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Executive Summary

Although the New Albany Shale of the Illinois Basin has been estimated to contain approximately 86 TCF of natural gas in place, the full development of this potentially large resource has not yet occurred. The intent of this study is to reassess the potential of New Albany shale using a novel integrated workflow, which incorporates field production data and well logs using a series of traditional reservoir engineering analyses with artificial intelligence & data mining techniques. The model developed using this technology is a full filed model and its objective is to predict future reservoir/well performance in order to recommend field development strategies.

In the first part of this report, the impact of different reservoir characteristics such as matrix porosity, matrix permeability, initial reservoir pressure and pay thickness as well as the length and the orientation of horizontal wells on gas production in New Albany Shale has been presented.

The study was conducted using a publicly available numerical model, specifically developed to simulate gas production from naturally fractured reservoirs. 

The study focuses on several New Albany Shale wells in Western Kentucky. Production from these wells is analyzed and history matched. During the history matching process, natural fracture length, density and orientations as well as fracture bedding of the New Albany Shale are modeled using information found in the literature and outcrops and by performing sensitivity analysis on key reservoir and fracture parameters.

Sensitivity analysis is performed to identify the impact of reservoir characteristics and natural fracture aperture, density and length on gas production.

In second part the history-matched of results 87 NAS wells has been used for performing a novel integrated workflow .In this integrated workflow unlike traditional reservoir simulation and modeling, we do not start from building a geo-cellular model. Top-Down intelligent reservoir modeling(TDIRM) starts by analyzing the production data using traditional reservoir engineering techniques such as Decline Curve Analysis, Type Curve Matching, Single-well History Matching, Volumetric Reserve Estimation and Recovery Factor. These analyses are performed on individual wells in a multi-well New Albany Shale gas reservoir in Western Kentucky that has a reasonable production history. Data driven techniques are used to develop single-well predictive models from the production history and the well logs (and any other available geologic and petrophysical data). 

Upon completion of the abovementioned analyses a large database is generated .This database includes a large number of spatio-temporal snap shots of reservoir behavior. Artificial intelligence and data mining techniques are used to fuse all these information into a cohesive reservoir model. The reservoir model is calibrated (history matched) using the production history of the most recent set of wells that have been drilled in the field.  The calibrated reservoir model is utilized for predictive purposes to identify the most effective field development strategies including locations of infill wells, remaining reserves, and under-performer wells. Capabilities of this new technique, ease of use and much shorter development and analysis time are demonstrated as compared to the traditional simulation and modeling. 
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[bookmark: _Toc235824983]New Albany Shale Gas -The New Albany Shale is predominantly an organic-rich brownish-black and grayish-black shale that is present in the subsurface throughout the Illinois Basin. The total gas content of the New Albany Shale (Devonian and
Mississippian) in the Illinois Basin (Figure 1) has been estimated to be 86 trillion cubic feet (TCF) . Although the New Albany Shale has produced commercial quantities of gas for more than 100 years from many fields in southern Indiana and western Kentucky, only a small fraction of its potential has been realized 

The Shale is shallow, biogenic and thermogenic that lie at depth of 600-5,000 feet and are 100-200+ feet thick. Natural fractures are believed to provide the effective reservoirs permeability in these zones and gas is stored both as free gas in fractures and as absorbed gas on kerogen and clay surfaces.
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[bookmark: _Ref235822331][bookmark: _Toc235824326]Figure 1. Illinois Basin Map 
The New Albany Shale has great potential for natural gas reserves. Gas-in-place (GIP) measures from 8 bcfg/square mile to 20 or more bcfg/square mile, depending on locations and depths.

Unlike many other shale plays, the New Albany Shale in the Illinois Basin has a continuous 100 foot thick pay zone of shale, capped by a very thick, dense, gray-green shale (Borden Shale). Prior to 1994, over 600 New Albany Shale wells had been produced commercially in the Illinois Basin. In the New Albany Shale, a well commonly produces water along with the gas. It was learned in the early 1900's that a simple open-hole completion in the very top of the shale, would yield commercial gas wells that would last for many years, in spite of producing some water with the gas. Vertical fractures in the shale fed the gas flow at the top of the shale. The potential of these wells was seldom realized, as the production systems for handling the water were limited. Today, we have the ability to deal with the water cost effectively and as a result can keep the water produced off from the shale allowing better rates of gas production. Utilizing the success of horizontal drilling, modern water production systems, and low-pressure gas gathering systems, long-term production of natural gas can be achieved. 

Current recovery of the black shale gas in vertical wells is estimated typically at 15% to 20% of GIP from the black shale. On a well-to-well basis, this recovery varies depending on the natural fracture intensity associated with each well bore. The opportunity to exploit these shale gas reserves is big. Production volumes from the black shale are related mostly to our ability to desorb gas from the shale. Removing the hydrodynamic trap on the shale is the key to producing shale gas.  The lower the producing pressure of the well bore, the greater its capacity to produce gas. 

Simple, low-cost vertical wells are delivering good returns on investment to several operators in the play. Horizontal drilling with only 1,000 feet of lateral wellbore, has demonstrated from a producing horizontal well to produce long-term, stable gas flow. Other horizontal test wells drilled recently under joint ventures have also confirmed the excellent production potential of the shale. Commercial production from wells is projected for 40 years or more. Due to the vertical nature of natural fractures/jointing through the shale, horizontal drilling is expected to have the best overall return on investment. 
[bookmark: _Toc235824984]Part 1: New Albany Shale Natural Fracture Network Modeling and Simulation

The modeling of fluid flow through fractured formations can be based on deterministic, stochastic or fractal formulations of flow paths and matrix volumes. Deterministic models, however, are generally unable to effectively describe many naturally fractured formations with respect to the distributions of flow path length, flow path connectivity, and matrix block size and shape.

