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AN INCOMPRESSIBLE TWO-DIMENSIONAL MULTIPHASE PARTICLE-IN-CELL
MODEL FOR DENSE PARTICLE FLOWS

by
D. M. Snider, P. J. O'Rourke, and M. J. Andrews

ABSTRACT

A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method is presented
for dense particle flows. The numerical technique solves the governing equations of the fluid
phase using a continuum model and those of the particle phase using a Lagrangian model.
Difficulties associated with calculating interparticle interactions for dense particle flows with
volume fractions above 5% have been eliminated by mapping particle properties to an Eulerian
grid and then mapping back computed stress tensors to particle positions. This approach utilizes
the best of Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. The
solution scheme allows for distributions of types, sizes, and density of particles, with no numerical
diffusion from the Lagrangian particle calculations. The computational method is implicit with
respect to pressure, velocity, and volume fraction in the continuum solution thus avoiding courant
limits on computational time advancement. MP-PIC simulations are compared with one-
dimensional problems that have analytical solutions and with two-dimensional problems for which
there are experimental data.

I. INTRODUCTION

A two-dimensional, incompressible, multiphase particle-in-cell (MP-PIC) method has been
implemented for dense particle flows. The numerical technique utilizes the best of
Eulerian/Eulerian continuum models and Eulerian/Lagrangian discrete models. Computational
simulations of batch sedimentation, layered sedimentation, and fluidized beds are given to
illustrate the technique.

Mathematical models of separated particulate multiphase flow have used either a continuum
approach for all phases (Gidaspow 1986, Batchelor 1988) or a continuum for the fluid and a
Lagrangian model for particles (Amsden, et al., 1989). The continuum/continuum model readily
allows modeling of particle-particle stresses in dense particle flows using spatial gradients of
particle volume fractions (Batchelor 1988, Gidaspow 1994). However, modeling a distribution of
types and sizes of particles compliczites the continuum formulation because separate continuity
and momentum equations must be solved for each size and type (Risk 1993, Gidaspow 1994).
Using a continuum mode] for the fluid phase and a Lagrangian model for particle phase allows
economical solution for flows with a wide range of particle types, sizes, shapes and velocities
(O'Rourke 1981, Gidaspow 1994). However, the collision frequency is high for volume fractions
above 5% and cannot be realistically resolved by current Lagrangian collision calculations
(O'Rourke 1981).

The two-dimensional MP-PIC method presented here provides a numerical scheme whereby
the particle phase is treated as both a continuum and as discrete particles, gaining the best of both




methods. Particle properties are mapped to and from an Eulerian grid. While on the grid,
continuum derivatives that treat the particle phase as a fluid are evaluated and then mapped back
to the individual particles. The result of this procedure is a computational technique for
multiphase flow that can handle particle loadings ranging from dilute to dense with a distribution
of particle materials and sizes.

The two-dimensional, MP-PIC method extends the one-dimensional work by Andrews and
O'Rourke (1996). The two-dimensional MP-PIC method adds the normal complexity of extending
a numerical scheme from one to two dimensions. The linear mapping to and from the Eulerian
grid is extended to a bilinear interpolation which adds an order of magnitude more terms in the
resulting algebraic equations. Further, the numerical solution here is an incompressible continuum
solution which requires formulation and solution of a pressure equation. The two-dimensional
scheme allows for solution of a broader range of flow problems where currents form from
obstructions or physical instabilities. To illustrate the two-dimensional MP-PIC method,
calculations for fluidized beds, Rayleigh-Taylor heavy particle mixtures initially above a light
continuum, and homogenous sedimentation are presented and compared with experimental data.

II. GOVERNING EQUATIONS

The governing equations for the continuum and particles are given. The fluid phase is
incompressible and inviscid, and fluid and particle phases are isothermal. The fluid or Eulerian
variables are denoted by subscript "g", and the particle or Lagrangian variables are denoted by
subscript "p".

A. The fluid phase

The continuity equation for the fluid with no interphase mass transfer is

%+Vx.(egug)=o,

where u, is the fluid velocity and 6, is the fluid volume fraction.
The momentum equation for the fluid is
8(9 u )

&8

ot

87878

+V,-(8,u,u )=-pivxpw(egngug)-iFJregg @)
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where p, is fluid density, v, is fluid kinematic viscosity, p is fluid pressure and g is the
gravitational acceleration. F is the rate of momentum exchange per volume between the fluid and
particles phases and will be defined later.

B. The particulate phase

Following Andrews and O'Rourke (1996), the dynamics of the particle phase is described
using the particle probability distribution function f(x,u,,p,, V,,£), where X is the particle position,
u, is the particle velocity, p, is the particle density and V,, is the particle volume. For the present it
is assumed that the mass of each particle is constant in time (no mass transfer between particles.or




to the fluid), but particles may have a range of sizes and densities. The probability function
integrated over velocity and mass gives the probable number of particles per unit volume at x and
t in the interval (u,,u,+du,), (pp,pp+dp,) and (V,,V,+dV,). The particle volume fraction is defined
from the particle distribution function as

0, = ” fv,dv,dp,du,,. 3)
The sum of volume fractions of fluid and particle phases must equal unity,
0,+6,=1. “)

The time evolution of fis obtained by solving a Liouville equation for the particle distribution
function (Williams 1985)

9
Sjt;vx.(fup)wup-(fA):o 5)

where the particle acceleration, A=du,/dt, is given by

V.. ©)

X
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The terms in (6) represent acceleration due to aerodynamic drag, pressure gradient, gravity and
gradients in the interparticle stress, 7.
The drag model used here is the same as used by Andrews and O'Rourke (1996),

D =C;———, A @)
4 8p, r
where
24( 1 )
Cd — Re (eg2.65 +gRe2/3 9g].78 ]. (8)

The Reynolds number is defined as

o 2Palt sl o
K,

where |1, is the gas viscosity and the particle radius is

3v,
r= "4; . (10) |




Collisions between particles are modeled by an isotropic interparticle stress from Harris and
Crighton (1994),

B
T= GPSG,,O , (11)
cp p
where the constant P; has units of pressure and 0., is the particle volume fraction at close packing.
The power 8 on the volume fraction forces the interparticle stress to be significant only as
particles become closely packed. For B=1, an interparticle stress gradient exists even at zero
volume fraction. For B>1, the interparticle stress gradient is zero at zero volume fraction. Auzeris
et al. (1988) recommend 2 < B < 5.
The interphase momentum transfer function per volume is obtained from

F=IJ._[ prpp[Dp(ug°“p)_inp_leVpdpp du, . (12)
P

The Eulerian governing equations for the particle phase may be obtained by taking the
moments of equation (5). By multiplying equation (5) by p,V, and p,V,u, and integrating over
particle density, volume, and velocity coordinates (Travis et al., 1976), the particle conservation
equations are obtained,

a_(?ﬂ&)_Jrvx.(@E—pﬁp)z—epvxp-vxwé;p_pg

ot
+-’:“J fVP pP DP(ug —uP )dVP dpP duP

v, U” £V, 0,(u,~,Ju, -5,)av, dp, dup},
where the mean particle velocity 0, is given by

w, =g
“”=9 5 fv,p,u,dv,dp,du,

p-p

and the average particle density is given by

0,p, = j.” fVpp,dv,dp,du,.




III. INTERPOLATION FUNCTIONS

Particle properties are mapped to and from the Eulerian grid as part of the numerical
solution. Because a staggered grid is employed, scalar properties, defined at cell centers, are
mapped with one set of interpolation functions, and face center velocities are mapped with
another set. This section describes the interpolation functions for cell center properties, face
center properties and gradients.

A. Cell centered interpolation

Particle properties are interpolated to and from an Eulerian cell center node, using a bilinear
interpolation function, S. The bilinear interpolation function is formed from the product of linear
interpolation functions in the x and y directions,

S S.S an

Ly My ¥i®

Figure 1 shows the S, function. The x-interpolation function, S, , which is independent of the y-

coordinate, is unity at node (ij) and decreases linearly to zero at neighbor nodes (i-1,j) and
(i+1,j). Similarly, § v which is independent of the x-coordinate, is unity at (i,j) and goes to zero

at its adjacent nodes. Thus the bilinear interpolation function, S;;, which is dependent on both x
and y-coordinates, is unity at the cell center (i,7) and decreases to zero at the surrounding eight
nodes.

cell face cell face
i-1/2,] Ax  H12)
1
Sx,
0 ! !
: i-1,] i i+1,)
x-node
cell face cell face
i-1/2.] AX  i1/2)
1
Xit1/2
ot—

i-1 !j l!l i+1 1j
x-node tagie
Figure 1. The S and T interpolation functions.

Figure 2 shows a particle at x,, on the Eulerian grid bounded by four cell center nodes. The S
interpolation functions for interpolating to particle location (x,,y,) are
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Figure 2. Interpolation from Eulerian grid to a particle position.

The S and S, interpolation functions at x, for a rectangular grid are

(xi+1‘xp)
(yjﬂ_yp)
Syj: 8yj+1/2 ’

(18a)

(18b)

(18c)

(18d)

(19)

(20)

and 0x;,72=(Xi;-x;) and 8y;.;,2=(¥j1-y;). A cell centered continuum property, y, interpolated to

the particle position, X,, is given by

Yp=S(Xp)i5 WijtS(Xp)ist,j Wie1 7S (Xp)is1 j+1 Wir1j+1+S (Xp)ijer Wije1 .

In this study, the particle volume fraction, 6,, is mapped to the Eulerian grid by

@21
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5, =‘Vf‘2 N, V,5&,);; (22)

where N, is the number of particles in a parcel. The Eulerian cell volume is V;;.

B. Face center interpolation

Three methods of interpolating particle properties to and from volume faces were considered.
The first interpolation method is a linear interpolation using the two face-centers bounding a
particle, the second method uses the closest face, and the third method is a bilinear interpolation
using the four face centers enclosing the particle. It was found that the bilinear interpolation
method, which is similar to that for cell center interpolation, was required for interpolating to
particle positions and a closest-face interpolation to the grid was sufficient to obtain an acceptably
smooth distribution of particles with the current model. The characteristics and advantages of the
three methods are discussed later.

1. Two-neighbor interpolation (TS interpolation)

The two-neighbor interpolation uses the face center u-velocities above and below particles,
and the face center v-velocities to the left and right of particles. Figure 3 shows u and v-velocities
used in interpolating to a particle located at position "+". The interpolation is a linear interpolation
function in one direction multiplied by a top-hat interpolation function in the other direction and is
designated as a 7S interpolation function. The TS interpolation functions for u-velocities are

Siﬁ/z, iz i+1/2Syj (23a)

SEam =Tun(1-5,,) (23b)

and the T interpolation functions for v-velocities are

SZJS'+1/2 =S8 (23¢)
ST =(1-8,)T (23d)
i+1,j41/2 xi JLjr2 .

The fluid velocities interpolated to particle position x, are

s( )Ts s(x,)" (242)
u,, =33X u,, .+ (x ) u,. , a
g.p p i+1/2,f 8i+1/2,j p i+1/2, j+1 8i+1/2,j+1

)TS s
V&P = S(xl’ vgi,j+1/2 +S(XP) v8i+1,j+1/2 : (24b)

i,j+1/2 i+1,j+1/2




The top-hat T},,» function, shown in Figure 1, is unity between computational cell centers and
zero everywhere else.
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Figure 3. Velocity interpolation from Eulerian grid to a particle position.

2. Closest-neighbor interpolation (T interpolation)

The closest-neighbor interpolation uses the velocity from the nearest face. Figure 3 shows
face u and v-velocities used in interpolating to a particle located at position "+". This interpolation

is formed from two T interpolation functions. For u-velocities, S” ,  =T,,,T, and for v-
i+172,f i+ j

.. T . . . .
velocities, S Y I:T;,y,- The T, top-hat function, is unity between computational cell centers

and zero everywhere else. Velocities are interpolated using equations (24a) and (24b), replacing
the TS interpolation functions with T interpolation functions.

3. Face bilinear interpolation (S interpolation)

Figure 4 shows that the interpolated fluid velocity at particle position x, may be better
represented using four encompassing face velocities instead of two. The face interpolation
functions have grid support different from cell center interpolation, and the grid support for the x-
face is different from that for the y-face. For a u-velocity the interpolation function is

s —
S 25 S X4+1/2 Sy j (25)

and for the v-velocity, the § interpolation function is

§ —
Si,j+1/2 - Sxi Syj+1/2 > (26)

where S, and S, are linear interpolation functions between face-centers and S, and
Xi+1/2 Yj+1/72 X;
Syj are previously defined linear cell-center interpolation functions. The fluid velocities

interpolated to particle position x, are
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Figure 4. The x-velocities used in interpolating the grid velocity to particle position x,.

