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Foreword

This preliminary report from the results of Task 1 is grouped into three sections:
I) anintroduction
I A) box-counting
i) adiscussion of the general procedure and advantages
i} resulis for the MWX fracture network
B) evidence from the literature that real fracture networks are fractal
II) adescription of the computer codes for generating simulated fracture networks.

I Introduction

Recovery from naturally fractured, tight-gas reservoirs is controlled by the fracture network.[1]
Reliable characterization of the actual fracture network in the reservoir is severely limited. The location
and orientation of fractures intersecting the barehole can be determined, but the length of these fractures
cannot be unambiguously determined. Fracture networks can be determined for outcrops, but there i.s/
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little reason to believe that the network in the rcservmr should be identical because of the differences i in

IR

stresses and hmay Seismic techniques do provide some large scale (resolution of tens or hundreds of

feet) mformauon about the fracture density and average fracture orientation, although there is some

controversy about interpretation of the multi-component surface seismic data, especially regarding which
layer is being probed.

At the very least, our assumption of fractal behavior is a good approximation to the real data for
the MWX site, and the assumption of fractal behavior enables us to produce, a real visual similarity to the
actual clustering found in the MWX fracture distribution in a very routine (i.e. easily programmable) x
fashion.

Furthermore, independent of the assumption of fractal behaviar, it is known that typical fractures
in the second set should begin and end at fractures of the first set.[2] This effect is commonly observed in
real fracture networks from outcrop studies, for example 92% of the secondary fractures in the MWX
ouicrop satisfy this criterion.[3] We have imposed this constraint upon our secondary fractures which
increases the visual similarity between our networks and the real network over simulated networks from
other fractal modeling schemes. [4]

I Introduction

LA Modeling the Fracture Network
Because of the lack of detailed information about the actual fracture network, modeling methods

must represent the porosity and permeability associated with the fracture network, as accurately as
possible with very little apriori information. Three rather different types of approaches have been used: i)




dual porosity simulations, ii)'stochastic' modeling of fracture networks, and iii) fractal modeling of
fracture networks. The dual porosity approach is a natural extension of the gridding schemes widely used
in describing reservoirs, however in assuming mesoscopic scale (tens or hundreds of feet) averages of
fracture porosities and permeabilities, they may be smoothing the very heterogeneities which control the
recovery, which may limit reliability for strongly anisotropic fracturing. That is, even if fractures are
located randomly throughout the grid-block so that an average porosity may be sensible, the conductivity
of similar fractures differ widely invalidating assumptions of an average permeability.

Stochastic models which assume a variety of probability distributions of fracture characteristics
have been used with some success in modeling fracture networks. [5), (6], [7] The advantage of these
stochastic models over the dual porosity simulations is that real fracture heterogeneities are included in
the modeling process. On the other hand these stochastic models need information about all features of
the actual fracture network to provide the most accurate modeling. In the highest level (most accurate)
model for each set of fractures with a given orientation, one needs to determine the probability distribution
of i) the location of independent fractures ii) the location of fracture clusters or swarms iii) locations of
fractures within clusters, iv) cluster lengths, v) fracture lengths, vi) fracture apertures, and vii)
fracture orientations. The less reliable the information determining these probability distributions; the
less reliable the fracture network. Reliable information about many aspects of the real fracture network is
impossible to determine; the assumption of self-similar fractal behavior (if valid) enables us to predict
features of one aspect of the distribution from other aspects of the distribution; i.e. i), ii), and iii) result
from the box-counting along the borehole which, in turn, predicts feares of the distributions for iv), v),
and vi) for self-similar fractal networks.

L B) Introduction - Advantages of Fractal Modeling

Aspects of fractal geometry have been applied to mimic the heterogeneity associated with
layering in real reservoirs for a number of years with some success. In these cases, the variation in ’?
permeability with height at the borehole was found to obey fractal statistics,[8] and the correlations ;
implicit in fractal geometries allowed them 10 interpolate between the known permeabilities at the
borehole in such a way that results from flow models agreed with analyses of production logs and tracer
breakthrough.[9] Examples in the open literature reporting the use of fractal geostatistics to treat
naturally fractured reservoirs are less common.[10], [4] If a set of natural fractures is described by a self-
similar fractal geometry, the self-similar, scale invariance of the fracture network implies relationships
among the number of Eractures and the vanoust fracture com:lauon or clustenng, fracture
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aperture, and fracture length. Therefore, if fracture networks obey a self-snmuar fractal geometry,
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barehole data locanng onemanonal sets of Eracmres will enable a determination of Lhe fractal mmenslon
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and lacunarity', Tlus along with relatively generic information about the typical aperture size and length
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of fractures,[1] will allow us to produce a self-similar fractal network. The clustering occurs naturally in
the fractal network because of the correlations inherent in fractal geometries. The fractal parts of the
aperture size and length distributions (even the fracture shape distributions) should be the same as the
fractal parts of the fracture location vs. scale distributions.

In the sections following this introduction( 1 ), we will II.A ) present ‘fractal' analysis of the
MWX site, using the box-counting procedure(11), {12} , [B) review available evidence testing the
fractal nature of fracture distributions and discuss the advantages of using data from our 'fractal' analysis
over data from a stochastic analysis [II) present an efficient algorithm for producing a self-similar
fracture network which mimics the real MWX outcrop fracture network.

I Fractal Analysis of the MWX Site, Outcrop Fracture

Before discussing our analysis of the MWX site (Fig. 1), it is important to understand the box-
counting procedure used in these tests as well as in our method for generating the fracture networks. As
discussed in the conclusion of this section (II), this box-counting procedure automatically reproduces the
random aspects of the distribution of fractures in addition to reproducing the clustering obvious in Fig. 1.

