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Abstract 
Streamline models are routinely used for waterflood optimization and management, and are being 

extended to more complex processes, e.g., compositional simulation. Despite these new developments, no 
systematic study has examined the underlying numerical spatial and temporal discretization errors in 
streamline simulation and their convergence. Such studies are a prerequisite to determining the optimal 
density of streamlines during simulation and ensuring the resulting accuracy of the solution. 

In this paper we first examine transverse spatial errors, e.g., errors due to the number or placement of 
streamlines. We provide an analytic proof and a numeric demonstration of the order of spatial 
convergence of the mass balance discretization error. Both global and local calculations are performed, 
and demonstrate the impact of stagnation regions on the order of convergence. A second transverse error 
arises for faulted grids, where lack of flux continuity at cell faces can lead to incorrect trajectories. These 
trajectory errors are of zeroth order, and can only be resolved by introducing additional degrees of 
freedom into the streamline velocity model. Longitudinal spatial errors also arise, and are associated with 
the inaccurate calculation of time of flight across cells.  

We show that the commonly used algorithm for corner point cells leads to inaccurate time of flight 
calculations for stratigraphic grids, depending upon aspect ratio. We provide a simple and exact means of 
calculating the time of flight for arbitrary corner point cells, or unstructured grids, in two or three 
dimensions, for either compressible or incompressible flow. Finally, using this new time of flight 
formulation, we analyze a series of cross-sectional finite difference simulations to identify grid orientation 
errors in the numerical calculation of flux and spatial error. 

 

Introduction 
Streamline simulation has developed rapidly over the last ten years within the oil industry1-9. Unlike 

the earlier streamtube calculations, which date back to the 1930’s, streamline simulators have dispensed 
with the explicit construction of volume elements (the tubes) and replaced them with calculations along 
lines. Each line may be thought of as tracing out the center of a streamtube, with the velocity obtained 
from a numerical finite difference calculation. In contrast, within a streamtube, fluid velocity is obtained 
from the volumetric flux per unit area, where the area must be calculated explicitly as part of the 
streamtube construction. With streamlines the geometry is implicit, making it simple to perform 
calculations in three dimensions. To leading order, streamline simulation appears as a sum of one 
dimensional simulations, and so calculations in one, two or three dimensions are essentially equivalent. It 
is this ease of formulation which has transformed the class of problems which we can study with 
streamline simulation. Where streamtube calculations emphasized two dimensional sweep and pattern 
floods, streamline simulation has been applied to the full range of multiphase and multi-component 
physical and chemical processes in three dimensions10,11. 

Although streamline simulators have received wide-spread attention over the past decade, no 
systematic study has been performed to understand the sources of spatial error and their convergence 
properties. The spatial discretization in streamline simulation generally takes two forms. First, a 
transverse discretization of the domain in terms of streamlines. The number of streamlines used during 
simulation determines the degree of transverse resolution. Second, a longitudinal discretization along 
streamlines for numerical solution of the transport equations along streamlines. In fact, much of the 
computational advantage of streamline models comes from the decomposition of the 3-D saturation 
calculations into these 1-D calculations along streamlines. There is an additional zero-th order truncation 
error associated with faulted grids, which will also be discussed. 

In finite difference or finite element simulation we describe elements or cells that describe the 
geometry of our reservoir. We calculate fluxes into and out of each cell and then accumulate volume or 
mass. This provides a very precise sense of what we have and where it is, but there is little sense of where 
the fluids are going. Streamline simulation, on the other hand, introduces a numerical discretization based 
on where fluids are going. A fundamental quantity that can be integrated along a streamline is the time of 
flight, τ. Streamline simulation discretizes the numerical equations using the τ coordinate. We do not lose 



 

our sense of x, y, and z, but we now gain an additional insight into the convective physics of the solution. 
What are the weaknesses of streamline simulation in terms of spatial discretization? The most 

consistent errors have to do with the mapping from x, y, and z to τ, and back again. Although we have 
talked about conventional Eulerian simulation as not having a sense of where it’s going, we can criticize 
streamline simulation as not having a sense of where we are. The τ coordinate describes a location on a 
streamline, but how do we obtain volumes? We may either interpolate solutions between adjacent 
streamlines to obtain a sense of volumetrics, or we may associate implicit or explicit streamtubes to the 
volumes surrounding the streamlines. If we define these volumes explicitly we will run into the same 
difficulties as the streamtube techniques had in going to three dimensions. If we define the volumes 
implicitly, then how can we explicitly take a solution in τ back to x, y, and z? Since the streamlines do not 
carry conserved volumes (we have more than the usual x, y, and z coordinates), the τ transformation can 
and will introduce mass balance errors. The mapping errors introduced during streamline have been 
widely recognized in the industry and various authors have proposed methods to remedy the situation4,6 

In this paper, we systematically examine the spatial discretization and mapping errors during 
streamline simulation, their convergence properties and implications on the material balance calculations. 
First, we will examine the transverse discretization errors arising from inadequate spatial coverage and 
density of streamlines. Second, we investigate the longitudinal discretization errors arising from 
inaccurate calculation of time of flight, particularly in the presence of complex cell geometry. We show 
that the commonly used algorithm for corner point cells leads to inaccurate time of flight calculations for 
stratigraphic grids, depending upon aspect ratio. We provide a simple and exact means of calculating the 
time of flight for arbitrary corner point cells, or unstructured grids, in two or three dimensions, for either 
compressible or incompressible flow. Finally, we look at the trajectory calculations in faulted cells and 
show that the velocity discontinuities at the cell boundaries can lead to incorrect trajectories. These 
trajectory errors are of zeroth order, and can only be resolved by introducing additional degrees of 
freedom into the streamline velocity model.  

Background: Streamline Time of Flight Formulation 
A key underlying concept in streamline simulation is to isolate the effects of geologic heterogeneity 

from the details of the physics of fluid transport calculations. Mathematically, this is accomplished by 
utilizing the streamline time of flight as a spatial coordinate variable. The time of flight is simply the 
travel time of a neutral tracer along the streamlines and can be defined as, 
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We can rewrite Eq.1a in a differential form as follows 
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After Bear11, the velocity field for a general three-dimensional medium can be expressed in terms of 
bi-streamfunctions ψ and χ as follows,  

 

χψ ∇×∇=u
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A streamline is defined by the intersection of a constant value for ψ with a constant value for χ. In 
two-dimensional applications, we use the simplified functional forms, ),( yxψψ = , z=χ , leading to the 

more familiar expressions 
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ψ , where ψ is recognized to be the streamfunction. 

Streamline techniques are based upon a coordinate transformation from the physical space to the time 
of flight coordinate where all the streamlines can be treated as straight lines of varying lengths. This 
coordinate transformation is greatly facilitated by the fact that the Jacobian of the coordinate 
transformation assumes an extraordinarily simple form when using Eq. 1b and Eq.2: 
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Starting from this expression, we have the following relationship between the physical space and the 
time of flight coordinates following the flow direction, 

 

χψτφ ddddzdydx = . ......................... (4) 
 

It is now easy to see that the coordinate transformation also preserves the pore volume, which is an 



 

essential feature to preserve the material balance. 
Spatial gradients along streamlines become a very simple form in the time of flight coordinates. Using 

the (τ , ψ, χ) coordinates, the gradient operator can be expressed as: 
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Because u
r

 is orthogonal to both ψ∇  and χ∇ , 
 

τ
φ

∂
∂

=∇•u
r ........................................... (6) 

 

The major advantage of the τ  coordinate becomes evident when we consider the conservation 
equation for the water phase in two-phase incompressible flow, away from sources and sinks, 
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This expression can be expanded and transformed using the τ coordinate, 
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After this coordinate transformation, we have decomposed the three dimensional fluid flow into a 
series of one dimensional (in τ) evolution equation for Sw along streamlines. This equation is just as valid 
in one, two and three dimensions, and for homogeneous and heterogeneous media. The τ transformation 
includes all of these effects. All that is required for implementation is the velocity field and the 
calculation of the line integral in Eq. 1a. 

What are some of the other implications of this coordinate transformation? As an example, let’s 
examine waterflood in a homogeneous two dimensional quarter five spot in Fig. 1. In (x, y) coordinates, 
Fig. 1(a)(b), we see the impact of the geometry of the quarter five spot: the two wells and the no-flow 
boundaries dominate the shape of the flow. In (τ , ψ), Fig. 1(c), we appear to have a line drive along each 
streamline, with τ measuring distance into the domain, and ψ being the transverse distance. 

The flood is identical across each of the streamlines. A sum of one-dimensional solutions along 
streamlines, Fig. 1(d), will be used to approximate the three-dimensional fluid flow calculations. All the 
information about the geometry and flow patterns within the quarter five spot is reduced to the 
distribution of τ’s for different streamlines. This τ (ψ) curve provides a complete representation of the 
quarter five spot flow pattern and geometry and will be used to solve for saturation. 

Spatial Discretization in Streamline Simulation 
As mentioned in the previous section, streamline models rely on a coordinate transformation from the 

physical space to the streamline time of flight coordinates for saturation calculations. The coordinate 
transformation can be written in a discrete form as follows: 

 

χψτφ ∆∆∆=∆∆∆ zyx . ....................... (9) 
 

From Eq.9 we can easily see the analogy between the spatial discretization in finite difference and 
streamline simulation. The 3-D discretization elements in these two types of simulation are shown in 
Fig.2. There are two basic elements of spatial discretization in streamline simulation: 

1. A longitudinal discretization along streamlines in terms of ∆ τ. This longitudinal 
discretization sets the resolution of the transport calculations along streamlines. 

2. A transverse discretization in terms of ∆ψ∆χ. that defines the streamtube. In 
practice, however, we associate a volume ∆q=∆ψ∆χ with the streamline passing through the center of the 
streamtube. This transverse discretization is primarily determined by the number of streamlines used 
during the simulation. 

The analysis of spatial discretization in streamline simulation can be carried out much in the same 
manner as in finite difference. However, unlike finite-difference that requires definition of grid 
dimensions in each of the three coordinate directions, we will be dealing with primarily two forms of 
spatial discretization in streamline simulation: a τ∆  discretization and a q∆ discretization. In the following 
sections, we will examine the errors arising from each form of spatial discretization. 

Transverse Spatial Error: Streamline Density and Coverage 
How is the discretization error in streamline simulation impacted by the number of streamlines? The 



 

spatial density of streamlines can vary significantly depending upon the heterogeneity, flow geometry and 
the proximity to the wells. In regions of ‘fast’ flow, streamline density will be high with good spatial 
coverage. However, near stagnant or slow-moving regions, the streamline coverage may not be adequate. 
This will lead to local as well as global discretization errors during streamline simulation. For clarity of 
exposition, we will illustrate the important features of the numerical calculations using a homogeneous ¼ 
five-spot example for which analytic solutions for streamlines and time of flight are readily available13. 

 
Transverse Discretization: Global Errors. An important feature of the streamline method compared 

to the streamtube method is that we no longer keep track of the tube geometry explicitly. Instead, 
streamlines are considered as ‘centerlines’ of the streamtubes and the streamtube geometry is replaced in 
favor of the ‘time of flight’ along streamlines and the flux associated with the streamlines. Thus, the 
discretization of the reservoir pore volume (PV) takes the following form: 
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In Eq. 10, N denotes the number of streamlines and τi and δqi represent the time of flight and the flux 
associated with the i-th streamline. The global discretization error εG can be represented as follows: 
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It is obvious that εG will depend upon the number of streamlines. It is important to understand how 
this discretization error is affected by the number of streamlines. For example, will the error be halved if 
the number of streamlines is doubled? Such questions can be answered by examining the convergence 
properties of εG. 

Consider the time of flight distribution at the producer in a 2-D homogeneous ¼-five spot pattern as 
shown in Fig. 3. For bounded domains such as this one, all the streamlines originating from the injector 
will eventually end in the producer. Thus, the τ(ψ)-curve provides a complete representation of the flow 
pattern and geometry for this case. The pore volume of the pattern will be given by: 
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In other words, the area under the τ (ψ)-curve is a measure of the pattern pore volume. The streamline 
approach corresponds to a piece-wise constant discretization of this volume using a finite number of 
streamlines as illustrated in Fig. 3. Thus, in the streamline approach we approximate the integral in Eq. 
12 as follows 
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where τi corresponds to the time of flight for the streamline in the center of the streamtube, ∆ψi (Fig. 
3). 

In practice, instead of keeping track of the streamtube, we associate a flux δqi with the streamline. 
Rigorously, τ i should be the time of flight averaged over the streamtube cross-section rather than the time 
of flight along the centerline. For a fixed ∆ψi, the streamtubes have relatively small cross-section in 
regions of fast flow. Also, the difference in time of flight between the streamlines defining the streamtube 
is likely to be small. Thus, the approximation in Eq. 13 will be adequate for most practical situations. In 
contrast, near stagnant and slow moving regions, the streamtubes will have a wider cross-section with 
possibly a large contrast in time of flight between the bounding streamlines defining the streamtube. 
Thus, the approximation can introduce considerable error in such situations. Note that this disctertization 
error arises because of the piece-wise constant approximation of the integral in Eq. 13 during streamline 
simulation and is thus, unique to streamline simulation. 

For the ¼-five spot example, the global discretization error will be given by 
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We can examine the convergence of εG as a function of the number of streamlines by numerical 
computation of Eq. 13. This is shown in Fig. 4 where we have plotted the discrete ||L||1 norm of the error 
against the number of streamlines. A linear decrease in error is observed with the number of streamlines. 
That is, by doubling the number of streamlines, the error in pore volume calculations is reduced by a 
factor of 2. 



 

The reason for this linear convergence can be explained by the shape of the τ (ψ)-curve. The τ (ψ)-
curve for the ¼-five spot has essentially two distinct parts. In the interior of the domain, the time of flight 
is well approximated by a polynomial. However, as we approach the stagnant corners and the bounding 
streamlines, the time of flight approaches infinity. In fact, it exhibits a logarithmic divergence. The 
evaluation of the integral now introduces considerable error as discussed before. Thus, whereas we can 
achieve a higher rate convergence in the interior of the domain, the stagnant regions limit the convergence 
of the error to a linear behavior. A proof of the convergence behavior is given in the Appendix. 

 
Transverse Discretization: Local Errors. So far we have discussed the impact of transverse 

discretization on the global error, that is, error in the pore volume calculations for the entire flow domain. 
We will now investigate the contribution to the error originating from various parts of the flow field and 
the convergence of these errors. In general, the spatial density of streamlines will depend upon 
permeability heterogeneity, well geometry and injection/production rates. The variation in streamline 
density and the time of flight distribution will impact the discretization error. For illustration purposes, we 
return to the ¼-five spot pattern example and examine the local error associated with the transverse 
discretization. Specifically, we will investigate the error in two distinct parts of the flow domain as shown 
in Fig. 5. 

In Fig. 5(a) the grid block is located in the interior of the domain. This is a ‘fast’ flow region with 
good spatial coverage of streamlines, Fig. 6(a). The local discretization for this case will be given by 
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where ∆τi is the time of flight across the grid block for the streamline i and Nb is the number of 
streamlines passing through the grid block. Fig. 6(b) shows the ||L||1-norm of the discretization error as 
the number of streamlines is increased. 

Clearly we can see how the error decreases with a quadratic slope. This quadratic convergence implies 
that in the interior of the domain and away from the stagnant regions and wells, the transverse 
discretization error will be reduced by a factor of 4 by doubling the number of streamlines. 

Returning to Fig. 3, notice that the interior of the domain corresponds to the relatively flat part of the 
τ (ψ)-curve that can be well-described by a polynomial. In general, any bounded function can be 
approximated with arbitrary accuracy using a polynomial. Thus, the local discretization is likely to exhibit 
a quadratic convergence for most parts of the flow field (see Appendix). 

We now examine the cell located in the stagnant corner as in Fig. 5(b). The streamlines for this 
example are shown in Fig. 7(a). The spatial coverage of streamlines for this case decreases rapidly as we 
approach the stagnant corner. The streamtubes have wider cross-section and the streamlines have large 
time of flight associated with them. This leads to a systematic bias in the streamtube pore volume 
calculations as discussed in the previous section.  In fact, the time of flight will approach infinity as we 
approach the stagnation line at the corner of the cell. Fig. 7(b) shows the behavior of the discrete ||L||1-
norm of the error in Eq. 11 with increasing number of streamlines passing through the cell. We see a 
linear decrease in error in this case. Such linear convergence behavior is consistent with the logarithmic 
divergence of the time of flight as we approach the stagnant corners in a ¼ five spot pattern. 

To examine the implications of these results on saturation mapping, we defined a base case with a 
fixed number of streamlines and sequentially decreased them. The saturation map and streamline 
trajectories are presented in Fig. 8. As the number of streamlines are reduced compared to the base case, 
Fig. 8(c), we can see how the saturation mapping is impacted. In particular when 1/10th of the original 
number is used in Fig. 8(a), the spatial disretization error is seriously affecting the saturation mapping, 
especially near the stagnant corners. This is totally consistent with the local error convergence previously 
presented. 

Our results indicate that there is clearly room for optimization here in terms of the spatial density of 
streamlines. The convergence analysis provides the foundation for an adaptive streamline density scheme 
for streamline simulation. 

Longitudinal Spatial Errors: Inaccuarte Time of Flight Calculations in Complex Cell 
Geometry 

We have seen that one source of spatial error is inadequate streamline coverage leading to errors in 
saturation mapping. This can be viewed primarily as a form of transverse discretization error. Recall that 
in streamline simulation saturation calculations are carried out along streamlines using time of flight as a 
spatial coordinate. Thus, any error in time of flight calculations will lead to longitudinal spatial error.  
This is particularly important in cells with complex geometry, for example corner point cells.  We show 
here that the commonly used algorithm for corner point cells leads to inaccurate time of flight calculations 



 

for stratigraphic grids, depending upon aspect ratio. We provide a simple and exact means of calculating 
the time of flight for arbitrary corner point cells, or unstructured grids, in two or three dimensions, for 
either compressible or incompressible flow. 

 
Streamline Tracing: Pollock’s Algorithm. To compute time of flight, essentially all streamline 

codes follow a construction due to Pollock14, in which the transit time from an initial point in space is 
built up one cell at a time and there is a single velocity per cell face. The basic idea is to utilize a sub-grid 
block velocity model that follows from the assumption that each component of the velocity varies linearly 
between the values on the appropriate pair of cell faces, Eq. 16. This velocity model can be implemented 
using the numerical solutions for fluid velocities (fluxes) at the block faces. 
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The streamline trajectories and time of flight within the gridblock can be computed by a direct 
integration of the cell velocities, Eq. 17. 
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The time of flight can be integrated explicitly, and independently, for each direction. The integral 
solution in the x-direction starting from location x0 is presented in Eq. 18. 
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The index i=1,2 indicates the grid block faces in the x- direction. Identical constructions will arise 
when integrating in the y- and z-direction. Thus, the actual cell time of flight for the particle will be given 
by the minimum over allowable edges, 
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Knowing the particle time of flight, its exit coordinates can now be obtained by simply rearranging 
Eq. 18. 
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Streamline and Time of Flight Calculations in Corner Point Cells. Corner point geometries are 

attractive and widely used due to their ability to model complex and demanding reservoir structures. 
Various generalizations of Pollock’s approach are available to handle grid-associated complexities; the 
most basic is the extension of Pollock’s velocity interpolation algorithm to corner point cells. We follow a 
construction due to Cordes and Kinzelbach15 (CK) in which the corner point cell is transformed back to a 
unit cube. In that cube Pollock’s algorithm can be applied, although there are some additional 
complexities introduced by the transformation. We will provide a simplified treatment for the CK 
solution, which will make it as easy to implement as Pollock’s solution in rectangular cells. 

