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• EOR: Generic term given to any tertiary means of increasing crude recovery rates 
(e.g. with CO₂) after primary and secondary (e.g. water flood) means are 
exhausted 

• Here it means flooding a reservoir with compressed CO₂ to increase reservoir 
pressure, decrease crude viscosity, etc. 
 
 
 
 
 
 

• Undertook this bottom-up characterization to determine how the environmental 
footprint of EOR compared to other crude extraction methods, and assess 
potential for technology improvement to reduce that footprint 
– Representative of U.S. tertiary extraction from formations similar to the Permian 

Basin in 2010-2011 
– Only GHGs presented here: CAPs, HAPs, Water, etc. included in inventory 
– Primary FU: 1 kg crude oil extracted; Alternate FU: 1 kg CO₂ sequestered 

CO₂-Enhanced Oil Recovery (EOR) is a Small 
Part of a Much Larger Life Cycle 

1 2 
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• Carbon steel CO₂ pipelines use electrically-powered, water-cooled, multistage 
compressors provide initial pipeline pressure (2,200 psi) 

– Fugitive emissions of CO₂ escape during compressor operation 

– For long distances, boost pumps maintain pressure above critical value of 1,100 psi 

Detailed Gate-to-Gate Model Built for CO₂ Transport 
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Unit Processes 
• Pipeline Construction 

– Pipeline sizing calculations are consistent with NETL’s 
quality assurance guidelines for CO₂ transport, allowing 
parameterization of pipeline diameter as a function of 
flow rate and distance 

– API 5L pipe schedule is representative of CO₂ pipelines 
and allows calculation of pipeline mass per unit length 

– Inlet and outlet pressures are fixed at 2,200 and 1,200 psi 
– Temperature is fixed at 79° F 
– Adjustment factors are used to account for valve and 

compressor weights and pipeline tortuosity 
• Compression 

– Compression equations are used to calculate power 
demand 

– CO₂ emissions escape through compressor seals 
• Pipeline Operation 

– CO₂ emission factors are parameterized 
– Total CO₂ emissions are a function of pipeline distance 

• Boost Pressurization 
– Necessary when pipeline length is too long to maintain 

pressure and flow rate 
– Based on same data used for compression at CO₂ 

capture site 
– Electrically powered 
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• Low and high values for some parameters account for variability exhibited by data 
sources (e.g., emission factors for fugitive CO₂) 

• Some parameters are used to control scenarios (e.g., electricity source, and study 
period) 

• Some parameters are used to test result sensitivity when reliable data are not 
available (e.g., pipeline tortuosity, valve weight, and power scalers) 

Parameterization Included in Gate-to-Gate CO₂ Transport Model 

Low Expected High Description 

Compression 

Power scaler for CO₂ compressor 1 1 1 Scaler to change the electricity demand of the compressor for sens. analysis 

Compressor fugitive CO₂ Emission Factor (kg/day) 19.1 63.6 318 Emission factor for CO₂ released to air from compressors 

Electricity source switch 1 1 1 0 = electricity from a connected power plant; 1 = electricity from grid 

Electricity grid U.S. Mix ERCOT GTSC ERCOT (Electric Reliability Council of Texas); GTSC (Gas Turbine Simple Cycle) 

Pipeline Construction 

Pipeline distance (mi.) 50 250 550 CO₂ pipeline distance 

Pipeline tortuosity 0.010 0.050 0.100 Pipeline tortuosity factor 

Valve weight 0.050 0.050 0.050 Additional pipeline weight due to valves 

Pipeline Operation 

CO₂ flow rate (tonne/day) 2,500 10,000 25,000 Flow rate of CO₂ through compressor 

Emission factor for fugitive CO₂ (kg/mi.-yr.) 1,058 10,579 105,792 Fraction of CO₂ lost during pipeline operation 

Study period (yrs.) 30 30 30 Study period in years 

Pressure Boosting 

Power scaler for CO₂ boost pump 1 1 1 Scaler to change the electricity demand of CO₂ booster pump 