NFFLOWTM is a numerical model for naturally fractured gas reservoirs (Developed by NETL/DOE) that permits the modeling of irregular flow paths mimicking the complex system of interconnected natural fractures in such reservoirs. This type of natural fracture reservoir simulation permits a more accurate and realistic representation of fractured porous media when modeling fluid flow compared to the traditional deterministic formulations. The NFFLOWTM simulator is a single-phase (dry-gas), two-dimensional numerical model that solves fluid flow equations in the matrix and fracture domains sequentially for wells located in a bounded naturally fractured reservoir. The mathematical model “decouples” fluid flow in fractures and matrix, and solves a one-dimensional unsteady state flow problem in the matrix domain to compute the volumetric flow rates from matrix into fractures and wellbores.(6)

FRACGENTM, the fracture network generator (Developed by NETL/DOE), implements four Boolean models of increasing complexity through a Monte Carlo process that samples fitted statistical distributions for various network attributes of each fracture set. Three models account for hierarchical relations among fracture sets, and two generate fracture swarming. Termination/intersection frequencies may be controlled implicitly or explicitly. (6)

In this study FRACGEN/NFFLOW is being used to model gas production from New Albany shale. 

New Albany shale reservoir contains high-angled (vertical or nearly so) orthogonal natural fractures with non-uniform spacing that are open to unimpeded flow. The predominant fracture system is oriented east-west with spacing between joints estimated to average five feet based on outcrop studies (Figure 2) and production simulations. Based on this information, it was concluded that increases in performance could be achieved with a horizontally drilled well compared to a vertically drilled well in the same reservoir.

[image: H:\Documents and Settings\user\Desktop\NAS outcrop.bmp]
[bookmark: _Ref235822349][bookmark: _Toc235824327]Figure 2. Schematic showing outcrop fracture features of the New Albany shale (7)
Fractures in a core of the New Albany Shale from the Energy Resources of Indiana No. 1 Phegley Farms Inc. well in Sullivan County, Indiana, were described by Kalyoncu and others (1979)(8). Twenty-one fractures were described over an interval of 104 feet. They were mainly vertical, but some had dips as low as 80 degrees. The strike of the fractures was predominantly northwest-southeast and a small secondary mode trended slightly to the north of east-west. (9)

Joint orientations in outcrops of the New Albany Shale in Indiana are parallel to this secondary east-west trend of fractures in the Phegley Farms core. (10)Fractures in a core of the New Albany Shale from the Orbit No. 1 Clark well in Christian County, Kentucky, were described by Miller and Johnson (1979)(9). Natural fractures were regular planar sub vertical features striking northwest-southeast. They generally were filled with calcite, or less commonly with pyrite, and had apertures as great as 3.0 millimeters (0.0098 ft). In the vertical plane, these fractures were commonly continuous for 1 or 2 feet, succeeded by sub parallel fractures offset from each other at their terminations(9). 

There is a decrease in fracture from the top of the New Albany shale to the lower members. The Clegg Creek member is clearly contains the most fractures, both natural and induced. The Blocher member typically shows half the number of natural fractures when compared to the clegg creek (8).Therefore the Clegg Creek member contains the most natural fractures with fracture frequency decreasing down section.

Because of the problem that we had during this study to access fracture detection tools like image logs, seismic or any other tools that can be used for fracture identification and characterization, the abovementioned fracture distribution characteristics has been used to build a base fracture network model in FracGen and the flow modeling was performed in NFflow. The Fracture network characteristics used for the base model and the reservoir parameters that have been used for history matching (in NFflow) are shown in Table 1 and Table 2. 

Results of this model are compared with the production from a well producing from the New Albany Shale as shown in Figure 3. Meanwhile, because only last 9 years of production history was available, our production modeling (and eventually the history match) included reservoir behavior from the well completion to the last available production date.

The fracture network of the base model (model providing the best history match) consists of 4sets of fractures. Three of the sets are defined in order to generate the major fracture patterns that mostly contribute to flow (the orientation of those fractures are E 95° W, E97° W and E 90°) and the remaining set are defined in order to generate the bedding.
[bookmark: _Ref235823921][bookmark: _Toc235824695]

Table 1. Fracture network properties (Base model)
	Fracture Properties
	Fracture 
Length(ft)
	Fracture Aperture(ft)
	Fracture Density(ft/ft2)
	Major Fracture orientation

	Set 1
	2-400
	0.0098
	0.00003
	E 95° W

	Set 2
	2-400
	0.0098
	0.00003
	E 97°W

	Set 3
	5-400
	0.0098
	0.000003
	E 90°

	Set 4
	400-1000
	0.00025
	0.00003
	E 24° N




 (
Major fracture generator
 
)


 (
Bedding generator
 generator
)


Generations of fracture sets are based on two different models. Model 1 generates randomly located fractures, although the connectivity controls can be used to produce various degrees of clustering, including unintended clustering. Model 2 generates fracture swarms (elongated clusters), whereby the swarms are randomly located and can overlap.

[bookmark: _Ref235824011][bookmark: _Toc235824696]Table 2. The input variable for single well history matching
	Matrix Permeability (md)
	Matrix Porosity
(%)
	Initial Pressure
(psi)
	Thickness
(ft)
	A
(Acres)

	0.0000822
	0.05
	700
	100
	320




                     [image: ]
[bookmark: _Ref235822382][bookmark: _Toc235824328]Figure 3. Simulation result examples for one history-matched New Albany Shale Gas well
The 9 years production data of a well which is completed in New Albany shale, western Kentucky has been used to verify the built fracture network and perform history matching. Figure 3 shows production rates and cumulative production from the well in green and purple dots, respectively while modeled production rate and cumulative production are shown as red and blue profiles.  This figure shows that the base model has significantly overestimated the production from this well. According to the well completion report (11) the initial rate after the stimulation at July 1973 is around146 MCF/day while the model results start at 127,830 MCF/day and declines to more than 70 MCF/day in about last nine years of production. 