C. Imterpolated gradients

The gradient of the continuum property Wy at particle location X, surrounded by the four

nodes shown in Figure 2 is

Vy, = 2qkaS(xp )

k=1

(28)

where £ is the index on the four surrounding Eulerian nodes. The gradient of S at node (i,j) is

VS@®, )iy =5, 5 e+ S,

0

ani 1;4-1/2

For a Cartesian grid, =— and

ox Ox;41/2

as

a;j e, . (29)

AN T.

Yj J+l/2

dy - 3y j+1/2

, where Oxi;,=(xi+;-x;) and

dyj+12=(yj+1-y;) are distances between cell centers. The four gradients of S, with support by the

Eulerian nodes shown in Figure 2, are

TS
(Xp )i+l/2, j

Ts
S(XP )i,j+1/2

V8(x,);; =—

8xi+1/2

30a
dy j+1/2 ( )'




S(XP)TS S(XP)TS

i+1/2,j i J+1/2
VS(Xp)i+l,j: ox : Jex 5 Lt
+1/2 Y i+1/2
TS TS
S (xp )i+1/2, j S(XP ) L2
VS(x P )in1 = x
' 0%;11/ dy 2
758 TS
S(Xp )i+1/2, j S(Xp ) ij¥2
VS(Xp)i,j+1 == 8)6 X 8
i+1/2 Y i+1/2

Equation (28) expanded in terms of its four interpolation function is

Vy=VS(Xp)i; Wij+VS(Xp)ir1,j Wirt, it VSXp)istjr1 Winrje1+V S(Xplijet Wijet -

10

(30b)

(30c)
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IV. SOLUTION METHOD

The governing equations for fluid and particles are solved on the computer. A computational
particle method is used to solve for the particle distribution in lieu of direct solution of the
Liouville equation. Particle properties are mapped to and from the grid using interpolation
functions. The incompressible, two-dimensional continuum equations are solved using a finite
volume method with a staggered rectangular grid and a pressure correction scheme. The
numerical method implicitly couples phases through the interphase momentum transfer.

The numerical scheme uses an implicit calculation to overcome signal-wave limits on the
computational time step. If the solution scheme was explicit, the numerical time step would be
limited by the Courant-Friedrichs-Lewy condition and especially by stress waves from the
interparticle stress (Gidaspow 1986). In two dimensions, the implicit solution gives four sets of
equations containing two velocities, pressure and particle volume fraction. A set of equations is
solved for one variable while holding the other variables fixed. Coupling between implicit
variables is introduced by iterative solution of the sets of equations. As will be discussed later, the
particle volume fraction needs to be solved in continuum form while iterating in the implicit loop.

The implicit numerical scheme with implicit coupling of interphase momentum between
particles and fluid produces many parameters for each set of equations. For example, the two-
dimensional momentum equation incorporates nine velocities, six pressures, and six volume
fraction variables. Because of the large number of parameters, each term is treated separately and
its contribution is added to a variable's coefficient. Thus, the numerical implementation is
straightforward. The following sections describe the numerical approximation to the governing
equations.

V. PARTICLE EQUATIONS FINITE DIFFERENCE APPROXIMATION

Particles are grouped into computational parcels each containing N, particles with identical
mass density, p,, volume, V,, and velocity, u,, located at position, x,. The Liouville equation (5) is
the mathematical expression of conservation of particle numbers in volumes moving along
dynamic trajectories in particle phase space. Thus the number of particles N, associated with a
parcel is constant in time. Because there is no mass exchange between particles, a particle's mass,
my, is also constant. Parcel positions are updated by

ntl _ _n n+l
X, =X,+Atu, (32)

and the particle velocity is updated from integration of equation (6).

1 _n

u u 1 1
P P +1 n+l n+1 +1
—=D (ui —-u)" |-—Vp, ———V1' " +g (33)
At p( gp_ Up ) o, 7 p@, "
where u’g; is the interpolated implicit fluid velocity at the particle location, Vp:f;rl is the

n+1
p

particle stress gradient at the particle location, g is gravity acceleration, and D, is the drag
coefficient. '

interpolated implicit pressure gradient at the particle location, V1" is the interpolated implicit
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n+l

Solving equation (33) for u’™ gives
n n+l __1__ n+l 1 n+l
u, +Af Duy, ——Vp'" — Vil +g
nel _ Pr »9»
Y T 1+A1D 34
P

where u;‘fpl is evaluated from equation (24) or (27) and Vp}',‘“1 and V’E'}’fl are evaluated from
equation (31).

VI. EULERIAN DIFFERENCE APPROXIMATIONS

The numerical scheme uses a finite volume method with staggered scalar and momentum
nodes. The two-dimensional finite difference approximation uses a rectangular grid or cylindrical
where scalar variables, pressure and volume fraction, are defined at cell centers and velocities are
defined at volume surfaces staggered between cell centers. Finite volume approximations are
described for the momentum equations, pressure equation (which is derived from volume
continuity), and particle volume fraction equation in Cartesian coordinates.

A. Momentum equation

The finite volume approximation is described for the u-momentum equation, and a similar
formulation is used for the v-momentum equation. The method is described in steps with
coefficients on velocities, pressure and particle volume fraction added to coefficients from
previous steps, gradually building a final algebraic equation.

} 5x; 1
L AX m AXiyq
I )
ij+1 i+1,j31
[ ] [
’ Uir1/2,j41
‘ Vij+1/2 Viet j+1/2
Syl —_ ) ) -
Uitz
Ay,
|
Vij-1r2 Vist j-1/2
Uir1/2,j-1
[ ] [}

i,j-1 i+1,j-1

Figure 5. Momentum finite difference volume for x-vector component.

1. Time, convection, and viscous diffusion terms

A conservation balance of u-momentum given by equation (2) is formed by integration over a
momentum control volume with four neighbors. Figure 5 shows the Cartesian nodalization.
Collecting terms associated with the five u-velocity variables gives the algebraic equation at u-
momentum node (i+1/2,j):
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( )n+l ( )n+1 n+l n+l
C u =c, \u +c (u ) +c (u )
Uee\ "8 iniya; M\ 8/ MINTE )iy Ha N8 70 541

n+1

n+l
n+l n+l .
+c”bb (ug )i+1/2,j 1 ”ll pi .J + a“rr Pin 2J + SXAy( ) i+1/2,j + Cu . (35)

1

Coefficients are associated with the ug":/z velocity, and ¢, I, r, b and ¢ denote center, left, right,
15

bottom and top, respectively. The contribution of the interphase momentum transfer, F,, is given
later. The diagonal coefficient Cuge contains contributions from the time, convection and diffusion

terms, and the neighbor velocity coefficients are from integration of convection and diffusion
terms. The upwind convective velocity coefficient with diffusion for the left neighbor velocity,

u _, in Cartesian coordinates, is
8i-172,j

¢y =Dy +max{0., ) (36)

[Gg ]J,Ij Ay,

fij= Pg(eg”g I]_ij D, =T : (37)

where the flux and diffusion terms are

i

The max function specifies the maximum value of the two arguments. The cell center velocities in
the flux term are taken as the average of the adjacent face center velocities, e.g.,

(eg " I—I/Z, j +(9g g I+1/2 j
[egug I] - 5 : (38)
and similarly for other cell center velocities.
The pressure coefficients in Cartesian coordinates are
a,, =7y a, =-Ay. 39)

The Appendix lists all coefficients and constants in the linear algabraic momentum equations.

2. Interphase momentum transfer
Up to this point, a momentum equation contains five velocities and two pressures. An

implicit-coupled interphase momentum transfer gives additional terms and contributes to existing
terms. The implicit interphase momentum transfer is

n+l1 n+1 n+l n+l
F 12 z Sisia J{ W ) P, Vp }N Mps (40)

z+1/2 W
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where my,, is the mass of a particle. If a 7 or 7§ interpolation is used, the fluid velocity at particle
position x, is from equation (24). If § interpolation (bilinear interpolation) is used, the fluid
velocity at particle position X, is from equation (27). The particle pressure gradient is from
equation (31).

The particle velocity, given by equation (34), is substituted into the F equation, and the F
equation is subsequently substituted into the fluid momentum equation (2). The resulting
discretized fluid momentum equation is

n+l

ViaPe(0,u,)
G2Fg\VeHe
2 | conv™'!

At g2

VP (egug )Cl/2
- At

m N Scl/z n+1
- S§1/2

- (1+D At m cvz

- 1+D At pp 3

+Z m, NS, |2, (w7 +arg)

(1+D At)

g2 8 cl/zg

p

_Z m, N SCI/Z 2 VSQ n+1. (41)

~ (1+D,ap,0;

The summation is over all particles. Abbreviated subscripts are used where {72 is the face node,

is the cell center node, S, is the face interpolation functions, and Sy is the cell center
interpolation function. The first two lines of equation (41) contain the transient, convective, and
diffusive terms which were previously discussed.

The interphase drag adds to the existing momentum equation coefficients and generates
additional velocity, pressure and particle volume fraction terms. Consider the pressure term in
equation (41),

m, N S
e;l/z nl
Z Y s o

> 1+D At pp C

The pressure gradient interpolated to particle location x, (see Figure 2) is

z VSC n+l = V‘Sszzn;l + VS:+1 ]p:;lj + VS+l J+1pt+1 J+1 + VS: 1+1pzn;il : (42)
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The x-directed pressure force from a single parcel of particles is distributed between face centers
(i+1/2,j) and (i+1/2,j+1). A TS interpolation (two-neighbor interpolation) function is used to
interpolate the particle pressure gradient back to the Eulertan grid. The pressure gradient on x-
momentum cell (i+1/2,j) from a particle is

N m
- PP TS n+l n+l
Vi~ (1+ DpAt)Pp St VPl Ve ol

+VSi1 P:ﬁl it VS pzn;l-l ) "€y (43)

] 1

and the particle pressure gradient contribution to x-momentum cell (i+1/2,j+1) is

N m
- p_pr 75 n+l n+l
P Pitl/2,j+ (1 +D At)p S,'+1/2,j+1( VSi,jpi,j +VSi+1,jpi+l,j
P p

+1 +1
+VS;i1, jraPist, je1 VS j11 Pl i )‘ex . (44)
The particle pressure contributions at each node are added to existing pressure coefficients in the

discretized momentum equation. For face node (i+1/2,)), the resulting coefficients from pressure
for a single parcel of particles are

N m
pp TS
a, =a, +7———— 5. VS .. (45a)
uy ] (1 + Dp A t) D, H1/2,j41 T T ¥
N m
Gty =a"‘rr_*_ — Si?l/Z '+1VSxi+1 j (45b)
(1+D,at)p, g
N _m
Pp TS
a, =a', + s> VS . (45¢)
Uy tr (1 " Dp A I)Pp 172,541 S Xir, j4
, N My

a, =da, +——5—8% Vs . (45d)
g 7 (1 + Dp A t)pp +1/2,j+1 i,j+1

where a’, is the existing coefficient, and VS, is the x-component of the gradient. Additional

pressure coefficients a, and @, are created from interphase momentum transfer. Similar

coefficients are modified for node (i+1/2,j+1), with new coefficients a _and g, being generated.

up Uyl
The result is an increase from two pressure terms to six pressure terms in the u-momentum
equation and similarly for the v-momentum equation. The total particle pressure on the fluid
velocity is obtained by summing the contribution from all particles.
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Similar to the pressure example above, the other terms in equation (41) are decomposed into
coefficients times their respective variables. The resulting u-momentum equation is

)n+1
Cuge (u w2, Cui+1/2,j

n+l n+1 n+l
o, () venln)" e (u,) +,, (24,)
Hrr i+3/2,5 i-1/2,j Cu \ g 172,541 BB N8 /1172 51
n+l n+l n+l n+l
+c (u ) +c (u ) ( ) +c (u )
e w321 N8 iy ]+1 Cupr 43/2,5-1 MRN8/ 172, 51
" ( )n+1 + ( )n+1 + ( )n+1 ( )n+1 ( )n+1 ( )n+1
aull p ij aurr i+1,j a"bl p z]—l "br p i+1,j—1+autl p i,j+1+aurr p i+1,j+1
b 6 n+l b n+l b e n+l 9 n+l n+l
w0, (0,) +8,0,)7 +bule,) 400, +8,6,) 48, 06,) 4
MUNTP [y MNP iy THBIATP ]—1 brA"P i HANTP g R\ g g’ (46)

and the v-momentum equation is

n+l
Cvee (vg),-, 2 Coijoa

n+l n+l n+l n+l
T O AT o O o
Ve N8 ez VBN 8 i jry2 VN 830 BB B i

n+l ntl n+l n+l
+c (v ) +c (v ) +C (v ) +c (v )
Vor\" 8 iy ge3s2 0 VAN &V graza BN 8 52 YBIN 8y
n+l n+l n+l

Ay, (p):ljl ta,, (p)i,j+1 ta,, (p)l-1 g%, (p)i+1,j ta,, (p):l,jﬂ + av"(p);f,jﬂ

+5,,(6, )'f’fl +bvn(ep)f'+1 +b,, (ep)::J +b,,(6, )":ﬁl +bv"(e,,):+:j+l . @)

n+l

+be1(91,).

i,j i,j+1 i-1,j

The momentum equations contain the particle volume fraction, 6,, associated with the
interparticle stress. The interparticle stress has been linearized as a function of the implicit particle
volume fraction by retaining linear terms in the Taylor series expansion of equation (11) about the
old-time particle volume fraction:

T =, Oy ey, (48)
where

TR o )
Coy;, = - [9 byt [{ch -0 P ) _| (49a)
000z,

— 6';, y
5]
P n
S p[’j
Cayy; = _— [9'5, St (B- 1)(ecp - 9'5,-,,~ )] o . (49b)
(oo-5,] -

The coefficients on particle volume fraction in the momentum equations (46) and (47) arise in a
similar fashion as those described above for the pressure coefficients. The coefficients and
constants are given in the Appendix.