Corner Point Cells and the Isoparametric Transformation. Before calculating streamlines and time 
of flight in the corner point cells, we must first mathematically describe the cell geometry. The cell is 
defined as a tri-linear mapping, from the unit cube into physical space16. The trilinear interpolant in x-
direction is defined in Eq. 21. The same relationship will be used for both y- and z-direction. 
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The Jacobian of the transformation to the unit cube may be used to determine the cell volume, since it 
is the ratio of physical volume to unit volume, Eq. 22. 
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This calculation of the cell volume may be performed analytically. The special case for rectangular 
cells, is obtained for ( ) DZDYDXJ ⋅⋅=γβα ,, . 

Cordes and Kinzelbach Extension. Let’s return to Pollock’s algorithm in three dimensions and 
rephrase the results in a way to ease the transition to corner point cells. We can re-write the equations in 
dimensionless variables using the fractional distances through all three coordinate directions, Eq. 23 
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We will also convert the directional Darcy velocities into volumetric fluxes using the cross-sectional 
areas, Eq. 24. These fluxes each vary linearly across the cell such that a simple linear interpolation can be 
applied to compute the principal velocity components at points within a cell. 
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The same set of equations used to apply Pollock’s algorithm can be re-written using the rate of change 
in the particle’s velocity components as it moves through the cell, Eq. 25. 
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Note that these set of equations are identical to Eq. 17. We have simply expressed the equation in 
terms of dimensionless distances and volumetric fluxes. No new results have been provided at this stage. 

Cordes and Kinzelbach provided a simple and elegant generalization of Eq. 25 for computing 
trajectories and the time of flight in corner point cells, based on two assumptions: 

1. Linearly interpolate volumetric flux, instead of velocity 
2. Use the Jacobian instead of cell volume to relate flux and velocity 
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Note that the above equation has the same form as Eq. 25 except that the cell volume has been 
replaced by the Jacobian. For a corner point cell in three dimensions, we now posit the following velocity 
model, analogous to the equations for rectangular cells.  
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The Jacobian is essentially a cross-sectional area times a physical distance, and so the right hand side 
in each equation is the Darcy velocity, normalized by the cell length in that direction. The physical 
velocity is obtained from these scaled (α, β, γ) velocities by application of the chain rule. In component 
form: 
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The volumetric fluxes will be linearly interpolated between the respective face fluxes. 
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We have used the simplifying notation, { } { }zyxj QQQjQ ,,3,2,1 ==  and { } { }γβαα ,,3,2,1 ==jj . 

In principle, we can now integrate Eq. 26 to compute the time of flight and trajectories. Unfortunately, 
these trajectories are much more difficult to integrate than for rectangular cells, as all three parameters are 
coupled through the Jacobian. The process of integration can be long and cumbersome. 

 
Reformulation Accounting for Varying Jacobian. A significantly simpler development for time of 

flight computations in corner point cells, is possible with the introduction of a time-like parameter T that 
increases along the trajectory. We’ll call this parameter the pseudo-time of flight 
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Similar to Pollock’s algorithm, these set of equations can be integrated explicitly, and independently, 
for each direction. Instead of working with velocity, we use the volumetric flux replaced by its linear 
interpolant in each direction. The integral solution in the α-direction is presented in Eq. 31. 
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Identical constructions will arise when integrating in the β- and γ-directions. The actual cell pseudo-
time of flight for the particle will be given by the minimum over allowable edges, 

 

( )212121 ,,,,, zzyyxx TTTTTTPositiveMinT ∆∆∆∆∆∆=∆ . (32) 
 

Once the pseudo-time of flight T is known, the exit coordinate of the particle is easily calculated using 
the general solution of Eq. 31 in all three directions and solving for each unit coordinate. 
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Knowing the unit space coordinates (α,β,γ), Eq. 33, we use the tri-linear interpolants in Eq. 21 to 
transform the unit coordinates to the physical space (x,y,z). 

So far Pollock’s technique has been extended to sketch the streamlines in the unit cube using linear 
flux interpolants instead of velocity. The pseudo-time of flight T, has been introduced as a time-act 
variable and it is also used as a unit-cube coordinate tracer. However, half the problem remains to be 
solved: How can this pseudo-time of flight be transformed to real time? 

Eq. 30 reminds us that streamlines are representations of the velocity. They are not necessarily 
particle trajectories. In this instance, T is a more convenient parameter for determining these trajectories, 
than τ. To within constant scaling factors, the equations for α(T), β(T), γ(T) are now identical to the 
Pollock equations in a three dimensional rectangular cell, just as in Eq. 18. After obtaining their solution, 
we can determine τ  from the remaining integral: 

 

( ) ( ) ( )( )∫= T dTTTTJ0 ,, γβαφτ . ............ (34) 
 

In the above integral, α, β, and γ are all known functions of T. Each parameter will depend upon T 
through constructions of the form ( ) cecT 1− , and the Jacobian is a polynomial in α, β, and γ. The 
resulting integrand is a sum of exponentials and constants, which can be integrated analytically. 

 
Jacobian Calculations and Implications. The CK reformulation discussed previously did not require 

the explicit calculation of the Jacobian during streamline tracing using the variable T. However, the 
Jacobian (and its spatial variation) is necessary to calculate the time of flight, τ from T using Eq. 30. 
Prévost7 et.al. also proposed a reformulation of the Kinzelbach approach for streamline tracing in corner 
point cells. Their approach is illustrated in Fig. 9. 

In 2-D, each quadrilateral is mapped into a unit cell and tracing is performed in the transformed space 
using Pollock’slgorithm as in the CK formulation. Consistent with Eq. 25, Prévost et.al. used a scaled 
flux during tracing in the transformed space. To simplify the pathline integration, it was suggested that 
scaling be done by replacing the Jacobian by the constant cell volume in physical space. This approach 



 

leads to correct trajectories but the implications for the time of flight calculation were not examined. 
It is important to take into account the variation in the Jacobian within the cell to accurately reflect the 

velocity variations along a trajectory. To emphasize this point, let’s contrast Eq. 34 with the 
approximation of replacing the Jacobian by the cell volume, 

 

( )∫∫∫⋅⋅= γβαγβαφτ dddJT ,,~ ........... (35) 
 

We will work with the simplest of flows, uniform horizontal and uniform vertical velocities in a 
wedge-shaped cell, Fig. 10 and Fig. 12, for which we know the correct trajectories and transit times. In 
Fig. 10 we see that in the physical space the streamlines are straight, as expected, while in the unit square 
they are distorted. In Fig. 11 we show the calculated time of flight as a function of initial position on the 
left hand side of the wedge. Of course, the correct solution is also a wedge. We show the plot of both τ 
and the approximationτ~ . The plot based upon τ~  does not correctly represent the shape of the wedge: it 
is not a pair of straight lines. We also show the maximum error in ττ −~  as a function of the thickness 
ratio 12 DZDZ . As the cell aspect ratio gets more extreme, the discrepancy can become quite large. 

The same analysis was repeated with an even simpler flow pattern. For the same wedge, consider 
uniform vertical flow, starting at the bottom of the wedge, Fig. 12. Now the streamlines are trivial both in 
the physical wedge and in the unit square. Fig. 13 shows that the approximation τ~  does not vary with 
cell thickness. The maximum error in ττ −~  is also plotted as a function of thickness ratio. A 100% error 
in the calculated time of flight will arise at a cell pinch out. 

There is a more insidious error introduced by replacing τ  with the approximationτ~ . Consider Eq. 28 
for the CK velocity field. The derivation that this velocity field is incompressible, requires that the spatial 
gradients of the Jacobian cancel the other terms that arise when taking the gradient of u

r
. If we replace the 

Jacobian with a constant, the resulting velocity field will no longer be incompressible. This breaks the 
fundamental relationship used to associate volumes and transit time, necessary for quantitative streamline 
simulation. 

 
Unstructured Grids: Triangular and Tetrahedral Cells. Unstructured grids are gaining popularity 

because of the increasingly complex well architecture used in the industry. They have an additional 
advantage: as geometries get more complex they can satisfy multiple constraints in a way that is difficult 
for structured grids. For instance, it is very easy to generate unstructured grids at reverse faults, while 
structured grids may be impossible to build, depending upon other constraints. 

Unstructured grids come in many sorts. However, in some sense, they may all be reduced to triangles 
in two dimensions or to tetrahedral elements in three. In two dimensions, the computational domain is 
split into many triangles defined by node points, and the pressures are calculated at each of these nodes. 
Application of Darcy’s law generates a constant velocity within each triangular element. Streamlines can 
be traced from element to element using these constant velocities, and the time of flight can be 
accumulated across the elements. Spatial errors will arise, if the underlying velocity model does not have 
sufficient degrees of freedom to ensure that the velocity and flux are continuous on all element faces. As a 
result the traced trajectories will not approximate the underlying streamlines and the subsequent time of 
flight calculation15. 

We can approach the problem of generating a continuous velocity field either by introducing a higher 
order model for velocity, or by refining our triangular elements into sub-elements. The development we 
follow is about generating consistent velocity models; we again turn to Cordes and Kinzelbach15 (CK), 
Fig. 14, and the more recent work of Prévost7, Fig. 15. Both developments start by defining a control 
volume in which the domain is covered with triangular elements, Fig. 14(a) and Fig. 15(a). Prévost made 
a very interesting observation, which can be used to further simplify the CK construction. Each triangular 
element is split into three quadrilaterals, Fig. 15(c). Instead of further refining these quadrilaterals to 
obtain sub-triangles, Fig. 14(c), it is possible to use the corner point cell solution discussed in the previous 
section and to trace streamlines across the quadrilaterals. This has several advantages over the use of sub-
triangles: 

• Fewer sub-
elements. In 2-D there are three sub-quadrilaterals, instead of six (or four, when merged) sub-triangles, 
(Fig.X). 

• Generalizati
on to 3-D. There are only four sub-hexahedra, instead of 24 (or 17, when merged) sub-tetrahedra, Fig. 16. 

• Treatment 
of compressibility. Unlike the model of constant velocity, there are sufficient degrees of freedom in the 
sub-hexahedra to satisfy 0≠•∇ u

r
. 



 

 
Implications on Displacement Calculation. How do the tracing algorithms and time of flight 

calculations perform in reproducing the displacement behavior in complex grid geometries? To examine 
this, let us look at the grid in Fig. 17 that represents an on-lapping sequence, a geologic feature whereby 
an initially sub-horizontal stratum laps out against an initially inclined sequence, represented by the 
bottom three layers. We will consider homogeneous properties with an injector at the left and a producer 
on the right. Fig. 17 also shows the streamline trajectories derived with the analytical cell fluxes. In Fig. 
18 we show the time of flight calculations using the two cases discussed before: a spatially varying 
Jacobian within the cell and a constant Jacobian approximated by the cell volume. Clearly, as the cell gets 
distorted (the triangular cells at the onlap boundary), the time of flight calculations without the use of the 
varying Jacobian become erroneous leading to a distortion of the front. We already saw this on a cell 
level, where the error in the τ solution increased significantly depending upon the aspect ratio. This in 
turn will impact the 1-D solutions along streamlines using the time of flight as the spatial coordinate. 

Erros in the Numerical Velocity Field: Grid Orientation Effects 
In the previous section we have presented a simple and exact means of calculating the time of flight 

for arbitrary corner point cells. We also discussed how to extend the formulation to unstructured grids, 
once we have ensured continuity in the velocity and flux within the element faces. We’ll now discuss an 
additional source of spatial error which is associated to inaccurate velocity fields. These inaccuracies can 
be a major source of spatial error particularly in the presence of complex cell geometry, leading to 
significant grid orientation effects on displacement calculations. We examine these effects in some of the 
leading commercial simulators. 

The default grid discretization in most industry-standard simulators employs a five-point 
discretization in two dimensions or a seven point discretization in three dimensions. However when the 
grid is non-orthogonal, or the flow is not aligned with the principal directions of the grid, the solution 
accuracy may be compromised by this discretization. Multi-point schemes try to address this by defining 
a discretization stencil that uses multiple cells to reduce the non-orthogonality component.  

In order to evaluate the accuracy of the numerical velocity field, results from widely-used commercial 
finite difference simulators were compared to analytical solutions. Specifically, we compared the front 
propagation as defined by the time of flight with that obtained from analytic solutions. The analytic 
solution was obtained using potential and stream functions to define the velocity field in homogeneous 
medium with complex cell geometries18. We’ll show here results for the on-lapping sequence already 
presented in Fig. 17. The grid shows two main sedimentary bodies with parallel strata separated by an 
angular unconformity where tilting and erosion of strata were followed by deposition. Fluid will be 
flowing from left to right. To model the flow through the on-lapping zone we used special features 
available in commercial simulators to generate x-direction horizontal non-neighbor connections between 
the active cells on either side of the pinched-out columns. 

Fig. 18 is showing both numerical and analytical time of flight. In the numerical solution, both 
sedimentary bodies are having a considerable front distortion as the geometry is pinching-out. The 
distortion in the upper body is not as severe as the bottom one, however there’s a remarkable difference 
between the times required to reach the same x-location. The bottom body shows a uniform front in the 
first half of the pinch-out, but the second half is characterized for a sudden severe increase on the time of 
flight. In the analytical solution, the time of flight is a straight-line front which is developing from left to 
right. This result is not surprising since the x-direction flow is a uniform evolving front too, and the 
vertical flux component is compensated with the streamline fan-shape nature. 

Trajectory Errors in Faulted Cells 
One of the benefits of corner point cells is the ease with which we may represent faulted reservoirs. 

Each face of a cell may be juxtaposed to two or more cells, depending upon the fault throw and the lateral 
displacements of adjacent cells. Conventional finite difference approaches include these “non-neighbor” 
connections within the solution of the pressure equation and the calculation of flux. How should we treat 
faulted cells within a streamline simulator? We will examine the implications of using Pollock’s velocity 
interpolation model, and then demonstrate a strategy that provides a much better representation for 
streamlines and velocities near faults. 

Consider the simple case of two faulted cells in an impermeable background, Fig. 19. Flow is from 
left to right. At the step between the cells, only the overlap area (between nodes 4 and 5) allows flow. In 
Pollock’s algorithm, we use a linear interpolation of velocity in each direction within a grid block. This 
corresponds to a bi-linear representation of the streamfunction in 2-D. In Fig. 19, with the usual bi-linear 
representation, the streamfunction will increase uniformly vertically, and the velocity will be constant in 
the x-direction within each cell. In Cell A, the bi-linear velocity depends upon ψ1, ψ2, ψ4, and ψ6. There 



 

are four constants in the representation for ψ. They are completely determined from the total flux through 
each of the four cell faces. Although ψ5 is known, it is not part of the representation, and not part of the 
velocity field of Cell A. Similarly, the representation for the velocity in Cell B ignores ψ4. In both cases 
we correctly represent the total flux. How do the contours of the streamfunction appear? The results of 
this contouring calculation are shown in Fig. 20(a), where they are, perhaps, a bit surprising. 

Within each cell, the streamline trajectories are exactly as described: flow is from left to right, and is 
completely horizontal. However, at the cell boundary we see something that is not part of the usual 
streamline tracing algorithm. Instead of continuing immediately outside the face of the cell, the 
streamlines slip. This is shown in more detail in Fig. 20(b), where three individual streamlines are drawn. 

Continuity of the simple bi-linear representation for ψ(x,z) requires slippage of the streamlines 
transverse to the cell face. This is an attempt to compensate for the error that we’ve introduced by having 
straight lines for streamlines within each cell. The impact of this error can be significant. If we did not 
know the streamfunction, and instead we used a tracing algorithm based upon velocity, the resulting 
pathlines would have little correspondence to the streamlines. 

Let us try to trace the streamlines using Pollock’s algorithm, Fig. 21. We have no means of 
representing the discontinuity in flux at the cell faces at the fault. Within Pollock’s velocity model, the 
flux will be distributed uniformly in each cell face. We no longer honor the flux continuity between the 
two cells. 

Consider the time of flight trajectories from the leftmost face of Cell A. For lines that originate 
between nodes 2 and 9, they will leave Cell A between nodes 6 and 5. They will step to the next cell to the 
right, which is impermeable, and they will stop. Lines that start between nodes 9 and 1 will trace to exits 
between nodes 5 and 4, and eventually traced to exit points between nodes 8 and 10, near the top of Cell 
B. Instead, they should have been traced to exit points at the bottom of Cell B’s rightmost face. In short, 
the tracing of trajectories from cell to cell across a faulted cell interface is clearly incorrect. 

In Pollock’s algorithm the exit point from the cell is determined by the intersection of the (horizontal) 
streamline internal to the cell, with the cell face. Instead, for consistency with the distribution of flux on 
the cell face, the exit point must slip. Similarly, a streamline must slip when entering the next cell, to 
compensate for the inadequate velocity model within the cells. The unfaulted streamline model is 
inconsistent with the finite difference flux on the cell face. Further, the velocity model has too few 
degrees of freedom to represent this level of detail. 

What are our possible solutions? We can either add more degrees of freedom to the velocity model, or 
we can refine the original cells until an adequate representation is achieved. We will follow the latter 
approach. It is extremely simple, and it is obvious how to generalize it to more complex geometries. In 
addition, it allows us to re-use the Pollock solution, whose properties we already know. In Fig. 22 we’ve 
split each of the two cells vertically. We can now resolve the flux variations across the fault plane. The 
split on the opposite face is chosen to provide a rectangular cell. The value of the streamfunction at this 
point on the opposite face is known since the flux is distributed uniformly on an unfaulted cell face. These 
higher resolution streamlines honor the fluxes on all faces, and provide an interpolated solution to the 
flow pattern that is completely consistent with the finite difference fluxes. 

When we work in corner point cells, we refine with fixed α, β or γ intervals. Here, for rectangular 
cells, we split at a specific value of Z. Depending upon the juxtaposition of adjacent faulted cells, more 
than one split in Z may be necessary. In three dimensions we may refine in more than one coordinate 
simultaneously, depending upon the division of the cell face into multiple overlap areas. 

Let’s explore the implications of the bi-linear velocity model a bit more, this time in three faulted 
cells, Fig. 23. We will again consider a simple picture, flow from left to right, and we will seal all the 
vertical faces of this model. Again, if we were tracing velocity models instead of contouring the 
streamfunction, we would have incorrectly traced the trajectory beyond the exit from the first cell. Each 
of the three cells must be refined. The flux is still distributed uniformly on the external faces, but it now 
honors the continuity of internal flux. The resulting model with six cells can be used without difficulty for 
streamline tracing using the Pollock algorithm. 