To match the production from the New Albany Shale with the FracGen/NFflow simulator, sensitivity analysis was performed on fracture network properties (Fracture Aperture, Length, and Density) and reservoir properties (Pi, φm, Km, and h) in order to make the best estimation of NAS natural fracture network pattern. 
[bookmark: _Toc235824985]Sensitivity Analysis on Reservoir and Fracture Properties

The objective of sensitivity analysis is to study the impact of different parameter and identify the factors that have the most contribution to flow.

To investigate the effect of different reservoir and fracture property on flow behavior, several studies were performed. The approach used for this analysis, starts by building the fracture network model based on the available information in literature (in FracGen). After performing the sensitivity analysis, the fracture network and reservoir properties of base model are tuned in order to match the observed production for each of the gas wells in New Albany shale.

As shown in Figure 4 through Figure 8, sensitivity analysis is performed, with the purpose of scrutinizing the influence of Initial reservoir pressure, matrix porosity, matrix permeability, net pay thickness and aperture reduction factor on flow behavior.

Aperture reduction factor is a term that has been defined as a parameter that can be used in order to shrink the hydraulic apertures of the fractures nearby the well and/or the entire drainage area of the well to further improve the history matched model. Alternatively, the fracture apertures can remain unchanged (reduction factor = 1.0).The process of reducing the aperture is a trial and- error process until the best possible match with production data or well test data is obtained for each of one or more networks.

As illustrated on Figure 9, which represent the comparison of the influence of reservoir and fracture properties on flow rate based on the sensitivity analysis results, the key parameters that have substantial effect on production behavior are initial reservoir pressure pay thickness and aperture reduction factor (ARF). 

         [image: ][image: ]
[bookmark: _Ref235822435][bookmark: _Toc235824329]Figure 4. Sensitivity analysis on initial reservoir pressure   Figure 5. Sensitivity analysis on matrix porosity
 (Monthly gas production)          			    (Monthly gas production)
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[bookmark: _Toc235824330]Figure 6. Sensitivity analysis on matrix permeability         Figure 7. Sensitivity analysis on pay thickness
 (Monthly gas production)				  (Monthly gas production)                                                                                             
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[bookmark: _Ref235822442][bookmark: _Toc235824331]Figure 8. Sensitivity analysis on Aperture reduction factor   Figure 9. Sensitivity analysis - Effect of reservoir and
(Monthly gas production)    				       fracture properties variation on initial gas rate                   
                         

In the next part of this study, we intend to understand the effect of fracture length and density on production and reservoir behavior. Reservoir properties (h, φm, Km, Pi), fracture orientation, inner cluster fracture length & density, fractures aperture and bedding properties were assumed to remain unchanged. Therefore, the only parameters that have been changed are fracture length ad density.

Hence, sensitivity analysis was performed for values of fracture length and density. Table 3 represents the suggested values for fracture length and density for one of fracture set.
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[bookmark: _Toc235824332]         Figure 10 . Fuzzy sets of Fracture Length				Figure 11. Fuzzy sets of Fracture Density
                                                                                                                                        
							
Figure 12 through Figure 16 demonstrate the results of sensitivity analysis based on fuzzy values of fracture length and fracture network density. The production data was available for just a part of well’s life so the complete production profile has been generated and initial rate after stimulation has been used to verify the predicted initial rate.

According to sensitivity analysis results, with increasing fracture length or fracture density the production will be increased. In the case that fracture length and/or density are low the fracture intersection will be decreased significantly, as a result some part of the reservoir will not be depleted, so the only way to put those parts of reservoir on production is performing some sort of stimulation (hydraulic fracturing).
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[bookmark: _Ref235822600][bookmark: _Toc235824333]Figure 12. Sensitivity analysis results (Monthly gas production)                    Figure 13. Sensitivity analysis results (Monthly gas production)                                                                  
(Very low fracture network density with variable length)                           (Low fracture network density with variable length)
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[bookmark: _Toc235824334]Figure 14. Sensitivity analysis results (Monthly gas production)        Figure 15. Sensitivity analysis results (Monthly gas production) (Medium fracture network density with variable length) 	                                                 (High fracture network density with variable length)                                                                  
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[bookmark: _Ref235822613][bookmark: _Toc235824335]Figure 16. Sensitivity analysis results (Monthly gas production)
(Very high fracture network density with variable length)
[bookmark: _Toc235824986]History Matched Model

Upon completion of the sensitivity, analysis and careful study of the impact of different parameters on production a new set of parameters were identified. This new set was used in the model. The result is shown in Figure 17. 

According to the well completion report (10), the initial rate after the stimulation at July 1973 is 146 MCF/Day. The history matched model results in an initial production rate of 141 MCF/Day, which shows the reliability of fracture network and history matched model.

Figure 17 shows production rates and cumulative production from the well in green and purple dots, respectively while modeled production rate and cumulative production are shown as red and blue profiles. 

[image: ]
[bookmark: _Ref235822659][bookmark: _Toc235824336]Figure 17. Single well history matching result, after changing the key

The final values of input parameters that are used in simulation (final history matching) are illustrated in Table 4.
             