Emission factor for fugitive CO₂ (kg/day) 54.0 180 900 Emission factor for CO₂ released to air from CO₂ booster pump 
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Gate-to-Gate Model of CO₂-EOR 
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• Multistep process with injection and 
production/recovery wells; bulk 
gas/liquid separation; brine water 
handling; liquid storage; and multiple 
gas/gas separation methods; associated 
venting, flaring; gas combustion for 
process heat 

• Inputs to EOR model include CO₂ and 
natural gas delivered by pipelines and 
electricity delivered via electricity grid 

• Outputs include crude oil and NGLs 

• Excess brine water produced is injected 
underground for disposal 
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EOR Model Processes & Parameters 
Property (Units) Operating Conditions 
Crude Recovery Ratio  
(bbl per tonne CO₂ sequestered) 

Low 
(4.35 bbl/tonne CO₂) 

Expected 
(3 bbl/tonne CO₂) 

High 
(2 bbl/tonne CO₂) 

CO₂ Production Rate (kg/kg crude product) 4.17 6.04 9.06 
Hydrocarbon Gas Production Rate 
 (kg/kg crude product) 0.143 0.21 0.310 

Brine Production Rate (kg/kg crude product) 13.0 18.9 28.3 
Brine Injection Rate (kg/kg crude product) 12.1 17.5 26.2 
CO₂ Sequestration Rate (kg/kg crude product) 1.74 2.52 3.78 
CO₂ Injections Rate (kg/kg crude product) 5.90 8.56 12.8 
Makeup CO₂ Flow Rate (tonne/day) 7.70 11.2 16.7 
Recycled CO₂ Flow Rate (tonne/day) 18.5 26.8 40.1 

CO₂ Injection Pressure Low 
(1,400 psig) 

Expected  
(1,800 psig) 

High  
(2,200 psig) 

Compressor Power Factor (MW/tonne CO₂) 2.70E-03 2.70E-03 2.70E-03 
Pump Power Factor (MW/tonne CO₂) 5.57E-05 1.23E-04 1.91E-04 

Electricity Grid Low 
(US Mix) 

Expected 
(ERCOT Mix) 

High 
(GTSC) 

Coal 45.9% 33.0% 0.0% 
Geothermal 0.4% 0.0% 0.0% 
GTSC (Natural Gas) 0.0% 0.0% 100.0% 
Hydro 7.3% 0.2% 0.0% 
Natural Gas Fleet 22.7% 47.9% 0.0% 
Nuclear 20.4% 12.3% 0.0% 
Petroleum 0.9% 1.1% 0.0% 
Solar 0.0% 0.0% 0.0% 
Wind 2.4% 5.5% 0.0% 
Leakage from Sequestration Low Expected High 
Formation leakage of sequestered CO₂ 
 (over 100 years) 0.0% 0.5% 1.0% 

Injection & Recovery 
– CO₂ is an effective fluid for EOR as it is 

miscible in oil 
– Injection of CO₂ is often alternated with 

injection of brine, known as a water 
alternating gas (WAG) tertiary injection 
scheme 

– Brine injection prevents undesired channeling 
of CO₂ 

– During life of well, CO₂ and brine are both 
injected and produced 

– Formation sequesters some fraction of 
injected CO₂, but is a net producer of brine 

– Brine is usually sent to nearby EOR sites for 
further use.  

Bulk Separation & Storage 
– EOR produces a mix of crude oil, brine 

water, and gases 
– These three products must be separated to 

produce marketable crude, brine water that 
can be re-injected, and gases that can be 
sent to further processing 

Gas Separation 
– Gas separation is necessary for EOR 

operations because it recovers CO₂ that can 
be reinjected in EOR flood and separates 
hydrocarbon streams that can be sold or 
used as plant fuel 

– Four kinds of gas separation considered in 
this analysis: fractionation, refrigeration, 
Ryan-Holmes, and membrane 
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• Refrigeration and Fractionation  
– Chills feed gas stream to allow separation of CO₂ 

from C2H6 and higher HCs 
– Hydrocarbons separated by a series of distillation 

columns: produces 3 saleable streams: propane, 
butane, and pentane plus higher hydrocarbons 

