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Target: A Catalyst-Infiltrated Cathode

A porous MIEC backbone with a thin-film coating of 
catalytically active materials for oxygen reduction

• Surface           
High catalytic activity

• Backbone            
Fast transport of ionic    
and electronic species
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Project Objectives
• To fabricate and test catalyst-infiltrated LSCF 

cathodes for better performance and stability

• To characterize structure, composition, and 
morphology of surface and interfaces

• To develop models for data interpretation and for 
gaining insights into rational design of better 
electrode materials or microstructures

• To validate theories & models w/experiments

• To fabricate and test improvements in commercial    
cells
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Part 1

Optimization of 
the Infiltration Process
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Precursors for LSM Sol  Preparation

(La0.8Sr0.2)MnO3-δ

La(CH3COO)3∙xH2O
La(NO3)3∙6H2O

Sr(CH3COO)2
Sr(NO3)2

Mn(CH3COO)2∙4H2O
Mn(NO3)3∙xH2O

‐ For most of lanthanide and transition metal, metal alkoxide is not 
stable or is very expansive due to their high reactivity

‐ Acetate and nitrate are relatively cheap and stable
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Surface Tension (mN/m, at RT)

Ethanol 22.3

i-Propanol 21.7

Acetone 23.7

2-methoxyethanol 30.8
Acetic acid 27.6
Ethylene glycol 47.3

Water 72.0

• Water is a strong solvent for most kinds of metal nitrate and 
acetate precursors due to its high polarity

• Water-based sol has poor wettability due to high surface 
tension

• Water-based sol has hard-to-control gelation rate (easy film 
cracking) 

Solvents for LSM Sol Preparation
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Spin Coating of LSM Sol on dense substrates

• For fundamental study of surface & interface of thin films
• Thickness can be controlled by rotation RPM,  independent of 

the amount of sol dropped

Sol

Thin Film
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Wetting Characteristics of LSM Sol on LSCF

100μm

100μm

Spin‐coating on slide glass

Water-based
LSM solution

Water-free
LSM solution
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0.02 M

100μm 100μm 100μm

100μm 100μm

No cracks were observed

LSM Spin-coated on Silicon Wafer

0.1 M 0.1M, 5 coatings

0.3 M 0.3 M, 3 coatings
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Thickness Measurement by SEM

0.3 M, 1 coating
Thickness : ~60nm

0.3 M, 3 coatings
Thickness : ~180nm

0.1 M, 5 coatings
Thickness : ~100nm

200nm

200nm 200nm
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Coating 
Condition
(3000RPM)

Thickness

0.02M <5nm

0.1M ~20nm

0.1M x 5 times ~100 nm*

0.3M ~60nm*

0.3M x 3 times ~180nm*

XRD Phase Analysis of LSM Films (on Si wafer)

*measured from SEM microstructures

Annealed at 800oC for 1h
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LSM film on dense LSCF (low magnification, x5k)

1 μm 1 μm

1 μm 1 μm

Blank LSCF LSM 0.02M (<5nm)

LSM 0.1M (~20nm) LSM 0.3M (~60nm)
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LSM film on dense LSCF (high magnification, x50k)

Blank LSCF LSM 0.02M (<5nm)

LSM 0.1M (~20nm) LSM 0.3M (~60nm)

200nm 200nm

200nm 200nm
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Infiltration of LSM into porous LSCF backbones

• For real application of a catalyst coating on porous 
cathodes

• Thickness can be controlled by concentration and 
amount of the sol

Sol
Infiltration

Thin Film
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LSM-infiltrated LSCF (high magnification, x50k)

200nm

Blank LSCF LSM 0.05M (~2nm)

LSM 0.1M (~4nm) LSM 0.3M (~10nm)

200nm

200nm 200nm
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Part 2

Performance of Cells with
Catalyst-Infiltrated LSCF Cathodes
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Stability of LSCF with and without LSM infiltration
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Performance of LCC-Infiltrated LSCF
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Dependence on DC Polarization

• Blank LSCF has lower 
Rp at OCV

• But the Rp for LSM-
infiltrated LSCF              
diminishes quickly with 
the magnitude of          
cathodic polarization

• the Rp for LSM-coated 
LSCF is less sensitive     
to pO2.
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Part 3

Continuum modelling and 
simulation
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Modeling Activities
• Simulation of

– Mass transport/defect chemistry
– Charge transport/sheet resistance
– Interfacial/surface kinetics

• Conformal to material geometry
• Application to thin film test cells

– Refine
– Calibrate with experiments
– Extend to porous structures
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Recent Progress
• Designed test cells for more accurate 

electrochemical measurements;

• Analyzed data from LSM and LSCF thin films 
and LSM-coated LSCF cathodes using 
refined micro-kinetic models;

• Gained critical insights into the mechanisms 
for observed performance enhancement by 
an LSM coating on LSCF cathodes.
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Hypotheses for LSM-Enhancement
• LSM promotes O2 adsorption through the 

more-active Mn-site on surface;

• LSM coating is more strongly activated under 
a cathodic polarization;

• Fast grain boundary diffusion and large 
vacancy concentration under polarization 
mitigate the limited ionic transport through 
LSM film;

• LSM coating stabilizes the surface of LSCF 
and prevents it from degrading.
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• Mn in LSM promotes stronger O2 adsorption than either 
Fe or Co, as predicted by DFT simulations. 

