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1. EXECUTIVE SUMMARY

This report is the final report for the project, “Discrete Feature Approach for Heterogeneous
Reservoir Production Enhancement.” The report presents summaries of technology development
for discrete feature modeling in support of the improved oil recovery (IOR) for heterogeneous
reservoirs. In addition, the report describes the demonstration of these technologies at project
study sites.

In the discrete feature network (DFN) approach, conductive and flow barrier structures are
modeled explicitly, facilitating a more realistic analysis of flow. The DFN approach models these
features at all scales simultaneously, from the individual fractures intersecting a well to the major
faults which define the reservoir. These discrete features are extrapolated from geological and
geophysical measurements using a combination of geological and geostatistical methods.

During this project, Golder Associates’ team improved the data analysis and geological modeling
capabilities of the DFN approach, and developed practical applications of that approach for IOR
in heterogeneous reservoirs.

Major accomplishments of this research project are summarized in Table 1-1. These include
development of approaches for gel treatment, strategic completion, and water control in
heterogeneous reservoirs. The discrete fracture network technologies developed within this
project are directly applicable to a large percentage of the secondary and tertiary oil recovery
projects currently underway in the United States, and can be of significant value to the design of
future oil recovery projects.

This project achieved significant technological advances in the development of the discrete
fracture network modeling approach for heterogeneous oil reservoirs. Advances include:

o the first large scale, fracture network multiphase DFN flow simulations (Oregon Basin)

e direct DFN simulation of gel injection to realistic fracture networks (Oregon Basin,
Stoney Point)

¢ three dimensional, heterogeneous, geo-cellular based DFN modeling for strategic
completion (Yates)

¢ neural network algorithm development for fracture set identification

e fractal, analytical, and numerical solutions for calculation of fracture size distributions
from geological and geophysical trace data

e a discrete fracture network approach for conditioning of fractured reservoir connectivity
based on tracer tests

e new approaches to evaluating fracture shapes and correlations between fracture
properties.



Table 1-1: Major Accomplishments of DOE/FETC Project “Discrete Feature Approach for
Heterogeneous Reservoir Production Enhancement”

Production Issue Study Site Geology DFN Approach to
Support
Secondary/Tertiary
Recovery
Declining oil production Yates, Texas Thick, high quality Strategic completions to
due to decreases in carbonate reservoir with | maximize fracture intersections
formation pressures and heterogeneous, solution | for steam injections and gravity
higher viscosity of enhanced fracture drainage. Location of strategic
remaining OIP connectivity completions using a DFN model
based on a geological
extrapolation of fracture patterns
measured in geophysical logs
Higher water cut due to South Oregon Permian age carbonate Gel treatment to improve sweep
discrete flow in solution Basin, Wyoming | with several scales of efficiency through the interbedded
enhanced fractures fracture overprint sandstones, while reducing water
cut
Higher water cut during North Oregon High quality eolian Gel treatment to improve sweep
water injections, as fracture | Basin, Wyoming | dune sandstones of efficiency through the interbedded
networks at interbeds varying connectivity sandstones, while reducing water
provide direct pathways interbedded with lower | cut
from water injection wells permeability dolomites
to production wells
Interwell connectivity of Stoney Point, Dolomitized carbonates | Strategic completion placement to
highly oriented fractures Michigan containing significant improve the probability of
along a wrench fault large scale karstic fracture connections to
providing imperfect fracture porosity and fracture supplement flow through the
connections throughout a connectivity dolomite
very low quality dolomite
matrix
Water production due to Stoney Point, Dolomitized carbonates | DFN gel injection simulations to
discrete connections to Michigan containing significant assess the feasibility of blocking
overlying aquifers large scale karstic water pathways
porosity and fracture
connectivity




2. INTRODUCTION

2.1 Technology Development and Demonstration

Often less than half of the original oil in place (OIP) in reservoirs is recovered. In reservoirs
where discontinuous features such as fractures or discontinuous sands play a significant role in
reservoir permeability, the ultimate recovery can be less than 10% of the estimated OIP. The
remaining oil is either technically or economically unrecoverable. This unrecovered oil
represents a significant potential resource for the mature petroleum industry in the United States.

During this project, the Golder Associates team developed and demonstrated the use of discrete
feature network (DFN) models as the key tool for integrating geological, geophysical, and
engineering data to improve reservoir development and increase oil production efficiency.
Discrete feature network approaches have a unique ability to integrate the data used to
characterize reservoir heterogeneity from a wide range of scales into a comprehensive model
which can be used directly to improve reservoir engineering. This is possible because unlike
conventional continuum approaches, the DFN approach is based on parameters directly gained
from field measurements (Figure 2-1).

This project developed and demonstrated practical technologies for improvement of production
efficiency in heterogeneous reservoirs through integration of diverse data at a range of scales.
DFN approaches were used to directly address key issues which control oil production (Figure

1. Strategic Completion Placement: In heterogeneous depositional systems as well as in
fractured reservoirs, the placement of injection and production completions can have a
key role in determining production efficiency and ultimate recovery. For example,
fracture networks delivering water to the well need to be avoided in production wells,
while fractures that are part of extensive fracture networks feeding oil to the well need to
be intersected. The key to efficient production thus requires an understanding of the flow
architecture in the fracture network at the scale of the well, as well as an understanding of
the larger scale networks which feed oil and water toward production wells.

2. Enhanced Completion Connection: In reservoirs of highly varying flow capacity there
is often a need to improve the connection between the well completion and the discrete
reservoir flow network. Marathon Oil has developed advanced techniques for hydraulic
fracture stimulation, extreme overbalanced perforation-stimulation, and horizontal well
placement. These techniques can be applied most effectively with an understanding of
the discrete feature network flow characteristics of the reservoir.



Production Issues
» Water Production
« Ol Production Rates
« Beservoir Pressures
» Phase Effects
» Viscosity

Key Discrete Features
«Flow Pathways
~Flow Barriers
«Qil, Water, Gas Heservoirs

Parameters to be Assigned Characterization Data
« Spatial Structure « Geological
» Size, Shape « Geophysical
« Oriemtation « Geomechanical
s Connectivity « Hydraulic Tests
* Hydraulic Properties « Multiwell Response
» Hydromechanical Properties « Tracer Breakthrough
f *Production History

Y

DFN Model
* Well Scale
* Interwell Scale
* Tract Scale
» Figld Scale

Production Enhancement
» Connectivity {(Hydrofrac)

* Flow Barriers (Gel}

» Waterflood/Stearmflood

- Surfactants/Polymiers

+ Directional Drilling

Figure 2-1: DFN Approach for Reservoir Characterization and Engineering



o ot Feowns

&) Block Sire fnalysis

LR aEt

g

&) Flow Modeling

Figure 2-2:

il

b Comparirrshalization Analyels

) Tribtary Drainngs Volume

e ] "
W Rt bipoie el
B bk et BRione
b Figttiohen i Mgty

B Tearmport Mogdeling
DFN Approaches for [OR




3. Strategic Completion Connection Reduction-Gel Treatment. Gel treatment provides
a method for effectively sealing the fractures and discrete feature networks, forcing
injected water to sweep oil from the rock matrix rather than flowing directly to
production wells. The key issue for gel treatment is therefore the identification of well
intervals that contain the fractures or discrete features which would benefit from gel
treatment, and the quantity and type of gel which would most effectively seal the flow.
The DFN approach was used to integrate geological, geophysical, and well production
data to identify these intervals. The benefit of gel treatment, and the benefit of the DFN
approach for data integration and decision support can then be quantified by comparing
production before and after gel treatment.



2.2 Project Deliverables

Table 2-1: Project Deliverables and Milestones

Simulations; M48: Strategic Plan

M49: Yates Initial Phase; M50: Second Phase; M51: Evaluation Phase

MS52: Stoney Point Initial Phase; M53: Second Phase; M54: Evaluation Phase

MS55: South Oregon Basin Initial Phase; M56: Second Phase; M57: Evaluation Phase
MS58: North Oregon Basin Initial Phase; M59: Second Phase; M60: Evaluation Phase
M60-M72: Milestone Reports and Biannual reports available online

Deliverable Milestones Included in Report Scheduled Date Date Submitted
First Progress Report M1, M2, M4, M9, M10, M11, Jan 15, 1999 Feb 19, 1999
M25-M28, M60
Second Progress Report M3, M9, M10, M12, M13, July 15, 1999 August 12, 1999
- M29-M32, M61,
Q
= Third Progress Report M1, M4, M7, M23, M33-M36, Feb 15, 2000 March 7, 2000
g M37-M48, M62, M14, M15
Z—’ Fourth Progress Report M1, M2, M7, M4, M63, M49- July 15, 2000 August 15, 2001
M60,M16, M17
Fifth Progress Report M5, M6, M49, M50, M52, Feb 15, 2001 April 18, 2001
M53, M55, M56, M58, M59,
M18, M19
Final Report All Sept 30, 2001 Sept 30, 2001
M1: Feature Size; M2: Feature Shape;M3: Feature Orientation;M4: Spatial Structure; M5: Hydraulic Properties;
M6: Correlations; M7: Data Integration Procedures (Prelim); M8: Data Integration Procedures (Final); M9:
Data Available on WWW; M10-M22 Data Updates; M23: Prelim Data Integration Procedure; M24: Data
Integration Procedure
M25: Yates Field; M26: North Stoney Point ;M27: South Oregon Basin; M28: North Oregon Basin
M29: Yates Field; M30: North Stoney Point ; M31: South Oregon Basin; M32: North Oregon Basin
M33: Yates Field; M34: North Stoney Point ; M35: South Oregon Basin; M36: North Oregon Basin
n
E M37: Prelim. Strategy; M38: DFN Simulations; M39: Strategic Plan; M40: Prelim. Strategy; M41: DFN
*g Simulations; M42: Strategic Plan;
E M43: Prelim. Strategy; M44: DFN Simulations; M45: Strategic Plan; M46: Prelim. Strategy; M47: DFN







3. RESULTS AND DISCUSSION

3.1 Research Summary

This project was carried out according to a phased approach, in which technologies were applied
as they were developed, and project study site applications were successively refined as more
information was assembled. In this report, research is organized by technology, and by study site.

3.2 Task1: Heterogeneous Reservoir Data Integration

This section describes research carried out under Task 1: Heterogeneous Reservoir Data
Integration. Golder Associates developed the DFN approach as an integrated structure from site
characterization data at multiple scales, through data analysis to an integrated DFN model, and
finally to application of the DFN model to reservoir production enhancement.

Field data collection can be a very expensive aspect of reservoir development, and the economic
benefit of this data is frequently unclear. Geological, geophysical, and well test results are
collected and compiled, but do not always find a useful application in reservoir design and
engineering. To some extent, ineffective use of field data is caused by adopting a continuum
modeling approach for even the most fractured or heterogeneous reservoirs.

For each of the project study sites, data was assembled and directed from each discipline with the
view as to how that data can be used to support an integrated DFN model (see Figure 2-1). In
Task 1, we developed the overall methodology and specific technologies to support the DFN
approach for integration of heterogeneous reservoir characterization using data from multiple
scales.

3.2.1 Task 1.1.1 Fracture Size Analysis

Fracture size is a key parameter for discrete feature network (DFN) modeling for heterogeneous
reservoir production enhancement. Fracture size strongly influences fracture connectivity, bother
within the fracture network and to injection and production wells. In general, the data available is
limited to data available at the wellbore. Thus, the problem becomes one of extrapolation from
measurements at wells to describe fracture size within the fracture network (Figure 3-1).
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Figure 3-1 Fracture Interpolation

3.2.1.1 Task 1.1.1 Fracture Size Analysis

Discontinuities (or fractures) have a profound effect on the mechanical and hydraulic properties
of rock masses. Characterizing discontinuities in the rock mass such as the number of
discontinuity sets, and for each discontinuity set, the number, orientation, spacing, location, shape
and size of discontinuities is, therefore, very important. Because rock mass properties are three-
dimensional (3D) entities, discontinuities must be characterized in 3D space.
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As the rock structure cannot be directly examined in three dimensions, discontinuity
characteristics must be inferred from data sampled at exposed rock faces (including both natural
outcrops and excavations faces) and/or in wells (Priest 1993). Taking measurements on exposed
rock faces, either at or below the ground surface, enables one to obtain data on orientation,
spacing, trace lengths and number of traces. In most cases, wellbore sampling provides the only
viable exploratory tool that directly reveals geologic evidence of subsurface site conditions. In
normal-size wellbore sampling various techniques can be used for acquiring the data on
orientation and spacing of discontinuities, either from core samples or through inspection of the
well walls. From all this one can conclude that information of discontinuity size can be obtained
indirectly from trace lengths on exposed rock faces while wellbore sampling usually provides no
relevant information.

Hence, characterizing 3D discontinuity size distributions is an important but difficult problem in
rock engineering. Currently, there are two groups of methods for estimating the discontinuity size
distributions: analytical/numerical methods and the forward modeling method. The
analytical/numerical methods use stereological relations between the discontinuity size
distribution and the (true) trace length distribution to infer the discontinuity size distribution. The
trace length distribution is derived from the measured trace lengths at exposed rock faces by
correcting the sampling biases (Baecher and Lanney 1978; Einstein et al 1979; Priest and Hudson
1981; Kulatilake and Wu 1984; Zhang and Einstein 1998). In order to use the stereological
relations between the discontinuity size distribution and the (true) trace length distribution to infer
the discontinuity size distribution, assumptions need to be made about the discontinuity shape.
Due to the mathematical convenience, discontinuities are often assumed to be thin circular discs
in 3D space (Baecher et al. 1977; Warburton 1980a; Chan 1986; Kulatilake 1993). However, in
many cases, discontinuities may be non-equidimensional (Bridges 1975; Einstein et al. 1979;
Warburton 1980b). Therefore, Warburton (1980b) assumed that discontinuities in a set are
parallelograms of various sizes. For simplicity, he also assumed that discontinuities in a set are
geometrically similar (i.e., the ratio of longer to shorter sides for all parallelograms is a constant).
It is noted that the equations for the discontinuity size distribution for the parallelogram
assumption are more complex and difficult to solve than those at the circle assumption.

The forward modeling method infers discontinuity parameters by constructing 3D discrete
models of discontinuity systems (Figure 3-2) (Dershowitz, 1992). Based on an initial analysis of
field data, a statistical description of discontinuity orientation, size, shape and spatial distribution
is assumed. The process used to collect the available data is then simulated, including processes
of bias, censoring and truncation. This produces a simulated set of field data, which can then be
compared to field measurements. Based on this comparison, the assumed statistical description
can then be modified. The process is repeated until a statistical description is found to be
consistent with field observations. The goodness of fit between measured and simulated
measurements can be evaluated visually, by comparison of observed and predicted analytical
functions, and by statistical tests such as the x* and Kolmogorov-Simirnov tests.

Uniqueness is a problem for both the analytical/numerical and the forward modeling methods.
E.g., for the analytical/numerical methods, it is possible to obtain two different size distributions
from the same trace length distribution (Baecher et al. 1977). In the forward modeling method, it
is possible to obtain more than one “best” description of the in situ discontinuity system, with
each of the obtained descriptions being consistent with field observations.

In this report, a new approach is proposed for estimating the discontinuity size distributions. To

be general, discontinuities are assumed to be elliptical in shape. By changing the aspect ratio &
(i.e., the ratio of the major to minor axes) of the ellipses, most of the discontinuities in reality can
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be reasonably represented. With this assumption, a general stereological relationship between
trace length distributions and discontinuity size (expressed by the major axis length @ of the
ellipse) distributions is derived for area (or window) sampling, following the methodology of
Warburton (1980a, b). From this relationship, expressions are derived for calculating the mean
(M1.) and standard deviation (G,) of the discontinuity size a, respectively for lognormal, negative
exponential and Gamma distributions of discontinuity sizes. To overcome the problem of
uniqueness, a relationship between the ratio of the 4th and 1st moments of the discontinuity size
distribution and the 3rd moment of the trace length distribution is derived to check the suitability
of the assumed discontinuity size distribution form (Section 3.2.1.5).

The trace length distribution in the derived stereological relationship is the true distribution of
trace lengths. The true trace length distribution corresponds to trace lengths in a sampling
window or surface of infinite size. Since, in practice, sampling windows are of finite size and
only the portions of traces within the window can be measured in window sampling, the
measured trace lengths are usually biased. Zhang and Einstein (2000a) developed a method for
estimating the true trace length distribution by considering the sampling biases for circular
window sampling. For convenience, the method is presented in Section 3.2.1.6.

In Section 3.2.1.7, the effect of sampling plane orientation on trace lengths is investigated by using

the derived stereological relationship. The results show that the sampling plane orientation has an
important effect on both the mean and standard deviation of trace lengths.
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Finally, in Section 3.2.1.8, the derived stereological relationship between the trace length
distribution and the discontinuity size distribution is used to analyze the trace (length) data
simulated using the FracMan discrete fracture code. In the simulation, the size of a discontinuity set
is described by a lognormal distribution, following Baecher et al. (1977), Barton (1978) and
Warburton (1980a, b). For simplicity, only one discontinuity set with a deterministic orientation is
considered. The discontinuities are generated in a 20 m X 20 m X 20 m box. Three circular sampling
windows in different orientations are used to collect the trace (length) data.

3.2.1.2 Seismic Wave Methods

The seismic wave method has been widely used in petroleum exploration (Selley, 1998). To
characterize fractures between wells, the seismic wave method may be used in two ways:
(a) measuring the seismic waves reflected from the fracture, and (b) measuring the sound
transmitted along the fracture.

The simplest way to detect fractures is to place both the energy source and the receivers at the
ground surface (see Figure 3-3). The energy source is used to produce seismic waves and the
receivers are used to record the amplitudes and travel times of waves returning to the surface after
being reflected from the goal fracture (i.e., the fracture that one wants to characterize). By
analyzing the recorded data about the reflected waves, the goal fracture can be detected
(characterized). The seismogram obtained [Figure 3-4(b)] can successfully detect the fracture
zones [Figure 3-4(a)]. For example, the narrow band of reflections between 15.5 ms and 19.5 ms
is related to fracture zone 2.
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Figure 3-3 VSP Identification for Fracture Size
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The receivers can also be placed in the wells as shown in Figure 3-5. This is the vertical seismic
profiling (VSP) technique. The simplest instance of this technique is the offset VSP in which
there is only a single energy source at the surface located immediately adjacent to the well

[Figure 3-5(a)]. Using the walkway VSP in which a series of surface energy sources are arranged
in a straight line away from the well or even in radial patterns like the spokes of an umbrella
[Figure 3-5(b)], a 3D image adjacent to well can be produced and thus the fracture characterized
in 3D.

The processing and interpretation of recorded seismic wave data is critically important in
detecting (characterizing) fractures in the rock mass. For the details about data processing and
interpretation in seismic surveying, one can refer to Selley (1998). It should be noted that the
reflected wave method might not be effective in following two cases:

(a) the rock mass contains many other fractures in addition to the goal fracture (see Figure
3-6).

(b) the rock mass is heterogeneous; e.g., there is a cave in the rock mass (see Figure 3-7).

In the above two cases, the goal fracture can be characterized by measuring the sound transmitted
along it, as described in Section 3.2.1.2.
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As shown in Figure 3-9, a sound source or a pressure pulse is placed near the goal fracture in a
wellbore. If the fracture is connected to other wells, the sound will transmit along the fracture and
can be heard (measured) in those wells. It is assumed that gas, water or oil is in the fracture. The
principle used here is similar to that for sound transmission along a pipe, although the fracture
case is 2D while a pipe case is 1D.

For this method, the following special cases should be considered:

(a) If there is clay filler in the fracture, the sound transmitted through the fracture may not be
strong enough to be measured because the clay filler absorbs the sound.

(b) Measuring the sound at different locations in the receiver well can be used to check the
intersections of the goal fracture with other fractures, although the intersection locations
cannot be determined (see Figure 3-9).

Conventionally, VSP is used to identify specific, major discrete features. The distribution of size
can then be derived by extrapolation from the sizes of measured fractures.
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However, it may also possible to use VSP to obtain a distribution for the sizes of fractures which
cannot be positively identified. This might be done by adapting the VSP imaging software to
detect lincaments of different sizes, and then using this information to build size distributions.

3.2.1.3 Ground Penetrating Radar (GPR) Methods

Ground Penetrating Radar (GPR), also known as ground probing radar, ground radar or geo-
radar, has been widely used in high-resolution mapping of soil and rock stratigraphy (Deng 1996;
Sharma 1997). The GPR method uses high-frequency (80 to 1,000 MHz) electromagnetic (EM)
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waves transmitted from a radar antenna to probe the earth. The transmitted EM waves are
reflected from various interfaces within the ground and are detected by the radar receiver.
Reflecting interfaces may be soil horizons, the groundwater surface, soil/rock interfaces, man-
made objects, or any other interfaces possessing a contrast in dielectric properties. The GPR
method is analogous to seismic reflection except for the energy source (Sharma 1997; ASCE
1998).

Contrasts in dielectric properties across an interface cause EM waves to be reflected. Fracture
fillings with dielectric properties differing from their adjacent rock materials can cause radar
reflections and thus can be detected.

The GPR method is that the penetration depth of radar is limited (usually less than 20 meters)
(Cummings 1990; Kearey and Brooks 1991; Sharma 1997; ASCE 1998). At the Gypsy Outcrop
Site in Northeastern Oklahoma, the maximum depth with noticeable radar response is about 10
meters (Deng 1996). Therefore, the GPR method can only be used to detect fractures at shallow
depth or a short distance from the well. While this is useless for conventional oil reservoir
stratigraphic characterization, it is potentially useful for deriving the size distribution for fractures
to be incorporated in DFN models. GRP methods can potentially fill in the portion of the size
distribution between the 0.1 to 10 m features seen in wells and the 100 m and larger features seen
in VSP and 3D seismics.

Similar to the seismic wave method, the processing and interpretation of recorded GPR data is
critically important. Due to the kinematic similarities between radar and seismic wave
propagation, seismic processing techniques are widely used to process the GPR data (Deng 1996;
Sharma 1997).

GPR was successfully used to detect fracture zone 2 in Figure 3-4(a) (Soonawala et al. 1990;
Stevens et al. 1995). As shown in Figure 3-10, there is a large continuous reflection, 40 m deep
at the northwest end of the profile and about 50 m deep at the southeast end. This reflection
corresponds to the location of fracture zone 2 which is also shown in the fracture log of well M-
10 located near the northwest end of the profile. Other examples of GPR applied to fracture
detection in hard rocks can be found in Grasmueck (1996) and Grandjean and Gourry (1996).

During 2000, we plan to develop approaches for deriving size distributions for intermediate scale
features from GPR data.
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Figure 3-10 Radar Tomography

3.2.1.4 Hydraulic Interference Approaches

Hydraulic interference analysis can be used to identify the hydraulic connections between wells
in three ways: (a) pumping and observation, (b) injection and observation, and (c)
chemical/radioactive tracers.

Pumping and Observation

Paillet (1993) used the pumping and observation method to identify the hydraulic connections
between wells. By measuring the vertical flows in both the pumped and observation wells, the
points where water enters and exits the wellbore can be found and then the hydraulic connections
between wells can be identified (see Figure 3-11).

If there are multiple water entrance points in the pumped well and multiple water exit points in
observation well, it may be difficult to identify how these fractures are interconnected (see Figure
3-12). To address this problem, we suggest the following procedure (see Figure 3-12):

(a) Isolate the entrance points in the pumped wellbore with packers.
(b) Pump water from one interval including only one entrance point.

(c) Find the water exit point(s) in the observation wellbore and identify the hydraulic
connections to the fracture in the pumping interval.

(d) For other entrance points in the pumped well, repeat steps (b) and (c).
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Obviously, the pumping and observation method can be used only in saturated rock masses with
water or oil.
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Injection and Observation

The injection and observation method can be used to characterize fractures with the following
procedure (see Figure 3-13):

(a) Isolate the target fracture from other fractures in the injection well.
(b) Inject a fluid (generally oil or water) to the target fracture.

(c) Find the water entrance point(s) in the observation well and identify the hydraulic
connections to the goal fracture.

(d) For other fractures in the injection well, repeat steps (a) to (c).
The injection and observation method can be used in both saturated or unsaturated rock masses.

Benito et al. (1999) used the injection and observation method to assess the pneumatic
connectivity of unsaturated fractured basalt by injecting air.
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Chemical/Radioactive Tracers

The chemical/radioactive tracer method can be considered an extension of the injection and
observation method. By injecting a chemical or radioactive tracer (which is usually diluted in
water) into a well and monitoring its movement in observation wells surround the injection well,
fractures or fracture zones connecting the injection well and the observation wells can be
identified.

Novakowski et al. (1985) described an experiment carried out at the Chalk River Nuclear
Laboratories, Ontario, Canada, to identify fracture zones using a radioactive tracer (**'I). Figure
3-14 shows the instrumentation used for the "*'I tracer test. After injecting the *'I tracer (which
is diluted with water) into a fractured interval isolated by straddle packers in a central well, the
research team monitored its movement in observation wells surrounding the injection well, using
a y-ray logging device.

Hydraulic interference tests are used extensively in heterogeneous oil reservoirs to characterize
hydraulic compartments and design infill drilling campaigns. Both thermal (steam) and chemical
tracers have been used at the project study site in Yates, Texas to understand hydraulic
connectivity. Intheory, a series of hydraulic interference tests could be deconvolved fracture size
distributions from fracture network responses. This has been attempted as part of the SKB Stripa
project in Sweden (Doe and Geirer, 1991) and the SKB Aspd project (Winberg et al., 1999).
However, these results have not yet been successful for derivation of fracture size distributions
due to the complexity of fracture network behavior, and uncertainties arising from boundary
conditions.

3.2.1.5 Analvytical Development

3.2.1.5.1 Basic Assumptions

The following are the assumptions that underlie the constructions of the model:

1) All discontinuities are planar.

2) Discontinuities are elliptical in shape. Discontinuities in a set are geometrically
similar, i.e., all discontinuities in a set have the same aspect ratio £ (i.e., the ratio of
major to minor axes of an ellipse).

3) The centers of discontinuities are randomly and independently distributed in space.
The volume density of discontinuity centers has a Poisson distribution with mean
N,, i.e., the probability density function of the number of discontinuity centers in a

e—NVx(NV x)N

N
4) The size distribution of discontinuities is independent of spatial location.

given region denoted by x is p(N;Nypx)= ,N=0,1,2,

In some cases, the above assumptions may not be valid in describing a given discontinuity
network. However, these are postulated here, as they provide an elementary but still not totally
unrealistic means of describing discontinuity geometry. Eventually, some of these assumptions
can be relaxed. Following is a discussion of the above assumptions.

Planar Discontinuities: The assumption of planar discontinuities is made in order to obtain a

simple parametric description of the discontinuity geometry. Although discontinuities can be
curved or wavy in some cases, this curvature is often negligible (Warburton 1980a). It is a
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common practice in rock engineering to assume that discontinuities to be planar (Priest and
Hudson 1976; Baecher et al. 1977; Warburton 1980a, b; Kulatilake 1993).

Elliptical Discontinuities: Zhang and Einstein (2000b) conducted a brief literature review about
the shape of (unrestricted) discontinuities, including the reported in situ data and the shapes
assumed by different researchers. Analysis of the available information on the shape of
discontinuities leads to the following conclusions (Zhang and Einstein 2000b):

1. The conclusion that discontinuities are equidimensional (circular) drawn from the fact
that the average strike length of a discontinuity set is approximately equal to its average
dip length is questionable. Investigators assume circular discontinuity shape possibly
because of mathematical convenience.

2. The possible shape of unrestricted discontinuities is more likely to be elliptical than
circular.

3. Elliptical discontinuities can be effectively represented by polygons with a large number of
sides. This is one of the reasons why polygons are used to represent discontinuities in
discrete fracture codes. Convenience of numerical analysis and the ability to represent
irregular discontinuities, such as restricted discontinuities, are another two reasons for using
polygons to represent discontinuities in discrete fracture codes.

In this study, discontinuities are assumed to be elliptical in shape so that an analytical relationship
between trace length distributions and discontinuity size (expressed by the major axis length a of
the ellipse) distributions can be derived. By changing the aspect ratio & (i.e., the ratio of major to
minor axes) of the ellipses, most of the discontinuities in reality can be reasonably represented.

Discontinuities Randomly Distributed in Space: The hypothesis that discontinuities are
randomly distributed in space is very convenient and is widely adopted by investigators. The
assumption leads to an exponential distribution of trace spacings along a sampling line, in
agreement with most reported field studies (e.g., Priest and Hudson 1976, Call et al. 1976,
Baecher et al. 1977, Einstein et al. 1979). This assumption is convenient, but implies that
clustering is not considered.

Discontinuity Sizes Independent of Position: This is again an assumption for the sake of
simplicity. Although this assumption is open to debate, it is implicit in most rock mechanics
analysis (Baecher et al. 1977). To make this and the former assumptions more acceptable, one can
divide the site into regions in which this assumption seems approximately correct (see, ¢.g.,
Meyer et al. 1999). Again, this implies that clustering is not considered.

It is noted that the above assumptions are made so that a general stereological relationship
between trace length distributions and discontinuity size distributions can be conveniently
derived. However, these assumptions, while convenient, are not necessary. For example, the
clustering of discontinuities could be considered using the methodology proposed by Dershowitz
(1993), Ivanova (1998) and Meyer (1999).

Figure 3-15 shows the parameters used in the definition of discontinuity shape. To simplify the
derivation, the parameters are specified with reference to the trace directions that would be
produced on a sampling plane. B is the angle between the discontinuity major axis and the trace
line (note that B is measured in the discontinuity plane). Obviously, B will change for different
sampling planes. For a specific sampling plane, however, there will be only one 3 value for a
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discontinuity set with a deterministic orientation. The parameter a, which is a characteristic
dimension (c.d.) defining the discontinuity size, is chosen to be the length of the discontinuity
major axis. The length of the discontinuity minor axis is a/k, where & is the aspect ratio of the
discontinuity. The probability density (or frequency) function g(a) for the characteristic
dimension is independent of spatial location.

Consider a sampling plane located inside the rock mass. Every discontinuity that intersects this
plane creates a linear trace, which is in fact a chord of the discontinuity. For simplicity we shall
initially consider a typical discontinuity with c.d. a. Let us examine under what conditions the
discontinuity produces a trace with midpoint at a given point O in the sampling plane. Obviously
one way in which this can occur is if the discontinuity center coincides with the point O, as
shown in Figure 3-16(a). Let us draw lines, such as line 4, on the discontinuity planes and parallel
to the trace line through point O. These lines will intersect the discontinuity producing cords,
such as cord 4,4, produced by line 4. If the discontinuity center is at the midpoint 4, of cord

A1 A,, the discontinuity will produce a trace with midpoint at point O. Extending this argument,
we can find that if the discontinuity center is on a straight line By4,0CyD,, the discontinuity will
produce a trace with midpoint at point O. The angle between the straight line By4,0C,D, and the
trace line through point O is

Equation 1

= = T n;
Bo =B+PBy =P +arcta [kztanB]
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Figure 3-15 Parameters used in the definitions of discontinuity
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Figure 3-16 Construction used in deviation of relationship between discontinuity size distribution
and trace length distribution
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Consider the construction of the box in Figure 3-16(b). The page represents the sampling plane,
and the discontinuity normal is inclined at an angle o to the plane. Since in the figure this angle is
taken to lie in a vertical plane normal to the page, the discontinuity would create a horizontal
trace where it intersects the page. The box extends equally on both sides of the page following the
contour of line By4oOC,D,. The distance A of the front or back of the box from the page in the
discontinuity plane is

B ak? tan2 B+1

 akfran2p 1

Equation 2

where [ is the angle between the discontinuity major axis and the trace line [see Figure 3-16(a)].
If the center of our typical discontinuity is at this distance from the page, the discontinuity will
touch the page. So if the discontinuity is to intersect the page its center must be somewhere
between the front and back of the box. It is also noted that all cross sections of the box parallel to
the page have the same unit area. The significance of the box now becomes apparent: each of our
typical discontinuities whose center is in the box will produce a trace whose midpoint is in the
unit area, and the number of such trace midpoints will be equal to the number of typical
discontinuities with centers in the box [see Figure 3-16(b)].