I1.A) i) An Example of the Box-counting Procedure

Fig. 2 shows fractures of one orientation intersecting a length of borebole. To determine the
fractal dimension as well as the range of size scales over which the distribution is fractal, one covers the
array of fractures by successively smaller and smaller rulers (one-dimensional 'boxes’), and then one
counts the number of boxes’ or rulers covering one or more fractures, If the distribution has a fractal
dimension Dfova a range of sizes, then

# of boxes containing fractures = A (size of boxes)D’ .

where the constant A is called the “lacunarity.” Specifically, if one covers the 24 fractures by a ruler of
length L , (shown at the bottom of Fig. 2) one ruler covers the fractures; with two ruler of length L/2
(near the bottom of Fig. 2) both cover fractures; with four rulers of length L/4 all 4 cover fractures, but
with 8 rulers of length L/8 only 6 cover fractures, This is continued down to 128 rulers of length L/128
as shown in Table 1.
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Fig. 1 Outcrop Fracture Network at MWX site,
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Fig. 2b The lower half of the figure shows the fractures in Fig. 1 with the scale rulers ‘covering’ the set

of fractures from a ruler of length L, proceeding upwards 0 rulers of length L/64 just below the fractures,

The top half shows the same set of ‘covering’ rulers of length L/128. The rulers are left-justified so that

the fractures at the right-end of the ruler are covered by the ruler.



Length of Rulers (ﬁ) Number of Rulers
8 | Covering Fractures (N)
L 1
2 2
L/ 4
L3 6
L6 8
132 13
LA 17
/128 24
L7256 24
L1024 24
Table 1

Since there are only 24 fractures, at scales smaller than L/128, there will only be 24 rulers covering
fractures. A log-log plot of the box-counting for Fig. 2 is shown below
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Fig.3 Fractal Plot for Fig. 2.



The fractal relationship is given by the solid line N = (2.12) A%, except at large and small scales for the
reasons that follow. At small A, (coarse scales L, L/2 and L/4), N equals the number of rulers (N = A)
because all the rulers cover fractures; in later sections, we refer to this as the initial covering. At very
large A (very fine scales L/256 and L/ 1024), only 24 rulers are covered because there are only 24
fractures and there is no more detail in the fracture paitern, so that the box-counting ‘cuts-off"or
‘saturates’ at 24, Therefore, for this fracture patter, the pattern is fractal between the initial covering
and cutoff regimes (over the range of scales A = 8 to 128) with a fractal dimension of 1.5 and a
lacunarity of 2.12, The ruler counting gives an exponent D PRt i.e. the 2d fractal dimension minus one.

Before we continue it should be pointed out that this fracture pattern was generated by our
algorithm to have a lacunarity of 2.12 and a fractal dimension of 0.5 over the range of scales from L/8 1o
L/128. The algorithm which generated this pattern is described and used in section II.

It is important to realize that if the distribution of fractures in Fig. 2 were completely random (i.e., \
if there were no clustering of fractures), the points from the box-counting would obey a linear relationship yd
(N = A) up to cutoff. That is, on the average, each box would contain one fracture up to the total number of

fractures (in this case N =24); at finer scales, the one fracture would randomly occupy one of the

smaller boxes. However, because of clustering groups of fractures are much closer together than average.
Therefore, when box-counting, the linear regime ends before N = N, ;; and one enters the ‘fractal’ or

clustering regime where some boxes are empty and others have several fractures much closer together than
average. The box-counting provides a routine procedure for characterizing (and, thus, for reproducing) this

clustering.

ILA ii) Box-counting Results for the MWX Network (.

First the primary set of ﬁacturd (Lhe horizontal fractures in Flg 1 were analyze¢ A series of
eight lines (boreholg) of length L (the length was 16 ¢m on a ﬁgure cnlargéd by 141%) were drawn
through the set of primary fractures, and the box-counting procedure was used on each of these boreholes.
The results for the number of boxes covering fractures vs. the scale A is shown in Fig. 4. The initial
covering regime persisted until scale 16. The cutoff regime began at scale 80. In- betwecn Lhe data is well

be noted that scales intermediate to the simple doubling rule, A = 2", (used in Figs. 2 & 3 and Table 1)
were used to provide more data in the fractal regime.

of horizontal lines of length L were drawn through the secondary fractures, the box counting was
performed and the values N(A) were averaged.
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Fig 4. For the primary (horizontal) fractures, the box-counting from the ‘boreholes’ on the MWX
outcrop (Fig. 1), shows the initial covering (the characteristic linear increase, N = A, up to the clustering

or fractal regime), the fractal regime, and the cutoff regime.



Fig. 5 shows the plotof N vs. A and shows that for these secondary fractures the initial covering regime
persists until scale 6 and that the cutoff regime begins at scil_e_:’iq In-between the number of boxes obey

= — R

the fractal power law N = 3.47 A>*®, indicating a fractal dimension D, = 134, Again, intermediate
oy ol L
scales were used in the fractal regime to provide more data in the fractal regime.
To determine the length distribution from the data provided by M. McKoy, we plotted the total
number of fractures with lengths greater than a given length L, N(L), vs. L. It should be noted that this
total number N(L) with lengths ¢ > L is the integral of the number density of fractures n(¢) with length ¢

integrated from ¢ = L up to the one fracture of maximum length ¢__: N (L) = L n(¢)de¢. This graph

of the data is shown in Fig. 6. It is convincingly fit by the characteristic exponential cutoff for the greatest
lengths (L>14), and by a fractal power law for the smallest lengths (4</<14). For a self-similar fractal

fracture network, the number density should be given by as a(¢) =7 t—D’ so that the total number should

. 1-D . . . . .
be given by N(¢) = [T:“D,‘j ¢ /. [11] Therefore, that data is consistent with a fractal dimension
D/ =1438.

This data does not decide unambiguously whether or not the clustering/fractal regime is
rigorously fractal. That is, this data does not unambiguously favor a strictly power law regime (i.e. fractal
behavior) between the linear, initial covering regime and cutoff. However, the power law assumption
used to draw the lines does represent a good fit to the box-counting data. Therefore, at worst, by assuming
that the intermediate regime is fractal, we may be providing merely good approximatdon to the data, If
the assumption of fractal clustering only provides a good approximation to the true clustering, our
simulated fracture networks will represent a good approximation to the actual fracture network; this is all
that is necessary.

On the other hand, it is encouraging that the power laws from the box counting and length

L3y 4 AT
distributions are all consistent with the same fractal dimension, D, = 1.4 + 01, t0 within a realistic

L

e

accuracy from the data fitting. This equality of fractal dimensions from all length measures is the
hallmark of self-similar fracture networks.

