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otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United Sates Government or any
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ABSTRACT

An advanced mud system is proposed that augments a coiled tubing drilling
rig designed to drill microholes. The system is tailored to the hole
geometries and rig characteristics required for microholes and is capable of
mixing and circulating mud and removing solids while being self contained
and having zero discharge capability. Key components of this system are
triplex mud pumps and a mud processing unit. The system also includes an
additional component of abrasive slurry jetting which allows cutting through
most all materials encountered in oil and gas wells including steel, cement,
and all rock types. The jetting mechanism does not require rotation of the
nozzle or drill string, has small reactive forces acting on the drill pipe, and
generates cuttings small enough to be easily cleaned from the well bore.
These components and parameters compliment the concepts put forth in
microhole coiled tubing drilling and should help insure the reality of drilling
small diameter holes quickly and inexpensively with arig that has a minimal
environmental footprint with a mud system that is efficient, compact, and
portable.
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INTRODUCTION

Traditionally, the oil and gas industry had drilled large diameter holes with
rigs and equipment that are big, heavy, and expensive. Microhole coiled
tubing drilling offers the potential to drill wells less expensively thus giving
operators away to acquire geological or geophysical data, or develop
reserves that otherwise might go untested. The corresponding CTD rig
(Figure 1) will be smaller, lighter, more portable, and have a significantly
less environmental footprint than conventional rigs. Thiswill allow access
to areas that were previously too environmentally sensitive or remote.
Microhole drilling could truly be the quantum shift needed in drilling
methods to drill more wells for less investment, access portions of reservoirs
that would otherwise never be produced, and move the U.S. toward less
dependency on foreign energy.

This project presents the design of an advanced mud system for microhole
coiled tubing drilling (MHCTD) within the DOE’ s Microbore Technology
Development Solicitation. The proposed system is designed to be
compatible with coiled tubing drilling systems and includes equipment and
methodologies to mix drilling fluids, circulate that mixture downhole, clean
and store the returned fluids, and will be able to perform these functions in
an underbalanced condition with zero discharge and acceptable levels of
environmental impact. In addition to performing the above functions, the
project was granted the latitude to investigate and develop abrasive slurry
jetting (ASJ) as adrilling mechanism to be applied with MHCTD and
logically tied ASJ to the mud system.

As with any emerging technology, design and implementation is an iterative
process. It will take a systems approach and merging of traditional and new
concepts. Thisreport is the culmination of Budget Phase | of this project
which was only the design and concept development phase. Progressison
target and results are favorable to applying the current developments and
advances to MHCTD in Budget Phase || of the project.



EXECUTIVE SUMMARY

Bandera Petroleum Exploration LLC and Impact Technologies LLC, asjoint
investigators, have developed an advanced mud system for microhole coiled
tubing drilling as part of the DOE’ s Microhole Technology Development
Solicitation. This report presents the basic design(s) and concepts for the
system as a conclusion of Budget Phase |. Budget Phase I, if approved, will
manufacture and test prototypes of the designs and concepts.

The system as conceived and presented herein includes the following
components: pump(s) to convey drilling fluids downhole; a sub-system to
process the returned well fluids; and a method to drill ahole in rock with an
abrasive laden fluid. The system is compact, portable, and readily adaptable
to amicrohole coil tubing rig. The ability to drill rock with an abrasive
laden fluid represents a significant shift in drilling methods and has
numerous congruencies with CTD and microhole drilling.

This research defined operating parameters for the entire mud system
considering the intended movement toward microholes, coiled tubing rigs,
and the anticipated shifts in drilling technology. This included investigating
mud properties for microholes and confirming drilling hydraulics through
computer modeling. The resulting predicted performance then allowed
setting specifications in terms of flow rates and pressures which ultimately
determined types and sizes of equipment to be considered. Needed and
appropriate answers were obtained though this work, and no impediments to
the ability to drill small holes with coiled tubing and a functioning mud
system were found.

Abrasive dlurry jet drilling (ASJ) isalogical adjunct to MHCTD butisa
technology unto itself. Through a university research sub contract,
significant progress was made toward applying ASJ. An extensive literature
search provided a springboard to focus ASJ to drilling wells. Laboratory
tests demonstrated the feasibility to cut ahole in rock larger than the nozzle
diameter and without rotating the nozzle or drill string. A new method of
metering and delivering abrasives to the drilling fluid was developed and
proved. These are milestones in the scope of ASJ and have direct
applicability to MHCTD.

Mud pumps are a key component of MHCTD and have some unique
specifications resulting from the defined operating parameters. After



Investigating various pump manufacturers and models, and applying the
MHCTD parameters, one pump model became a clear choice due to its
smaller size, weight and cost. It is applicable with only minor modifications
and has sufficient capacity to be used in ASJ. Developing atrue high
pressure slurry pump (HPSPP) is still a goal of this project which will have
to be addressed in Budget Phase I1. Thus, we now have several options
available for delivering abrasives at high pressures for drilling.

After searching inside and outside of the oil and gas industry there are
several mud processing units available that meet the project specifications.
There is however room for significant improvement to tailor a unit to true
MHCTD. When this is combined with the use of non-traditional tankage
materials it would provide another significant step towards the rig of the
future. Another potential development for advanced mud processing is a
compact 3-phase (gas-liquid-solid) separator that can concentrate the solids
stream under backpressure for more compact processing. Thiswork is
contemplated for Budget Phase I1.

As the industry pushes harder to find more barrels per dollar all methods and
equipment need to be continually optimized. It is clear that thisisawork in
progress and several emerging technologies could find an application in
MHCDT. At thisjuncture, this report lays out the components, sizes, and
specifications to fully performwithaMHCT rig. Asdesigned this proposed
mud system is a workable solution for MHCTD, but more work will be
needed to optimize it

EXPERIMENTAL

Experiments in this project were limited to the testing and development
performed by University of Missouri at Rollarelated to Abrasive Slurry
Jetting. Discussion of these experiments are given in Task 2 of the Results
and Discussion section below.



