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1. OVERVIEW

• RPSEA Contract: #07123-05
– RPSEA project manager: Charlotte Schroeder and James 

P (H t )Pappas (Houston)
• Timeline

– Project start date: August, 2008
– Expected project end date:  July, 2011
– Percent complete: ~50%

• Budget/Total Project FundingBudget/Total Project Funding
– RPSEA: $409,506
– Cost share: $683,163

Total budget: $1 103 706– Total budget: $1,103,706
• Project Goal

– Develop and demonstrate a thermal-based desalination process 
f d d ifi i llh d b i d d
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for produced water purification at wellhead by using co-produced 
geothermal energy or solar energy. 



2. SCOPE & APPROACH

Development and demonstration of a low-
temperature distillation unit by using co producedtemperature distillation unit by using co-produced 
energy sources for produced water purification at 
wellhead. Project includes two phases:

• Phase 1 (FY08-09): Development of a Co-Sited Produced• Phase 1 (FY08-09): Development of a Co-Sited Produced 
Water Purification Technology that Can be Deployed at 
Wellhead, Including Process Design and Equipment 
Procurement. (COMPLETE)

• Phase 2 (FY09-10): Pilot Test of Produced Water Purification 
at Wellhead . (ON-GOING)
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2.1 Background of Produced Water

Wellhead Separation
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2.2 Technical Approach
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Pretreatment 36 17 10

Percent Distribution of Cost Factors

Pretreatment 36 17 10

RO membrane 

replacement

12 6 7

Fixed costs 20 27 54

Electric power and 

maintanence

32 50 20

Younos, 2005.



2.3 Desalination Mechanism2.3 Desalination Mechanism
Saturate water vaporSaturate water vapor

T= ~ 80C T= ~ 80C
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Benefits of proposed process:
 No/simple screening pretreatment

Component
San Juan 

Basin (), mg/L
Permian Basin 
(Oilfield), mg/L

Typical Seawater,  
mg/L

Bicarbonate ( ) 5870.3 1538.1 107

Hydrogen sulfide ( ) 65 22.5 N/A

Beckman et al., 2006, 2008

 No/simple screening pretreatment
 Tolerant to changes in intake water 

quality and volume
 Deployment of co-produced energy and 

lower carbon footprint

y g ( )
Chloride ( ) 2389.5 130636 19352.9

Sulfate  ( ) 24.1 4594.1 2412.4

Sodium ( ) 4169.3 80421.2 10783.8

Potassium ( ) 35 398.6 399.1

Magnesium ( ) 19 894.1 1283.7

 Removing salt and organics 
simultaneously

Magnesium ( ) 83

Calcium ( 11 4395.5 412.1

Strontium ( ) 6.3 88.9 7.9

Iron ( ) 0.65 65.3 15.5

Total Dissolved Solids () 12590.2 223054.3 34774.4



2.4 Process Optimization2.4 Process Optimization

Energy balance 
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3. CURRENT STATUS
3.1 Laboratory Setup of Process Optimizationy p p

Feed 
Water

T t dTreated 
Water

Composition Feed water Purified water Removal efficiency, 
%

Total dissolved solid (TDS), mg/L 19756.0 76.35 99.6

Total suspended particulates, mg/L 99 6 U d t t bl 100%Total suspended particulates, mg/L 
(0.22m < dia.< 100m) 99.6 Undetectable 100%

Total organic carbon (TOC), mg/L 470.2 17.83 96.2%



3.2 Effects of Operating Parameters on Performance
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1. Increasing temperature increases water production significantly
2. Ion/organic removal efficiency remain nearly stable at increasing 

temperature.p
3. The feed water chemistry has little influence on separation 

performance



3.3 Prototype Design and Manufacture



3.4 Construction of Prototype 
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3.5 Economic Analysis & Benefits

Technology Energy 
deployed

Unit capital 
cost, $/m3/d

Unit energy 
cost

Unit chemical 
cost, $/bbl

Water 
cost

References

RO Electricity 924 $0.13/bbl 0.03 $0.16/bbl Ettouney et al., 2002RO 
membrane

Electricity 924 $0.13/bbl 0.03 $0.16/bbl Ettouney et al., 2002
Hansen et al., 1994
Rowe et al., 1995
J. Beckman, 2008
ALTELA, Inc.

HDP Natural gas 264 $0.89/bbl N/A $1.04/bbl

HDP Waste heat 264 $0.002/bbl N/A $0.14/bbl

Options Estimated cost
($/bbl)

E ti it 0 01 0 8

Energy Consumption Analysis:

Theoretical minimum energy: 0.7 KWh/m3
Evaporation pits 0.01-0.8

Water hauling 1.0-5.5

Disposal well 0 05-2 65

gy

Current sea water RO:  3.0 KWh/m3

Thermal process: 2 65 KWh/m3 for pumpsDisposal well 0.05 2.65

Freeze-thaw 2.65-5.0

Electrodialysis 0.02-0.64

Thermal process:  2.65 KWh/m3 for pumps
40 KWh/m3 for thermal distillation

Projected Economics:

Jackson and Myers, 2003; J. Veil, 2004
Capital cost for the 20 bbl/day capacity: $15,000
Energy cost: $0.7-0.9/bbl 



4. FIELD DEPLOYMENT

Fed 00 #3, 30 bbl/day 

13Floyd #2, 20 bbl/day 



4.1 Deployment of Solar Energy 
ARRAY OF 16 SOLAR COLLECTORS WITH 50 ° TILTARRAY OF 16 SOLAR COLLECTORS WITH 50 TILT 
ANGLE

 Evacuated tubes and flat plate solar 
collectors were considered, however 

HEAT INPUT REQUIRED FOR SOLAR HEATING- Solar company 
method

630 gallons/day or 15 bbls
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,
glycol based solar collectors were 
chosen due to budget constraints.

630 gallons/day or 15 bbls 

( 15 * 42 gallons) X 8.34 lbs/gallon X (75) degree change in fahrenheit 
divided by 78% (Efficiency) 

= 500 KBTU



4.2 Field Facility & Equipment 
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CONCLUSION/PLANS (Phase I)
• Distillation is more robust to feed water quality and is more attractive in 

challenge locations, such as wellhead comparing to membrane process.

• Thin film based distillation process can purify produced water to 
substantial quality that suitable for irrigation and other beneficial uses:

– High purity water (TDS=76 mg/l, TOC=17.8 mg/l) was achieved with feed produced 
water containing TDS of 2.0×104 mg/l and TOC of 470 mg/l. 

– The water productivity of bench scale demonstration ranges from 48 to 311 ml/(m2.h). p y g ( )
Recovery varies from 8% to 30% when the feed water temperature ranges from 60  C 
to 80 C. 

• A 20 bbl/day prototype was designed, manufactured, and tested at NewA 20 bbl/day prototype was designed, manufactured, and tested at New 
Mexico Tech. The capital cost for the unit is estimated at $15,000. 

• Co-produced geothermal heat is abundant at wellhead. It is possible to 
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p g p
desalinate produced water at wellhead by using co-produced geothermal 
energy.



Future Work and Suggestions

• Field deployment for prototype installation is scheduled at Fed 003 
well

gg

well. 

• Distillate quality and quantity will be monitored for prolonged 
operating time ( 1 year)

• Integration of solar heating and co-produced geothermal will be 
evaluated for driving the desalination process. 

• Treating produced water at wellhead by deploying solar energy or 
co-produced geothermal energy could be an economic method for 
desalting produced waterdesalting produced water.

• Economic evaluation based on the capital cost, lifetime of each 
operation, maintenance and operation costs will be carried out.
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