ILA iii) Programs for Box-counting of Borehole Fractures

A program to carry out the box-counting procedure and return the fractal dimension and
lacunarity has been‘ developed in order to process multiple sets of data from various boreholes. To test
these programs as well as the routines for simulating the fracture networks, numerous trial runs have been
performed to analyze the "barehole fractures” from simulated networks. For example, Fig. 7 shows the
results from the box counting program analysis of a simulated fracture set which was generaled assuming
a fracal dimension of :?.iand a lacunarity o_f? 2 12
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Fig. 5. For the secondary (vertical) fractures, the box-counting from the ‘boreholes' on the MWX outcrop
(Fig. 1), shows the inifal covering (the characteristic linear increase, N = A, up to the clustering or

fractal regime), the fractal regime, and the cutoff regime.
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L=4->14

L=14-> 96
N(L) vs. L (logarithmic)
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Fig. 6. The number of fractures N(L) with lengths greater than L plotted against L, This shows the
exponential cutoff for the larger lengths and the fractal regime for the smaller lengths.

11



«  Rulers Covered

box counting (68 fractures)
IOO | 4 l'll‘lTl[ ' ] llII”I T T YIITII[ T T 1T 7717y

a o

T 1 1T 1777

LOCAL. Sriaeruzd Nads -
A MEC AN G, PR S

10
s’lo‘)efractal region = 0.529958

lllnnll

b=2017
Initial Length = 450

7
— Sb‘gngwmr’t& jo(uTS K
EUEI SpAGIE | LEmentt g €1 ¢ T

i llllJJ_LI Il llllllll 1 1 Lllllll |

LA 1 L1}

1 10 100 1000 104
Delta

Fig. 7. Box counting results from a simulated borehole,
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The least squares analysis of the box-counting results yielded a fractal dimension of 1.52 + 0.015 and a
lacunarity of 2.02 + 0.121 indicating a consistency within the various aspects of the project.

The programs for the borehole analysis are presented in Appendix A. The driver program serves
the function of reading in data from a particular fracture set (section I in source code). The data was
assumed to consist of a single column of numbers giving the location of each fracture from an origin of
zero. The user is asked to input an initial ruler length which gives thé length of the borehole. Control is
then passed to the ‘box-count’ function (section II ). This box-count’ function is the heart of the program;
it returns the number of rulers being covered and the size of these rulers. When this data has been
obtained, the fractal regime is isolated from the initial covering and cutoff regimes in section III and is
sent to a least squares analysis function in section IV. The values sent to the least squares analysis
function are the log values of the original data from the fractal regime. The least squares function
determines the slope and y-intercept of the best straight line through all the points. The standard
deviations are also determined.

ILB Are Real Fracture Networks Fractal

There is evidence that real fracture networks are fractal both in outcrops where Barton and others
have found a fractal dimension of D)f =~ 1.55 (i.e. 1.50 < D < 1.6 for different fracture systems) [13] as

e Vst

well as from underground data in the Fanay-Augéres uranium mine [10] where they found a varying
fractal dimension. It seems possible that the variation in their fractal dimension may result from use of
too great a range of scales, As we saw for very large scales, all the rulers are covered so their finding a
'fractal dimension' of 1 at large scales is not surprising, Similarly, at very small scales one approaches a
limit where the number of ‘boxes’ covered equals the number of fractures so the ‘fractal dimension’
approaches 0; this may be an artifact of the neglect of small aperture fractures (micro-cracks which may
be significant in determining number at their 0.005 meter scale),

The length of the fractures has been found to be fractal, [14] and the shape of the fractures has
also been determined to be fractal[15], [16], [17]. This suggests that all features of the fractures may be
fractal: i) distributions of centers, ii) distributions of lengths, iii) distribution of widths, and iv)

shapes. The evidence that the shapes are fractal suggests that porosities and permeabilities may also obey
fractal statistics. If all geometrical aspects of the fracture distribution are fractal with the same fractal
dimension, the fracture distribution is self-similar. This may seem to be a very unusual occurrence, but in
fact many examples of development (or growth) which occur in random media (like the development of
fractures in stressed rock formations) have a self-similar geometry. The first level of our geostatistical
modeling will assume a self-similar fractal geometry for the fracture distribution. Higher levels of our

geostatistical modeling will use actual measurements to determine the fractal distribution of (e.g.) the
fracture widths.

13




Il A 2-d Fracture Generation Algorithm

In this section we describe the implementation and design of an algorithm that was developed to
generate a fracture network in 2-dimensions, As we have discussed in Section I, the primary assumption
in our model is that the network geometry is fractal - i.e. has a self-similar or scale invariant geometry.
Using this information we have developed a program to generate complete 2-d fracture outcrop networks
using only the lacunarity, fractal dimension, initial covering, and cutoff parameters obtained from™ MWX
data,

The PASCAL programming language was BEGIN
chosen to emphasize both modularity and structure in un'
the development and design stages of the algorithm. write_program_parameters_to_file
\J

Since the PASCAL syntax is completely analogous to generate_initial_fracture_set

pseudocode used in general algorithm descriptions, \j

the program can be easily modified by others or dlsplay_uugal_ﬁ-ac_data

converted to another programming language at a ™ REPEAT
. G2=G2+1
later time. generate_horizontal_fractures
The algorithm is most easily described by UNTIL G2 = # specified
reference to the procedure flowchart in Fig. 8. The ' ..........................
body of the program (Appendix A pp.26-38) consists Eliminate_redundant_fractures
N . . Y
primarily of variable and procedure declarations Read_Fract_2_Data
whose execution begin on p. 38. The procedures \j

for i2:=1 to # of horiz. fractures do

listed on p. 38 (and in Fig. 8) define the highest level begin
of program hierarchy, All other procedures declared Generate_Fractures_Along Fractures
in the body of the program are called from within Assngn_Lengms_tz_nI;racts_Along_Fracts
these procedures.

END

The most general description of the program
is obtained by examining Fig. 8. In the broadest
sense the program performs 2 tasks (separated by the
dotted line):

(1) Generates a horizontal fracture set.