16




VII. PRESSURE EQUATION

Following the usual practice for incompressible flow, a SIMPLE type algorithm is used in
which solution of the momentum equations uses a guessed pressure field, p’, to calculate
velocities which are subsequently corrected by satisfying continuity (Patankar 1980). The velocity
and pressure are u=u+du and p=p'+dp where the velocity field u' is solved from momentum
equations (46) and (47) with guessed pressure field p'. The du and Jp correct the velocity and
pressure fields to satisfy continuity. .

|-1,l+1 |,;.+1 |+1‘1+1

.”i-1/2J Ui Ay

i1, 1) L
Ax, l

® ® [

i1,)-1 i1
Figure 6. Continuity equation finite difference volume.

i+1,j-1

Figure 6 shows the control volume. The pressure equation is formed from substituting
velocity equations (46) and (47) into the continuity equation (1), and ignoring du and op
associated with neighbor nodes. This forms a nine-point pressure stencil with nodes shown in
Figure 7. The pressure equation is

Cpec japi.j +apul.j6pi—1,j ta,, ; j8pi+l,i tan, ; jsPi.j-l +a,, ; japi:jﬂ

tap, y 8Pi—l,j—l tap, L 8Pi+1,j—1 tap, i op;;, o +ap, . 8Pi-u, j+ = Terr ;- (50)

The coefficients are given in the Appendix. The err;; is the mass residual obtained from solving
the continuity equation using the uncorrected velocity field. For Cartesian coordinates the
continuity equation is

n

At Ly Ay; (”'g S ):1/2 i A; (“'8 O )i—l/Z,j

(v, 0,)"  —ax(r,e,)" (51)

8787, ian i j~1/2

(ve, ) -(re,)

el‘rl-,j =
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¥
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i-1,j-1 ij-1 i+1,j-1

1ag07

Figure 7. The 9 point pressure stencil for the pressure equation.

In Eulerian fluid and particle methods, the volume fractions are calculated from the Eulerian
continuity equations. In contrast, the MP-PIC Eulerian-Lagrangian method does not use an
Eulerian continuity equation to calculate volume fractions, but instead, both particle and fluid.
volume fractions come from interpolation of particles to the Eulerian grid as given by

mpN

0

1 P
i Ty S; (X, ). (52)
LIp p
The fluid volume fraction is calculated from conservation of volume where the fluid and particle
volumes sum to unity, 6, =1-6,
12y

]

A. Relaxation factors

During the pressure correction step the particle volume fraction is held constant but is
coupled to the particle volume fraction solution through implicit iterations. Because the time rate
of change of volume fraction is fixed during the pressure correction step of the implicit iteration
loop, it was found that relaxation factors within the iteration loop could give a smoother, faster

- converging solution. Typical values of relaxation ranged from 0.6 to 1.

VII. PARTICLE VOLUME FRACTION ON THE EULERIAN GRID

It is not prudent to update the volume fraction within an iteration loop where particles are
continuously summed as given by equation (22). Andrews and O'Rourke (1995) presented a
method of approximating the new-time volume fraction on the Eulerian grid using explicit
coefficients. In the method, a time step begins by estimating new particle positions using the old
particle velocities:

X, =X +ujAr. (53)

The explicit void fraction at X, is
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m N
’;) L8 i(%,) . (54)

p 14

~

1
6, =—
(9 ‘/i,j

The volume fraction at the end of the time step is estimated using a Taylor series expansion of
equation (52) about the intermediate particle position X, and retaining linear terms:

onl =6, ] Z " N” VS, (% )( %) (55)

Pi,j

n+l n+l

Substituting X, from equation (34) into

equation (55) gives an approximate Value for the new-time volume fractlon:

from equation (32), X, from equation (53), and u}

~ 2 N D
925?=9pc+%2 -————p:E;; Zt)vsg( D

+?/t22 " vsi(%,) -8
& )

pp(1+ D, At

Atz mPNP < n
- v, Z DPVSQ(XP)'uP
b

p,(1+D,A1)

__At2 2 m,N, ~ ntl
Vt; < pp2(1+DpAt) VSQ(X ) Vp +

_AtzZ m,N, < ). went
Ve Pp29;(1+DpAt)VS§(Xp) Ve ©0)

Abbreviated subscripts are used where { is the cell center node, VSt is the gradient of the
interpolation function given by equation (29), and Vp"’L1 and V'c” *1 are given by equation (31) for
pressure and interparticle stress, respectively. The fluid velocity is from a 7S interpolation (two-
neighbor) or 7 interpolation (closest-neighbor). A bilinear interpolation would produce a 12 point
stencil for u-velocity and 12 point stencil for v-velocity. By using the 7S or T interpolation, the u
and v stencils are reduced to six.

The implicit particle void fraction is rewritten in terms of coefficients:

n+l _ n+l n+l n+l n+l n+l
beccei, aeccpt J +aellpz—1 J +a(—) pt+1] +aebbPz ]—laﬁnpz _]+1 +a6b1pt—1 Jj—-1

+tag,, i -1 +a9,1Pi 1 j+1 +a8,,-pi+1 4l
n+1 n+l1 n+1 n+ n+1
eﬂez—l J +b 9z+1] +b9bb9 1be,,9 i,j+1 +b9blez -1,j-1
7+1 n+1 n+l
+hoy, Ot j1 + 0,871 ju1 +0, 801 51

n+l n+l n+l n+l
T8oyUgi1/2,; T+ 86, Ugir1r2,j T BopHgi-172,j-1 * 8oy, g int1/2,j-1
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n+l n+l
80, Ugi1/2,j41 T 8oy Ug it172, 41

n+l n+l n+l n+l
the, Veiiin the,Vei e the Vet je+ by, Ve ist 12

n+l nt+l _
+hy Vei1 i e, Ve jrn tCe =0 (57)

The coefficients are for the cell center node (i,j), and the interparticle stress has been linearized as
a function of the implicit particle volume fraction by equation (48). Coefficients are given in the
Appendix.

IX. DISCUSSION OF NUMERICAL FORMULATION

A. Interpolation method

Three methods of interpolation were presented earlier. A difference was found in the results
when using the different methods. A bilinear interpolation is always used for interpolating
continuum properties from the Eulerian grid to particle positions. In the interphase momentum
transfer, particle properties are mapped to the Eulerian grid using either bilinear interpolation, TS
interpolation or the T interpolation. The justification for the interpolation methods are given
below.

1. Interpolation of the continuum properties to particle positions

The use of the TS interpolation (two-neighbor) or T interpolation (nearest-neighbor) of the
fluid velocity to particle positions appears logical in that the interpolated fluid velocities and
particles lie between adjacent cell centers where pressure and interparticle stress gradients are
defined. However, it was found in the Lagrangian particle calculations that a bilinear interpolation
(S interpolation) of fluid velocity to particle positions was required to give an acceptably smooth
distribution of particles. The left figure in Figure 8 shows a Rayleigh-Taylor problem using the 7§
interpolation of fluid velocity in solving the particle velocity, and the right figure in Figure 8
shows the same problem using the bilinear interpolation. The 7S interpolation produced clumping
and the bilinear interpolation gave more uniformly distributed particles.

In the current numerical formulation, the aerodynamic drag is the only mechanism which can
be interpolated to give a unique, position dependent force on a particle. The other driving forces
on a particle are a uniform gravity field, and gradients. The gradients impose the fixed granularity
of the Eulerian grid on particles where all particles residing between cell centers are driven by the
same gradient. The Lagrangian particles require a high fidelity in local properties.

Using the 7§ interpolation, the fluid velocity is interpolated to a particle position in a single
direction only. This produces horizontal lines of constant u-velocity and vertical lines of constant
v-velocity. Further, the interpolated fluid velocities step change in value as particles cross cell
center boundaries. The T interpolation suffers the same problem. The result is clumping of
particles. The bilinear interpolation provides a unique fluid velocity for each particle position
which smoothly transitions between interpolation cells, giving a smoother distribution of particles.
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x nodes=10

y nodes=50

Number particles = 8,000
Max err= 107"

Gravity = 9 m/s’

Continuum density = 1 kg/m’
Particle density = 2 kg/m
Initial particle volume fraction = 0.1
Initial perturbation = 0.008 m
Particle radius = 0.001 m
At=0.005 s

0.1 0.1

0.0 0.0
0.0 0.1 0.0 0.1

x (m) x(m)

Figure 8. Rayleigh-Taylor calculation. Left: uses 7. interpolation function from Eulerian grid to
particle position. Right: uses bilinear interpolation function from Eulerian grid to particle
position.
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2. Interpolation of the particle properties to the Eulerian grid

The Lagrangian particle calculations require fidelity of the bilinear interpolation of fluid
properties to each particle position to obtain a smooth distribution of particles. On the other hand,
the 7 interpolation of particle properties to the Eulerian grid may be justified and has been
previously used by Andrews and O'Rourke (1995). The Eulerian calculation grid represents
average properties over finite volumes and does not require the bilinear interpolation of particle
properties to a point on the Eulerian grid. It is sufficient to interpolate particle properties to a
volume using a T interpolation function. In the implicit Eulerian interphase momentum solution, a
multiplication of bilinear and 7 interpolation functions will arise. The Eulerian properties are
bilinearly interpolated to each particle position, and then each particle property is interpolated
back to the Eulerian grid using a 7 interpolation function.

The T interpolation of pressure and particle stress gradients from particles to the Eulerian
grid produces a simpler numerical solution and eliminates the chance of a "checker-board"
pressure field. In the pressure example from interphase momentum transfer discussed above, a
bilinear interpolation from particles to a point on the Eulerian grid gives a 12 point pressure
stencil compared to the 6 point stencil from a 7 interpolation. The bilinear interpolation produces
more coefficients and a more difficult boundary condition. Also with the 12 point pressure stencil,
face velocities may be driven by alternate node pressures which can produce a checkerboard
pressure.

B. Calculated layering of particles in a quasi-steady fluidized bed

The fluidized bed examples pointed to numerical implementation issues where forms of the
numerical approximations can produce layers of particles clustered at unique levels during quasi-steady
conditions. The numerical formulation that leads to particle clumping is presented with a suitable
numerical solution.

It was initially observed that in the fluidized bed calculation, particles clustered at unique vertical
levels. The bands of particles formed as the bed reached a quasi-steady condition. This clustering
formed, in part, from a nearly constant fluid velocity and from all particles between grid nodes being
driven by the same pressure gradient and interparticle stress gradient. Two examples are given where
particles cluster into bands because of the numerical formulation.

A fluidized bed reaches a quasi-steady condition where the mean horizontal fluid velocity is zero
and particle velocities are zero:

w, =0 i."”gzv(y)

u,=0 vP:O.

The force on particles is described by equation (6). For steady flow, the force balance is

T 'ey . ( 8)

1
Dpvep =LP_VPP -8+
P

Gravity is constant, and the gradients,Vp, and V7,, are constant for all particles within the nodes
supporting S.
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In the first example, a S” or S interpolation is used to get the gas velocity, Vgp, at a particle
position. The gas velocity is constant for all particles between nodes. The drag coefficient, D,, contains
0,,, and the interparticle stress contains 6,. Volume fraction varies only in the vertical direction. For a
typical case

0, =[epj 0, )/ 2, (59)

which is constant for all particles between nodes. The drag coefficient is

D, =C,— 60
prdyg Pp 7 (©0)
For simplicity
24 1 2pngg\r
Cj=—T77T and Re=—". (61)
Re B, He

The fluid volume fraction is defined from an interpolation from the grid to the particle position:

0 —(e 0 M 5 62
&p T \Vgjn 8 Ay 10, (62)

Substituting equations (59) through (62) into equation (58) and solving for y, gives the vertical position
where particles locate at steady condition

c Ay
Yp=Y; +(—2—ng l———— 63)
“ (6 4178 f)

gj+l g
a =Y& VTP -8
Pp POy
c 9K,
2 2 ppr2

The parameters ¢l and ¢2 are constant within the domain of S, and so the vertical location of
particles is governed by the fluid volume fraction, 8. Using the calculated volume fraction, the vertical
position of particles can be predicted. Figure 9 shows the layering which results from mapping the
particle volume fraction to particle position in the interphase drag term. The predicted vertical particle
locations match the calculated particle locations. The particles are distributed both vertically and
horizontally in the two-dimensional calculation, but only vertical locations are plotted in the figure (x-
coordinate value set to a constant). Thus the one visible circle in the figure is in fact many particles
stacked on top of each other. By removing the interpolation of volume fraction to particle position in the
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drag coefficient (constant volume fraction within nodes supporting S), calculated particle positions are
distributed smoothly between grid nodes, as shown in Figure 9.