• Blank LSCF film polarization resistance is much more 
sensitive to pO2 than is that of LSM-coated  films, 
reflecting some limitation by adsorption.

1. Mn-Site Promotes O2 Adsorption

O2 adsorption energies 
associated with B-cations
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• cv increased by a larger relative amount in LSM than in       
LSCF as pO2 decreases or under cathodic polarization;

• An LSM surface’s Rp decreases faster than blank LSCF      
due to strong relative vacancy infusion;

• Thin LSM layer mitigates transport limitations.

LSCF LSM

2. Surface ORR Activity is Linked to Bulk Defect Chemistry

oxygen vac.

holes
electrons

cation vac.

holes

electrons

oxygen vac.
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• The trend toward stronger activation is qualitatively matched 
when the ORR is proportional to the bulk cv, determined by    
the effective cathodic polarization.

• LSM-coated LSCF films have larger Rp at OCV, but Rp
decreases faster than blank LSCF as η becomes more 
cathodic, ending up lower and indicating stronger activation.

LSCF

LSM

Activation Under Cathodic Polarization

Assuming current proportional to ox. vac. concentration
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Rp & C of LSCF Film under Polarization
• RP and effective low-frequency capacitance, C, of a LSCF film 

as a function of apparent cathodic polarization (C obtained by using a 
parallel RC circuit to fit the low-frequency part of spectrum, Rp is from the real-axis 
intercepts, not the fitted value of R).

• Ideal C as a function of cathodic polarization (Value simulated 
using 1D vacancy diffusion in film with blocking air surface boundary 
condition).
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RΩ & σ of LSCF Film under Polarization
• Decreasing film σ could be expected during polarization
• Sheet resistance may play some important role in the 

apparent Rp and capacitance
• RΩ that increases faster for the blank LSCF cell may 

indicate that there is degradation in the LSCF taking 
place which the LSM layer blocks
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3. Large Bulk Pathways in LSM Films
• The GBs could act as a short-circuit pathway for vacancy 

transport from LSCF to LSM surface; 18O2 oxygen tracer diffusivity 
can be ~1000 times larger along the GBs than expected for bulk 
diffusion, especially at lower temperatures (source: DeSouza & Kilner)

SEM micrograph of grain 
boundaries in an LSM film 
deposited onto polycrystalline 
YSZ (Source: E. Koep PhD thesis)

E. Koep PhD thesis

Schematic of short-circuit diffusion pathways in an LSM thin film

• The dramatically increased cv in LSM 
under polarization and Δcv across 
LSM/LSCF interface may enhance 
vacancy transport

LSCF
LSM

YSZ

LSM

TPB
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4. LSM Coating Stabilizes LSCF Surface

• LSM coating is largely stable on LSCF
– no appreciable change in thickness
– Mn confined within the LSM coating although small          

amounts of Co and Fe are present in LSM 

• LSM inhibits surface Sr-enrichment, preventing 
surface properties from degradation
– Microanalysis confirms that there was no Sr-enriched 

phases on the surface  of LSM-coated LSCF.
– Raman spectroscopy showed shift in main peak for blank 

LSCF film, reflecting possible surface Sr2+ enrichment;  
while no corresponding shift in LSM coated LSCF.
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Part 4

Microanalysis of 
Structure, Composition, & Morphology  

of Surfaces and Interfaces
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As-prepared LSM film on an LSCF Pellet

• An LSM film derived from a sol-gel process             
(as-prepared: annealed at 900ºC/1 h?)

• LSM film thickness: ~40 to 50 nm

• LSM film stoichiometry: La0.8Sr0.2MnO3. 

LSM

LSCF

Surface
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The Surface and Interior of the LSM Film

• Both the surface (left) and the interior (right)  
display perovskite structure.

222g

110g

LSM

[112]

(a) (b)
LSM
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The LSM / LSCF Interface

222g

110gLSM
[112]

(b)

116g

012g

LSCF

[821]

(d)

(c)
LSM

LSCF

• Single crystalline throughout LSM thickness

• LSM epitaxial to the LSCF substrate

• Strain-field ~10 nm along interface, nonetheless
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Profile across the LSM Layer

• The random 
variations in the 
spectra represent the 
error or noise of the 
EDS measurements.

• Elemental 
distributions in each 
layer are as 
expected.

20 nm

Solgel LSM LSCF
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LSM film on LSCF after Annealing: 850°C/900h

LSM 48 nm

LSCF

10 nm
50 nm

(a) (b)

3.27 nm-1

(c)

• No noticeable change in LSM thickness or other 
visible characteristics. 

• SAED indicates that the top ~80% (~40 nm) of the 
LSM film became amorphous after the annealing.