In summary, the underlying velocity model is failing because it has too little spatial resolution, or 
equivalently, too few degrees of freedom. Flux is not continuous at cell faces, and streamlines are exiting 
and entering cells inconsistently with the flux distribution on the cell faces. Large scale, these streamline 
trajectories do not represent the underlying flow field. This is a leading order error for streamline tracing 
and for streamline simulation. 

Summary and Conclusions 
We have examined various aspects of spatial discretization during streamline simulation and how the 

discretization errors impact the accuracy of the solution. Specifically, we have addressed the following 
questions: (i) how are results impacted by the number of streamlines used during simulation, (ii) how 



 

does the discretization along streamline affect the solution accuracy, and (iii) how does the mapping and 
interpolation between streamlines impact the material balance. A major source of discretization and 
mapping error is the use of streamline (‘centerline’) time of flight in the streamtube volumetric 
calculations. This can lead to significant error, particularly in the vicinity of stagnant regions and also in 
the relatively slow velocity areas where the streamtubes have large widths. In addition to material balance 
errors, saturation mapping can also lead to numerical artifacts such as numerical dispersion and grid 
orientation effects. It is important to re-emphasize that these mapping errors are unique to streamline 
simulation. There is no equivalent source of error in finite-difference simulation as no such mapping is 
required. 

We have developed the extension of the time of flight calculation from rectangular cells with linear 
velocities to more complex grids and more complex flow patterns. Linear velocities have been replaced 
by the more tortuous flow patterns generated by non-neighbor connections, e.g., within faulted cells. 
These extensions were necessary for the transition of streamline simulation to the rich set of gridding 
styles in use in the industry.  

We discussed how inaccurate time of flight calculations is a major source of error in complex cell 
geometries. Time of flight calculations must account for spatially varying Jacobian. 

We have shown the importance of having a consistent representation for flux continuity at cell faces. 
This requirement is critical to ensure that pathlines correctly trace from cell to cell. It is as important as 
volume conservation, 0=•∇ u

r
, which constrains the shapes of streamlines within cells. This requirement 

has always been satisfied within the Pollock model because the velocity is uniform on a face. For faulted 
cells, we no longer have uniform normal velocity. Instead the velocity must vary depending upon the 
adjacent cells and fluxes. A local grid refinement approach is simple to apply, even in complex 
geometries, and allows us to take maximum advantage of the Pollock solution. 
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Appendix 
We have seen that in the streamline approach, the time of flight for a streamtube is approximated by 

the time of flight along the centerline of the streamtube. This corresponds to a piece-wise constant 
approximation of the τ (ψ)-integral as shown in Fig. 3. The piece-wise constant approximation assumes 
that the average value of a function f(x) over an interval [0,ε] can be represented by the value of the 
function evaluated at the mid-point of the interval. Thus, the error introduced by this assumption for each 
interval is given by,  
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We can use either a polynomial or a logarithmic function to evaluate the interval error. For a 
logarithmic function we can use the following expression, 
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The average of the function presented in A-1 over the interval [0,ε] is expressed as, 
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The function evaluated at mid-point will be, 
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Replacing Eq. A-3 and Eq. A-4 in the interval error will give, 
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Similarly, for a polynomial function we can use the following expression, 
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Again, the average of the function presented in A-1 over the interval [0,ε] is expressed as, 
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The function evaluated at mid-point will be, 
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Replacing Eq. A-7 and Eq. A-8 in the interval error will give, 
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These functions are actually representative of parts of theτ (ψ)-curve for a ¼-five spot pattern. 



 

Although we’re going to present the proof for a ¼-five spot, this approach is general since any bounded 
function can be approximated by a polynomial function. The polynomial function, A-6, represents the 
interior of the τ (ψ)-curve where the function is bounded and smoothly varying. The logarithmic function, 
A-2, represents the two ends of the τ (ψ)-curve where the function diverges. Using the results in Eq. A-5 
and Eq. A-9, we can estimate the convergence rate of the error from a piece-wise constant approximation 
of the integral under the τ (ψ)-curve. Consider the integral, 
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As we already mentioned, it’s possible to approximate the integral by piece-wise constant intervals 
with the function evaluated at the midpoint of the interval, 
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The error in the approximation of the integral will be given by, 
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Now, consider the τ(ψ) curve for the ¼ five spot pattern. We will treat this curve as consisting of two 
functions: a logarithmic function, )(1 xf  and a polynomial function, )(2 xf  

 

∫ ∑
=

−=
1

0 1
)(1)(

N

i
iI xf

N
dxxfE . .............. (A-13) 

 

This is equivalent to 
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Using the results from Eq. A-5 and Eq. A-9 
 

)1(
12

)2ln1)(1(

..
12
1.)2ln1(

2

3

N
c

N
E

cNE

I

I

++−≈

++−≅ εε
. ......... (A-15) 

 

Thus, the overall convergence will be linear. However, the convergence in the vicinity of the stagnant 
regions where time of flight diverges logarithmically will be )1( NO  whereas convergence in the interior 

of the domain will be )1( 2NO . 
 
 



 

X

Y

1311
1224
1136
1049
961
874
787
699
612
524
437
350
262
175
87

Streamfunction (ψ)

Ti
m

e 
of

 F
lig

ht
 (τ

)

Time of Flight (τ)
W

at
er

 S
at

ur
at

io
n 

(S
w
)

1-D Flood 
along Streamlines

(a) (b)

(c) (d)

X

Y

1311
1224
1136
1049
961
874
787
699
612
524
437
350
262
175
87

Streamfunction (ψ)

Ti
m

e 
of

 F
lig

ht
 (τ

)

Time of Flight (τ)
W

at
er

 S
at

ur
at

io
n 

(S
w
)

1-D Flood 
along Streamlines

(a) (b)

(c) (d)  
 

 Fig. 1− (a) Streamline trajectories (b) Time of flight in (x, y) coordinates. (c) Time of Flight in (τ , ψ) 
coordinates (d) Saturation solution along τ-coordinate for a homogeneous ¼ five-spot. 

 
 

 
 

Fig. 2−Discretization elements in Finite Differences and Streamline Simulation. 

 
  Fig. 3−Time of flight discretization in a 2D homogeneus ¼-five spot pattern. 
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 Fig. 4− Global discretization error convergence as a function of the number of streamlines. 
 

 
 
 
 

 Fig. 5− Cells uses to investigate local error associated with transverse discretization. 
 
 
 
 
 
 

 
 

 Fig. 6− Streamlines and local discretization error in fast flow cell. 
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 Fig. 7− Streamlines and local discretization error in stagnant cell. 
 
 
 
 

 
 
 

Fig. 8− Implications in saturation mapping with increasing streamline density. 
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Fig. 9− Streamline tracing using scaled flux in the unit cell (Prévost et al., 2001). 
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  Fig. 10− Streamlines in a corner point cell (left) and in the unit square (right) for uniform horizontal flow, left 

to right. 
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 Fig. 11− Time of flight (left) and absolute error in time of flight calculations for a wedge. 
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 Fig. 12− Streamlines in a corner point cell (left) and in the unit square (right) for uniform vertical flow, 
bottom to top. 
 
 
 

FRACTIONAL DISTANCE

1.6

1.3

1.0

0.6

0.3

0.2 0.4 0.6 0.8 1.0

TI
M

E 
O

F 
FL

FI
H

G
T τ τ~

THICKNESS RATIO

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

ER
R

O
R

 IN
 T

IM
E 

O
F 

FL
IG

H
T

FRACTIONAL DISTANCE

1.6

1.3

1.0

0.6

0.3

0.2 0.4 0.6 0.8 1.0

TI
M

E 
O

F 
FL

FI
H

G
T τ τ~

THICKNESS RATIO

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

ER
R

O
R

 IN
 T

IM
E 

O
F 

FL
IG

H
T

 
 

 Fig. 13− Time of flight (left) and absolute error in time of flight calculations for a wedge. 
 

 
 

Fig. 14− Cordes and Kinzelbach Flux Interpolation. 



 

 
 

 Fig. 15− Flux Continuity on Sub-Quadrilaterals (Prévost et al., 2001). 
 

 
Fig. 16− Tetrahedral refinement in 3-D. (a) A hexahedral corner of a tetrahedron, corresponding to a sub-

quadrilateral of the control volume. (b)  
 

 
 

Fig. 17− Grid representing on-lap sequence (left) and the streamlines (right). 
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Fig. 18− Time of flight calculations with CK formulation using a spatially varying cell Jacobian (left) and a 
constant Jacobian (right). 
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Fig. 19− Time of flight calculations with analytical velocity field (left) and numerical velocity field(right). 
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 Fig. 16− Two faulted cells sealed at the top and bottom. Flow is from left to right. 
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 Fig. 18− Pollocks’ algorithm applied to two faulted cells sealed at the top and bottom. Flow is from left to 
right. 
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 Fig. 17− (a) Contours of streamfunction for two faulted cells sealed at the top and 
bottom. Flow is from left to right. (b) Three contours selected to demonstrate the 
streamline slippage at cell faces. 
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Fig. 19− Streamlines for two faulted cells using Pollock’s algorithm after vertical cell 
refinement. 
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Fig. 20− Streamlines for three faulted cells using Pollock’s algorithm after vertical cell 
refinement. 
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Abstract 

This research combines a statistical tool called experimental design/response surface methodology with 
reservoir modeling and flow simulation for the purpose of reservoir characterization. Very often, we require a 
large number of reservoir simulation runs for identifying significant reservoir modeling parameters impacting flow 
response and for history matching. Experimental design/response surface (ED/RS) is a statistical technique, which 
allows a systematic approach for minimizing the number of simulation runs to meet the two objectives mentioned 
above. In this work, we discuss the application of ED/RS methodology for the purpose of identifying significant 
geologic parameters in object-based and pixel-based reservoir models. This study is applied to a synthetic fluvial 
reservoir, whose characteristic feature is the presence of sinuous sand filled channels within a background of 
floodplain shale. This particular study reveals the impact of uncertainty in the reservoir modeling parameters on 
the flow performance. Box-Behnken design is used in this study to reduce the number of simulation runs along 
with streamline simulation for flow modeling purposes. The results show that the ED/RS methodology in 
conjunction with a fast streamline simulator provides a powerful tool for studying the effects of uncertainty in 
geologic modeling parameters on reservoir flow behavior. A response surface analysis on the variance of the flow 
responses reveals how the flow behavior and sweep efficiencies are affected by the modeling parameters in both 
object and pixel-based modeling techniques. 

 
 

Introduction 
Reservoir characterization is one of the most important phases in reservoir studies. A reservoir model is 

first developed with static data using a particular type of reservoir modeling technique. Geostatistical simulation is 
one example for deriving a realistic reservoir description. However, the reservoir modeling parameters are highly 
uncertain. Uncertainty in the reservoir model itself introduces an uncertainty in the flow simulation results. As a 
result it becomes necessary to study the impact of uncertain geologic modeling parameters on the flow 
performance. However, these kinds of studies typically require a large number of simulation runs. This suggests 
that it would take too much time to get an accurate description of the reservoir model, rendering the study 
unfeasible for quick decision making. For that reason, this research proposes to combine flow simulation with a 
statistical tool called experimental design and response surface methodology (ED/RS). ED/RS reduces the number 
of simulation runs by intelligently choosing the combinations of reservoir modeling/geologic parameters to change 
within their uncertainty range. 

The objective here is to use experimental design to maximize the information derived from the flow 
simulation of various geologic models. Previous studies have been performed on models generated by pixel-based 
modeling techniques, which essentially follow variogram-based geostatistical algorithms.1-3 Some studies have 
also been performed on object-based models.4,5 This research attempts to assess uncertainty in reservoir modeling 
parameters for both pixel-based and object-based models under similar geologic settings. This gives an insight into 
which modeling parameters are significant in both the modeling techniques and gives us a basis to compare the 
modeling parameters from the two methods. A unique feature of this study is the use of streamline simulation6 as 
the flow simulation technique to get the reservoir performance response. This allows fast flow simulation of 
multiple geologic realizations7, which is absolutely essential for carrying out such a study requiring large number 
of simulation runs. 

Geological uncertainties are associated with each technique. These uncertainties in the geological data for 
each technique are used to constrain the reservoir models. To quantify the significance of a particular geologic 
factor in each modeling method, an experimental design set-up is used. In this case, a Box-Behnken design is used 
to get the factor combinations for each experiment. Reservoir sweep efficiency is used as the response variable. 
The sweep volume efficiency is obtained using streamline flow simulation. Streamline simulation is used since it 
is faster than conventional finite-difference simulation and one can easily obtain the swept volume for waterflood 
cases from streamline simulation computations. The flow simulation result for each experiment helps to build a 
response surface. The response surface quantifies the importance of a particular geologic factor on the response 
variable and allows studying the impact of uncertainty in the geologic parameters on the flow behavior of the 



   

reservoir. Note that the above procedure is performed on both modeling methods. The response surfaces for the 
models from both the methods are then used as a tool to compare the geologic factors from both the methods. This 
study is applied on a synthetic fluvial reservoir, whose characteristic feature is the presence of sinuous sand filled 
channels within a background of floodplain shale. The reservoir models and the modeling parameters to be 
analyzed for each method are described below: 

For object-based models, a hierarchical object-based modeling of complex fluvial facies is used to model 
this synthetic reservoir.8 The task is carried out by FLUVSIM: a program for object-based stochastic modeling of 
fluvial depositional systems.9  Within a layer, the distribution of channel complexes is modeled to honor well data. 
Facies for each layer is specified for each well as the well data. In the model, three facies are present. The first 
facies type is background floodplain shale, which is viewed as the matrix within which the sand objects are 
embedded. The second facies type is channel sand that fills sinuous abandoned channels. This facies is viewed as 
the best reservoir quality due to the relatively high energy of deposition and consequent coarser grain. The third 
facies type is levee sand formed along the channel margins. These sands are considered to be poorer quality than 
the channel fill. The ED/RS methodology would give which parameters significant and how these parameters 
affect the volumetric sweep efficiency, which represents the flow performance of the reservoir. 

The stochastic nature of the object-based models for each scenario comes from the random positioning of 
the channels. This leads to a variance in flow responses for each scenario. Applying an ED/RS methodology would 
then also give us how the modeling parameters affect the stochastic nature in object-based models. For pixel-based 
models, Sequential Indicator Simulation (SIS) is used for the stochastic modeling of fluvial depositional systems. 
The task is carried out by SISIM provided in GSLIB package. SIS is one of the most popular pixel-based 
simulation methods and has been proven effective in many case studies The well data in this case are permeability 
values for each layer indicating the type of facies for that layer. The type of facies considered here for each layer 
are similar to those taken for object-based modeling. Again, the ED/RS methodology would give which 
parameters are significant and how these parameters affect the volumetric sweep efficiency, which represents the 
flow performance of the reservoir. After the above analysis, it is also interesting to compare the modeling 
parameters for both the methods from the response surface results. 

 
Methodology 

This section would first discuss the theory behind Box-Behnken designs in detail. This is followed by 
fundamentals of streamline simulation and the method to compute sweep efficiency. The next section discusses the 
method to identify significant modeling parameters and to quantify the impact of their uncertainty on sweep 
efficiency in both object and pixel-based modeling methods. 

Box and Behnken (1960) developed a family of efficient three-level designs for fitting second-order 
response surfaces. The class of designs is based on the construction of balanced incomplete block designs. The 
Box-Behnken design is an efficient option for factors with three evenly spaced levels. The sample sizes provide 
sufficient information for testing lack of fit.   

Another important characteristic of the Box-Behnken design is that it is a spherical design. Note, for 
example, in the Box-Behnken design shown in Fig. 1, all of the points are so-called “edge points” (i.e., points that 
are on the edges of the cube); in this case, all edge points are at a distance 2  from the design center. There are 
no factorial or face points. The Box-Behnken design involves all edge points, but the entire cube is not covered. In 
fact, there are no points on the corner of the cube or even at a distance 3  from the design center. The lack of 
coverage of the cube should not be viewed as a reason not to use Box-Behnken. It is not meant to be a cuboidal 
design. However the use of the Box-Behnken should be confined to situations in which one is not interested in 
predicting response at the extremes, that is, at the corners of the cube. If three levels are required and coverage of 
the cube is necessary, one should use a face center cube rather than a Box-Behnken design. In our case, we assume 
that within the parameter range, the most probable values lie near their center values. The extreme values of the 
parameters are kind of unrealistic and we do not need accurate predictions at extreme values. For that reason, we 
choose a Box-Behnken design over Face Center Cube. 

The spherical nature of the Box-Behnken, combined with the fact that the designs are rotatable or near 
rotatable, suggests that ample center runs should be used. In our particular case since we have four parameters, use 
of 4 centerpoint or center runs are recommended for Box-Behnken design. Box-Behnken design is a second-order 
design. This means that the design results in a second-order polynomial response surface model. The second-order 
response surface model can be written as follows, 
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where, 
y    = response variable, subscripts: i= number of coefficient, j= number of response, k = number of 

parameters, x   = parameter value 



 

The column vector of coefficients b
r

 in the above equation are found by solving: 
 

yXXXb rr
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[X]: row rank = number of design points 
       column rank = number of regressors 
 y
r

: column vector of observed responses 
 
The streamline approach provides a unique advantage in computing swept volumes (which is the 

response parameter in this study) under the most general conditions. The key underlying concept here is the 
streamline time-of-flight proposed by Datta-Gupta and King.6 The swept volume being a fundamental quantity is 
expected to correlate with recovery regardless of the displacement process. The fundamental quantity in the 
streamline simulation is the time-of-flight which is simply the travel time of a neutral tracer along the streamlines. 
The time of flight at a particular gridblock with dimensions x, y and z can be defined as, 
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We can rewrite Eq.3 in a different form as follows 
       
 φτ =∆.u               (4) 
 
The velocity field for a general three-dimensional medium can be expressed in terms of bi-

streamfunctions ψ  and χ  as follows 
 

χψ ∇×∇=u
r

              (5) 
        
A streamline is defined by the intersection of a constant value for ψ  with a constant value of χ . 

Streamline techniques are based upon a coordinate transformation from the physical space to the time of flight 
coordinates where all the streamlines can be treated straight lines of varying lengths. This coordinate 
transformation is greatly facilitated by the fact that the Jacobian of the coordinate transformation assumes an 
extraordinarily simple form, 
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where we have utilized Eq. 4 and Eq. 5. Thus we have the following relationship between the physical 

space and the time of flight coordinates following the flow direction, 
 

χψτφ ddddxdydz =               (7) 
 
It is now easy to see that the coordinate transformation also preserves pore volume, an essential feature 

for computing volumetric sweep efficiency. In three-dimensional flow, we can derive the following expressions 
for swept volumes 
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where, θ  is the Heaviside function and the integral represents the time of flight that are less than the time 

of interest. Rather than evaluating such complex integrals in 3-D, the swept volume can be obtained by examining 
the connectivity in the streamline time-of-flight. Eq. 8 can be interpreted as simply the connected areas or volumes 
for a given time-of-flight. Eq. 8 can be approximated as follows 

 
  ∫ −∑= )()()()( iqtid

i
tsweptV ψτθψτ            (9) 



   

 
where, θ  is the Heaviside function, )( iq ψ  is the volumetric flow rate assigned to the streamline iψ  and 

i is the number of streamline. 
Consider a 3-D Cartesian array of face connected cells. We can define an indicator variable at each cell 

based on the time-of-flight. For example, a cell is coded as ‘unswept’ if the time-of-flight at the analyzed cell is 
greater than the time of interest and as ‘swept’ if it is less than or equal to the time of interest. Scanning through 
the 3-D array and adding the pore volumes of the ‘swept’ cells we can obtain the swept volume at the time of 
interest. We can then compute the swept volume efficiency by simply dividing the total pore volume. Also, the 
accuracy of swept volume calculations will deteriorate if the cell size becomes too large. 