Since the volume of the box is

JkZtan2B+1

V= acos o Equation 3
k\/tan2 B+1

the total number of discontinuity centers in the box, on the average, is

N k% tan2 B+1 Bquation 4
y ———acosq uation
kytan2 B+1

where N, is the mean volume density of discontinuity centers (see assumption 3 above). A
fraction g(a)da of these discontinuities have c.d. between a and a + da and can be considered to
be our typical discontinuities, where g(a) is the probability density function of a. Consequently,
the average number of trace midpoints per unit area produced by discontinuities with c.d. between
a and a + da = the average number of such discontinuities with centers in the marked volume
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Ak tan2 B+1

v acosog(a)da Equation 5
k\/ tan2 B +1

Integrating (5) over the range of all discontinuity c.d. a and assuming a theoretically infinite
upper limit, we find that the average total number of trace midpoints per unit area is given by

k2 tan2 B+1
g kytan2 B+1

Ny=N COSOlLL,, Equation 6

where the mean of a is, by definition,
W, = .[: ag(a)da Equation 7

Dividing (5) by (6), the fraction of total traces produced by discontinuities with c.d. between a
and a + da

_a

= g(a)da Equation 8

a

Eq. (8) applies over the whole plane section [the “plane section” is parallel to the “unit area” in
Figure 3-16(b)]. It is worth noting that Eq. (8) shows that the probability density function of
traces produced by discontinuities with c.d. a is given by

f(@) =uig(a) Equation 9

Figure 3-17 illustrates a typical discontinuity of c.d. a. The discontinuity intersects a sampling
plane to produce a trace of length / located at a distance /2 from the discontinuity center in the
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discontinuity plane. It is assumed that the discontinuity is located randomly relative to the
sampling plane; this means that the distance # will be distributed uniformly in the range 0 to

_aW/kz tan2 B +1 2k+[tan2 B+1

0= and hence with a constant density of
2k tan2 B +1 a\Jk2 tan2 B +1

discontinuities that have c.d. between a and a + du and are intersected by the sampling plane

2k+tan2 p+1

a\/ k2 tan2B+1

intersections with the sampling plane. Multiplying this fraction by the probability density given
by Eq. (8) gives the fraction of the total number of traces that have parent discontinuity c.d.
between a and a + da and discontinuity center locations in the range 4 to s + dh, as follows

. Of these

dA have centers at distances between s and £ + dh from their

there, a fraction

2k+/tan2 B+1

P, =
7 ik tan2 B+l

g(a)dadh Equation 10

The length [ of a trace is related to its distance / from the discontinuity center in the discontinuity
plane as follows

. 2./tan? B+1+/(a/2)2 (k2 tan? B+ 1) — h2k2 (tan 2 B +1)

Equation 11
k2 tan? B+1
When 4 =0, [ takes the maximum value
JtanZ B +1 )
l a=Ma Equation 12

o k% tan2 B+1

which is the maximum trace length of a discontinuity with c.d. a. In Eq. (12),
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Jtan2 B+1 .
ﬁ Equat10n 13
tan< p+

M =

By deriving 4 as a function of / from Eq. (11) and then taking the derivative of /& over /, we have

— (k2 tan2 B+ 1)id]

dh= Equation 14

2
dk(tan? B+1) |22 B+ oo
k2 tan? B +1

Trace line

Figure 3-17 Relationship between 4, /, and a
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Here the negative sign simply means that / decreases as 4 increases. Taking the absolute value
and substituting for di in Eq. (10) gives the fraction of total traces that have lengths between /
and / + d/ and that are produced by discontinuities with c.d. between a and a + du

k% tanZ2 B +1 1di

Far = g(a)da
W,+tan? B+1 tan? B +1 2212
k% tan2 B +1 Equation 15

_ g(a)da Il

My, [(Ma)? -12

A trace length between / and / + d/ could be produced by a discontinuity with a c.d. a that is
greater than /M [see Eq. (12)]. Consequently, the proportion, P;, of the total number of traces that
have lengths between [ and / + d/ is found by integrating Eq. (15) over the range of all possible
discontinuity c.d. a between //M and oo, as follows

% g(a)da

= —_— Equation 16
Mug 17y (Ma)? —12

L/

This gives the probability density function of trace length /

f(l)=l—°f _g@da o Equation 17

My, 1y N (Ma)? -12

It is noted that when k£ = 1 (i.e., the discontinuities are circular), M =1 and Eq. (17) reduces to:

I e g(a)da .
SO= Equation 18
Ka Jl Ja? -1?

This is the result derived by Warburton (1980a) for circular discontinuities.
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3.2.1.5.2 Inference of Discontinuity Size Distribution from Trace Length Distribution or Vice
Versa

With the probability density function of the trace length, f{/), the mth moment of the trace length,
E(I"), can be obtained by

Eq™)=[1" (i Equation 19
0

Substitution of Eq. (17) into Eq. (19) gives

T m g T Ig(a)da

1
Mig o 1 m(Ma)? -12

(I <aM) Equation 20

E(I™)=

Reversing the order of integration in Eq. (20) and performing the resulting integration with
respect to /, we obtain

m 1 °J° 1‘?’ Mgy
E(I™) = ga)da | ———=
My, 0 +(Ma)? 12
Equation 21
=M7am+1g(a)da
Hg 0
where
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(_O@)m) =
Q2)(4)-+(m+1) 2

@A+~ (m)
(3)E)--(m+]1)

if mis odd

if m is even

Jam”g(a)da is the (m+1)th moment of a, i.e.,

0

E(am"'l) - Jam"'lg(a)da
0

So Eq. (21) can be rewritten as

E(am+1)

EQ™) = M™J 1

Ko

For m=1 and m= 2, we have

EQl) = TME (a?)

and

E(2) = 2M2E(a3)
3u,
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Equation 23

Equation 24

Equation 25
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Using E()) = W, EQ°) = [(1)° + (0], E@)= K and E@*) = [(W)* + (©.)'], Egs. (25) and (26) can be

rewritten as

=T [(Mg)*+(0,)7] Equation 27
4,
and
2 3
(}LZ)2 +(o; )2 = 2M"E(@”) Equation 28
3,
(a) If g(a) is lognormally distributed with mean p, and standard deviation ,, then
)2+ (02
E@3)=|-% = Equation 29
La
Substituting Eq. (29) into Eq. (28) and solving Egs. (27) and (28) for y, and G, gives
128(u,)?
b, =—— (u’z) - Equation 30
3nM (1) +(0,)"]
and
1536m* 2+ 2 +—1282 6
(G,) = e W,)*+(0,)*1M,) (1) Equation 31

om°M?[(1,)* +(0,)'T

(b) If g(a) has a negative exponential distribution with mean p,, then 6, = 4, and from Eq. (27) we
obtain

37



n, =——»Mu, Equation 32

(¢) If g(a) has a Gamma distribution with mean i, and standard deviation G,, then

[(Mg)? +(0,)21[(1y)? +2(6,)?]

E@3) = Equation 33
Ha
Substituting Eq. (33) into Eq. (28) and solving Eqs. (27) and (28) for p, and G, gives
2 A2 2 2
= 64(1,)” —3m°[(K,)* +(0,)"] Equation 34
8nMy,
and
2_ A2 2 2 2 2 21_ 2
(. = (M) 3T UW) +O ) PR, +(0) 3204} Equation 35

64> M ()’

Table 3-1 summarizes the above expressions for determining p, and 6, from W, and o, respectively
for lognormal, negative exponential and Gamma distribution of discontinuity diameters.
Conversely, with known p, and G,, and the distribution form of g(a), the mean |, and standard
deviation 6; of trace lengths can also be obtained. The expressions are summarized in

Table 3-2.

It is noted that, with the same |y, and 6;, we can have different p, and G, if the assumed
distribution form of g(a) is different. This means that the estimation of discontinuity size
distributions from Eq. (17) or (19) may not be robust. To overcome the problem of uniqueness, a
relationship between the ratio of the 4th and 1st moments of the discontinuity size distribution
and the 3rd moment of the trace length distribution will be used to check the suitability of the
assumed discontinuity size distribution form.
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Table 3-1 Expression for determining i, and ¢, from ; and o,

Distribution
form of g(a) e (0’
Lognormal 128(u,)* 15361 [(1,)* +(0,)* (1, )* 128 ()¢
30’ MI(,)* +(0,)°] I M [(W,)*+(6,)’T°
Negative 2 ) 2
. —M, —Uu
exponential w ey Bl
{64(u,)? -3m2[(,)* +(5,)* 11X
Gamma 64(1,)> =3m°[(1,)* +(5))*] i) +(0)*1-321)*)
81'[Mul 64n°M (Hz)
Table 3-2 Expression for determining W, and ¢, from p, and G,
Distribution
form of g(a) Ly (o)’
Lognormal nM[(Ua)z +(ca)2] 32M2[(}la)2 +(6a)2]3
ot —302M % (1) 2 [(1a)? + (00) 1
48(,)"
Negative o7 16—n>)M*
| T, QoM (1,7
exponential 2 4
32M2[(1g)? +(04)*11(Ma)* +2(0,)°]
G MG, ) +H(6,)?] ~3m2M2[(1,)? +(0,)*
ap, 48(1y)?

For m = 3, Eq. (24) becomes

E(a%) _ 16E(13)

Equation 36
E(a) 3nM3

For the three distribution forms of g(a) discussed above, Eq. (36) can be rewritten as:
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(a) If g(a) is lognormally distributed with mean 1, and standard deviation G,

[(1e)2+(0,)%1° 16E(13)

) 5 = s Equation 37
(b) If g(a) has a negative exponential distribution with mean p,,
24(p, )2 =@ Equation 38
3nM
(¢) If g(a) has a Gamma distribution with mean [, and standard deviation G,,
[(14)* +(56 ) (1a)® +2(54)° 1(1a)* +3(0,)*]_16E(?) Bouation 39

(1a) EYE

So the following procedure can be used to infer the discontinuity size distribution g(a):

1. Obtain the true trace length distribution of f{J) (see Section 3.2.1.6 for the details)
and compute E(P°).

2. Assume one of the distribution forms for g(a) in Table 3-3and compute i, and G,
using corresponding expressions, e.g., for a lognormal distribution form of g(a),
equations (30) and (31) are used.

3. Check the equality of equation (36) corresponding to the assumed distribution form of
g(a), e.g., for a lognormal distribution form of g(a), the equality of equation (37) is
checked. The assumed distribution form of g(a) corresponding to the case that the
left and right sides are the closest to, is the best distribution form of g(a) and thus
can be used, together with the corresponding p, and ©,, to represent the
discontinuity distribution.

3.2.1.6 Estimation of True Trace Length Distribution f{/)

Because the discontinuity size distribution g(a) is related to the true trace length distribution f{J),
we need to estimate f{/) from the measured trace (length) data by correcting the sampling biases.
Zhang and Einstein (2000a) developed a method for estimating the true trace length distribution
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by considering the sampling biases for circular window sampling, which is reproduced in the
following.

Measured trace lengths can be obtained from three types of sampling on an exposure (including
natural outcrops, rock cuts and tunnel walls): (a) sampling the traces that intersect a line drawn on
the exposure, which is known as scanline sampling; (b) sampling the traces that intersect a circle
drawn on the exposure, which is known as circle sampling; and (c) sampling the traces within a
finite size area (usually rectangular or circular in shape) on the exposure, which is known as area
(or window) sampling. It is important to note that in window sampling as it is defined here only
the portions of the discontinuity traces within the window are measured, while the portions of
traces intersecting such a window but lying outside are not considered. In this study, circular
window sampling (see Figure 3-18) is considered. If the outcrop is circular in shape, it can be
conveniently used as a sampling window. Circular window sampling has the advantage that no
discontinuity orientation data is needed when estimating the true mean trace lengths (Mauldon
1998; Zhang and Einstein 1998).

In sampling for trace lengths, errors can occur due to the following biases (Baecher, Lanney, and
Einstein 1978; Einstein et al. 1979; Priest and Hudson 1981; Kulatilake and Wu 1984):

1. Orientation bias: the probability of a joint appearing in an outcrop depends on the relative
orientation between the outcrop and the joint (see also Terzaghi 1965);

Crienlar {c)} Both ends are observable
sampliog /
window

™ L Traces

/ Quterop

(b} One end 15 censored {a) Both ends are censored

Figure 3-18 Discontinuities intersect a circular sampling window in three ways
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2. Size bias: large joints are more likely to be sampled than small joints. This bias affects
the results in two ways: (a) a larger joint is more likely to appear in an outcrop than a
smaller one; and (b) a longer trace is more likely to appear in a sampling area than a
shorter one.

3. Truncation bias: Very small trace lengths are difficult or sometimes impossible to
measure. Therefore, trace lengths below some known cutoff length are not recorded.

4. Censoring bias: Long joint traces may extend beyond the visible exposure so that one end
or both ends of the joint traces can not be seen.

In inferring the true trace length distribution (i.e., the trace length distribution on an infinite
sampling surface) from the measured trace lengths on a finite size area on this surface, biases
(2b), (3) and (4) should be considered. Biases (1) and (2a) should be considered when inferring
the discontinuity size distribution from the true trace length distribution. Truncation bias (3) can
be corrected using the method of Warburton (1980a). Decreasing the truncation-level in
discontinuity surveys can reduce effects of truncation bias on trace length estimates. It is
practically feasible to observe and measure trace lengths as low as 10 mm both in the filed and
from photographs (Priest and Hudson 1981). Truncation at this level will have only a small effect
on the data, particularly if the mean trace length in the order of meters (Priest and Hudson 1981;
Einstein and Baecher 1983). Therefore, the effect of truncation bias on trace length estimates is
usually ignored (Kulatilake et al. 1993; Zhang and Einstein 1998). However, biases (2b) and (4)
are important and will be considered.

According to Zhang (1999), the following procedure is proposed for estimating f(/):

(a) Estimate the true mean trace length [i; by (Zhang and Einstein 1998)

~ n(]\7+](/0—]\72)
fiy =———=0—2¢
2(N—N0+N2)

Equation 40

where N , N , and N » are respectively the total number of traces that appear on

the window, the number of traces with both ends censored and the number of traces
both ends observable; and ¢ is the radius of the sampling window (see Figure
3-18).

(b) Analyze the measured trace lengths to obtain the mean (L), the standard deviation
(6)m the coefficient of variation COV,, [=(6)./(lk)] and the suitable distribution
form of the measured trace lengths. To find the suitable distribution A(/) of the
measured trace lengths of each discontinuity set, the distribution forms in Table 3-3

can be checked by using % and Kolmogorov-Smirnov goodness-of-fit tests.
(c) Obtain the true trace length distribution f{/) by assuming: (1) (/) and g(/) have the
same distribution form; and (2) the mean and standard deviation of f{I) are

respectively [i; and [i; (COVyy).

When applying Eq. (40), the following two special cases may occur and should be avoided:
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) IfN 0o = N, then fi; — oo. In this case, all the discontinuities intersecting the

sampling window have both ends censored. This implies that the area of the
window used for the discontinuity survey may be too small.

2) If N 5 = N ,then [i; = 0. In this case, all the discontinuities intersecting the
sampling window have both ends observable. According to Pahl (1981), this results

is due to violation of the assumption that the midpoints of traces are uniformly
distributed in the two dimensional space.

These two special cases can be addressed by increasing the sampling window size and/or
changing the sampling window position (Zhang 1999). Another method to address these two
special cases is to use multiple windows of the same size and at different locations (Zhang and
Einstein 1998).

Table 3-3 Common Distribution Forms of Trace Lengths

Investigator Distribution Form
Robertson (1970) Exponential
McMahon (1974) Lognormal
Bridges (1975) Lognormal
Call et al. (1976) Exponential
Barton (1977) Lognormal
Cruden (1977) Exponential
Baecher et al (1977) Lognormal
Einstein et al. (1979) Lognormal
Priest and Hudson (1981) Exponential
Kulatilake (1993) Exponential and Gamma (Gamma better)
Barton and Hsich (1989) Power Law
Barton and Larsen (1985) Power Law
LaPointe and Hudson (1985) Power Law

3.2.177 “Effect of Sampling Plane Orientation on 'l race 1.engths

In this section, the effect of sampling plane orientation on trace lengths is investigated by using
the derived stereological relationship between the trace length distribution and the discontinuity
size distribution. For simplicity, only one discontinuity set with a deterministic orientation is
considered. The discontinuity size of the set is assumed to be in lognormal distribution with p, =

80mand 6,=4.0m.

Figure 3-19 shows the variation of the mean trace length with . Since B is the angle between the
trace line and the discontinuity major axis, it is an indication of the sampling plane orientation
relative to the discontinuity. It can be seen from Figure 3-19 that, despite the considerable
difference between the maximum and the minimum of mean trace length, there are extensive
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ranges of sampling plane orientations reflected by B over which the mean trace lengths show little
variation, especially for large &£ values.

Figure 3-20 shows the variation of the standard deviation of trace lengths with B. It can be seen
that the standard deviation of trace lengths varies with the sampling plane orientation reflected by
B in the same general way as the mean trace length.

The results in Figure 3-19 and Figure 3-20 could well explain why Bridges (1975), Einstein
(1979) and McMahon (1982) found different mean trace lengths on differently oriented sampling
planes, whereas Robertson (1970) and Barton (1977) observed them to be approximately equal.
In each of these reports, the number of differently oriented sampling planes was very limited and,
depending on the relative orientations of the sampling planes, the authors could observe either
approximately equal mean trace lengths or significantly different mean trace lengths. For
example, in Bridges (1975), Einstein (1979) and McMahon (1982), the strike and dip sampling
planes might be respectively in the B = 0° — 20° (or 160° — 180°) range and the = 40° — 140°
range, or vice versa. From Figure 3-19, this would result in very different mean trace lengths. On
the other hand, in Robertson (1970) and Barton (1977), the strike and dip sampling planes might
be both in the B = 40° — 140° range (i.e., in the “flat” trace length part of Figure 3-19) or
respectively in some P ranges approximately symmetrical about 8 = 90°. It should be noted that
the above is just an assumption because no information about the B values can be found in the
original papers or reports.

The implications of Figure 3-19 and Figure 3-20 about field sampling are as follows:

If different sampling planes are used to collect trace (length) data, the sampling planes should be
oriented such that significantly different mean trace lengths can be obtained from different planes.
For example, if two sampling planes are used, one should be oriented in the § = 0° — 20° (or 160°
— 180°) range and the other in the B = 60° — 120° range.
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Figure 3-19 Variation of mean trace length with 3

3.2.1.8 Verification by Numerical Simulation

To check the derived stereological relationship between trace length distributions and

discontinuity size distributions, the trace data simulated using the FracMan discrete fracture code
(Dershowitz et al. 1998) are analyzed. It should be noted that the FracMan discrete fracture code
is just used to create discontinuity networks with known discontinuity size distribution and
intensity, and to simulate the field sampling processes so that the proposed method can be
checked. The assumptions used in FracMan do not affect the effectiveness for checking the
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proposed method. The parameters for the simulations are shown in Table 3-4. Following Baecher
et al. (1977), Barton (1978) and Warburton (1980a, b), the size of a discontinuity set is described
by a lognormal distribution. For simplicity, only one discontinuity set with a deterministic
orientation is considered. 2000 discontinuities are generated in a 20 m X 20 m X 20 m box [see
Figure 3-21(a)]. Three circular sampling windows of radius 8 m respectively in plane x =0m, y =
0 m and z = 0 m are used to collect the trace (length) data [see Figure 3-21(b)].
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Figure 3-20 Variation of standard deviation of trace length with 3
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Figure 3-21 (a) Simulation volume is a box, i.e., the elliptical discontinuities are generated inside
the box; (b) Sampling window at x =0 m
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Table 3-4 Parameters for simulation 1 using FracMan (see also Figure 3-21)

Discontinuities

Number 2000

Pole direction (6/¢) 300.0°/60.0°

Shape Elliptical

Aspect ratio 4.0

Direction of major axis 30.0°/0.0°

Size a (Distribution) Lognormal

Size a (Mean |,) 8.0m

Size a (Standard deviation G,) 4.0m

Simulation volume 20 m X 20 m X 20 m box

Sampling windows

Circular window 1 ¢ = 8.0 m; (0/¢)= (0.0°/0.0°);
B =634°

Circular window 2 ¢ = 8.0 m; 0/d)= (90.0°/0.0°);
B =337

Circular window 3 ¢ = 8.0 m; 0/9)= (0.0°/90.0°);
B =0.0°

*B is the angle between the trace line and the major axis of a discontinuity (see Figure 3-15)

For the three sampling windows shown in Table 3-4 and Figure 3-21, the theoretical (true) mean
and standard deviation values of trace lengths can be obtained using the expressions for
lognormal g(a) is shown in Table 3-5.
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Table 3-5 Theoretical values of Trace Length Mean and Standard Deviation

Sampling Window M Trace Length Mean | | Trace Length Standard
(m) Deviation o,
m
1 0.277 2.18 1.29m
2 0422 331 1.96
3 1.0 7.85 4.65

For each discontinuity network realization, the discontinuity traces in a sampling window can be

obtained. With the trace data, the values of N , N o, and N 5 , respectively for each realization and

for each sampling window, can be determined and the corresponding mean trace length [i; can
then be predicted using Eq. (40). The predicted mean trace length values are shown in Figure
3-22. The average values of the predicted mean trace lengths of 10 realizations, for each sampling
window, are shown in Table 3-5. For comparison, the theoretical mean trace length values

obtained above from the expressions in

Table 3-2 are also shown in Figure 3-22 and Table 3-5. It can be seen that the theoretical and the
predicted mean trace lengths are in excellent agreement.

Table 3-6. Comparison of theoretical (or true) and predicted mean trace lengths

M m Error = (| - W)/
Sampling Window (m) (m) (%)
M @ ©) @
Circular window 1 (B = 63.4°) 2.18 2.16 -0.9
Circular window 2 (B = 33.7°) 3.31 3.36 1.5
Circular window 3 (8 = 0.0°) 7.85 7.63 -2.8

Note: [L; is the average of the predicted mean trace lengths [i; of 10 realizations; |, is the
theoretical mean trace length obtained from the expressions in

Table 3-2.
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Figure 3-22 Comparison of theoretical mean trace lengths with predicted mean trace lengths
from simulations
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From the trace length data of each realization, the mean (l;),,, standard deviation (c;),, and
coefficient of variation COV,,, which is the ratio of the standard deviation and mean, of measured
trace lengths in each sampling window can be obtained. The obtained COV,, can then be

combined with the corresponding mean trace length [i; to estimate the standard deviation &,

as [i;(COV,,). The estimated standard deviation values are shown in Figure 3-23. The average
values of the estimated standard deviation values of 10 realizations, for each sampling window,
are shown in Table 3-7. For comparison, the theoretical standard deviation values obtained from
the expressions in

Table 3-2 are also shown in Figure 3-23 and Table 3-7. It can be seen that the theoretical and the
estimated standard deviation values are in good agreement.

The good agreement between the theoretical and estimated values is a validation of both the
derived expressions in

Table 3-2 and the method presented in Section 3.2.1.6 for predicting the true mean and standard
deviation of trace lengths.

The distribution forms of the measured trace lengths of 10 realizations for each sampling window are
also investigated. x> and Kolmogorov-Smirnov goodness-of-fit tests are used to check the
suitability of lognormal and Gamma distributions (the negative exponential distribution is a
special case of the Gamma distribution) in representing the measured trace lengths. The results of
both % and Kolmogorov-Smirnov goodness-of-fit tests show that the lognormal distribution can
represent the measured trace length distributions for all sampling windows at the 0.05 significance
level. The Gamma distribution, however, can represent the measured trace length distributions in
only some of the sampling windows at the 0.05 significance level. Therefore, according to

Section 3.2.1.6, the true trace length distribution is assumed to be lognormal.

3.2.1.9 Approach Implementation

In this section, we show how to use the estimated true trace length distributions corresponding
to different sampling windows to infer the major axis orientation, aspect ratio and size
distribution of discontinuities.

Using the average of 10 realizations for each sampling window, the true trace length
distributions can be derived as shown in Table 3-8.
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Table 3-7 Comparison of theoretical (or true) and predicted standard deviation of trace lengths

o O; Error =(G; - 6)/0;
Sampling Window (m) (m) (%)
@ @ ®) @
Circular window 1 (B = 63.4°) 1.29 1.29 0
Circular window 2 (§ = 33.7°) 1.96 2.07 5.6
Circular window 3 (B = 0.0°) 4.65 4.19 9.9

Note: G; is the average of the predicted standard deviations of trace lengths &, of 10
realizations; o, is the theoretical standard deviation of trace lengths obtained from the expressions in
Table 3-2.
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Figure 3-23 Comparison of the theoretical standard deviation of trace lengths with predicted
standard deviation of trace lengths from simulations
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Table 3-8 Derived true trace length distributions

Hy O,
Sampling Window (m) (m) Distribution Form
1) @ G) @
Circular window 1 (B = 63.4°) 2.16 1.29 Lognormal
Circular window 2 (B = 33.7°) 3.36 2.07 Lognormal
Circular window 3 (= 0.0°) 7.63 4.19 Lognormal

Note: L, is from column 3 of Table 3-5 and 6; from column 3 of Table 3-6.

To simulate the actual sampling condition, we assume that we know the pole orientation (i.c.,
300.0°/60.0°) but not the major axis orientation of discontinuities. This is a reasonable
assumption given the fact that discontinuity orientations can be quite reliably observed. Thus the
unknowns that we need to infer are:

1. The major axis orientation
2. The aspect ratio &
3. MW, G, and distribution form of g(a).

Assuming three major axis orientations, the corresponding B values for each sampling window
can be obtained (see Table 3-9). For each assumed major axis orientation and by assuming an
aspect ratio £ and a distribution form of g(a), ., and G, can be calculated from p, and 6; obtained
for each sampling window. The relations between the calculated values of i, and ¢, and aspect
ratio k£ for lognormal, negative exponential and Gamma distribution forms of g(a) are shown in
Figure 3-24, Figure 3-26 to Figure 3-29 and Figure 3-30 to Figure 3-32 for the three assumed
major axis orientations, respectively. Since the trace length data of the three sampling windows
correspond to a single discontinuity network, the relations between inferred Y, (and 6,) and &
corresponding to the three sampling windows, i.¢., the curves in Figure 3-24 to Figure 3-32,
should intersect in one point. This point corresponds to the actual major axis orientation, which
in practice is not known and needs to be inferred. Inspection of Figure 3-24 to Figure 3-32 show
that the p, (and G,) versus & curves intersect only in Figure 3-27 to Figure 3-29 but do so very
distinctly. Figure 3-27 to Figure 3-29 are for the major axis orientation of 30°/0°, which is the
actual major axis orientation, used in the simulation. The &, Y, and G, values at the intersection
points (see Figure 3-27 to Figure 3-29) are the corresponding predicted values. The prediction
results for the lognormal, negative exponential and Gamma distribution forms of g(a) are also
shown in Table 3-10.
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Figure 3-24 Variation of y, and o, with aspect ratio k for assumed major axis orientation 1
(0°/0°): assuming a lognormal distribution form of g(a)

55



25
w41, for window 1: = 80 deg.
—s— i, for window 2; B = 16.1 deg.
20 - ~e |1, for window 3: f} = 30 deq.
g 15
=
.~
‘g
&
& 10
5
0 = ;
a 2 4 & 8 10

Aspect ratio k

Figure 3-25 Variation of W, with aspect ratio & for assumed major axis orientation 1 (0°/0°):
assuming a negative exponential distribution form of g(a)

56



et 4, fOF window 1: b = 90 deg.
i e fOF window 2: B = 16,1 deg.
30 i B 07 Window 3: § = 30 deg.
<~ e 05, for window 1 P = 90 deg.
oo gy forwindow 2, f = 16.1deg.
% st o, for window 3. = 30 deg. |

E
Gl
w 20
™
@
=
% .
4.
10
5.
ﬁ 3 T ¥
0 2 4 B 8 10

Aspect ratio k

Figure 3-26 Variation of p, and ¢, with aspect ration & for assumed major axis orientation 1
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Table 3-9 Assumed major axis orientations and their corresponding B values

Assumed major axis B(®
orientation
¢y Window 1 Window 2 Window 3
0°/0° 63.4 337 0
30°/0° 90 16.1 30
60°/0° 39.2 61.3 30

Table 3-10 Predicted values of &, W, and G, at major axis orientation (30°/0°)

Assumed distribution form Ua G
of g(a) k (m) (m) Marks
Y @ 3 @ ®
Lognormal 4.08 8.06 3.99 See Figure 3-24,
Figure 3-27, and
Figure 3-30?
Negative exponential 3.85 4.86 4.86 See Figure 3-25,,
Figure 3-28 and
Figure 3-31
Gamma 422 7.73 4.42 See Figure 3-26,
Figure 3-29, and
Figure 3-32%

a) The intersection point of [, curves is chosen to estimate k, [, and G,.

Since we have the results for three distribution forms of g(a), what we need to do next is to find
the best distribution form by checking the equality of equation (36) corresponding to each
assumed distribution form of g(a). For a lognormal distribution of f{/), we have

3 2 213
16E(°) _16[(1;)" +(07)”] Equation 41

3nM3 3nM3 (u;)3

Hence, using the data in Table 3-8 and Eq. (41), the values of 16E(F)/3rM’, for each sampling
window, can be determined. The results are shown in Table 3-11 to Table 3-13 (column 2). The
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left side of equation (36) can be obtained from Eq. (37), (38) or (39) and the corresponding data
in Table 3-10. The results are also shown in Table 3-11 to Table 3-13 (column 6). Comparing the
equality of both sides of Eq. (36) for each sampling window, we find that g(a) can be best
represented by the lognormal distribution, which is the actual distribution form of g(a).