RESULTSAND DISCUSSION

Task 1 -Review of the Overall Mud System (Drilling Synergy)

The synergy of the overall drilling process was reviewed to better define the overall
microhole drilling mud system and determine its characteristics. This process consisted
of first identifying the mud type, fluid and physical properties. The range of wellbore
and hole geometries were next determined that were most likely to be utilized in MHT
drilling systems. Pump rates and the resulting standpipe/pump pressures were then
modeled to determine conditions needed to clean the hole. Lastly gas injection was
evaluated to model underbalanced drilling conditions. All work was consistent with
current CTD operations and ASJ practices.

Basic DOE hole specifications for Microhole Technology were a8.89 cm (3.5 in) hole at
a 1524 m (5000 ft) TVD with apossible 305 m (1000 ft) lateral at that TVD. Pump
flow rate and pressure modified specifications were: 18.9 Ips (300 gpm) @ 6895 KPa
(1000 psia) and 0.63 Ips (10 gpm) @ 34.4 MPa (5000 psia). Flow Back processing
specifications were 31.5 Ips (500 gpm) water or oil based and gasified fluids. Other
parameters required were that the system mixes, circulates, cleans, and stores 31.8 m®
(200 bbls) water / diesel muds with Zero Discharge (defined by investigators and
industry as —o fluids hit the ground” and that solids and liquids can be hauled off
location). Of course, al health, safety and environmental considerations were included in
this evaluation. Not included in this project were the generation and transmission of
electrical power, the physical mud, any well control equipment, transport & staging
equipment, gas storage and injection equipment. Figure 2 shows the sections included in
this project in yellow. The blue section has overlap to the mud system but includes awell
control component that which is not considered part of the mud system.

Mud properties types and characteristic ranges were determined by knowledge of the
investigators and discussions with mud engineers' and mud company scientists. From
these discussions it was determined that a premium mud system would be desireable, if
not required, for proper hole cleaning in the narrow clearances as seen in MHT drilling.
Premium mud in this definition would be awater or oil based system with good
rheological properties for drilling- namely a low viscosity during flow and good gel
strength when flow stops. Two or three percent KCL water based polymer muds and
some oil based muds would meet this requirement. Poor muds (poor base and/or poor
mud processing) would cause too high a stand pressure for pumping or would allow
settling of cuttings during any brief flow stoppage or areas of low velocities. Excellent
mud processing would be required to keep the beneficial flow characteristics of these
muds from degenerating with solids generation and buildup. These premium muds
would also protect from solids settling during periods of no flow. Environmental
concerns force strong consideration of water based muds..

In the later hydraulic modeling studies, the Power Law was used to define the muds as a
water, spud mud or a premium type mud. A premium type mud had an N =0.31 and a
K=0.017974. The poorer spud muds evaluated had an N=0.61 and a K=0.007315 values.
Water has an N=1.0 and K=1.0.



Wellbore geometries were determined based on TD bit sizes for MHT (8.89 cm (3.5in)
and smaller bit size) and slimhole (12.07 cm (4.75in) to 8.89 cm (3.5 in) and smaller bit
size) drilling. Required casing and hole sizes were worked back up the well to the
surface. The ranges of hole, CT and casing sizes can be seen in Figure 3 as represented
in similar fashion to the DOE’s format. Common casing sizes of 11.43 cm (4.5in ), 13.97
cm (5.51n) and 17.78 cm (7 in) were also included in the investigation. Largest hole size
considered was 25.08 cm (9.875 in) for setting 19.37 cm (7-5/8 in) casing in the surface
section. Coiled tubing sizes considered were 3.175 cm (1.25 in) up to 7.30 cm (2.875 in).

Maurer Engineering’s HY MOD and MudL ite modeling programs were used to estimate
the system hydraulics. These runs helped define the range of operating parameters for
MHT drilling. A full HYMOD run is given in Appendix B.

Limitations set in the program include ensuring that cuttings are lifted out of the hole at a
minimum rate of 2.13 mpm (7 ft/ min) and that no turbulent flow (non gaseous) occursin
any openhole section. Maximum standpipe pressure allowed was 34.5 MPa (5000 psia).
All runswith a CT spool length of 3048 m (10,000 ft). Standpipe pressures were found
for each rate and geometry.

The table shown in Figure 4 gives a summary of the HY MOD runs with graphical
presentations shown in Figures 5 and 6. In this table, each case is described, red signifies
that turbulent flow exists and yellow indicates that insufficient hole cleaning is occurring.
In Figure 5, turbulent flow regions are not plotted as are areas of insufficient hole
cleaning or standpipe pressures in excess of 34.5 MPa (5000 psia).

From these studies it was determined that the rate-pressure systems of MHT systems are
possible but the operating range becomes very narrow in these smaller systems.
Maximum flow rates required were only 18.9 Ips (300 gpm) to clean cuttings out of any
of the identified hole geometries. Minimum flow rates were found to be down to 0.63 Ips
(10 gpm) for the smaller geometries with very tight control required due to the narrow
operating range- between hole cleaning, turbulence and pressure limits. Also of concern
are changes from MHT hole diametersto larger diameters where fluid/mud velocity
slows and hole cleaning becomes insufficient.

From this hydraulic modeling work, the maximum rate specification of the system was
revised with DOE approval from 0.94 — 31.5 Ips (15- 500gpm) to 0.63 — 18.9 Ips (10-
300gpm) ranges, while maintaining the same pressure requirements.