From the above discussion, it is clear that the swept volume is a good choice as a measure of reservoir 
recovery for waterflood operations. It becomes easy to compute this particular response variable quickly for 
multiple scenarios within the experimental design. 

 
Object-based models 

For this particular study, we consider a fluvial reservoir whose characteristic feature is the presence of 
sinuous sand-filled channels within a background of floodplain shale. From a reservoir modeling perspective, it is 
convenient to view fluvial reservoirs with a hierarchical classification scheme.8 This genetic hierarchy of 
heterogeneities may then be quantitatively modeled by successive coordinate transformations and objects 
representing lithofacies associations. Permeability models are constructed at the appropriate scale using coordinate 
systems aligned with depositional continuity. For this study, we will use a GSLIB-style program named 
FLUVSIM which is a computer code for such hierarchical object-based modeling and uses simulated annealing 
and non-random perturbation rules for conditioning to extensive well data.9 

The modeling parameters selected for this study are shown in Table 1. The selection of the modeling 
parameters is largely subjective. It is important to use a sound judgement while selecting modeling parameters. In 
this study, we assume the  parameters to be largely uncertain and to have a large impact on the flow responses. 
Table 1 also shows the factor ranges. The factor ranges are scaled from –1 to +1. Factor combinations for the 
simulation models are specified by a 28 experiment Box-Behnken design for the four-factor stochastic model sets. 
Flow simulation is performed on five realizations at each design point for the stochastic permeability field. The 
stochasticity in the object-based models comes from the random positioning of the channels. 

The synthetic reservoir model for this study (Fig. 2) is a 50x50x10-gridblock model with an injector and 
producer in a Quarter 5-spot pattern. The size of each gridblock is 20x20x10 feet. 

Table 2 shows the Box-Behnken experimental design for the object-based reservoir scenarios. The first 
column indicates the experiment number and the dotted cells in the next four columns represent the levels of the 
four modeling parameters for each experiment. The sixth column represents the mean sweep volume efficiencies 
obtained by performing streamline simulation on five stochastic realizations of each of the 28 scenarios. The 
seventh column is the standard deviation of the sweep volume for each scenario. The stochastic nature of each 
scenario is a result of random positioning of channels for a particular scenario in an experiment. Figs. 3a, b and c 
show the permeability, swept volume (at 5000 days) and travel time plot for a particular experiment. This scenario 
has high channel dimensions and low channel sinuosity. The travel time plot clearly shows that the high 
permeability channel zones near the injector are swept almost instantaneously. Similarly we can visualize similar 
plots for different scenarios to see how our uncertainty in modeling parameters would effect the sweep and travel 
time plot of the reservoir. Once the flow simulation results for all experiments are obtained we can analyze the 
design, with response surface methodology, for identifying significant parameters and for response uncertainty 
assessment. 

The identification of significant reservoir modeling parameters is achieved by the response surface 
methodology. The response surface can be directly obtained from the flow responses in the experimental design. 
In this study, the form of the response surface equation for the object-based model is a function of the modeling 
parameters.  
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Table 3 shows the response surface regression results obtained using statistical software called 

EREGRESS.10 The first column indicates the coefficient that is computed and the second column shows its value. 



 

The third column is the Pr-significant value. The Pr-significant value cut-off for the factor to be significant is 
chosen as 0.005. This means that the coefficients with Pr-significant value smaller than 0.005 are significant. The 
fourth column shows the standard error in the estimation of a particular response surface coefficient. The fifth and 
sixth columns show the –95% and +95% confidence values respectively for a particular response surface 
coefficient. The highlighted rows show coefficients for parameters that have a significant impact on the flow 
response. Before using this response surface equation to predict sweep efficiency values over the whole parameter 
range, we test this response surface model for the experimental design points, for which we have the responses 
obtained from streamline simulation. Fig. 4 shows a plot of predicted sweep efficiency v/s calculated sweep 
efficiency. The predicted sweep efficiencies are the ones from the response surface model and the calculated 
sweep efficiencies are the flow simulation results as shown in Table 2. The plot shows a very high correlation 
coefficient (0.9427) validating the response surface model results. A plot of residuals (difference between 
calculated and predicted sweep volume) v/s the predicted sweep volume (Fig. 5) shows that the residual values are 
of the order of magnitude of 10-2. This allows us to further use the response surface as a predictive tool to obtain 
flow responses over the whole parameter uncertainty range. Figs. 6a, b, c, d, e, f and g show the response surface 
over the uncertainty range of different modeling parameters. 

The response surface can then be utilized to predict the scenarios for which we have high and low values 
of sweep efficiency. Table 4 shows the scenarios predicted to have the best and worst sweep efficiencies and 
Figs.7a and b show the corresponding permeability fields, sweep volumes and time-of-flight plots for the two 
scenarios. The best-case scenario (Table 4) has a very high sandstone ratio, very low channel dimensions and high 
channel sinuosity. Hence we see a large number of small channels covering all the areas of the reservoir (Fig. 7 a). 
Also the permeability contrast between sandstone and shale is low for the best-case scenario. All these parameter 
combination lead to high sweep efficiency (56.7%).  On the other hand, the worst-case scenario (Table 4) has high 
channel dimensions, low sandstone ratio and low channel sinuosity. This results in less number of channels 
covering only some areas of the reservoir (Fig. 7 b). The high permeability contrast between sandstone and shale 
further reduce the sweep volume. All these parameter combination lead to low sweep efficiency (11.2%). 

From Table 3 and Fig. 6 we can conclude that the following uncertain modeling parameters have a 
significant impact on the flow response: 

• Petrophysical properties (channel and levee sand permeabilities) 
• Sandstone Ratio 
• Interaction parameter of channel dimensions and petrophysical properties 
• Interaction parameter of sandstone ratio and petrophysical properties. 
The petrophysical properties have the largest impact on the flow responses. Figs. 4 and 5 also indicate 

that we can use the response surface as a tool to predict flow responses without spending resources on numerical 
simulation in object-based models. Also, the response surfaces in Fig. 6 provide quick insights into flow response-
parameter relationships. It is also clear that the uncertainty in certain object-based modeling parameters has a large 
impact on the flow responses. Also, the response surface can predict the scenarios for which we get the best and 
the worst flow response. 

 
 

Pixel-based models 
A similar synthetic fluvial reservoir which we modeled using object-based modeling technique is now 

modeled using a pixel-based technique. We use sequential indicator simulation (SIS), which is a pixel-based 
simulation algorithm that builds a categorical image, pixel after pixel, by drawing from a non-parametric 
conditional distribution. Unlike object-based models, for pixel-based algorithms, the resulting geometries (for each 
category) tend to be noisy. However, conditioning to well data is not a problem in pixel-based methods like SIS. 
We use an indicator simulation with three categories since we have three facies similar to the ones in the reservoir 
model used in object-based technique. For this particular study, we use the GSLIB sisim program.11  

For the single multiple indicator simulation the following sequence is adopted. The indicator is defined 
by three categories, each category representing a particular facies. Also the well data is represented as indicator 
data for each layer in the reservoir model. We carry out a sequence of indicator krigings at each node, conditional 
to neighboring original well indicator data and previously simulated indicator values. This indicator kriging 
requires the 3D variogram of the indicator variable. The parameters used to model this indicator variogram (range, 
sill and nugget) can be highly uncertain. Geological interpretation of the channel sizes usually helps us in 
evaluating the uncertainty of the variogram range. The sum of sill and nugget is set to 1 and both the sill and 
nugget are varied accordingly to study their impact on flow responses. 

The modeling parameters selected for this study are listed in Table 5. The sandstone ratio is changed by 
changing the sandstone pdf cut off value, which indicates the probability of sandstone facies in the reservoir 
model. The channel and levee sand permeability range is the same as that in object-based models. 



   

Table 5 also shows the factor ranges. The factor ranges are scaled from –1 to +1. Factor combinations for 
the simulation models are specified by a 28 experiment Box-Behnken design for the four-factor stochastic model 
sets. Five realizations are run at each design point for the stochastic permeability field. 

The synthetic reservoir model for this study is a 50x50x10-gridblock model with an injector and producer 
in a Quarter 5-spot pattern. The size of each gridblock is 20x20x10 feet. This reservoir is the same as used in 
object-based modeling. 

Table 6 shows the Box-Behnken experimental design for the pixel-based reservoir scenarios. The first 
column indicates the experiment number and the dotted cells in the next four columns represent the levels of the 
four modeling parameters for each experiment. The sixth column represents the mean sweep volume efficiencies 
obtained by performing streamline simulation on five stochastic realizations of each of the 28 scenarios. The 
seventh column is the stamdard deviation of the sweep volume for each scenario.  

Figs. 8a, b and c show the permeability, swept volume (at 5000 days) and travel time plot for a particular 
experiment. This scenario has a high variogram range and low sandstone ratio. The travel time plot clearly shows 
that the high permeability channel zones near the injector are swept almost instantaneously. Similarly we can 
visualize similar plots for different scenarios to see how our uncertainty in modeling parameters would affect the 
sweep and travel time plot of the reservoir. Once the flow simulation results for all experiments are obtained we 
can analyze the design, with response surface methodology, for identifying significant parameters and for response 
uncertainty assessment. 

The identification of significant reservoir modeling parameters is achieved by the response surface 
methodology. The response surface can be directly obtained from the flow responses in the experimental design. 
In this study, the form of the response surface equation for the pixel-based model is a function of the modeling 
parameters.  
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Table 7 shows the response surface regression results obtained using statistical software called 

EREGRESS.10 The first column indicates the coefficient that is computed and the second column shows its value. 
The third column is the Pr-significant value. The Pr-significant value cut-off for the factor to be significant is 
chosen as 0.005. This means that the coefficients with Pr-significant value smaller than 0.005 are significant. The 
fourth column shows the standard error in the estimation of a particular response surface coefficient. The fifth and 
sixth columns show the –95% and +95% confidence values respectively for a particular response surface 
coefficient. The highlighted rows show coefficients for parameters that have a significant impact on the flow 
response. Before using this response surface equation to predict sweep efficiency values over the whole parameter 
range, we test this response surface model for the experimental design points, for which we have the responses 
obtained from streamline simulation. Fig. 9 shows a plot of predicted sweep efficiency v/s calculated sweep 
efficiency. The predicted sweep efficiencies are the ones from the response surface model and the calculated 
sweep efficiencies are the flow simulation results as shown in Table 6. The plot shows a very high correlation 
coefficient (0.9771) validating the response surface model results. A plot of residuals (difference between 
calculated and predicted sweep volume) v/s the predicted sweep volume (Fig. 10) shows that the residual values 
are of the order of magnitude of 10-2. This allows us to further use the response surface as a predictive tool to 
obtain flow responses over the whole parameter uncertainty range. Figs. 11a, b, c, d, e, f and g show the response 
surface over the uncertainty range of different modeling parameters. 

The response surface can then be utilized to predict the scenarios for which we have high and low values 
of sweep efficiency. Table 8 shows the scenarios predicted to have the best and worst sweep efficiencies and 
Figs.12 a and b show the corresponding permeability fields, sweep volume and time-of-flight plot for the two 
scenarios. The best case scenario (Table 8) has a very high sandstone ratio and very high variogram range. Since 
the variogram range is directly proportional to the length of the channel, we see a large number of continuous 
channels covering all the areas of the reservoir (Fig. 12 a). Also the permeability contrast between sandstone and 
shale is low for the best-case scenario. All these parameter combination lead to high sweep efficiency (59.78%).  
On the other hand, the worst-case scenario (Table 8) has low variogram range and low sandstone ratio. This results 
in less number of channels covering only some areas of the reservoir (Fig. 12 b). The high permeability contrast 
between sandstone and shale further reduce the sweep volume. All these parameter combination lead to low sweep 
efficiency (0.1763%). A high nugget setting for both the scenarios indicates a pure nugget effect. For best-case 
scenario, the pure nugget effect results in a large number of continuous channel networks throughout the reservoir 



 

due to its large variogram range and high sandstone ratio. This leads to a high swept volume. For the worst-case 
scenario, the pure nugget effect results in a small number of discontinuous channels throughout the reservoir due 
to its small variogram range and low sandstone ratio. This leads to a low swept volume. 

From Table 7 and Fig. 11 we can conclude that the following uncertain modeling parameters have a 
significant impact on the flow response: 

• Petrophysical properties (channel and levee sand permeabilities) 
• Sandstone Ratio 
• Variogram nugget 
• Quadratic Parameters of the petrophysical properties, sandstone ratio and Variogram Nugget 
• Interaction parameter of sandstone ratio and petrophysical properties. 
As in the object-based models, the petrophysical properties have the largest impact on the flow responses. 

Figs. 9 and 10 also indicate that we can use the response surface as a tool to predict flow responses without 
spending resources on numerical simulation in object-based models. Also, the response surfaces in Fig. 11 provide 
quick insights into flow response-parameter relationships. It is also clear that the uncertainty in certain pixel-based 
modeling parameters has a large impact on the flow responses. The response surface can also predict the scenarios 
for which we get the best and the worst flow response. 

 
Discussion 

It is interesting to compare the results from the object-based and pixel-based models. The overall mean 
swept volume efficiency in both the modeling techniques is approximately the same. For object-based modeling 
technique the overall mean (b0) is 32.6% (Table 3). For pixel-based modeling technique the overall mean (b0) is 
30.6% (Table 7). Also, the sandstone channel permeability is the most significant parameter in both the modeling 
techniques since it has the largest impact on flow responses in both the modeling techniques. 

We can derive a physical meaning by checking the response surface behavior over individual parameters. 
For example in Fig. 11c, the response first increases with an increase in the nugget value (and a variable channel 
permeability value) and then decreases as the nugget value approaches 1. This is because at a low nugget value, 
the channels tend to be continuous and we observe very little anisotropy. This results in lower sweep efficiency. 
As the nugget value increases, the channels become more discontinuous which results in greater anisotropy.  
Hence we would then observe higher sweep volume. However at nugget values approximately greater than 0.4 
(rescaled value), the channels become highly discontinuous. This results in a loss in connectivity of the high 
permeability channels leading to a lower swept volume. 

Increasing the sandstone permeability increases the permeability contrast with the permeability of the 
surrounding shale matrix (which we assume to be constant), resulting in all the injected water flowing through the 
high permeability sandstone channels. This would then result in low sweep efficiency. Lower sandstone channel 
permeability decreases the permeability contrast, which then results in an increase in sweep volume. This feature 
is captured by the response surface.The significance of interaction parameters, especially between sandstone ratio 
and petrophysical properties, on flow responses indicates that flow behavior would change with respect to 
sandstone ratio if the petrophysical properties are changed and vice-versa. Another important significant 
interaction parameter is between channel dimensions and petrophysical properties.  

As mentioned before, we performed fast streamline simulation on five different realizations within each 
scenario for both object and pixel-based models. It is then interesting to see the response surface of the variance of 
the flow response for each scenario for object-based models. The variance in object-based model is due to its 
stochastic nature, which comes from the random positioning of the channels for different random numbers within a 
scenario. For carrying out the response surface analysis of variance of sweep efficiency we perform streamline 
simulation on fifteen realizations for each scenario. This would give us a more accurate value of the variance for 
each scenario, which is due to random positioning of channels in each realization. The variance for each scenario 
represents the stochastic nature for that particular set of parameter values. Figs. 13a, b, c, d, e and f show the 
response surfaces for variance in sweep volume with respect to the object-based modeling parameters. This figure 
then gives a useful insight as to how the uncertainty in modeling parameters affects the flow response in object-
based modeling technique. This exercise would be extremely useful to rank stochastic object-based reservoir 
models that also have uncertain modeling parameter ranges. We can have parameter values at which the flow 
response is the best and worst (Table 4 and Figs 7) and the parameter values at which the variance in sweep 
volume due to stochastic nature is minimum and maximum (Table 9 and Figs 14). Fig.14a and b show the 
permeability field of the minimum and maximum sweep effciency variance case scenario. Fig. 14a clearly shows a 
large number of low sinuosity channels running through the whole reservoir. Since the variance in swept volume 
comes from the random positioning of the channels, the variance in swept volume for this permeability scenario 
would be negligible. Fig. 14b. shows very few low sinuosity channels running through the reservoir. This indicates 
that the swept volume would largely depend on where these channels are positioned. Hence we observe a large 
variance in swept volume for this permeability scenario. Flow response in the scenario, with minimum sweep 



   

efficiency variance, is least affected by the random positioning of the channels. Flow response in the scenario, 
with maximum sweep efficiency variance, is largely affected by the random positioning of the channels.  