– Ethane recombined with CO₂-rich stream & sent to 
compressor for reinjection 

– Can be configured to bypass distillation columns, 
reducing energy consumption & producing mixed 
stream of NGLs 

• Ryan-Holmes  
– Refrigerated vessel separates CO₂, light HCs, and 

NGLs, a de-methanizer recovers CH₄ to use as plant 
fuel, and a gas/gas separation column separates light 
& heavy HCs 

– Portion of recovered HCs from refrigerated vessel are 
used to break azeotrope in gas separation column 

– Ryan-Holmes can separate HCs into high purity 
streams with higher market values 

• Membrane   
– Separates 2 types of gases based on differences in 

permeation rates through a non-porous, semi-
permeable membrane (selectivity of a membrane is 
ratio of permeabilities of two gases) 

– Membranes used at EOR gas separation plants have 
a CO₂ to CH₄ selectivity of 10 to 20 

– Compression of gas stream to 500 psi, dehydration, 
& chilling are required before gas stream is fed to 
membrane separation unit 

Gas Separation Recovers CO₂ from Other Gases 
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Property (Units) Fractionation Refrigeration Ryan-Holmes Membrane 
Gas Processing Utility Requirements 
Electricity (MWh/kg gas) 1.38E-05 1.38E-05 6.28E-05 2.61E-05 
Natural Gas (kg natural gas/kg EOR gas) 1.91E-06 1.45E-06  n/a 6.64E-02 
EOR Product Energy Content 
Crude (MJ/kg) 42.1 
Natural Gas Liquids (MJ/kg) N/A 48.8 
Butane (MJ/kg) 50.3 N/A 
Pentane (MJ/kg) 48.6 N/A 
Propane (MJ/kg) 50.2 N/A 
EOR Co-Product Rates 
Natural Gas Liquids (kg/kg crude produced) (L/EV/H) N/A 0.0477 / 0.0692 / 0.1038 0.1111 / 0.1611 / 0.2417 0.1238 / 0.1795 / 0.2694 
Butane (kg/kg crude produced) (L/EV/H) 0.0153 / 0.0222 / 0.0333 N/A N/A N/A 
Propane (kg/kg crude produced) (L/EV/H) 0.0056 / 0.0082 / 0.0123 N/A N/A N/A 
Naphtha (kg/kg crude produced) ((L/EV/H) 0.0268 / 0.0388 / 0.0582 N/A N/A N/A 
EOR Well Operations 
Crude artificial lift pump electricity (kWh/kg crude produced) 1.18E-01 
Brine injection pump electricity (kWh/kg brine injected) 7.87E-04 
Crude produced over study period (barrels) 302,000 
Study period (years) 30 
Brine disposal pump electricity (kWh/kg brine) 4.30E-04 
Oil, Gas, Water Separation Operations 
VOC 1.24E-03 
Flare rate (%) 95% 
Land Use 
Transformed land area for EOR site (m2) 58,700 
Portion of original land area that was agriculture (%) 0% 
CO₂ Compressor 
Emission factor for CO₂ released to air [kg/(MW-day)]  63.6 

Gas Separation Process Parameterization  
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• Evaluate Physical Allocation Methods: Energy, Volume, Mass 
– Crude and other hydrocarbons are energy products, but NGLs have 

significant non-energy uses, such as in plastics 
– Volume is not conserved in the system as the products go through 

significant pressure and temperature changes 
– Each product can be expressed in terms of mass 
 

• System Expansion (Displacement) 
– Boundaries of system are expanded until crude is only product exiting 

system (this requires assumptions about fate of co-products) 
– For example, NGLs and other hydrocarbons displace conventional sources 

of liquefied petroleum gas from refineries 
– Generally the co-products are a small portion of the product slate, so the 

credits received for displacement are small; answers generally similar to 
mass allocation 
 

 

Crude is Primary Product: Co-Product Management 
Needed for Others 
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Gate-to-Gate Results for CO₂ Transport 

• Electricity used for 
compression accounts 
for 97% of GHG 
emissions, with 
uncertainty driven by 
grid profile choice (U.S. 
Mix, ERCOT, or GTSC) 
 