Figure 6 graphically shows the results of the various cases used to evaluate gag/ air
injection to create underbalanced or near balanced systems. In thisfigure cases are
described by ‘largest casing size or hole diameter X coiled tubing size’. Ascan be seen
in this figure, amaximum of 0.71 —0.94 m*/s (1500 to 2000 SCFM) are estimated
needed for UBD in MHT. A full MudLite model runisgiven in Appendix C. Erosional
limits were not considered in these cases, but should be carefully considered.
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Figure 7 shows the full operating range of MHT pump requirements as defined earlier.
This graph shows the full flow ranges and pressures to be encountered and the required
equipment to be designed based on that analysis. The investigators contend that most of
the CTD rig time will be spent inthe 1.3 — 4.7 Ips (20 — 75 gpm) range and little time will
be spend in the 9.46 — 18.9 Ips (150 — 300 gpm) rate ranges. The only time greater than
4.7 Ips (75 gpm) will be needed is while drilling the surface hole sections. Such shallow
sections (surface to 152 m (500 ft) estimated) normally can be drilled fairly quickly. In
this figure, true microhole drilling occurs only in a small region as will conditions where
ASJcan occur. Mogt of the operating area is really slimhole sizes. What the
investigators see needed in this system are highly portable, light weight, compact
modular components. Twin pumps for redundancy, portability and selection. Mud
cleaning system tailored to these smaller flow rates and rig scale while all meeting DOE
specifications.

The Mud System was also investigated for Evolving Technologies to improve the CTD
operation. Thesetechnologiesincluded-  Abrasive Slurry Jetting (ASJ) with required
methods to pump slurries at high pressures, including a High Pressure Slurry Pump;
Modular non-steel tank & piping; Composite Coiled Tubing; Sintered Carbide
Surfacing; Grind, Slurry & re-inject fluids & cuttings; Clear water only discharge;
compact gas-liquid-solids separation (GLCC plus); Horizontal, Directional Drilling and
Trenchless systems; and ground level liners.

Task 2 —Abrasive Slurry System Design

Jet drilling, jet assisted drilling, abrasive cutting/drilling and abrasive slurry
cutting/drilling have all had a long history of being considered in oil and gas drilling®
The literature search (Appendix D) conducted as part of Task 2 proves this out but also
demonstrated that there have historically been some limitations to getting a method
commercialized. Several times the limitation has been business cycles or oil and gas
product price fluctuations that sart and stop the R& D cycles abruptly causing avalid idea
or approach to be stopped mid-stream, never to be resurrected. Other limitations have
been technical or mechanical in the form of tubular or metallurgical limitations or pump
limitations. This solicitation’s current combined technologies of coil tubing having
working pressures of 34.5 MPa (5000 psia), a conceptually working ASJ system, and the
urgent need to develop oil and gas reserves outside of old methods all come together to
finally push the concept of ASJ drilling to commercialization. Having recognized the
ability of abrasive laden fluid to cut virtually any materials, particularly the steel, cement,
and rock formations found in oil and gas drilling, work proceeded to find specific ways to
merge abrasive jetting with micro hole coiled tubing drilling (MHCTD).

Thiswork was performed under a subcontract with the University of Missouri-Rolla

(UMR) at their Rock Mechanics and Explosives Research Center under the supervision
of Dr. D. A. Summers.
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That review of applicable published literature in the area of high pressure water jetting
and abrasive jetting with submerged jets found that while some work in this area had
occurred, it had not progressed enough for direct application to MHCTD. However it
was promising enough that it should be further investigated in an attempt to integrate ASJ
into MHCTD. A summary of this literature review is also included in Appendix D.

To be applicableto MHCTD, abrasive slurry jetting (ASJ) must be able to: 1) drill (jet)
through all materials encountered in oil and gas operations 2) drill (jet) a hole with
sufficient diameter to allow the jet and drill string to advance within the cut hole 3) have
anozzle life that is consistent with the operational and economic functions of adrilling
rig 4) efficiently operate while submerged in fluids.

UMR laboratory tests demonstrated that a 5.08 cm (2.0 in) diameter hole can be jetted
abrasively inrock and the resulting hole is larger than the 0.11 cm (0.043 in) nozzle
diameter and upto 4.45 cm (1 % inch) diameter drill string. And, this can be done
without rotating the nozzle or drill string. These are both key issues and
accomplishments for CT drilling since the drill string cannot be rotated. Testing showed
that the system can work under water although additional testing and component
development iswarranted. Additionally, the performance of the ASJ system was
improved by developing an abrasive injection circuit that allows more continuous and
metered delivery of abrasives into the flow stream.

The specific energy required to cut ahole in a sandstone test block was measured and
calculated to be approximately 670 j/cc. Thisequatesto 3.4 KW (4.6 HP) from 0.15 Ips
(2.3 gpm) at 20.7 MPa (3000 psia) which are well within limits and consistent with
mechanical components of MHCTD. Rate of penetration (ROP) then becomes a function
of specific energy to cut ahole in rock, and again, the relative magnitudes of pressure,
rate, time, hole and pipe geometries, and fluid/abrasive type(s) are all within the scope of
MHCTD. 2 UMR measured ROP at 15.2 cm/ min (6 inches per minute) without
advancing the nozzle. By doubling the horsepower and advancing the nozzle, the ROP
could conceivably be quadrupled which points toward an ROP of 36.6 m/hr (120 ft/hr).
Thisrate gartsto be competitive in drilling operations particularly considering that the
ASJ method is indifferent to the type of material being drilled.

The abrasive slurry system was and still is an iterative process. There are only a few key
variables needed to be identified and controlled -fluid type and properties, abrasive type
and properties, flow rate, pressure, and nozzle configuration. But there are numerous
combinations and permutations of how these variables interact in a given system. Dr.
Summers' extensive experience in the combined fields of jetting, abrasive jetting, rock
mechanics, and mining/petroleum engineering resulted in a very effective way of
developing, testing, and proving ASJ for MHCTD. The UMR work has demonstrated a
ASJworkable model for MHCTD.