• The bottom ~20% (~10 nm) remained crystalline and 
appears to be coherent with the LSCF substrate.
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Lattice Image of LSM / LSCF Interface

LSM

LSCF

(006)

(110)
1 10⎡ ⎤⎣ ⎦

(022)

(200)
0 11⎡ ⎤⎣ ⎦

(d) (e)

(f)

• Near the interface, LSM epitaxial w.r.t. LSCF

• Both LSM and LSCF retained perovskite structures
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Profile across LSM Layer

Z-contrast

LSM LSCF

• Mn remains within 
LSM; no detectable Mn
in LSCF.

• LSM is stable on LSCF.

• No Sr enrichment near 
LSM surface or                 
LSM/LSCF interfaces.

• Co diffused into LSM
layer,  ~2- 4 at.%.
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Effect of Inter-diffusion
• Interdiffusion during operation 

likely brings the properties of 
the two layers closer together

• Space-charge is also probably 
important

• The defect chemistry is likely a 
hybrid of the two materials
– More oxygen vacancies than LSM, 

fewer than LSCF
• Higher Rp at OCV than pure 

LSM layer
• Stronger activation under 

polarization than blank LSCF
– Stronger adsorption than LSCF 

due to presence of Mn

a)

b)

c)

LSM

LSCF

Schematic illustrating interdiffusion
between the LSM layer and LSCF:    
a) as-deposited, b) during operation, 
c) after a long time.

LSM(CF)

LSM(CF)
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2 nm

23 nm g018
g110

[881]

Bulk of LSCF Grain

LSCF 
Grain

[881]

50 nm

(a) (b) (c)

900 hours

750C, 0.8V

• An LSCF grain in a porous LSCF cathode infiltrated with LSM, 
operated at 750ºC for 900 h

• The LSCF grain size is ~0.3×0.3 μm

• The LSCF grain retains perovskite structure.

• The projected thickness of the surface layer: 2–23nm 

An LSCF Grain in a porous LSM/LSCF
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g018

g110

[881]

2 nm

16 nm
LSCF 
Grain

3.25 nm-1

(d) (e) (f)

• LSM / LSCF interface well-defined

• While the LSCF grain is crystalline, the LSM coating 
is amorphous (it may facilitate ionic conduction).

The LSM/LSCF Interface



Theory, Investigation, and Stability of Cathodes 

Profile across Exposed Surface Layer

• Sum of cation atomic percents normalized to 40%
• Surface layer is LSCFM (La, Sr, Co, Fe & Mn)

• Mn retained in the surface layer
• From LSCF to LSM

Slight increase of Co atomic percentage
Decrease of Fe atomic percentage

(a) (b)

• In LSCFM

~ 3 % Co & ~ 3 % Mn
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Profile across the Entire Grain

• Similar to previous profile

• ~10 % Mn in the top layer, witch contains La, Sr, Mn, Co, and Fe

• The LSCF grain is completely coated with a thin layer of LSM

• LSM may diffuse along the grain boundaries of LSCF

(a) (b)



Theory, Investigation, and Stability of Cathodes 

Summary for Microanalyses
• LSM coatings are stable on LSCF: Mn is 

retained in the top layer and no appreciable 
thickness change after annealing;

• While LSCF remains crystalline, the top layer 
of LSM became amorphous and doped with 
some Co and Fe;

• Estimated LSM(CF) thickness: 2–23 nm;

• Mn presence in the surface reaches up to 
about 10 at.%; No Sr-enriched phases 
observed on the surface of LSM-coated LSCF.
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Accomplishments to date
Developed processes for fabrication of anode-
supported and symmetrical cells with porous LSCF 
electrodes with controlled microstructures;

Optimized infiltration and sputtering for preparation 
of thin films/coatings of cathode/catalyst materials;;

Demonstrated that the performance and stability of 
LSCF-based cathodes can be improved by infiltration 
of LSM, SDC, and LCC;

Developed continuum models for design of test cells, 
prediction of performance, and determination of 
some key properties of cathode materials;
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Accomplishments to date
Characterized the local structure, composition, and 
morphology of surfaces and interfaces in LSM-
infiltrated LSCF cathodes;

Confirmed the absence of surface oxides (Sr/La) or Sr-
enriched phases on LSM-infiltrated LSCF surface under 
operating conditions, which may be the origin of 
performance degradation;

Gained critical insights into the mechanisms for 
observed performance enhancement by an LSM 
coating on LSCF cathodes: LSM promotes O2
adsorption, activated more strongly by cathodic
polarization, and stabilizes the surface of LSCF.
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Future Work
• To perfect the infiltration processes for control of 

thickness and coverage of catalyst coatings in larger 
cells;

• To understand the evolution of morphology, structure, 
and composition of surface & LSM/LSCF interfaces 
under different operating conditions;

• To correlate the microscopic features of catalysts 
coatings with cell performance & stability;

• Validate and perfect continuum models to gain 
insights for design of more efficient cathodes;

• Demonstrate the benefits of infiltration in commercial 
cells.
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