Fig. 8. Procedure Flowchart for 2d_frac.pas

(2) Generates a vertical fracture set - consistent with the fracture set in (1)

t Using the box-counting programs developed by C. Mick.
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To generate the horizontal fracture set the program first generates a 1-dimensional fracture set along a
left-justified linet extending downward in the vertical direction (see Fig. 10). This is accomplished by the
procedure GENERATE_INITIAL_FRAC'IURE_SET whose flowchart is given in Fig. 1. The first step in
the procedure initializes the first row in the 2-dimensional ruler array L[},£], where i=1,2 and & can range
from 1 to 2'? = 8192 as declared using the TYPE and VAR clauses at the beginning of the program. The
range of the for loop given by the variable R; is the initial

number of rulers chosen to cover the fracture set in a 1-1 PROCEDURE
ratio. If a fracture is covered by a ruler, than the value of (generate_initial_fracture_set)
the array comesponding to this specific ruler is given the BEGIN
value 1. Conversely, an empty ruler site is given the value Y
0. for i:=1 to Ri do
begin

Having initialized the L[1,] amay the L[1,i}:=1

GENERATE_INITIAL_FRACTURE procedure then divides “;"

repeat
G:=G+1
generation_parity
generate_ld_fractures
display the fractures
R:=2*R
until G=One_d_Generations

each ruler into two new rulers (by mapping each ruler

variable in L[1,i] to two new ruler variables in L[2,]]). To
accomplish this the procedure begins the repeat...until loop
shown in Fig. 9 and increments the counting variable G
(initially = 0) to the value of 1. The v
GENERATION _PARITY procedure then determines if G is END

odd or even and assigns the variables e and f the values (1

Fig. 9 Flowchart for the
generate_initial_fracture_set
procedure.

and 2) or (2 and 1) respectively, depending on whether G is
odd or even.

Next, the procedure randomly chooses one of the 2
new rulers in L[2,k] for each of the rulers in L[1,{] and assigns this ruler a value of 1 while giving the
other ruler a value of 0. In this way, the covered fractures in the initial level are brought down to the next
level of 2Ri rulers. The remaining rulers are assigned fractures according to the distribution:

N =147, )

where N is the number of fractures, ! is the lacunarity, D, is the fractal dimension, and

A= (total length of fracture set = 1)
number of rulers

fracture locations graphically as the program is running. After a single pass through the loop the number

. The progress of the algorithm is then checked by displaying the

of rulers, R, is doubled and the whole process begins again. At the next iteration the parity of G will

T we intially began the fracture generation process along a left justified line. This approach is being
modified to produce outcrops originating from an arbitrary line within a distribution.

15



change as will the values of e and f according to the previous assignment. Using the mapping
Lle,i]l > L[f,]j], the values of L[2, /] are used as input for the next iteration and the values of L1, i] are

overwritten with new fracture assignments in the next ruler doubling. The output at this stage of the
program is shown in Fig. 10 and is analogous to Fig. 2a. Using D, =135, =212, with an initial

covering of 4 we obtain 24 fractures with 4. 2% =128 rulers after 5 generations.
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Fig. 10. 1-d fracture generation output. The data is represented
graphically by a series of small line segments with extension in the x
direction. In this example, the extension is arbitrary and is only used to
illustrate the fracture locations.

Continuing with the generation of the horizontal fracture set the program enters the repeat...until
loop shown directly above the dotted line in Fig. 1 and increments the counting variable G2 (initially = 0)
to the value of 1. The loop executes the GENERATE _HORIZONTAL FRACTURES procedure to produce
a vertical fracture set for each value of the grid step in the x direction. Fig. 11 shows the procedure
flowchart:

16



PROCEDURE
(generate_horizontal_fractures)

BEGIN
\J
if G2=1 then
———= begin
Assign_Fracture_Lengths
end

Y
display the fractures on screen

\j
if G2>1 then
Count_Ended_Fractures
display the fractures on screen
\j
if needed > O then
Add_needed_fractures
Assign_New_Fracture_Lengths
end
\j
end

\J
END

Fig. 11. Procedure flowchart for

generate_horizontal_fractures.

In the first iteratdon (G2=1) the procedure assigns a leng‘th (extension in the x-direction) to each fracture
site, To obtain the fracture length we assume a probability density function given by
p(Ly=4aL™™, @
where L is the fracture length and A is a constant, The probability that a given fracture will have a length
< L’ (greater than 2 arbitrary units) is then given by the distribution function:

L — - -
P(2<L<L’) = J'z AL P = __i_,[L,a P _ o ""]. 3)

2-D,

Since the fracture must have a length between 2 and 100 (according to our assumed distribution) then the
constant A is determined from

100 -
}>(2<L5100)=1=_[2 AL P, @)

so that

17



(D/ ‘2)

(2-D;) 100

A= @57 " ®)

1= ()|
Substituting (5) into (3) then gives
(2-D;) -
P(L') = 1‘(75") ' L ®rm )
- =07 |\ 100 '
1~ (1ho)

Generating a random number s, between 0 — 1 (labeled as 53 in the ASSIGN_FRACTURE_LENGTHS

procedure) and then setting this equal to (6), we can solve for the length L’ to obtain:

=0 (1- ()" ) + ()7 ]

Next, we generate a second random number s, between 0 — 1 and calculate the final fracture length

Q)

from
L=s,L". ®
In this way, the fracture sites are assigned lengths in the horizontal direction. Using the parameters
D,=15,1= 2.7,and R; =16 we obtain 29 fractures with 16-2% =128 rulers after 3 generations giving
the output shown in Fig. 12,
Referring to Fig. 6 we notice that to the left of L = 14 (linear regime) the length assignments
may be made using the procedure outlined above. To the right of L = 14 (exponential cutoff) we have a
non-linear distribution and so we must use:
Py(L) =129 ¢ *%L, 9)
To incorporate the data from region I into our fracture generation program (while avoiding having to
solve a non-ﬁnear function for L") we are currently modifying the program by reading in the values from

(2) and (9) into an array for each fracture length L’ between 2 and 100. Generating a random number
between 2 and 100 - we can then determine the corresponding fracture length from the array.
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Fig. 12. Lengths are assigned to the initial fracture set.

At the next iteration, G2 is greater than 1 and the program will step forward by a specified amount in the
x-direction ( = (G2~ 1)x step) to determine (using the previous length assignments) how many
fractures extend past this point. If fractures have ended, new fracture assignments must be made to
maintain the distribution in (1). The number of fractures that have not crossed the grid point are counted
by the procedure COUNT_ENDED _FRACTURES and stored in the variable needed. If fractures have
ended, the procedure ADD NEEDED FRACTURES is executed as shown in Fig. 11. To guarantee that
the new fracture assignments produce a fractal distribution, we must reverse the ruler doubling process
and re-assign fractures that have crossed the specified grid point to half as many rulers used in the final
step of the initial 1-d fracture generation process. The unoccupied fracture sites are then assigned new
fractures following the same procedure described for the initial fracture generation.