 
Nomenclature 

 t  time 
 ur  total Darcy velocity 
             q  volumetric flow rate 
             θ  Heaviside function 
 τ  time of flight 
 φ  porosity 
 χψ ,  bi-streamfunctions 
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Table-1 Modeling parameters: range and scaling for object-based models 
 



 

Levels
Parameter Name -1 0 1

Channel Dimensions
Thickness (ft) 0.25 -- 1 1 -- 2 2 -- 5

width/thickness ratio 15 -- 25 25 -- 75 80 -- 100
Sand Ratio 0.2 0.35 0.5

Petrophysical Prop
channel perm (md) 10 100 1000

channel margin perm (md) 1 10 100
Sinuosity (ft) 50 100 150  

 
 
 
 

 
Table-2 Experimental Design: object-based model 

 
Channel Dim Sand Ratio Petrophysical Sinuosity

Exp # -1 0 1 -1 0 1 -1 0 1 -1 0 1 Vol.Sw Eff % Std Deviation
1 h h h h 27.18% 8.10%
2 h h h h 35.48% 3.12%
3 h h h h 21.57% 8.97%
4 h h h h 37.01% 3.15%
5 h h h h 43.66% 2.21%
6 h h h h 32.57% 2.04%
7 h h h h 30.59% 2.04%
8 h h h h 50.65% 0.71%
9 h h h h 25.23% 4.15%
10 h h h h 55.05% 1.54%
11 h h h h 29.12% 1.57%
12 h h h h 52.59% 0.45%
13 h h h h 32.43% 0.86%
14 h h h h 38.22% 0.91%
15 h h h h 41.58% 1.96%
16 h h h h 28.66% 0.54%
17 h h h h 11.73% 1.58%
18 h h h h 30.04% 0.27%
19 h h h h 33.47% 3.24%
20 h h h h 35.31% 4.47%
21 h h h h 40.16% 1.32%
22 h h h h 26.00% 10.83%
23 h h h h 34.62% 0.82%
24 h h h h 25.41% 1.81%
25 h h h h 44.15% 0.27%
26 h h h h 45.67% 3.96%
27 h h h h 23.38% 1.85%
28 h h h h 43.86% 4.41%  

 
 
 
 
 

Table-3 Response surface coefficients: object-based models 
(Significant coefficients are shaded) 

 



   

Coeff value P value Std Error -95% 95%
b0 0.326 8.106e-11 0.01729 0.288 0.363
b1 -0.03271 0.00600 0.00998 -0.05427 -0.01115
b2 0.07472 4.589e-06 0.00998 0.05315 0.09628
b3 -0.09959 1.845e-07 0.00998 -0.121 -0.07803
b4 0.01747 0.104 0.00998 -0.00410 0.03903
b5 -0.02615 0.08675 0.01411 -0.05664 0.00434
b6 0.02089 0.163 0.01411 -0.00960 0.05138
b7 0.03890 0.01635 0.01411 0.00841 0.06939
b8 0.01961 0.188 0.01411 -0.01088 0.05010
b9 0.00934 0.598 0.01729 -0.02801 0.04669
b10 0.05856 0.00486 0.01729 0.02121 0.09591
b11 0.02803 0.129 0.01729 -0.00932 0.06537
b12 0.05801 0.00517 0.01729 0.02066 0.09535
b13 -0.01391 0.436 0.01729 -0.05125 0.02344
b14 -0.01361 0.445 0.01729 -0.05095 0.02374  

 
 
 
 
 

Table-4 Scenarios with best and worst predicted sweep efficiencies: object-based model 
 

               Parameters
Scenario ChanDim PetroPhy SandRatio Sinuosity Sweep Eff %

Best -1 -1 1 1 56.7
Worst 1 1 -1 -1 11.2  

 
 
 
 

       
 

Table-5 Modeling parameters: range and scaling for pixel-based models 
 

Levels
Parameter Name -1 0 1
Variogram Range
Major Range (ft) 100 500 1000
Minor Range (ft) 10 50 100

Sand Ratio 0.2 0.35 0.5
Petrophysical Prop
channel perm (md) 10 100 1000

channel margin perm (md) 1 10 100
Variogram

Nugget 0 0.4 0.8
Sill 1 0.6 0.2  

 
 
 
 
 
 
 
 
 

Table-6 Experimental Design: pixel-based model 
 



 

Vario Ran Sand Ratio Petrophysical Vario Nug--Sill
Exp # -1 0 1 -1 0 1 -1 0 1 -1 0 1 Vol.Sw Eff % Std Deviation

1 h h h h 24.01% 0.78%
2 h h h h 53.34% 1.27%
3 h h h h 51.93% 0.67%
4 h h h h 44.56% 1.88%
5 h h h h 10.57% 1.86%
6 h h h h 31.01% 5.04%
7 h h h h 35.36% 0.79%
8 h h h h 30.94% 2.08%
9 h h h h 30.29% 2.41%
10 h h h h 50.53% 0.64%
11 h h h h 30.71% 2.64%
12 h h h h 12.56% 3.52%
13 h h h h 28.03% 4.84%
14 h h h h 47.62% 1.06%
15 h h h h 17.42% 3.47%
16 h h h h 58.95% 0.76%
17 h h h h 47.57% 0.34%
18 h h h h 24.86% 3.04%
19 h h h h 25.13% 1.80%
20 h h h h 30.33% 1.72%
21 h h h h 9.93% 1.68%
22 h h h h 12.98% 1.32%
23 h h h h 46.25% 5.36%
24 h h h h 34.87% 1.23%
25 h h h h 40.62% 3.83%
26 h h h h 24.77% 0.62%
27 h h h h 45.60% 0.53%
28 h h h h 11.41% 1.17%  

 
 

Table-7 Response surface coefficients: pixel-based models 
(Significant coefficients are shaded) 

 
coeff value P value Std Error -95% 95%

b0 0.306 5.345e-11 0.01570 0.272 0.340
b1 -0.02369 0.02148 0.00907 -0.04327 -0.00410
b2 0.09459 1.098e-07 0.00907 0.07500 0.114
b3 -0.153 3.297e-10 0.00907 -0.172 -0.133
b4 0.05292 5.808e-05 0.00907 0.03334 0.07251
b5 0.00713 0.588 0.01282 -0.02057 0.03483
b6 0.04958 0.00194 0.01282 0.02188 0.07728
b7 0.04655 0.00305 0.01282 0.01885 0.07425
b8 -0.05640 0.000719 0.01282 -0.08410 -0.02870
b9 -0.00211 0.895 0.01570 -0.03604 0.03181
b10 -0.00407 0.800 0.01570 -0.03799 0.02986
b11 0.05245 0.00533 0.01570 0.01852 0.08637
b12 0.108 1.163e-05 0.01570 0.07371 0.142
b13 -0.00126 0.937 0.01570 -0.03519 0.03266
b14 -0.02330 0.162 0.01570 -0.05722 0.01063  

 
Table-8 Scenarios with best and worst predicted sweep efficiencies: pixel-based model 

 
               Parameters

Scenario Nugget VarioRange SandRatio Petrophy Sweep Eff %
Best 1 1 1 -1 59.78

Worst 1 -1 -1 1 0.1763  
Table-9 Scenarios with minimum and maximum predicted sweep efficiency variance: pixel-based 

model 
 

               Parameters
Scenario ChanDim Petrophy SandRatio Sinuosity Sweep Eff Variance

Minimum Sweep Variance -1 -1 1 -1 0
Maximum Sweep Variance -1 -0.75 -1 -1 0.009  

 
 
 



   

 
Fig.1 Example of design for three factors: A Box-Behnken design requires 15 experiments 

(including three replicates at the centerpoint) 
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Fig.2 The synthetic reservoir case with an injector-producer in Quater 5-spot pattern 
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Fig.3 Plots at a particular experimental design point for object-based models: (a) Permeability field 
(b) Swept region at 5000 days (c) Travel Time plot 
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Fig. 4 Response surface validation for object-based modeling parameters 
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Fig. 5 Residuals v/s predicted sweep volume for object-based models 
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Fig.6 Response surfaces over the uncertainty range of object-based modeling parameters 



   

 
 

Fig.7 Scenarios predicted by response surface in object-based models to give (a) best sweep 
efficiency, and (b) worst sweep efficiency. 
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Fig.8 Plots at a particular experimental design point for pixel-based models: (a) Permeability field 
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Fig. 9 Response surface validation for pixel-based modeling parameters 
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Fig. 10 Residuals v/s predicted sweep volume for pixel-based models 
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Fig.11 Response surfaces over the uncertainty range of pixel-based modeling parameters 



   

 
 

Fig.12 Scenarios predicted by response surface in pixel-based models to give (a) best sweep 
efficiency, and (b) worst sweep efficiency. 
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Fig.13 Response surfaces of sweep efficiency variance over the uncertainty range of object-based 
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modeling parameters. 

 
Fig.14 Scenarios predicted by response surface of variances in sweep volume for object-based 

models to give (a) minimum sweep efficiency variance, and (b) maximum sweep efficiency variance. 
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Seismic imaging of reservoir flow properties: Time-lapse amplitude changes

Don W. Vasco1, Akhil Datta-Gupta2, Ron Behrens3, Pat Condon3, and James Rickett3

ABSTRACT

Asymptotic methods provide an efficient means by
which to infer reservoir flow properties, such as perme-
ability, from time-lapse seismic data. A trajectory-based
methodology, similar to ray-based methods for medical
and seismic imaging, is the basis for an iterative inver-
sion of time-lapse amplitude changes. In this approach, a
single reservoir simulation is required for each iteration
of the algorithm. A comparison between purely numer-
ical and the trajectory-based sensitivities demonstrates
their accuracy. Analysis of a set of synthetic amplitude
changes indicates that we are able to recover large-scale
reservoir permeability variations from time-lapse ampli-
tude data. In an application to actual time-lapse ampli-
tude changes from the Bay Marchand field in the Gulf
of Mexico, we are able to reduce the misfit by 81% in
12 iterations. The time-lapse observations indicate lower
permeabilities are required in the central portion of the
reservoir.

INTRODUCTION

It has been appreciated for some time that saturation and
fluid pressure changes in a reservoir can lead to detectable
changes in seismic attributes (Domenico, 1974; Nur, 1989). Cor-
respondingly, there has been a gradual advancement in the use
of time-lapse seismic observations to monitor reservoir pro-
cesses. Early studies, such as the work of Greaves and Fulp
(1987) on the monitoring of a fireflood, focused on detection
and the estimation of basic features such as the propagation
direction of the fireflood. Time-lapse seismic is now a useful
tool for monitoring thermal processes (Eastwood et al., 1994;
Lee et al., 1995; Mathisen et al., 1995), CO2 flooding (Lazaratos
and Marion, 1997; Benson and Davis, 2000), gas-driven produc-
tion (Burkhart et al., 2000), water-driven production (Behrens
et al., 2002), and more complex combinations (Johnston et al.,
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1998; Smith et al., 2001), including stress changes (Watts et al.,
1996; Guilbot and Smith, 2002). Time-lapse monitoring is ma-
turing as a technology and guidelines for its application are
available (Lumley et al., 1997). Thus, time-lapse monitoring is
becoming a tool in reservoir management (Fanchi 2001). Still,
the methodology is advancing, and new techniques are under
development which allow for discrimination between pressure
and fluid saturation changes over time (Brevik, 1999; Tura and
Lumley, 1999; Landro, 2001).

To date, time-lapse seismic has chiefly served as a monitoring
tool. That is, time-lapse seismic observations are used to map
changes in reservoir saturation and pressure. The next logical
step is to use time-lapse seismic data to characterize the reser-
voir, to infer reservoir permeability and porosity heterogeneity.
Such time-lapse–generated models of reservoir permeability
aid in optimizing secondary recovery of bypassed oil and gas.
The additional information provided by the time-lapse data
will result in more accurate predictions of the performance of
future production efforts. Currently, there have been very few
attempts at formal reservoir characterization using 3D time-
lapse observations (He et al., 1998; Huang et al., 1998). By for-
mal reservoir characterization, we mean some manner of inver-
sion of the time-lapse field data for reservoir-flow properties.
Time-lapse reservoir characterization is hampered by compu-
tational difficulties. Typically, finding a reservoir model which
is compatible with a set of saturation and pressure changes, as
would be derived from the time-lapse data, requires a signifi-
cant number of reservoir simulations. Because each reservoir
simulation may take hours, if not days, of CPU time on a work-
station, formal inversion can be prohibitively expensive. For
example, stochastic methods, such as the simulated annealing
approach used by Huang et al., (1998), require hundreds, if not
thousands, of reservoir simulations.

In this paper we introduce a new trajectory-based approach
for time-lapse reservoir characterization. The methodology,
which is akin to ray methods used in medical and seismic to-
mographic imaging, is extremely efficient. In fact, just a sin-
gle reservoir simulation is required to compute the trajecto-
ries necessary to take a step in the inversion algorithm. The
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trajectories, which are closely related to streamlines, may be
computed directly from the output of a numerical reservoir
simulator. The trajectory-based approach for inverting time-
lapse observations is an extension of techniques developed for
the inversion of dynamic reservoir engineering data such as
tracer data (Vasco and Datta-Gupta, 1999), two-phase flow
data (Vasco et al., 1999), and transient pressure data (Vasco
et al., 2000). Here, we implement the methodology for time-
lapse seismic data and illustrate the approach by an application
to synthetic time-lapse amplitude changes. Finally, we apply
the technique to a set of time-lapse amplitude changes from
the Bay Marchand field in the Gulf of Mexico.

METHODOLOGY

In this section, we outline our approach for imaging reservoir
flow properties using time-lapse seismic observations. First,
we describe the method used to compute changes in elastic
properties for a poroelastic medium induced by changes in
fluid saturations and pressure. For this, we adopt the com-
monly used Gassmann’s model (Gassmann, 1951), simple mix-
ing laws, and laboratory-derived relationships. The method-
ology for computing the seismic response of the reservoir
interval and surrounding layers involves an approximation to
the response of stratification, as given by Kennett (1983). We
compute the seismic response of the reservoir in a piecewise
fashion. That is, we compute a 1D response for each column
of cells in the reservoir model. The novel aspect of our ap-
proach concerns the relationship between reservoir saturation
and pressure changes and reservoir flow properties. We use a
trajectory-based technique, which is somewhat akin to seismic
and electromagnetic ray methods, to relate reservoir porosi-
ties and permeabilities to saturation and pressure variations. In
many cases, the trajectories may be identified with streamlines,
(e.g., flow lines through the reservoir) (King and Datta-Gupta,
1998).

Petrophysical model and seismic amplitude calculations

The key reservoir properties influencing its elastic response
are the saturations of the various fluids in the reservoir, the
pressure in the reservoir, and the porosity within the reservoir.
We only consider the variations in water and oil saturation,
denoted by Sw and So, respectively. This simplifies the presen-
tation and, in our application to Bay Marchand, the influence
of gas in the reservoir is small and may be neglected. Because
the saturations sum to unity in the pore spaces, we just con-
sider the water saturation, which is denoted in what follows
by S. The oil saturation is then given by 1− S. We denote the
reservoir pore pressure by P(x, t) and the porosity by φ(x).

For the frequency range and the reservoir conditions of in-
terest Gassmann’s equation (Gassmann, 1951) is adequate.
Gassmann’s equation relates the bulk modulus of the fluid sat-
urated rock (Ksat) to the moduli of the fluid mixture (K f luid),
the moduli of the dry rock (Kdry), the moduli of the rock grains
(Kgrains), and the porosity

Ksat= Kdry+ (1− Kdry/Kgrains)2

φ/K f luid + (1−φ)/Kgrains− Kdry/K 2
grains

.

(1)

The composite fluid bulk modulus is computed from the indi-
vidual components using the simple mixing rule

1
K f luid

= S

Kw

+ 1− S

Ko
, (2)

where Kw and Ko are the bulk moduli of the water and oil,
respectively. The shear velocity is relatively unaffected by
changes in the composition of the pore fluid according to
Gassmann’s derivation. However, we should note that the dry
frame moduli of both the shear velocity (Gdry) and the bulk
sound speed (Kdry) are functions of the porosity and the dif-
ferential (lithologic-pore) pressure (Pdi f f ).

We assume that, as is the case at Bay Marchand (Behrens
et al., 2002), the dependence of the dry moduli on porosity
and effective pressure are determined from laboratory obser-
vations made on cores. The linearized functional forms used to
fit the observations are

Kdry = a+ b · φ, (3)

Gdry = c+ d · φ, (4)

where

a = a0 + a1 · Pdi f f ,

b = b0 + b1 · Pdi f f ,

c = c0 + c1 · Pdi f f ,

d = d0 + d1 · Pdi f f ,

and the numerical values of a0,a1, b0, b1, c0, c1, d0, and d1

are the result of a nonlinear regression based upon the lab-
oratory measurements. We should note that the relationship
between measured laboratory compressional velocity changes
and actual in-situ changes is imperfect. Due to changes as-
sociated with coring and pressure release upon extraction,
the cores will not necessarily produce accurate pressure re-
sponses. In practice, the compressional velocity is often found
to be less sensitive to differential pressure variations than is
indicated by laboratory measurements. Thus, there is consid-
erable uncertainty associated with the relationship between
reservoir stress changes and velocity and impedance changes.
There also is the confounding effect of reservoir subsidence
which often accompanies stress induced changes in elastic mod-
uli. Recently, some of these issues were examined using cou-
pled fluid flow and geomechanical modeling (Minkoff et al.,
2004). Such an approach complements existing laboratory de-
rived relationships between deformation and elastic moduli
changes.

The density of the saturated rock is given by the weighted
average of the densities of the components:

ρ = φSρw + φ(1− S)ρo + (1− φ)ρgrains, (5)

where ρw , ρo, and ρgrains are the respective densities for wa-
ter, oil, and the component grains. The compressional (Vp)
and shear velocities (Vs) are then computed for an isotropic,
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layered, elastic medium (Kennett 1983):

Vp =

√√√√√Ksat+ 4
3

Gdry

ρ
, (6)

Vs =
√

Gdry

ρ
. (7)

Figure 1 displays the variation in Vp as a function of satura-
tion and differential pressure for conditions similar to those at
the Bay Marchand (Behrens et al., 2002). In this figure, we see
that the compressional velocity is relatively insensitive to dif-
ferential pressure. The compressional velocity is more strongly
influenced by variations in water saturation. This is particularly
important at Bay Marchand, where there is a strong water drive
and the pressure does not vary by more than 100–200 psi. The
compressional impedance, which is just the product of the com-
pressional velocity and the density, (Vp · ρ), displays a similar
behavior as the differential pressure and water saturation are
varied (Figure 1).

In order to compute the seismic response of the reservoir
and variations in seismic amplitudes induced by production
related processes, we adopt the approach of Kennett (1983).
In general, the layers in our reservoir model can be quite thin
(a fraction of a meter) relative to the dominant seismic wave-
lengths (tens of meters). In addition, the lateral dimension of
the cells in our reservoir model are of the order of tens to a
hundred meters. We compute the seismic amplitudes for each
vertical column of the reservoir model, approximating the re-
sponse for a stack of horizontal layers. The approach involves
a partial expansion of reverberation operators (Kennett, 1983,
p. 217) and allows for reflections at nonzero offsets, internal
multiples, and tuning effects within the reservoir interval. The

method is quite efficient and allows us to compute the seismic
response for each column of the reservoir model in a fraction
of a CPU second.

Reservoir saturation and pressure variations
and reservoir flow properties

The relationships given above enable us to relate reservoir
saturation and pressure changes to seismic-amplitude changes.
These relationships form the basis for most studies using time-
lapse seismic observations to monitor reservoir production. If,
however, we wish to infer reservoir flow properties themselves,
such as porosity and permeability, from time-lapse seismic ob-
servations, we must relate saturation and pressure changes to
flow properties. In general, the relationship between reservoir
flow properties and saturation changes is nonlinear and in-
volves the use of a complex numerical flow simulator. To date,
this has limited the direct use of time-lapse seismic observa-
tions in reservoir characterization (He et al., 1998; Huang et al.,
1998). In this subsection we use a trajectory-based technique
which provides an analytic relationship between reservoir flow
properties and saturation changes. The approach is the basis of
an efficient formalism for the inversion of reservoir production
data such as water-cut observations (Vasco et al., 1999; Vasco
and Datta-Gupta, 2001a), as well as tracer (Vasco and Datta-
Gupta, 1999) and transient pressure (Vasco et al., 2000; Vasco
and Datta-Gupta, 2001b) data.

The essential ideas underlying this approach are similar to
those used for high-frequency approximations in seismic wave
propagation. There are a number of ways to motivate this tech-
nique, but the main idea is the same (Anile et al., 1993). That
is, the temporal and spatial variations associated with a propa-
gating front, in this case a two-phase fluid front, are much more
rapid than the variations in the background saturation distri-
bution (S0). Stated another way, the jump in saturation across

Figure 1. (Left) Variation in compressional wave velocity as a function of water saturation and differential pressure. (Right) Variation
in compressional wave impedance as a function of water saturation and differential pressure.
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the two-phase front is “fast” with respect to the changes in the
background saturation. Indeed, the advancing water can form
a self-sharpening front in which the water saturation jumps,
almost discontinuously, from the background value to a large
value. In the Appendix, the idea of “rapid” and “slow” scales
is expressed in the form of an asymptotic expansion in a scale
parameter ε. As in elastic and electromagnetic wave propa-
gation (Kline and Kay, 1965), this approach leads to solutions
which are defined along trajectories or rays (Chapman et al.,
1999). As indicated by equation A-7 in the Appendix, the tra-
jectories depend upon the flow velocity field U, which in turn
is a function of the pressure distribution in the reservoir. Thus,
the trajectories are similar to streamlines which are increas-
ingly used to model reservoir flow (King and Datta-Gupta,
1998).