In summary, the predicted major axis orientation, aspect ratio, and size distribution are:

e Major axis orientation = (30°/0°);

e [k =4.08; g(a) =lognormal with p, = 8.06 m and 6, =3.99 m

¢ which compare very well with the actual major axis orientation, aspect ratio and size
distribution used in the simulations

e Major axis orientation = (30°/0°);

e [k =4.0; g(a)=lognormal with 4, =8.0 m and 6, =4.0 m

Table 3-11 Checking the distribution of g(a) for sampling window 1 (B = 63.4°)

Assumed Recommended
distribution distribution form
Ii A14 16E(3) | form %fg(a) ™ o, E(a%) of g(a)?
® o P (€) @ )] E(a) g
2 (6)
Lognormal 2.19 1.11 41.16 Yes
1 1.0 42.72 Exponential 1.37 1.37 62.38 No
Gamma 2.05 1.20 39.51 No
Lognormal 4.04 2.04 257.9 Yes
2 0.542 267.6 Exponential 2.53 2.53 390.8 No
Gamma 3.77 2.21 247.6 No
Lognormal 7.89 3.99 1928 Yes
4 0.277 2001 Exponential 4.95 4.95 2921 No
Gamma 7.38 433 1851 No
Lognormal 11.79 5.96 6423 Yes
6 0.186 6666 Exponential 7.40 7.40 9733 No
Gamma 11.02 6.46 6166 No
8 0.139 Lognormal 15.70 7.93 15155 Yes
15729 Exponential 9.85 9.85 22967 No
Gamma 14.67 8.60 14549 No

Note: The recommended distribution form of g(a) corresponds to t

closest to each other.
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Table 3-12 Checking the distribution of g(a) for sampling window 2 (B = 33.79)

Assumed Recommended
3 distribution 4 distribution form
k M| 1EC) | fomofga) | p, | o | E@D of g(a)?
) M 33 3 @ ®) E(a) @)
@ ©
Lognormal 3.35 1.76 162.9 Yes
1 1.0 169.1 Exponential | 2.14 2.14 234.8 No
Gamma 3.09 1.91 155.5 No
Lognormal 4.65 244 434.6 Yes
2 0.721 451.0 Exponential [ 2.97 2.97 626.4 No
Gamma 4.29 2.66 414.8 No
Lognormal 7.94 4.18 2169 Yes
4 0.422 2251 Exponential 5.07 5.07 3126 No
Gamma 7.33 4.54 2070 No
Lognormal 11.50 6.05 6582 Yes
6 0.291 6831 Exponential 7.34 7.34 9487 No
Gamma 10.61 6.57 6282 No
Lognormal 15.13 7.96 15004 Yes
8 0.221 15572 Exponential 9.66 9.66 21626 No
Gamma 13.97 8.65 14322 No

Note: The recommended distribution form of g(a) corresponds to the case that columns (2) and

(6) are the closest to each other.
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Table 3-13 Checking the distribution of g(a) for sampling window 3 ( = 0°)

Assumed Recommended
3 distribution 4 distribution form
k M| ED) | formofg@) | p, | o, | @D | ofgy
D Q) 3mM3 3 @ ®) E(a) Q)
2 ©

Lognormal 8.06 3.65 1602 Yes

1 1.0 1663 Exponential | 4.86 4.86 2749 No
Gamma 7.73 3.92 1558 No
Lognormal 8.06 3.65 1602 Yes

2 1.0 1663 Exponential [ 4.86 4.86 2749 No
Gamma 7.73 3.92 1558 No
Lognormal 8.06 3.65 1602 Yes

4 1.0 1663 Exponential | 4.86 4.86 2749 No
Gamma 7.73 3.92 1558 No
Lognormal 8.06 3.65 1602 Yes

6 1.0 1663 Exponential [ 4.86 4.86 2749 No
Gamma 7.73 3.92 1558 No
Lognormal 8.06 3.65 1602 Yes

8 1.0 1663 Exponential | 4.86 4.86 2749 No
Gamma 7.73 3.92 1558 No

Note: The recommended distribution form of g(a) corresponds to the case that columns (2) and

(6) are the closest to each other.

3.2.1.10 Summary

The procedure to infer the major axis orientation, aspect ratio & and size distribution g(a)
(probability density function of the major axis) of elliptical discontinuities from trace length
sampling on different sampling windows can be summarized as follows:

L.

Sampling

(a) Trace length: Use two or more sampling windows at different orientations to
conduct trace (length) sampling. The sampling windows (planes) should be
oriented such that significantly different mean trace lengths can be obtained from
different windows (see Section 3.2.1.7).

(b) Orientation: Use exposed rock surface or wellbore sampling so that the normal
orientation of each discontinuity set can be obtained.

Conduct trace length analysis to estimate the true trace length distribution f{I) on
different sampling windows: L, 6; and form of f{/) (see Section 3.2.1.7).

Infer the major axis orientation, aspect ratio £ and size distribution g(a) of

discontinuities from trace length sampling on different sampling windows:

(a) Assume a major axis orientation and compute the B value for each sampling
window.
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(b) For the assumed major axis orientation, compute W, and ¢, from W, and o; of
each sampling window, by assuming aspect ratios £ = 1, 2, 4, 6, 8 and
lognormal, negative exponential and Gamma distribution forms of g(a). The
results are then used to draw the curves relating |, (and G,) with &, respectively,
for the lognormal, negative exponential and Gamma distribution forms of g(a)
(see, e.g., Figure 3-24, Figure 3-25, and Figure 3-26).

(c) Repeat steps (a) and (b) until the curves relating |, (and o,) with & for different
sampling windows intersect in one point (see, e.g., Figure 3-27, Figure 3-28,
Figure 3-29). The major axis orientation for this case is the inferred actual major
axis orientation. The k, W, and o, values at the intersection points are the
corresponding possible characteristics of the discontinuities.

(d) Find the best distribution form of g(a) by checking the equality of equation
(36) (see Section 3.2.1.5). The k, p, and o, values found in Step (c) and
corresponding to the best distribution form of g(a) are the inferred
characteristics of the discontinuities.

A general stereological relationship between trace length distributions and elliptical discontinuity
size (expressed by the major axis length a of the ellipse) distributions for area sampling of
discontinuities has thus been derived. Based on the general stereological relationship, an approach
was developed for using the estimated true trace length distributions corresponding to different
sampling windows to infer the major axis orientation, aspect ratio and size distribution of
discontinuities. The validity of the developed method was checked by applying it to analyze data
produced with simulations. In the simulations, discontinuities were generated and then sampling
processes were simulated by using the FracMan code. The results show that the developed
approach for inferring the major axis orientation, aspect ratio and size distribution of discontinuities
can produce satisfactory results.

The effect of sampling plane orientation on trace lengths was investigated by using the derived
stereological relationship between the trace length distribution and the discontinuity size
distribution. The results show that the sampling plane orientation has an important effect on both
the mean and standard deviation of trace lengths. If different sampling planes are used to collect
trace (length) data, the sampling planes should be such oriented that significantly different mean
trace lengths can be obtained from different planes.

3.2.2 Task 1.1.2 Fracture Shape Analysis

Research results have shown that the planar shape of discontinuities (or fractures) has a profound
effect on the connectivity of discontinuities and on fluid flows (Petit et al. 1994; Dershowitz
1998). Consequently, it is important to know the planar shape of discontinuities when
characterizing discontinuities in a rock mass. Since a rock mass is usually inaccessible in three
dimensions, the real discontinuity shape is rarely known. Information on discontinuity shape is
limited and often open to more than one interpretation (Warburton 1980a; Wathugala 1991).

Discontinuities can be classified into two categories: unrestricted and restricted. Unrestricted
discontinuities are blind and effectively isolated discontinuities whose growth has not been
perturbed by adjacent geological structures such as faults and free surfaces [see Figure 3-33(a)].
In general, the edge of unrestricted discontinuities is a closed convex curve. In many cases, the
growth of discontinuities is limited by adjacent preexisting discontinuities and free surfaces [see
Figure 3-33(b)]. Such discontinuities are called restricted discontinuities. One way to represent
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restricted discontinuities is to use polygons, some of the polygon sides being those formed by
intersections with the adjacent preexisting discontinuities and free surfaces.

In this discussion, only unrestricted discontinuities will be considered. First, a brief literature
review about the shape of (unrestricted) discontinuities is presented, including the reported in situ
data and the shapes assumed by different researchers. This followed by the analysis of the
available data, which leads to the conclusion that the possible shape of discontinuities is more
likely to be elliptical than circular.

3.2.2.1 Literature Review

In the past thirty years, a number of articles and reports have appeared discussing possible shapes
of discontinuities.

3.2.2.1.1 In Situ Data about the Discontinuity Shape

Robertson (1970), after analyzing nearly 9,000 traces from the De Beer mine, South Affica,
concluded that the strike trace length and the dip trace length of discontinuities have about the
same distribution, possibly implying discontinuities to be equidimensional (circular). Figure 3-34
shows the strike and dip traces of a discontinuity.
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Bridges (1975) stated that “there is good evidence for” individual discontinuities to be taken to
have a rectangular (elongated?) shape. However, no specific data can be found in the original
paper to support this statement.

Barton (1977) presented a geotechnical analysis of rock structure and fabric at the C.S.A. Mine,
Cobar, New South Wales. The country rock within the mine area is overwhelmingly composed of
chloritic and quartzitic siltstone to slatey claystone. Based on observations of trace lengths along
the strikes and dips of different rock exposures, Barton (1977) made an assumption of circular
discontinuity shape.

Einstein et al. (1979) investigated discontinuities at a site in southern Connecticut. The country
rock at this site is the Monson Gneiss, a thinly banded rock with feldspathic and biotitic layers.
There are two major discontinuity sets at this site. Set 1 dips steeply to the southeast and Set 2 is
nearly horizontal. Trace lengths of discontinuities were measured on both the horizontal and
vertical surfaces of excavations. The results indicate that discontinuities are non-equidimensional
(see Table 3-14).

Table 3-14 Mean of strike trace lengths and mean of dip trace lengths of two discontinuity sets
(from Einstein et al. 1979)

Discontinuity Mean of strike trace lengths Mean of dip trace lengths
Set # (ft.) (ft.)
1 28.3 16.1
2 252 21.1

According to Mostyn and Li (1993), McMahon (1982) used a dip length equal to 60% of the
strike length for discontinuities in slope design. Since the original paper of McMahon (1982) is
not published, it is not clear if McMahon based his assumption on in situ data.

Petit et al. (1994) presented results of a field study to determine the shape of discontinuities in
sedimentary rocks. Pelites with isolated sandstone layers in the red Permian sandstones of the
Lodeve Basin were studied. The exposed discontinuities (i.e., one of the discontinuity walls had
been removed by erosion) appear as rough ellipses with a shape ratio L/H of about 2.0, where L
and H are respectively the largest horizontal and vertical dimensions. For non-exposed
discontinuities, the distributions of the dimensions of the horizontal and vertical traces were
measured. The ratio of the mean L to the mean H of such traces is 1.9, which is very close to the
L/H ratio of the observed individual discontinuity planes. This suggests that most of the
discontinuities are elliptical with a shape ratio of about 2.0, independent of the discontinuity size.

Nicol et al. (1996) presented data about the shape of simple normal faults (see Figure 3-35 and
Table 3-15). The results show that normal faults have an approximately elliptical shape with the
major axis sub-horizontal. Aspect ratios of fault surfaces range from 1.0 to 3.4 with a mean of
2.15.
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regions (see Table 3-15) (from Nicol et al. 1996)

Table 3-15 Details of the four data sets plotted in Figure 3-35 (from Nicol et al. 1996)

Name and Number | Aspect ratio
location Lithologies of faults (average)

Derbyshire Coal Carboniferous sandstone, shale and coal 12 2.3

Mines, UK

Timor Sea Cenozoic limestone, claystone and sandstone 9 2.2

Gulf Coast Late Miocene to recent sandstone with minor 7 1.6

shales
North Sea Jurassic sandstone and shales 7 24

Note: Data from the Derbyshire Coal field are from coal-seam plans, the remainder are from two-
and three-dimensional offshore reflection seismic data sets.
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3.2.2.1.2 Assumptions about the Discontinuity Shape by Different Researchers

Due to the mathematical convenience, many investigators assume that discontinuities are thin
circular discs randomly located in space (Baecher et al. 1977; Warburton 1980a; Chan 1986;
Villaescusa and Brown 1990; Kulatilake 1993). With circular discontinuities, the trace patterns in
differently oriented sampling planes will be the same. In practice, however, the trace patterns may
vary with the orientation of sampling planes (Warburton 1980b). Therefore, Warburton (1980b)
assumed that discontinuities in a set are parallelograms of various sizes. Dershowitz et al. (1993)
used polygons to represent discontinuities in the FracMan discrete fracture code. The polygons are
formed by inscribing a polygon in an ellipse (see Figure 3-36). Ivanova (1995, 1998) and Meyer
(1999) also used polygons to represent discontinuities in their discrete fracture code GeoFrac. It is
noted that polygons can be used to effectively represent elliptical discontinuities when the number of
polygon sides is large (say > 10) (Dershowitz et al. 1993).

3.2.2.2 Analysis of Existing Information on Discontinuity Shape

As seen from above, most of the researchers infer the discontinuity shape from the study of trace
lengths in both the strike and dip directions (see Figure 3-34). The conclusion that discontinuities
are equidimensional (circular) is drawn only from the fact that the average strike length of a
discontinuity set is approximately equal to its average dip length. However, the average strike
length of a discontinuity set being the same as its average dip length does not necessarily mean
that the discontinuities of such a set are equidimensional; instead, there exist the following three
possibilities:

a) The discontinuities are indeed equidimensional [see Figure 3-37(a)].

b) The discontinuities are non-equidimensional such as elliptical or rectangular with long axes
in a single (or deterministic) orientation. However, the discontinuities are oriented such that
the average strike length is approximately equal to the average dip length [see Figure
3-37(b)].

¢) The discontinuities are non-equidimensional such as elliptical or rectangular with long axes

randomly oriented. The random discontinuity orientation distribution makes the average
strike length approximately equal to the average dip length [see Figure 3-37(c)].
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Discontinuities are non-equidimensional with long axes such randomly oriented that the average
strike length is about equal to the average dip length.
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Therefore, the conclusion that discontinuities are equidimensional (circular) drawn from the fact
that the average strike length of a discontinuity set is about equal to its average dip length is
questionable. Investigators assume circular discontinuity shape possibly because of mathematical
convenience.

On the other hand, if the average strike length differs greatly from the average dip length, the
discontinuities are non-equidimensional. Since the reported exposed discontinuities (i.e., one of
the discontinuity walls had been removed by erosion) appear as rough ellipses, it is appropriate to
assume that discontinuities are elliptical.

Elliptical discontinuities can be effectively represented by polygons with a large number of sides.
This may be one of the reasons why polygons are used to represent discontinuities in discrete
fracture codes. Convenience of numerical analysis and ability to represent irregular
discontinuities such as restricted discontinuities might be the other two reasons for using
polygons to represent discontinuities in discrete fracture codes.

3.2.2.3 Summary and Conclusions

A brief literature review about the shape of unrestricted discontinuities was conducted, which
included reported in situ data and the shapes assumed by different researchers. Analyzing this
information one can state:

e The conclusion that discontinuities are equidimensional (circular) drawn from the fact
that the average strike length of a discontinuity set is approximately equal to its average
dip length is questionable. Investigators assume circular discontinuity shape possibly
because of mathematical convenience.

e The possible shape of unrestricted discontinuities is more likely to be elliptical than
circular.

3.2.3 Task 1.1.3 Application of Neural Nets to the Identification of Fracture Sets
3.2.3.1 Background

The key first step in the analysis of data from heterogeneous systems is to identify natural groups
of data. Without first grouping the data for separate analysis, the variability in data values
inherent in heterogeneous reservoirs unnecessarily reduces the spatial and statistical resolution of
the data.

Any heterogeneous reservoir feature, such as fractures, laminations or shale lenses, has
parameters that define it. More often than not, there may have been several depositional or
tectonic events that have produced these features. Each event may produce features with
different characteristics. This is often evident in fracture patterns where multiple fracture sets are
developed, each with there own defining characteristics. Sometimes the differences are obvious,
for example, when there are two sets formed at right angles to one another. Other times the
differences are more subtle, for example, when orientations are highly overlapping, but other
features like planarity, mineral infillings, surface roughness and size may be the parameters that
distinguish one set from another. In this situation, it may be difficult for the geologist to easily
evaluate the natural groupings in the data.
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The identification of groupings or sets within heterogeneous data is often addressed by using a
form of statistical cluster analysis. There are several different types of clusters:

e Disjoint clusters in which the populations of each cluster do not overlap at all;

s Overlapping clusters, in which feature properties overlap to a greater or lesser extent such
that there is some ambiguity as to which cluster each feature belongs to; and

e Hierarchical clusters, in which members of one cluster simultaneously, include features
of another cluster.

All three of these types of clusters can be expressed as “Fuzzy clusters” defined by a probability
of membership in each cluster. This probabilistic concept of cluster membership was the
foundation for the development of the NeurISIS 1.0 fracture set orientation algorithm
(Dershowitz et al., 1996). The NeurISIS 1.0 algorithm used a “probabilistic neural network™ to
assign features to clusters based on their relative probability of membership, and then iteratively
defined the clusters based on the statistics of their members. The weakness of the NeurISIS 1.0
algorithm is that it does not determine the initial fracture set definitions, relying on the user to
provide the initial set definitions.

Other common clustering algorithms include: single-linkage methods (neighbor and dendritic),
Ward’s minimum variance, and Gower’s medium method. These clustering methods were
evaluated but failed to provide appropriate capabilities for fractured reservoir data. The
appropriate clustering algorithm depends on a number of factors, including

e type of data,

¢ shape of the clusters,

¢ underlying probability distribution of the data,
¢ degree of heterogeneity, and

e degree of overlap.

Regarding data type, fracture data from heterogeneous reservoirs is generally a combination of
four types of data:

e ordinal parameters, such as joint roughness classes,
o class parameters, such as type of fracture or mineralization,
e continuous parameters such as aperture and permeability, and

s vector parameters, such as orientation.

Very few common clustering methods can effectively use ordinal and class data; they are
typically designed for using continuous variables only. Many of the common clustering methods
make assumptions such as approximately equal covariance matrices and multinormality.
Unfortunately, data typically associated with features in heterogeneous reservoirs is unlikely to
satisfy these constraints. Probability distributions are frequently not normal, and covariance
matrices are rarely approximately equal. It is not even clear what a covariance matrix of mineral
fillings would be.
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Thus, the clustering algorithm for heterogeneous reservoir fracture data must satisfy a number of
requirements:

e ability to handle all four parameter types,
¢ freedom from restrictions of normality, and
s ability to function with varying covariance matrices.
One approach which satisfies these requirements is the family of neural networks termed “self-

organizing” or “Kohonen” networks (Kohonen, 1988). During this project we developed the
Kohonen networks for application to clustering of fracture data.

3.2.3.2 Kohonen Neural Network Algorithm

The topology of Kohonen networks consists of two layers, an input layer and an output layer.
Each node in the input layer is connected to each node in the output layer by a connection with an
associated weight.

A slab is a group of nodes with similar attributes. These attributes include parameters like the
activation function, learing coefficient and momentum factor, as discussed later. All nodes in a
slab receive their input from the same sources, be they other slabs or the initial input values, and
they transmit their information to a common output destination. Figure 3-38 illustrates the basic
Kohonen network topology.

The first step in application of the Kohonen network is to initialize the network by assigning
values to the weights. These are typically random values selected in one of several ways
depending upon the network analyst’s preference, since there still remains much discussion as to
the best way to assign these weights.

The next step is to train the network. This is done by using quantitative clustering criteria to
measure how well the network is working in defining clusters. These “distance metrics” depend
on the data being considered. Distance metrics for fracture data include Euclidean and
Normalized. Both were evaluated, and as expected, Euclidean distance metrics outperformed
normalized metrics.
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Figure 3-38 Self-Organizing (Kohonen) Network Model

Once the network distance metrics have been defined, the weights assigned to the Kohonen
network are iterated until stable groups appear. This iteration proceeds as follows:

1. An input pattern is presented to the network, which can consist of geological attributes of
each fracture and its orientation represented by the direction cosines of its normal vector.

2. Input patters are assigned to output nodes to which it is found to be closest in terms of the
selected distance metric.

3. Once this winning output node has been selected, the nodes within a neighborhood of the
winning node are adjusted to have similar properties.

4. This process is repeated, continuously reducing the learning rate and the neighborhood
site until the calculated clusters or sets have stabilized.

The neighborhood starts off relatively large (although less than the number of output nodes). As
training progresses, the properties of the output nodes tend to stabilize, and the neighborhood
decreases along with the learning rate. Eventually, the neighborhood goes to 0, and only the
winning node has its weight changed. At this point, the learning rate is also much smaller, and
the clusters are as well defined, as they are likely to be.

3.2.3.3 Implementation for Heterogeneous Reservoir Data

The application of Kohonen networks to heterogeneous reservoir data requires conversion of
fracture data to formats, which can be used to provide input to the networks. This is achieved by
converting ordinal data to ranks and class data to presence/absence. For example, roughness
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might have three classes: (1) smooth, (2) rough, or (3) very rough. A roughness-input variable
would be assigned to the number 1, 2, or 3 depending on which class it belonged to. For class
variables, such as mineral filling - calcite, the fracture would be assigned the value 0 or 1 to
reflect absence or presence. As a final stage, all input data are normalized over their actual or
theoretical range of values.

An example Kohonen network application is illustrated in Table 3-16. This test case consists of

four types of properties: Vector data (orientation), ordinal data (planarity, opening), continuous
data (size), and class data (filling).

Table 3-16 Example Dataset for Kohonen Network Demonstration

Set # Orientation Planarity Filling Size Open/
Closed
1 Horizontal, Smooth Calcite Normal, Open
Fisher Dispersion mean = 15,
k=10.0 stdev =2
2 Mean Pole Trend, Moderately Calcite Normal, Closed
Plunge = (0,0) Rough mean = 7,
Fisher Dispersion stdev =2
k=10.0
3 Mean Pole Trend, Rough None Normal, Open
Plunge = (0,45) mean = 10,
Fisher Dispersion stdev =3
k=10.0

The example dataset was generated from the stochastic properties given in Table 3-16, using
FracMan/FracWorks discrete feature network model (Dershowitz et al., 1998). The sets were
defined with overlapping parameter distributions of, for example, orientation, size filling and
openness. Figure 3-39 is a stercoplot of the three sets, showing the overlap in orientation
distributions.

Three parameters must be specified to apply the Kohonen network for heterogeneous reservoir

data. For the example network, the following parameters were specified as summarized in Table
3-17.
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Table 3-17 Kohonen Network for Example Data Set

Parameter Assumption Basis
Number of Sets (Clusters) 3 Visual inspection of data
Initial Weighting of Neurons | Uniform Distribution U[0,1] Lack of conditioning
Neighborhood Scale 2
Learning Rate 0.6
Distance Metric orientation (vector data):

euclidean distance on

stereonet

planarity (ordinal data)

mfilling (class data)

size (continuous data)

opening (ordinal data)

All 600 fractures were correctly clustered by the net. The classification results maybe expressed
as neuron values; the smallest value indicates the closest match to a cluster. For example,
fracture #1 had values of 0.054, 1.888 and 3.303 for clusters #1, #2 and #3. The smallest value
was for cluster #1, so that is the cluster or set to which it is assigned.
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Figure 3-40 shows these neuron probability values for all 600 fractures in the example case. The
separation between the three sets of points for the fractures 1-200 and 401-600 show that the net
had little problem in distinguishing Set #1 from the other sets, or Set #3 from the other sets; the
neuron values for each set are very different from each other. Set #2 is slightly different; while
the net had no problem correctly clustering it, the neuron values for the two other sets are similar
to each other. This suggests that the characteristics of Set #2 are intermediate between Set #1 and
Set #3 (which is also seen by the intermediate position of neuron values for Set #2 for fractures 1-
200 and 401-600). Set #1 is more unlike Set #3 than it is unlike Set #2.

3.2.3.4 Algorithm Demonstration, Yates Field Tract 17

The Kohonen neural network was applied using data from Tract 17 in the Yates Field, west
Texas, one of the four project study site window areas. This data provides a rigorous test of a
self-organizing network’s ability to distinguish orientational sets in a complex data set. Figure
3-41 shows the stereoplot of joint orientations from three wells, YU1711, YU1755 and YU2511.
An expert structural geologist (T. Cladouhos) was given the stereoplot and asked to identify sets
based upon orientation. The geologist’s picks are shown in Figure 3-42.

There were five sets identified by the geologist, labeled G1 through G5 on Figure 3-42.

A Kohonen network was applied to the orientation data. The parameters assumed for the
Kohonen network are summarized in Table 3-18.

Table 3-18 Kohonen Network for Yates Tract 17 Data Set

Parameter Assumption Basis

Number of Sets (Clusters) 5 Structural geologist

Initial Weighting of Neurons Uniform Distribution U[0,1] Lack of conditioning

Neighborhood Scale 4

Learning Rate 0.6

Distance Metric orientation (vector data):
euclidean distance on
stereonet
planarity (ordinal data)

mfilling (class data)
size (continuous data)
opening (ordinal data)
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The five sets selected by the neural net are labeled as N1 through N5 in Figure 3-43.

The G sets and the N sets are very similar. G1 matches N1 exactly. The neural net made a
slightly different selection of N2 and N3 versus G2 and G3. The region of the stereoplot covered
by the combination of G2 and G3 is the same as that covered by N2 and N3. The difference is in
the boundary between the two sets. The boundary between the G2 and G3 is approximately a few
degrees west of north, while the boundary between N2 and N3 is about 20 degrees east of north.
The difference is that the concentration of orientations represented by poles trending north is
included with the N3 set by the neural network, but was included with the G2 set by the geologist.

Likewise, sets N4 and N5 cover the same region of the stereoplot covered by G4 and G5, the
difference being where the boundary between the two sets is positioned. The boundary selected
by the geologist was taken to be a few degrees south of due west, placing the concentration of
poles trending around 250 degrees into G5. The neural net chose a boundary more to the
southwest at around 240 degrees, moving this concentration of poles into N4.

Overall, the sets identified by the self-organizing neural net are very similar, but not identical to
those picked by the geologist. The differences are minor, and would need to be resolved by either
collecting additional parameter data or by considering other information on the tectonic or
structural history of the reservoir. For example, the G3 set might have different sizes, fillings or
roughness than the other fractures included in N3. Or it might be that the G3 fractures were in the
orientation expected for a particular tectonic event, while the additional fractures found in N3
were not.

The fact that the geologist and the neural network came up with slightly different groupings is a
useful result in itself. Just as two geologists might define sets differently, and thereby stimulate
discussion, the network illustrates alternative interpretations and set definitions. The difference
between the neural network’s set identifications are useful for focusing further considerations as
to the geological origins of each set.

3.2.3.5 Applications for Heterogeneous Reservoir Data

There are several potential applications of neural network technology to heterogencous reservoirs.
The first application is that described above: identification of clusters in the data in order to
guide statistical analysis and to stimulate further investigations into the possible geological
explanations of the groupings.

Another use of the self-organizing network analysis is as a classification tool for rapidly assigning
additional data into the proper sets. This is particularly useful for mature reservoirs where there
may be an abundance of data that can require a lot of time for a skilled geologist to classify.

Once the self-organizing net has been trained on a small subset of data to the geologist’s
satisfaction, then the trained net can be used to automatically assign set probabilities to all the
remaining data. The assignment is both quick and consistent, and does not require the time of a
skilled geologist.
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3.2.4 Task 1.1.4 Fractal Methods for Derivation of Fracture Statistics

Fractal methods are particularly useful for extrapolating information from the scale of
measurement to scales at which measurements are difficult. During this project, we developed
new and innovative approaches for use of fractal methods to extrapolate fracture size information
from the scales of measurement such as VSP lineament to smaller scales, to provide useable
fracture size distributions for DFN modeling.

Published methods to estimate fracture size combine Discrete Fracture Network (DFN) modeling
with a forward modeling approach to match various statistical parameters of the 1D or 2D data
(Dershowitz et al.,1998; La Pointe et al., 1993). While these methods are very general and
powerful, they require sophisticated numerical simulations.

Many researchers who have analyzed fracture geometry in wells, outcrop, lineament maps or
seismic profiles have concluded that individual fracture sets often exhibit Power Law or fractal
characteristics for many of their parameters, including fracture size. If a fracture set does
conform to a fractal size distribution model, then it is possible to derive a host of useful equations
that relate statistics for the observed fracture trace lengths to the statistics that describe the
unobserved three-dimensional parent fracture population, making numerical simulations
unnecessary. The sections that follow detail the derivation of these equations, and illustrate
through numerical DFN simulations that they provide accurate estimates of the parent fracture
population size statistics.

3.2.4.1 Fractal Fracture Size Distributions

For the equations developed below, fractures are assumed to be planar and circular. The
representation of fractures as circular discs, rather than as some other shape, is not a required
assumption, but is convenient for the mathematical development presented in these sections. It
turns out that the derived equations apply with minor modifications to fractures of other shapes,
as discussed in Section 3.2.2.5.

It is also convenient to characterize fracture size by the effective radius of the fracture, since this
parameter is often used in modeling simulations or engineering calculations. The effective radius
of a fracture is defined as the radius of a circular fracture that has the same area as the actual
fracture.

A group of fractures that have a Power Law or fractal radius distribution implies that the
Complementary Cumulative Density Function (CCDF) of the fracture radii conforms to a power
law. The CCDF is defined as the probability that a fracture radius is equal to or greater than a
particular radius. Power Law distributions require the specification of a minimum value for their
distributional mass and moments to be finite. The probability that a value is equal to or greater
than the minimum value is 1.0, while the probability that the radius is greater than or equal to
infinity is 0.0. The formal representation of the CCDF is given by Equation 42:

D
G(x) = (x_o] Equation 42
X

wherex, is the minimum (radius) value,
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x is any fracture radius between x, and oo,
D is the exponent of fractal dimension, and
G(x) is the probability that x is greater than or equal to x,.

The Cumulative Density Function (CDF) of the three-dimensional radius distribution, is defined
as:

D
F(x)=1-G(x)=1- (ﬁj Equation 43
x

The Probability Density Function (PDF) defined as the derivative of the cumulative density
function:

D
@)= = 2 Eequation 44

Note that the PDF and CCDF have a power law functional form, and so would plot as a straight
line on doubly logarithmic axes, while the CDF does not have a power law functional form, and
would not plot as a straight line on doubly logarithmic axes.

Statistical distributions can be characterized by their moments, such as their mean or standard
deviation. Power law distributions differ from many common distributions, like the lognormal or
the exponential, in that their moments are not. For power law distributions, the value of D
governs whether a particular moment is finite or not, as is shown in this section. These
considerations are important for using trace length data to infer the population characteristics of
the parent fracture population.

The mean radius () is defined as the expected value (E/]) of the radius distribution, or:
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Equation 45

Now the term o will not vanish unless D > 1.0, which implies that the mean value is not finite
unless D > 1.0. For D > 1.0, Equation 45d becomes:

D D
u= o x; 7 Equation 46a
D-1
or
Dx,
= Equation46b
H D1 q

Equation 46b represents the expected value, or mean radius for the distribution for the case where
D > 1.0.

The variance of a function is defined as:
o= J.f(x) * (x— L1)°0x Equation 47

where

f{x) is the probability density function (pdf) for x,
M is the mean or expected value of x, and

X, 18 the minimum value of x and

& is the variance.

As has been shown, the PDF of x for a Power law distribution is given by:

DxOD .
fx)= o Equation 48
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and the mean or expected value of the distribution is:

*oD) Equation 49
= uation
Hu D-1 q
So, inserting these two expressions into Equation 47 yields:
< Dx,” x,D
—_ 0 0 2 .
o’ = ;[( e )*(X—E) ox Equation 50

Expanding the terms in brackets and bringing quantities not dependent upon x outside of the
integration brackets yields:

o 2 D -D 2D2 -D-
o’ = Dxfj ] e . el > Equation 51
b D-1 (D-)
Carrying out the integration produces:
2-D 2%.D -D+H1 212 -p 1°
o’ = Dx, * A et + %o 2*x Equation 52
2-D D-1 1-D (D-1)° (-D) .
Now this quantity is finite iff D > 2.0. Thus,
VD >2.0,
- - - (a)
ot = —Dy? # x27P N 2x,Dx,""  x,D’x,”
2-D (D -1)? D(D -1)?