After adding new fractures (beginning from x=(G2~1)xstep) the ASSIGN NEW
FRACTURE LENGTHS procedure uses (7) and then (8) to determine their length. The x, and x,

coordinates (endpoints) for each of the fractures are stored in the arrays Lfx1[{] and Lfx2[/] and the whole
process continues until the distribution is generated for the specified number of horizontal site locations.
The endpoints of the fractures along with their vertical position are written to the file FRACT_1.DAT for
each value of the gridstep x given above by the DISPLAY FRAC_EXTENSIONS procedure. The resulting
output is given in Fig. 13 and can be compared with the MWX horizontal fracture data shown in Fig. 14,
The parameters used were D, =15, 1=2.7, and R; =16 which were determined from the MWX

outcrop using the box counting procedures described in Section II.
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Fig. 13 Horizontal fracture outcrop
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To generate the vertical fracture set we first generate a fracture disiribution along each of the
horizontal fractures by applying our 1-d generation algorithm to each fracture in the datafile
FRACT_1.DAT. Since the horizontal fracture positions were previously stored at each value of the
gridstep, a fracture crossing n gridpoints is stored n times by the DISPLAY FRAC EXTENSIONS
procedure, Therefore, before we can assign vertical fractures along each of the horizontal fractures we
must first eliminate all duplicate Fractures from the data set. This is accomplished by the
ELIMINATE REDUNDANT FRACTURES procedure listed below the dotted line in Fig. 8. The result of
this operation is then stored in a new file: FRACT_2.DAT. After obtaining a unique set of horizontal
fractures we reinitialize our variables by reading in the FRACT_2.DAT values with the
READ_FRAC 2_DATA procedure as shown in Fig, 8.

Starting in the upper left hand comer of Fig. 13 and proceeding downward vertically, the
program produces a fractal distribution (using a parameter set determined from the vertical fracture data)
along the first fracture in the data set. In our model we assume that vertical fractures can only begin or
end along a horizontal fracture. In this case, we need only find the next horizontal fracture below each
vertical fracture site to determine the fracture endpoint and therefore its’ length. To begin the process the
program enters the for loop below the READ _FRAC 2 _DATA procedure in Fig. 8. If the i2-th horizontal
fracture has a length greater than a certain number of units, the program executes the
GENERATE_FRACTURES_ALONG _FRACTURES procedure to generate a fracture set along the i2-th
fracture. The flowchart for this procedure is completely analogous to the flowchart given in Fig. 2 except
that in this case we wuse a slightly different 1-d fracture generation procedure
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(GENERATE 1D _FRACTURES2) to incorporate the vertical fracture parameters and new fractal
distribution function.

After producing a fracture distribution along the i2-tA horizontal fracture, the program executes
the ASSIGN LENGTHS TO FRACTURES

PROCEDURE
ALONG _FRACTURES procedure whose flowchart (Assign_Lengths_to_Fracts_Along_Fracts)
is given in Fig. 15. The outer for loop in the
procedure scans through all rulers of the fracture BE?IN
distribution just produced by the GENERATE for i:=0 to R2-1 do
FRACTURES ALONG FRACTURES procedure. Ifa | [ ™ begvin
ﬁ'acmre Site is (xcupied thel’l the Vel'lical position Qf if (aﬁacture site is occupied) then
the horizontal fracture is stored in the variable yl. —————->1 bﬁfyﬂ;[m
yl=

The location of the fracture along the i2-th xflLi=Lix1[i2]+Ix*i+1x/2
horizontal fractures’ length is then stored as xf7. sort_fractures

choose_the_next_fracture_below
Now that we have the x and y values of the vertical reinitialize the array variables
fractures’ starting point - we scan the fracture set | 9 \

) A if (not at fracture boundary) then
(using the SORT  FRACTURES and —» begin
CHOOSE_THE NEXT FRACTURE_BELOW draw the fracture

- - - write it to frac_3.dat file
procedures) to find the vertical position of the next end
horizontal fracture beneath our given fracture. This

e else y2:=yl
position is then stored as y2. If the value of y2
corresponds to a fracture within the boundaries of - e:d
the network (and not at an adjacent grid site starting - end
at the top of the screen) then the vertical fracture is \
displayed and its’ position stored in the file: END
FRAC 3.DAT. The program terminates when the
horizontal fractures have been scanned and vertical Fig. 15 Procedure flowchart for
fractures are generated along their lengths. Using ASSIGN_LENGTHS TO_FRACTURES_ALONG
the identical parameters that were used for Fig. 13 _FRACTURES.

along with the parameters D, ... =12,
Dyoricq =1, and R; ,erica =4 we obtain the output shown in Fig. 16 which can be compared with the

MWX data in Fig. 17.
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Fig. 17. MWX 2-d Fracture Outcrop Data




IV.  Discussion

To model the fracture outcrop networks occurring in naturally fractured tight-gas reservoirs we
have taken an approach that incorporates:
1. Data Analysis: we characterize the MWX fracture data using four parameters (for both
horizontal and vertical fractures):
(a) Lacunarity
(b) Fractal Dimension
(c) Initial Covering Scale (R,).
(d) Cutoff - determined from the distribution of fracture lengths.
1. Fracture Generation: we generate self-similar fracture networks using data from L) with an
algorithm that incorporates fractal geostatistics.

From our work we have found that there are several advantages in an approach that uses fractal statistics:

1) The networks produced by our model appear to be in agreement with actual fracture networks but do
not require extensive a-priori knowledge of the network. Using data from isolated borehole sites we
can generate entire networks with an algorithm that assumes a self-similar or scale invariant
geometry.

2) We are able to generate horizontal and vertical fractures separately (although not independently)
using distinct parameter sets in each case. The fractures can then be analyzed and combined later to
produce complete self-consistent networks.

3) Since the data is generated using a statistical approach, the algorithms require relatively little
computer time to produce complete networks (= 2-3 minutes on a 486DX2-50).

4) Evidence suggests that real fracture networks obey fractal statistics (see section II.B and part I of this
report).