[bookmark: _Ref235824042][bookmark: _Toc235824698]Table 4. Shows the input parameters for single well history matching (Best match)
	Matrix Permeability (md)
	Matrix Porosity 
(%)
	Initial Pressure
(psi)
	Thickness
(ft)
	A
(Acres)
	Aperture reduction factor(ARF)

	1.5E-7
	2.2
	500
	100
	320
	0.056



Fracture network characteristics used for the history-matched model are shown in Table 5 and the fracture network distribution for the base model is illustrated in Figure 18.
[bookmark: _Ref235824051][bookmark: _Toc235824699]Table 5. Fracture network properties (History matched model)

	Fracture Properties
	Fracture 
Length(ft)
	Fracture Aperture(ft)
	Fracture Density
	Major Fracture orientation

	Set 1
	2-200
	0.00055
	0.00006
	E 95° W

	Set 2
	2-200
	0.0004
	0.00006
	E 97°W

	Set 3
	5-200
	0.0004
	0.000009
	E 90°

	Set 4
	400-1000
	0.00025
	0.00002
	E 24° N


 (
Major fracture generator
 generator
)


 (
Bedding generator
 generator
)



As shown in Table 1 and Table 5, the fracture network properties has been modified in order to get better history match is fracture aperture values. 
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[bookmark: _Ref235822709][bookmark: _Toc235824337]Figure 18. The well and fracture intersection for the history matched model (Based on 320 acre spacing)                                                       
[bookmark: _Toc235824987]Effect of lateral orientation on well productivity
In order to understand the impact of the orientation of horizontal wells on gas production in New Albany Shale the fracture network and reservoir properties are assumed to be the same for all the models to see the effect of different well orientations in horizontal plane (not Z-direction) on production and well performance.
Figure 20 shows the history match results based on different well orientations in horizontal plane (0, 30,45,60,75 and 90 degree).The result of this study shows that the history-matched models of different well orientation in X-Y plane have only slight difference in production profile(Qi, Di and b) .Therefore, horizontal well orientation has not substantial effect on well performance.(Table 6)
                                                                           [image: ]










[bookmark: _Toc235824338]Figure 19. Horizontal well orientations in Y direction (0, 30, 45, 60, and 90 degrees)
[bookmark: _Ref235824161][bookmark: _Toc235824700]
Table 6. Initial rates based on different well orientation-History matched model

	Well Orientation
(degree)
	Qi
(MCF/day)

	0
	140.13

	30
	140.24

	45
	140.56

	60
	140.76

	75
	141.19

	90
	140.01
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[bookmark: _Ref235822749][bookmark: _Toc235824339]Figure 20. Single well history matching result-Zero and 30-degree well orientation (From left to right)
[bookmark: _Toc235824988]Part 2: Top-Down Intelligent Reservoir Modeling of New Albany Shale
[bookmark: _Toc235824989]Traditional Reservoir Simulation & Modeling

Reservoir simulation is the industry standard tool to understand the reservoir behavior and predict future performance. It is used in all phases of field development in the oil and gas industry. In order to predict reservoir performance, a series of models of reservoir process are constructed which yield information about the complex phenomena accompanying different recovery methods.

Full field reservoir simulation models which has been built by integration of static and dynamic measurements into the reservoir model have become the major source of information for analysis, prediction and decision making. Traditional reservoir simulation and modeling is a bottom-up approach that starts with building a geo-cellular model of the reservoir. Using modeling and geo-statistical manipulation of the data the geo-cellular model is populated with the best available petrophysical and geophysical information at the time of development. Engineering fluid flow principles are then added and solved numerically in order to generate a dynamic reservoir model. Figure 21 shows the Conventional reservoir simulation workflow (A bottom-up approach).

Usually, the full field model is calibrated using historic pressure and production data in a process referred to as "history matching." Once the full field subsurface reservoir model has been successfully calibrated, it is used to predict future reservoir production under a series of potential scenarios, such as drilling new wells, injecting various fluids or stimulation.

For economical and technical point of view, building a complex geological model, which serves as the foundation of the reservoir simulation model, needs a significant investment (time and money).On the other hand, the history matching process itself can be very time consuming and frustrating.  This is due to uncertainty about the reservoir, and the fact that a history match can usually be achieved through various configurations - a set of unique and distinctly different simulation models (which all condition to input data) can produce the same history match.  How do we know which one is correct? (12)

Despite aforementioned issues, conventional reservoir simulation and modeling is a well understood technology that usually works well in the hand of an experienced team of engineers and geoscientists.
[image: ]
[bookmark: _Ref235822779][bookmark: _Toc235824340]Figure 21. Conventional Reservoir Simulation &Modeling-A Bottom-Up Approach

[bookmark: _Toc235824990]Top-Down Intelligent Reservoir Modeling (TDIRM) as an Alternate/Complement to Conventional Reservoir Modeling Techniques 

TDIRM can be used as an alternative for short-term reservoir modeling and/or as a complementary method for long term, reservoir behavior modeling.

Top-Down Intelligent Reservoir Modeling approaches the reservoir simulation and modeling from reverse standpoint by attempting to make an insight into reservoir by starting with actual field measurements (well production history). The production history is augmented by core, log, well test, and seismic data in order to increase the accuracy of the Top-Down modeling technique. Although not intended as a substitute for the conventional reservoir simulation of large, complex fields, this unique approach to reservoir modeling can be used as an alternative (at a fraction of the cost) to traditional reservoir simulation and modeling in cases where performing conventional modeling is cost and man-power prohibitive specially for independent producer of mature fields. In cases where a conventional model of a reservoir already exists, Top-Down modeling should be considered a compliment to the conventional technique, to provide an independent look at the data coming from the reservoir/wells for optimum development strategy and recovery enhancement.

Top-Down Intelligent Reservoir Modeling starts with well-known reservoir engineering techniques such as Decline Curve Analysis, Type Curve Matching, and History Matching using single well numerical reservoir simulation, Volumetric Reserve Estimation, and calculation of Recovery Factors. Using statistical techniques, multiple Production Indicators (First 3, 6, and 9 month cumulative production as well as 1, 3, 5, and 10-year cumulative oil, gas and water production and Gas Oil Ratio and Water Cut) are calculated. These analyses and statistics generate a large volume of data and information that are spatio-temporal snap shots of reservoir behavior. This large volume of data is processed using the state-of-the-art in artificial intelligence and data mining (neural modeling (13), genetic optimization (14), and fuzzy pattern recognition (15)) in order to generate a complete and cohesive model of the entire reservoir. This is accomplished by using a set of discrete modeling techniques to generate production related predictive models of well behavior, followed by intelligent models that integrate the discrete models into a cohesive picture and model of the reservoir as a whole, using a continuous fuzzy pattern recognition algorithm.