There are several advantages associated with our trajectory-
based approach. One advantage is that we obtain an analytic
expression for the traveltime (σ ) of the two-phase front along
a trajectory 6,

σ =
∫
6

φ(r )
κK (r )|∇P|dr, (8)

where φ(r ) is the porosity, K (r ) is the absolute permeability, P
is the pore pressure, and r is the distance along the trajectory
6 (see equation A-11 in the Appendix). The variable κ is the
total mobility, a function of the relative permeabilities kro, krw

and the viscosities µo, µw :

κ = kro

µo
+ krw

µw
.

In equation 8, we have an expression for the traveltime along
a trajectory6 in terms of fluid properties, reservoir flow prop-
erties, and the pressure distribution. This expression can be
interpreted in terms of the physical processes at play in multi-
phase flow. For example, increasing porosity results in a larger
volume which the fluid must fill as it propagates through the
rock. Thus, it will take longer for the fluid to travel from an in-
jection well to a producing well. Increasing permeability results
in a greater flow velocity, reducing the travel time σ . Similarly,
a larger pressure gradient produces more rapid flow, causing
the fluid front to arrive sooner. The traveltime also depends
on the fluids present ahead of the two-phase front, specifically
their viscosities and saturations.

By transforming the two-phase flow problem into charac-
teristic coordinates (coordinates oriented with respect to the
trajectories) we obtain a semi-analytic expression for the sat-
uration history at a point on the trajectory (equation A-15 in
the Appendix):

S(t, σ ) = S

(
σ

t

)
, (9)

where σ is given by equation 8. The sensitivities required to
solve the inverse problem follow from the form of the solu-
tion (equation 9), defined along the trajectories. Specifically, in
order to better fit the observations, we must relate perturba-
tions in the model parameters (the reservoir flow properties)
to perturbations in the observations (the saturations within
the reservoir). Because the flow properties enter equation 9
through the variable σ , we can consider a perturbation in this

quantity. A perturbation in σ is related to a perturbation in
saturation δSby

δS

(
σ

t

)
= 1

t
S′
(
σ

t

)
δσ, (10)

where the prime denotes differentiation with respect to the
argument σ/t . The quantity δσ follows from a perturbation of
the integral 8:

δσ =
∫
6

δp(r)dr, (11)

where p(r ) is the integrand in the integral 8:

p(r, t) = φ(r )
κK (r )|∇P(r, t)| . (12)

For a total mobility (κ) which does not vary significantly, the
perturbation of p(r, t) is of the form

δp(r, t) = ∂p

∂φ
δφ(r )+ ∂p

∂K
δK (r )+ ∂p

∂|∇P|δ|∇P(r, t)|.
(13)

The partial derivatives may be calculated directly from the an-
alytic form for p(r, t) given above (see equations A-19 in the
Appendix). It is clear from equation 12 that the porosity, φ(r ),
and permeability, K (r ), can trade-off. That is, we can only re-
solve their ratio unambiguously. In order to isolate a single
property, such as permeability, we must make additional as-
sumptions.

Sensitivity of time-lapse amplitude changes
to reservoir flow properties

Here, we combine the results of the previous two subsec-
tions and obtain a linear expression relating perturbations in
reservoir properties to perturbations in time-lapse seismic-
amplitude changes. This linear relationship forms the basis for
an iterative inversion. According to our petrophysical model,
the seismic amplitude response of a column of cells in our reser-
voir model is a function of the saturation, pressure, and porosity
in each cell of the column. For the i j th column of the reservoir
model (where i is the index for the east-west direction and j
is the index for the north-south direction) let us write the am-
plitude response as A(Si j ,Pi j ,Φi j ), where the vectors Si j , Pi j ,
and Φi j denote vectors containing the saturations, pressures,
and porosities for all k cells in the i j th column, respectively.
For a given location (i j value), a perturbation in the amplitude
response is the sum over the perturbations in each of the k cells
in the column:

δA(Si j ,Pi j ,Φi j ) =
∑

k

∂A

∂Si jk
δSi jk +

∑
k

∂A

∂Pi jk
δPi jk .

+
∑

k

∂A

∂8i jk
δ8i jk . (14)

For the following derivation, we neglect the pressure terms
and only concentrate on saturation and porosity changes. This
simplifys the calculations and, as indicated above, is an appro-
priate approximation for our Bay Marchand field application.
Note that this is not always the case; in many situations we
must take pressure into consideration and work with the full
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expression 14. Neglecting the effect of pressure perturbations,
the expression for the amplitude perturbation reduces to

δA(Si j ,Φi j ) =
∑

k

∂A

∂Si jk
δSi jk +

∑
k

∂A

∂8i jk
δΦi jk . (15)

For time-lapse amplitude data, we need to consider the state
of the reservoir at two distinct times T0 and T1. We denote quan-
tities associated with each time by superscripts. We assume that
the surveys have been cross-equalized such that the amplitudes
and frequency content of the seismic traces are roughly equiv-
alent. Then, in forming the difference δA1(Si j , Φi j )− δA0(Si j ,
Φi j ), the porosity term will cancel for reservoirs which have not
undergone compaction. Thus, the time-lapse difference takes
the form of a single summation over the perturbations in satu-
ration within each of the k cells of the i j th column:

δA1(Si j ,Φi j )− δA0(Si j ,Φi j )

=
∑

k

(
∂A1

∂Si jk
δS1

i jk − ∂A0

∂Si jk
δS0

i jk

)
. (16)

The partial derivatives in equation 16 are computed by numer-
ical differencing, that is, by computing the amplitude using the
method of Kennett (1983) at a given value of saturation and
then perturbing the saturation and recomputing the amplitude.
Differencing these amplitudes and dividing by the saturation
perturbation produces a numerical estimate of the derivative.
The quantities δS1

i jk and δS0
i jk are given by combining equa-

tions 10–13. For example, δS1
i jk is given by

δS1
i jk = 1

T1
S′(T1)

∫
61

i jk

δp(x)dr, (17)

where61
i jk denotes the trajectory from the i jk th cell to a point

on the initial position of the water front. Equations 16 and 17,
when combined with equations 10–13, relate perturbations in
time-lapse amplitudes to perturbations in reservoir flow prop-
erties. The sensitivities are trajectory-based, computed as line
integrals over the paths 61

i jk and 60
i jk in equation 17. Note

that when there is no significant variation in reservoir pres-
sure during the time interval between the seismic surveys, the
trajectories will be virtually identical.

Let us describe how we evaluate the expressions 16 and 17
in practice. We begin with a reservoir model, consisting of
nx × ny× nz grid blocks. For example, we might have an ini-
tial distribution of porosity and permeability determined from
well logs, cores, and seismic attributes. Given the initial reser-
voir model and well schedules, we conduct a reservoir simula-
tion and save the saturation and pressure histories for each grid
block of the model. The nature of the reservoir simulator is not
important, we simply postprocess the saturation and pressure
histories to define the trajectories. Consider a point at the top
of the reservoir where we observe changes in the amplitude
of a reflection over some time interval T1− T0. The point will
be located at the top of some column of cells in the reservoir
model, say the i j th column, containing k cells in depth. For
each cell, we define the trajectories by moving up the pressure
gradient from the cell center. We will end up at the edge of the
reservoir model, at a water injector, or at the initial position
of an aquifer. If there are changes in the pressure conditions

(e.g., more producers or injectors are added), during the time
interval we will have to recompute the pressure field when ap-
propriate. The paths thus computed define the trajectories60

i jk

and 61
i jk implicitly contained in equation 16. We use the sat-

uration history to compute the time derivative in equation 17
and the background flow properties, pressures, and saturations
to calculate the sensitivities in equation 13 (see equations A-19
in the Appendix). Given the saturation distribution in the col-
umn of cells within the reservoir model at times T0 and T1, we
use numerical differencing to compute the seismic amplitude
partial derivatives in equation 16. Thus, in a single reservoir
simulation, we have all the quantities necessary for one step of
an iterative linearized inversion algorithm.

NUMERICAL CALCULATIONS

In this section, we demonstrate the correctness and util-
ity of our trajectory-based approach. First, we compare the
trajectory-based sensitivity estimates with purely numerical
results. Sensitivities, relating perturbations in model param-
eters to perturbations in observations, are the basis for our
iterative inversion algorithm. Therefore, it is important to ver-
ify their correctness. Next, we illustrate the usefulness of the
methodology by inverting a set of synthetic time-lapse am-
plitudes for reservoir permeability variations. The iterative
inversion enables us to image large-scale permeability varia-
tions in the reservoir, based upon time-lapse seismic amplitude
changes.

Sensitivity computations

Amplitude sensitivity to saturation changes. — We first ex-
amine the sensitivity of time-lapse seismic-amplitude changes
to perturbations in water saturation within the reservoir. As
stated above, we compute sensitivities on a column-by-column
basis, treating each column as a stratified medium and com-
puting the approximate seismic response using a partial expan-
sion of reverberation operators (Kennett, 1983). Our reservoir
model is based upon a geostatistical realization intended to
mimic the Bay Marchand reservoir (Behrens et al., 2002). In
particular, we modeled over 14 000 days of production using a
reservoir simulator. The saturation distribution within an arbi-
trary column of cells in the reservoir model is shown in Figure 2
for three time periods (2000, 10 000, and 14 100 days). The cor-
responding compressional velocity is also presented in Figure 2.
The reservoir model consists of 23 layers approximately 30 m
in thickness. For this particular column of cells, the reservoir
spans a depth range of 2089 to 2115 m. The thickness of the
reservoir should be compared with a quarter wavelength of the
seismic data, about 17 m. Thus, a seismic reflection off the top
of the reservoir will be influenced nonuniformly by saturation
changes within the reservoir interval itself.

We examined the sensitivity associated with the reflection
off the top of the reservoir as this formed our basic data set
for the Bay Marchand field case, presented below. Other at-
tributes may be used to constrain saturation variations over
time. For example, it is possible to use the entire waveform
to determine saturation changes. This may be preferable for
reservoirs of intermediate thickness. Alternatively, a seismic
impedance-based approach may have some advantages over
layer reflectivity.
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As mentioned above, we rely on a straight-forward numeri-
cal difference to compute amplitude sensitivities to saturation
variations within the column of reservoir grid blocks. Figure 3
displays the sensitivities corresponding to the saturation
variations in Figure 2. Note how the sensitivity of time-lapse
amplitude variations to changes in water saturation decreases
dramatically at a depth of around 2104 m, almost 15 m into the
reservoir. This is approximately one-quarter of a wavelength
from the top of the reservoir. The limited sensitivity with depth
into the reservoir agrees with the findings of Behrens et al.
(2002). They found that the best correlation coefficient was
obtained when properties were averaged over the top 17 m of
the reservoir. Note also that the sensitivities depend on the wa-
ter saturation within the reservoir. In particular, the sensitivity
of time-lapse amplitude changes to water saturation grows with
increasing water content.

In an effort to examine the numerical stability of our finite-
difference approximations, we varied the magnitude of the per-
turbations used to compute the derivatives. In Figure 4, three
sets of estimates are shown, corresponding to the saturation
distribution at 14 100 days. It is clear that for saturation pertur-
bations from 2% to 10%, the overall behavior is the same. For
example, all the curves have the rapid decay at about 2104 m
in depth. Though the magnitude of the perturbation changes
by five times, the estimates are all within approximately 5% of
each other. Thus, the difference estimates appear to be rela-
tively stable.

Amplitude sensitivity to porosity and permeability chang-
es. — In several respects, the trajectory-based technique is
quite different from other methods for computing sensitiv-
ities. First, we invoke a “high frequency” approximation in
the derivation. Second, we neglect the contribution of pres-
sure variations to the amplitude changes. Finally, we ignore
any shifting of the trajectories induced by perturbations in
porosity and permeability. It is important to verify that the
sensitivities computed using our trajectory-based approach

are accurate and are reasonable approximations to the ex-
act sensitivities. Here, we compare our trajectory-based esti-
mates to sensitivities computed using a numerical differencing
technique.

The numerical results are obtained by, first, perturbing the
reservoir porosities and permeabilities. Next, we run a reser-
voir simulation to compute saturation and pressure, changes.
Based upon the saturations and pressures we compute the elas-
tic moduli at two times of interest. Then, we calculate the

Figure 3. Sensitivity of time-lapse amplitude differences to sat-
uration changes in a column of the reservoir model. The verti-
cal scale is unitless, the ratio of the fractional change in ampli-
tude to the fractional change in saturation. The sensitivities are
computed with respect to three background saturation distri-
butions. The column and times correspond to those in Figure 2.
The horizontal line indicates an amplitude sensitivity of zero.

Figure 2. (Left) Saturation distribution in a column of our reservoir model for three different times: 2000, 10 000, and
14 100 days. (Right) Compressional wave (P-wave) velocity for the corresponding column of reservoir model and three
time intervals.
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amplitudes of a reflection at these two particular times, sim-
ulating a time-lapse experiment. By differencing the results
of the two computations, we compute the amplitude changes
over the time interval. The ratio of the change in the differential
amplitude to the change in porosity or permeability provides
a numerical estimate of the sensitivity. Note, this sensitivity is
different from a purely static sensitivity of the seismic ampli-
tude to permeability, which is typically quite small. Rather, this
is a time-lapse sensitivity, which depends on porosity and per-
meability via the saturation and pressure changes induced dur-
ing the flow simulations. Thus, the porosity and permeability
sensitivities are primarily controlled by their influence on the
multiphase flow, as expressed in equations 10–13. By the chain
rule, the total sensitivity will be the product of the sensitiv-
ity of the seismic amplitude change to saturation and pressure
changes, multiplied by the sensitivity of saturation and pres-
sure changes to flow properties, as expressed in equation 16.
The differencing methodology is simple to implement and ac-
curate but computationally intensive, requiring N+ 1 reser-
voir simulations, where N is the number of grid blocks in the
reservoir model. However, the results of the numerical dif-
ferencing provide an important check on the trajectory-based
results.

We computed sensitivities with respect to reservoir porosi-
ties and permeabilities (Figures 5 and 6). The well configuration
was that of a five-spot with a central water injection well and
four producing wells at the corners. The central water injector
is indicated by the open circles in Figures 5 and 6. The reservoir
model is a homogeneous layer of 31× 31 grid blocks. The spa-
tial dimensions of the layer are 1 km× 1 km in area and 30-m
thick. The permeability of the layer is 150 md, and the poros-
ity is 10%. The incoming wave has a dominant frequency of
100 Hz, and we treat the reflection of the compressional wave.
We consider amplitude changes for seismic reflection surveys
occurring 180 and 270 days after the initiation of production.

Figure 4. Amplitude sensitivities for saturations in a column of
the reservoir model. The vertical scale is unitless, the ratio of
the fractional change in amplitude to the fractional change in
saturation. The background saturation distribution is that of
14 100 days in Figure 2. The sensitivities are computed using
three different saturation perturbations: 0.02, 0.05, and 0.10.

Sensitivities were computed for reflections from three locations
off the top of the reservoir.

The left side of Figure 5 displays the results of the numeric
perturbation sensitivity estimates; on the right the trajectory-
based, or semi-analytic, estimates are shown. The numeric
perturbation estimates required 962 reservoir simulations,
whereas the analytic estimates result from a single simulation,
almost three orders of magnitude less computation. The close
agreement between the sensitivity estimates that result from
these very different approaches is clear from Figure 5. The
sensitivity is largest along a narrow zone extending from the
central water injector to the point of reflection, which is de-
noted by a star. The nature of the sensitivities makes physical
sense; we would expect the porosities along the flow path from
the water injector to the reflection point to have the greatest
influence on the evolution of water saturation, and hence on
the amplitude changes.

The sensitivities of time-lapse amplitude changes to reser-
voir permeabilities are shown in Figure 6. The pattern of sen-
sitivities in Figure 6 is similar to the porosity sensitivities, an
elongated region extending from the reflection point to the wa-
ter injector. However, the sign of the permeability sensitivities
is opposite to that of the porosity sensitivities. This sign change
agrees with the analytic expressions given by equations A-19
in the Appendix. The permeability sensitivities are about three
orders of magnitude smaller than the porosity sensitivities. This
is also in accordance with equations A-19 and the values of
porosity (0.1) and permeability (150 md) in the layer. Specif-
ically, from equations 12 and 13, note that the partial deriva-
tive with respect to porosity is of order 1, whereas the partial
derivative with respect to permeability is of order 1/K 2. Thus,
because we express K in millidarcys for a background perme-
ability of 150 mD, the sensitivity to K can be many orders of
magnitude smaller than the sensitivity to φ. However, this ap-
parent difference in sensitivity magnitude is mostly due to the
chosen units and the representation of the unknown parame-
ters. If we work in terms of 1/K rather than K , the squared
term in the denominator vanishes. Furthermore, if the perme-
abilities are measured in darcys rather than millidarcys, the
sensitivities are closer in magnitude to the porosity sensitivi-
ties. Such issues become important when we solve the inverse
problem, that is, when we actually try and match the time-lapse
observations.

There are some small discrepancies between the numeri-
cal and analytic sensitivities. These are thought to be due to
slight precision problems in computing the numeric perturba-
tion estimates. However, they may be due to the influence of
pressure variations and the shifting of the trajectories when the
permeabilities are perturbed. Regardless, the differences are
second-order effects, and there is excellent overall agreement
between the two estimates.

Inversion of synthetic time-lapse amplitude changes

We now consider a numerical illustration of the inversion of
time-lapse amplitude changes. We wish to image the spatial dis-
tribution of permeability within the reservoir based upon the
time-lapse data. The reference permeability for the synthetic
test is shown in Figure 7, along with the location of five pro-
ducing wells (circles) and a single water injector (star). Using a
reservoir simulator, we modeled 1000 days of production from
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the layer. The initial oil saturation was 0.91%, and the reser-
voir porosity was fixed at 10%. The distribution of water within
the layer is shown after 180 and 670 days of oil production
in Figure 8. The water advances along the high-permeability
east-central zone, extending to the southeast. The traveltime
of the advancing water front is shown in Figure 9. While water
reaches some wells after less than 200 days, it takes more than
700 days to reach other producers.