O Numeric solution, 500 particles with 8 (x) each cell
» Predicted unique particle position

< Numerical solution, 500 particles with 6 =const each cell
0.15

Vertical distance (m)

0.00
-1.00 1.00

Figure 9. Unique particle position in a fluidized bed from 6, interpolation to particle location.

It was previously determined that a S” or §* interpolation of fluid velocity to a particle position
gave clumping of particles in transient calculations, and it was deemed necessary to use a S°
interpolation. However, even if the s interpolation is used, bands of particles can still form if D, is
constant between nodes. The fluid velocity at particle position y, from a s° interpolation is

_ (yp—yj) 64
Ver =\YVeju1 ~ Ve Ay +vgj' . (64)

If the fluid volume fraction used in D,, which is defined in the previous example, is an average
between nodes, particles will again cluster in bands. Similar to the previous example, knowing the gas
velocity, the particle band positions are known.

The two examples illustrate considerations in formulation of the numerical scheme. Again, it is
warranted to use a bilinear interpolation from the Eulerian grid to particle positions to get a smooth
distribution of particles. The fluid velocities at a particle positions are always from a bilinear

interpolation. The volume fraction in the drag correlation is also from a bilinear interpolation from the
Eulerian grid.




X. NUMERICAL DIFFUSION

The fluid-to-particle viscous force is modeled using the interphase momentum transfer term
which has as its basis Stokes flow. There is no model for viscous-type particle-to-particle
momentum transfer. The question arises whether the numerical formulation, which uses bilinear
interpolation of neighbor velocities, introduces numerical diffusion through the interphase drag.
To examine numerical diffusion, the interface drag is set to a large value, D,=10'® s This forces
the particle velocity to be close to the gas velocity at the particle position and eliminates
momentum transfer from particles moving through the fluid. It can be reasoned that because the
fluid interphase momentum equation (40) uses the same bilinear interpolation as used in the
particle velocity equation (33), an explicit formulation gives zero interphase drag and thus no
diffusion. To evaluate the implicit solution, the problem of flow between two flat plates is
considered. The bottom plate is fixed and the top plate moves at twice the uniform inlet fluid
velocity. The viscosity is set very small (u=10"° kg/m-s) to give near inviscid flow but still
maintain a no-slip boundary condition at the rigid walls. A uniform distribution of 0.01 volume
fraction of particles is introduced near the entrance. The grid has 6 non-uniform cross channel
nodes and 15 uniform axial nodes. The cross channel nodes are small near the boundary and larger
in the channel center. Table 1 gives specifications of the problem.

Table 1. Particle flow between flat plates.

Number of parcels 8,000
Particle radius (mm) 0.001
Particle density (kg/m’) 354
Fluid density (kg/m°) 1
P, (Pa) 0
0. 0.7
X-gravity, y-gravity (m/s?) 0,0
Number x-cells (uniform Ax) 15
Number y-cells 6

Ay;=0.00556 m Ay,=0.01667 m
Ay;=0.02778 m Ay,=0.02778 m
Ays=0.01667 m Ays=0.00556 m

x-domain (m) 0.5
y-domain (m) 0.1
Fluid viscosity (kg/ms) 108
Time step (s) 0.01
Max residual for 6,, u, and 3p 10”
Relaxation on 6,, u, and dp 1,1,1
Inlet gas velocity (gas only) (m/s) 0.1
Initial 6, 0.01
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With a no-slip boundary, particle velocities will vary linearly between the first node free
stream velocity and the wall velocity. With no diffusion, momentum transferred from the wall to
particles near the wall will not propagate through particles across the channel. Figure 10 shows
the movement of particles at 0.4 s time intervals. Particles between the first interior node and the
wall follow the wall velocity. The particles retain their shape with no shear from diffusion, and the
fluid velocity remains uniform across the channel as shown in Figure 11. The bottom and top fluid
velocities increase and decrease, respectively, because of a change in fluid flow area down the
channel (a decrease or increase in particle volume fraction).

The above example shows numerical diffusion not to be significant for the numerical
formulation used in this work. As a second example, a S” interpolation function is used for the
fluid velocity at a particle position in the interphase momentum transfer term in equation (40).
Figure 12 shows the particle distributions at 0.4 s time intervals. Particles have significant shear as
momentum is transferred through the particles, and the velocity approaches a nearly linear profile
across the channel which is similar to diffusive Couette flow.
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—r— >
Os i
0.1 m/s i
—> 2 01m
—
0.0 . 0.3 0.4 0.5
0.2m/s
04s
0.1 m/s
— 0.1m
0.0 0.3 0.4 0.5
0.2 m/fs
08s
0.1 m/s
—_— 0.1m
0.0 01 0.3 0.4 0.5
0.2 m/s
12s
0.1m/s
0.1 m
= »
0.0 0.1 0.2 0.3 0.4 0.5
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Figure 10. Particle flow between flat plates. Gas velocity at particle position from §°.
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Cross channel velocity at axial node 8
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Figure 11. Fluid velocity profile for particle flow between flat plates. Gas velocity at particle
position from S°.
0.2m/s
0.1m
0.2 0.3 0.4 0.5
0.2 mfs
0.1 m/s
— 0.1m
0.3 0.4 0.5
0.2m/s
08s jﬁig ©
0.1 m/s EEs===
_— § 0.1m
%
=
0.0 0.1 0.2 0.3 0.4 0.5
0.2m/s
125 @
£
0.1mfs '%\ 01m
—_— E—
=
0.0 0.1 0.2 0.3 0.4 0.5

(m)
Figure 12. Particle flow between flat plates. Gas velocity at particle position from S”.




XI. BOUNDARY CONDITIONS

A. Interpolation function

The interpolation from particles to the boundary face-center nodes is the same interpolation
used for interior nodes. This gives a volume fraction at boundaries (face-center nodes) based on
the particle distribution field. For cell center nodes, the interpolation function for particles
between a boundary and the first interior node is unity. That is, the particle volume is mapped
totally to the first interior cell-center node.

The gradient of the interpolation function, VS, can be handled in two ways at boundaries.
The gradient can be set to zero, or the gradient can be evaluated the same as interior nodes. In the
implicit update of the particle volume fraction, the gradient must be zero to insure conservation of
volume on the Eulerian grid. In calculating particle positions, if VS=0 at the boundary, particles
near the boundary are not driven by pressure or interparticle stress gradients, and any particle that
passes the first interior node will stack on the boundary. Except for the Eulerian volume fraction
equation, the interpolation function gradient is calculated the same for interior and boundary
nodes.

B. Particle properties

Particles that intersect a rigid boundary are positioned a distance from the wall based on the
particle volume fraction for the boundary node. The distance from a vertical wall is d,=0,V;;/Ay;
where 6, is the particle volume fraction at the boundary and Vy; is the cell volume. The geometry
is shown in Figure 13. Particles that cross a reflective or center-line boundary are reflected back
into the calculation domain. The normal-to-wall component of the velocity is set to zero for
particles impinging a rigid boundary and set negative for particles crossing a reflective or center-
line boundary. The parallel-to-wall component of the particle velocity is the wall velocity for a no-
slip rigid boundary and is unchanged for a slip rigid boundary or centerline boundary. If a particle
reflection leads to another boundary intersection, a rigid boundary condition is applied.

+ | Ay;

Figure 13. Positioning a particle which hits the left boundary.
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C. Fluid properties

The pressure at a solid boundary is taken to be the pressure at the nearest interior cell, and
the pressure for an open boundary is specified. The fluid volume fraction is specified for an inlet

flow andis 8, , =1-6, . for all other boundary types. At no-slip rigid walls, the normal-to-

wall velocity is zero and the parallel-to-wall velocity is the wall velocity. For a slip boundary the
normal-to-wall velocity is zero and the parallel-to-wall velocity is the velocity of the first interior
node. Inlet flow boundaries have a specified velocity and volume fraction, and exit flow
boundaries assume a one-way flow with fluid discharging to a fixed pressure sink.

XII. APPROXIMATION OF THE IMPLICIT PARTICLE VOLUME FRACTION

By summing over all Eulerian nodes, it can be shown that the implicit particle volume fraction
equation satisfies volume continuity over the calculation domain, and hence, the volume of
particles remains constant. However, within individual cells, the Eulerian calculation of particle
volume fraction may give volume fraction errors in satisfying volume continuity. Because an
accurate Lagrangian calculation of particle volume fraction is made at the end of the time step, the
error in Eulerian volume fraction is limited to the implicit iteration loop for fluid velocities and
pressure.

Conservation of volume over the calculation domain is shown by summing the volume
fraction equation (56) over all nodes, { which gives

n+l an
g g

where all other terms sum to zero. The right side is the intermediate-time volume fraction from
summation of particle volumes over the calculation domain and thus conserves volume. In
addition, the approximate particle volume fraction, on the left of (56), is also conserved. The
summing to zero of other terms in equation (56) is next illustrated for the gravity term. Summing
the gravity term over all nodes gives

2 Aty VSC(ip)-g

p pp 1+D, At
m,N, A
D I szc (66
» pp 1+ D, At

where the particle and volume summations have been interchanged. From the definition of VS, the
summation VS over all nodes is zero and conservation of volume is preserved.

The particle volume fraction equation (56) contains velocities, pressure and neighbor volume
fractions, multiplied by explicit coefficients. The explicit coefficients result from summation of
particle properties within four bounding Eulerian nodes as shown in Figure 2. This limits the
implicit update of the particle volume fraction to the redistribution of volume within the four
Eulerian nodes. In the Eulerian calculation, particles within the intermediate-step S domain which
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are calculated to leave the domain at #+At are forced to contribute to only the nodes supporting

the intermediate-step $ domain. This can produce incorrect volume fraction within a cell and may
lead to a non-physical negative volume fraction. An example is given below.

Particle at intermediate location
S domain for
particle at g,
Nodes: -1 Intermediate
S =5/6
+ 1
8, =1/6
S.,=0
1
S
O T T T T T T T T T T T T
| i+1
Particle at new time location
(Lagrangian and Eulerian)
S domain for S domain for -
particle at )g*‘ Eulerian particle calc. Eulerian
Sl=7/6
S, =1/6
Nodes: i1 i+1 S =0
+ +
Lagrangian
S =5/6
| Si+1 =0
> s, =1/6
1
S
Y ™

Figure 14. The implicit update of particle volume fraction.

Consider the one-dimensional case shown in Figure 14 where aerodynamic drag is the
dominant force and the other terms are zero. A particle at the intermediate-step is located near
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node i, and within the S domain defined within nodes i and i+1. At the intermediate step, 5/6 of
the particle volume is mapped to node i and 1/6 is mapped to volume i+/. The implicit volume
fraction at t+Af from equation (41) is

g A_tzz _ MmNy uo (s )@
0 =8+, n ) vs,(%, ),

explicit cvoeﬁ‘icient

(67)

p
P

1

L/ at particle position X,, is updated in the implicit

where the gas velocity, @i, , =T/, (x P)ugz

iteration loop. The product VS, (x, )Ty, (x p) is not position dependent within the surrounding

Eulerian nodes (Figure 14), and any distribution of particles within the domain of S will give the
same explicit acrodynamic drag coefficient. For the one-dimensional example the particle volume
fraction at bounding nodes i and i+ is

. - Ar? vV 1 V2L
LT D0 i U
explicit coefficient c, ’
and
- Ar? vV 1 2L
9':; ~pin Atx ; (1+;pAI>5_x[E+V2(xP)] “sin12 (68b)

—

explicit coefficient c,

where V,, is a particle’s volume. The volume increases or decreases at Eulerian node i, as the gas
velocity moves to the left or the right, respectively. What is lost by node 7 is gained by node i+1
and conservation of volume is preserved:

ntl _a _ .=
0 | epi Cellgiin (69a)
ntl _ QR ~
9Pi+1 = 9Pi+1 +Clg (69b)

Figure 14 shows the particle moves to the left outside the support of S,-(?cp) at t+At. This is

true in both the Eulerian calculation and the Lagrangian calculation at 7+At. The Eulerian implicit
calculation continues to use the S function defined for the particle at the intermediate step. The
intermediate S function gives 7/6 volume to node i, -1/6 volume to node i+, and none to node i-
1. The Lagrangian new S function for the particle gives the correct 5/6 volume to node i, zero
volume to node i+, and 1/6 volume to node i-1. The result is an inaccurate Eulerian calculation
of volume fraction and a negative volume fraction which is non-physical. The error is more
pronounced at low numbers of particles and very dynamic conditions. The error in volume
redistribution may effect the fluid velocity calculation, primarily through the rate of change of
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volume fraction in the pressure correction, and it can lead to higher interparticle stresses. Note
that if the particle in the example stays within its intermediate-step S domain, the implicit volume
fraction is accurate.