The characterization and analysis of the network data produced by our algorithms is not yet complete. By
varying other parameters such as gridsize, fracture length, and the horizontal/vertical orientation of
fractures, we believe that it will be possible to generate fracture distribution patterns that are ‘optimally
similar’ in the fractal/statistical sense - to real fracture networks occurring in nature.
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Appendix A: Program Listing: 2d_frac.pas

(Pascal Source,t 670 lines )

PROGRAM td_frac2; {--- Program declaration ---)
USES crt,graph; {--- Libraries that will be used ---}

TYPE
ruler=array(1..2,1..8192] of integer;
one_d_array=array[1..1600] of real;

VAR {--- Variables are explained as encountered ---}
i,
i1,
i2,
¢,
i3,

_SIEp,
One_d_Generations,
One_d_Generations2,

Two_d_Generations: integer;
L raler;
temp,

¥ compiled and developed using Borland - Turbo Pascal Version 7.0 under DOS 6.1 on a home-built
486DX2-50 with 16MB of memory. The fracture network figures were produced with Mathematica ver.
2.2 running under Windows 3.1.
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xf1,

xﬂ!

cx,

cy,

sX,

5Y,

lxr

ly,

Lfr

53,

341

Y|

sl,

s2,

yl,

y2,

y3,

Lacunarity,

Lacunarity2,

Fractal_Dim,

Fractal_Dim2,

f_lenth :real;
Lfx1,

Lfx2,

Lyl :one_d_array;
x1,

xz’

Fractures,

Resolution,

Gnumber,

Covered :string[6);
datafile,

datafile2,

datafile3 itext;
writel :string[1];
write :boolean;

FUNCTION N(d:integer):integer; {--- This function gives the distribution of the horizontal fractures---}
BEGIN .
N:=Round( Lacunarity*Exp( (Fractal_Dim-1)*In(d) ) );
END;

FUNCTION N2(d:integer):integer; {--- This function gives the distribution of the vertical fractures---}
BEGIN
N2:=Round( Lacunarity2*Exp( (Fractal_Dim2-1)*In(d) ) );
END;

PROCEDURE initialize; {--- Initialize graphics screen and scaling parameters ---}
BEGIN
clrscrirandomize;G:=0;G2:=0;
Magnif:=3;count_f=0;
cl:=detect;c2:=0;initgraph(c1l,c2,'c:Np\BGI";
setbkcolor(3);
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SetFillStyle(EmptyFill,0);
n1:=8; writel:='0";write:=false;
cx:=100;cy:=100*(getmaxy/getmaxx);
sx:=50; (getmaxx/nl;}sy:=0.8*getmaxy/n1;
settextjustify(centertext,centertext);
outtexxy(trunc(getmaxx/2),10,2-D Fractures’);
delay(1000);

END;

PROCEDURE display_initial_frac_data; {--- Display various parameters on-screen ---}
BEGIN
k:=0;
for ;=1 to R do
begin
if L[f,i]=1 then k:=k+1;
end;
setcolor(4);
outtextxy(Trunc(0. 1 *getrnaxx), Trunc(0.95 *getmaxy), Rulers =7;
outtextxy (Trunc(0.14*getmaxx+22), Trunc(0,98*getmaxy),'Starting Fractures =');
outtextxy(Trunc(0. 14*getmaxx+13),Trunc(0.92 *getmaxy), Tnitial Covering =');
str(R Resolution);
str(k, Fractures);
setcolor(15);
outtextxy(Trunc(0.175*getmaxx), Trunc(0.95*getmaxy) Resolution);
outtextxy(Trunc(0.315*getmaxx), Trunc(0.98*getmaxy+0), Fractures);
str(Ri,Resolution);
outtextxy(Trunc(0.295*getmaxx),Trunc(0.92*getmaxy),Resolution);
END;

PROCEDURE generation_parity; {-- Determine if G is odd or even --}
BEGIN
if (G/2-trunc(g/2)) >0 then
begin
e:=1;
f:=2;
end;
if (G/2-trunc(g/2)) =0 then
begin
e:=2;
fi=1;
end;
END;

PROCEDURE display_1d_fractures; {--- Display Fract. along y at a previous Gen. ----}
BEGIN
ly:=0.7*getmaxy/R;
for i:=0 to R-1 do
begin
if (if2-trunc(i/2)) >0 then setcolor(9);
if (i/2-trunc(i/2)) =0 then setcolor(12);
line(trunc(sx), runc(cy+ly*i),
trunc(sx),trunc(cy-+ly*(i+0.95)));
if (L{e,i+1])=1) then
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begin
putpixel(trunc(sx),trunc(cy+ly*i+ly/2),15);
end;
end;
END;

PROCEDURE display_1d_fractures2; {--- Display Fract. along y at the final Gen. ----}
BEGIN
ly:=0.7*getmaxy/(2*R);
for i:=0 to 2*R-1 do
begin
if (if2-trunc(i/2)) >0 then setcolor(9);
if (i/2-trunc(i/2)) =0 then setcolor(12);
line(trunc(sx),trunc(cy+ly*i),
trunc(sx),trunc(cy+ly*(i+0.95)));
if (L[f,i+1]=1) then
begin
putpixel(trunc(sx),trunc(cy+ly*i+ly/2),15);
end;
end;
END;

PROCEDURE display_1d_fractures3; {-- This backs up to R/2 and shows L[e,i] --}
BEGIN
ly:=0.7*getmaxy/(R/2);
for i:=0 to trunc(R/2)-1 do
begin
if (i/2-trunc(i/2)) >0 then setcolor(13);
if (i/2-trunc(i/2)) =0 then setcolor(4);
line(trunc(sx-15),trunc(cy+ly*i),
trunc(sx-15),trunc(cy+ly *(i+0.95)));
if (L[e,i+1]=1) then
begin
putpixel(trunc(sx-15),trunc(cy+ly*i+ly/2),15);
end;
end;
END;