There are safety issues and operational protocols associated with ASJ dealing primarily

with high pressure fluids. These have become well defined primarily from the water
Jetting industry and its trade associations. UMR conducted a 2 day safety course as part
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of this solicitation for all personnel involved with lab or field testing in this project.
Although self-evident once identified, the basic safety rules are: 1) inspect all
components for mechanical and pressure integrity 2) stay away from the jet nozzle while
operating—if the system can cut rock or steel, human parts have no defense 3) wear
hearing protection—jet nozzles emit damaging levels of frequencies beyond hearing
limits 4) if injuries from injected fluids occur, convey that fact to medical personnel so
that appropriate treatment can be administered 5) consider reactive forces of a jet and
secure the equipment accordingly.

Nozzle life could be approaching 2.4 kilominutes (40 hours) from initial tests which is
adequate when placed in the context of drilling operations. Other component wear from
abrasive flow is minimal as long as flow remains laminar. Tubular wear is expected to be
negligible with fluid velocities below 40 m/sec (131 fps) . The UMR newly developed
abrasive batch mixing system injects abrasives down stream of the high pressure pump
and eliminates the pump’s exposure to abrasives and consequent wear. This abrasive
delivery system may be more cost effective than the HPSPP originally proposed,

allowing multiple options for abrasive delivery for drilling.

Thework at UMR resulted in a“currently workable” ASJ design utilizing filtered water,
100-400 u garnet abrasive, 20.7 MPa (3000 psi) and 0.15 Ips (2.6 gpm), and an
inexpensively machined and hardened nozzle. These parameters are validated when
considering ASJ s application in an oilfield environment. Water is generally available
and inexpensive and environmentally friendly. Relative to some other abrasives, garnet
is reasonably priced, has known handling properties, and is environmentally benign.
Other fluid/abrasive combinations were considered and could be evaluated in the future
but from all ASJ experience, water/garnet has become a standard. Sand, steel shot or
other abrasives should be evaluated for particular formations or target material.

UMR’swork has developed a basic nozzle design that creates the desired hole sizein a
submerged condition, without rotating the nozzle or drillstring, under operating
pressures/rates and hole/tubular geometries anticipated in MHCTD conditions. Nozzle,
abrasive, and mixing optimization need to part of Budget Phase |1 of this solicitation.

Task 3 deleted

Task 4 - Pump Sub-system

To identify available industry pumps and any modifications required, the investigators
met with several pump manufacturers, including National **, White Star', Kerr 8, Tulsa
Triplex® , Gardner Denver >° and others *>'®*’. The set system requirements were: dual
pumps with minor/ no fluid end change for the range of operation, light weight for
portability, compact size/ footprint and meet the DOE specifications. In our review of
the available pumps we investigated any modifications as needed to meet the
specifications. The available pumps identified were:

13



Kerr 3500 series

National JWS185

Gardner Denver TEE series
TulsaTriplex TT series

Figure 8 shows available pumps by manufacturer with the MHT operating area shown in
black. As can be seen in this Pump Performance Matrix figure, most pumps are for
higher rate or pressure ranges than required for MHT. This is due to market demands of
current large hole drilling rigs. The closest pump to meeting the specifications required
isthe Kerr 3500 series with the National JWS 185 next in line. However, for the Kerr
3500 pump to better meet the requirements, some modifications must be made, as seen
in Figure 9. This plot shows the required operating performance of a single pump (one of
dual pumps) for MHT system and the Ideal pump for this MHT system versus the Kerr
3500 pump performance. As can be seen, the Kerr 3500 can be pressure degraded and
bored larger ( along with other changes) to obtain the ideal performance. Service life can
be adjusted with material changes. The National JWS185 is already bigger than needed
for the ideal performance.

Figure 10 shows a table of available and nearest pump equipment summary showing
weight and cost for various manufacturers of the closest pumps. Portability dictates that
weight and size/ footprint be considered in this MHT system. Based on size, weight and
cost considerations, the Kerr pump is best suited for this application. Pictures of these
pumps can be seen in Figures 11 and 12.

Handling solids at any pressure in any piston or centrifugal pump is a problem. Pump
experts do not like pumping solid laden fluids at high pressures due to low performance,
shorten component life and reduced overall pump life. Operators do not like the wear
problems and extra cost encountered. For Abrasive Slurry Jet (ASJ) drilling, even higher
modifications are required and this study investigated modification to existing triplex
pumps listed above, a new High Pressure Slurry Pump, UMR modified DIAjet batch
mixing / pumping systems. The HPSPP system has not been developed and the cost of
such are unknown. Discussions with pump manufacturers have not progressed to the state
of knowing these factors. However, there are now many options are available for
pumping slurries for drilling.

Task 5—Returned Well Fluids Processing Unit Sub-system

A key component of the “ Advanced Mud System for MHD” isthe returned well fluids
processing unit. As specified by DOE, the “system” must be able to mix, circulate, clean,
and store 31.8 m® (200 bbls) of water or diesel based mud and be able to process 31.5 Ips
(500 gpm), perform while drilling under balanced, and have zero discharge. The “mud
processing unit” or the returned well fluids processing unit discussed herein handles all of

14



these functions except delivering and circulating high pressure drilling fluids which is
handled by the mud pump(s).

Mud systems have evolved from earthen pits and no mud property control to portable
steel pits and many variants of equipment to remove solids including but not limited to
shale shakers, desilters, desanders, and centrifuges. The systems have evolved around
large diameter holes, large rigs, and handling large volumes of fluid (although sometimes
ineffectively).

MHCTD provides an opportunity and the need to re-think and apply a new system to
processing and handling mud. The traditional functions of removing drill solids and
building desired physical and chemical properties remain inherent to the “advanced mud
system”. However, scale, portability, environmental impact, and integration with
MHCTD can now be including in the design process.

The horizontal boring industry and its economic boom of the late 1980's and 1990’s
created mud processing equipment that is very suitable for MHCTD. Interestingly, the
underlying source of knowledge and technology for the horizontal boring equipment
came from the oil and gas drilling industry which was in a severe down-cycle during that
time period.