The Top-Down Intelligent Reservoir Model is calibrated using the most recent set of wells that have been drilled in the field. The calibrated model is then used for field development strategies and reservoir management to improve and enhance hydrocarbon recovery. Figure 22 shows the Top down intelligent reservoir modeling workflow.
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[bookmark: _Ref235822829][bookmark: _Toc235824341]Figure 22. Top-down Intelligent Reservoir Modeling Workflow

[bookmark: _Toc235824991]Top-Down Modeling Methodology-Conceptual Approach

Top-Down Modeling is a well-designed integration of state-of-the-art in Artificial Intelligence & Data Mining (AI&DM) with solid reservoir engineering techniques and principles. It provides a unique perspective of the field and the reservoir using actual measurements. It provides qualitatively accurate reservoir characteristics that can play a key role in making important and strategic field development decisions. A brief summary of several components of this approach to reservoir modeling and management has been followed:

1. Decline Curve Analysis: Conventional hyperbolic decline curve analysis is performed on oil, gas and water production data of all the wells. Intelligent Decline Curve Analysis is used to model some production data such as GOR and Water Cut that does not usually exhibit a positive but rather a negative decline. 

2. Type Curve Matching: Using the appropriate type curves, production data from all wells are analyzed. Special techniques are used to remove the inherent subjectivity associated with type curve matching process.

3. History Matching: History matching is performed on all individual wells using a single well radial numerical simulation model.

4. Production Statistics: General statistics are generated based on the available production data such as 3, 6, 9 months cumulative production and one, three, five and ten years cumulative productions. Similar data is generated for Gas Oil Ratio and water cut.

5. Volumetric Reserve Estimation: Using Voronoi graph theory in conjunction with well logs, estimated ultimate drainage area and volumetric reserves are estimated for each well, individually. 

6. Recovery Factor Calculation: Using the results of Decline Curve analysis and Volumetric Reserve Estimation, a well-based Recovery Factor is calculated for all wells, individually. A field-wide Recovery Factor is also calculated. This would be an item that will be optimized in the consequent steps of the analysis.

7. Discrete Predictive Modeling: Results of the abovementioned analyses are a wealth of data and information that are generated based on individual wells. This information is indicative of reservoir/well behavior at specific time and space throughout the life of the reservoir. Using AI&DM techniques discrete, intelligent, predictive models are developed based on the large amount of data and information that has been generated. The predictive models represent all aspects of reservoir characteristics that have been analyzed.

8. Continuous Predictive Modeling: Using two-dimensional Fuzzy Pattern Recognition (FPR) technology, discrete predictive models are fused into a cohesive full-field reservoir model that is capable of providing a tool for integrated reservoir management. 

9. Model Calibration: The full field model is calibrated based on classifying the reservoir into “most” to “least” prolific areas, prior to be used in the predictive mode. This is done using the latest drilled wells in the field. This practice is an analogy of history matching of the conventional reservoir simulation models. The calibrated model can then be used in predictive mode for field development strategies.

10. Field Development Strategies: Performing economic analysis, while taking into account the uncertainties associated with decision making, multiple field development strategies are examined in order to identify the optimum set of operations that would result in recovery enhancement. This process includes identification of remaining reserves, sweet spots for infill drilling as well as under-performer wells. 

[bookmark: _Toc235824992]Data Preparation Procedure

Location and monthly production rate data for all wells and well logs (not necessary for all wells) are the minimum data requirement for the Top-Down modeling. Although gas has been produced from the New Albany Shale in the Illinois Basin for more than a century, available gas production data are sparse. Production data for the older wells were either never recorded or have not been preserved. Moreover, information about recent production is difficult to obtain. The New Albany shale data for 87 wells in Western Kentucky region was extracted from Kentucky geological survey and prepared for the analysis. 

Because only last 6-9 years of production history was available for the wells mentioned above, a unique natural fracture network modeling and simulation (FracGen/NFFlow) was performed in order to generate (through history matching) a relatively complete production profile for each of the 87 wells. The complete production profiles were generated using FracGen/NFFlow for the 87 wells. These production profiles were used to perform Top-Down Intelligent Reservoir Modeling (TDIRM) for the New Albany Shale gas reservoir. Figure 23 illustrates an example of generating the complete production profile for two of the NAS wells. In this figure, the green and black dots represent the actual production rates and cumulative production data collected from the Kentucky Geological Survey while the red and blue lines represent the history matched production rate and cumulative production profiles. 

In this study, FracGen/NFFlow numerical simulator has been used to model natural fracture network and simulate a single gas well in New Albany shale.
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(A) [bookmark: _Ref235822921][bookmark: _Toc235824342]                                                                               (B)                                         Figure 23. Simulation result examples for two history-matched New Albany Shale Gas wells (Out of 87 wells)
[bookmark: _Ref234652759] 
[bookmark: _Toc235824993]Results and Discussion 

Figure 24 and 25 represent the location of wells being studies in Western Kentucky. To enhance the resolution of the study area, the wells being analyzed were divided into 2 clusters of 55(Case1) and 32(Case 2) wells. Both cases were analyzed during this study. 
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[bookmark: _Ref235822963][bookmark: _Toc235824343] (
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)     Figure 25.Two clusters of NAS wells for analysis (Case 1&2)

                 
[bookmark: _Toc235824994]Case 1-The Top-Down Intelligent Reservoir Modeling (TDIRM) begins by plotting production rate and cumulative production versus time on a semi-log scale. An automatic optimization routine based on genetic algorithms identifies the best decline curve for the given well, as both the rate versus time and the cumulative production versus time are simultaneously matched. This is demonstrated in Figure 26 for one of the NAS gas wells. Initial production rate Qi, initial decline rate Di, and hyperbolic exponent b are automatically identified. Additionally, the 30-year EUR is calculated. The information that results from the decline curve analysis is then passed to a type curve matching (TCM) procedure. 

