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Technology Description: Nuclear
• Nuclear Power

– The nuclear supply chain has a 
long series of material 
processing and waste 

t t b t thmanagement steps, but the 
central activity of nuclear power 
is the splitting of atoms to 
produce smaller atoms and 
energy – a process known as gy p
nuclear fission.

– Most nuclear power plants use 
uranium fuel with high 
concentrations of U-235 
isotopeisotope. 

– U-235 is more fissile than other 
isotopes of uranium, which 
means it is easier to split and 
can sustain a chain reaction Beaver Valley Power Station

– The energy produced by 
nuclear fission is used to 
produce steam for a Rankine
power cycle similar to other 
thermoelectric power plants

Beaver Valley Power Station
Source: U.S. Nuclear Regulatory Commission
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thermoelectric power plants.



Technology Description: Nuclear 
Performance CharacteristicsPerformance Characteristics

• Analysis focuses on existing and Gen III+ nuclear power
– Nuclear capacity in the U.S. consists of 104 light water reactors, which are a 

combination of pressurized water reactors (PWRs) and boiling water reactors (BWRs),combination of pressurized water reactors (PWRs) and boiling water reactors (BWRs), 
located on a total of 65 different sites

– In a BWR, steam produced in the reactor vessel is fed directly to a turbine, condenser, 
and feedwater pump

– In a PWR, hot water from the reactor vessel is fed through a pressurized loop that 
passes through a heat exchanger that transfers heat to a secondary steam looppasses through a heat exchanger that transfers heat to a secondary steam loop. 
Steam from the secondary loop is used to drive the turbine, thus isolating water that 
comes into contact with the reactor core from water used for the steam cycle 

– No Gen III+ reactors are currently in operation in the U.S., but a small number are 
operating abroad. NETL’s LCA of Gen III+ is representative of proposed plants that 
have pending license applications with the NRC (Nuclear Regulatory Commission)have pending license applications with the NRC (Nuclear Regulatory Commission)

Parameter Value Source

Average Thermal Efficiency of Existing Reactors (%) 31.6 WNA, 2010a

Average Capacity Factor of the Existing Nuclear Reactor Fleet, 2009 (%) 90.6 EIA, 2010b

Average Annual Electric Output of a Single Reactor, 1969‐2009 (MWh/ year) 4.93E+06 EIA, 2010b

Uranium Fuel Input per Electricity Output (kg/MWh) 4.33E‐03 DOE 1983

Number of Operating Nuclear Reactors in 2009 104 EIA, 2010b

Number of Operating PWR Reactors in 2009 69 EIA 2010b
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Number of Operating PWR Reactors in 2009 69 EIA, 2010b

Number of Operating BWR Reactors in 2009 35 EIA, 2010b



Resource, Capacity, and Growth
Nuclear Annual Generation (TWh) Nuclear Generation Share (%)
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Source: EIA (2010)
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Resource, Capacity, and Growth
Metric 

Percent of DOE Sensitive

- ~70% of recoverable uranium reserves are in 
“non-sensitive” (low risk) countries

Nation Tonnes
Uranium

Percent of 
World Total

DOE Sensitive 
Country 

Australia 1,673,000 31% no

Kazakhstan 651,000 12% yes

Canada 485 000 9% no non sensitive  (low risk) countries 
- World uranium demand is 66,000 tonnes 

annually for a production capacity of 370 
GWe (IAEA, 2011)

- 80 year virgin supply of uranium at a

Canada 485,000 9% no

Russia 480,000 9% yes

South Africa 295,000 5% no

Namibia 284,000 5% no
- 80 year virgin supply of uranium at a 

recoverable cost of less than $130/kg U
- 40 year virgin supply of uranium at a 

recoverable cost of less than $130/kg If 
demand increases to IAEA 2030 forecasted 

Brazil 279,000 5% no

Niger 272,000 5% no

USA 207,000 4% no

China 171,000 3% yes

high of 807 GWe
- Doubling the price of uranium ore results in a 

10-15% increase in the cost of electricity

Jordan 112,000 2% no

Uzbekistan 111,000 2% yes

Ukraine 105,000 2% yes

India 80,000 2% yes

Source: DOE (2011a) WNA (2010b)

y

Mongolia 49,000 1% no

Other 150,000 3% n/a

World Total  5,404,000 100%
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Source:  DOE (2011a), WNA (2010b)



Resource, Capacity, and Growth

- U.S. nuclear capacity consists of 104 
light water reactors located on a total 
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Environmental Analysis of Nuclear
• Life Cycle Analysis (LCA) completed for Nuclear Power

• Model broken into life cycle stages:
– Stage 1: Raw Material Acquisition (RMA) accounts for the raw material acquisition and 

i i t f i f l Th fi t t i thi t i th t tiprocessing requirements for uranium fuel. The first step in this stage is the extraction 
of uranium ore from mines. Intermediate steps include the milling of ore to isolate 
yellow cake (U3O8), conversion of yellow cake to uranium hexafluoride (UF6), and 
enrichment of UF6 so it has a higher concentration of U-235, and the manufacturing of 
fuel assemblies
Stage 2: Raw Material Transport (RMT) accounts for the transportation requirements– Stage 2: Raw Material Transport (RMT) accounts for the transportation requirements 
of UO2 fuel assemblies from the fuel fabrication facility to the energy conversion 
facility. 