:—Dx(])')*xoz_D * ! + D (b)
2-D (D-1)?

Equation 53

or

o = xg % D
(D-1)* D-2

Equation 54

Since the standard deviation, o, equals \/( 0°), the standard deviation of the radius distribution is:
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X, D
o= %k
D-1 V\D-2

Equation 55

3.2.4.2 Trace Length Statistics

The traces observed on a planar surface, such as an outcrop, are biased in that larger fractures
have a higher probability of intersecting the surface than do smaller ones. The solution to the
problem of how the scaling properties of trace lengths relate to the scaling properties of the parent
fracture radius distribution requires decomposition of the problem into two stages:

(a) The relation between the radius distribution of the parent fracture population and the
radius distribution of the fracture population intersecting the trace plane; and

(b) The relation between the radius distribution of fractures intersecting a trace plane and the
observed trace length distribution.

Section 3.2.4.3 analyzes the relation between the fracture and trace distributions.

3.2.4.3 Derivation of Size Distribution from Trace Data

La Pointe and Hudson (1985) showed that, for the assumption that fractures are circular, planar
discs, the probability of a fracture intersecting a plane is linearly proportional to the fracture
radius. In general, if the fracture is represented by any convex polygonal shape, the probability of
the intersection is proportional to the dimension of the polygon parallel to the plane. For
simplicity, we consider circular fractures in the following derivations.

Denoting the radius distribution of the parent fracture population by f(x) as in Equation 48, the
radius distribution for fractures intersecting a plane is given by:

o(x) =xf(x)= D();—OJ Equation 56

where
o(x)is the radius distribution of the intersecting fractures.

The above expression is not a proper probability distribution function, since it does not integrate

to 1.0 between X, and e. A correction (C) must be made to insure that the total probability
density equals 1.0:
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Now the CDF is the integral of the PDF, or:
D-17% a
Fint(x) = _D Jf‘int(x)ax ()
Xy ;
5 ’ ®)
=D—l* x0 [xl_D_xol—D]
Dx, 1-D
(©

_ 1-D l—D]
==X [x — X

=(x—°] i ()

X

x D-1
F,(x)=1- (—°J )
X
Equation 58
This implies that G;,«(x), the CCDF of the trace lengths, is:
x D-1
Gu(¥)=1-F, (x)= (—0] Equation 59
x

Thus, if it were possible to plot the CCDF of the radii of the intersecting circular fractures, the
slope of the line would be equal to slope for the true, three-dimensional radius distribution
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It is straightforward to derive the expected value, or mean radius value for the intersecting
fractures:

D-1% T

Mo = ELf (0] =T [4* f(@)3x = (D =g [ "0 @
= (D _l)xoz_D 2-D |~ ®

2-D %

(D -1) 2-D (c)

— X 02D _ ., 2D
- T][ o
(LD o] )

2-D 0

Equation 60

The equation above is finite iff D>2.0. So, for D > 2.0, the above equation becomes:

(D — 1) D—1x2—D

Xo 0
(D-2) (a)
_% (D — 1)
:Llint - D-2 (b)
Equation 61

The derivation of the variance of the radii of intersecting fractures can be simplified by making a
simple variable transformation and considering the independence of D and x.

LetD'=D-1.0 Equation 62

Then Equations 57¢, 58¢, 59a and 61b become:
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D

DI
S ¥) = ;Cf(ll Equation 63
x
x Y
F,(x)=1- (—0) Equation 64
b
x, Y
G (%) = [_0) Equation 65
b
il 2 Equation 66
= u
l’lint D/ _ 1

These equations show that the statistical quantities associated with intersecting fracture radius
distribution are identical in form to the three-dimensional radius distribution if the substitution

D’ = D —1 is made in the three-dimensional radius formulae.

Because D' does not depend upon x, the variance (02 waces) and standard deviation (G;,,..s) for the
intersecting fracture radius distributions will have the forms:

2 ’
o, = ,x° S {) Equation 67
D' -1)" D -2
Dl
. - Equation 68

O-int 4 ’
D -1 \D -2

whereD' =D - 1.

This implies that the exponent for the radius distribution of fractures intersecting a plane can be
used to calculate the correct three-dimensional radius distribution by simply adding 1.0 to the
exponent, and statistics such as the mean and standard deviation of radius size can be calculated
from the intersecting fracture distribution. Although the radius distribution of the intersecting
fractures cannot be directly measured, it can be estimated from the trace length distribution as
described in the next section.

Unfortunately, the radius of a fracture cannot be measured in outcrop, so it is impossible to

compute the scaling properties of the intersecting fracture population. This is true whether the
fracture sizes are fractal or follow any other distribution. However, it turns out that for the
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fracture shape geometry often assumed for fractures, it is possible to derive relatively simple
relations between the observed fracture trace length population and the radius distribution of the
intersecting fractures. It turns out that the scaling properties of the radii of fractures intersecting a
plane is identical to the scaling properties of the observed trace lengths!

As an illustration, consider a single circular fracture of radius R, oriented perpendicular to a trace
plane. If the fracture intersects the plane, then the trace can vary in length from 0.0 to 2R. As
shown in Figure 3-44, the trace length can be expressed as a function of distance z between the
fracture center and the trace plane, and the fracture radius, according to the equation:

T=24R*-2* Equation 69

The mean observed trace length, 7, is calculated as:
1 R
T, =EJ2VR2 —z% Equation 70
0
or, carrying out the integration,

T, =— Equation 71

Equation 71 is significant in that is shows that the mean observed trace length is equal to the
radius multiplied by a constant. This means that the expected distribution of trace lengths is
equal to the distribution of radii of the intersecting fractures multiplied by the constant 7z2. In a
log-log plot, multiplication of a power law function by a constant does not change its slope. This
implies that the scaling exponent of trace lengths will be the same as the scaling exponent of the
radius distribution of intersecting fractures. Moreover, the scaling exponent of the trace lengths
will be equal to one less than the scaling exponent of the radius distribution of the parent fracture
population.

Trace Plane

Figure 3-44 Fracture Intersection with Trace Plane
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Now consider fractures of other shapes. For rectangular fractures in which at least two sides are
parallel to the plane, the trace of an intersecting fracture will always be equal to the length of the
side that is parallel. This type of fracture shape would represent a fracture that is confined
between two bedding planes or terminates on the upper and lower surfaces of a mechanical layer.
In this situation, the relation between the observed trace length and the intersecting fracture is:

T=L Equation 72

Where T is the observed trace length, and L is the length of the side that intersects the bedding or
layer boundary. 7, = T, and so 7,, in Equation 72 is also directly proportional to R, as in
Equation 71. The only difference is that the multiplicative constant is /.0 instead of 2. Thus,
the scaling exponent for the trace lengths will also be equal to the scaling exponent of the
intersecting fracture polygon radius (or edge length) distribution.

These two simple examples indicate that for any planar, anisotropic convex polygon, so long as
one of its directions of anisotropy is parallel to the trace plane, the scaling exponent of the traces
should be equal to the scaling exponent of the dimension of the intersecting fracture that parallels
the trace plane. this, in turn, will be equal to the scaling exponent of the same dimension of the
parent fracture population minus 1.0.

3.2.4.4 Verification of Fractal Algorithm for Fracture Size

Since it is not possible to verify the equations derived in Sections 3.1 and 3.2 from field data, as
the three-dimensional fracture population cannot be observed directly or through others means,
such as geophysics, numerical models of fractures were constructed for this purpose. These
numerical models idealized fractures as planar polygons (Figure 3-45).
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Figure 3-45 Example DFN Model for Size Analysis
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The orientation of each fracture polygon, its size and location can be specified according to
statistical distributions or constrained by lithology and structural development. Such models,
which represent fractures as discrete objects, are commonly referred to as Discrete Fracture
Network (DFN) models (Dershowitz et al., 1999).

Three DFN models were constructed to verify the equations. The models had different

combinations of values of the exponent and minimum size, and also orientation. The parameter
values are summarized in Table 3-19 below.

Table 3-19 Parameters used in simulations

Simulation # D Minimum Size Orientation
1 3.5 1.0 Constant, (90., 0.)
2 2.5 5.0 Constant, (45., 45.)
3 1.5 0.5 Fisher, (0., 0.),
k=0.0

All fractures were generated within a 100-m cube embedded with a larger 200 m cube in order to
minimize truncation effects on observed trace lengths of fractures terminating against the outer
surfaces of the model. 5000 fractures were generated in each model simulation. Locations were
selected at random throughout the 100-m cube generation region.

After each simulation was created, a horizontal trace plane was inserted into each of the three
models, and the traces saved in a file for subsequent trace length analysis. The names of the files
containing the three-dimension DFN model, the trace plane results, and the horizontal plane
sampling file are listed in Table 3-20.

Table 3-20 List of file names for verification tests.

Simulation # 3D DFN file Trace
Length File
1 Sim1.fab Sim1.f2d
2 Sim2.fab Sim2.f2d
3 Sim3d.fab Sim3d.f2d
Trace Plane Htplane.sab

The first series of verification tests are on the 3D DFN model itself. Each simulation is created
essentially through the generation of a uniformly random field of numbers over the interval (0,1),
and then transformation of this field into a power law distribution through Gaussian
anamorphosis. This procedure sets the cumulative probability of the uniform field equal to the
cumulative probability of the power law distribution, or:

D
U =1—(ﬁ] ,whereU € (0.0,1.0) Equation 73
X

Solving this equation for x yields:
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X,
_ 0
X = 1

(1-U)?

Equation 74

The resulting random realization of x will have a power law distribution characterized by

Equations 42, 43, 44, 46b, and 57.

D and x, were estimated (denoted in Table 3-21 as D and x,") through non-linear estimation of
the CCDF function (Equation 44) for the radii of the 5000 fractures actually generated. In
addition, the mean radius and the standard deviation of the radius distribution were estimated
from Equations 46b and 55, respectively, from D and x," for the cases where these moments were
finite. These were then compared to the values actually calculated from the 5000 radius values
for each of the fractures. The results shown in Table 3-21 verify that the simulation method
produced three-dimensional fracture models with the desired power law characteristics, and that
the mean and standard deviation of the radius distribution can be reliably estimated through
Equations 46b and 55. Figure 3-46 shows the results of the non-linear fits for each CCDF.

Table 3-21 Verification of Fractal Fracture Size Algorithm

Simulation | Specified D Specified xo Estimated D (D*) Estimated xo (X9 )
1 3.5 1.0 3.47 1.00

2 25 5.0 244 5.00

3 1.5 0.5 1.50 0.50

Simulation | Predicted Mean | Predicted ¢ | Calculated Mean | Calculated

1 1.40 0.62 1.40 0.57

2 8.48 8.20 8.47 6.29

3 1.49 1.47

In Table 3-21, the standard deviations for Simulation 3 were not calculated since D < 2.0, which
violates the constraint used to derive Equation 55.
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Figure 3-46 Complementary Cumulative Density Functions (CCDF) for Fracture Radius

The next stage in the verification process is to the trace length distributions using the files listed
i Table 3-20. The scaling exponents of the trace length distributions are given in Table 3-23,
and non-linear fits to the trace length distributions are shown in Figure 3-47.
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Table 3-22 Parameter values estimated for the observed trace lengths.

Simulation D x0 Mean
1 2.50 84.53 2.55
2 1.52 16218.1 20.32
3 0.54 31117.2 10.27

Table 3-23 Parameters for the radius distribution of fractures intersecting the trace plane.

Simulation D X, Mean Mean Predicted
From Mean Trace
1 2.51 1.00 1.67 1.62
1.48 5.02 12.85 12.94
3 0.51 0.51 7.15 6.54

In Table 3-22, the mean radius has been predicted from the mean trace length using Equation 71,
which multiplies the mean trace length by 2/7. A comparison of Table 3-22 and Table 3-23

shows that the trace length exponent and the radius exponent are in excellent agreement, and also
that the mean radius is well-predicted from the mean trace length.

Equation 66 shows that the parameter, x,, can be estimated from D and i or 6. For Simulation 1,
the only simulation in which both first- and second-order moments are finite (since D > 2.0), the
values of D and i can be used to estimate x,:
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Xg=— Equation 75a

_ 1.62%(2.50—1.00)
2.50

=0.972 Equation 75b

Xg

This is very close to the actual simulation mean of 1.00.

Since x, and D are now estimated for the radius distribution of fractures intersecting the plane, the
values for the parent fracture population radius distribution are:

Dioctures = 2.50 + 1.0 =3.50 Equation 76a

X, (fractures) = x, (intersecting fractures) = 0.972 Equation 76b

In turn, these values can be put into Equations 46b and 55 to compute the mean and standard
deviation of the radius distribution of the parent fracture population:

0.972 %3.50
=—— =136 Equation 77a
:Ll’fractures 350 _ l O q
0.972 3.50
O fractures — =0.59 Equation 77b
3.50-1.00y1.50

The actual values for the simulation are 1.40 and 0.57, respectively. This illustration shows that it
is possible to make quite accurate predictions of the parent population from trace length data
alone, and that the scaling exponent of trace lengths for a fractal fracture population is 1.0 less
than the scaling exponent of the parent fracture radius distribution.

3.2.4.5 Fractal Fracture Size Distribution from Non-planar Surfaces

Natural objects, such as fractures, have been shown to have many fractal properties. However,
these properties are typically sampled by methods that have a particular dimension. For example,
wellbores or scanlines have a dimension of 1.0, since they are (if their width is neglected) line
samples. Another typical sample is a surface, which may or may not be approximately planar.
Examples include outcrops, underground exposures, lineament maps and two-dimensional
seismic profiles.

The equations developed above were for perfectly planar surfaces. This section extends the
equations in those sections to any general fractal or Euclidean sampling object. The basis for the
method relies upon a theorem in topology (Mandelbrot, 1983) that states that the co-dimension of
the intersection of two sets is equal to the sum of the co-dimensions of each set.
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The theorem also extends to » sets. This theorem does not require the sets to be fractal, but
certainly can be used for fractal sets.

The co-dimension of a set is denoted by C. The dimension of the set is denoted by D. Then, the
co-dimension is related to the dimension as:

C=E-D Equation 78

where:
E is the Euclidean dimension of the space in which the sets exist.
For a volume of rock, E = 3.0.

Suppose a set of fractures has a dimension Dy. Then the co-dimension is:

Equation 79

where
E; is the Euclidean dimension of the embedding space, in this case, 3.0.

A plane within a volume has a dimension of 2.0, and a line has a dimension of 1.0. Thus:

C

plane

=E,-2.0 Equation 80a

C

line

=E,-1.0 Equation 80b

According to the theorem, the intersection of the fracture set and a plane has a co-dimension
equal to the sum of the individual co-dimensions, or:

Crraces = C practures T C piane Equation 81
which implies that:

waces = L3 =D practures T E3 =D e Equation 82
or
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D,ypees =E5 — (E ,—D fractures T E,-D plane) Equation 83
or

D,sces = D practures + D prane —E Equation 84
and, after inserting the numerical values for D,,,. and Ej,

Disees = D practures ¥ 273 = D fporure; — 1 Equation 85

Thus, the dimension of the trace plane pattern is equal to the dimension of the parent fracture
population minus 1.0. A similar line of reasoning shows that the dimension of a line sample will
be equal to the dimension of the parent population minus 2.0.

Note that Equation 76 is identical to Equation 62. In fact, Equation 75 could be re-written for a
fractal sampling object of any dimension:

D,

races D +D E 3 Equation 86

fractures samplingobject -

So, for example, assume that the traces were on a rough fractal surface whose dimension is D =
2.5. Then by substitution in Equation 78, the dimension of the traces is:

D traces D Sfractures +2.5-3.0 Equation 87
or
D, traces D fractures 0.5 Equation 88

In this case, D' = D — 0.5, rather than D — 1.0 as in the case with a perfectly planar surface. This
value of D would be substituted into Equations 63 through 68 to compute the appropriate fracture
radius statistics from the observed trace lengths.

3.2.5 Task 1.1.5 Transmissivity/Connectivity Analysis

This section describes the development of a new conceptual approach for understanding
transmissivity, connectivity, and channeling in fractured rock.
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Reservoir engineering generally understands fractures in terms of the hydraulic properties
permeability (md), an aperture (m), and a porosity (-). Discrete fracture network (DFN)
modeling, on the other hand, combines permeability, and an effective hydraulic aperture as a
measure of the transmissive properties of the fracture (millidarcy-meters). Fracture storage
properties are generally represented in DFN modeling in terms of the term storativity, which
combines the effects of aperture, porosity, and compressibily. Storativity, S(-) is defined in terms
of fracture aperture, e, the total compressibility, C(1/Pa or 1/psi), fluid density and gravitational
acceleration, pg as:

S = pgeCn Equation 89

Transmissivity relates to the ke product by

k

T= @—e. Equation 90
M

For parallel plate flow,

k=e/12 Equation 91

However, for most practical problems of reservoir engineering, it is better to allow a more general
form of correlation between permeability and aperture,

k=4¢ Equation 92

where A and B are calculated based on field measurements and hydraulic tests. The
transmissivity in petroleum units (millidarcy-meters) uses the equation for transmissivity above
with the aperture value obtained from the storage calculation.

Fracture intensity can generally be expressed best as the two-dimensional fracture area per unit
volume of rock. This measure we call P;, and it has measures of m’/m’ (i.e., m"). P;, is very
important number of reservoir evaluation. When multiplied by aperture, P3, gives the total
fracture porosity, 77,z in a block of rock with a volume, ¥z, , or:

_B,Xexn

Rroar = V.
Total

Equation 93

P, information comes from several sources. One of the best sources is the frequency of
conductive features along a well. These data come readily from PLT logs where the flow rates in
the log go through sharp transitions every time the logging tool passes a significant conducting
feature.
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The frequency of conductors along a line sample, such as a well, relates to the intensity of
fractures in the rock mass by a relationship to the fracture size. Fracture size is best estimated
from rock exposures where flow can be observed. Lacking such information in a petroleum
reservoir, fracture size may be estimated from censoring statistics in FMI logs (that is how often
does one observe a fracture termination within the well bore wall). This approach has limited
effectiveness, however, if one does not know which of the fractures one is observing in the FMI
logs are conductive and which are not contributing to flow.

Flow dimensional analysis (Chakrabarty and Doe, 1999) has demonstrated that a full range of
connectivities occur in fractured reservoirs — from 1-D channel flow to 2-D radial flow to fully
connected 3-D flow (Figure 3-48). This dimensionality may change with distance from the well,
and can frequently be seen in transient hydraulic responses. Fractures, for example, may intersect
individual flow channels, providing a 1-D flow response. These 1-D channels may then intersect
a large, well connected system of fractures resulting in an apparent 3-D network hydraulic
response. Finally, this network may connect to a single, highly permeable layer or fault zone,
providing a 2-D hydraulic response.

The success or failure of production wells can thus be a function of:

(a) Fracture Transmissivity — how much flow is directed to the well through the fractures
intersecting the well

(b) Fracture Storativity — what is the storage capacity of the fracture network delivering oil to
the well

(c) Fracture Porosity — what is the total volume of oil accessible for production within the
fracture network

(d) Dimension of flow (1-D, 2-D, or 3-D) at connections to the well, beyond the well, and in
the reservoir volume where the majority of oil is stored.

Conceptually, fracture transmissivity and storativity (porosity) can be understood as a
combination of:

1. A fault plane or series of fault planes that are large, spatially extensive features, that have
a medium level of permeability, but do not contain large storage volumes (Figure 3-49);

2. High permeability channels within these faults (Figure 3-50); and

3.  Background fractures that contain most of the accessible storage within the model but
have a low level of permeability (Figure 3-51).

In this concept, channels provide high permeability flows within the system, the fracture planes
act as collection features, and the storage capacity is contained within the rock matrix and the
porosity provided by background fractures.

Figure 3-52 through Figure 3-54 illustrate the differences in well performance depending on the
interplay of well locations, channels, faults, and background fractures. In Figure 3-52, a single
well is placed on a high permeability channel, and the fault plane transmissivity and storativity is
minimized and the permeability of the channel is varied. This simulation does not include the
fault plane, but does include the primary storage in the background fractures. In this case, the
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permeability of the background fractures is of the same order as the total permeability of the
channel, resulting in an apparent three dimensional flow response.

In Figure 3-53, the background fracture size was reduced so that the background fractures would
provide primarily a storage rather than a flow effect, and the well was located on the fault plane,
but off the channel. For the most part, the flow is two-dimensional with a slight opening up as
the pressure field intersects the high permeability channel.

Figure 3-54 presents simulations in which the well connects only to the background fractures.
These simulations show an initial closed boundary flow that evolves into two-dimensional flow
as the pressure field interacts with the fault plane.

The above simulations demonstrate how fracture, channel, and fault elements combine to control
the flow dimension seen in drill stem tests and production histories. This research has
demonstrated the importance of understanding the pattern of transmissivity and storativity in each
of the discrete feature porosities in order to understand the reservoir behavior and design
appropriate IOR procedures.

3.2.6 Task 1.1.6 Fracture Correlations

As part of this project major statistical study was initiated for the correlations between fracture
aperture, size, storativity, and transmissivity. The data for this study was obtained by reviewing
over thirty sites in a wide variety of geologic settings. The data surveyed are summarized in
Table 3-24.
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Table 3-24: Correlation of Fracture Geometrical Hydraulic Properties

Site/Geology Scale of Transmissivity Storativity Thickness or
Fractures (m) (m’/s) ) Aperture (m)

Persian Gulf/ 100 to 500 10” to 10™ 107 to 10~

Limestone

S. Europe/ 510 20 107 t010” 10° to 107 10” to 10

Dolomite

Aspd, Sweden Task | 100 to 2,000 | 10” to 10~ 10°to 10” 10" to 10°

5 Area/

Granite

Asp6, Sweden 1to 20 10° to 10° 10 to 10~ 10 to 10~

TRUE-1 Area/

Granite

Aspd, Sweden 50 to 300 10° to 10™ 10”to 10” 107 to 107

TRUE Block Scale

Area/Granite

SE Asia/ 100 to 500 10” to 10~ 107 to 10~ 10~ to 10°

Granite

Wyoming/ 10 to 100 10” to 10” 10~ to 10~ 10” to 10~

Dolomite

Wyoming/ 510 100 10” to 10” 10~ to 10~ 10” to 10

Sandstone

West Texas/ 500 to 2,000 | 10™ to 10” 10% to 10 10" to 10°

Dolomite

Finland/ 5 to 500 10° to 107 107 to 107

Granite

S. America/ 1to 50 10” to 10™ 10°to 10

Dolomite

Sellafield, UK/ 10 to 200 10” to 10° 10” to 107 10” to 10~

Tuff

Puerto Rico/ 10 to 100 10 to 10 10° to 10™ 10™ to 10°

Meta-sediments

These values given in Table 3-24 were derived from hydraulic tests including hydraulic
interference, tracer transport, and transient well tests. Due to the confidential nature of many of
the data sources, only overall ranges are provides, and no citations are given. Values for
transmissivity, storativity, and transport aperture were generally used to build DFN flow models,
which were then validated against large scale field measurements. In general, transmissivity,
storativity, and aperture distributions were reported as lognormal.

The correlation between fracture size and transmissivity based on data from the Aspd Hard Rock
Laboratory (HRL) is illustrated in Figure 3-55. Although there is an overlap in transmissivity
values between different ranges and classes of features, a trend of increasing transmissivity with
scale is apparent. The highest transmissivity values occur with the largest features occur and the
smallest trasmissivities occur with the smallest fractures.
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3.2.7 Task 1.2 Data Scaling Procedures

For conventional reservoir simulation, data scaling problems revolve around the problems related
to simulator block scales. Blocks have scales of tens to hundreds of meters, unrelated to the
scales at which data is measured in wells and geophysics. Scaling must therefore extrapolate grid
cell properties from, for example, single well scales to interwell scales or from meter scales to
hundred meter scales (Figure 3-55).

This necessity of scaling in continuum approaches is avoided in discrete features methods, since
features of a wide range of scales can be modeled simultaneously. This approach is illustrated in
Figure 3-57. At the scale of the wellbore, all fractures are modeled down to the scale of 0.5
meters. These are the fractures which would appear on fracture image logs, and would provide
direct hydraulic connection for delivery of oil and other fluids to the well. At the scale of 100
meters around each well, the fractures from 05. to 100 meters are important, since they provide
the primary connectivity and flow permeability. At reservoir scales, features smaller than
approximately 10% to 20% of the distance can be treated as part of the background or matrix
equivalent permeability/porosity, and only the larger fractures of over 50 to 100 meters need to be
considered explicitly. The procedure for multi-scale modeling of discrete feature network models
is described in Section 3.2.7.1.

Upscaling is also a consideration in converting between discrete feature network models and
continuum approaches. In this form of upscaling, we are taking data from the scale of individual
fractures, and taking it to the scale of continuum grid cells. This is described in Section 3.2.7.2.

Discrete feature network modeling frequently does require a particular form of data scaling
developed in Section 3.2.7.3. This form of data scaling is necessary to interpolate between the
limited ranges of scales addressed in particular data collection programs, and the full range of
discrete feature scales necessary for discrete feature analysis.

111



_—— Spherical Flow

a3 Chirvwsrbon 3
Pl Frow
{3 DHenersion 8
M%@%&?’ﬁﬁizwlﬁﬁ&m Frachire
Preferantial Flow at : ot
Fraches mmrmzm

",

™ Digalation Shannal

oy Dimsarssion 1

Figure 3-48 Flow Dimension

112




. Well Location

Figure 3-49 Channels in Fracture Plane
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Figure 3-50 Channels in Faults and Fractures
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Figure 3-51 Background Fracture Porosity and Connectivity
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Figure 3-61 Cone Photos from Orchard 14, North Oregon Basin
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Figure 3-64 South Basin Geocellular ModelExample
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3.2.7.1 Multiscale Modeling

Assuming a conductive fracture intensity P3, of 0.1 m’/m’, and a mean fracture area A;of 10 m’,
the average 10 km x 10 km x 1 km reservoir volume V. has on the order of 1 million conductive
fractures.

N;=P;, V. /A;= 10° fractures.

This number of fractures is well within the capabilities of DFN modeling software, which can
currently handle on the order of 16 million fractures in production simulations. As a result, DFN
models at the 10 km scale can directly incorporate fractures from the kilometer scale down to the
meter scale throughout the reservoir model region. As a result, multiple scales of behavior can be
modeled down to a 1 m scale features, even for models of 10 km scale. In contrast, continuum
models at this scale would generally use cells of 50 to 200 m scale, requiring upscaling of well
responses to obtain effective 50 to 200 m scale cell properties.

For larger scale models of 100 km x 100 km x 1 km, the number of fractures would increase
correspondingly to 10°, which does exceed current modeling capabilities and require some form
of simplification. In addition 10° fractures is near the limit for single phase flow simulation, and
significantly beyond the limit for multiphase flow simulation.

As a result, multiscale DFN modeling is frequently simplified by modeling only the fractures of
concern at each scale. So, for the 100 km scale model, large scale flow would be influenced
primarily by features of over 200 m. Within 100 m from each well, however, it is necessary to
model fractures down to the meter or at least 10 m scale.

The strategy developed for multiscale DFN modeling is therefore as follows:

1. Establish the practical limit on the number of fractures to be modeled:

- 2x 107 for geometric simulations

- 10’ to 10° for single phase flow

- 10° to 10* for multiphase flow

2. Determine the minimum fracture size (radius) necessary at each of the model scales

- 1 to 10 m fracture radius near wells

- 10 to 100 m fracture radius for the region between wells

- 100 to 200 m fracture radius for the full reservoir volume
3. Determine the number of fractures which would be modeled in each of the model sub-
regions, truncating the fracture populations by different minimum radius at each scale,

Nnotal = Nwell + Ninterwell + Nreservoir

Adjust the model regions and cutoff sizes to be compatible with computational constraints
Implement the model
Carry out sensitivity studies to determine the influence of the fractures left out of the model
for computational reasons, and make appropriate adjustments to fracture and rock matrix
properties to account for these simplifications

SARE

Using this procedure, multiscale DFN modeling makes it possible to model the features of
concern at each scale, without the need for upscaling approximations. Indeed, the level of detail
in the DFN model can be as low as one meter, even for 100 km scale reservoir simulations. The
level of error due to this multi-scale modeling procedure depends on the severity of the limitation
of the number of fractures to be modeled, and the amount of the total permeability and porosity
removed from the model. In general, this can be quantified by sensitivity simulations, and the
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necessary permeability and porosity can be replaced to the model either by increasing effective
matrix block properties, or by increasing the permeability and aperture of the fractures remaining
in the model.

3.2.7.2 Data Scaling for Equivalent Continuum Modeling

There are two fundamental approaches for use of the DFN approach in data scaling for equivalent
continuum models. In the first approach (Oda, 1994); Long (1983)) independent DFN models are
developed for each grid cell, and these grid cell anisotropic permeabilities are then used directly
in the EPM modeling. This approach is only accurate provided the gridding of the EPM model is
of a scale significantly finer than the connectivity of the DFN model (Lapointe, 1995).

Otherwise, the differences in connectivity between the DFN model and the corresponding EPM
model will be severe. As a result, it is essential to carry out this type of data scaling at several
levels of discretization to ensure that the resulting EPM model does not suffer from errors in
connectivity.

The second approach recognizes the importance of connectivity as well as conductivity in DFN
models. In this approach (Dershowitz et al., 1999), the connectivity of grid cells is calculated
based on the DFN model, together with grid cell permeability tensors. This can be achieved
either by providing explicit connections within the EPM model as in the “non-neighbor
connections” feature of ECLIPSE (ECL, 1997), or by gridding the EPM model to accommodate
the DFN features at scales important to the model (Svensson, 2000).

3.2.7.3 Data Scaling for Discrete Feature Network Modeling.

Oil reservoir fracture data are collected at two primary scales: the 0.1 meter well scale, and the
100 to 1000 meter geophysical and geological lincament scale. Occasionally trace map data is
obtained at the 1 to 100 m scales. Data on fractures at different scales comes from data sets that
best detect fractures over much narrower size ranges. For example, a lineament data based on air
photos may not reliably detect fractures on the scale of hundreds of meters, while an outcrop
study may only capture fractures on the scale of meters.

The key question in creating the fractures for the numerical simulations over the entire scale
range of interest is whether there is a single population of fractures that is being sampled at
different scales, or whether there are in fact multiple populations. The manner in which the
simulations are prepared differs depending on which option is selected. In addition, there is
probably greater uncertainty surrounding the model if there are different fracture populations at
different scales.

The process for evaluating this issue is to examine the number of fractures greater than or equal
to a specific size based on all of the data from the different sources. Since each data set may
pertain to a region with a different area, the number of fractures must be normalized for the
amount of area.

The common way for carrying out this normalization is to divide the number of fractures by the
area covered by the data set (for example, Casting et al., 1996). This type of area normalization is
essentially Euclidean, since it assumes that if the data set area were doubled, the numbers of
fractures would also double. However, it may not always be the case that the number of fractures
per unit area is modeled accurately by a Euclidean scaling process. For example, if the number of
fractures scales as a fractal process, then an assumption of Euclidean scaling will lead to incorrect
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area normalization. Thus, it is important to first evaluate the spatial scaling properties of each
fracture set prior to the area normalization.