“Qilfield” portable mud processing systems are large, heavy, and expensive. However,
they are a proven design that functions well with conventional sized rigs (See Figure 13
on Swaco equipment). “Horizontal boring” systems are smaller and lighter, perform all
of the requisite processing functions, are readily available, and closer to the specifications
of MHCTD.

Much of the work in Task 5 consisted of contacting experts and vendors of mud and
processing units (in and out of the oil and gas industry) and evaluating products for
applicability to MHCTD. For the flow conditions developed by DOE and other tasks of
this solicitation, several available components of available mud processors approached
the DOE MHCTD specifications. Equipment from Kemtron **°(Houston, TX) and Tri-
Flo 2 (Conroe, TX) meet al of the operating parameters and conditions but vary from
each other in how the shakers and tankage are configured. Either can be modified for
MHCTD and pricing isrelatively similar (See Figure 13). Final selection should be
delayed until other contemplated design concepts are matured within Budget Phase |1 for
this solicitation. These contemplated conceptsinclude: 1) making the unit more
portable than even existing models; 2) eliminating steel tankage and piping; 3)
modularizing unit components, pumps, prime movers, tanks; 4) automating functions
such as fluid levels, mud property measurements, screen and cone maintenance, lift
systems for packaged mud products; and 5) improved sub-20 micron solids separation..
These concepts also need to be integrated into the CT rig design.

The immediate need of processing MHCT drilling fluids can be accomplished by

applying one of the Kemtron or Tri-Flo mud processing units, plumbing in 15.9 m* (100
bbls) of additional tankage, and installing a liner with a sump under the processing unit.
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This set up would result in a system capable of routinely cleaning 18.9 Ips (300 gpm) of
high viscosity mud to the 20 micron level with surgesto 31.5 Ips ( 500 gpm), mixing
new mud and additives, creating dry handlable cuttings, and containing any spills. A unit
or components from either manufacturer would have multiple vibratory shakers with
easily selectable and changeable screens and hydrocyclone desilters/desanders. Screen
selection becomes a function of mud viscosity and pump rate, and cutting characteristics.
Cutting characteristics are a function of rock type, bit type, ROP, WOB, and RPM.
Returned fluids and mud properties must be continuously monitored and evaluated to
properly adjust the operation of the processing unit for optimum performance. Training
of the MHCTD personnel by the mud processing unit vendor is essential. It is not
extremely high tech but proper solids control and mud property maintenance is critical
for maximum ROP, minimum wear on drilling assemblies, and maintaining hole

integrity.

Cleaning below the 20 micron particle size range must be accomplished with a
centrifuge, ultra-small hydrocyclones. Centrifuges are heavy, expensive to buy and
operate and hard to maintain. They are difficult to justify for the fast drilled wells
envisioned for MHCTD. Hole and mud volumes for MHD are relatively small as arethe
rotating hours per hole. Plugging concerns of the small cones might be remedied with an
automated hole cleaner. Automated filter presses using stainless steel filters with an air
backwash systems may be developed for removing these small diameter particles.

The concept of “zero discharge” must be kept in perspective. The “closed” or “haul off”
mud system model is the most applicableto MHCTD. Asaholeis created, the removed
rock must go somewhere. Ideally these cuttings are “shaken” out of the mud into adry
enough form to be scooped, piled, or hauled. In many (most) drilling operations, these
cuttings are benign or inert enough to not endanger the environment. There are unique
situations where the cuttings might be ground finer and re injected into the well or hauled
off to afill area. The liquid component of the mud can be “cleaned” down to clear water
with enough time and money. However, practical limits usually result in a suspension
with 10-20 u and smaller particles consisting of clays and ground rock. Asthe mud is
circulated, the solids are ground finer and finer during the drilling and pumping
processes. Thisis a problem because the mud gets heavier and more viscous with each
circulation and it loses some of its beneficial properties. Thus, it is prudent to remove the
solids as soon as possible in the drilling process. The resulting “cleaned” mud at the
completion of drilling can be used to drill another well, injected into the just drilled well,
or hauled to a disposal facility. Small total system volumes for MHCTD of 31.8 m* (200
bbls) make hauling or re use viable options.

The recommended mud processing equipment is well suited to removing solids and

tankage can be designed and plumbed to allow continuous mud processing included times
while not drilling.
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Figure 4

DOE - Advanced Mud System for Microhole Coiled Tubing Drilling
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Figure 6
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Figure 8
DOE MHT System
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Figure 12
National Pump
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Processing Equipment Summary
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Figure 13 Summary of Processing
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Figure 15- Triflo 20-2" conesfor mud processing
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PROJECT MILESTONES Summary

@®Drilling Synergy-Task 1

«Defined Mud System Characteristicy hydraulics

sl nvestigated Mud properties for MHD

«Confirm UBD hydraulics for MHD

«Defined operating parameters for entire mud system

=Presented status report of above to DOE on 13Dec04

«Defined composition of returned fluids

sAchieved DOE change in pump flow rate specifications

«Submitted abstract to SPE Fall meeting for reporting hydraulic study

@ Abrasive Slurry Jet Drilling- Task 2

sPerformed literature review of previous work

sDeveloped new nozzle design

sDemonstrated feasibility of cutting holes in rock that are larger than the nozzle and
performed without rotating the pipe or nozzle

sDeveloped new HP slurry delivery system

sDemonstrated feasibility to continuously deliver abrasivesto downhole tools
nSafety training at UMR

@ Task 3- Deleted by DOE

@ Pump System- Task 4

sMet with pump design and manufacturing representatives

sl dentified existing pump performance, specifications, availability and cost
sAddressed possible modifications to existing pumps

Project Milestones- continued

@ Processing System —Task 5

sl dentified mud system manufacturers inside and outside the oil & gas industry
=Met with technical vendors and manufacturers of existing systems

=l dentified specifications and availability of existing systems

»Addressed possible modifications to existing systems

»Considered non-traditional tankage materials and configurations

sAddressed sub-20micron particle processing

sl Nvestigated 3 phase separation for more compact processing systems

26



QUESTIONS ORIGINALLY POSED- now answered

Does each of the technologies meet the requirements to move forward? Yes. ASJ,
slurry pumping, pumping system, and the processing systems are all within DOE
specifications and should perform well in MHCTD based on engineering
estimates and practices.