Using the method of Kennett (1983), we computed ampli-
tudes for reflections from the top of the reservoir for two times:
180 days and 670 days. The amplitude changes during this time
interval are shown in Figure 10. The largest amplitude changes
occur between the location of the front at
180 days and at 670 days (Figure 8). We
only consider the largest fractional am-
plitude changes in our inversion, changes
greater than 0.015. Such changes have a
larger signal-to-noise ratio and are thus
more reliable. Implementing a cutoff is
similar to what is done in practice. In Fig-
ure 10, we also indicate the trajectories
associated with the 105 largest amplitude
changes. The trajectories extend from the
reflection points to the water injector, trav-
eling up the pressure gradient, which is
also shown in the figure. The trajectories,
which are computed after a single reser-
voir simulation, are the critical elements
needed to take a step in the inversion algo-
rithm. In particular, the trajectories define
the path of integration 60

i jk and 61
i jk in

equations 16 and 17.
The 105 amplitude changes form our ba-

sic set of observations which we use to
infer reservoir permeabilities. We adopt
an iterative linearized inverse method to
match the observed time-lapse amplitude
changes. That is, we start with an initial
reservoir model and iteratively update the
permeabilities in order to better fit the
data. At each step, we solve a penalized
least squares problem for the updates to
the permeability model (Parker, 1994).
The sensitivities are crucial in this itera-
tive algorithm, for they indicate the man-
ner in which we should modify the per-
meabilities in order to reduce the misfit.
The sensitivities are obtained by combin-
ing equations 12, 13, 16, and 17. The result
is a linearized expression relating pertur-
bations in time-lapse amplitude changes to
perturbations in reservoir flow properties.

Because of the tradeoff between porosity
and permeability, we cannot resolve both
parameters unambiguously. Thus, we must
either express one parameter in terms of
another (e.g. permeability as a function of
porosity), or we assume that the variation
of one parameter is dominating the flow
and hence the saturation changes which
are responsible for the time-lapse ampli-

tude variations (for example, permeability can vary by many
orders of magnitude and can control flow within a reservoir).
The latter approach is adopted for all that follows. That is, in
this numerical example and the application below, we only con-
sider variations in the inverse of permeability, K−1. As stated
above, using K−1 normalizes the sensitivities, eliminating the
K−2 which appears when the partial derivative of p(r, t) with
respect to K is calculated (see equation 12). This is similar to
the use of “slowness” rather than velocity in seismic traveltime
tomography. Given a collection of amplitude changes (denoted
by the vector δA1−0) by combining equations 12, 13, 16, and 17,
we arrive at a system of linear equations relating perturbations

Figure 5. Numeric (left) and trajectory-based semi-analytic (right) amplitude sensitiv-
ity to changes in reservoir porosity. The scales are unitless, the ratio of the fractional
change in amplitude to the fractional change in saturation. The amplitudes correspond
to reflections from three different points, denoted by the stars.
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in time-lapse amplitude changes to perturbations in inverse
permeability:

δA1−0 =Mδk−1, (18)

where δk−1 denotes a vector containing inverse permeabilities
as elements, and M is a matrix of sensitivity coefficients. We
solve equation 18 using a least-squares algorithm that is ap-
propriate for sparse matrices (Paige and Saunders, 1982).

The inverse problem is regularized through the addition of
roughness and model norm penalty terms. Such regularization
is important because, in most cases, the inverse problem is likely

Figure 6. Numeric (left) and trajectory-based analytic (right) amplitude sensitivity to
changes in reservoir permeability. The scales have units of per millidarcy (md−1), the
ratio of the fractional amplitude change to the change in permeability. The amplitudes
correspond to reflections from three different points, denoted by the stars.

to be underdetermined. Typically, there are many more un-
known reservoir parameters than there are datapoints. This
is particularly true when the full 3D inverse problem is con-
sidered. The trajectory-based sensitivities indicate that we can
adjust the permeability anywhere along the trajectory in order
to fit the observations. The regularization is designed to bias
the updates towards smoothly varying permeability variations.
That is, because we cannot resolve small-scale heterogeneity,
we chose to distribute the permeability updates smoothly over
the entire trajectory path if possible. The norm penalty term bi-
ases the result in the direction of a prior model. The prior model
should be based upon all available geologic and geophysical

information. The penalty terms are in the
form of quadratic forms, defined over the
model space (Parker, 1994). The exact pe-
nalized misfit function is of the form

P(δk−1)=‖δA1−0−Mδk−1‖+Wn‖δk−1

− δk−1
0‖ +Wr ‖∇δk−1‖, (19)

where ‖ · ‖ signifies the L2 vector norm,
and Wn and Wr are the norm and rough-
ness penalty weights, respectively (Parker
1994). The weights determine the impor-
tance of satisfying the regularization rela-
tive to fitting the observations. We chose
the regularization weights Wn and Wr by
trial and error. That is, we conducted a
number of inversions with differing values
of Wn and Wr . Other approaches, such as
constructing a tradeoff curve are possible
(Parker, 1994).

For each iteration of the algorithm, we
conduct a reservoir simulation to recom-
pute the trajectories and redefine the pres-
sure and saturation histories in each grid
block. Our starting model is a homoge-
neous layer with an initial permeability of
100 md. The misfit reduction as a function
of the number of iterations is shown in Fig-
ure 11. The misfit is reduced by about two
orders of magnitude after 30 iterations.
However, because the problem is nonlin-
ear, the reduction is not monotonic, and
some steps result in a larger misfit. That is,
the model updates reduce the misfit for the
linearized problem but, when the model is
updated and the reservoir simulator rerun,
the misfit actually increases. Overall, the
misfit is substantially reduced after 15 it-
erations, equivalent to 15 reservoir simula-
tions. The initial and final fits to the ampli-
tude changes are shown in Figure 12. For
the most part, the initial predicted ampli-
tude changes are much lower than the ac-
tual amplitude changes. This is most likely
due to the fact that the two-phase front has
either arrived too quickly or too slowly at
the observation points. In either case, the
saturation change (and the corresponding
amplitude change) can be lower because
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the slope approaches zero ahead and behind the jump in sat-
uration. After the inversion, we match all but one amplitude
change.

The final reservoir permeability model is shown in Figure 13.
The model contains the large-scale features of our reference
model (Figure 7). In particular, there is a high-permeability
anomaly running to the southeast and lower permeability to
the west of the injection well. In general, the resolution of het-
erogeneity is limited along the trajectories (that is, we cannot
localize features on the trajectories). Rather, the anomalies are
smeared out along the flow paths. In addition, we cannot re-
solve flow properties beyond the edge of the final location of
the water front. In order to resolve more detailed features, we

Figure 7. Reference permeability field used to compute syn-
thetic time-lapse amplitude changes.

Figure 8. Water saturation distributions after (a) 180 and
(b) 670 days of oil production from the reservoir.

require additional time-lapse surveys. One may think of each
time-lapse survey as a snapshot of a migrating wavefront. By ac-
cumulating information on the position of the wavefront over
time, we can image the velocity in the region over which the
wavefront propagates. Similarly, we can iteratively construct
a permeability model by imaging the movement of saturation
changes over time. Finally, note that we can use the trajecto-
ries to efficiently compute the resolution and uncertainty as-
sociated with our estimates (Parker, 1994; Datta-Gupta et al.,
2002).

Figure 9. The traveltime of the water phase as it flows from the
injection well (star) to the producing wells (circles).

Figure 10. (a) Pressure in the reservoir after 180 days of pro-
duction. (b) Amplitude changes between 180 and 670 days of
production. The curves in this figure are the trajectories used
for the inversion of the amplitude values. They travel up the
pressure gradient from the reflection points to the injection
well.
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Figure 11. Squared misfit as a function of the number of itera-
tions of the inversion algorithm.

Figure 12. Observed time-lapse amplitude changes plotted
against the calculated amplitude changes. The initial fits (open
circles) are based on the initial homogeneous reservoir model.
The final fits (filled squares) are computed using the final iter-
ation of the inversion algorithm.

Figure 13. Final permeability model which results from an in-
version of the synthetic time-lapse amplitude changes.

APPLICATION: BAY MARCHAND

Bay Marchand field and time-lapse surveys

Bay Marchand field is a mature field characterized by com-
plex geologic structure. Production began in 1949 and has con-
tinued up to the present. We shall concentrate on the shallowest
producing reservoir, contained within a single fault block at the
northern flank of the field. The reservoir is a regressive marine
sequence of sands and shales which is bounded to the south by
a major counter-regional growth fault. The particular interval
we shall work with is the 7100-ft sand, which is roughly 20–30 m
thick. The mean porosity of the sand is 30% and the concen-
tration of channel sands diminishes to the west. Strong water
drive from a downdip aquifer to the north and east maintains
the pressure in the reservoir and assists in the production. The
7100-ft sand is underlain by several productive reservoirs. Nu-
merous wells penetrate the 7100-ft sand on their way to these
deeper sands, providing valuable log data for reservoir char-
acterization. In all, seven wells were active at various times in
the 7100-ft sand from 1949 until 2000 (Figure 14a). The well
configuration changes over the life of the field as indicated by
the water-cut history.

An initial 3D survey was conducted in 1987 as part of a
program to increase production and improve the stratigraphic
model of the reservoir. Subsequently, a regional 3D seismic sur-
vey extending across Bay Marchand field was conducted. The
geometries of the two surveys are quite different, complicating
the interpretation of the time-lapse changes. The first (1987)
survey used oriented lines (046◦) of seabed hydrophones, with
a bin spacing of 17× 17 m. The 1987 data were only avail-
able as poststack legacy data and could not be reprocessed to
enhance the time-lapse signal (Behrens et al., 2002). The sub-
sequent 1998 Geco survey was part of a larger nonexclusive
survey and was not designed for the purposes of time-lapse
monitoring. The survey lines were oriented at 030◦ with a bin
spacing of 34× 34 m. The two surveys were reinterpolated onto
a common geometry and crossequalized in order to enhance
the time-lapse effects (Behrens et al., 2002). Crossequaliza-
tion is an important procedure in the analysis of time-lapse
seismic observations (Rickett and Lumley, 2001). The cross-
equalization was applied to the stacked data and primarily in-
volved static and phase shift corrections and trace equalization
in a 400–1200 ms time window.

Some idea of the repeatability or similarity of the surveys is
apparent in Figure 14b, where we superimpose 14 traces from
the two surveys. These traces are remarkable similar, suggest-
ing that the repeatability is quite good overall. A more quan-
titative comparison was undertaken by Behrens et al. (2002),
who examined the signal-to-noise ratio, the root-mean-square
differences, and the correlation between the surveys. They
found that, prior to cross-equalization, the signal-to-noise-
ratio was about 1.2. Following cross-equalization, the signal-to-
noise-ratio increased to 1.50, 8.24, and 2.44 for three different
techniques. Amplitudes were extracted for a reflection from
the top of the 7100-ft sand. The horizon is denoted by the stars
in Figure 14b. The amplitude change is defined as the ampli-
tude of the 1998 survey subtracted from the amplitude of the
1987 survey. The peak amplitude change in a 20-ms window
was taken as the amplitude difference. We averaged the am-
plitude changes within the lateral boundaries of our reservoir
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model to further enhance the signal. The results are shown in
Figure 15. In Figure 15 we only show nonzero values for those
cells which do not lie within the aquifer. The aquifer is defined
by a depth of 2144 m, and corresponds to the zone of higher
water saturation in Figure 16b. We observe significant time-
lapse amplitude changes near the near the southern edge of the
model where production is taking place. Fractional amplitude
changes of over 5% are observed over the reservoir proper. The
amplitude changes are mostly positive because this is a system
where the impedance stiffens with water encroachment and the
initial reservoir impedance is greater than that of the overbur-
den. Furthermore, because the strong aquifer drive keeps the
reservoir pressure relatively constant, gas plays a very minor
role at Bay Marchand field.

Figure 14. (a) Water cut from the seven wells producing from
the 7100-ft sand at Bay Marchand field. (b) Selected traces
from a base survey (solid) shot in 1987 at Bay Marchand field.
Corresponding traces from a regional survey (dashed) shot in
1998 for a region encompassing Bay Marchand field.

The reservoir model at Bay Marchand field

As discussed by Behrens et al. (2002), a reservoir model was
carefully constructed for the 7100-ft sand at Bay Marchand
field. Because of the deeper producing sands, there were some
50 logged wells penetrating the 7100-ft reservoir yet not pro-
ducing from it. Detailed facies logs and maps were used to sim-
ulate petrophysical facies and generate geostatistical reservoir
models. The reservoir model consisted of 23 layers, and predic-
tions based upon it generally match the cumulative production
data.

For this preliminary study, we only consider a single-layer
reservoir model. Our focus here is on the correctness of the
algorithm and our ability to match actual field observations.
This is not intended to be an in-depth case study of the Bay
Marchand reservoir. In a future publication, we shall consider
a multilayer reservoir model and a coupled inversion of time-
lapse amplitude and water cut.

We averaged the reservoir properties of the 23 layers to pro-
duce an initial one-layer reservoir model. The porosity and
saturations in each layer were linearly averaged together while
the logarithm of the permeabilities were averaged. The result-
ing permeabilities and initial water saturations are shown in
Figure 16. The initial water saturations were produced by a
reservoir simulation of field production using the initial reser-
voir model. As noted above, the quality of the reservoir di-
minishes to the west, this is notable in Figure 16a as a sharp
decrease in permeability. In addition, the southern edge of the
model is truncated by a fault, which is represented by a sharp
decrease in permeability. The initial location of the aquifer is
indicated by the high water saturation in Figure 16b.

Inversion of the time-lapse data

Using the methodology outlined above, we inverted the am-
plitude changes between the two seismic surveys. Due to the
nature of the surveys (the initial survey consists of legacy data
gathered after the onset of production), the amplitude changes

Figure 15. Peak amplitude changes between 1987 and 1998 for
the 7100-ft sand at Bay Marchand field.
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are rather noisy. Therefore, we used the largest amplitude
changes in the inversion: values larger than 0.05. In particu-
lar, 21 of the largest amplitude changes comprised our basic
data set. Starting from the initial permeability model shown in
Figure 16a, we iteratively updated the permeabilities in order
to better fit the amplitude changes. The misfit reduction as a
function of the number of iterations is shown in Figure 17. The
squared misfit is reduced by 81% in 12 iterations. The final fit
to the amplitude changes is indicated in Figure 18. Because we
did not consider amplitudes smaller than 0.05 in order to in-
crease the signal-to-noise ratio, all the points lie to the right of
the cutoff. Initially, the amplitude changes are systematically
underpredicted. The final fit still contains considerable scat-
ter. One reason for this is the nature of the time-lapse data
from Bay Marchand field. Because the two surveys were not
designed for time-lapse monitoring, the data are rather noisy

Figure 16. Initial permeability model for the 7100-ft sand at
Bay Marchand field. Initial water saturation prior to the start
of production at the field.

in general. Another reason that we could not reduce the misfit
further may be due to simplifying assumptions in our modeling,
in particular, the fact that we are using a single layer to model
the reservoir permeability variations. Reservoir modeling of
the production at Bay Marchand field and a time-lapse pulsed
neutron log indicate that the water saturation in not uniform
with depth (Behrens et al., 2002). Rather, there is a progressive
filling of the lower stratigraphic section over time. Thus, we ex-
pect the fit to improve when additional layers are added to the
reservoir model. Our final model (shown in Figure 19a) con-
tains generally lower permeabilities in the central region of the
reservoir. The lower permeabilities are required to slow down
the arrival of the water in order to produce the largest changes
within the time interval between the two seismic surveys.

The predicted amplitude changes, based upon the perme-
ability model in Figure 19a are show in Figure 19b. Many

Figure 17. Squared misfit as a function of the number of itera-
tions of the inversion algorithm.

Figure 18. Initial (open circles) and final (solid squares) fits to
the Bay Marchand time-lapse amplitude changes.
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of the general features of the observed time-lapse amplitude
changes (Figure 15) are reproduced by the updated model of
flow properties. In particular, the location of the largest am-
plitude changes coincides in both models. Furthermore, the
largest amplitude changes form an arcuate pattern extending
to the westernmost producing wells. The detailed amplitude
variation is not reproduced by the updated reservoir model.
For example, the amplitude changes to the north of the arcu-
ate amplitude changes are not found in the predicted amplitude
changes. But, as noted above, because the legacy data could
not be reprocessed and the second survey was not designed
for time-lapse monitoring, the observed amplitude variations
are rather noisy and, thus, detailed interpretation may not be
warranted. Also, we have adopted a simple one-layer reservoir
model in this initial attempt to match the time-lapse measure-

Figure 19. Final permeability model resulting from an inver-
sion of the time-lapse amplitude changes. Fractional amplitude
changes predicted by the final inversion results.

ments. Another disadvantage of these data is the lack of a pre-
production survey. Thus, we could not infer the initial reservoir
conditions, and we had to work with saturation changes rather
than the saturations themselves. Despite these limitations, the
time-lapse amplitude data indicate that permeabilities in the
central portion of the reservoir are too large to match the ob-
servations. This finding was consistent with an initial inversion
of the water-cut observations.

CONCLUSIONS

An asymptotic approach to the modeling of two-phase flow
provides an efficient formalism with which to invert time-lapse
seismic-amplitude changes. Specifically, the formulation results
in a trajectory-based algorithm for using time-lapse observa-
tions to update reservoir flow properties, such as permeability.
Synthetic testing and comparisons with numerical computa-
tions indicate that the inversion scheme is both efficient and
accurate. We find that time-lapse seismic-amplitude changes
may be used to infer the large-scale permeability variations
in a reservoir. Our application to actual time-lapse data from
Bay Marchand field indicates that the method is robust in the
presence of noise.

As is true for the vast majority of inverse problems, there
are issues of uniqueness and uncertainty associated with per-
meability estimates based upon time-lapse observations. For
example, depending on the type of observation, there may be
trade-offs in depth associated with the use of seismic reflec-
tion data. Many of these issues may be addressed using avail-
able tools, such as the computation of resolution and covari-
ance matrices (Parker, 1994). The efficiency of our approach
and the explicit expressions for model parameter sensitivities
should help in this regard. Furthermore, we can take advan-
tage of sparse-matrix methods for approximating resolution
and model parameter variance (Vasco et al., 2003). There is
also the issue of the dependence of the solution on the starting
model caused by the nonlinearity of the inverse problem. This
question is difficult to address is a satisfactory manner and un-
derscores the fact that we should begin with the best possible
model derived from 3D seismic and well log data. However,
we can also again take advantage of the efficiency of the in-
version algorithm to explore the range of possible solutions.
Specifically, we can conduct a number of inversions, starting
from various plausible initial models. By examining the com-
mon elements of the solutions, we gain an understanding of
those features which are robust. In favorable situations, such as
when preproduction survey data are available, it might be pos-
sible to infer the movement of a two-phase front. Estimates of
front-arrival times, rather than saturation-amplitude changes,
are quasi-linearly related to flow properties (Vasco and Datta-
Gupta, 2001a). Thus, an inversion based upon arrival times is
much less sensitive to the initial reservoir model.

This work can be extended in several respects. In this pa-
per, we investigated the inversion of time-lapse amplitude
data for reservoir permeabilities. In order to keep the pre-
sentation focused on the correctness and efficiency of our ap-
proach, we did not include other types of data. In the future,
we would like to integrate both reservoir production observa-
tions (such as water-cut and well pressure data) with seismic
time-lapse measurements, as advocated by Landa and Horne
(1997) and Gosselin et al. (2001). It would also be interesting to
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incorporate pressure estimates derived from time-lapse seismic
amplitude variation, with offset (Landro, 2001). While the sen-
sitivity of the compressional wave velocity to pressure changes
is weak relative to saturation changes at the Bay Marchand
field, this is not always the case. Furthermore, the relative sen-
sitivity of the shear velocity to pressure changes is more sig-
nificant. Hence, using multiple offset data, one can estimate
pressure changes in a reservoir (Landro, 2001). In our sensitiv-
ity computations, synthetic illustration, and field application,
we used amplitude changes associated with reflections off the
top of the reservoir. Our approach is not limited to amplitudes
from specific horizons. Because we compute the seismic sensi-
tivities numerically, we can use the entire waveform associated
with the reservoir interval or even surrounding reflectors. We
can also work in the frequency domain, using particular fre-
quency components of the traces.