The appropriate type curves for the reservoir and fluid that is being investigated are selected. The type curves developed by Cox et al. (1995) have been used for the analysis of low-permeability shale gas reservoirs assuming constant bottom-hole pressure.

The type curve matching (TCM) has been performed by plotting the production profile using decline curve analysis results rather than the actual production data in order to minimize the subjectivity of the type curve matching. Performing decline curve and type curve analyses is an iterative process.
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[bookmark: _Ref235823041][bookmark: _Toc235824344]Figure 26. Decline curve analysis sample for one of NAS   Figure 27.Type curve matching sample for one of NAS Gas wells 
Gas wells                     

                                  
While following this procedure, we should always keep an eye on the 30 years EUR value calculated by these two methods as a controlling yardstick. These values should be reasonably close. 
                                                                                                                        
The third step of TDIRM is numerical reservoir simulation using a single-well, radial numerical simulator. During history matching the production data, all of the information generated from the DCA and TCM is used to achieve an acceptable match. Decline curve analysis, type curve matching, and single well history matching are an iterative process. Figure 28 represent the qualitative comparison between the result of history matching process and decline curve analysis.

Once the individual analysis for all of the wells in the field is completed, the following information for all the wells in the field is available: initial flow rate (Qi), initial decline rate (Di), hyperbolic exponent (b), permeability (k), drainage area (A), fracture half length (Xf ), and 30 Year EUR.

Figure 29 shows the well locations, followed by identification of boundary and the Voronoi grids for all the wells in the analysis for case 1.

Using the results of Decline Curve analysis and Volumetric Reserve Estimation, a well-based Recovery Factor is calculated for all wells, individually. A field-wide Recovery Factor is also calculated. Figure 30illustrates the calculate recovery factory of 17.47 % for one of the wells and Field recovery factor of 23.58%.
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[bookmark: _Ref235823074][bookmark: _Toc235824346]Figure 28.History matching results in comparison with DCA                 Figure 29.Generating the Voronoi cells for 55 NAS for one of the wells				                        wells (Case 1)
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[bookmark: _Ref235823112][bookmark: _Toc235824347]Figure 30. Calculated recovery factor for individual wells as well as field recovery factor

Once the Decline Curve Analysis and other steps mentioned above were completed, discrete, intelligent, predictive models are developed for the reservoir (production) attributes such as, first 3, 6, 9 month and 1, 3, 5, 10 years of cumulative production, decline curve information (Qi, Di and b), EUR, Fracture half length, matrix and total porosity, matrix and total permeability, net pay thickness, Initial gas in place, and well recovery factor. These sets of discrete, intelligent models are then integrated using continuous fuzzy pattern recognition in order to arrive at a cohesive model of the reservoir as a whole. 

Using geostatistics a high level earth model is built. As part of the out comes of the high level earth model some of the two dimentsional maps of characteristics of the field such as porosity, permeability, and Initial Gas In Place distribution are shown in (Figure 31 and Figure 32). Another part of Top-Down, Intelligent Reservoir Modeling (TDIRM) includes analysis of  flow and production pattern characteristics usin fuzzy pattern recognition as shown in Figure 33 and Figure 34. 

Upon completion of these analyses  a rather complete spatio-temporal picture of the fluid flow in the reservoir emerges. The maps that are generated through these processes develop a sereis of visual guidelines that can help engineers and geo-scientist analyze reservoir behavior as a function of time and make decisions on field development strategies. Furthermore, optimum infill locations, examininig different infill scenarios and identifying potential remaining reserves based on each scenario and identifying underperformer wells are among tangible results that can be concluded from such analyses.
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[bookmark: _Ref234653972]         Matrix porosity (From simulation)	                   Matrix Permeability ((md)*10^-6) (From simulation)
  
[bookmark: _Ref235823135][bookmark: _Toc235824348]Figure 31. Results of discrete predictive modeling showing the distribution of matrix porosity, and matrix permeability for the entire field (From left to right)
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           Total Permeability (From type curve)	                                    Initial gas in place (IGIP)
[bookmark: _Ref235823145][bookmark: _Toc235824349]Figure 32. Results of discrete predictive modeling showing the distribution of total permeability from type curve and initial gas in place for the entire field (From left to right)
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[bookmark: _Ref235823158][bookmark: _Toc235824350]Figure 33. Results of Fuzzy Pattern Recognition showing the sweet spots in the field for the remaining reserve (MMCF) as of 2006, 2020 and 2040
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Remaining Reserve, by 2006                     Remaining Reserve, by 2020                        Remaining Reserve, by 2040

[bookmark: _Ref235823164][bookmark: _Toc235824351]Figure 34. Remaining reserve as a function of time
The remaining reserve as of year 2006,2020 and 2040 has been shown in Figure 33 and Figure 34. In the two dimensional maps (Figure 33) reservoir is delineated with Relative Reservori Quality Index (RRQI) being the Remaining Reserves. The delineation shown in this figure are indicated by colors. Higher quality regions (regions with high values of Remaining Reserves) are shown in darker colors and as the average value of Remaining Reserves reduces in each region, the color becomes increasing ly lighter.  The difference between these three figures shows the depletion in the reservoir and identifies the parts of the field that still have potential for more recovery.

Based on the results of  predictive modeling and fuzzy pattern recognition, the best spots for drilling new wells were decided. The permeability is  a key parameter that plays an important role in fluid production from the reservoir. Thereby having high initial production rate in the locations which have high permeability makes sense. Another important factor while making decision about the infill drilling locations is remaining reserves. It defines the amount of the stored fluid in the reservoir.  Having both the remaining reserves and permeability, results in high storage and flow capacity. Thus, the potential spots for infill drilling can be selected, based on these parameters. Although these two parameters have considerable effect on deciding the new well locations, other parameters such as forcasted EUR for 30 years, matrix porosity,initial gas in place and also fracture half length have been taken into account.