The spatial scaling analysis for fractally distributed discrete features can be carried out by
computing the mass dimension for the data set at each site that contained the smallest traces.
Other data sets that only contained larger traces have a greater mass defect, that is, the amount of
fractures not present in the data set because they are below resolution or reporting limits is
greater. Thus, the smallest possible error due to mass defects will be for the data set at the
smallest scale.

The Mass Dimension of the fracture traces is given by:
N(L)=CL"" Equation 94

where L is the measurement scale;
C is a constant;
D, is the fractal mass dimension; and
N(L) is the number of fracture traces at a measurement scale L.

If the spatial intensity of fracturing scales in a Euclidean manner, then the mass dimension will be
equal to 2.0.

The parameters of this equation can be estimated by counting the number of fractures in a circle
of radius R, for different values of R and different locations (centerpoints) of the circle. Figure
3-58 illustrates how the mass dimension was calculated for the four example locations. The
number of fracture traces contained within circles of different radii and centered at random
locations in the trace map were plotted as a function of radius. Since multiple centerpoints were
used, there are differences in the number of fracture traces for circles of the same radius value.
The parameters are calculated through nonlinear regression of this data cloud.

Once the parameters have been estimated in this fashion, Equation 94 is used to estimate the
number of fractures that would be expected in different size areas. The 1:20 000 scale map from
which the mass dimension was estimated constitutes the reference area — 400 km’. The number
of fractures for a larger area, for example, the 1:50 000 scale maps that cover an area of 2500
km?, is estimated by first computing the radius of a circle that would have the same amount of
area, and then putting this radius value into Equation 94. In this example, the radius would be
28.21 km. The increase in the number of fractures from the 1:20 000 scale map, covering 400
km?, to the 1:50 000 scale map that covers the larger area is thus given by:

N(28.21km)/ N(11.28 km) Equation 95

The number of fractures greater than or equal to a given trace length in the 1:50 000 scale map
are divided by this ratio.

If the correction is based on the smallest area of any of the data sets, then the impact of this
correction will be to increase the number of fractures than would otherwise be calculated from a
simple Euclidean scaling correction for data sets measured over a larger area. Since the greatest
impact is for the largest areas, which in these data sets, corresponds to the larger trace length sets,
the impact of this correction reduces the value of the trace length size exponent relative to a
simple Euclidean scaling. In terms of the properties of the fracture size distribution that results, a
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fractal scaling correction predicts a higher percentage of large fractures relative to small fractures
than would the Euclidean correction.

3.2,8 Task 1.3.0 Heterogeneous Reservoir Interdisciplinary Database

In this task, the project team developed a large data base of geological, geophysical, and reservoir
engineering data for the heterogeneous reservoir project study sites. This data was provided by
Marathon Oil company, and is posted on the project web site, hitp://heteroil.golder.com. These
data posted to the web site is summarized in Table 3-25. Examples of data provided for the
database by Marathon Oil is provided in Figure 3-59 through Figure 3-67.
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Table 3-25 Heterogeneous Reservoir Interdisciplinary Database

Yates Field,

North

West Texas St;ﬁii’ﬁ:::lnt’ Oregon S(;l::il?l&g;{m

Basin, WY ’

sackgmend * X X X

[FMI Data X X X
[Core Data X X X

Qutcrop X X X

Seismic X X X

Geocellular Model X X X

Tracer Test Results X X

X X

[Interference Tests

Stoney Point Trenton Structure

Figure 3-65: Stoney Point, Trenton Structure
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Figure 3-66: Stoney Point, Geophysical Cross Sections
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Figure 3-67: Stoney Point, Lost Circulation
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3.3 Task 2: DFN Model Development

3.3.1 Task 2.1 DFN Model Approaches

The objective of this task is to document the DFN modeling approach by clearly describing each
of the available DFN conceptual models, including pre-existing models and models developed
specially for this project. There are three basic approaches to DFN modeling:

e Statistical Modeling, in which the spatial pattern is defined by stochastic processes

s  Geocellular Modeling, in which the variation of parameter values in a three
dimensional geocellular grid controls the fracture spatial pattern, and

¢ Geomechanical Modeling, in which fractures are generated based on geomechanical
principles using fracture mechanics or approximate heuristics.

3.3.1.1 Statistical Models

The Baecher model (Baecher, Lanney and Einstein, 1978) was one of the first well-characterized
discrete fracture models. In this model, the fracture centers are located uniformly in space, using a
Poisson process and the fractures are generated as disks with a given radius and orientation. The
enhanced Baecher model (Dershowitz et al, 1988) extended the Baecher model by providing a
provision for fracture terminations and more general fracture shapes. The BART (Baecher
Algorithm, Revised Terminations) model generalizes the Baecher model further by allowing
termination modes which result in non-uniform fracture locations. The Enhanced Baecher and
BART model utilize fracture shapes which are generated initially as polygons with three to
sixteen sides. These polygons can be equilateral (aspect ratio of one) or elongate, with the aspect
ratio (major to minor axis size and orientation).

In the Enhanced Baecher Model, termination is specified as termination probability P[T|I], the
probability that a fracture will terminate at a pre-existing fracture, given that it intersects a
fracture. In the Enhanced Baecher Model, all fractures are generated from center locations
distributed uniformly in space. In the BART model, termination is assigned not by termination
probability, but by termination percentage T%. In the BART model, 1-T% fractures are generated
based upon uniformly located fracture centers. T% fractures terminating at intersections are then
generated from locations uniformly located on the surfaces of existing fractures. These locations
are not the fracture centers, but rather the location at which the fracture termination occurs.

Periodic Models are useful for describing regularly spaced or periodic fracture patterns. Periodic
fractures may occur with a constant fracture spacing or a spacing distribution, which follows
some other simple, deterministic function with stochastic variations. In periodic models, the
fracture location is generated serially, with every fracture generated directly from the previous
fracture based on a specified direction and spacing. This approach has been found to be
particularly useful in carbonate and sandstone reservoirs.

The “Nearest Neighbor” model is a simple, non-stationary model in which fracture intensity
varies with distance from specified features.

Py (Xuyi,z) = f(dy)
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where d; is the distance of point from the selected features. The function f(d;) has been
implemented using exponential and power functions (Dershowitz et al., 1998). The “Nearest
Neighbor” model has been found to be useful in modeling fractures related to faults and folds and
a number of sedimentary processes.

In the Fractal Modelfractal patterns may be either "self-similar" (topologically identical at
different scales) or "self-affine" (topologically similar but anisotropically distorted at different
scale). Fractal fracture patterns can be generated in three ways:

e Utilize a recursive generation scheme which produces fracture patterns at one scale,
then superposes them at different scales (with self-affine distortion if appropriate) to
directly produce a fractal pattern;

¢  Generate fractures according to a process such as "Levy-Flight" which has been
shown mathematically to produce fractal patterns; and

¢  Generate fractures using non-fractal processes, then test the resulting patterns to
determine whether the resulting pattern is fractal.

The Levy-Lee fractal fracture model utilizes the second of the above approaches and is based
upon "Levy Flight" (Mandelbrot, 1985). The Levy Flight process is a type of random walk, for
which the length L of each step is given by the probability function of D, the fractal mass
dimension of the point field of fracture centers and Ls, the distance from one fracture to the next
for the previous step in the generation sequence. For D=0, the distribution of the step length is
uniform, such that there is no clustering or heterogeneity. For large D, there is a very low
probability of large steps and therefore fractures are formed close to each other in concentrated
clusters.

The Levy-Lee fractal model requires derivation of a dimension D for the three-dimensional
process of fracture centers from the two-dimensional pattern of fracture traces. Dershowitz et al.
(1988) present a derivation to convert the fractal mass dimension of points on a plane to the
dimension of points in three-dimensional space required for fracture generation. This derivation
indicates that the three-dimensional fractal process should be generated using a fractal dimension
one greater that the dimension calculated for the two-dimensional trace plane.

For this analysis, it might be tempting to utilize the fractal box counting dimension calculated for
the Enhanced Baecher model. However, the box fractal statistic calculated as part of the Baecher
analysis is only applicable to patterns which are "self-similar", which means that the patterns are
topologically identical at different scales. Many fracture patterns are "self-affine" rather than
"self-similar", since they are topologically similar, but undergo an anisotropic distortion with
scale.

The 3D Box Fractal Model is a simple method used to generate a self-similar three-dimensional
discrete fracture simulation. It is used only to create a simulation in which the fracture intensity
scales in a self-similar, isotropic manner. The FracWorks implementation of this method requires
the user to provide a value for the Box fractal dimension, which will be a real number between
0.0 and 3.0. The generation region is divided into an assemblage of grid cells. Each grid cell is
assumed to be a cube with an edge length equal to 1/64 of the generation region edge length. The
algorithm conceptually implements the following procedure, although in practice, some
properties of the recursive nature of the described process have been exploited to greatly speed up
the algorithm.
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In the initial stage, the generation region is idealized as a box of dimension 1.0 by 1.0 by 1.0.
Next, each edge of the box is divided into two, so that there are now 8 sub-cubes comprising the
original box. From the specified fractal box dimension Db, we can compute the number of boxes
that contain one or more fractures.

As the size becomes smaller, the number of filled boxes increases. If every box contained one or
more fractures at every box size, then Db would be equal to 3.0. This is the largest possible value
for the fractal dimension. For values less than 3.0, not all of the boxes will necessarily contain
fractures at all levels of box discretization.

Because of the recursive nature of the algorithm, the location of these filled boxes is not random.
As a result, the number of filled boxes at any level of aggregation conforms to a power law and is
fractal. Fractures are generated only in those 6208 boxes designated as filled until the global
fracture intensity P;, is reached.

The Geostatistical Variogram Method varies fracture intensity and other properties according
to a geostatistical variogram (Journel and Huijbregts, 1978). The variogram is a function, which
relates the similarity of values at different locations to the distance 4 between those locations.
Geostatistical semivariograms are defined by function y(ha,C)where h is the lag distance, a is the
range or correlation length, C is the sill, and y(h) is the semivariance. Semivariograms may be
either exponential, spherical, Gaussian, power-law (fractal), null, or deWijs. Geostatistical
models generally require stationarity — that is, the expected value and variance (standard
deviation) of the variable being modeled must be independent of its location, or at least any trend
must be separated out and dealt with outside of the geostatistical algorithm.

Geostatistical models are implemented by calculating the variogram from available data. The
spatial pattern can then be generated from the variogram definition using an algorithm such as
Turning Bands (Journel, 1974).

The Fractal POCS algorithm (Projection On Convex Sets) is a general procedure for generation
of stochastic fields according to constraints such as spatial correlation which can be represented
mathematically as convex sets (Malinverno and Rossi, 1994). The constraints are enforced on the
interpolation by projecting these convex sets in an interative fashion. Five constraints are imposed
in the generation of POCS stochastic fields of fracture centers or surface points: 1. Known data is
honored. This is known as Set P, for "Point". The constraint is that the final data set will have
values F(xi, yi, zi) at points i = 1 to N. In this way, the final simulation matches observations on
trace planes or in wells. 2. Self-affine spatial correlation is honored. This is known as Set S, for
"Spectrum". The way in which this constraint is applied involves mathematical operations on the
amplitude of Fourier spectrum of the data. 3. The mean value of the data is preserved. This is
known as Set M, for "Mean." 4. The values of the data set are bounded. This is known as Set B,
for "Bounded." For example, it is not meaningful to have negative fracture intensity or
transmissivity. 5. The energy of the data is preserved. This is known as Set E, for "Energy".
Energy in this context is defined as the sum of the value-squared at all points.

In order to create a POCS stochastic field of fracture intensities, it is necessary for the user only

to specify constraints (1) and (2). The algorithm automatically computes the mean value of the
data used in constraint (1) and also the energy of the data used for constraint (1). The algorithm
then conditions the spectrum for constraint (2) based upon a parameter, termed, derived from a
spectral density plot of the known data points and from an anisotropy function describing the
relative strengths of spatial correlation in three orthogonal directions. The factor is linearly related
to the fractal dimension, D. The fractal dimension of a self-affine process relates to according to
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a relation defined in terms of fractal dimension Ds, Euclidean dimension E, sometimes
represented by the variable n, which is the exponent of the corresponding one-dimensional power

spectral density.

The parameter has been the source of much confusion in the literature (for example, see Goff,
1990 and Huang and Turcotte, 1990). A one-dimensional self-affine process has a power

spectrum proportional to f-b, where f is the frequency. An n-dimensional process has a power
spectrum proportional to f 1-b-n (Huang and Turcotte, 1990). The fractal dimension, for 1-, 2-
and 3-dimensional processes are given in Table 3-26.

Table 3-26 POC Dimensions

E Ds b Range Ds Range
1 (5-b)2 [1-3] [1-2]
2 G2 24] 23]
3 11-b)2 3-5] 34]

The POCS algorithm requires the user to provide values for anisotropy parameters Ax, Ay, and
Az. Only the relative magnitudes are important, although the values must be positive. Negative or
zero values make no physical sense and produce a warning message. The program also produces
warning messages if the value of D specified is not within the range[3.0 - 4.0]. Although the
factor and not the fractal dimension, is used internally to control the spatial correlation structure,
the program computes this from the user-specified value of D.

The impact of anisotropy for any simulation depends upon the fractal dimension and the
constraint data. For low fractal dimensions, the simulation becomes more obviously layered at
lower anisotropy ratios. Also, if the constraint data has inherent larger-scale anisotropy, then the
layering will become more readily apparent at both higher value of fractal dimension and lower
anisotropy ratios.

3.3.1.2 Geocellular Models

Stochastic process, geostatistical, and fracture models attempt to apply a single, unifying set of
simple parameters to describe the three dimensional pattern of discrete features within a
statistically homogeneous region. In contrast, Geocellular models are based on the assumption
that the underlying spatial pattern parameters change in space, such that different sets of
parameters are required at every point in space. This is particularly attractive when there is a
geological or stratigraphic model to provide the basis for DFN modeling.

In statistical approaches models such as the Baecher model, the probability of fracture centers is
equal at each point in space. However, there are not fractures at every point in space - rather the
intensity varies continuously from locations containing many fractures to locations with none.
Expressing this as a geocellular model, each cell might be assigned a set of parameters
expressing:
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e the number of fractures,

o the percentage of the fractures within the cell which continue to neighboring cells,

e the orientation distribution of the fractures ,

o the distributions and correlations of geometric, hydraulic, and mechanical properties ,

o the percentage of the fracture terminations which are terminations at intersections.

In this way, the exact same model generated using the Baecher or Bart approach could be
generated using a detailed geocellular approach. However, the amount of data necessary to
achieve the same model through a geocellular approach is significantly greater than that needed in
the Baecher model. In addition, while the actual fracture model varies continuously in space, the
geocellular model varies by steps given by the grid refinement of the geocellular model. With
coarse grids, the results might not be as good as could have been achieved using the standard
Baecher model.

3.3.1.2.1 Fracture Generation

Fracture generation from geocellular models has two stages. In the first stage, the model must
chose which cell to generate the fracture from, and the second stage is to chose the parameters of
fracture generation based on the values found in the cell.

The cell selected for fracture generation is generally based on a "potential field" describing the
relative likelihood of fracture generation from each cell. This potential can be expressed
statistically based on the relative intensity in each cell, or it can be based on the location of
previously generated fractures, as in the nearest neighbor and Levy-Lee models. The fracture
generation "potential field" represents the probability that a fracture will be generated in a given
cell, relative to the likelihood of other cells.

Once the cell is selected, the fracture geometric, hydraulic, and mechanical properties need to be
assigned. For each parameter, which is not assigned in the cell, the parameters can be obtained
from the defaults for the fracture set. For example, the fracture size might be assigned from the
set size distribution. For parameter values assigned on a cell-by-cell basis, the fracture parameters
can be set from values or distribution parameters for the cell. For example, the fracture
orientation might be obtained from distribution parameters stored in the cell.

3.3.1.2.2 Geocellular Grid Preparation

The most common approach for preparation of a geocellular grid is to start with an existing three-
dimensional geocellular model such as StrataModel, GeoFrame, EarthVision, ARC/Info, or EVS.
In these models, every point in space is assigned to a cell. The cells in turn have spatial volume
coordinates, and one or more properties. Each of these cell properties can then be linked to the
fracture generation parameters of intensity, orientation, size, etc, and the fracture hydraulic or
mechanical properties.

3.3.1.2.3 Potential Fields
Potential fields for fracture generation are used to determine the percentage of fractures, which

are generated in each cell. Potential ficlds are defined for each set separately, and can be based
on:
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e rock type, where different rock types have different fracture intensities,

s geophysically derived fracture porosity, where greater porosity presumably implies
greater fracture intensity,

s structural curvature, bed thickness, and other geometric properties of the stratigraphic
model,

s geometry and intensity of fractures from previously generated sets, and

e calculated stress field.

Rock type is used to define fracture potential based on geological evidence, which indicates
greater fracture intensity in particular rock types. Where only a few rock types with relatively
large regions are involved, it is frequently preferable to define a generation region corresponding
to each rock type, avoiding the use of more complex geocellular approaches.

Fracture Porosity information is commonly available from geophysical density measurements.
Geophysical measurements provide total porosity. Fracture porosity is then calculated by
subtracting the average rock porosity from the total porosity. Fracture porosity results from a
combination of fracture size, intensity, and thickness. This needs to be taken into consideration
when defining relative fracture potential based on porosity measurements.

Structural and Stratigraphic Geometry provide geologically based methods for defining
fracture intensity. For example, certain sets have highest intensity close to faults, while other sets
have highest intensity near the maximum curvature of folds. Similarly, some fractures have the
highest intensity in thin beds, while others may have the highest intensity in beds dipping at a
certain angle. For each of these cases, the fracture potential for each cell can be calculated by
examining the structural and stratigraphic geometry in the vicinity of the cell.

Previous Fracture Sets clearly affect the geometry and occurrence of fractures in subsequent
sets. Statistical approaches such as the "Nearest Neighbor" approach provide methods to generate
fractures correlated to previously generated fractures. However, with the geocellular approach,
rules can be used to generate fractures with any desired intensity relationship to previously
generated fractures - with higher or lower densities near or far from particular sets, or particular
sized or oriented fractures.

Stress Fields together with material properties control fracture occurrence and geometry.
However, the actual stress field existing at the time of fracturing is rarely known, such that
assumed stress fields based on numerical modeling or paleo-stress interpretations and
interpolations must be used instead. When appropriate paleo-stress field information is encoded
to the geocellular grids, this information can be used directly to generate fracture relative
intensities using rules to relate the stress field to occurrence of fractures from particular sets.

3.3.1.2.4 Orientation Fields

Orientation fields describe the orientation (tangent), elongation, and curvature of fractures as they
are generated. Orientation is generated in cells rather than larger "generation regions" when the
orientation of particular sets varies in space. This is typically important where the orientation is
defined relative to for example fold or fault surfaces or stratigraphic boundaries.

Specification of orientation fields is generally done by defining two vector directions, generally a
pole and a transverse direction. The orientation for features generated in that cell can then be
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defined relative to those vector directions. For example, the mean fracture pole might be defined
as 45 degrees from the mean pole specified in the geocellular data.

The vector direction contained in the geocellular model is typically based on:

structural curvature,
bed thickness,
e position within structural features such as faults,

s orientation of fractures from previously generated sets, and

calculated stress field.

Structural Curvature controls fracture orientation in two ways. First, fractures within structural
members are frequently oriented relative to those features, rather than in absolute coordinates.
Second, the fracture orientation can depend on the location within the structural feature. For
example, tension fractures located near the top of synclinal folds, and conjugate shears located
within fault zones.

Bed Thickness affects the occurrence of many fracture sets and therefore the orientation of
fractures within the set. For example, in thin beds, fracturing may be restricted to orientations
defined by the bed orientation, while through going fractures and fractures in thicker beds are
oriented Thick fractures may have fractures oriented

Structural Position within stratigraphic layers also can influence fracture orientation, since
different orientations can be preferred at different locations within a structural member. For
example, the center of a particular stratum might contain fractures oriented according to a global
mean pole, while fractures closer to the edge of the structure are increasingly controlled by the
structural curvature...

Previous Fractures can influence fracture orientations in the same way as structural curvature
and structural position. Fractures close to previously generated fractures may tend to have similar
orientation, or conjugate orientations, or some other relationship.

Calculated Stress Field at different stages in time are particularly attractive for defining fracture
orientations, since fractures are formed with respect to principal stress orientations: at £(45-$/2)
with respect to shear fractures, perpendicular to the minor principal stress for tensile fractures,
and parallel to the major principal stress for compressive fractures (if such a thing exists). The
key in this case is the availability of stress tensors describing the state of stress when the fractures
were formed.

3.3.1.2.5 Size Fields

Fracture size for stochastic fractures is defined by a distribution of mean fracture equivalent
radius. The size distribution can vary in space for much the same reasons that intensity and
orientation vary. In particular, bedding thickness and stress fields can have significant influences
on the local fracture size distribution parameters. Where this is the case, this can be dealt with by
defining size distribution parameters on a cell by cell basis with a geocellular-based model.
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3.3.1.3 Geomechanical Models

Geomechanically based DFN models are derived by simulating the physics of fracture
propogation, fault movement, and other processes of structural geology. The geomechanical
approach is attractive for a number of important reasons:

e the fracture patterns in geomechanically based models are constrained to be physically
possible

e qualitative information on geological and stress history can be used to develop
quantitative realizations for the fracture pattern

s quantitative information on rock mechanical properties can be used to support fracture
realizations

e hypotheses concerning reservoir stress/strain history can be tested by comparing the
measured fracture patterns against theoretical patterns based on principles of fracture
generation and propagation

e spatial heterogeneity and non-stationarity in fracture geometry and properties can be
defined in terms of the stress-strain history at different locations in the rock.

There are two basic approaches for geomechanical modeling: forward modeling, and reverse
modeling. In forward modeling, initial mechanical conditions are assumed, and stress boundary
conditions are applied. Fracture propagation is then simulated one fracture at a time, and each
fracture is generated in a mechanical environment including the influence of pre-existing
fractures. This approach has been developed over the last 20 years by Ingrafia (2000) and others.
In the reverse modeling approach, a series of displacements, erosions, and strains is applied to
reverse the process from the current deformed state to an original undeformed state. This process
is referred to as “palenspastic reconstruction” (Midland Valley, 2000). Fractures can then be
generated according to rules related to the stress-strain history for each location within the rock.

3.3.1.3.1 Geomechanical Forward Models

Geomechanical forward models simulate the process of fracture generation in continuous and
discontinuous materials, using the principles of fracture propogation. The geomechanical
forward modeling approach began with the idealized analytical solutions of Griffith (1921). The
Griffith crack represents the propogation of a single idealized elliptical fracture in a simple
tensional stress regime.

If all fractures were Griffith cracks, the development of three dimensional DFN models would
only require an understanding of the stress history boundary conditions which formed those
cracks. However, actual rock fracture formation is:

a) a combination of tension, shear, compression modes

b) occurs within rock materials which combine elastic, brittle, granular, and plastic
behaviors

¢) occurs in heterogeneous materials with distinct boundaries between zones, and

d) occurs within a complex stress field resulting from the interaction of multiple pre-existing
fractures
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e) is frequently subject to displacement or strain as well as stress boundary conditions

The combination of a) through ¢) above with the frequently complex stress history of fracture
formation over geologic time makes forward modeling of fracture formation quite challenging.
Until recently, forwarding modeling for generation of fracture patterns was not tractable. Over
the past five years, fracture mechanics simulation has advanced to the point where it is possible to
generate fracture patterns reflecting many combinations of a) through d) above.

Of particular interest is the work of Carter, Wawrzynek, and Ingraffea (2000) and the Rock
Fracture Group at Comell University. In their research, the boundary element method (BEM)
code FRANC3D has been developed for arbitrary, non-planar, three dimensional fracture
nucleation and propagation. FRANC3D is able to model propagation, interaction, and/or
coalescence of multiple fractures, fracture propagation across material interfaces and intersecting
fractures, and fracture bifurcation. FRANC3D can model fracture propogation for multiple, non-
planar, arbitrary shaped fractures. For a given initial fracture geometry, FRANC3D calculates the
3D stress field to determine the stress intensity factors, and then extends the fractures along those
“crack fronts.” Because of this approach, FRANC3D can simulate realistic 3D fracture shapes,
including en-echelon, curving, and stepping fractures. FRANC3D calculates “crack fronts” using
elastic plane strain assumptions. FRANC3D is solved primarily using finite element methods,
although boundary element formulations are also possible.

While FRANC3D is only above to handle a limited number of fractures at this time, it is possible
to foresee the extension of these capabilities over the coming decade to generation of networks of
thousands of fractures. At present, FRANC3D can be used to generate networks of tens of
fractures. Even within this limitation, however, FRANC3D is useful to derive distributions for
fracture size, fracture orientation, and fracture spatial distribution. In addition, FRANC3D
simulations can provide the basis for extrapolation of fracture patterns using geocellular
approaches by defining the correlations between cell locations and fracture geometric and
mechanical properties.

FROCK is program similar to FRANC3D, developed by Chan and Einstein. (1991). FROCK
uses a displacement discontinuity method (DDM) in which the boundaries of the continuum are
discretized into small elements. The advantages of the DDM are that it only requires
discretization at the boundaries of the continuum. FROCK calculates stresses around the “crack
tip” and uses tensile and shear criteria to determine where fracture propagation should occur. The
shape of the fracture propagation region is approximated as a cylinder with the center at the tip of
the flaw, and with dimensions defined by the radius, ro, which depends on the material and on the
loading mode. Tensile fractures are propagated in the direction perpendicular to the maximum
tensile tangential stress, and when this stress reaches a critical value which is material dependent.
Shear fractures are propagated in a direction in which the absolute value of the shear stress attains
a maximum. It will propagate when the maximum shear stress reaches a critical value which is
also material dependent. FROCK uses three parameters to describe fracture propagation:

e the critical tensile strength,
o the critical shear strength, and

o the radius of the assumed cylindrical fracture propogation region (assumed to be a
function of the loading mode (uniaxial, biaxial compression, tension) as well as with the
material.
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FROCK has been verified against a variety of analytical solutions (Chan and Einstein, 1991).
However, it is limited to two dimensions, and can therefore be used only to derive qualitative
information about fracture spatial pattern, intensity, and orientation. in 3D.

Beyond computational constraints, the approach used by FRANC3D and FROCK is limited by
the underlying assumption of small strain, elastic continuum mechanics. As a result, FRANC3D
and FROCK can not be used to model fractures generated with respect to faults with throws of
hundreds of meters or processes such as block rotation and kinematics.

The kinematic or particle mechanics approach (Potyondy, Cundall and Lee, 1996) avoids the
small strain elastic assumption limitations inherent in continuum mechanics approaches such as
those used by FRANC3D and FROCK. In the particle mechanics approach, the rock mass is
represented as a set of particles with varying degrees of connection or bonding. Fractures and
fracture propogation are represented as breakage of these bonds. Displacement and rotation
within a particle mechanics model is limited only by kinematics. The particle mechanics
approach has been implemented in the PFC3D (Potyondy, Cundall and Lee, 1996) and has also
been implemented by Miihlhaus, Sakaguchi and Wei (1997) at CSIRO in Australia. Using the
particle mechanics approach it is theoretically possible to generate fracture patterns with
unlimited numbers of interacting fractures, obtaining spatial distributions of size, intensity, and
orientation directly from the stress history and material properties. The primary limitation of
particle mechanics codes is that they require the use of empirical parameters to describe the
particles and bonds which are modeled — there is no direct relationship to measured rock
properties. However, if a particle mechanics model can be calibrated to observed fracture
patterns and assumed stress histories, that model could potentially be used to extrapolate the full
three dimensional spatial distribution of fracturing. Particle mechanics codes can in theory model
large displacements, rotations, and distortions.

Beyond purely mechanistic geomechanical models such as those described above are the
empirical rule-based geomechanical fracture generators such as those of Swaby and Rawnsley,
(1996) and Cacas (1999). In this approach, fractures are generated according to empirical rules
which relate the fracture patterns to geocellularly or spatially defined “potential fields”, and then
generate the fractures relative to those “potential fields”. For example, the Swaby and Rawnsley
model uses the following empirical rules for fracture propagation:

o the probability that a fracture will grow into a particular cell is defined by an empirical
“propagation potential” and “impedance potential” defined on a geocellular basis

¢ the direction and distance that the fracture will propagate given that it propagates in a
given cell is given for that cell based on cell attributes

s fracture propagation is prevented in defined zones surrounding previously defined
fractures based on stress relief assumptions

o cell attributes are updated based on the fractures existing at the end of a given time step

An example empirical geomechanical forward model from the Swaby and Rawnsley model is
provided in Figure 3-77. Empirical geomechanical models have the potential to be extremely
powerful fracture generators, capable of generating mechanically realistic patterns of hundreds of
thousands of fractures for varying scales. The potential of the empirical geomechanical forward
modeling approach is limited only by the ability to define reasonable empirical fracture
propagation rules and implement them in a computationally efficient manner.
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3.3.1.3.2 Geomechanical Reverse Models

Geomechanical Reverse Models, also referred to as “Palinspastic Reconstruction” Models reverse
structural displacements, deformation, and rotations to return a known structural geology to an
assumed original condition. Major development of the palinspastic approach is described in
Suppe (1983, 1985, 1989), Suppe et al. (1990), and Mitra (1986, 1989, 1990).

The technology of palinspastic reconstruction is approximately twenty years old, and has matured
to the point at which it is a commercially available technology. The two leading software
packages for palinspastic reconstruction are 3Dmove by Midland Valley (Figure 3-78) and
Geosec3D by Paradigm (Figure 3-79).

Since palinspastic reconstructions work from known structural geology, at a level of detail which
includes measured or at least inferred displacements. Where the structural geology is known in
detail, there is no need to implement stochastic or extrapolated structural models — the fracturing
can be modeled as deterministic ! The primary use of these models is therefore to define the
undetected structures which would be necessary to make the known structural deformations
kinematically possible. As such, geomechanical modeling is a method for interpolation from
known structures to the smaller or less readily detected features. It is also a method for
verification of interpreted structural features and displacements, determining whether there is a
series of structural events which could have produced the structural features as interpreted.
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Figure 3-68 Fracture Growth Model (after Swaby and Rawnsly, 1996)

Figure 3-69 3Dmove Palinspastic Reconstruction (Midland Valley, 2001)
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Figure 3-70 Goesec2D Palinspasic Reconstruction

Hermanson , J., LaPointe, and Eiben (2001) developed an approach to use palinspastic
reconstruction to generate 3D discrete fracture networks. Palinspastic reconstruction models
produce a series of strain fields for each stage of structural deformation (Figure 3-80). Each of
these strain fields represents a combination of elastic strain within the rock mass, displacement on
existing fractures, and formation of new fractures. Hermanson et al. (2001) use these strain fields
to derive compatible or physically possible 3D fracture populations in terms of location, size, and
orientation distributions (Figure 3-81).

3.3.2 Tasks 2.2, 2.3, and 2.4 Site DFN Model Development, Implementation, and Validation

In these tasks, preliminary DFN models were built for each of the project study sites. These
models were subsequently superceded by models developed within Task 3 and Task 4, and are
therefore not described here. For more information on the preliminary model versions, please
refer to the progress reports listed in Table 2-1. Preliminary DFN models for the project study
sites are illustrated in Figure 3-83 through Figure 3-85.