We would also like to extend the trajectory-based method-
ology to more general settings, for example, when capillary ef-
fects are present. We are beginning to generalize the trajectory-
based approach to three-phase flow, by including gas. This is
an important extension of the methodology, particularly with
respect to time-lapse monitoring where the effects of gas can
be significant. Although the trajectory-based methodology is
still valid in the presence of gas, new phases introduce corre-
sponding nonuniqueness in relating amplitude changes to satu-
ration and pressure variations. Thus, more comprehensive data
sets (perhaps including electromagnetic observations) may be
required (Hoversten et al., 2003) The dramatic impact of gas
may provide a sensitive indicator of reservoir pressure changes
which can be used to image flow properties directly, based upon
a linear inversion of the estimated pressure changes (Vasco,
2004). Finally, we want to apply the methodology to additional
data sets, including data from surveys designed specifically for
time-lapse monitoring.
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APPENDIX A

ASYMPTOTIC SOLUTION
FOR TWO-PHASE FLOW

This Appendix outlines the derivation of an asymptotic so-
lution for the propagation of a two-phase fluid front. In partic-
ular, we derive an analytic relationship between reservoir flow
properties and the arrival time and amplitude variation of a
propagating two-phase fluid front. This asymptotic solution is
the basis for an semi-analytic relationship between time-lapse
seismic amplitude changes and reservoir flow properties.

Governing equations for two-phase flow

We begin with the pair of partial differential equations de-
scribing the flow of a wetting (water) phase and a nonwetting
(oil) phase (Peaceman, 1977):

∇ ·
[
ρwK (x)krw

µw
∇(Pw(x, t)− ρwgz)

]
= φ(x)

∂(ρwSw)
∂t

,

∇ ·
[
ρoK (x)kro

µo
∇(Po(x, t)− ρogz)

]
= φ(x)

∂(ρoSo)
∂t

,

where the variables Sw and So denote the saturations of the
water and oil phases, respectively. The relative permeabilities
of the water and oil phases are represented by krw and kro,
whereas the absolute permeability is given by K (x). The den-
sities of the water and oil are ρw and ρo, respectively, g denotes
the gravitational constant, and the spatially varying porosity is
φ(x). The pressure associated with the wetting phase is Pw(x, t),
and Po(x, t) is the pressure associated with the oil phase, The
viscosities for the water and oil phases are µw and µo. The two
equations are coupled because the saturations are constrained
to sum to unity:

Sw + So = 1.

If capillary forces are small relative to other factors, we may
derive a single equation describing the evolution of the satu-
ration of the wetting phase, which shall be denoted by S(x, t)
(Peaceman, 1977; Bedrikovetsky, 1993):

φ(x)
∂S

∂t
+U · ∇S+ C(S) = 0, (A-1)

where U is the flow velocity and C(S) is a term related to
gravity:

C(S) = gλw
(ρw − ρo)
λo + λw

kro(S)
µo

∂K (x)
∂z

.

The spatial variations in the relative permeability parameters
kro and krw are assumed to occur due to variations in saturation.

Asymptotic solutions for two-phase flow

The motivation for our asymptotic solution is based upon a
variation in scale (Whitham, 1974; Jeffrey, 1976; Anile et al.,
1993). That is, we assume that the initial saturation distribu-
tion is a relatively slowly varying function of space and time
when compared to the jump in saturation across the two-phase
front. In effect, there is a scale L describing the variation in
background saturation in time and space and a scale 3 de-
scribing the spatial and temporal variation in saturation across
the propagating two-phase front. We are assuming that LÀ3
holds in the domain of interest. If we denote 3/L by ε, the
condition is 0<ε¿ 1.

An asymptotic expansion is the representation of the solu-
tion as a formal series in powers of the parameter ε (Anile
et al., 1993):

S(x, t) = S0(x, t)+
∞∑

n=1

εnSn(x, t, ω), (A-2)

where S0(x, t) represents the background variation in satura-
tion, and ω is the frequency of the wave. The frequency ω is



1440 Vasco et al.

assumed to have the form

ω = σ (x, t)
ε

(A-3)

(Anile et al., 1993; Prasad, 2001), where σ (x, t) is the phase
variation of the wave, a function describing the geometric con-
figuration of the propagating multiphase front in space and
time. Note that the methodology is similar to asymptotic meth-
ods in electromagnetic (Kline and Kay, 1965) and seismic (Aki
and Richards, 1980) wave propagation.

In constructing our asymptotic representation, we substitute
the expansion A-2 of S(x, t) into the various terms of equation
A-1. For example, consider the components of the vector U(S)
which may be represented as a power series in S. The expansion
is given by

U(S, x, t) = U(S0, x, t)+ ε ∂U
∂S

S1 + O(ε2), (A-4)

where O(ε2) denotes terms of order ε2 and higher. Substituting
the expansions into equation A-1 produces an equation con-
taining an infinite sequence of terms. Each term in the sequence
contains ε to some power as a factor.

Arrival time of the two-phase front. — As shown in Vasco
and Datta-Gupta (2001a), neglecting terms containing ε of or-
der one or greater produces the equation

φ(x)
∂σ

∂t
+U(S0, x, t) · ∇σ = 0. (A-5)

The quantity σ (x, t) governs the propagation or kinematics
of the multiphase front. Note that the velocity vector U only
depends on the background saturation.

Using the implicit function theorem, we may write equa-
tion A-5 in the formϕ(X, T)= T − σ (X), whereσ only depends
on position. Then, equation A-5 reduces to

∇σ ·U(S0, x, t) = φ(x), (A-6)

a first-order linear partial differential equation, governing the
distribution of σ . We may solve this equation directly, using
the method of characteristics (Courant and Hilbert, 1962, p.
70). In the method of characteristics, solutions are developed
along particular trajectories, the characteristic curves, which
are denote by X(`), where ` is a parameter signifying position
along the curve. The equations for the characteristic curves are
a set of four ordinary differential equations:

dX
d`
= U(S0, x, t), (A-7)

dσ

d`
= φ(x) (A-8)

(Courant and Hilbert, 1962, p. 70). For a coordinate system
with one axis oriented along U, we can write equation A-7 as

dr

d`
= U, (A-9)

where U = |U|, and r denotes the distance along the axis
aligned with U. Combining equations A-8 and A-9, we may
express σ as the integral

σ =
∫
6

φ(r )
U

dr, (A-10)

where 6 is the trajectory from an initial point on the water
front to the final point. Note that this expression for phase is
similar to that in Vasco and Datta-Gupta (2001a) if we incor-
porate generalized Darcy’s law U= κK∇P, where κ is the total
mobility:

κ = kro

µro
+ krw

µrw
.

Equation A-10 then becomes

σ =
∫
6

φ(r )
κK |∇P|dr (A-11)

or

σ =
∫
6

p(r, t)dr (A-12)

if we write the integral in terms of

p(r, t) = φ(r )
κK (r )|∇P(r, t)| , (A-13)

which we call the front slowness. Note that the front slowness
depends on time through the time dependence of the pressure
gradient.

Amplitude of the two-phase front. — We may write the equa-
tion governing two-phase flow (equation A-1) in terms of the
characteristic coordinates (e.g. a coordinate system defined by
the characteristic curves associated with equations A-7 and
A-8 (Vasco et al., 2001a). The result is a a first-order, quasi-
linear, hyperbolic equation for S(t, σ ) of the form (King and
Datta-Gupta 1998)

∂F(S)
∂σ

+ ∂S

∂t
= 0, (A-14)

where F(S) is the fractional flow function

F(S) = mw

mo +mw

for mw = krw/µrw and mo= kro/µro. Equation A-14 is invariant
with respect to coordinate scalings of the type

t ′ = εt, σ ′ = εσ, ε > 0,

which requires the solution to take the general form (set
ε= 1/t)

S(t, σ ) = S

(
σ

t

)
(A-15)

if it is to be unique (Chorin and Marsden, 1990; Bedrikovetsky,
1993). A specific form for S(t, σ ) was derived by Buckley and
Leverett (1942).

Amplitude sensitivities: Analytic expressions. — From the
general form of the solution for saturation (equation A-15),
we may compute analytic expressions for saturation amplitude
sensitivities to changes in reservoir properties (Vasco et al.,
1999). That is, we wish to determine how perturbations in reser-
voir properties (such as porosity and permeability) map into
perturbations in the saturation at a point in the reservoir. The
important point to note is that the reservoir properties enter
expression A-15 through the variable σ . As noted in Vasco
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and Datta-Gupta (2001a), a perturbation in σ is related to a
perturbation in saturation δSby

δS

(
σ

t

)
= 1

t
S′
(
σ

t

)
δσ, (A-16)

where σ is given by integral A-11. The quantity δσ follows from
a perturbation of integral A-11:

δσ =
∫
6

δp(r )dr, (A-17)

where

δp(r ) = ∂p

∂φ
δφ(r )+ ∂p

∂K
δK (r )+ ∂p

∂|∇P|δ|∇P(r )|.
(A-18)

The partial derivatives may be calculated directly from equa-
tion A-13:

∂p

∂φ
= p(r )
φ(r )

,

∂p

∂K
= − p(r )

K (r )
,

∂p

∂|∇P| = −
p(r )
|∇P(r )| . (A-19)

If the trajectories are not significantly perturbed by the passage
of the saturation front, then the perturbed trajectory6 may be
replaced by the unperturbed trajectory60. This approximation
is thought to be a good one for waterflood fronts (Datta-Gupta
and King, 1995) and appropriate for the oil field application
considered.

REFERENCES

Aki, K., and P. G. Richards, 1980, Quantitative Seismology: W. H. Free-
man and Co.

Anile, A. M., J. K. Hunter, P. Pantano, and G. Russo, 1993, Ray methods
for nonlinear waves in fluids and plasmas: Longman Scientific and
Technical Publishing.

Bedrikovetsky, P., 1993, Mathematical theory of oil and gas recovery:
Kluwer Academic Publishing.

Behrens, R., P. Condon, W. Haworth, M. Bergeron, Z. Wang, and C.
Ecker, 2002, Monitoring of water influx at Bay Marchand: The prac-
tical use of 4D in an imperfect world: SPE Reservoir Evaluation and
Engineering, SPE 79961, 410–420.

Benson, R. D., and T. L. Davis, 2000, Time-lapse seismic monitoring
and dynamic reservoir characterization, Central Vacuum unit, Lea
County, New Mexico: SPE Reservoir Evaluation and Engineering,
3, 88–97.

Brevik, I., 1999, Rock model based inversion of saturation and pressure
changes from time lapse seismic data: 69th Annual International
Meeting SEG, Expanded Abstracts, 1044–1047.

Burkhart, T., A. R. Hoover, P. B. Flemings, 2000, Time-lapse (4D)
seismic monitoring of primary production of turbidite reservoirs
as South Timbalier Block 295, offshore Louisiana, Gulf of Mexico:
Geophysics, 65, 351–367.

Buckley, S. E., and M. C. Leverett, 1942, Mechanism of fluid displace-
ment in sands: Transactions of the American Institute of Mining,
Metallurgical, and Petroleum Engineering, 146, 107–116.

Chapman, S. J., J. M. H. Lawry, and J. R. Ockendon, 1999, Ray the-
ory for high-peclet-number convection-diffusion: SIAM Journal of
Applied Mathematics, 60, 121–135.

Chorin, A. J., and J. E. Marsden, 1990, A mathematical introduction
to fluid mechanics: Springer-Verlag.

Courant, R., and D. Hilbert, 1962, Methods of mathematical physics:
Interscience.

Datta-Gupta, A., and M. J. King, 1995, A semianalytic approach to
tracer flow modeling in heterogeneous permeable media: Advances
in Water Resources, 18, 9–24.

Datta-Gupta, A., S. Yoon, D. W. Vasco, and G. A. Pope, 2002. Inverse
modeling of partitioning tracer tests: A streamline approach: Water
Resources Research, 38, No. 6, 10.1029.

Domenico, S. N., 1974, Effect of water saturation on seismic reflectivity
of sand reservoirs encased in shale: Geophysics, 39, 759–769.

Eastwood, J., J. P. Lebel, A. Dilay, and S. Blakeslee, 1994, Seismic
monitoring of steam-based recovery of bitumen: The Leading Edge,
4, 242–251.

Fanchi, J. R., 2001, Time-lapse seismic monitoring in reservoir man-
agement: The Leading Edge, 20, 1140–1147.

Gassmann, F., 1951, Elastic waves through a packing of spheres: Geo-
physics, 16, 673–685.

Gosselin, O., S. van den Berg, and A. Cominelli, 2001, Integrated
history-matching of production and 4D seismic data: paper SPE
71599 presented at the 2001 Annual Technical Conference, Society
of Petroleum Engineers.

Greaves, R. J., and T. Fulp, 1987, Three dimensional seismic monitoring
of an enhanced oil recovery process: Geophysics, 52, 1175–1187.

Guilbot, J., and B. Smith, 2002, 4-D constrained depth conversion for
reservoir compaction estimation: Application to Ekofisk field: The
Leading Edge, 21, 302–308.

He, W., G. Guerin, R. N. Anderson, and U. T. Mello, 1998, Time-
dependent reservoir characterization of the LF sand in the South
Eugene Island 330 field, Gulf of Mexico: The Leading Edge, 17,
1434–1438.

Hoversten, G. M., R. Gritto, J. Washbourne, and T. Daley, 2003, Pres-
sure and fluid saturation prediction in a multicomponent reservoir
using combined seismic and electromagnetic imaging: Geophysics,
68, 1580–1591.

Huang, X., L. Meister, and R. Workman, 1998, Improving production
history matching using time-lapse seismic data: The Leading Edge,
17, 1430–1433.

Jeffrey, A., 1976, Quasilinear hyperbolic systems and waves: Pitman
Publishing.

Johnston, D. H., R. S. McKenny, J. Verbeek, and J. Almond, 1998,
Time-lapse seismic analysis of Fulmar field: The Leading Edge, 17,
1420–1428.

Kennett, B. L. N., 1983, Seismic wave propagation in stratified media:
Cambridge University Press.

King, M. J., and A. Datta-Gupta, 1998, Streamline simulation: A cur-
rent perspective: In Situ, 22, 91–140.

Kline, M., and I. W. Kay, 1965, Electromagnetic theory and geometrical
optics: John Wiley and Sons.

Landa, J. L., and R. N. Horne, 1997, A procedure to integrate well test
data, reservoir performance history, and 4-D seismic information
into a reservoir description: paper SPE 38653 presented at the 1997
Annual Technical Conference, Society of Petroleum Engineers.

Landro, M., 2001, Discrimination between pressure and fluid satura-
tion changes from time-lapse seismic data: Geophysics, 66, 836–844.

Lazaratos, S. K., and B. P. Marion, 1997, Crosswell seismic imaging of
reservoir changes caused by CO2 injection: The Leading Edge, 16,
1300–1307.

Lee, D. S., V. M. Stevenson, P. F. Johnston, and C. E. Mullen, 1995
Time-lapse crosswell seismic tomography to characterize flow struc-
ture in the reservoir during thermal stimulation: Geophysics, 60,
660–666.

Lumley, D. E., R. A. Behrens, and Z. Wang, 1997, Assessing the tech-
nical risk of a 4D seismic project: The Leading Edge, 16, 1287–1294.

Mathisen, M. E., A. A. Vasiliou, P. Cunningham, J. Shaw, J. H. Justice,
and N. J. Guinzy, 1995, Time-lapse crosswell seismic tomogram inter-
pretation: Implications for heavy oil reservoir characterization, ther-
mal recovery process monitoring, and tomographic imaging technol-
ogy: Geophysics, 60, 631–650.

Minkoff, S. E., C. M. Stone, S. Bryant, and P. Peszynska, 2004, Coupled
geomechanics and flow simulation for time-lapse seismic modeling:
Geophysics, 69, 200–211.

Nur, A., 1989, Four-dimensional seismology and (true) direct detec-
tion of hydrocarbon: The petrophysical basis: The Leading Edge, 8,
30–36.

Paige, C. C., and M. A. Saunders, 1982, LSQR: An algorithm for sparse
linear equations and sparse linear systems: ACM Transactions on
Mathematical Software, 8, 195–209.

Parker, R. L., 1994, Geophysical inverse theory: Princeton University
Press.

Peaceman, D. W., 1977, Fundamentals of numerical reservoir simula-
tion: Elsevier Scientific Publishing Co.

Prasad, P., 2001, Nonlinear hyperbolic waves in multi-dimensions:
Chapman and Hall.

Rickett, J. E., and D. E. Lumley, 2001, Cross-equalization data process-
ing for time-lapse seismic reservoir monitoring: A case study from
the Gulf of Mexico: Geophysics, 66, 1015–1025.

Smith, P., J. I. Berg, S. Eidsvig, I. Magnus, F. Verhelst, and J. Helgesen,
2001, 4-D seismic in a complex fluvial reservoir: The Snorre feasibil-
ity study: The Leading Edge, 20, 270–276.

Tura, A., and D. E. Lumley, 1999, Estimating pressure and satura-
tion changes from time-lapse AVO data: 61st Annual Conference,



1442 Vasco et al.

European Association of Geoscientists and Engineers, Extended
Abstracts, 1-38.

Vasco, D. W., 2004, Seismic imaging of reservoir flow properties: Time-
lapse pressure changes: Geophysics, 69, 511–521.

Vasco, D. W., and A. Datta-Gupta, 1999, Asymptotic solutions for so-
lute transport: A formalism for tracer tomography: Water Resources
Research, 35, 1–16.

——— 2001a, Asymptotics, saturation fronts, and high resolu-
tion reservoir characterization: Transport in Porous Media, 42,
315–350.

——— 2001b, Asymptotics, streamlines, and reservoir modeling:
A pathway to production tomography: The Leading Edge, 20,
1164–1171

Vasco, D. W., L. R. Johnson, and Q. Marques, 2003, Resolution, un-

certainty, and whole Earth tomography: Journal of Geophysical Re-
search, 108, 9-1/9-26.

Vasco, D. W., K. Karasaki, and H. Keers, 2000. Estimation of reservoir
properties using transient pressure data: An asymptotic approach:
Water Resources Research, 36, 3447–3465.

Vasco, D. W., S. Yoon, and A. Datta-Gupta, 1999. Integrating dy-
namic data into high-resolution reservoir models using streamline-
based analytic sensitivity coefficients: Society of Petroleum Engi-
neers Journal, 4, 389–399.

Watts, G. F. T., D. Jizba, D. E. Gawith, and P. Gutteridge, 1996, Reser-
voir monitoring of the Magnus field through 4D time-lapse seismic
analysis: Petroleum Geoscience, 2, 361–372.

Whitham, G. B., 1974, Linear and nonlinear waves: John Wiley and
Sons.