The volume error arises only in the Eulerian calculation of particle volume fraction step
which is used in the implicit calculation loop for continuum velocities and pressure. At the end of
the calculation step, the true volume fraction is calculated from a Lagrangian update of particle
positions. The error in Eulerian calculated volume fraction is usually small and is reduced by
increasing the number of particles. To eliminate non-physical negative volume fraction in the
implicit loop, the volume fraction is limited to 0. To reduce high interparticle stress, during the
implicit iteration, the volume fraction is limited to 99% of the close-pack volume fraction.

XIII. SOLUTION PROCEDURE

The solution begins with an intermediate Lagrangian calculation of the particle positions and
particle volume fraction based on the old particle velocities. New-time fluid velocity and pressure
are calculated in an implicit inner iteration loop. The inner loop uses the Eulerian calculation of
the particle volume fraction. The sets of Eulerian algebraic equations are solved using a conjugate
gradient solver (O'Rourke and Amsden 1986). The implicit iteration loop continues until no
iterations are required in the conjugate gradient pressure solver, where convergence is satisfied
when the pressure correction residuals at all nodes are less than a specified limit (typicaily 10°° to
10" Pa). At the completion of the time step, a Lagrangian calculation of new particle velocities,
positions, and volume fraction is made. The solution steps are outlined in Figure 15.

XIV. INTERPARTICLE STRESS
The interparticle stress term given by equation (11),

B
P85
0,’

g Vp

T=e

is an empirical equation to account for particle collisions as particles congregate. It has the desired
characteristic of repelling particles from an Eulerian volume if the density of particles approaches
the close-pack limit. The close-pack volume fraction, 6., can be defined for spheres with simple
arrangements. However, 0, is generally measured for a bed and typically ranges from 0.6 to 0.7.
In calculating a static state, the P, term has minor influence. The gradient supporting the weight of
a particle bed is derived principally by the small volume fraction difference in the denominator in
equation (11). However P; is important in dynamic calculations. The P, must be sufficient to stop
the momentum of particles encroaching into a nearly close-packed volume such that the particles
do not compress together beyond their close-pack limit. However, a large value of P; disperses
particles even at low volume fractions where particle collisions are not large. The power, B, on
volume fraction in the interparticle stress equation reduces the particle dispersion at low volume
fraction. The P, and B parameters are empirical for which little measured data are available. The
value used for B in this study ranged from 1 to 3, with the typical value being 2. The value for P;
ranged from 5 Pa to 200 Pa with the typical value being 100 Pa.




—>  Time step loop t=t+ At

Calculate intermediate particle positions
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Figure 15. Diagram of calculation scheme with implicit particle volume fraction.
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XV. ONE-DIMENSIONAL TEST PROBLEMS

In this section, the two-dimensional MP-PIC method is compared with one-dimensional
problems that have known analytical solutions. One-dimensional problems are run in two ways
using the two-dimensional code. First, problems have been solved in both the x and y direction to
verify consistency in the solution. Second, two-dimensional problems are run with no initial
perturbations which gives a one-dimensional behavior. The computed results are compared with
the analytical solutions.

A. Stress wave problem

Gidaspow (1986) gave an analytical solution for the propagation speed of a small density
fluctuation for a dense particle flow in a vacuum. The interparticle stress is given by equation (11)
where B=1. Andrews and O'Rourke (1995) used the stress wave problem to validate the one-
dimensional MP-PIC method. The aerodynamic and gravitational forces are zero. A small initial
step in particle volume fraction of 0.004 is applied. The fluid velocity is small and pressure
gradients are negligible. The particle stress wave speed is (Gidaspow 1986)

0 PO
c, = io—z where G(GO) = —%, (70)
Ps (ecp B 60)

where B=1. Specifications of the test problem are given in Table 2. Figure 16 shows the one-
dimensional stress wave propagation. Two opposite moving waves occur with the analytic wave
speed of 0.1183 m/s. Measuring the distance between the numerical expanding waves at time
intervals gives a wave speed which matches that from the analytic solution. From Figure 16, the
calculated wave speed is 0.116 m/s. ’

Table 2. Stress wave problem with a single x-channel.

Number of parcels 2000
Particle radius (m) 0.001
Particle density (kg/m®) 1000
Fluid density (kg/m’) 1
P, (Pa) 5
0. 0.7
X-gravity, y-gravity (m/s’) 0,0
Number x-cells 1
Number y-cells 50
x-domain (m) 0.01
y-domain (m) 2
Time step (s) 0.005

Max residual for 6,, u, and 8p 10°®
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Figure 16. Particle volume fraction for a stress wave.
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B. One-dimensional layered sedimentation

The one-dimensional sedimentation of a particle-fluid mixture above a lighter fluid is
calculated (Andrews and O'Rourke 1995). The problem considers gravity driven particles falling
through gas and depositing at the bottom of the container as illustrated in Figure 17. The test
problem conditions are given in Table 3.

. =0.2
initial

R,=1000 kg/nf |

\l, g=-9 m/s?

lag17

Figure 17. lustration of layered sedimentation problem.

The initial sedimentation of particles before stacking onto the bottom has an analytic solution
(Andrews and O'Rourke 1996),

viix/t)  wO_ jr<x<we, )t

0=y 6., x<v(B_ )t D
0, . x>0, 1
k
here v= 50 [2+K)8, -1 with =3.65 and
where v=—"r +k)8, —1] with k=3.65 and p,>>p,.

p

The particle volume fraction profile at various times is shown in Figure 18. Particles at
position C fall at near the free-fall velocity g/D,=0.1 m/s and reach the bottom in 5 s. At point B,
the particle volume fraction is 0.2 and the mixture edge rises at 0.00576 m/s. The top edge of the

. . . kg .
mixture, A, falls at the solids velocity (eg)o(eg) D—p, where (Gg)o =0.8. Figure 18 shows the
numerical calculation compares well with the analytic solution. Figure 18 also shows the settling
of particles at 10 s, 15 s, 25 s and 40 s. At 25 s most particles have settled to the bottom with a
volume fraction near close-packing. Both the two-dimensional calculation with no initial
perturbations and the calculations with a single channel compare well with the analytic solution
and with results given by Andrews and O'Rourke (1996).
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Figure 18. One-dimensional sedimentation.
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Table 3. One-dimensional sedimentation.

Number of parcels 200
Number particles in a parcel 59,683
Particle radius (m) 0.001
Particle density (kg/m’) 1000
Fluid density (kg/m’) 1
P, (Pa) 5
6. 0.7
x-gravity, y-gravity (m/s%) 0,-9
Number x-cells 1
Number y-cells 40
x-domain (m) 1
y-domain (m) 1
Fluid viscosity (kg/ms) 0.02
Time step (s) 0.002
Max residual for 6, u, and dp 107

C. Solid stress wave speed limit on time step

The solid stress wave speed limits an explicit calculation time step. A stress speed courant

number is defined as , where ¢, is given by equation (70). A stress speed courant number

greater than unity leads to numerical instabilities in the explicit solution. Figure 19 shows that, for
the MP-PIC implicit solution, the stress speed courant number for the one-dimensional
sedimentation problem well exceeds the explicit limit of unity. Computation details for
calculations shown in Figure 19 are listed in Table 3 with the exception of calculation time steps
which are 0.02 s and 0.05 s.

XVI. TWO-DIMENSIONAL HEAVY PARTICLE MIXTURE ABOVE A LIGHT FLUID

Two dimensional calculations for heavy particle mixtures above a light fluid are presented.
The first calculation is a single wave-length Rayleigh-Taylor problem. The interface drag is large,
tightly locking particles and fluid together. Results are compared with linear stability analysis and
with experimental limiting growth rate data. The second calculation is a repeat of the previous
one-dimensional sedimentation calculation. An initial interface perturbation is applied which gives
rise to Rayleigh-Taylor type instabilities. The third set of problems comprises two-dimensional
Rayleigh-Taylor mixing where instability generated structures combine to form ever larger
structures. The calculated interpenetration of heavy particle mixture and lighter fluid is compared
with experimental data.
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One-dimensional sedimentation
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Figure 19. Stress wave courant number for the 1-D sedimentation problem.

A. Rayleigh-Taylor single wave instability

A density difference with heavy fluid above light fluid under gravity drives small amplitude
Rayleigh-Taylor instabilities at the density interface to grow exponentially (Taylor 1950 and
Chandrasekhar 1961). Linear instability analysis gives an exponential growth rate of a single
structure in the absence of surface tension and viscosity with the amplitude given by

h= A, cosh(n,1), (72)

where

_|2mg py—py
Ry,

= , 73
A opytp 73

]

and ¢ is time, g is gravity, A is the perturbation wavelength, and p; and p, are the densities of the
lower and upper layers, respectively. A, is the initial perturbation amplitude.

Experimental and numerical work by Lewis (1950), Birkoff (1960), and Daly (1967) suggests
that when the amplitude of a growing single Rayleigh-Taylor structure becomes significant
compared to its wavelength, the growth rate slows and approaches a limiting value given by

_ &92_91
w—Cw1/84 5 (74)
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where the coefficient C.., has been measured by Ratafai (1973) and Daly (1967) and found to be
near 0.7. This analysis uses C.. = 0.7 for comparison with the MP-PIC calculation.

A MP-PIC calculation of a single Rayleigh-Taylor plume is made. The initial condition is a
mixture of heavy particles and fluid situated above pure fluid. Initially a half sine wave
perturbation in volume fraction is given to the interface between the mixture and pure fluid. The
interphase drag is set high at 10° s to lock fluid and particles together, and the upper layer
particle volume fraction is 0.1. The fluid density is 1 kg/m® and calculations for particle densities
2,3, 4, and 6 kg/m’ are made. Because the upper layer is a mixture, the effective light to heavy
density ratios for the cases are 1.1, 1.2, 1.3, and 1.5. The problem conditions are given in Table 4.

Figure 20 shows the transient Rayleigh-Taylor plume for a density ratio of 1.2. The plumes
have the distinctive Rayleigh-Taylor mushroom shape. Figure 21 compares the calculated plume
growth rates for the 4 density ratios with the rate predicted by linear stability analysis and the rate
for saturated growth. The plume penetration is normalized with respect to the initial applied
wavelength, A,. The time is normalized by the limiting growth time [A/gA1"”, where the Atwood
number is A=(p,—p1)/(p2+P1)- The calculation compares well with the experimental data.

A common method of normalizing Rayleigh-Taylor growth rate data is to initially shift the
growth rate curve so that a straight line through the growth curve would pass through the origin
(Linden, et al., 1994). This eliminates the influence of initial perturbations in reaching limiting
growth rate. Figure 22 shows the calculated data after shifting the data to their zero time origin,
normalizing the data, and then shifting data back to their original initial time value. The curves
further collapse to a single curve. Again the calculation compares well with the saturated growth
rate at constant velocity.
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Figure 21. Comparison of calculated Rayleigh-Taylor plume growth rate with linear stability
growth rate and measured saturated growth rate (C.=0.7).
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Figure 22. Comparison of calculated Rayleigh-Taylor plume growth rate with linear stability
growth rate and measured saturated growth rate (C..=0.7). Calculated curves are adjusted to a

zero virtual origin.
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Table 4. Rayleigh-Taylor problem.

Particle volume fraction 0.1 0.1 0.1 0.1
Number particles 8000 8000 8000 8000
Particle radius (m) 0.001 0.001 0.001 0.001
Particle density (kg/m®) 2 3 4 6
Fluid density (kg/m’) 1 1 1 1
P, (Pa) 0 0 0 0
x-gravity, y-gravity (m/s’) 0,-9 0,-9 0,-9 0,-9.
Number x-cells 5 5 5 5
Number y-cells 50 50 50 50
x-domain (m) 0.1 0.1 0.1 0.1
y-domain (m) 0.5 0.5 0.5 0.5
Time step (s) 0.002 0.002 0.002 0.002
A, (m) 0.008 0.008 0.008 0.008
Max residual for 6,, u, and 8p 107 10”7 10”7 10”7

The single, half-wave initial perturbation Rayleigh-Taylor problem is repeated at higher grid
resolution. Figure 23 shows the calculated particle distribution at various times. Details of the
calculation are given in Table 5. With the high grid resolution and discrete particles, the problem
begins with small volume fraction variations along the applied half sine wave interface. Small
perturbations grow quickly (from linear perturbation theory, small disturbances grow
exponentially) and can be seen at the interface at 0.3 s. Larger multiple wave length plumes are
seen at 0.6 s, and by 1 s, plumes have paired forming a large single wavelength plume rotating in
the cell. Figure 24 shows the problem calculated again with more than double the particles. The
specifications are given in Table 5. With more particles the initial interface volume fraction is
smoother and fewer small wavelength structures form. The calculated large structures for both
grid densities at 0.6 s have nearly the same shape and interpenetration of mixture and fluid.
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Figure 24. Rayleigh-Taylor single wave perturbation with grid resolution of 20x100
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Table 5. Rayleigh-Taylor problem with nodalization of
20x100 and 7,823 and 19,560 particles.