3.4 Task 3: Reservoir Improvement Strategy

In Task 3, the project team developed procedures to improve reservoir productivity and recovery,
with specific applications to project study sites.
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Figure 3-71 Strain Fields for Fracture Generation

Figure 3-72 Geomechanical Modeling of 3D Fracture Populations
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Figure 3-73 Preliminary Yates DFN Model
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Figure 3-74 Preliminary Stoney Point DFN Model
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Figure 3-75 Preliminary North Oregon Basin DFN Model

il

Figure 3-76 Preliminary South Oregon Basin DFN Model
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Particular emphasis was placed on the use of the following DFN tools:

o Pathways Analysis: Graph theory analysis of the connectivity structure of the discrete
conductive and storage features to identify connected well intervals, and to target
injection and withdrawal rates for steam, water, oil, and gel as appropriate

s Compartmentalization Analysis: Analysis of connected network geometry and

tributary drainage volumes

s Block Size Analysis: Derivation of dual porosity parameters based on discrete feature
geometry

e Flow Modeling: Single phase flow modeling for derivation of flow rates and pressure
responses

o Transport Modeling: Quantification of flow pathways by particle tracking methods.

Reservoir improvement strategies were developed for each of the sites in three stages:
preliminary strategy development, DFN model development, and strategic plan. These are
described below for each of the study sites.

3.4.1 Task 3.1. Strategic Plan: Yates Field Reservoir Improvement

The focus of efforts to improve production in the Yates field is on improving oil mobility to the
producing intervals. Since oil is delivered to the wells primarily through the fracture network, the
DFN approach has considerable potential to provide this support.

The strategic plan for the Yates field is as follows:

1. Oil mobility to the producing intervals needs to be improved. The DFN Modeling
approach will support this through improving the understanding of pathways for injected
surfactants, and how these pathways relate to the pathways for surfactant imbibition to
the rock matrix, and pathways for oil delivery to production intervals

2. Improve the placement of producing intervals (strategic completion) to maximize the
volume of oil accessed by the wells and minimize connectivity to sources for water.

3.4.1.1 Surfactant Flood DFN Analysis

Surfactant flood is important because it facilitates increased delivery of oil from the rock matrix
through the fracture network to the production wells: DFN analysis an be used to address the
following aspects of surfactant flood design:

s circulating optimum concentration of surfactant in water into the fractures,

s transfer of the surfactant from the fractures into both the less-directly-connected fractures
and formation matrix pores,

e the chemical EOR mobilization of oil from the matrix into the fractures, and
o the capture of oil from the fracture network.
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Procedures were developed to extend the investigation of flow from the wellbores to the matrix
pore volume by way of water-filled fractures in the thick water-invaded fracture network and oil
flow from this zone to accumulate in the oil column of the fracture network for capture of the
mobilized oil. Two styles of chemical application are addressed;

1. the surfactant has been applied to treat production wells where the chemical is intended
to circulate into the water invaded fractures and stimulate water imbibition into the
matrix, and

2. injection of surfactant into openhole completions deep in the formation where the
surfactant is intended to replace formation water along fracture flow paths to nearby
producers.

Optimum application of these treatments depends on appropriate injected surfactant concentration
and total volume to adequately treat the formation matrix exposed along the connected fracture
network. This requirement encourages quantitative assessment of the variation in fracture
network connectivity as formation character and deformational strains vary across the field. The
tool for this assessment is DFN modeling. A DFN realization of a 125-foot thick water invaded
interval of a fracture network is provided as Figure 3-77a. The largest inter-connected cluster of
fractures is provided as Figure 3-77b. Note that many of the remaining fractures form only small
clusters with small associated matrix volume.

1.000 foot cube

Figure 3-77 DFN Model Illustrating Surfactant Imbibition

Past production and injection completion performance can serve as an indicator of probable
associated fracture cluster area to guide selection of wells for the various style treatments. The
treatment types are conceptually illustrated in Figure 3-78. The production well treatment would
treat fracture communicated matrix surfaces extending away from the well in varying directions.
As the well is returned to production following a brief shut in period, any oil liberated by the
stimulated Imbibition of water would be available along fractures that are well-connected to the
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producer. This contrasts with the sustained injection style application in which the surfactant
propagates into the fracture network away from the application point and selectively advances
toward fracture-connected producers. The most locally intense treatment is at the point of
application. Near an offsetting producer, chemical dosage may be minimal and only along a
single fracture pathway leading to it. Oil mobilized by the process will be difficult to capture and

account to the process. Figure 3-79 and Figure 3-80 provide graphs of tested or metered response
to the two styles of treatments.
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Two Producer Treatments Injector Producer

Figure 3-78 Surfactant Injection Strategies
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Figure 3-79 Well 2913 was treated with surfactant late in 1997 and responded with stimulated
liquid productivity and reduced water-oil ratio (WOR) after recovery of treatment fluid. The
stimulated fluid productivity has been maintained while the WOR has resumed an upward trend.
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Figure 3-80 Response to injection over one mile away is observed almost immediately at a well
which is producing at an elevation over 100 feet above the fracture flow feature taking the
surfactant in the injection well

Field response to surfactant application has been economically encouraging even without the
benefit of dosage optimization. Therefore, field testing is continuing while flow
characterization/DFN modeling improves and quantification of chemical transfer from the
fractures into the matrix continues. This quantification includes a number of parameters that can
be mathematically related for solution of the transfer along an idealized planar surface.

34.1.1.1 Analytical Development

In order to optimize surfactant design, a mathematical model and its analytical solution are
presented in this paper. The model relates the fracture area treated by surfactant with the injection
rate, volume and concentration and fluid and permeable medium properties. The effects of fluid
convection and dispersion on treated fracture area are also discussed.

During initial injection, the surfactant solution is first mixed with fluid in the fracture system. The
mixing depends on the injection rate, fracture pore volume and permeability. The mixed solution
then advances through the fracture system and diffuses into matrix. This process depends on the
chemical properties of surfactant solution, formation water and formation rock. The fluid in the
fracture system will also percolate into matrix and transport surfactant molecules. The fluid
transport from fracture to matrix is controlled by the pressure gradient distribution in the reservoir
and matrix permeability. For simplicity, The fracture system is conceptualized as a vertical plane
(Figure 3-81). The surfactant is injected at one end of the fracture. The fluid convection into
matrix from the fracture is assumed to be steady-state flow with constant flux over the fracture
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surface. To model the surface area treated by surfactant, the surfactant transfer into matrix is
investigated.

Surfactant Slug ~ QinjCinj

v

Figure 3-81 Conceptual Fracture Model

Fracture

Let the surfactant with concentration C, be in contact with fracture surface at time zero. It is
assumed that the surfactant concentration in the matrix is initially zero and remains zero at an
infinite distance from the fracture surface. The mathematical model for material balance and
boundary conditions of the convection and diffusion processes can be described as (Lake, 1989),
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2
K ,¢a—c _ua_C = ¢8_C Equation 96

c(o,t)=c, Equation 97
C(x,0)=0 Equation 98
lim[C(x,1)]= 0 Equation 99

X—>o0

Where C'is surfactant concentration. It is a function of location and time. u is fluid convection
velocity from fracture to matrix. ¢ is matrix porosity. K| is longitudinal dispersivity coefficient.
For one-dimensional flow, K| is given by Lake (1989),

B
&=C1 +C2{Mﬁ]
D D

Equation 100

Where D is the effective binary molecular diffusion coefficient between the miscible displacing
and displaced fluids. C,, C; and 8 are properties of the permeable medium and the flow regime.
For very slow flows, the second term in Equation 5 is negligible.

The partial differential of surfactant concentration with respect to distance, x, after taking Laplace
transform on Equations 1 through 4 with respect to time is given by Eq. 6,

oc(x,s) _C, u—+fu’ +4K,¢’s
ox |, s 2K,¢
Equation 101

This equation will be used in the following section to obtain fracture area treated by a surfactant
slug.

The surfactant transfer rate by both convection and diffusion can be calculated as,

aC (x, t)
0% g Equation 102

q; = ”Coaz(t)_Kt‘P

Due to surfactant transfer into matrix and dispersion at the front of the surfactant solution, the
surfactant concentration in the fracture is not constant. Figure 3-83 shows a typical surfactant
concentration profile in a fracture.
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For simplicity, the surfactant concentration behind the front of surfactant slug is considered to be
constant (Figure 3-83). Using a similar method proposed by Marx(1959) and Carter (1957) in
their reservoir heating project and fluid loss optimization of hydraulic fracturing, the surfactant
material balance in the fracture system can be described as:

Surfactant Injected = Surfactant diffusion and convection into matrix + surfactant

slug advance in fracture
We can then derive Eq. 8:

Y oC(x,t—A) dA
Qinj Cinj - 2"J. 0 |:”Co 50 (t - A’)_ 9, o o }(a)dl

+ngw,C, % Equation 103

where 0, and C,,; are injection rate and injection concentration. 4 is single side fracture surface

inj

area treated by surfactant and is a function of time and other parameters such as injection rate
fracture and matrix permeability, and efc. ¢, and w, are fracture porosity and width. » is the

number of fractures connected to the wellbore. A is the time when the fracture surface is exposed
to surfactant. Solving this mathematical system results in Eq. 9:

Alr)= M{e[“m ‘erfe [(M + K)\/;]— 1}

AMK?
LJJ Lt _,
— Jt+—— ¢
% terfc(«/_t) X «/7_176
+ Merf («/E ) Equation 104
AMK T
where
2
J=-2 Equation 105
4K,
_#K -
M= Equation 106
A
K= [M*+J-Y Equation 107
vy
_ O Equation 108
2nC @ w,
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For a special case when the fluid convection from fracture to matrix is ighored, Equation 6
becomes

A(

Y

=L et elonnz e 2L 7 -1 Equation 109
e e O quation

For another special case when the molecular diffusion into matrix is neglected, Equation 6
becomes,

2ut
L " .
A(t)=%[l—e o f] Equation 110

3.4.1.1.2 DFN Model Validation

To verify the analytical model, a conceptual surfactant flooding simulation model is setup using a
commercial simulator. The model is 600 ft x 116.06 ft x 100 ft with a grid dimensions of 117 x
117 x 1 (Figure 3-83). The fracture is located along the central line parallel to the model edge of
the longer side (Figure 3-82). The fracture permeability is 5 darcy and the porosity is 0.99. The
fracture is 600 ft long and 0.06 ft wide. The matrix permeability is 100 md and porosity is 0.15.
Two wells are located at each end of the fracture. One well is a producer and the other is an
injector. To ensure constant flux of fluid convection into the matrix from the fracture, a constant
flux aquifer is attached along the two longer edges of the model. The aquifer efflux is 5.6146E-5
ft/day, which is the same as the flux of fluid convection from fracture to matrix. The diffusion
coefficient is 1.8E-5 ft*/day for the simulation model. The injection rate is 20 STB/day and the
production rate is 18.8 STB/day. The simulation has an initial 100-day period to establish steady-
state flow. The surfactant solution is then injected with a concentration of 2 1b/BBL.

The fracture surface area swept by surfactant solution with a concentration greater than 1.0
Ib/BBL is output for different time steps. The results are plotted in Figure 3-84 along with those
calculated from the analytical model. A dispersion coefficient of 12 times that of the molecular
diffusion coefficient is used in the analytical calculation. The adjustment needed here accounts
numerical dispersion and macro dispersion due to convection. This ensures that dispersion caused
by fluid flow and mixing is dominant in this case (Lake, 1989). The overall results show a good
agreement. The deviation around 40 to 50 days is caused by surfactant break through. Therefore,
the fracture area treated in the simulation model is limited to 60,000 ft*.

Figure 3-85 shows an analytical calculation demonstrating the effects of convection rate on the
treated fracture area. We can see that at early time, the effect is negligible. As treatment time
increases, the treated fracture area decreases with the increase of convection rate. After 50 day's
of treatment with 20 STB/day and 2 Ib/BBL of dilute surfactant injection, the difference of the
treated fracture area is as large as 3,000 square feet with convection rate varying from 1.0E-5 to
1.5E-4 ft/day.

Figure 3-86 shows the effects of molecular diffusion coefficient on the treated fracture area. The
pattern is similar to the effects of fluid convection into matrix on the treated fracture area. At
early time the effect is negligible. As treatment time increases, the treated fracture area decreases
with the increase of molecular diffusion.
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Figure 3-83 Schematic View of Reservoir Model
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Figure 3-85 Effects of Convection Rate on Fracture Area Treated
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Figure 3-86 Effects of Molecular Diffusion on Fracture Area Treated

3.4.1.2 Strategic Completion DFN Analysis

The DFN Model described above in Section 3.4.1 was used to evaluate strategic completion for
the 8 wells At the end, this produced about 80 DFN models for the of deepening candidate wells
1304, 1307, 14A1, 1495, 1663, 177,3 2513, and 2722. The purpose of the analysis is to
determine which DFN model parameters can be used as indicators for prioritizing strategic
completion candidates. The indices considered were:

¢ Conductive fracture frequency P, (1/m), which indicates the frequency with which
conductive fractures intersect the different wells considered. In theory, higher Py, could
correlate with better production. However, past studies have universally demonstrated
poor correlation to transmissivity, and is not expected to be a good predictor of
production

o Compartment statistics of volume and projected area, which measure the distribution of
connected fracture porosity within the reservoir volume adjacent to the well.

e Matrix block statistics, which measure the distribution and shape of the reservoir matrix
which feeds oil to the wells through the fracture network.

Figure 3-87 and Table 3-27 summarize the conductive fracture frequency statistics for each of the
eight wells evaluated. Based on these simulations, the mean conductive feature intersection
intensity for the most heavily fractured well (W1307) is almost twice as great as that for the least
heavily fractured well (W1773). However, this inter-well variability is still within one standard
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deviation for the variability between realizations for a single well. As a result, it is unlikely that
conductive intensity will be a good predictor for production.

10 Simulations per Well

B Mean
B Median
OstDev

Number of Intersections per 100 m

W1304 W1307 W1495 W14A1 W1663 W1773 w2513 w2722
Well

Figure 3-87 Intersection Statistics for Deepening Candidate Wells
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Table 3-27 Summary of Intersection Simulations, Yates Deepening Candidates

Intersection Intensity Py from Simulations

(Conductive fracture intersections per

100 m)
Well Mean |[Median |[StDev |Min [Max
W1304 |23 2.5 1.5 0 4
W1307 37 3 1.4 2 7
'W1495 2.4 3 1.4 0 4
WI14A1 (3.2 3 2.3 0 8
'W1663 2.6 3 1.5 1 6
W1773 1.9 2 1.1 0 3
W2513 29 2.5 1.4 1 5
W2722 2.5 3 1.2 1 4

Compartment statistics were analyzed using the methods of LaPointe et al. (1998). For all of the
wells analyzed almost the entire reservoir volume in the well vicinity s part of a single large
compartment. As a result, the differences between the connectivity of the different well locations
is defined by the differences between the compartments which are not part of this single large
compartment. Compartment volume statistics were therefore calculated for those compartments
of volume less than 50 million m’, and compartment area statistics were calculated for those
compartments of projected area less than 200,000 m’.

Table 3-28 and Table 3-29 and Figure 3-88 and Figure 3-89 summarize the results of ten
realizations of compartment analysis for well deepening candidate W1304. The projected area
and volume vary significantly between realizations. However, the distributions are consistently
skewed, with the vast majority of compartments much smaller than the mean, and only a very few
compartments of volumes of the same order as the largest compartments. As illustrated in Figure
3-88 and Figure 3-89, the distributions for compartment volume and projected area are both well
matched by lognormal distributions. This indicates that in any case there are a significant number
of smaller compartments, which should drain relatively quickly, with a few larger compartments,
which will provide long-term production.
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Table 3-28 Compartment Projected Area Statistics, Well W1304

Compartment Volume m’  (Cutoff 50 million m’)
Realization |(Min Max Median  [Mean StdDev
0 3.6 120065.9 323.0 37329 14436.9
1 5.9 44668.7 554.00 2655.7 6092.3
2 9.8 187956.6 360.8 6140.8 21802.4
3 4.6 219962.5 362.9 5783.3 241694
4 9.3] 169452.0 459.8 42467 178004
5 1.4 19204.0 7343 20664 3957.3
6 5.6 115737.5 533.0 3927.5 11843.8
7 59 113578.4 346.3 275400 11740.2
8 3.6 21459.8 296.9 1679.1 3511.8
9 8.8 214933.7 460.§ 6503.4 23095.5
Mean 5.8 122701.9 44321 3949.00 13845.0
StdDev 2.7 75718.6 135.1 1720.1 7778.6

Table 3-29 Compartment Projected Area Statistics, Well W1304

Compartment Projected Area m” (Cutoff 200,000 m)

Realization |Min [Max Median Mean StdDev
0 4.3 3130.6 78.3 220.3 443 4
1 3.9 1255.8 115.5 209.2f 2557
2 4.5 3650.6 87.6 308.2 583.7
3 3.3 4431.9 97.6 263.3 535.8
4 5.3 3976.8 106.6 239.2 465.0
5 3.7 2102.4 121.8 210.0 305.7
6 3.9 3343.6 111.9 260.4 434.4
7 3.2 3045.0 76.9 187.8 364.5
8 2.7 1443.7 90.6 163.8 2364
9 3.6 1527.3 94.1 201.9 301.5

Mean 3.9 2790.8 98.1 226 .4 392.4

StdDev 0.7 1133.6] 15.5 42.1 118.5

1

66



Probability

Cumulative Probability

Compartments under 3 million m3

: e s
—
0.9 =
7 e
P g
0.8 >l
o
) i
iy
07 7
. 7
7 : f’[ . Simulation 0
0.6 5 Simulation 1
(i Simulation 2
0.5 - 148 I N — Simulation 3
FM = Simulation 4
0.4 r . Simulation 5
’]Ij 7 Simulation 6
/ ,' —"Simulation 7
03 b - -~ Simulation 8
(e S
(i Simulation 9
s -
0.2 y All Realizations
' ™ Lognormal Fit |
0.1
I
0 : 1
1 10 100 1000 10000 100000
Volume (m3)
Figure 3-88 Compartment Volume Distribution, W1304
Projected Surface Areas Under 200,000 m2
1 I
I —
P
0.9
prd
.
0.8
.
7
i
0.7
ri
-l
2
0.6 7
i
Kl
0.5
r
0.4
ri
All Realizations
03 ra === _ognormal Fit
7
y.a
0.2
&
.
AV
0.1 A
el
0 =
1 10 100 1000 10000
Projected Area {(m2)

Figure 3-89 Compartment Projected Area Distribution, W1304

167



Table 3-30 and Table 3-31 and Figure 3-90 and Figure 3-91 present the compartment volume and
projected area statistics for all ten realizations of the eight deepening candidate wells considered.
Significant differences in compartment statistics are evident between the wells. In terms of
compartment volume (Figure 3-90), well 2722 has the smallest median internal compartment
volume, while wells 1663 and 1773 have the largest. This could imply that 2722 has the least
amount of reservoir volume tied up in sub compartments, which could drain poorly, reducing
production and recovery. Wells 1663 and 1773 have the largest median compartment volume,
implying the least amount of reservoir volume isolated in sub-compartments. The difference
between the worst case and the best case is on the order of a factor of 3. Results of comparable
when expressed in terms of projected area (Figure 3-91).

Table 3-30 Compartment Volume Statistics, Yates Deepening Candidate Wells

WELL |Compartment Volume m” (Cutoff 50 million m”)
Min Max Mean StDev Median
1304 1,274 219,963 37,621 52,983 17,648
1307 1,747, 760,502 70,740 140,494 1 6,928"
14A1 584 284,088 41,103 60,138 13,247
1495 1,496 349,058 37,507 64,049 16,511
1663 1,638 110,669 34,188 33,054 19,809
1773 1,214 376,169 37,125 57,620 18,871
2513 2,257 19,033,830 472,060 2,775,766 14,297
2722 1,242 1,028,226 42,131 144,423 13,141

Table 3-31 Compartment Projected Area Statistics, Yates Deepening Candidate Wells

WELL  [Compartment Projected Area m” (Cutoff 200,000 m’)
Min Max Mean StDev Median
1304 4431.9 100.5] 1197.1 1116.3 879.7
1307] 10400.5 120.1 1629.5 2035.6 938.94
14A1 7079.5 68.9 1424.6 1634.4 825.7
1495 4701.3 187.3 1238.9 1083.9 832.6
1663 3475.0) 189.7 1286.5 839.2 995 9
1773 9586.3 119.1 1329.7 1404.7 953.98
2513 93618.8 158.1 3462.8 13649.3 826.6
2722 9329.2 157.1 1082.1 1385.7 716.6
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Fracture geometry also influences matrix block geometries, which can have a profound influence

on fractured reservoir production. The Yates DFN model was used to calculate:

e matrix block volume;

s “sigma factor”, the ratio of the matrix block height to the horizontal cross-sectional area;

and

¢ matrix block aspect ratio.

Matrix block statistics are summarized in Table 3-32 through Table 3-37.

Table 3-32 Matrix Block Volume Statistics

Min |Max Mean StDev Median
1304 ]0.000 477,638 19,778 42,856 4,850
1307 ]0.366 |889,569 25,175 65,258 5,379
14A1 ]0.033 419,962 20,636 41,943 4,891
1495 10.047 961,745 23,966 58,473 5,243
1663 10.082 1,378,270 22274 60,639 4,889
1773 10.009 691,748 22278 51,717 5,341
2513 ]0.133 (13,380,090 301,526 1,076,394 13,507
2722 10492 (1,580,614 21,680 57,086 5,482
Table 3-33 Matrix Block Sigma Factor Statistics
Min Max Mean StDev Median
1304/  0.00223 192,353 8,459 34,730 0.517
1307  0.00142 250,663 6,022 22,007 0.499
14A1 0.00238 66,085 9,278 32,844 0.545
1495 0.00143 316,251 7,512 32,020 0.528
1663 0.00133 137,237 7,468 36,710 0.529
1773 0.00187 2,422,107 100,861 554,222 0.501
2513 0.00141 18,110 7,261 30,642 0.498
27221  0.00127 340,082 260 8,680 0.322
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Table 3-34 Matrix Block Z/X Ratio Statistics

Min Max Mean ([St.Dev |Median
W1304 0.0000 6059.7 13.94 182.45 1.20
W1307 0.0005| 22256.0 20.74  466.75 1.44
WI14A1 0.0003 23374 12.08 85.50 1.49
‘W1495 0.0004 18022.1 19.03 384.54 1.51
W1663 0.0007 3907.2 13.41 121.74 1.43
W1773 0.0003 4074.3 13.2§ 113.31 1.47
W2513 0.0003 3493.6 9.85 122.48 0.66|
W2722 0.0001 8751.2 15.57 197.69 l.50||

Table 3-35 Matrix Block Aspect Ratio Z/Y Statistics

Min Max Mean St.Dev Median
W1304 0.0019 881.8 6.35 30.07 1.373
W1307 0.0001 9746.8 12.69 199.78 1.631
WI14A1 0.0002 592.0, 8.40 33.36 1.576
‘W1495 0.0004 5066.2 11.18 115.98 1.486
W1663 0.0008 1253.6] 10.20 54.83 1.728
W1773 0.0000 5940.8 1391 152.80 1.497
W2513 0.0007 2743.6 9.95 88.73 1.234
W2722 0.0001 1351.4 8.29 39.02 1475

Table 3-36 Matrix Block Aspect Ratio X/Y Statistics

Min Max Mean St.Dev Median
W1304 0.0001 631.4 6.15 2691 1.187
W1307 0.0001 4171.5 10.10 126.31 1.096
W14A1 0.0010 1771.2 6.80 55.95 1.016
‘W1495 0.0004 1490.9 8.13 59.13 0.982
‘W1663 0.0005 2381.5 947 8143 1.169
W1773 0.0002 6633.6 11.92 159.33 1.052
W2513 0.0001 73448.0 113.07 1601.47 1.887
W2722 0.0001 1330.7 6.02 40.61 0.985
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Table 3-37 Ratio of Block Height to Horizontal Area

Min Max Mean St.Dev Median
'W1304 8.71E-05[ 1089.14 1.94 24.98 0.080
W1307 1.52E-05| 1317.36 2.19 29.23 0.100||
WI14A1 5.70E-06 694.57 3.02 28.66 0.099
'W1495 2.13E-05] 3921.90 442 90.09 0.091
'W1663 2.68E-05 990.07 2.77 28.22 0.101
W1773 2.48E-05 722.27 2.10 20.04 0.096|
'W2513 5.56E-06 45321 1.37 0.034 l4.78||
W2722 3.02E-06 486.51 1.81 0.098 13.55||

As shown in Figure 3-92 and Figure 3-93, the rock block volume distributions are similar for
wells 1304, 1307, 14A1, 1495, 1663, and 2513. Well 1773 has significantly larger mean and
standard deviation of rock block volume, while well 2722 shows significantly smaller mean block
volumes. The larger block size of well 1773 might indicate lower initial production, while the
smaller block volume of well 2722 might indicate better sustained production. As indicated by
the median block size of under 1 n’, the vast majority of blocks for all wells are extremely small

for all well regions.
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The rock block sigma factor statistics (Table 3-33, Figure 3-94, and Figure 3-95) are very similar
for all wells except for 2513. For most of the wells, the sigma factor follows a roughly normal
distribution with a mean of approximately 8,000. In contrast, well 2513 has a mean sigma factor
of 100,000 which implies that well 2513 may have lower initial production, and probably should
not be high priority for strategic completion.

Median rock block aspect ratios are shown in Figure 3-96. These values were calculated by
comparing the X, Y, and Z dimensions for 2500 blocks calculated in the vicinity of each of the
eight wells. The ratio of height to either X or Y horizontal extent varies from 1.2 to 1.6. In
general, the ratio is higher for Z/Y than for Z/X, implying that the Y dimension is the smallest.
For most of the wells, this is confirmed by the ratios for X /Y which are slightly larger than 1.0.
The exception is well 2513, in which the X dimension is about twice the Y dimension. At the
same time, the Z/X ratio for this well is much smaller than for any other wells, implying that X is
much larger than Z. Together, these ratios suggest that the block shape around 2513 is different
from the shape for the other wells. The blocks around 2513 have a much greater extent in the X
direction.

The distribution of aspect ratio for well W1304 is illustrated in Figure 3-97. Well 1304 is typical
of the block shapes in most of the other well regions. In Figure 3-88, the aspect ratios Z/X, Z/Y,
and X/Y all appear to follow a lognormal distribution, with a large range. This implies that
although the median aspect ratio may be near one, the actual block shapes are more like match
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sticks, with one dimension much larger than the other dimensions. This is confirmed by
examining the minimum and maximum aspect ratios in Table 3-34, Table 3-35, and Table 3-36.

The ratio of block height to horizontal area is given in Table 3-37, and Figure 3-98 and Figure
3-99. If we assume that the base of the matrix block can be represented as a square, then values of
this ratio close to 0.1 implies a block that is equant in all directions (a sugar cube). Value lower
than 0.1 imply a horizontal extent greater than the vertical height. The median statistics suggest
this approximately equant shape.

The median block shape for all of the wells except 2513 are fairly consistent and roughly equant,
while the vast majority of blocks have Z dimensions either much larger or much smaller than
their horizontal dimension. . The mean values, which are more impacted by outliers, vary from
2.0 to 4.5. These suggest matrix blocks that are 10 or 20 times as high as they are wide, and
resemble matchsticks. The median block for well 2513 is shorter by a factor of three relative to
its height when compared to the other blocks. Interestingly, well 1495 has a considerably larger
variability of block shape than the other wells, with a standard deviation and maximum aspect

ratio three times larger than that for the other wells. This is seen in the mean aspect ratio (Figure
3-98).
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3.4.2 Task 3.2 Strategic Plan, Stoney Point Reservoir Improvement

3.4.2.1 Strategic Placement and Water Control

Production problems at Stoney Point are mostly related to lack of understanding of the gas-water-
oil contacts within compartments, and particularly the tendency for water breakthrough from
overlying strata resulting in high water cuts within the reservoir production wells. The strategy
developed for the Stoney Point field was therefore to use the DFN models to determine the
sources and connectivity for oil and water phases, and the variation in connectivity within the
reservoirs with depth, so that connectivity to overlying aquifers can be minimized.
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3.4.2.2 DEN Analysis for IOR Strategic Plan

During this project work was initiated on implementation of Discrete Fracture Network modeling
to support IOR strategies for Stoney Point. As part of this effort, compartment volumes and
tributary volumes were calculated for the models. This was done using the program FraCluster,
which was developed under previous DOE funding (Dershowitz et al., 1998).

A compartment is a region connected by a network of fractures. Relevant information that can be
calculated about a compartment are its volume, surface area, and area projected on to a horizontal
plane. Tributary volume analysis is a geometric calculation of the volume accessed by a well or
set of wells in a fractured reservoir (Figure 3-100). Two different methods provide a maximum
and minimum estimate of the volume.

¢ Hull volume is the volume contained in a convex hull surrounding a fracture network
connected to the well. This is a maximum volume because it can include large blocks of
matrix between fractures.

e Fracture thickness volume is the volume of a one-meter slab around each fracture
connected to the well.

The results of the compartment size and area analysis for the Stoney Point field are shown in
Figure 3-101 through Figure 3-103. As shown graphically in Figure 3-101a, at high fracture
intensities the fractured reservoir defined by a convex hull includes all three portions of the
structural model, from the northern fault through the step-over to the southern fault. This is likely
to be too well connected compared to the real reservoir characteristics of Stoney Point. The
medium (Figure 3-101b) and lower (Figure 3-101c) intensity models more closely represent the
reservoir structure as indicated by reservoir development and well tests. The number of
compartments and their projected areas and volumes are graphed in Figure 3-102 and Figure
3-103 and listed in Table 3-38. This analysis shows that at the lowest fracture intensity (0.001)
five small compartments form, while at an intensity one order of magnitude higher, one very
large compartment forms.