According to these analyses, six new wells were proposed to be drilled in the reservoir. Locations of these new wells are shown in Figure 35. This figure also illustrates the change of drainage area ofter placement of new wells.            
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[bookmark: _Ref235823284][bookmark: _Toc235824352] Figure 35. Proposed infill drilling locations and drainage area before and after placement of new wells (From left to   right)
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[bookmark: _Ref235823321][bookmark: _Toc235824353]Figure 36. Results of Fuzzy Pattern Recognition showing the sweet spots in the field for the remaining reserve (MMCF) as of 2006, 2020 and 2040 (After drilling 6 extra wells)
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Remaining Reserve, by 2006                     Remaining Reserve, by 2020                        Remaining Reserve, by 2040

[bookmark: _Ref235823327][bookmark: _Toc235824354]Figure 37. Remaining reserve as a function of time (After drilling 6 extra wells)
Figure 36 and Figure 37 illustrates remaining reserve as of year 2006,2020 and 2040 when those 6 new wells are added to the model.  New wells identified in the analyses are shown in Figure 35.By selecting new wells at different locations and repeating the analyses shown in Figure 37(observing reservoir depletion as a function of their decision on where to place new wells), engineers and geo-scientits can identify the best locations in the field that would provide the best production profiles and that satidfies their economic objectives.

[bookmark: _Toc235824995]Economic Analyses- The economic analyses were carried out for new infiil drilling liocations. Figure 38 demonstrates the details of economic analysis for one of proposed infill locations.The gas price that has been used in analysis was obtained from Energy Information Administriation (12) and the the vertical well cost has been estimated around $200,000 (13).The value of other parameters which are used in economic analysis are based on our best guess. The predicted Net Present Value(NPV) for each new well is listed in Table 7.

[bookmark: _Ref235824177][bookmark: _Toc235824701]Table 7. NPV for New infill drilling location
	Well ID
	NPV for 5 Years(USD)

	1
	87,054.53

	2
	102,207.01

	3
	134,870.31

	4
	86,170.17

	5
	124,827.53

	6
	93,311.03

	Average
	104,740.10
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[bookmark: _Ref235823466][bookmark: _Toc235824355]Figure 38. Economic analysis result for new well#3.
     
[bookmark: _Toc235824996]Model Calibration and Validation

One of the steps that are taken upon building the Top-Down, Intelligent Reservoir Model (TDIRM) is to calibrate and validate the model. To calibrate the Top-Down models about 10 % of wells for are removed from the analyses. This constitutes removal of 6 wells from the analysis. The models are developed using the remaining 49 wells. The objective is to make sure that the Top-Down model can predict the 1 year cumulative production for these removed wells (blind data set). The results are shown in Table 8 and Figure 39.

For example in Table 8, four Relative Reservoir Quality Indices (RRQI) are shown as well as the model results that indicates the prediction for the blind/validation wells. As indicated in this table the Top-Down model predicted that the average 1 year cumulative production for wells drilled in the RRQI “1” (the darkest areas in Figure 39) will be more than 31.98 MMSCF. One well in RRQI “1” is removed and the average 1 year cumulative production for this well was 35.06 MMSCF (correct prediction). 

Furthermore, the Top-Down model predicted that the average 1 year cumulative production for well in the RRQI “2” will be between 16.9 and 31.98 MMSCF.  As shown in Table 8 there was 1 well drilled in RRQI “2” and the average 1 year cumulative production for this well was 26.13 MMSCF (correct prediction).

For RRQI “3” the Top-Down model over-estimates the result slightly. It predicted that the average 1 year cumulative production for wells drilled in the RRQI “3” will be between 8.45 and 16.9 MMSCF while the 1 well drilled in RRQI “2” had an average 1 year cumulative production of 18.5 MMSCF.

The Top-Down model predicted that the average 1 year cum. for one well drilled in the RRQI “4” will be between 7.69 and 8.45 MMSCF and it turned out to be 8  MMSCF (correct prediction).
The same methodology has been performed for the second case.






[bookmark: _Ref235824194][bookmark: _Toc235824702]Table 8. Results of Top-Down modeling (Case 1)
	1 Year Cumulative Production(MSCF)

	
	Model Results
	Removed Wells

	RRQI
	More Than
	&
	Less than
	Average 1 Yr Cum
	No. of Wells

	1
	31,980.55
	 
	 
	35,062.77
	1

	2
	16,894.13
	&
	31,980.55
	26,130.53
	2

	3
	8,447.53
	&
	16,894.13
	18,553.57
	2

	4
	7,686.24
	&
	8,447.53
	8,006.76
	1

	 
	 
	 
	7,686.24
	Total
	6
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            		   1 Year Cumulative Production (55Wells)            1 Year Cumulative Production (49 Wells)

[bookmark: _Ref235823489][bookmark: _Toc235824356]Figure 39. Results of Fuzzy Pattern Recognition showing the sweet spots in the field for the 1 Year cum for 55 wells (left) and 1Year cum. Production for 49 wells (right).(Case 1)


[bookmark: _Toc235824997]Case 2-The same analysis explained in the preceding section has been carried out for second case as well. 