Have all safety concerns been met and have safety plans and procedures been
prepared for further work and field testing? Yes, ASJ safety has been reviewed.
All other safety concerns follow standard industry practices.

Will abrasive slurry nozzle meet the requirements of hole size, penetration rate,
hole cleaning at the limits of pressure and rates? Based on tests so far, yes.

Is ASJ feasible ? Based on experience and tests,Y es from a technical and
economic basis.

Is ASJ economical compared to current methods? Y es, increased penetration rate
should offset any increased cost.

Will the fluids and abrasives mixtures achieve the desired drilling performance
while being economical and compatible with all system components? Yes. The
limited combinations of fluids and abrasive tested performed well and are
compatible with current drilling components. Fluids and abrasives are fairly low
cost items.

Will each drilling component survive the abrasive fluids coursing through them?
Yes, UMR has seen that if velocities are kept below 40meters per second erosion
is not aconcern. Also rapid direction changes of the slurries should be avoided.
These are all known in the water jet industry.

Are all ASJ connections compatible and interchangeable if needed? Yes. No
problem with components are anticipated at the pressures specified. ASJ can be
utilized or not without change in the overall design.

Will the HPSSP meet the system requirements? Y es existing triplex pumps can
be modified to meet these requirements. New designs are also possible to gain
increased efficiency. Also, other options for delivering slurries may be more cost
effective than the HPSPP.

Will the HPSSP provide adequate service life? Unknown at this time, but still
appears reasonable.

Will the return processing fluid unit provide adequate fluid cleaning within
acceptable environmental parameters? Y es. Nothing has been seen otherwise.
This system should prove environmentally more secure than existing systems.
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CONCLUSIONS

Satisfactory hydraulics are possible within true MHT systems in both mud and gasified
systems. Pump operating range required for these MHT systems are 0.63 — 18.9 Ips (10-
300 gpm) with 6.9 — 34.5 MPa (1000 - 5000 psi) capabilities with those respective rates.
Gas injection of 0- 0.94 m*/s (0-2000 scfm) allows underbalanced drilling operations.
Processing of returned fluids at a 31.5 Ips (500gpm) specified rate is possible. Nodal
analysis/ modeling should be strongly considered for each specific application in both
the planning and execution phases since each well and rig configuration is different and
the operating ranges are so narrow in MHT systems.

An Abrasive Slurry Jetting (ASJ) should be applicable to MHCTD after demonstrating a
nozzle prototype that is capable of jetting a hole larger than itself without rotating and
submerged in water. Also alow cost batch abrasive slurry mixing and deliverability
method was demonstated, but ill requiring optimization..

Compact, light weight and modular components with twin pumps are desired for
redundancy, portability, and flexibility. Two such pumps were identified that suit this
application with only minor modifications.

A compact mud processing system is possible. Through contacts with experts- mud
engineer, mud companies and mud processing companies, both inside and outside the oil
& gas industry, trenchless systems, and other industries, two system were identified as
approaching the specifications of rate and processing. Modifications are needed for
weight, size, ASJ processing, sub-20micron solids removal. Modular systems and non-
metal tankage and plumbing are anticipated in high savings in size and weight-ie
portability.

If implemented, these processes can greatly benefit MHCTD.
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LIST OF ACRONYMSAND ABBREVIATIONS

MHT- Microhole Technology

MHCT- Microhole Coiled Tubing
MHCT D- Microhole Coiled Tubing Drilling
ASJ- Abrasive Slurry Jetting

CT- Coiled Tubing

CTD- Coiled Tubing Drilling

CCT- Composite Coiled Tubing
UMR- University of Missouri at Rolla
DOE- Department of Energy

TVD- True vertical depth

UBD- underbalanced drilling

Gpm- gallons per minute

Scfm —standard cubic foot per minute
Psi- pounds per square inch pressure
Fpm- feet per minute

Ft- foot

In- inch

N- Power Law exponent for mud rheology
K- Power Law constant for mud rheology
Pa- Pascals

KPa- Kilo Pascals

MPa- Mega Pascals

m- meter

m>- cubic meter

Ips- liters per second
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APPENDIX A
CONTACT INFORMATION

Bandera Petroleum Exploration LLC

Bruce E. Galbierz, P.E. - Principal Investigator
018.747.7771 X105
bruce@banderapetroleum.com

IMPACT TechnologiesLLC
Kenneth D. Oglesby, P.E.
918.627.8035
kdo@impact2u.com

University of Missouri at Rolla
Dr. David A. Summers

573. 341.4368
dsummers@umr.edu
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APPENDIX B
HYMOD Modeling run-full input and output
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Wellbore Hydraulics Model (HYDMOD)
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Wellbore Hydraulics Model (HYDMOD)
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Pressurs Distribution
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APPENDIX C
MUDL ite Modeling run — full input and output
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Commasnts: | Test for 1000° 3.5 lateral cut of 7 casing with 1 75°CT at 5000°TVD
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sl Iyl Ol e
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Techoslegy Air/Mist/Foam Hydraulics Model (MUDLITE)
b ke Lo e Tkt Progsure Profile
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AirMist/Foam Hydraulics Model (MUDLITE)
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AirlMist'Foam Hydraullcs Model (MUDLITE)
Mixture Density vs, MD
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Air/Mist/Foam Hydraulics Model (MUDLITE)
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AiriMist/Foam Hydraulics Model (MUDLITE)
Cuttings Transport Ratio (for Vertical Wall)
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fechomlogy AjirMist/Foam Hydraulics Model (MUDLITE)

ool
b i e ey
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MUDLITE - Air/Mistoam Hydraulics Model
Cuttings Transport
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Cuttings Transport
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APPENDIX D
Literature Search BY Dr. D. Summersat UMR

A Summary of the Existing Literature Concerning Submerged and
Sheathed High Pressure Waterjets and Ways of Enhancing Their Performance

Introduction

The literature describes both laboratory investigations and studies of practical
applications of submerged jetsin the field. For ease of interpretation the literature
reviewed has been divided into segments, bringing together the references in to three
groupings. Although some studies cross over from one section to another, they have been
listed where it was felt most appropriate.