Particle volume fraction 0.1 0.1
Number particles 7823 19560
Particle radius (m) 0.001 0.001
Particle density (kg/m®) 4 4
Fluid density (kg/m’) 1 1
P (Pa) 0 0
Bcp 0.7 0.7
x-gravity, y-gravity (m/s’) 0,-9 0,-9
Number x-cells 20 20
Number y-cells 100 100
x-domain (m) 0.1 0.1
y-domain (m) 0.5 0.5
Time step (s) 0.002 0.002
A, (m) 0.008 0.008
Max residual for 6, u, and dp 107 107

B. Two-dimensional layered sedimentation

The one-dimensional sedimentation problem shown in Figure 18 is calculated again in two
dimensions. In the two-dimensional case, instabilities are expected to form at the mixture-to-fluid
interface if there are perturbations in the volume fraction field. Without perturbations, the one-
dimensional and two-dimensional cases are the same.

So the problem considered here is the sedimentation from random initial perturbations in
volume fraction at the interface between the particle mixture and the underlying fluid.
Specifications of the test problem are given in Table 6 and closely match those for the one-
dimensional problem.

Figure 25 shows the particle distributions at various times in the transient settling. By 0.2 s,
seven, approximately equally spaced structures of downward moving particle-mixture have
formed. By 0.4 s, structures have combined, and four major structures exist. The heavy,
downward moving particle-mixture falls in spikes, and the lighter fluid rises in rounded bubbles. A
kinematic shock appears at the top of the container between the particle mixture and fluid and is
seen as a distinct separation between mixture and fluid. The shock moves downward at the same
rate as predicted for one-dimensional flow. The mixing region between the particle mixture and
pure fluid is defined as the distance between interpenetrating spikes and bubbles. The two-
dimensional mixing region expands faster than did the one-dimensional interface. By 0.6 s, large
spikes of particles extend deep into the fluid, and well formed round bubbles of rising fluid move
into the particle-mixture. At 0.8 s, a rising bubble pushes up the top surface of the upper shock,
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and by 1 s, the bubble breaks through the top surface. At 2 s particles which reached the bottom
are sloshing back upward as other particles fall. By 5 s, particles begin to uniformly settle on the
bottom to a close-pack state.

This example illustrates the robustness of the MP-PIC method for calculating dense particle
flows. The flow is dynamic and particles collide, pack together, and then disperse. The particle
field extends from disperse particle flow to high concentration gradients as particles settle to a
close-pack state. Using the Eulerian derived stress gradients, the MP-PIC method handles well the
complex dynamic packing of particles.

Table 6. Two-dimensional sedimentation problem.

Number of parcels 6368
Number particles in a parcel 783341
Particle radius (m) 0.001
Particle density (kg/m’) 1000
Fluid density (kg/m®) 1
P, (Pa) 200
0cp 0.7
B 3
X-gravity, y-gravity (m/s) 0,-9
Number x-cells 20
Number y-cells 40
x~-domain (m) 0.5
y-domain (m) 1
Fluid viscosity (kg/ms) 0.02
Time step (s) 0.001
Max residual for 6,, u, and &p 107

C. Two-dimensional unstable buoyancy mixing layer

A sedimentation experiment similar to that described by Youngs (1989) is calculated. The
experiment contained a heavy fluid above a light fluid. The test container was accelerated 15 times
gravity using a rocket. MP-PIC calculations were made with a particle densities of 3.5, 6, 11, 16
and 26 kg/m’ and fluid density of 1 kg/m’. The initial particle volume fraction in the overlying
fluid-particle mixture was 0.2, which gave density ratios of 1.5, 2, 3, 4 and 6. The interphase drag
coefficient was set to 10° s which locked the particles and fluid together. The experimental test
cell was 150 mm wide with no reported depth. The calculation was made using a container depth
of 300 mm. An initial perturbation from particles randomly distributed about a 0.8 mm amplitude,
13.6 mm long sine wave was applied to the mixture-fluid interface. Specifications for the
calculation are given in Table 7.
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Figure 26 shows the growth of the mixing layer at various times. The particles and fluid form
bubbles (0.04 s) which progress to spikes (0.08 s) of downward flowing heavy mixture. Youngs
(1989) reported that the measured half mixing width, 4, compared well with

h=0LAgt2,

where the Atwood number is A=(p;-p2)/(p:+pP2), g is gravity, and the constant a lies between
0.05 to 0.07. Following Youngs (1989), the calculated half mixing-layer width is the distance
from the original interface of the deepest downward penetrating structure. An algorithm identifies
the deepest structure by ignoring the three deepest particles and then averaging the distances of
the next six deepest particles. Similar to experiments (Linden, et al., 1994), the square root of the
growth rate curves are adjusted so they pass through the origin. Figure 27 shows that the MP-PIC
calculated mixing half-width compares well with the half-width from ~2=0.07Ag#, which, in turn,
agrees well with measured data.

Table 7. Layered sedimentation comparable to experiments by

Youngs (1989).
Number of parcels 12,000
Particle radius (m) 0.0001
Particle density (kg/m’) 3.5,6,11, 16,26
Fluid density (kg/m’) 1
P, (Pa) 0
Ocp 0.7
X-gravity, y-gravity (m/s”) 0,-147
Number x-cells 25
Number y-cells 20
x-domain (mm) 150
y-domain (mm) 300
Time step (s) 0.0005
Max residual for 6, ug and op 10°®
Relaxation on 0,, u, and &p 11,1
Interphase drag coef. s 10°
Initial 6, 0.2
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Figure 25. Two-dimensional layered sedimentation, comparable to the one-dimensional layered sedimentation problem.
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Figure 27. Unstable buoyancy mixing layer growth rate.
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XVII. TWO-DIMENSIONAL FLUIDIZED BED

A gas-particle fluidized bed is formed by rising fluid that lifts and floats particles as
illustrated in Figure 28. The bed can contain a variety of size, shape and density particles.
Experimenters have measured the complex circulation of solids and gas, to better
understand combustion, mixing, erosion and other bed behavior. The experiments have
shown that both the gas and particle flow can be complex with beds pulsing, and bubbles of
gas rising through the bed. The fluidized bed experiences dynamic, high particle volume
fractions near close-pack, and poses a difficult problem for particle solutions. MP-PIC
calculations are made for two fluidized bed experiments to illustrate the ability of the
method to predict dynamic, dense particle volume fraction flow.

The first calculation is for experiments by Lin, et al. (1985). Lin, et al., measured the
time-average particle velocities and volume fraction in a cylindrical fluidized bed. The
second calculation uses conditions from an Argonne National Laboratory IIT experiment
reported by Ding and Gidaspow (1990). The IIT experiments were done in a rectangular
test channel.

64 cm/s

EEREY

25cm

Figure 28. Fluidized bed. Dimensions and gas flow rate are from experiments by Lin, et al.
(1985).

A. Fluidized bed calculation for experiment by Lin, et al.

The experiment by Lin, et al. (1985) is calculated. In the experiment, a cylinder filled
with glass beads with diameters ranging from 0.42 mm to 0.6 mm is fluidized by air. The
reported packed bed height was 11 cm. The gas-alone flow rate was 0.64 m/s, but the inlet
gas velocity was not reported. In the MP-PIC calculation, the container is initially filled with
particles at 50% particle volume fraction to a height of 15 cm, which gives close packing at
11 cm. To match the experiment, the radii of particles have a uniform, random distribution
between 0.21 mm and 0.3 mm. The problem specifications are given in Table 8.
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Table 8. Two-dimensional fluidized bed problem with
conditions for the experiment by Lin, et al. (1985).

A B
Number of parcels 8,064 20,736
Particle radius (mm) 0.21t00.3 0.21t00.3
Particle density (kg/m’) 2500 2500
Fluid density (kg/m®) 1.093 1.093
P, (Pa) 75 75
Ocp 0.7 0.7
X-gravity, y-gravity (m/s®) 0,-9.8 0,-9.8
Number r-cells (uniform Ar) 6 12
Number y-cells (uniform Ay) 15 30
r-domain (m) 0.069 0.069
y-domain (m) 0.300 0.300
Fluid viscosity (kg/ms) 1.95x10°  1.95x10°
Time step (s) 0.002 0.001
Max residual for 6, u, and 3p 107 107
Relaxation on 6, u, and 6p 1,1,0.6 1,1,0.6
Mean gas velocity (gas only) (m/s) 0.648 0.648

Figure 29 shows the calculated particle distribution at various time intervals, where
dark areas are dense concentration of particles and light areas within the bed are gas
bubbles. Time-labels are rounded to 1/100 s (i.e., label 5.03 s is 5.025 s). In the first time
frame, at 5.000 s, a gas bubble pushes a dense layer of particles (seen as the dark band near
the interface) to the surface. From 5.025 s to 5.075 s the gas bubble bursts through the
interface and throws particles upward. During this period, the next dense wave of particles
forms deep within the bed as bubbles of gas move from the walls toward the center. From
5.100 s to 5.225 s particles fall back into the bed, and the bed collapses onto the next rising
wave of particles. At 5.285 s to 5.340 s, gas bubbles again move from the periphery to the
center and rise to the surface similar to the first time frame at 5.000 s. This general cyclic
behavior continues in the calculation.
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The above calculated behavior compares well with the measured flow by Lin, et al.
(1985). Werther and Molerus (1973) described the phenomena in terms of bubble behavior
where bubbles rise and move toward the center with increasing height. If the channel is deep
enough bubbles would eventually merge at the center. Lin, et al. (1985) present their
observed flow behavior by the illustration shown in Figure 30.
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Figure 30. Lin, et al. (1985) illustrated recalculation behavior for high fluidizing velocity.

The experimental flow behavior of both particles and gas was complex (Chao, 1996),
and time averaged data for flows and volume fraction were reported by Lin, et al. (1985).
The average calculated particle velocity is shown in Figure 31. To obtain the average solids
velocity, the particle velocities are mapped to the Eulerian grid using a bilinear interpolation
and time averaged for a two second period. Both the measured and calculated average flow
pattern shows an upward flow of particles in the center of the pipe and a downward flow of
particles near the wall. The magnitude of the MP-PIC calculated average particle velocity
matches the measured velocity. The calculation predicts deep circulation patterns of
particles moving from the bed surface to the bottom of the bed. Measurements show the
strong circulation pattern shown in Figure 31, in the upper region of the bed, but the
measured average velocity magnitude is smaller than that calculated at the bottom of the
bed. Considering that the fluidized bed calculations are made with the same models used for
other unrelated calculations in this study, and that the experimental bed inlet velocity is
unknown, and that no special models or correlation for fluidized beds was used, the
comparison is remarkably good.

Figure 32 compares the measured particle volume fraction with the MP-PIC calculated
instantaneous volume fraction and the calculated average particle volume fraction. The
measured volume fraction peaks at 5 cm which is because of the strong particle circulation
pattern being predominantly in the upper part of the bed. The low measured volume fraction
seen at the bottom of the bed is presumably from a high injection gas velocity (the gas inlet
velocity was not reported). The MP-PIC calculated particle circulation extends to the
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bottom of the bed, and the cyclic rising waves of bubbles and particles give a nearly flat
average volume fraction and do not reflect the measured hump. The -calculated
instantaneous volume fraction fluctuates over a wide range as the bed pulsates, with
transient volume fractions approaching close pack at times. However when averaged, the
volume fraction is near constant within the bed and trails off to zero at the top of the bed.

Time= 7.40
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Figure 31. MP-PIC calculated particle velocity field for the experiment by Lin, et al. (1985).
Inlet flow = 64 cmy/s and P, = 75 Pa. Radial nodes = 6. Axial nodes = 15.
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Figure 32. MP-PIC calculated instantaneous and average particle volume fraction compared
with that measured by Lin, et al. (1985). Inlet flow = 64 cm/s and P, = 75 Pa. Radial nodes
= 6. Axial nodes = 15.

1. Grid independence

The experiment by Lin, et al. (1985) is calculated in cylindrical coordinates with a
constant cell dimension in the radial direction. To check grid independence, two calculations
were made. One calculation used 6 radial nodes, 15 axial nodes, and 8,064 particles, and the
other calculation used 12 radial nodes, 30 axial nodes, and 20,736 particles. The
specification of the calculations is given in Table 8. The instantaneous time volume fraction
field at the finer nodalization is shown in Figure 33. The cyclic pulsing seen in the coarser
grid is present in the finer grid calculation with the same period. The finer grid calculation
shows a smoother variation in particle concentration gradients.