The generated field model besed on result of disceret intelligent modeling and fuzzy pattern recognition can be used to estimate the reserves, determine optimum infill drilling locations, follow fluid flow and depletion, verify remaining reserves,and detect underperforming wells. (Figure 44 through Figure 48)
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[bookmark: _Toc235824357]Figure 40. DCA sample for one of NAS Gas wells		 Figure 41. TCM sample for one NAS Gas wells     
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[bookmark: _Toc235824358] Figure 42. HM results in comparison with DCA         		 Figure 43. Generating the Voronoi cells for 32 NAS wells (Case 2)
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3 Month Cumulative Production 		 5 Years Cumulative Production	          Fracture half-length

[bookmark: _Ref234654625][bookmark: _Toc235824359]Figure 44. Results of discrete predictive modeling showing the distribution of first 3 months, 5 year cum. Production and fracture half length for the entire field (From left to right)
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[bookmark: _Toc235824360]Figure 45. Results of Fuzzy Pattern Recognition showing the sweet spots in the field for the first 3 months, 5-year cum. Production, and the fracture half-length (From left to right)
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[bookmark: _Toc235824361]Figure 46. Results of discrete predictive modeling showing the distribution of total porosity, matrix porosity, and net pay thickness for the entire field (From left to right)
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[bookmark: _Toc235824362]Figure 47. Results of Fuzzy Pattern Recognition showing the sweet spots in the field for the matrix porosity and total permeability from type curve and matrix permeability (From left to right)
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[bookmark: _Ref234654630]Remaining Reserve, by 2006                     Remaining Reserve, by 2020                        Remaining Reserve, by 2040
[bookmark: _Ref235823760][bookmark: _Toc235824363]
Figure 48. Remaining reserve as a function of time

The remaining reserve as of year 2006,2020 and 2040 has been shown in Figure 48.  The difference between these three figures shows the depletion in the reservoir and identifies the parts of the field that still have potential for more recovery.

[bookmark: _Toc235824998]Model Calibration and Validation

The same methodology has been performed for the second case.(Table 9 and Figure 49)

For example in table 1 the four Relative Reservoir Quality Indices (RRQI) are shown as well as the model results that indicates the prediction for the blind/validation wells. As indicated in this table the Top-Down model predicted that the average 1 year cumulative production for wells drilled in the RRQI “1” (the darkest areas in Figure 49) will be more than 29.56 MMSCF. One well in RRQI “1” is removed and the average 1 year cumulative production for this well was 32.39 MMSCF. (correct prediction) 

Furthermore, the Top-Down model predicted that the average 1 year cumulative production for well in the RRQI “2” will be between 18.37 and 20.93 MMSCF.  As shown in Table 9 there was 1 well drilled in RRQI “2” and the average 1 year cumulative production for this well was 22.33 MMSCF .(correct prediction)

For RRQI “3” the Top-Down model predicted that the average 1 year cumulative production for wells drilled in the RRQI “3” will be between 12.92 and 18.37 MMSCF . The 1 well drilled in RRQI “2” had an average 1 year cumulative production of 14.49 MMSCF. (correct prediction)

The Top-Down model predicted that the average 1 year cum. for one well drilled in the RRQI “4” will be between 10.04 and 12.92 MMSCF and it turned out to be 11.5  MMSCF. (correct prediction)
The same methodology has been performed for the second case.

[bookmark: _Ref235824265][bookmark: _Toc235824703]Table 9. Results of Top-Down modeling (Case 2)

	1 Year Cumulative Production(MSCF)

	 
	Model Results
	Removed Wells

	RRQI
	More Than
	&
	Less than
	Average 1 Yr Cum
	No. of Wells

	1
	29,559.87
	 
	 
	32,391.21
	1

	2
	18,371.65
	&
	20,937.61
	22,332.96
	1

	3
	12,924.83
	&
	18,371.65
	14,492.04
	1

	4
	10,043.96
	&
	12,924.83
	11,507.91
	1

	 
	 
	 
	10,043.96
	Total
	4
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1 Year Cumulative Production (32Wells)            1 Year Cumulative Production (28 Wells)

[bookmark: _Ref234655530][bookmark: _Toc235824364]Figure 49. Results of Fuzzy Pattern Recognition showing the sweet spots in the field for the 1Year cum for 32 wells (left) and 1Year cum. Production for 28 wells (right).(Case 2)

[bookmark: _Toc235824999]Conclusion

In the first part of this study, natural fractures in the New Albany Shale were characterized by a comprehensive review of literature.  Sensitivity analysis was performed on key reservoir and fracture parameters such as (Initial reservoir pressure, matrix porosity, matrix permeability, fracture aperture, fracture length and density). The orientation of natural fractures in New Albany Shale wells are EW and NNW-SSE and a minor ENE-SWS. Majority of natural fractures are vertical through there appears a minor set that dip between 55 to 75 degree.

A fracture network based on best available information and data was developed in FracGen. NFflow was used for fluid flow modeling based on the FracGen model. Reservoir characteristics and fracture properties were modified systematically until a reasonable history match was achieved for all the wells being studied. 

The fracture model like any other geological model has a degree of uncertainty and can be updated by using additional information from fracture detection log, seismic and core analysis and any other tools that help to characterize fracture properties in order to building the more accurate model that represents the fracture network distribution of New Albany Shale.

This new workflow can be performed on the other types of Unconventional resources such as other shale plays and tight gas reservoirs. 

In the second part a relatively new reservoir modeling technology has been applied to New Albany Shale. This relatively new modeling technology, Top-Down, Intelligent Reservoir modeling (TDIRM) incorporates Artificial Intelligent and Data Mining techniques such as  data driven Neural network modeling and  fuzzy pattern recognition in conjunction with  solid reservoir engineering analyses in order to combine single well analyses into a cohesive full field model. 

Top-Down intelligent reservoir modeling allows the reservoir engineer to plan and evaluate future development options for the reservoir and continuously updated the model that has been developed as new wells are drilled and more production data and well logs become available.

One of the most important advantages of Top-Down intelligent reservoir modeling is its ease of development. It is designed so that an engineer or a geologist will be able to comfortably develop a Top-Down model in a relatively short period of time with minimum amount of data (only monthly production data and some well logs are enough to start modeling). This new technique can be performed on the other types of shale and tight gas sand (Unconventional resources) as well as conventional reservoirs. (Oil and Gas)

Our Studies have shown that Intelligent Top-Down Reservoir Modeling holds much promise and can open new door for developing reservoir models using field measurement data.
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