The initial segment covers laboratory investigations, including theoretical fluid
mechanical studies as well as experimental parametric evaluations. These studies of the
fluid mechanics of turbulent submerged jets are discussed below under “Theoretical and
Basic Studies’.

Descriptions of practical applications of submerged jets include slurry jetting for
civil engineering applications such as the emplacement of grout; the decommissioning of
nuclear facilities and for deep ocean applications such as the maintenance and
decommissioning of offshore oil platforms. These applications are discussed below under
“Applications of Submerged Jets’

The “Parametric Studies’ section includes studies of: air shrouds around waterjets
and abrasive waterjets, direct injected abrasive jets, the effect of confining pressure on jet
erosion; the use of chemical additivesto enhance the reach of waterjets and abrasive jets,
optimization of nozzle design for submerged jets; cutting of rocks, concrete and steel
with submerged jets; and the diffusion of submerged jets.

Theoretical and Basic Studies

The cutting process discussed is one in which high-pressure waterjets are mixed
with an injected abrasive to form aslurry jet that is accelerated to a designed velocity at
which it strikes the target and beginsto cut. Although the initial design for the abrasive
slurry jet has been assigned to Fairhurst (1) in 1982, there was a significant body of work
available prior to that time. The initial study by Leach and Walker (2) included work on
nozzle design and the need for high levels (around 0.15 micron) of surface finish and
smoothness of flow in nozzle construction. Selberg and Barker (3, 4) validated these
conclusions and showed that jet throw could be significantly increased, where care is
taken with the entrance flow path. The importance of having a straight section to
stabilize flow was shown by Kovscek et al (5) who showed that a 10 cm straight section
ahead of the nozzle was effective, a distance not available in this case.

Lohn and Brent (6, 7) analyzed the fluid mechanics related to the energy losses
incurred by a waterjet cutter operating in the confines of awell casing. They designed
improved nozzles and an efficient means of changing the direction of water flow
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immediately upstream of the nozzle, using turning vanes and showed that they could
achieve equivalent performance as a“straight” inlet to athrow distance of 30 ft. White
(8) analyzes viscous fluid flow. Tesar (9) analyzes the turbulence engendered by the
issuance of awaterjet into water.

Erdmann-Jesnitzer et al (10) examined the effect of nozzle configurations on the
performance of awaterjet under water. The study revealed that nozzles with a conical
contraction angle of 60 degrees and a straight section half the diameter of the orifice exit
are the most suitable for cutting with a submerged waterjet.

Brandt et a (11) studied the acceleration of abrasives in suspension jet nozzles.
The study showed that the cutting efficiency of short nozzles is higher than that of long
nozzles and that increasing the length of the cylindrical part of the nozzle increases the jet
coherence. Yazici (12) found that the use of long nozzle designs had little benefit in
drilling operations where the nozzle was very close to the target, although Summers et a
(13) have shown that where the jet is allowed to properly accelerate a 700 bar ASJI will
give as much energy to abrasive at the same water and abrasive feed rates as a 2,800 bar
conventional abrasive waterjet system (AWJ).

Applications of Submerged Jets

Y ahiro and Y oshida (14) found that grouting operations with a slurry jet is aided
by the addition of air to the jet. Their work involved the optimization of downhole
induction grouting with a 2-mm diameter, 700 bar jet surrounded by an annular airflow of
up to 250 cfm. Their data showed nearly a 500% improvement in downstream centerline
jet impact pressures at a gandoff distance of 15 cm. Although the waterjet reach
improved steadily as the flow increased from zero to 180 cfm, atrend of asymptotically
diminishing returns also appeared i.e. up to 400% improvement was measured with
airflows of only 21 cfm. Beyond 180 cfm the added air destabilized the waterjet.

Savanick(15) showed that an air shroud increased the useful range of a 2.5-cm
diameter submerged waterjet to about 5.4 m in a borehole phosphate mining operation. In
this operation phosphate was mined remotely from the surface through a 72 m-deep
borehole .The submerged cutting jet pressure ranged from 70 to 133 bar and the
corresponding flow rate was 1700 to 2000 Ipm. The air shield pressure was 175-bar and
the corresponding air shield flow rate was 150std cfm.

Albaet a (16), Bach(17),Blickwedel et al(18).Eckert et al (19, 20, 21), Haferkamp et
al(22, 23), McGough et a (24, 25) , Reiter et al(26) And Usii et al(27) discussthe
application of abrasive suspension jets for the dismantling of nuclear power plants. This
work demonstrated that it is possible to increase the working distance of the submerged
jet by using an air shield.

An important problem in these applications is the lifetime of the nozzle which is limited
because of wear. It is necessary to choose the cutting parameters to achieve a balance
between the cutting efficiency (which is normally associated with higher wear) and
nozzle life. The nozzle must last long enough to complete the cutting job.
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The selection of the abrasive might be useful in achieving the balance described above.
Recently Martinec et a (28) investigated the cutting efficiency and wearing effects of a
series of abrasives used in abrasive jet cutting. Garnet was found to be the most efficient
cutting abrasive, followed by olivine. However, olivine gave a 25% longer nozzle life
than olivine, and can be significantly cheaper to purchase. Thus, in certain cases, olivine
abrasive can be a suitable, less expensive alternative to garnet abrasives for cutting
metals.