Figure 34 shows the calculated particle velocity field for the finer nodalization, and Figure
35 shows the average volume fraction for the finer nodalization. Again the low and high
resolution calculation provide the same prediction of the fluidized behavior.
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Figure 34. MP-PIC calculated particle velocity field for the experiment by Lin, et al. (1985).
Inlet flow = 64 cm/s and P, = 75 Pa. Radial nodes = 12. Axial nodes = 30.
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Figure 35. MP-PIC calculated average particle volume fraction compared with that
measured by Lin, et al. (1985). Inlet flow = 64 cm/s and P; =75 Pa.

2. An observation on two-dimensional MP-PIC calculations in cylindrical coordinates

A particle-in-cell calculation for cylindrical coordinates with uniform spaced radial
nodes must have a large number of particle parcels. A few parcels are needed in the small
center cell while more and more particle parcels are needed in each succeeding larger outer
cell. The experiment by Lin, et al. (1985) had a 6.9 cm radius cylinder and was filled with
250 pum radius particles. With 10 radial nodes and 3 particle parcels per height in the center
cell, there must be 57 parcels per height in the outer cell for a uniform radial volume
fraction. Increase the nodal resolution to 15 radial cells, and the number of particle parcels
in the outer cell increases to 87 parcels. The result is that as the radial node resolution
increases, the number of computational parcels dramatically increases.

The number of computational parcels can be reduced by increasing the number of particles
within parcels in outer cells. This approach can have devastating effects. A large parcel of
particles moving toward the center may not fit into an inner cell. This gives an artificial blockage
of particle flow, and because both large and small parcels are blocked (restricted by inner
particle stress), center cells become isolated.
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B. Fluidized bed calculation for experiment by Ding and Gidaspow

An MP-PIC calculation is made for an Argonne National Laboratory IIT experiment
which was described by Ding and Gidaspow (1990). Experimental data were not reported
but results from a calculation with observed experimental behavior were given. While data
provide the only true test of the calculation performance, it is useful to examine the MP-PIC
calculation compared with results calculated by Ding and Gidaspow (1990), and their
qualitative description of the experiment.

The IIT experiment uses a rectangular flow channel. The calculation begins with the
container filled to 50 cm with a particle-mixture of particle volume fraction 0.4, which gives
close packing at 29 cm. The calculation particles are of one size. The inlet velocity is
uniform at the entrance at 100 cm/s. The specifications of the IIT calculation are given in
Table 9.

Ding and Gidaspow (1990) presented an Eulerian numerical calculation of volume
fraction and velocity fields for the IIT experiment, and they reported that on-going
experiments show that the computed bubbles and flow patterns agree with observed
experimental data. They described the bed to surge up with bubbles of fluid rising within the
particle-mixture. Their Eulerian calculation predicted the rising fluid bubbles to be
symmetric about the bed center line (this symmetry may have been forced on the problem by
assuming calculation symmetry about the container center line, although details of the grid
were not reported). The MP-PIC calculation predicts cyclic bubbles of gas rising through
the bed and bursting through the interface. Figure 36 shows the MP-PIC calculated particle
distribution and Figure 37 shows the particle volume fraction mapped to the Eulerian grid.
The upward progression of a bubble, from 1.05 s to 1.25 s, can be followed as it expands
the bed. At 1.25 s, the bubble breaks through the surface, and the bed collapses as particles
fall back into the bed (from 1.3 s to 1.4 s). This general cyclic expanding and contracting
bed behavior was reported for the experiment by Ding and Gidaspow (1990) with the
exception that the bubbles from the MP-PIC calculation are not symmetric about the
channel center line. Ding and Gidaspow calculated that the particle flow field was also
symmetric with particles descending in the center and wall calculation-cells, and symmetric
circulation patterns in other cells on the left and right sides of the container. A measured
particle velocity magnitude was not reported. Figure 38 shows the MP-PIC average particle
velocity fields at times. Particle velocities are mapped to the Eulerian grid and averaged
over a 2 s period prior to the reported time. Non-symmetric circulation patterns are
calculated which change with time. Figure 39 shows the gas velocity pattern also changes
with time suggesting instabilities are driving the two-dimensional bed flow patterns. To
determine whether the instabilities are physical or are manifested from the numeric solution
requires experimental data.
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Table 9. IIT two-dimensional fluidized bed problem.

Number of parcels 8,000
Particle radius (mm) 0.25
Particle density (kg/m’) 2500
Fluid density (kg/m°) 1

P, (Pa) 100
0cp 0.7
X-gravity, y-gravity (m/s’) 0,-9.8
Number x-cells 15
Number y-cells 30
x-domain (m) 04
y-domain (m) 1
Fluid viscosity (kg/ms) 1.9x10°
Time step (s) 0.0005
Max residual for 6, u, and dp 107
Relaxation on 6y, u, and p 1,1,0.6
Inlet fluid velocity (m/s) 1
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Figure 36. Particle distribution in the IIT fluidized bed. Inlet flow = 1 m/s, 6; = 0.4.
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XVIII. HOMOGENOUS BATCH SEDIMENTATION

A. Background

The separation of particles from a fluid by means of gravity is an important step in many
industrial processes as well as in the environment. Homogenous, batch sedimentation begins with
a uniform distribution of particles in a container. Let sit, particles separate into regions depending
on particle density and size as illustrated in Figure 40 for a bimodal suspension. A suspension with
a variety of particle sizes and densities will form regions, where each region above the previous
region contains one less species. The top of the vessel will be clear fluid (providing particle
densities are greater than the fluid density) and the bottom of the vessel will contain all species. In
cases where there is a large variation between sizes and/or density of species, the regions are
distinct and separated by strong concentration gradients ("shocks™). A monodisperse mixture
containing one size and density particle forms a single region of suspended particles under a clear
fluid. Davis and Acrivos (1985) and Al-Naafa’ and Selim (1989) provide reviews of experiments
and analysis of polydisperse suspensions. Richardson and Zaki (1954) gave an empirical equation
for the settling velocity of a monodisperse mixture which compares well with data. The settling
velocity 1s

U, =U,(1-6,)" (75)

where U, is the terminal velocity, 8, is the particle volume fraction and » is a constant on the
order of 5. Mirza and Richardson (1978) extended the empirical relation to polydisperse
suspensions. Al-Naafa' and Selim (1989), using conservation of mass and empirical settling
velocities, provided an analytical model that predicts well the settling of polydisperse suspensions.
A calculation by Shih, et al. (1987) for bimodal settling using a one-dimensional, multi-fluid,
numerical solution compared well with experimental data, and Andrews and O'Rourke (1996)
presented an accurate prediction of polydisperse settling of a suspension using a one-dimensional
MP-PIC method. |

<—1— Clarified fluid

Region 1
egion 2

1ag19

Figure 40. Ilustration of a vertical bimodal suspension.




Boycott (1920) reported that by tilting the container, corpuscles separated from blood
quicker than when the container was vertical. The settling in a tilted container is illustrated in
Figure 41. Position A in Figure 41 is the distinct horizontal interface between the clear fluid and
mixture (B). The initial height of the mixture is H, the transient height of the interface is 4 and the
vessel width is b. A thin layer of upward flowing clear fluid forms (C) at the downward-facing
surface, and concentrated particles flow down the upward-facing surface (D). Many investigators
have studied tilted container phenomena and have provided analytical models for the settling.
Davis and Acrivos (1985) and Kapoor and Acrivos (1995) provide reviews of inclined
sedimentation. Ponder (1925) and Nakumura & Kuroda (1937) postulated that for tilted
containers the horizontal mixture interface and the interface under the downward facing surface
fall at the same mixture velocity as for a vertical container. The observed thin fluid film under the
downward facing surface was added directly to the clear fluid above the horizontal mixture layer
in the analytical model. The settling rate is

dh/dt =-U,[1+(h/b)sincl), (76)

where o is the angle of inclination and U, is the mixture interface velocity for a vertical vessel.
Acrivos & Herbolzheimer (1979) showed that the simple settling model given by Ponder, et al.
was accurate for a monodisperse suspension, at low Reynolds number, with an initial uniform
particle distribution, a large Grashoff number when compared with the Reynolds number, and a
stable interface between clear fluid and suspension. Kinosita (1949) noted that particles in a tilted
container did not settle through a quiescent fluid as in a vertical container, but that strong
convective currents can form a vortex in the suspended phase with particle velocities as high as
100 times the sedimentation velocities. Instabilities have been observed at the interface between
the clear fluid flowing up under the downward-facing surface and the particle mixture.
Photographs by Herbolzheimer (1983) (see Figure 50) show Kelvin-Helmholtz waves at the
interface.

Figure 41. llustration of a tilted vessel suspension.
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B. MP-PIC solution

The MP-PIC numerical model has an advantage over prior analytical methods of being able
to model flows with an unlimited number of different size and density particles. Because the MP-
PIC method solves the fundamental governing partial differential equations, fluid currents in the
mixture and instabilities at interfaces can be calculated. Furthermore, as a part of numerical
solutions, complex boundary and initial conditions can be applied. Examples are presented for
vertical and inclined containers and for particles with a range of sizes and densities, and results are
compared with measured data.

The sedimentation calculations were for tall, narrow containers which required computational
cell height to width ratios as large as 10 to 1. Particles are small giving a high interphase drag (D,
> 12,000 s™') and the mean flow in vertical containers is nearly zero.

The two-dimensional MP-PIC calculation gives non-physical currents in vertical batch
sedimentation when using the implicit, new-time particle velocity (equation 34),

u +A1D un+1 __Vpn+1 —'—‘VTn-H +gJ
n+l _ Pp

P 1+AtD

substituted into the continuum interphase momentum transfer term (equation 40),

1 n+l
S, "+ -u )
z+1/2 j 2 i+1/72,j p p

The new-time particle velocity substituted into the interphase momentum transfer equation gives
equation (41). Using the old-time particle velocity, w), the non-physical currents are eliminated,

P

and the settling is calculated well. This is contrary to common wisdom, where implicit schemes
usually add stability to the solution. No time step limitations were experienced using the old-time
particle velocities. The stability issue is being examined and is not presented in this study. The
batch sedimentation calculations use the old-time particle velocity in F, and in the following
sections, the calculations are shown to give good agreement with experimental data.

C. Polydisperse suspensions

An MP-PIC calculation of the bimodal suspension of a glass beads experiment given by
Davis, et al. (1982) is illustrated in Figure 40. The fluid density and viscosity are 992 kg/m’ and
0.0667 kg/(m-s), respectively. The small glass bead density is 2440 kg/m® and beads range in
diameter from 125 to 150 wm. The larger bead density is 2990 kg/m’ and beads range in diameter
from 177 to 219 um. The calculation uses a uniform random distribution of particle sizes between
the reported experimental ranges. Initial volume fractions for the small and large beads are 3%
and 1%, respectively. Specifications for the calculation are given in Table 10.
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Table 10. Batch bimodal sedimentation
(Davis, et al., 1982).

Tilt 0°
Number of parcels particle 1 8,000
Number of parcels particle 2 8,000
Initial volume fraction particle 1 0.03
Initial volume fraction particle 2 0.01
Particle 1 radius (um) 63
Particle 2 radius (um) 89
Particle 1 density (kg/m®) 2440
Particle 2 density (kg/m®) 2990
Fluid density (kg/m®) 992
P, (Pa) 50
Ocp 0.6
x-gravity, y-gravity (m/s’) 0,-9.8
Number x-cells 5
Number y-cells 40
x-domain (cm) 5
y-domain (cm) 100
Fluid viscosity (kg/m-s) 0.0667
Time step (s) 0.5
Max residual for 8,, u, and op 10"
Relaxation on 8,, u, and dp 1,1,0.5
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Figure 42. Particle distribution for batch sedimentation (Davis, et al., 1982).




Figure 42 shows the particle distribution at three times. Three regions can be observed. The
top region is fluid, the next region is light particles and fluid, and the lower region contains fluid,
light particles and heavy particles. Particles concentrate in the lower section of the vessel and
approach the close-pack limit. Figure 43 shows a one-dimensional and two-dimensional
calculation of the interface levels compared with experimental data. The figure shows that the
MP-PIC one-dimensional solution does a good job calculating the bimodal sedimentation. The
MP-PIC two-dimensional solution does equally well in calculating the sedimentation rate. While
the one-dimensional solution does an excellent job at considerable computational saving
compared with the two-dimensional solution, it does not have the capability to calculate physical
instabilities which may form in a suspension. Photographs by Weiland, et al. (1984) show the
fingering structures produced by positive buoyancy particles. While the MP-PIC method has the
potential for calculating these fingering structures, the calculations were not done in this study, in
favor of simulating the inclined sedimentation.