The well configuration shown in Figure 3-104 was assumed for the tributary volume calculations.
Vertical wells are 200-m long and spaced 200 m apart (equivalent to about a 10 acre well
spacing). Horizontal wells are 50 long and have the same spacing. The graph in Figure 3-105
and Table 3-39 show the insensitivity of the modeled reservoir to well orientation; in only one
case did the SE horizontal well intersect fewer compartments than the vertical well. Much more
important than well orientation is fracture intensity. Figure 3-106 also clearly demonstrates the
importance of fracture intensity for well success. In the top frame 9 out of 12 wells successfully
connect into a fracture network. In the bottom frame only four out of 12 simulated wells were
successful.
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Table 3-38 Compartment Area and Volume Analysis, Stoney Point

Projected Compartment Areas (m’)

P3 # Compts. Average Std. Dev. Minimum Maximum

0.01 1 9.12¢+5 0 9.12e+5 9.12e+5

0.005 2 4.68et5 3.35¢e+5 1.3e+5 8.1et5

0.0025 4 1.95e+5 2.21et5 5.6e+4 5.8¢+5

0.001 5 8.76e+5 3.19¢t4 4.1et4 1.4e+5

Compartment Volumes (m’)

P; # Compts. Average Std. Dev. Minimum Maximum

0.01 1 1.39¢+8 0 1.39¢+8 1.39¢+8

0.005 2 6.81e+7 5.18¢+7 1.6e+7 1.2¢+8

0.0025 4 2.95¢+7 3.62¢+7 6.9¢+7 9.3e+7

0.001 5 1.07e+7 4.33et6 3.8¢+6 1.7e+7
Table 3-39 Tributary Volume Analysis, Stoney Point

Vertical Well Tributary Volumes (m’)

P, # Compts. Average Std. Dev. Minimum Maximum

0.01 1 1.39¢+8 0 1.39¢+8 1.39¢+8

0.005 2 6.81et+7 5.18e+7 1.67e+7 1.2¢+8

0.0025 1 9.21et7 0 9.21et7 9.21et7

0.001 2 1.01et+7 9.9¢e+5 9.03et+6 1.12e+7

NE Horizontal Wells Tributary Volumes (m’)

P; # Compts. | Average Std. Dev. Minimum Maximum

0.01 1 1.39¢+8 0 1.39¢+8 1.39¢+8

0.005 2 6.81e+7 5.18¢+7 1.67e+7 1.2¢+8

0.0025 1 9.21et7 0 9.21et7 9.21et7

0.001 2 1.01et+7 9.9¢+5 9.03et+6 1.12e+7

SE Horizontal Wells Tributary Volumes (mn’)

P, # Compts. | Average Std. Dev. Minimum Maximum

0.01 1 1.39¢+8 0 1.39¢+8 1.39¢+8

0.005 1 1.2¢+8 0 1.2¢+8 1.2¢+8

0.0025 1 9.21et7 0 9.21et7 9.21et7

0.001 2 1.01e+7 9.9¢+5 9.03e+6 1.12e+7
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Figure 3-104 Well Configuration for Tributary Volume Analysis of Stoney Point Model
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3.4.3 Task 3.3 Strategic Plan: South Oregon Basin Reservoir Improvement

3.4.3.1 DEFN Strategy for IOR

The IOR issue at South Oregon Basin relates to bypassed oil in the uppermost Phosphoria. Oil
saturation in the upper Phosphoria is 80% whereas in the lower part of the formation saturation is
as low as 30-40%. The perceived connectivity problem in the upper Phosphoria (B. Curran, pers.
comm.) is that the pores are unconnected except by fractures. The engineering solution to this
problem is more strategic well placements.

In the first progress report (Dershowitz, 1999) Golder identified that the primary tasks for South
Oregon Basin would be “carrying out compartment and tributary volume calculations including a
range of oriented well locations.” Table 3-40 lists these engineering questions and the respective
DFN solutions as well as other possible questions and solutions that we anticipate will be
addressed in the future.

Table 3-40 IOR Engineering Issues, South Oregon Basin

Engineering operation or question DFEN tool
Well‘ onentatlc?n and placemept to Compartment and tributary
maximum horizontal connection volume caleulations in
Surface area to volume for gel (WALRUS)

FracCluster
treatment
‘What is the flow dimension of the fracture Flow dimensional analvsis
network in the Phosphoria? 4

Can tracer tests which show NNE
permeability trends be used for model
calibration?

Flow solution and particle
tracking in MAFIC

3.4.3.2 DFN Analysis for Strategic Plan

Strategic plan DFN modeling for the South Oregon Basin concentrated on the development of
approaches for simulation of gel treatments. Discrete fracture network models can be used to
directly model this entire process. First, the DFN model is derived and implemented based on
site characterization data. The procedures for this are described in Dershowitz (1995). For the
South Oregon basin, this model needs to combine

e deterministic features, including seismically detected structures and stratigraphic
contacts,

e conditioned fractures, such as features identified in flow and FMI logs, and

e stochastic features, based purely on statistical information.

The region being modeled for assessment of gel treatment is illustrated in Figure 3-107. This
figure includes an overlay of seismic features and structural contours.

The total volume of gel which can be taken by the grout injection at Connaghan 13 will be
estimated by network analysis of the fractures intersecting the well. (Figure 3-108). In this
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analysis, a graph theory search is used to search back into the fracture network from the well.
The gel injection propagates into the fracture network according the heuristic rules which
consider the fracture aperture, pressure, and phase composition of the fractures. The gel injection
into the well proceeds until the gel reaches a prescribed limit. This provides an estimate for the
gel injection volume to be expected.

The effect of gel treatment on the reservoir hydraulics is analyzed using a combination of flow
modeling and pathways analysis. The permeability of each of the elements containing gel is set
to zero as illustrated in Figure 3-109. This re-directs the pathways for water breakthrough to the
production wells. The effect of gel treatment on production can be assessed by calculating the
water saturated pathways to the production wells before and after the gel treatment.
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Figure 3-107 South Oregon Basin Gel Treatment Analysis Region
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Figure 3-108 Network Analysis for Gel Treatment Design

Figure 3-109 Gel Injection into Fracture Network

Connectivity analyses were carried out using the DFN model developed above. These models
focused on the “percolation threshold”, which defines the transition in connectivity with increases
in fracture intensity. Results of this compartrnentahzatlon analys1s are shown in Figure 3-110 and
summarized in Table 3-41. At low fracture intensities (P3,<0.2 m' ) the fractures do not connect
into any significant compartments. At high fracture intensities (P;,>0.4 m™), the fractures
connect the entire volume around the well. The transition from unconnected fractures to fully
connected fractures is called the gercolatlon threshold. For the South Oregon Basin Phosphoria
model, this occurs near 0.3 m’/m’.

190



Table 3-41 Compartment Area and Volume Analysis, South Oregon Basin

Projected Compartment Areas (m’)

P, # Compts. | Average | Std. Dev. | Minimum | Maximum
0.2 5 482 343 180 100(
0.3 16 471 403 120 150(
0.4 10 680 1170 110 3844
0.6 2 1984 2634 120 3848
0.8 2 1984 2634 120 3848

Projected Compartment Volumes (m’)

P, # Compts. | Average | Std. Dev. | Minimum | Maximum
0.2 5 13100 13000 2600 35000
0.3 16 12700 16800% 1500 56000
0.4 10 320001 78400) 1100 269397
0.6 2 135244 189711 1100 269397
0.8 2 135394 189499 1400 269397

In order to assess the importance of well orientation on fracture volumes intersected, three wells
were simulated: a SE-trending horizontal well, a NE-trending horizontal well, and a vertical well.
The results of the tributary volume analysis are shown graphically in Figure 3-111and Figure
3-112, and are summarized in Figure 3-113 and Table 3-42. At low fracture intensity (P;,=0.2 m’
") there are five compartments formed in the region surrounding the wells; however, none are
intersected by the three perpendicular wells. In one instance in Figure 3-110, the well intersects
the convex hull of a fracture network, but no fracture in that network intersects the well. If this
geometry were the case in a real well, induced fracturing would prove very successful by making
the connection to the fracture cluster. At a slightly higher fracture intensity (P3,=0.3 m’"), large,
vertical NE-SW trending compartments are formed. Because of their orientation, the SE-NW
horizontal well, intersects the greatest fracture volume (Figure 3-113). The lower half of Figure
3-59 shows the difference between the hull volume and slab volume methods of calculating
tributary drainage. The hull volume could be used to calculate the total oil accessible to a well.
The flow from the matrix blocks into the fractures would depend upon the matrix permeability
(due either to connected pores or microfracturing). The fracture slab volume is roughly 10% of
the hull volume (Figure 3-113). This volume would correspond to the volume of injected fluids
necessary for tracer tests and gel treatments. Table 3-43 summarizes the preliminary conclusions,
which can be drawn from the cluster analysis of the Phosphoria formation at South Oregon Basin.
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Table 3-42 Tributary Volume Analysis, South Oregon Basin

Vertical well Tributary|Hull volumes Volumes from fracture

Volumes thickness

P, # compts. |mean stdev min max mean stdev min max
0.2 0

0.3 1 50100 |0 50100 (50100 |6190 0 6190 6190
0.4 2 134000 |133000 |1100 270000 (26000 25600 (40000 |62000
0.6 1 397000 |0 397000 |397000 |112000 |0 112000 |112000
0.8 1 420000 |0 420000 420000 (150000 |0 150000 (150000
H1 well Tributary Hull volumes Volumes from fracture

Volumes thickness

P, # compts. |Mean |[stdev min max mean stdev min max
0.2 0

0.3 3 30000 17200 |7900 51000 4430 1820 1900 6300
04 2 134000 |133000 |1100 270000 (26000 25600 (40000 [62000
0.6 1 397000 |0 397000 |397000 |112000 |0 112000 (112000
0.8 1 420000 |0 420000 420000 (150000 |0 150000 (150000
H2 well Tributary Hull volumes Volumes from fracture

Volumes thickness

P, # compts. |mean stdev min max mean stdev min max
0.2 0

0.3 1 50100 |0 50100 (50100 |6190 0 6190 6190
04 1 267000 |0 267000 267000 (51500 |0 51500 |[51500
0.6 1 397000 |0 397000 |397000 |112000 |0 112000 |112000
0.8 1 420000 |0 420000 420000 |150000 |0 150000 [150000

Table 3-43 Implications of Tributary Volume Analysis, South Oregon Basin

Question Answer Uncertainties or
assumptions
Does the Phosphoria break | Yes, if conductive fracture Fracture size

into compartments at the
well scale?

intensity is less than 25% of
the geologic intensity

(P32<O.4 m'l)
Minimum volume of ~1,000,000 gallons P5,=0.3 m" and assuming 1
surfactant to inject? 264* m’ m penetration around each

fracture

192




g} Compartment Aresag

2506
400G - :
Generation Begion Area f ‘
800 /
L 3000
g
= peratale]
B
B 2000 v s
3 /
B asng
/ o AVET IS
1008 ” o St Dhalation
/ e BRI
S * L e BRIV
. i
3.3 2 0.3 0.4 g5 0.8 o7 wa 0.8
Frachurs ntensity (B, m}
b} Compartment Yolumes
TOO000G
TowtVeloms v
00000 N
%
%.
z
Eé 10000
&
g .
3 i B
LI {15 ‘
sl BNEIRGS
oo S Dlewitinn
e RIS
i B U
bt
&4 0.2 5 G4 05 401 a5 {8 15

Feactire Intensity (Ry, o)

Figure 3-110 South Oregon Basin Compartmentalization Analysis
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Figure 3-111 Tributary Volumes in South Oregon Basin Model for P;, = 0.2 Model
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Figure 3-112 Tributary Volumes in South Oregon Basin Model for P;, = 0.3 Model
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3.4.4 Task 3.4 Strategic Plan : North Oregon Basin Reservoir Improvement

Water injection is being used extensively in the North Oregon Basin Tensleep study site. The
DFN model of the North Oregon basin will be used to evaluate the possible pathways for water
migration from the Sidney #20 "C" zone horizontal well into the reservoir and affecting offsets
(Figure 3-114). Results from this DFN modeling will be compared to field measurements to
determine whether the DFN model is successful in assessing the well-connected high-
conductivity fracture clusters.

The strategic plan for the North Oregon Basin will also include analysis of hydraulic
compartment connectivity to specific wells to evaluate gel-squeezes of injectors vs. producers and
the utility of horizontal wells in the Tensleep formation.

Figure 3-114 Tensleep Formation Water Injection DFN Study.

3.4.4.1 Gel Treatment DFN Analysis

The IOR issues at the North Oregon Basin relate to bypassed oil in the “ABC” sandstones of the
upper Tensleep. Dolomite intrabeds, water-filled fractures, deformation bands, and dune cross-
bedding all create horizontal compartments in the upper Tensleep reservoir (Table 3-44).
Breaches of the horizontal compartments occur where fracturing in the dolomite intrabed between
the C and D sandstone allows communications across the dolomites. These vertical connections
allow coning from the lower Tensleep, which has a much higher, water-cut than the upper
Tensleep. Engineering solutions to these problems are (Dershowitz et al. 1999);

e Targeting of water injection for waterfloods,

e Horizontal drilling to connect low recovery portions of the reservoir, and
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o Gel placement to reduce water cycling.

Table 3-44 IOR Engineering Issues at North Basin

10R Problem DEN Strategic Plan

Fractures in dolomites connect upper and lower | Calculate pore volume and connectivity
Tensleep of lower and upper Tensleep for gel
treatment design

Baftles due to crossbedding and deformation
bands create compartments in ABC Tensleep
sands

Water-filled fractures create compartments

Determine optimal drilling directions to
connect compartments

Like the South Oregon Basin DFN model of the Phosphoria formation the preliminary DFN
model of the Tensleep formation at North Oregon basin was used to evaluate compartment size
and locations distributions, and to calculate tributary volumes for specific well patterns. These
results can be used to estimate the at-well connectivity of the reservoir and the volumes of water
or gel injection necessary to achieve IOR objectives.

The results of the compartment area and volume analyses are illustrated in Figure 3-115 and
summarized in Figure 3-116 and Table 3-45. Like the South Oregon Basin Phosphoria model,
the percolation limit of the North Oregon Basin Tensleep model occurs near 0.3 m’/m’. Unlike
the Phosphoria model, compartments in the Tensleep are horizontal due to the dolomite layering,
rather than vertical.

Figure 3-117 and Figure 3-118 illustrate tributary drainage volumes for different well
configurations. Figure 3-117 shows tributary volumes for a NE trending horizontal well, and
Figure 3-118 shows tributary drainage volumes for a system of vertical and horizontal wells.
Figure 3-119 and Table 3-46 summarize the results of this analysis. The shape and size of
these wells can be used to assist in the design of strategic completions and well locations.

Table 3-45 Compartment Area and Volume Analysis, North Oregon Basin

||Proiected Compartment Areas (m)
32 # Compts. Average Std. Dev. Minimum Maximum

0.2 7 204 146 77 55(
0.4 32 339 352 67 140(
0.6 6 882 1790 49 490(]
0.8 1 4900 0 4900 490(]

[Projected Compartment Volumes (m

[P, # Compts. Average Std. Dev. Minimum Maximum
0.2 7 1490 1320 520 460(]
0.4 32 3240 4280 340 16000
0.6 6 26200, 57400 120 15600(
0.8 1 156000 0 156000 15600(

Table 3-46 Tributary Volume Analysis, North Oregon Basin

SE Horizontal well hull volumes volumes from fracture thickness

Tributary Volumes

P, |number of mean | stdev |min |max mean |stdev |min
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compartments
02 0
04 3 9100 4550, 4400 15000 2010, 1170 920 3700
0.6 1 154000, 0 154000, 154000 48400 0] 484000 48400
038 1 156000, 0 156000, 156000, 60200 0 602000 60200
NE Horizontal well hull volumes volumes from fracture thickness
Tributary Volumes
Ps, number of mean stdev  [min max mean |stdev min max
compartments
02 0
04 3 6150 4180, 530 11000 1270 743 220. 1900
0.6 1 154000, 0 154000, 154000 48400 0] 484000 48400
08 1 156000, 0 156000, 1560001 60200 0 602000 60200
Vertical well Tributary hull volumes volumes from fracture thickness
Volumes
Ps, number of mean stdev  [min max mean |stdev min max
compartments
0.2 0
04 1 15300, 0 15300 15300 3640 0 3640 3640
0.6 1 154000, 0 154000, 154000 48400 0] 484000 48400
038 1 156000, 0 156000, 156000, 60200 0 602000 60200
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Figure 3-115 Compartments in North Oregon Basin Model with P;,=0.2
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aj North View

b} Tributary Velumes to Horizontal,
NE& Trending Well, Top, North View

Figure 3-117 North Oregon Basin Model with P;, = 0.2
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Figure 3-118 Side View of Tributary Volumes of Vertical and Horizontal Wells in North Oregon
Basin Model with P;, = 0.2
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Table 3-47 summarizes the preliminary conclusions, which can be drawn from the cluster
analysis of the North Oregon Basin.

Table 3-47 Implications of Tributary Volume Analysis, North Oregon Basin

Question Answer Uncertainties or
assumptions
Does the Tensleep break into Yes, if conductive fracture | Fracture size
fracture compartments at the intensity is less than 75% of
well scale? the geologic intensity
(P3,<0.6 m")

What is the best well orientation | NE Horizontal
to minimize gel volume?

What is the minimum volume of | ~340,000 gallons P5,=0.4 m"' and

surfactant to inject? 264 gallons/n’ assuming 1 m
penetration around each
fracture

3.5 Task 4: Application Tasks

3.5.1 Task 4.1 Reservoir IOR Demonstration, Yates Field

3.5.1.1 Introduction to Strategic Completion Analysis

An extensive study was carried out to support the use of strategic completion for IOR in the Yates
field. The goal of this study is to help identify possible areas where new completions might yield
the best production. A part of the strategy to delineate promising areas involves estimation of
what areas appear to have fracture characteristics favorable to production. Five wells in the Tract
17 area (1304, 1307,1495, 2513 and 2722) have production information that can be compared to
fracture network characteristics. This makes it possible to look for a relation between fracturing
and favorable production characteristics.

However, even if a useful predictive relation is found, there needs to be a method of evaluating
whether this relation is likely to hold elsewhere in the field. A necessary, though not sufficient,
condition for the relations to persist throughout the area of interest is that the controls on matrix
block parameters are similar. For example, it may be that in the five test wells, low values of
block height to block width ratios are generally due to increased spacing of subvertical fractures,
and not due to a decrease in subhorizontal fracture spacings. However, in some areas of the field,
it might be found that low values of block height to block width are strongly correlated with
decreased subhorizontal fracture spacings. In this case, it would be riskier to assume that the
production characteristics related to low block height to block width ratios in the five test wells
would also correspond to the low values of the ratio in this other area.

A way to evaluate whether the matrix block characteristics that appear to be associated with
desirable production characteristics in the five test wells are generally seen in the surrounding
areas is to explore the statistical correlation structure of the matrix block parameters for the five-
well test set and for the full well test set. For example, a high negative correlation between block
height to width ratio to vertical fracture spacing in the test set would be compared with the full
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well set results. If a similarly high negative correlation were found, then the assumption would
be that the reasons for low ratio were the same, and the production characteristics associated with
this ratio could be inferred with some confidence. If, on the other hand, the correlation in the full
test set was not significant with vertical fracture spacing, but positively correlated with the
spacing of one or more subvertical fracture sets, then this would indicate that inference of the
production characteristics associated with block height to block width ratio is more uncertain.

3.5.1.2 Strategic Completion Modeling

The strategic completion modeling carried out using the Yates Field Tract 17 DFN Model,
developed during the first half of 2000, was adapted to support IOR activities. The parameters
for this model are summarized in Table 3-48.

To obtain a statistical understanding of the connectivity pattern of the field, 100 realizations were
run. Each of these model realizations was processed to obtain the spatial distribution of matrix
block shape parameters. It is hoped that the correlation between these matrix block shape
parameters and the well test results will provide a basis for strategic completion design.

The matrix block shape parameters are listed in Table 3-49.

The values for each parameter are calculated from fracture spacing histograms calculated in three
orthogonal directions for the region measuring 100 m by 100 m in horizontal extent centered on
each well. The spacing histograms are computed by projecting lines through the DFN model, and
recording the intersection points to each successive fracture. The intersection points are used to
determine the spacing values.

The lines are located with uniform probability throughout the DFN model region. One hundred
lines were generated for each direction for each model. This typically produced spacing
histograms for each direction consisting of hundreds of spacing values. To compute the various
matrix block shape parameters shown in Table 3-49, uniformly random draws were made from
each relevant spacing distribution. For a particular DFN model, this procedure made it possible
to calculate, through random sampling, a distribution of values for each matrix block shape
parameter. As a result, it was possible to calculate various statistical parameters from the results.
These consisted of the minimum and maximum values, and the mean, median and standard
deviation for each individual DFN model realization.
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Table 3-48 Conditioned DFN Model for TAGS Support Simulations (Extended Tract 17 Model)

Parameter Model Assumption

Discrete Features Large scale deterministic faults are not considered.

Fractures representing features located during well logging are
modeled by conditional simulation with correlation to curvature and
shale content.

Orientation Distributions The stochastic fracture orientation is correlated to curvature as
described in Table 3-1 of Dershowitz et al, 1998

Size Distribution Power Law distribution D=1.81, minimum radius = 1ft, truncated

(Stochastic Fractures) between 1m and 100 m. (Dershowitz et al., 1998)

Intensity Intensity of stochastic fractures Ps; is 0.105 to 0.21 m’/n’, depending

(Stochastic Fractures) on shale content and porosity. This corresponds to a vertical well
fracture intensity of 1/30 to 1/60 m.

Transmissivity Lognormal distribution, mean = 4.44 10 m'/s, standard deviation
=1.923 10 m’/s

Aperture Correlated to fracture transmissivity using the cubic law, such that a =
0.011T%3

Model Dimensions and Model is approximately 500 m by 500 m by 500 m, centered around

Boundary Conditions each well.

Table 3-49: Variable name acronyms and calculation definitions for matrix block shape factors

Parameter How Calculated
Sy The dimension of the matrix block in the east-west direction, measured in meters
Sy The dimension of the matrix block in the north-south direction, measured in
meters
S, The vertical height of the matrix block, measured in meters
XY The ratio of the two horizontal dimensions, calculated as S,/S,
Z/X The ratio of the vertical dimension to the east-west dimension, calculated as S,/S,
zY The ratio of the vertical dimension to the north-south dimension, calculated as
S,/S,
Z/A The ratio of the vertical matrix block height to the horizontal cross-sectional area,
measured in meters
Z/H The ratio of the vertical matrix block height to the average horizontal dimension,
measured in meters. The average horizontal dimension is computed as the
average of S, and S,.
Sigma 111
The sigma factor, defined as C=4| —+—+—
x S y Sz

Since there were multiple realizations of the underlying DFN model, there were multiple values
of median, mean, etc for each shape parameter for each well location. The statistics such as mean
or median pertain to the properties of the many matrix blocks in the near-well region for a single
DFN model realization.

3.5.1.3 Well Productivity Correlation

The most important aspect of this study is in establishing a correlation between the 18 matrix
block shape measures (mean and median of the 9 factors) identified in Table 3-49 and well
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productivity. Table 3-50 summarizes the correlations among the 18 matrix block shape factors
for the five wells (1304, 1307, 1495, 2513, and 2722). Generally, mean and median sigma factors
are negatively correlated with fracture spacing, as would be expected, since sigma factor is
inversely proportional to the square of the fracture spacing. The median sigma factor is
negatively correlated to all fracture spacings, whereas the mean sigma factor is far more strongly
correlated to X (east-west) spacings than to spacings in the other directions. Mean sigma factor
may be somewhat unique among all of the 18 shape parameters, in that it is the most sensitive to
outliers. Thus, correlations to the mean sigma factor may not be as meaningful as the correlations
to the median sigma factor.

The sigma factor is also positively correlated to the two ratios that describe matrix block height to
matrix block width or cross-sectional area (z2h and z2a, respectively). This suggests that high
values of sigma factor correspond to matrix blocks that are much taller than they are wide. The
most significant correlation between median sigma factor and any matrix block shape parameter
is with the height to the east-west dimension (z2x). Its coefficient (0.892) is significant at oL =
0.05. Tt is also positively correlated with other measures (for example, z2y) of block height to
horizontal dimension.

The next analyses looks at whether the correlation structure seen among the 18 parameters in the
five test well DFN models persists in the much larger area. Table 3-51 shows the correlation
coefficients among the 18 matrix block shape measures for the surrounding wells. The shape
measures z2a and z2h correlate well with both decreased north-south and east-west fracture
spacing, and with blocks that are taller than they are wide, as did the test well set data. There are
significant positive correlations with fracture spacing in the vertical direction for z2a and z2h for
the total data set, and also to ratios such as z2x and z2y. This suggests that the factors that lead to
tall blocks are in general related to decreased fracture spacings in the horizontal directions, and
slightly increased fracture spacing in the vertical direction. The strong, statistically significant
correlations between median z2x and z2y ratios with median z2h and z2a ratios suggest that it is a
decrease in the vertical fracture intensity that produces tall blocks, rather than an increase in
fracture spacing in the vertical direction. This is the same pattern that is shown for the five well
test set correlation matrix (Table 3-50).

Thus, comparison of the correlation coefficients suggests that the relations between production
characteristics and the matrix block shape parameters found in the five test wells is likely to be
useful in other areas of the model.

Table 3-52 and Table 3-53 present the correlations and the correlation significance between well
productivity and matrix block shape measures for the five wells 1304, 1307, 1495, 2513, and
2722. Correlations are sorted by the magnitude of correlation, from most positive to most
negative. Although many matrix block shape parameters show what appear to be strong negative
or positive correlations, the low number of samples (5) makes all but the correlation with mean
sigma factor insignificant at the ot = 0.05 level. Two additional parameters, although not
significant at the 0.05 level, may still be important and provide insight into what factors control
the sigma factor; these are the mean block height to cross-sectional area (z2a mean) and the
median ratio between the vertical set spacings (x2y median).

Productivity appears to correlate to a general decrease in fracture spacings, especially when the
resulting matrix blocks are relatively taller than they are wide. Favorable areas for strategic
completion may be where fracture spacings in one or both of the horizontal directions is relatively
low, and high ratios of z2h or z2a occur (along with larger values of sigma factor). Attractive
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areas may also be identified by the confluence of lower fracture spacings and values of z2a, z2h
or sigma factor that reflect blocks that are taller than they are wide.
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Table 3-52 Correlation coefficients with barrels of fluid per day for the five wells
1304, 1307,1495, 2513 and 2722

Parameter Correlation Coefficient with BFPD
Sigma Mean 0.891
z2a Mean 0.707
z2y Mean 0.558
Sz Median 0.531
x2y Mean 0.246
z2h Mean 0.219
z2y Median 0.189
z2x Median 0.115
z2h Median 0.046
z2a Median 0.015
z2x Mean -0.011
Sz Mean -0.116
Sy Median -0.180
Sy Mean -0.244
Sigma Median -0.269
Sx Mean -0.284
Sx Median -0.561
x2y Median -0.722

Hp: The two parameters are not correlated.

Entries in RED indicate negative correlations that are significant at the 95% level
Entries in BLUE indicate positive correlations that are significant at the 95% level
All other entries are NOT significant at the 95% level
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Table 3-53: Probability (p-values) for the regression coefficients between independent
matrix block shape parameters and BFPD for five wells:
1304, 1307,1495, 2513 and 2722

Independent Variable |p Intercept p Slope

[Sigma Mean 0.066 0.042
x2y Median 0.155 0.169
z2a Mean 0.655 0.181
Sx Median 0.200 0.325
z2y Mean 0.850 0.328
Sz Median 0.430 0.357
Sx Mean 0.490, 0.640
Sigma Median 0.313 0.661
x2y Mean 0.881 0.690
Sy Mean 0.572 0.692
z2h Mean 0.922 0.723
z2y Median 0.950, 0.761
Sy Median 0.550 0.772
Sz Mean 0.786 0.853
z2x Median 0.779 0.854
z2h Median 0.768 0.942
z2a Median 0.454 0.981
z2x Mean 0.476 0.984

Hy for intercept: Intercept = 0.0
Hy for slope: Slope = 0.0

Entries in BLUE indicate positive correlations that are significant at the 95%

level
All other entries are NOT significant at the 95% level
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3.5.1.4 Strategic Completion Recommendations

Contour maps were calculated from the well-based block shape statistics in order to provide a
spatial distribution of block statistics for use in strategic completion design. For example, to
produce a contour map showing the median sigma factor, the median sigma factor was first
computed at each well location in each of the DFN realizations. The median values at each well
location was then contoured.

The calculations were carried out at well locations, rather than on a regular grid, because results
for these shape parameters were needed for specific wells, in order to evaluate them for possible
workovers. Since the well density is quite high and even throughout the region, the interpolation
required for contouring is mathematically robust, as can be seen by the dense well control on any
of the maps.

Median values for the various shape parameters have been chosen for mapping since they are
probably the most “stable” values. Many of the parameters, such as the sigma factor, can have
extreme values if any of the spacing values are small and they are randomly selected to compute
the parameter. As a result, the mean value is highly skewed by this one random draw of a small
spacing. The median, on the other hand, is not nearly as sensitive to data outliers as is the mean.

For this reason, the maps shown are based on median, rather than mean block values for each
DEFN realization.

Figure 3-120 through Figure 3-128 show contoured values of the selected matrix block shape
parameters. Regions where the parameter is visually low or high are indicated, as well as the
approximate boundaries of Tract 17 for reference.

Only the mean values for the matrix block shape factors are shown, with the exception of sigma
factor, since (1) the correlations are stronger between the mean spacings and the z2a, z2h and
sigma factor parameters, and (2) they are not as strongly impacted by outliers as are other
parameters such as sigma factor.

Figure 3-120 and Figure 3-121 show that there is a region of higher east-west and north-south
fracture spacings encompassing much of Tract 17 and extending to the south and east of Tract 17.
The regions outlined for both these maps are largely coincident. A region of high vertical
fracture spacing occurs in the central portion of the mapped area, and overlaps but does not
entirely coincide with the other two spacing maps.

The maps showing the ratio of block height to either east-west or north-south spacing (Figure
3-123 and Figure 3-124, respectively) show that while the former parameter is homogeneously
distributed throughout the area, the ratio of block height to north-south dimension is not. Areas
where blocks are not tall relative to block height roughly coincide to the regions where fracture
spacings were greater than the regional average, namely, in Tract 17 and to the southeast of Tract
17.

As might be expected, the maps showing block height to block cross-sectional area (z2a) Figure
3-126 and block height to average horizontal dimension (z2h). Figure 3-127 shows lower values
coincident with the regions of higher than average horizontal spacings. Consideration of the
variation of fracture spacing in the horizontal direction vs. the variation in the vertical direction, it
is clear that this difference in block height to block width is primarily due to difference in the
fracture spacings in the horizontal directions, rather than in the vertical direction. Figure 3-128,
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which shows median sigma factor, further substantiates this. The regions with low sigma factor
spatially coincide with regions of greater fracture spacings in the horizontal directions.
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Figure 3-120: Mean East/West Fracture Spacing
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Figure 3-128: Median Sigma Factor

Taken together, these maps suggest that the areas with the least favorable production
characteristics should be in the region including portions of Tract 17 and in the area to the
southeast of Tract 17. This region appears to have less intense vertical fracturing, which gives
rise to horizontally more extensive matrix blocks, and less fracture surface area for a given
volume of reservoir. The recommendation for strategic completion based on these contour maps
has been provided to Marathon Qil (MOC).

3.5.1.5 Evaluation

Marathon Oil’s in kind contribution to this project was provided through recompletions to support
evaluation of the DFN approach to IOR. A total of 16 wells were recompleted as part of this
project, although only five were required for the in-kind contribution. Wells YU 1304, YU 1307,
YU 1495, YU 2513, and YU 2722 provided the basis for the development of the IOR strategy.
Based on the evaluation of these wells, the project team suggested that recompletion be carried
out in area where the DFN model produced high sigma values (e.g., 3.0).

The eight strategic completion/deepening wells installed and evaluated for the DFN IOR analysis
were YU 2112, YU 2325, YU 2335, YU 2722, YU 3532, YU 1771, YU 1776, and YU 2226. All
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of these wells exhibited sigma values of over 3.0 based on the DFN model. Of the eight, the first
five had been previously shut-in, due to unfavorable production behavior, and the remaining three
were currently-producing wells, targeted for improved productivity.

The results of this evaluation were as follows. After the well work was completed, three of the
first five demonstrated increased total fluid production, indicating improved reservoir connection.
The post- to pre-recompletion ratios of daily total fluid production were 3.2, 9.2, and 2057. The
remaining two wells exhibited small decreases in total fluid productivity, with ratios of 0.4 and
0.8. Of the three active wells, two showed increased fluid production ratios, with values of 1.5
and 3.0. The last well had a ratio of 0.7. The overall result, in terms of increased fluid
production, then, was positive in five of eight wells, with an average total fluid ratio of 414.8.

