that the
average reservoir pressure is high and close to about 1000 psi. Well 7-111 produces the highest volume of fluid and

contributes one half of the total liquid production at any given time.
4.4.3 Flow Simulation Results

The completion density in this study area is largely skewed towards DGI G (Figure 26). Considering the well density
in Tract 7, it was decided that a plugging/recompletion program is the most appropriate future implementation. All
perforations in DGI G are plugged, and then DGIs B-F are recompleted. Recompletion of DGI A is avoided since the
permeability for this layer is observed to be smaller as compared to all other DGIs. Independent simulations were

conducted with two different S, scaling factors mentioned before.
Scenario S_*1.2

This is the optimistic scenario wherein it is deemed sufficient that the resistivity log derived saturation profile, when
scaled up by a factor 1.2, is adequate to bring it in tune with the initial time of history matching(1993). It should be
noted that the saturation profile captufes the global profile of the reservoir but the relative highs and lows predicted
in this profile need not necessarily be valid. Extending this logic, it could be said that when the unit is considered as
one unified system, the flow simulation gives an approximate idea of how the system would behave in response to a
stimulus, but there is no guarantee that wells at selected locations will honor the simulated performance in truth. The
reduction in water cut for this scenario is about 2%, and the incremental production obtainable after implementation

of the plug/recompletion program is about 375 bbl/d. The simulated response is shown in Figure 27.
Scenario S x1.4

This is the pessimistic scenario, wherein the effect of a very large multiplying coefficient for the S, profile at 1993 is
simulated, and is contrasted against the previous case. It can be observed that the incremental oil production is still
quite high but the reduction in water cut is small after implementation of the plug/recompletion program. The

governing factor for a proposal to be viable or not, is the possible reduction in water cut coupled with the incremental
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oil production that could be obtained. In this case, oil production increases since more total fluid (oil+water) is being
withdrawn. The high rates of total liquid withdrawal also result in increase of lifting or operating costs. It should be
noted that, before implementation of the recompletion program, the wells were primarily producing from one DGI.

But after implementation of the program fluid is withdrawn from DGIs B-F yielding more total liquid production.

It can be observed from Figure 28 that the water cut shows a decrease of about 0.2% at best. It will be shown below
in the economic analysis section that the incremental oil production does not generate enough revenue to offset the
increase in lifting costs. If the saturation profile in reality is close to the saturation profile estimated in this scenario,

then it can be concluded that a plug/recompletion program is not economically viable.
444  Economic Analysis of Tract 7

Only two scenarios were incorporated in the analysis of Tract 7. The forecasting was performed for observing the
response of plug/recompletion program but the simulation itself was initiated with two different base maps of
resistivity log derived water saturation maps. This was accomplished by using two scaling coefficients for saturation
namely S x1.2 and S x1.4. Figure 29 presents the rate of return and the net present value charts for the two
scenarios. The unit has 37 active wells for which the approximate plug/recompletion cost is $500,000. It can be
observed that if the water saturation profile is scaled up by a factor of 1.4, the plug/recompletion program is
unfeasible as indicated by the zero rate of return and negative net present value. Conversely, if in reality the
saturation profile corresponds to the resistivity log derived profile scaled up by a factor of 1.2, the implementation of
the plug/recompletion program will be largely successful. These two extremes could be considered as the bounding

cases for actual field implementation.
Summary of Tract 7 Simulation

Owing to the high well density and completion skewed towards the lower zones in Tract 7, the most appropriate program
is plug/recompletion. Most likely, the procedure would result in successful recovery of additional oil. The bounding
extremes, discussed above, have been defined by performing simulations with different saturation profiles for the time

instant when history matching is started.
5. TECHNOLOGY TRANSFER ACTIVITIES
The following papers were given at the professional meetings indicated:

“Reservoir Characterization and Imporved Water-Flood Performance in Glenn Pool Field: DOE Class I Project,”

1997 AAPG Annual Meeting in Dallas, Texas.

18



“Application of Borehole Imaging for Reconstruction of Meandering Fluvial Architecture: Examples from the
Bartlesville Sandstone, Oklahoma,” Fourth International Reservoir Characterization Conference in Houston, Texas;

and SPWLA meeting in Tulsa, Oklahoma.

“Reservoir Management of Self Unit- Glenn Pool Field,” paper presented at Oil Recovery Conference organised by

University of Kansas, Wichita, KS (March 20, 1997).

All presentations received great deal of interest from members of independent and major operators.

A technology transfer workshop was also presented in Ft Worth, Texas. The presentation was similar to those offered

in 1996 except this presentation included a new set of posters outlining the geological characterization.