PROCEDURE display_1d_fracturesd; {--- Show fractures by pixel at each Gen. ---}
BEGIN
ly:=0.7*getmaxy/(R);
for j:=0 toR-1 do
begin
. if (i/2-munc(j/2)) >0 then setcolor(9);
if (j/2-trunc(j/2)) =0 then setcolor(12);
line(trunc(sx+(G2-1)*Step*Magnif) trunc(cy+ly*j),
trunc(sx+(G2-1)*Step*Magnif) ,trunc(cy+ly*(j+0.95)));
if (L{f,j+1]=1) then
begin
putpixel(trunc(sx+(G2-1)*Step*Magnif),trunc(cy+ly*j+ly/2),15);
end;
end;
END;
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PROCEDURE display_fractures_yl; {--- Show fractures at a previous stage ---}
BEGIN
Ix:=Abs(Lfx2[i2]-Lix1[i2])/(R2);
for i1:=0 to R2-1 do
begin
if (i1/2-trunc(il/2)) >0 then setcolor(1);
if (11/2-trunc(il/2)) =0 then setcolor(1);
line(trunc(sx+(Lfx1[i2]+Ix*i1)*Magnif+3) Jrunc(Lfyl[i2]),
trunc(sx+(LEx 1 [i2]+x*(11+0.95))*Magnif+3) trunc(Lfy 1 [i2]));

if L[e,il+1]=1 then

begin
putpixel(trunc(sx+(L{x1[i2]+lx*i1+Ix/2)*Magnif+3), tranc(Lfy1[i2]),15);
end;
end;
END;

PROCEDURE display_fractures_y2;
BEGIN
Ix:=Abs(Lx2[i2]-Lfx1[i2])/(2*R2);
for i1:=0 to 2*R2-1 do
begin
if (i1/2-trunc(i1/2)) >0 then setcolor(1);
if (i1/2-trunc(i1/2)) =0 then setcolor(1); '
line(trunc(sx+(Lfx1[i2]+Ix*i1)*Magnif+3)  ,trunc(Lfy1[i2]),
trunc(sx+(Lfx1[i2]+1x*(11+0.95))*Magnif+3),trunc(Lfy 1[i2]));
if L[f,il+1]=1 then .
begin
putpixel(trunc(sx+(Lx 1[i2]+1x*i1+1x/2)*Magnif+3), trunc(Lfy1[i2]),15);
end;
end;
END;

PROCEDURE display_frac_extensions;
BEGIN
ly:=0.7*getmaxy/R; {~-This gives the ruler lengths in the y-direc. ----}
if g2=1 then {---Create datafile fract_I.dat ---}

begin
assign(datafile,'c:\ip\files\FRACT_1.DAT);
rewrite(datafile);
end;
Bar(trunc(sx+490),trunc(cy), trunc(getmaxx),trunc(cy+340)); {--- Erase old data from the screen ---}
for i:=0 to R-1 do
begin
if (L[f,i+1]=1) then
begin
count_f:=count_f+1;
str((g2-1),Gnumber);
Lfyl[i+1]:=cy+ly*i+ly/2;
writeln(datafile Lfx1[i+1]:3:2, "\Lfx2[i+1]:3:2," " Lfyl[i+11:3:2); {-—write to fract_l .dat ---}
setcolor(1);
line(trunc(sx+Lfx1[i+1]*Magnif+3),orunc(Lfy1[i+1]), {-- display the fractures on screen ---}
trunc(sx+L{x2[i+1]*Magnif+3),trunc(LEy1[i+11));
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setcolor(8);
if (G2-1)>0 then {--- Draw the gridlines on the screen ---}
line(trunc(sx+(G2-1)*Step*Magnif), trunc(cy),
trunc(sx+(G2-1)*Step*Magnif),trunc(cy+ly *(R-1)+1y/2));
if Step>=10 then {--- Print the grid values on the screen —-}
begin
setcolor(8);
str((g2-1)*step,Gnumber);
outtextxy(trunc(sx+(G2-1)*Step*Magnif+0),trunc(cy-20),Gnumber);
str((g2-1),Gnumber);
outtextxy(trunc(sx+(G2-1)*Step*Magnif+0) trunc(cy+345),Gnumber);
end;
end;
end;
END;

PROCEDURE generate_1d_fractures; {-—- 1-d Algorithm - Generates Vertical Slices along x--}
BEGIN
for i:=1toRdo {-- Divide Measuring Scale and Bring down Fractures --}
begin
if L[e,i]=1 then {-- If fractures are present, add fractures below -}
begin
for j:=1to 1 do
begin .
s:=random(2)+1;
if s=1 then
begin
L[f2*-1]:=1;
L[f,2%{] :=0;
end;
if s=2 then
begin
L[f,2*i-1]:=0;
L[f,2*] :=1;
end;
end;
end
else {-- If no fractures are present, add spaces ----}
begin
L[f,2*i-1]:=0;
L{f2*] :=0;
end;
end;
for i:=1 to (N(2*R)-N(R)) do  {------ Add fractures according to distributution ----}
begin
repeat
si=random(R)}+1;
until (L[e,s]=1) and not ((L[f,2*s-1]=1) and (L[f2*s]=1));
if L{f,2*s-1]=1 then L[f 2*s]:=1 else L{f,2*s-1]:=1;
end;
END;
PROCEDURE generate_1d_fractures2;
BEGIN
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for i:=1 toR2do {-- Divide Measuring Scale and Bring down Fractures —}
begin
if L{e,i]=1then {-- If fractures are present, add fractures below -}

begin
for j;=1to 1 do

s:=random(2)+1;
if s=1then
begin
Lif2*-1]:=1;
L[f2*i] :=0;
end;
if s=2 then
begin
L[f2%-1]:=0;
Lif,2*i] :=1;
end;
end;
end
else {-- If no fractures are present, add spaces ----}
begin
L[f,2*-1]:=0;
Lif.2*%] :=0;
end;
end;

for i:=1 to (N2(2*R2)-N2(R2))do {------ Add fractures ----}
begin
repeat
s:=random(R2)+1;
until (L[e,s]=1) and not ((L[f,2*s-1]=1) and (L[f,2*s]=1));
if L[f,2*s-1]=1 then L{f,2*s]:=1 else L[f,2*s-1]:=1;
end;
END;