As expected, the DFN approach did not provide 100% accuracy in its predictions. This is in part
because the DFN approach only predicts fracture locations in a probabilistic sense — it is not
currently possible to project fracture locations deterministically. Furthermore, in environments
such as Yates Field, where the fractures are near vertical, sigma and fracture density values have
more meaning in the lateral sense than the vertical. Therefore the DFN analysis predicted the
likelihood of encountering fractures in a vertical well deepening for a given location, rather than
the exact locations where these fractures will occur.

Each of these strategic completions was targeted for the base of the oil column. However, the no
DFN IOR analysis was carried out to predict the effect of the strategic completions on water cut.
Of the five wells where water and oil were produced both pre- and post-workover, the water-to-
oil ratio increased in four cases. In fact, the net gain in daily oil production for the eight wells
totaled only twenty seven barrels. As a result, the well recompletions may be considered
moderately successful in a technical sense, but not economic. This clearly demonstrates the need
for a more comprehensive integration of DFN analysis of water production, such as those
developed for the North Oregon Basin with the strategic completion analysis developed for Yates.

In addition to well recompletions, a surfactant injection test continued to be monitored in the
western portion of the study area. A large volume of surfactant-laden water was injected into the
bottom aquifer, in well YU 2935, and a number of surrounding wells was then monitored for
production response. Well YU 1106, which lies along a distinct trend of high sigma aligned with
well YU 2935, exhibited the most marked response to the treatment (Figure 3-129). This
indicates both lateral connectivity through the fracture system, as well as probable effective
treatment of the matrix, due to small block size, i.e. high surface area of fracture/matrix
interfaces.

The result of this surfactant test was an incremental recovery of about 30.6 thousand barrels of oil
(Figure 3-130). This represents both a technical success and a promising economic outlook.
Additional tests are planned for both the laboratory and the field, in which further quantification
of various process parameters will be attempted.

The third area of testing for the DFN approach relates to positioning of lateral drain holes in the
reservoir. Prior to mid-2001 the vertically-segregated fluid contacts have not been stable enough
to confidently drill new laterals in the field. A five well package has been proposed, however,
and should be completed in the fourth quarter of 2001. The goal is to connect the well bores with
fractured zones, in order to more efficiently produce oil at a targeted elevation, with reduced co-
production of gas or water. Two of the wells, YU 2220 and YU 2515, are located within the
study area. The results of these wells will provide a further indication of the efficacy of the DFN
approach for IOR.
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Figure 3-130 Efficacy of Surfactant Treatment on Project Study Site Yates (Tract 29)

3.5.2 Task 4.2 Reservoir IOR Demonstration, Stoney Point

The geologic and development background of the Stoney Point reservoir is reviewed in
Dershowitz, 1999 and Dershowitz and Cladouhos, 1999. The Stoney Point Field produces from a
linear trend of dolomitized carbonates in the Trenton and Black River Group of Southern
Michigan. Although Stoney Point has over 20 million barrels of oil in place, the oil column is
thin. The Stoney Point field suffers from severe water breakthrough problems, which may limit
ultimate recovery. However, the geometry of the gas cap updip demonstrates that reservoir
compartmentalization is effective at least for gas communication. The IOR analysis carried out
here considers the possible effectiveness of gel treatment to improve reservoir
compartmentalization and maintain oil production from individual hydraulic compartments, even
when neighboring compartments have been invaded by water.

3.5.2.1 Discrete Fracture Network Model

The discrete fracture network model for Stoney Point for this analysis was implemented at a 2000
meter scale (Figure 3-131). Discrete Feature Network (DFN) models are derived through a
combination of spatial and stochastic distributions for spatial structure, orientation, size, intensity,
and mechanical/hydraulic properties of important structural features (Dershowitz and Cladouhos,
1999).
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The compartments or sub-reservoirs at Stoney Point are controlled by a set of en echelon shear
faults above a basement strike-slip fault. Hurley and Budros (1990) interpreted synclinal sags on
seismic data to delineate the faults along which carbonate dissolution and dolomitization has
taken place. This map was used to develop an initial conceptual DFN model of a fault pair.
Reservoir compartments along each fault are hypothesized to be formed by fracturing along
Riedel shears in ~200 m (~750°) wide zones. Riedel shears form at an angle of ~15° to the shear
plane (Twiss and Moores, 1992). The areas between faults tips are also hypothesized to be zone
of intense fracturing. In the fault step-over region, fractures would be related to tension rather
than shear and thus have an EW orientation.

Three fracture sets are hypothesized for the Stoney Point site based on the geological conjecture
described in the previous section:

e Riedel Shears along the faults,
e Tension fractures in fault step-overs, and

e Background fractures.

The mean pole of the Riedel shears along the strike-slip faults is assumed to have a trend of 30°
and a plunge of 0°. The dispersion coefficient (k) was set to 20 to produce a range of
orientations from 10 to 50°.

The mean pole of the tension fractures in the step-over region is assumed to have a trend of 0°
and a plunge of 0°. The dispersion coefficient (k) was set to 30 to produce a range of orientations
from -15 to 15°.

Background fractures were assumed to be defined by a uniform orientation distribution (Fisher
k=0). Locations for background fractures are distributed with uniform intensity in space by a
Poisson process.

The fracture size distribution assumed was based on the scale of model being considered. Since
the model being considered is on the scale of 2000 meters, the fractures which control flow
should be larger than approximately 10% of the model scale. The fracture size distribution was
therefore defined assuming a truncated exponential fracture size with a mean radius of 66 feet (20
m). All fractures with radii less than the mean (66 feet) were excluded in the preliminary
modeling. The same distributional assumption was used for all three sets.

Intensity in DFN modeling is expressed in terms of volumetric intensity Ps,, the total feature area
(m”) per volume (m*). The four fracture intensity cases varied from intensities of 0.001 m’/m’ to
0.3 m*/m’ per set. The highest fracture intensity model had a volumetric fracture intensity (P3,)
of 0.01 m*/m’ in the Riedel shear set and an intensity of 0.3 m’/m’ in the tension fracture set.
These values translate to 1228 and 1030 fractures in each set, respectively. The lowest fracture
intensity model had a volumetric fracture intensity (P5,) of 0.001 m’/m’in the Riedel shear set
and an intensity of 0.03 m’/m’ in the tension fracture set. A 90% reduction in intensity results in
a 90% reduction in fracture numbers; therefore, the lowest intensity set has 124 and 106 fractures
in each set, respectively. All models have the same intensity of background fractures away from
the faults: an intensity of 0.005 m*/m’ for a total of about 650 background fractures.
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Four preliminary DFN models of the Trenton formation at the Stoney Point Field were
constructed using the parameters shown in Table 3-54. Three-dimensional views of this
conceptual model are shown in Figure 3-132 and Figure 3-133.

The gel treatment strategy studied was as follows:

1. Hydraulic connection between the overlying aquifer and the oil reservoir was assessed
using pathway analysis. This result represents the current situation, and reflects the
failure of compartmentalization to prevent water breakthrough.

2. Gel injection is simulated for wells near the compartment boundaries. For each gel
injection, the quantity of gel injected is calculated based on the porosity of the fracture
network connected directly and indirectly to the gel injection interval.

3. Following gel injection simulation, the effectiveness of compartmentalization is re-
addressed to determine how well compartmentalization has been established to isolate the
aquifer from the producing wells.

Figure 3-134 and Figure 3-135 illustrate the pressure distribution in the Stoney Point DFN Model
before gel injection. The discrete fractures provide a route for the water from the overlying
aquifer to breakthrough to the production wells. Following gel treatment particular water flow

paths have been blocked, preventing increased water cut. This is illustrated in Figure 3-136 and
Figure 3-137.

Figure 3-131: Stoney Point DFN Model, 2000 meter Extent, Fractures Only

228



Figure 3-132: Simulation Volume (800x400x189m ) Stoney Point DFN Model (Fractures and
Matrix Features)

Figure 3-133: Full Fracture Set for Stoney Point, Fractures, and Matrix
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Table 3-54

: Stoney Point DFN Model Parameters, Trenton Formation

| Parameter | Basis
Fault Model DFN
Generation Region Adjacent to deterministic faults only Figure 3-132
Conceptual Model Nearest Neighbor, Conceptual Model
Exponent=10’
Fracture Orientation Fisher Distribution Conceptual Model
Mean Pole (Trend,Plunge)= (30,0)
Dispersion x =20
Fracture Size Exponential Conceptual Model
Mean = 20 m, Min. =20 m
Fracture Intensity P;3; = 0.01 m™ (N=1228) Sensitivity Assumption
P3, =0.005 m™! (N=615)
P3; =0.0025 m™ (N=316)
Py, = 0.001 m!(N=125)
Fracture Aperture 1x10° m Sensitivity Assumption
Fracture Transmissivity 1x10™ m*/s, Sensitivity Assumption
LogNormal Distribution
Standard Dev. = 5x1077 m?/s
Fault Tip Model DFN
Generation Region 700 mx 250 m x 165 m Figure 3-132
0.4 mile x 0.15 mile x 550 feet
Conceptual Model Enhanced Baecher Conceptual Model
Fracture Orientation Fisher Distribution Conceptual Model
Mean Pole (Trend, Plunge)= (0,0)
Dispersion x =30
Fracture Size Exponential Distribution Conceptual Model
Mean = 20 m, Min. =20 m
Fracture Intensity P3; =0.3 m™ (N=1030) Assumption
P3, = 0.15 m™ (N=542)
P;3, = 0.075 m~ (N=246)
P3, = 0.03 m (N=106)
Fracture Aperture 1x10™ m Assumption
Fracture Transmissivity 1x10™ m*/s Assumption
LogNormal Distribution

Standard Dev. = 5x10”7 m?/s

Background Fractures

Generation Region

2000 m x 2000 m x 165 m
~1.2 mile x ~1.2 mile x 500 feet

Figure 3-131 and thickness

of Trenton Formation

Conceptual Model Enhanced Baecher Conceptual Model
Fracture Orientation Fisher Distribution Conceptual Model
Mean Pole (Trend, Plunge)= (0,0)
Dispersion k = 0 (Uniform)
Fracture Size Exponential Distribution Conceptual Model
Mean= 20 m, Min. =20 m
Fracture Intensity P;, = 0.005m™ (N=~649) Assumption
Fracture Aperture 1x10™ m Assumption
Fracture Transmissivity 1x10™ m*/s Assumption
LogNormal Distribution

Standard Dev. = 5x10”7 m?/s
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Figure 3-134: Flow solution after 0.1 hours, pre-gel treatment. Note pressure has connected
directly from injector to producer
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Figure 3-135: Stoney Point Flow Solution Pre-Gel treatment: Close up showing pressure
bypassing matrix through fractures
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Figure 3-136 Stoney Point: Pressure after 0.1 with gel treatment reducing the fracture
permeability by a factor of 10.
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Figure 3-137 Stoney Point Pressure field at 0.1 hours after gel-treatment reduces permeability by
a factor of 100

3.5.2.2 Evaluation

Due to the change of ownership of the Stoney Point field during the project, it was not possible to
evaluate the value of the DFN analyses carried out in support of IOR. It is our understanding that
unless water production problems are addressed using procedures such as those developed in this
project, the oil in place at Stoney Point will not be produced, and only the gas reserves will be
exploited in the future.

3.5.3 Task 4.3 Reservoir IOR Demonstration, South Oregon Basin

This section describes analysis of gel treatment for IOR at the South Oregon Basin study site. The
effect of gel treatment on the reservoir hydraulics is analyzed using the single phase, dual
porosity flow simulator MAFIC (Miller et al., 2000). This analysis involved updating of the DFN
model for the study site, and evaluation of the effect of gel injection on sweep efficiency.

3.5.3.1 South Oregon Basin DFN Model

The DFN model for the South Oregon Basin study site was developed using the procedures by
Dershowitz et al. (2000). Table 3-55 presents a summary of the lineament analysis carried out.
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Figure 3-138 shows the orientation for sets as defined from the lineament analysis. This figure
indicates four fracture sets, consistent with the lineament observations of Table 3-55. The four
fracture sets identified from seismic data are: (1) and East to West trending set; (2) a North to
South set; (3) a North-East to South West trending set; and (4) an East-South-East trending set.
The four fracture sets identified from the seismic data are placed as small ellipses on Figure
3-138. It appears that the FMI is centered around the opposing axis of the NE-SW fracture set.
Observations of the primary fracture sets at outcrops at the Amphitheater and Wind River Canyon
sites are consistent with the NE-SW trend. The EW seismic set is consistent in orientation with
secondary fracture set observed at the Amphitheater outcrop. The ESE set is consistent with the
orientation observed as the secondary set at the Wind River Canyon. The NS set from the seismic
data has no concurring observations in outcrop data.

The orientations given in Table 3-55 represent the mean poles for each set. The FMI wellbore
data provides a mean pole for all data, without breaking the data into sets, which is not
particularly useful. However, the FMI data does give relevant indications of fracture length and
intensity based on the number of fractures intersecting per meter, and the number of fractures
intersecting all four pads of the FMI tool. The four pad intensity analysis was presented in
Dershowitz et al. (2000).

Figure 3-139 shows the seismic lineaments. Fracturing does not appear to be distributed
uniformly through out the region with a strong North-South trending cluster of fractures on the
west side of the seismic volume; and the highest fracture intensity of all sets occurring around the
center of the seismic volume. Figure 3-140 through Figure 3-143 illustrate the seismic
lineaments sorted by set. The ESE set shows two strong linear trends with a random distribution
of fractures around them. The NE fracture set in Figure 3-142 has the highest intensity. All four
fracture sets appear to have similar distributions of fracture size. The NS, EW and ESE fracture
sets appearing to cluster along localized linear trends.

The lineaments shown in Figure 3-139 are at seismic detection scales of over 100 m. A fractal
analysis was carried out to support extrapolation of these fracture sets for use with smaller scale
discrete features. Figure 3-144 through Figure 3-148 illustrate fitting of distributions to the
lineament trace-length. Fitted gamma distributions for trace length imply a possible fractal size
distribution. When a fractal size is fitted, the distribution exponent can be maintained, and the
minimum size censoring limit can be decreased to extend the distribution to smaller fractures.
The fit of the power law (Pareto) distribution was successful only for the ESE set. The NS set
was best fit to a lognormal distribution, which does not support fractal extrapolation. The NE and
EW sets were best fits to a gamma distribution, which also does not support fractal scan-line.
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Table 3-55: South Oregon Basin Lineament Analysis

ID Fracture Set Orientation Intensity (P32) Length
Pole (Trend, Plunge)
1 East-West 2.8,0 (Seismic) 78 lincaments (22 int) | Gamma (3.1, 519)
Secondary 7
2 North-South 260.9,0. (Seismic) 120 lineaments (3 int) | Log norm
or (170.9,0) Secondary 9 (6.987,0.77)
3 NE-SW 316.2,0 (Seismic) 292 linecament (28 int) | Gamma (2.17,1108)
Primary 6,8
4 ESE 40,0 (Seismic) 94 lineament (10 int) | Power law (1100,2.2)
Secondary 9
5 FMI 135,9.4 (FMI log) (1.6) (guess?)
(0.4) percolates
6,7 Amphitheater; Primary Azimuth 65 Spacing 5Sm
Primary field Secondary Azimuth 90
Localized south
Related to NE tear
Poles (135,0) (180,0)
89 Wind River Can | Primary (70°) Cut Tensleep 10m
Secondary (160°) spacing, Bedding
Poles (160,0), (70,0) confined, size and
intensity controlled by
thickness of
mechanical layer
10 300 foot cliffs in Vertical cut Vertical cut Tensleep
WR Canyon 10m
Bedding confined,
down to 1m spacing,
not as numerous or
continuous as
Phosphoria
11 Samuel #58 SD(50,6.5 SE) 27 fractures/70m 100% 4-pad
(95,83.5) (1.45 /m)
12 Baston A #29 SD(342,5 NE) (72.5, 19 fractures/67 m 68% 4-pad 3m
85) (1.04 /m)
13 Pauline #9 (Hz) SD(180,15 E) (90,75) | 149 fractures/164 m 97% 4-pad 20 m
(1.67 /m)
14 Govt 3b #16 SD(28,8 NW) (298,82) | 14 fractures/ 150 m 50% 4-pad (1 m?)

(1.15 /m)
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Figure 3-138: Fracture Set Orientations for South Oregon Basin
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Figure 3-139: All Seismic Lineaments for South Oregon Basin
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Figure 3-144: Trace Length Distribution, All Lineaments
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CCDF Graph: EW Set Gamma
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Figure 3-145: Trace Length Distribution, EW Lineaments
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CCDF Graph: ESE Sef power law
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Figure 3-146: Trace Length Distribution, ESE Lineament

244




GCOF Graph: NE Set Gamma Distribution
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Figure 3-147: Trace Length Distribution, NE Lineaments
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CCDF Graph: N-5 Fracture set log normal
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Figure 3-148 Trace Length Distribution, NS Lineaments
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The fracture size distribution was calculated from the lineament distribution using the forward
modeling approach of Dershowitz et al. (2000). Fractures were simulated in the 3D volume using
assumed intensity and size distributions for the ESE set defined above. These fractures were then
intersected by a simulated trace plane to obtain a simulated trace length distribution. The fracture
radius distribution and intensity assumptions were then adjusted to obtain a match to the trace
length distribution fitted to the measurements. The fitting of simulated trace length distributions
is illustrated in Figure 3-149 through Figure 3-160.

Figure 3-149 through Figure 3-153 illustrate the change in the lineament trace length distribution
as the fracture radius distribution r.;, is increased from 10 feet to 2000 feet. Figure 3-154 through
Figure 3-157 shows the effect of varying the power law distribution exponent from 1.5 to 3.5.
Figure 3-158 through Figure 3-160 illustrates simulations in which the fracture radius distribution
was not changed, while the intensity Ps, was varied from 0.001 to 0.1 m’*/m’.

Table 3-56 summarizes intensity and size analyses for the four sets. Based on trace mapping, the
intensity of each set is expressed as P,;, the total length of tracer per unit area. The total intensity
P;, for the four sets is consistent with that evaluated previously (Dershowitz, 2000) based on FMI
data. This total intensity Ps, was allocated to the four sets in proportion to the P,; for that set.
This approach ignores the effect or orientation bias.

Table 3-56: Intensity from Lineament Data

Fracture SET |# in wells |# in Seismic [Mean lineament |Relative Estimated Power law, Exponent
length (ft) P21 (m/m?) P32 (m*m?) min

E-W 22 78 2022 0.19 0.04 570 1.7,

N-S 3 120 1974 0.29 0.06 750 2.6

N-E 28 292 2798 1.00 022 700 1.7,

E-SE 10 94 2771 0.32 0.07 1300 2.5

The gel treatment analysis depends upon explicit representation of both permeability and porosity
for both the discrete features which will be effected by the gel, and the rock matrix from which
oil is to be swept. The MAFIC discrete fracture —matrix interaction code is generally used for
cases in which discrete features are the only flowing porosity, and the matrix serves only as a
storage porosity. The South Oregon Basin model therefore includes both the discrete fracture
network porosity derived above, plus a matrix flow and storage porosity. The matrix porosity is
represented in the model using bedding plane elements.

The properties for bedding planes were derived in Dershowitz and Cladouhos (1999). These
features represent a critical element of the model as the matrix provides the majority of the
storage in reservoirs in the South Oregon Basin. Bedding features are implemented as rectangular
elements dipping around an average orientation, and distributed randomly throughout the field.

Table 3-57 presents a summary of the DFN model implemented including fracture and bedding
plane (matrix) elements. Figure 3-161, Figure 3-162, and Figure 3-163 show three dimensional
representations of the fracture model. The model is implemented in a 400 m x 400 m x 10 m
model domain. Length distributions within the model were approximated using lognormal
assumptions. All fractures had a thickness of 0.025mm. The fracture system appears well
connected with fractures from all of the four fracture sets.
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Table 3-57: South Oregon Basin DFN Model

Set Orientation Length Intensity |Permeability
Distribution Lognormal Ps; (m2/m3) (Darcy)
Pole (Trend, Plunge) |Distribution
Fisher Dispersionk  |[(Mean, Std.

Dev)

East-West 28,0 3,1.15 0.02 20 Darcy
=30

East-South East (40,0) 20, 10 0.035 20 Darcy
=30

North-South (260.9,0) 3,15 0.03 20 Darcy
=30

NE-SW (316.2,0) 20, 10 0.11 20 Darcy
=30

Bedding (Matrix) [(110,25) 20, 10 0.1 20 Darcy
=10
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Figure 3-149: Simulation of ESE Lineaments 10 ft. Scale
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Figure 3-150: Simulation of ESE Lineaments, 100 ft. scale
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Figure 3-151: Simulation of ESE Lineament, 500 ft. Scale
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CLDF Graph: Base case shmulation min=1100 exp=2.2
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Figure 3-152 Simulation of ESE Lineaments, 1300 ft. Scale
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CCDF Graph: Simulation min = 2000
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Figure 3-153: Simulation of ESE Lineaments, 2000 Ft. Scale
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Figure 3-154 Simulation of ESE Lineaments, Exponent 1.5
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CCDF Graph: Simulation Exp=2.5
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Figure 3-155 Simulation of ESE Lineaments, Exponent 2.5
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CCDF Graph: Simulation Exp =3.
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Figure 3-156: Simulation of ESE Lineaments, Exponent 3
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CCDF Graph: Simulation Exp = 3.5
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Figure 3-157: Simulation of ESE Lineaments, Exponent 3.5
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CCDF Graph: Simulation P32 = 1.0e-3
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Figure 3-158: Simulation of ESE Lineaments, Intensity P;, = 0.001 m’/m’
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CCDF Graph: Simulation P32 = 1.0e2
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Figure 3-159: Simulation of ESE Lineaments, Intensity P;, = 0.01 m/m’
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CCDF Graph: Simulation P32 = 0.1
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Figure 3-160: Simulation of ESE Lineaments, Intensity P;, = 0.01 m/m’
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Figure 3-161: Fractures for South Oregon Basin Simulation
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Figure 3-162: Matrix Discrete Features for South Oregon Basin Simulation

Figure 3-163: Fractures and Matrix Close up for South Oregon Basin Simulation
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3.5.3.2 South Oregon Basin Gel Simulations

While fractures provide an efficient delivery system to deliver oil to the production well from the
matrix storage, they can also provide a short circuit route between injectors and producers. This
can limit the effectiveness of water injection, and at worse lead to increased water cut. Gel
treatment aims to improve reservoir pressure maintenance and oil sweep efficiency by blocking
the fractures in the vicinity of injectors.

The strategy for simulating this is to simulate the water injection/oil production pair using the
single phase MAFIC flow simulator at 1250 BPD. First, we simulate the effect of balanced
injection and production including the effects of the fracture network. Figure 3-164 through
Figure 3-166 illustrate the pre-gel injection case. As the water injection increases, a pressure
break-through occurs allowing water to travel directly from the injection well to the producer.
The sweep efficiency is consequently low, and the pressure maintenance ineffective.

Figure 3-167 through Figure 3-169 present results for simulations in which the fractures
connected to the injection well have been blocked by gel injection. Figure 3-167 presents the
base case in which the fracture transmissivity is reduced one order of magnitude by gel to 2.0
Darcy. Figure 3-168 presents a reduction of transmissivity to 0.2 Darcy. Figure 3-169 presents
the post effective gel treatment case, with the fracture transmissivity reduced to .02 Darcy. The
fractures no longer provide short circuit pathways, such that the water injection is able to produce
an increase the pressure in a consistent and evenly dispersed area. This provides an efficient
sweep, driving oil out of the matrix and towards the producing well.

3.5.3.3 Evaluation

Marathon Oil Comparny (MOC) has carried out gel treatments targeting discrete fractures in the
South Oregon Basin, consistent with the recommendations based on DFN modeling. These gel
treatments have facilitated water injection which maintained formation pressures at 400 psig. Oil
production at the wells effected by water injection totals approximately 10 BPD per well. Water
extraction is currently about 1000 BWPD.

Reduction in water breakthrough due to gel injection is difficult to judge and nearly impossible to
accurately measure. In 75-85% of the gel injections, Marathon does not report an immediate
decrease in water production at the offset producers following an injection well gel treatment. It is
assumed that gel is less than 100% effective in blocking off the fracture network, in part due the
short circuiting effect seen in DFN simulations. Theoretically, we would expect a significant
decrease in water production if fracture networks were well plugged with gel. However,
Marathon does not report experiencing this in most cases. Rather, in the project study site gel
injections have resulted in an increase in oil production or a shallowing of the oil decline rate.
This indicates that these gel treatments have been at least partially successful. The observed
increase in oil production may be due to improved sweep efficiency or to a change in the vertical
profile of injection accessing a different area of the reservoir.
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Figure 3-165: South Oregon Basin simulation pre gel. Time = 0.01 Hours
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Figure 3-166: South Oregon Basin simulation pre gel. Time = 1 Hour

Figure 3-167: South Oregon Basin simulation after gel treatment reduces fracture permeability 1
order of magnitude
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Figure 3-168: South Oregon Basin simulation after gel treatment reduces fracture permeability 2
orders of magnitude

264



Figure 3-169: South Oregon Basin simulation after gel treatment reduces fracture permeability 3
orders of magnitude
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3.5.4 Task4.4 Reservoir IOR Demonstration, North Oregon Basin

Water injection is being used extensively in the North Oregon Basin, Wyoming Tensleep
formation to improve oil recovery. Gel treatments have been used to reduce the water-cut by
selectively restricting flow through the fractures without substantially reducing the matrix
permeability. The discrete fracture network (DFN) model of the reservoir described in
Dershowitz and Cladouhos (1999) was used to simulate the use of gel to improve the sweep
efficiency of water injection. The analysis focus area is shown in Figure 3-170.

In the fractured, heterogeneous Tensleep formation, discrete fractures and eolian sandstones
provide discrete pathways both for oil production and for water migration. The DFN approach
addresses the geometry and occurrence of these pathways directly by explicitly modeling
fractures, dolomite barriers, and conductive eolian bedding planes. In addition, the DFN approach
is used to address the geometry of hydraulic compartments formed by networks of discrete
features

Simulation of the problem of water-breakthroughs requires an understanding of:

e The geometry of the fractures that allows the water breakthroughs;

o The effect of the gel treatment on the relative permeability of the fractures and matrix;
o The transfer of fluids through both the fractures and matrix; and

e Any multi-phase effects of water passing through the oil.

The DFN analysis of gel control was carried out by implementing the DFN model to contain both
the major conductive fractures, and the acolian sandstones and dolomite layers which provide
both significant conductivity and connectivity, and matrix storage. The DFN model is illustrated
in Figure 3-171. Both the fractures and matrix are represented as discrete features. The matrix is
modeled in this fashion because of the discrete nature of the sand beds, and also to facilitate
modeling using the MAFIC code. The thickness of each bed in the model is provided in Table
3-58.

The simulation was carried out with both water injection and oil production at a rate of 1250
BPD. Figure 3-172 presents simulation results for the water injection without gel treatment. As a
result of preferential flow through the fracture network, the injected water invades only a narrow
band of the surrounding reservoir before finding a high permeability path to the production well.
In this case the injection fails to introduce a significant pressure gradient across the matrix and
will result only in an increase in the water cut at the producing well.

Gel treatment was simulated by reducing the permeability of the fractures connected to the
injection well to 0.2 Darcy. The pressure distribution following gel treatment is illustrated in
Figure 3-173. The water injection then provides for efficient pressure maintenance and oil sweep.
Due to the gel treatment the pressure gradient is now more evenly applied across the reservoir and
should more effectively move oil out of the matrix towards the producing well.

The North Oregon Tensleep model is now being adapted for use at particular injection producer
pairs to study gel treatment design alternatives.
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3.5.4.1 Evaluation — North Oregon Basin

In the North Oregon Basin, Marathon Oil Company (MOC) has not yet carried out gel treatments
based on DFN analyses. As a result, it is not yet possible to quantify the value of these activities.
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Figure 3-170: North Oregon Basin Structure and Well Control

Table 3-58: North Oregon Basin Bed Thickness

Rock Type Thickness (m) Layer Center (m)
Dolomite 2 15

Sandstone A 7 10.5

Dolomite 2 6

Sandstone B 3 3.5

Dolomite 3 0.5
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Sandstone C 3 -2.5
Dolomite 2 -5
Sandstone DE 10 11
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Figure 3-171: North Oregon Basin DFN model
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Figure 3-172: North Oregon Basin DFN model before gel treatment
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Figure 3-173: North Oregon Basin DFN model after gel treatment
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3.6 Task 5: Technology Transfer

3.6.1 Task 5.1. Project Web Site

Throughout the project, project data, simulations, and publications were made available through
the project web site, hitp://HeterOil.golder.com. These included posting of site data provided by
Marathon Oil Company (MOC), project presentations, and progress reports.

3.6.2 Task5.2.1 Reports

The reports produced during this project are listed above in Section 3.1.

3.6.3 Task5.2.3 Presentations and Publications

The presentations made during the project are listed above in Section 3.1.
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4. CONCLUSIONS

Fractured and heterogeneous reservoirs present unique challenges for “Discrete Feature Approach
for Heterogeneous Reservoir Production Enhancement.” The report presents summaries of
technology development for discrete feature modeling in support of the improved oil recovery
(IOR) for heterogeneous reservoirs. In addition, the report describes the demonstration of these
technologies at project study sites.

In the discrete feature network (DFN) approach, conductive and flow barrier structures are
modeled explicitly, facilitating a more realistic analysis of flow of fluids. The DFN approach
models these features at all scales simultaneously, from the individual fractures intersecting a
well to the major faults which define the reservoir. There discrete features are extrapolated from
geological and geophysical measurements using a combination of geological and geostatistical
methods.

During this project, Golder Associates’ team improved the data analysis and geological modeling
capabilities of the DFN approach, and developed practical applications of that approach for IRO
in heterogeneous reservoirs.

Major accomplishments of this research project are summarized in Table 1. These include
development of approaches for gel treatment, strategic completion, and water control in
heterogeneous reservoirs. The discrete fracture network technologies developed within this
project are directly applicable to a large percentage of the secondary and tertiary oil recovery
projects currently underway in the United States, and can be of significant value to the design of
future oil recovery projects.

This project achieved significant technological advances in the development of the discrete
fracture network modeling approach for heterogeneous oil reservoirs. Advances include:

o the first large scale, fracture network multiphase DFN flow simulations (Oregon Basin)

e direct DFN simulation of gel injection to realistic fracture networks (Oregon Basin,
Stoney Point)

¢ three dimensional, heterogeneous, geo-cellular based DFN modeling for strategic
completion (Yates)

¢ development of an advanced neural network algorithm for fracture set identification

e fractal, analytical, and numerical solutions for calculation of fracture size distributions
from geological and geophysical trace data,

e discrete fracture network approach for conditioning of fractured reservoir connectivity
based on tracer tests.

e new approaches to evaluating fracture shapes and correlations between fracture properties

e cxtension of the DFN approach from fractured and single porosity reservoirs to multiple
porosity reservoirs with complex, heterogeneous geologies

As aresult of this project, the DFN approach can now be applied to improve recovery in a wide
range of situations including water and steam floods, strategic completions, and gel treatments.
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