– Stage 3: Energy Conversion Facility (ECF) includes all construction, operation, and 
decommissioning activities at a 1,000 MW net nuclear power plant. This analysis 
models existing (Gen II/III) and Gen III+ reactor technologies The model also includesmodels existing (Gen II/III) and Gen III+ reactor technologies. The model also includes 
the option to include long-term waste management  and reprocessing of spent fuel. 
The output of this stage is electricity that is ready for transmission. 

– Stage 4: Transmission and Distribution – grid transmission and associated loss of 7%
– Stage 5: Electricity use by consumer – no losses or environmental burdens

• Model comprised of interconnected network of processes
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Environmental Analysis of Nuclear:
LCA Modeling StructureLCA Modeling Structure
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Environmental Analysis: GHG Results

Three important LCA GHG 
comparisons:
1 Existing vs Gen III+

Three important LCA GHG 
comparisons:
1 Existing vs Gen III+42.1 41 1
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Environmental Analysis: GHG Results
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Environmental Analysis: GHG Results

42.1 41 1
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Environmental Analysis: GHG Results
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Environmental Analysis: GHG Results 
Existing Nuclear PowerExisting Nuclear Power
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Environmental Analysis: 
Radionuclide Emissions to AirRadionuclide Emissions to Air 
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- Difference between radionuclide releases (measured in Becquerels) and biological radiation exposure 
(measured in mrem)

- Dose limit for general public exposure from nuclear power plants is 100 mrem per year exclusive of otherDose limit for general public exposure from nuclear power plants is 100 mrem per year exclusive of other 
sources (10 CFR 20.1301)

- Average value for nuclear power plants is 0.01 mrem/year
- Comparables (ANS, 2011):

Cosmic radiation in Pittsburgh: 26 mrem/year; Terrestrial radiation in Colorado: 63 mrem/year
F d (C 14 d K 40) 40 / Ai (R d ) 228 /
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Food (C-14 and K-40): 40 mrem/yr; Air (Radon): 228 mrem/year 
Chest x-ray: 10 mrem/procedure; Dental x-ray: 0.5 mrem/procedure



Environmental Analysis: Other Results
W U• Water Use

– Nuclear plants consume more water because of thermodynamic constraints 
relative to the fuel assembly which prevent high temperatures akin to fossil fuel 
systems (EPRI, 2007)y ( )

– While closed-loop cooling requires significantly less water withdrawal than once-
through, the consumption is almost a factor of five higher (NETL, 2011 )

• Land Use
G G G %– Gen III+ pathway land use GHG emissions are 85 % less than existing pathway 
(smaller plant footprint)

• Energy Return on Investment
– Values range from 0 43:1 (existing nuclear with default enrichment mix) to 0 47:1Values range from 0.43:1 (existing nuclear with default enrichment mix) to 0.47:1 

(Gen III+ with centrifuge enrichment)
• Other Air Emissions

– Dominated by gaseous diffusion operation and power plant construction
– Combustion emissions come from hard coal electricity provided to the diffusion 

enrichment plant as well as diesel combustion in the construction and 
decommissioning processes

– Gen III+ life cycle has lower air emissions than the existing plants

16

Gen III  life cycle has lower air emissions than the existing plants



Cost Analysis: Financial and Cost 
Parameters – New Gen III+ ReactorParameters New Gen III+ Reactor

Financial Parameter

Scenario A Scenario B Scenario C

Minimize Expected Maximize

COE COE COE

Debt Fraction (1 ‐ Equity) 0.71 0.58 0.44

Interest Rate (%) 5.3% 6.5% 7.8%

Debt Term (Years) 29 23 17

Plant Life (Years) 59 49 38

Depreciation Period (MACRS) 10 15 15

Tax Rate (%) 36% 39% 41%

IRROE (%)  12% 14% 16%

Operations Parameter Low Expected High

Net Plant Capacity (MWNet) 983 1400 1817Net Plant Capacity (MW Net) 983 1400 1817

Capacity Factor (%) 86.9% 90.6% 94.4%

Thermal Efficiency (%) 31.0% 33.4% 35.8%

Construction Period (Years) 4.2 5.6 7.1

Capital ($/kW) 3,269 4,267 5,264

Decommissioning Costs (% of TOC) 6% 9% 12%

Fixed O&M ($/kW/year) 57.0 69.1 81.2

Non‐fuel Variable O&M ($/kW/year) 0.80 1.00 1.30

Fuel Price ($/MMBtu) 0.36 0.61 0.86

17

Waste Fee ($/kWh) 0.0007 0.0012 0.0017
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- 7% fuel costs