Domann et a (29),Haferkamp et al (30) ,Alberts et al (31), Bailey(32), and Olds (33)
discuss subsea applications of waterjets. These applications include cleaning and cutting
under water. Cutting applications include severing pipes under the seabed. Cemented
pipe strings which have been severed by an abrasive jet are shown by Oil States MCS
(34) and Raghavan (35). These pipe strings are severed below the mud line when the
offshore platforms are decommissioned. The literature search revealed no instances
where uncemented, nested pipe strings have been severed by an abrasive jet.

Raghavan et al (36) have patented a method and apparatus for using an abrasive jet to cut
piles and conductors under offshore oil production platforms.

Inarelated field Meyer et a (37, 38) have been drilling coal at depth and have found that
cavitation around the submerged jet can impact performance. Because Mazurkiewicz
(39) has shown that cavitation is a very powerful crusher of particles, the effect of
cavitation on ASJ performance underwater, briefly discussed by Shimizu (40, 41) needs
further investigation.

Parametric Studies

Miller et al (42) demonstrated the use of an air shroud to increase the reach of a
submerged water jet using an air shroud flow rate of 280 cfm. I mprovement with waterjet
reach was found to correlate strongly with volume flow rate of air at standoff distances
between 10 and 180 nozzle diameters from the nozzle. At greater sandoff distances no
improvement was measured.

Savanick et a (43) demonstrated that it is possible to increase the effective reach of an
abrasive jet by collimating it i.e. by enclosing it in a pipe (44, 45). This phenomenon was
used to build an abrasive jet drill one-inch-diameter holes in hard rock to a depth of 4.5-
m. Miller et al described the physics of three-phase flow in a collimating pipe (46) and
measured the velocity of abrasives in the collimation pipe (47).

Ultrahigh—pressure, direct-pumped abrasive suspension jets were compared with
entrainment-type abrasive waterjets for cutting under up to 6000 m of water by Alberts et
al(48). This paper showed that the abrasive suspension jet system is more effective and
easier to operate in the laboratory and potentially in the field.
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Okita et a (49) evaluated nozzle wall wear of three types of abrasive suspension jet
nozzles. a conventional suspension jet nozzle and two nozzles with a conventional
suspension jet nozzle fitted with annular conduits.

Howells (50, 51, 52) reviewed the use of polymeric additives for jet collimation and
abrasive suspension. Jets collimated with chemical additives carry further than ordinary
jets and thus have been useful in fire fighting. Polymers have also been useful for
suspending abrasive particles and to form a coherent suspension jet.

Dormann et al (53) describe underwater research with abrasive jets aimed at development
of undersearobots. Cutting was performed to a smulated depth of 600 m. Haferkamp et
al (54) discuss the deep sea applications of abrasive waterjets produced by injection of
the abrasives at the cutting head. This research points up the limitations of this kind of
abrasive jet at greater water depths and indicates that premixed jets such asthe

DIAJET are more suitable for working in the deep sea. Surle (55) performed abrasive jet
cutting tests in a pressure chamber. This research indicates that abrasive jet cutting is
reliable at depths up to 400 to 500m and that the direct injection of pressurized slurry is
more efficient and practical to use than other methods of transporting abrasive to the
cutterhead.

Alberts and Hashish (56) evaluated the performance of directly pumped abrasive
suspension jets in atest chamber that smulated ocean depths up to 6100 m. They
recommend using an air shroud around the submerged jet.

Bibliography

Note: al bibliography references from this section are fully reported in the
BIBLIOGRAPHY section of this report.
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APPENDIX E

Report on Task 2 from Dr. Summers at the University of Missouri at Rolla
Attached (see next page).
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Successful waterjet drilling of rock has been one of our
goals since Dr. Summers PhD program in England.
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We have demonstrated that waterjets alone can drill
aggressive sandstone underground at viable rates

Summers D.A. and T.F. Lehnhoff 1978
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Under a sub-contract from Sandia National Laboratories
we showed waterjets can “drill around corners”
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This is now a commercially available technique in Australia.
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But to be effective in rock a drill must cut all rocks.

In excavating the OmniMax theater under the St. Louis Arch we
cut the walls with an abrasive slurry jet at a pressure of 5,000
psi. The darker material is a chert layer 4 inches thick.

L
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A jet from this system will cut steel and concrete
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It drilled 1 ft of
concrete in 1 min 20
sec.
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But by changing nozzle geometry we
increased drilling diameter
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And initial trials showed that it could drill
through concrete and gravel

— Water level
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But when under water the hole
diameter dropped significantly

Air Submerged
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Tests showed that changing pressure and
abrasive feed did not change diameter much

Hole Depth vs Jet Pressure Hole Diameter v Jet Pressure
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A further change in design allows

much larger holes to be drilled
s

Original
design

New design
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second modification let the system cut
larger holes underwater
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Specific energy calculation

m A 3,000 psi DASjet through a 0.043 inch nozzle flows 2.63 gpm. This uses
4.6 hp. It drilled a hole 6-inches deep and 2-inches in diameter in
Sandstone, and slightly shallower in mudstone and dolomite, in one minute
without drill advance. The specific energy of cutting in the sandstone is thus

around 670 j/cc.
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Performance was also improved by
changing the abrasive injection circuit

e
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In Summary

A method for drilling 2-inch diameter holes with a non-
rotating 0.043 inch diameter jet has been developed

The design has been modified to operate underwater

A new method for injecting abrasive into a high pressure
waterjet line has been demonstrated.

Data on preliminary testing has shown that this new tool
has the potential to provide a low-cost, energy-effective
way of drilling through rock from a coiled tube platform.
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