• Pressure boosting is 
not always necessary 
– Not used for expected 

case of CO₂ flow rate 
of 10,000 tonnes/day 
& distance of 250 
miles 

– Used for high case of 
CO₂ flow rate of 
25,000 tonnes/day 
and distance of 550 
miles 
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GHG Sensitivity for CO₂ Transport 

• Compression is energy 
intensive, so GHG 
results are especially 
sensitive to electricity 
demand for pipeline 
compressors 
 

• A 100% increase in 
pipeline distance 
results in a 3.4% 
increase in gate-to-
gate GHG emissions 
 

• Inverse relationships 
include CO₂ flow rate 
and study period – as 
these parameters 
increase, the total 
burdens decrease per 
unit of CO₂ transported 
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Gate-to-Gate GHG Results for Crude Extracted 

• Differences among scenarios 
come from differences in 
emissions attributed to gas 
processing 

• Increased recovery comes at 
expense of additional 
processing energy which is 
demonstrated by increased 
GHG intensity associated 
with gas processing for Ryan-
Holmes and membrane 

• Error bars are driven 
primarily by crude recovery 
rates (low, current and 
advanced cases) 
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Gate-to-Gate Detailed Results for Crude Extracted 
(Fractionation Scenario) 

• Emissions associated with 
electricity for CO₂ injection 
compressor, crude oil artificial 
lift pump, and gas processing 
compose majority of gate-to-
gate GHG emissions for EOR 
with fractionation gas 
processing 

• Other significant contributors 
include venting and flaring 
activities during oil, gas, and 
water separation, as well as 
natural gas combustion to 
facilitate phase separation 

• Uncertainty in total gate-to-gate 
GHG emissions is driven by 
three main factors: crude 
recovery per tonne of CO₂ 
sequestered, required formation 
injection pressure, and makeup 
of electricity grid 
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Another Gas Separation Scenario: Membrane Gate-to-
Gate EOR Operations 

• Unlike other gas processing 
technologies, membrane 
system has a significant 
contribution to gate-to-gate 
GHG emissions from natural 
gas combustion at gas 
processing facility 

• Post-membrane amine 
polishing system requires 
natural gas to regenerate 
amine solvent used to capture 
CO₂ from membrane effluent 

• Uncertainty in total gate-to-
gate GHG emissions is driven 
by three main factors: crude 
recovery per tonne of CO₂ 
sequestered, required 
formation injection pressure, 
and makeup of electricity grid 
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Sensitivity of Results to Gate-to-Gate Parameters 
Fractionation 
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Gate-to-Gate EOR Summary Results 
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Cradle-to-Gate EOR Crude Extraction 
(Add Nat. Dome CO₂ & Transport) 
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Well-to-Tank Gasoline from EOR 
(Add Crude Transport, Refining, Gasoline Transport) 
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Well-to-Wheels Gasoline Combustion from EOR 
(Add Combustion) 
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Cradle-to-Gate Crude Extraction (No Transport) 
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• EOR is tertiary recovery 
(compared to secondary 
recovery for others) 

• Still a CO₂-intense way of 
recovering oil 

• Without delivery, domestic 
crudes don’t see the 
benefit of being closer to 
U.S. consumption 



22 

Well-to-Wheel Results for Gasoline by Crude Type 
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• Crude extraction 
makes a difference 
in the well-to-wheel 
results 

• CO₂-EOR is among 
the more GHG 
intense crudes, 
although it is 
tertiary recovery, 
where most of 
these results are 
secondary recover 
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• Some results are only gate-to-gate, or cradle-to-gate, so they 
should be used with care 

• EOR is tertiary recovery; comparison to crude from primary or 
secondary recovery is skewed 

• No well goes to tertiary recovery without undergoing primary 
and secondary recovery, but those portions of the well’s life 
cycle are not included here 

• Relatively small amounts of CO₂ are sequestered; technology 
improvement decreases that amount by increasing the 
performance of gas separation 

• A full analysis of the environmental benefit of EOR as a GHG 
reduction strategy requires consideration of the results in the 
context of anthropogenic CO₂ 

Recommendations and Conclusions 
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