-10

h,—h (cm)

-15

Predicted value from Davis et al. (1982)
® Measured data region 1

20, Measured data region 2

= = = 1-D MP-PIC calculation

— - = 2-D MP-PIC calculation -,
=25 i 1 i 1 1 1

0 50 100 150 200 250 300 350 400 450 500 550
Time (s)

Figure 43. Sedimentation levels from bimodal suspension of particles (Davis, et al., 1982).
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D. Inclined sedimentation

The MP-PIC method is applied to the experiment given by Acrivos & Herbolzheimer (1979).
The container was 5 cm wide and 40 cm high, and experiments were run with the container tilted
at 0° 20°, and 35°. The fluid density was 992 kg/m’ and the viscosity was 0.0667 kg/m-s. The
particles were glass beads with a mean diameter of 137 um and density of 2420 kg/m®. The MP-
PIC calculations for batch sedimentation used the same interphase drag coefficient as used in the
other calculations in this study, and no attempt was made to tailor the calculation to batch
sedimentation. All calculations were started with the container initially vertical (mixture-fluid
interface was perpendicular to vessel walls) and then tilted incrementally over 5 s to the specified
angle. The height of the mixture reported in this study, 4, is illustrated below. Specifications for
the MP-PIC calculation are given in Table 11.

Measure hcos(y)

h

The MP-PIC calculated settling behavior of particles is the same as that observed in
experiments and illustrated in Figure 41. The calculated particle distributions at 400 s for the
container at 0°, 20° and 35° are shown in Figure 44. Figure 45 shows the volume fraction of
particles at times during the transient settling for the container tilted 35°.

The MP-PIC calculation captures the physics of the Boycott settling problem. Below the
downward-facing surface, a thin layer of near clear-fluid forms above the suspension which is
illustrated by C in Figure 41. The thin layer is seen in the detail view shown in Figure 46. This
wedge shaped layer is largest near the top, horizontal interface and decreases to zero in the lower
part of the vessel where particles begin close-packing. On the opposite, upward-facing surface,
particles concentrate forming a wedge which corresponds to D in Figure 41. The calculated
wedge is small near the top interface and becomes larger moving down in the container. The
central region illustrated as B in Figure 41 and shown in Figure 46 is calculated to be homogenous
from the top horizontal interface stretching down in the container to where particles begin to
close pack. Figure 46 shows a strong concentration gradient below 10 cm where the particle bed
is forming.

Figure 47 compares the measured and MP-PIC calculated transient settling rates for the
container tilted 0°, 20°, and 35°. The vertical sedimentation (0°) was predicted with a one-
dimensional and two-dimensional calculation, and both provide a good prediction of the vertical
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settling rate. Figure 47 shows that the two-dimensional MP-PIC calculations also compare well
with measured inclined sedimentation data.

Table 11. Batch sedimentation. Container tilted 0°, 20° and 35°.

Tilt 0° 20° 35°
Number of parcels 8,000 10,000 10,000
Initial particle volume fraction 0.1 0.1 0.1
Particle radius (Lm) 68 68 68
Particle density (kg/m’) 2420 2420 2420
Fluid density (kg/m’) 992 992 992
P; (Pa) 75 75 75
0cp 0.7 0.7 0.7
x-gravity, y-gravity (m/s’) 0,-9.8 -3.35,-9.21 -5.62,-8.027
Number x-cells 5 15 15
Number y-cells 40 44 44
x-domain (cm) 5 5 5
y-domain (cm) 40 44 44
Fluid viscosity (kg/m-s) 0.0667 0.0667 0.0667
Time step (s) 0.5st0650s 0.05 0.05
0.05st0 820 s
Max residual for 6,, u, and dp 10°® 10°® 10°®
Relaxation on 6,, u, and dp 1,1,0.5 1,1,0.5 1,1,0.5

The fluid and particle velocities for the tilted containers are shown in Figures 48 and 49,
respectively. A vortex pattern is calculated to form. The velocities are highest near the walls with
fluid flowing upward under the downward-facing surface, and a dense mixture flowing down the
upward-facing surface. A vortex pattern was observed in experiments by Kinosita (1949).
Kinosita measured particle velocities as high as 100 times Stokes velocity. Hill, et al., calculated
and measured particle velocities on the order of 10 times Stokes velocity. The MP-PIC calculated
velocities compare favorably with measured velocities. The MP-PIC calculation produced
maximum particle velocities on the order of 20 times Stokes velocity for the 20° tilted container
and 50 times Stokes velocity for the 35° tilted container.

The calculated particle-mixture and fluid interface becomes wavy as seen from the figures.
Particles entrained by rising fluid under the downward facing wall lift the upper section of the
interface, and currents of downward flowing fluid and particles depress the central region of the
interface. The entrainment of particles and the rounding of the corner at the horizontal surface has
been experimentally observed and is apparent in the photographs by Herbolzheimer (1983) which
are shown in Figure 50. The MP-PIC calculated interface shown in Figure 51 exhibits the same
appearance as the interface experimentally observed by Herbolzheimer. The entrainment of
particles by upward flowing fluid under top surface is more pronounced for the 20° tilted vessel
than the 35° tilted vessel. As time progresses and particles settle out, the entrainment decreases,
and the mixture-fluid interface becomes flatter (Figure 45).
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Figure 45. Batch sedimentation. Container tilted 35°.
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Figure 48. Fluid velocity for container tilted 35°.
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(b}

Figure 50. Observation of the flow for a volume fraction of 0.01 and fluid viscosity of 18.8 cP. (a)
angle of inclination large; (b) angle is decreased and waves appear along interface in the upper
region of channel. Reprinted with permission from Herbolzheimer, E., 1983, "Stability of the flow
during sedimentation in inclined channels," Phys. Fluids, vol. 26, Fig. 2, p. 2044. Copyright 1983
American Institute of Physics.

E. Grid independence

Grid independence was checked by calculating batch inclined sedimentation using double the
number of x and y nodes (15x44 nodes to 30x88 nodes). The number of particle clouds was
increased from 10,000 to 15,000. The time step was reduced to 0.01 s. The other specifications
are given in Table 10 for the container tilted 35°. The particle distribution is shown in Figure 51.
The mixture-fluid interface is smoother for the finer grid. The finer grid spacing also has a more
uniform particle distribution at the bottom of the vessel where high particle stress gradients form

as particles close pack. Both the calculated behavior and the sedimentation rate are the same for
both the fine and the coarse grid spacing.
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XIX. CONCLUDING REMARKS

A two-dimensional, incompressible MP-PIC method has been developed to obtain
accurate numerical simulations for a variety of fluid and particle flows. Rayleigh-Taylor and
sedimentation problems showed the two-dimensional MP-PIC method can calculate mixture
flows from dilute particles to close-pack particle beds. Fluidized bed problems showed the
MP-PIC method can calculate the highly dynamic mixing of sparse and dense particle flow.

All the examples presented in this study used the same modeling and the same
constituent relations, such as particle-fluid interface drag coefficient (see Equations 7-11).
The comparison of MP-PIC calculated data with experimental data for the variety of
problems was good, with none of the calculations being tuned to the problem being solved.

The one modeling exception was the need to use an explicit particle velocity in the
continuum interphase momentum transfer for batch sedimentation. Using the implicit
particle velocity produced instabilities which led to large non-physical circulating flows. The
stability of the MP-PIC method with the current physical modeling needs further
investigation.
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XXI1. APPENDIX

A. Momentum equation coefficients

The u-momentum equation is aproximated by linear algabraic equations with independent
variables u-velocity, pressure and particle volume fraction. The u-velocity at face node (i+1/2,j) is
given by equation (46)

( )n+1
cuCC ug i+1/2,j _Cui+1/2,j

n+l n+l n+l n+l
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The nodilization for the u-velocity is shown below.
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Coefficients on velocity arise from time rate of change of momentum, convection and interphase
drag. The coefficients on the u-velocity and its neighbors are
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“u = Ps +””ax(0’fi,j)+z = Eﬁyz):/)z’j P
? p

S(XP )i—l/z, J

86




m_ N T(x ) D
PP Pl P

¢, =D +max(0’_fi+l,j)+; (1+ D, At) (Xp )i +3/2,)
m N T(X ) D
Cupy = Divia,jarn +’"“x(0’f i+1/2,j—1/2)+§p: - Zl N DPPZ/)Z’J - S(XP)H-I/Z,j—l
m N T(X ) D
Cyy = D;, 10, 12 +max(0,—f i+1/2,j+l/2)+; - El n DPPZ/)ZJ - (Xp)iﬂ/z, j+

m N, T(x,), ., D,
C“tr= Z §

, (1 +D, At) (Xl’)i+3/2, j+
m, N,T(x,), D,
- ; (1 + D},Ai/)2 1 S(Xp )i—1/2,1'+1

m N T(x ) D
}: PPN P P
Cubr=

(1 +D, At) S(XP )i+3/2,j—1

p

mp NPT(XP)HVZJ D,
Cupy= z S

(1+D,a1) (X”)l‘-l’lf-l

p

€. =Dy +max(0,—- fi j) +D,,q 5 +max(0’fi+1, j)

U

+D 12 a0 + max((),—fi+1/2, j-172 ) *+Ds10 412 T max(O, Sz jun )

m N T(X ) D
PVira PEIPTNTP )0 P
=1

At (1+ D, S(X”)"m»f '

p

The max function specifies the maximum value of the two arguments. The At is the time interval,
N, is the number of particles in a parcel, m, is the mass of a particle in the parcel, and D, is the
drag coefficient for a particle in the parcel. The mass flux and diffusion coefficients for Cartesian
coordinates are
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where 0, is gas volume fraction, [, is gas viscosity and p, is the gas density. The cell center
velocities, # and v, in the flux terms are taken as the average of the adjacent face center velocities,
e.g.

(egug )ln j - (egug)l = 2 (egug)’+1/2'j

and similarly for other cell center velocities.
The pressure coefficients in Cartesian coordinates are
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The particle volume fraction is introduced in the u-momentum equation through the
interparticle stress in the interphase drag. The coefficients on particle volume fraction are
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The constant includes the gravitational term and transient old time term
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The constants Cy,, and C;, are given by equations 49a and 49b.
ip, 1p, y




B. Pressure equation coefficients

The pressure correction equation is formed by substituting velocities from the momentum
equations into the volume continuity equation. The velocity is u=u*+0u and the pressure is
p=p*+0p, where u* is the calculated velocity field using the estimated pressure p*. The true
pressure, p, is the sum of estimated pressure, p*, plus a correction pressure, 8p. The correction
velocity is du. Substituting velocities from the momentum equations into the gas continuity
equation, using a fixed gas volume fraction, and neglecting neighbor correction-velocities, the

pressure equation (50) is

Ape. i jSPi,j ta,, g 8Pi—1,j ta,. i jSPm,j +a,., i jspi,j—l tap, ; jSPi,j+1
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The err;; results from using u* in solving of the continuity equation. The pressure equation
coefficients are
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where ij is the area normal to the u-velocity and A, is the area normal to the v-velocity.

Coefficients a, and a, are from the algebraic momentum equations given by equations (46) and
(47). Volume fractions are intermediate values at cell faces, where Gg’x corresponds to the u-
velocity, staggered grid, and §g’y corresponds to the v-velocity, staggered grid.
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The continuum continuity equation contains the rate of change of fluid volume fraction. The
new-time volume fraction can be implicitly included through iterations, where the particle volume
fraction is calculated while holding the other implicit variables fixed.

The particle volume fraction also can be directly included in the pressure equation through
the continuity equation time dependent term. The true volume fraction is 0,=0,*+060,, where 6,*
is the calculated volume fraction calculated using p* and u*, and 66, is the correction value. The
particle volume fraction is calculated from equation (57) using p* and u*, and in symbolic form, is

5,0 Sars Sates Saen,

Neighbors Neighbors Neighbors

The true volume fraction is

n+l
+1 _ n+l n+l1
ep:j —Bpi,j+ ZAGP + 23“ + ZCp + Dy .
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Subtracting the true and calculated volume fractions and neglecting neighbor correction volume
fraction terms gives the correction volume fraction which depends on du and Jp,

%, = D Bdu+ D Cop.

Neighbors Neighbors
The rate of change of the continuum volume fraction is

6, 9,
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The continuum continuity equation time dependent term is
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At

is the same term used when an iteration loop is employed to implicitly couple variables. The

(vee,)
remainder, —Ki_i is expressed in terms of du and dp, and these terms are added to the du and

dp terms from convection. The algebraic pressure equation is the same as given above with
coefficients
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The aq, he and gg coefficients are from the particle volume fraction equation (57)
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C. Particle volume fraction equation coefficients
The particle volume fraction equation is aproximated by linear algebraic equations with
independent variables u-velocity, v-velocity and pressure. The particle volume fraction at cell-
center node (i+1/2,j) is given by equation (57):
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The nodilization is shown below.
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The coefficients on the (i,j) gas u-velocity are
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The VS, represents the x-component of the gradient. The coefficients on the (i,j) gas v-velocity

are
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The v, represents the y-component of the gradient:
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