Cost Analysis: LCC Results Sensitivity

- LCC financial and operations parameters 
varied one at a time, all others held 
constant at the expected value
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Barriers to Implementation
• Storage of spent nuclear fuel – Yucca MountainStorage of spent nuclear fuel Yucca Mountain

– The Nuclear Waste Policy Act (NWPA) directed the DOE to site, construct, and 
operate deep geologic repositories to “provide a reasonable assurance that the 
public and the environment will be adequately protected from the hazards” of 
high-level radioactive waste
Th NWPA li it d th it f th fi t it t 70 000 t i t f– The NWPA limited the capacity of the first repository to 70,000 metric tons of 
heavy metal

– In 2008, DOE submitted the license application to the NRC for authorization to 
construct the repository at Yucca Mountain (NRC, 2012) 

– In March 2010 DOE filed a motion with the NRC’s Atomic Safety and LicensingIn March 2010, DOE filed a motion with the NRC s Atomic Safety and Licensing 
Board seeking permission to withdraw its 2008 application

– In October 2010, the NRC began closure of its Yucca Mountain activities, and in 
2011 suspended the licensing proceeding (NRC, 2011b)

• Blue Ribbon Commission on America’s Nuclear Future
– The BRC was formed in early 2010 to “conduct a comprehensive review of 

policies for managing the back end of the nuclear fuel cycle, including all 
alternatives for the storage, processing, and disposal of civilian and defense 
used nuclear fuel and nuclear waste” (Obama 2010)used nuclear fuel and nuclear waste  (Obama, 2010)

– The BRC final report released in January 2012 included an estimate, prepared 
by EPRI, of current and projected amounts of spent nuclear fuel from commercial 
nuclear power plants

– The EPRI estimate was 65,000 metric tons uranium (MTU) in 2010, increasing to 
133 000 MTU b 2050 (BRC 2012)

20

133,000 MTU by 2050 (BRC, 2012)



Risks of Implementation
E i i F il• Engineering Failures

– Three significant events in history of commercial power are likely drivers for 
public resistance to technology: Three Mile Island (1979), Chernobyl (1986) and 
Fukushima (2011)

– U S and Japanese nuclear programs diverged in 1980s when U S stoppedU.S. and Japanese nuclear programs diverged in 1980s when U.S. stopped 
building new reactor technologies and focused on operational improvements and 
cost savings, while Japan continued to build and design new reactors

– Japan did not commit to all of the mandatory modifications that U.S. fleet 
incorporated during the 1980s

• Terrorist Attacks
– Following 9/11 terrorist attacks, NRC issued requirements for security upgrades 

at licensed facilities including active reactors (NRC, 2008)
In addition to physical infrastructure changes including barriers and vehicle– In addition to physical infrastructure changes including barriers and vehicle 
checks, facilities also focused on enhanced training of security forces and added 
new posts along with restrictions to site entry

• Release of Radioactive Material
– Annual exposures due to living in high altitude environments are responsible for 

higher radiation increases (over average U.S. annual) than the maximum 
regulated exposure from living near nuclear facilities (NRC, 2011a)

– The National Cancer Institute concluded in 1991 that no increased risk of death 
resulted in counties adjacent to nuclear facilities (Jablon Hrubec & Boice 1991)
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Expert Opinions
• Reactor Safety Post-Fukushima Event

– Acton and Hibbs of the Carnegie Endowment for International Peace completed a thorough 
review of the incident at Fukushima and have identified international best practices that may 
have limited or altogether prevented the accident (Acton & Hibbs, 2012)

– If the risk assessment conducted by authorities was performed in line with international bestIf the risk assessment conducted by authorities was performed in line with international best 
practices, it may have predicted the threat of a large-scale tsunami hitting the facility (Acton 
& Hibbs, 2012)

– Acton and Hibbs assert that if the facility implemented safety upgrades following the lessons 
learned from a flooding incident at a nuclear power plant in France a major accident could 
have been avoided (Acton & Hibbs, 2012)

• Small Modular Reactors (SMRs)
– Cost gap between SMRs and conventional large-scale nuclear reactors has narrowed as 

cost of new Gen III+ plants has escalated substantially
– Other advantages include efficiencies in fabrication and transportation and increasedOther advantages include efficiencies in fabrication and transportation and increased 

operation time between refueling
– SMRs are also being mentioned as a possible replacement for aging coal facilities (DOE, 

2011b); in this replacement scenario, SMRs may utilize some existing site infrastructure, 
which further reduces costs (Mowry, 2011)  

• Competiveness of Nuclear Power
– Cost of natural gas needs to be higher than $6/MMBtu for new nuclear power generation to 

be economically favorable (S&P, 2010)
– Estimated construction costs have been increasing at a rate of 15% per year (MIT, 2009); 

these high costs relative to other power production options have hindered several projects 
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