In August 1997, two students completed their thesis/dissertation as part of this project. Liangmiao Ye completed his
doctoral dissertation titled: “Reservoir Characterization and Sequence Stratigraphy of the Pennsylvanian Bartlesville
Sandstone, Oklahoma.” Sanjay Paranji completed his masters thesis titled: “Integrated Reservoir Description and
Flow Simulation Case Study: Glenn Pool Field.” These theses are available for viewing at The University of Tulsa

McFarlin Library. It may also be obtained through interlibrary loan.

The following paper has been accepted for publication in the AAPG Bulletin: “Glenn Pool Field, Oklahoma: A Case
of Improved Production from a Mature Reservoir.” This paper offers an overview of the progress made under Phase

L

6. FUTURE WORK

The remaining future work includes implementation of the proposed reservoir management plan. Due to
circumstance unrelated to the project, the implementation was delayed by several months. Currently, we are in the
process of implementing the proposed plan for Tract 9. We will begin with plugging and recompletion of the
existing production and injection wells. After observing the performance for three months, we will implement the
drilling of deviated well if economically feasible. Based on the results of our study, we expect to present several

workshops to interested operators.
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GAMMA RAY v/s POROSITY CORRELATION CHART
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FIGURE 5: GAMMA RAY INTENSITY VERSE CORE POROSITY (WELL SELF 82).
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Gamma Ray intensity vs log porosity (well 7-113)
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FIGURE 6: GAMMA RAY INTENSITY VERSE LOG POROSITY (WELL 7-113).
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FIGURE 7: INDEX MAP SHOWING THE LOCATION OF CHEVRON UNIT.
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FIGURE 9: WOR AND OIL PRODUCTION RESPONSE OF THE CHEVRON UNIT.
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RAW PRODUCTION DATA OVERLAIN WITH EXTRAPOLATED DATA
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FIGURE 12: PRODUCTION ANALYSIS PLOT FOR TRACT 9 SHOWING THE PRIMARY GAS INJECTION AND WATER FLOODING

STAGES OF DEPLETION.
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GAMMA RAY v/s POROSITY CORRELATION CHART
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FIGURE 13: GAMMA RAY VERSE CORE POROSITY CORRELATION DEVELOPED FROM THE DATA COMPILED FROM SELF 82.
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FIGURE 14: COMPOSITE DIAGRAM SHOWING AREAL MAPS OF POROSITY, PERMEABILITY AND THICKNESS HONORING

THE FACIES DISTRIBUTION. ALL DIMENSIONS ARE IN FEET/TRACT 9 STUDY.
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Well location map with Existing/Proposed wells
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FIGURE 16: WELL BASE MAP OF EXISTING/PROPOSED WELLS FOR TRACT 9.
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FIGURE 17: OIL PRODUCTION AND WATER CUT PLOT FOR SCENARIO PLUG/EECOMPLETE ALL WELLS
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Well location map with Existing/Proposed wells
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FIGURE 18: FIGURE SHOWING THE PROPOSED WELL BASE MAP WITH MULTILATERAL WELL LOCATIONS.
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FIGURE 20: OIL PRODUCTION AND THE WATER CUT PLOT FOR ANCILLARY SCENARIOS.
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RATE OF RETURN HISTOGRAM WITH SENSITIVITY ON OIL PRICE
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FIGURE 21: ROR HISTOGRAM WITH SENSITIVITY ON OIL PRICE.
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Rate of Return Histogram for Ancillary scenarios
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FIGURE 22: RATE OF RETURN AND NET PRESENT VALUE CHARTS FOR ANCILLARY SCENARIOS.
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Tract 7 well base map
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FIGURE 23: WELL BASE MAP FOR TRACT 7 WITH THE X, Y DIMENSIONS IN FEET.
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FIGURE 24: WELL E-9 PDF PLOTTED AGAINST THE STANDARD PDF. A LINEAR SHIFT OF -25 API UNITS IS NEEDED TO

BRING THE WELL E-9 SHALE PEAK IN ALIGNMENT WITH THE SHALE PEAK OF THE STANDARD DISTRIBUTION.
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.Gamma Ray intensity vs. log porosity (well Self 79)
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FIGURE 25: GAMMA-RAY VS. POROSITY REGRESSION RELATIONSHIPS FOR TWO WELLS LOGGED IN THE GLENN SAND
RESERVOIR.
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FIGURE 26: HISTOGRAM SHOWING THE CONCENTRATION OF PERFORATIONS IN DGI-G.
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FIGURE 27: OIL PRODUCTION, WATER CUT PLOT FOR THE SCENARIO S X1.2
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UNIT OIL PRODUCTION - S, x1.4/Tract 7 plug/recomplete old wells
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FIGURE 28: OIL PRODUCTION, WATER CUT PLOT FOR THE SCENARIO S _X1.4
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FIGURE 29: RATE OF RETURN AND NET PRESENT VALUE CHARTS FOR TRACT 7
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