PROCEDURE Assign_Fracture_Lengths; {--- Assign lengths to horizontal fractures-—}
BEGIN
if G2=1 then {---- Assign initial lengths (0 fractures ---}
begin
for i:=1 toR do
begin
if L[f,i]=1 then
begin
$3:=(random(100)+1)/100;
Lf:=Exp((2/3)*Ln( (Exp(1.5*Ln(100))-Exp(1.5*Ln(2)))*s3 ));
s4:=(random(100)+1)/100;
LEx1[i]:=0;
LEx2[i]:=s4*Lf;
end;
end;
end;
END;
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PROCEDURE Count_Ended_Fractures, {--- count horizontal fractures that have ended---}
BEGIN
for ii=1 toR do {--— If a fracture has ended, count it ---- }
begin
if (L[f,i]=1) and (Lfx2[i]<(G2-1)*Step) then
begin
needed:=needed+1;
L[f,i]:=0;
Lfx1[i]:=(G2-1)*Step;
Lfx2[i]:=0;
end;
end;
END;

PROCEDURE Display_Grid_info; {—- display grid values on screen---}
BEGIN
str(needed, Gnumber);outtextxy(trunc(sx+(G2-2)*Step*Magnif+7),trunc(cy-40),Gnurmber);
setcolor(15);outtextxy(trunc(22),trunc(cy-40), Need:");
outtextxy(trunc(22),trunc(cy-20),'Grid:");
END;

PROCEDURE Add_needed_fractures; {---add horizontal fractures that have ended ---}
BEGIN
for i:=1 to needed do
begin
repeat
Bar(trunc(sx-45),runc(cy-10),
trunc(sx-20),trunc(cy+335));
s:=random (round(R/2)}+1;
str(s,resolution);setcolor(14);
outtextxy(trunc(sx-30), Trunc(cy-17+ly*2*s),resolution);
until (L[e,s]=1) and not ((L[f,2*s-1]=1) and (L{f,2*s]=1));
if L[f2*s-1]=1 then
begin
L[f2%s]:=1;
Lfx1{2*s]:=(G2-1)*Step;
end
else
begin
L[f,2*s-1]:=1;
Lfx1[2*s-1]:=(G2-1)*Step;
end;
display_1d_fractures4; {--- show the new fracture positions as they are added ---}
end;
END;
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PROCEDURE Assign_New_Fracture_Lengths; {--- Assign lengths to new fractures ---}
BEGIN
fori:=1toR do
begin
if (L[£i]=1) and (Lfx1[{i}J=(G2-1)*Step) then
begin
s3:=(random(100)+1)/100;
Lf:=Exp((2/3)*Ln({ (Exp(1.5*Ln(100))-Exp(1.5*Ln(2)))*s3 ));
s4:=(random(100)+1)/100;
LEx2[i]:=(G2-1)*Step + s4*Lf;
end;
end;
END;

PROCEDURE generate_horizontal_fractures; {--- procedure for generating horiz. fracture set ---}
BEGIN
needed:=0; {--- Initialize this variable for the next generation ---}
if G2=1then {---Assign fracture lengths for the initial generation ---}
Assign_Fracture_Lengths;

display_frac_extensions;
display_1d_fractures4;

if G2>1 then

Count_Ended_Fractures;
Display_Grid_info;
display_1d_fractures3;
display_1d_fractures4;
if needed>0 then
begin
Add_needed_fractures;
Assign_New_Fracture_Lengths;
end;
end;
END;

PROCEDURE generate_initial fracture_set;;
BEGIN

for i:=1 toRido {--- Set the first Level Fractures --}

begin
L[1,i}:=1;

end;

G:=0;

repeat {--- start 1-d fracture generation —------ J
G:=G+1; {--«-- G Counts the Generations -------- }
generation_parity;  {--- is G odd or even 7 =-=remnmmmmununan Y
generate_1d_fractures; {---- Algorithm «-=--ceceeeees- J
display_1d_fractures;
display_1d_fractures2;

R:=2*R; {-- double the scale resolution --}
until G=One_d_Generations; {--- end of 1-d loop --}
END;




PROCEDURE Eliminate_redundant_fractures;
BEGIN
reset(datafile);
m:=0;
while not Eof(datafile) do {--- Read in values and count how many from fract_1.dat---}
begin
m:=m+1;
readin(datafile,L{x1[m],Lfx2[m],Lfy1[m]);
end;
close(datafile);
for i;:=1 to m do
begin
if Lfyl[i]<>(-1) then
begin
for j:=1to m do
begin
if (i<>j) and ((Lx1[i]=Lfx1{j]) and (Lx2[i]=Lx2{j]) and (Lfy1[i]=Lfy1[j])) then
Lfy1[j]:=-1;
end;
end;
end;
Assign(datafile,c:\tp\iles\FRACT_2.DATY); {---Create file of unique fractires---}
Rewrite(datafile);
fori:=1to m do
begin
if Lfy1li]<>(-1) then
begin
writeln(datafile Lfx 1[i):3:2," " Lfy1[i]:3:2," ",
Lfx2[i):3:2, ', Liyl[i]:3:2);
end;
end;
close(datafile);
END;

PROCEDURE Generate_Fractures_Along_Fractures; {-- assign fractures along horiz. fractures--}
BEGIN
R2:=Ri2;
fori:=1toR do {-~- Set the first Level Fractures -}
L[1,i]:=1;
G:=0;
repeat
G:=G+1;
generation_parity;
generate_1d_fractures2;
display_fractures_yl;
display_fractures_y2;
R2:=2*R2;
until G=0ne_d_Generations?;
END;
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PROCEDURE Switch(Var a,b:Real); {-- This is used in the sorting procedure ---}
Var
c:real;
BEGIN
ci=a;
a:=b;
b:=c:
END;

PROCEDURE Sort_fractures; {--- sort the fractures to assign vertical fractures to next one below —--}
Var
i3,i4:integer;
BEGIN
fori3:=2toudo
begin
for i4:=u DownTo i3 do
begin
if (Lfy1[id-1]>LEy1[i4]) then
begin
Switch( Lfy1[i4] , Lfy1[i4-1] );
Switch( Lfx1[i4] , Lfx1[i4-1] );
Switch( Lfx2[i4] , Lfx2[i4-1] );
end;
end;
end;
END;

PROCEDURE Choose_The_Next_Fracture_Below; {--- Go through sorted list --}
VAR
iS:integer;
BEGIN
i5:=0;
repeat
i5:=i5+1;
until (Lfy1[i5]>y1) and (xf1>=L{x1[i5]) and (xf1<=L.£x2[i5]);
y2:=L{yl[iS]
END;

PROCEDURE Read_Fract_2_Data;
VAR
iS:integer;
BEGIN
i5:=0;
reset(datafile); {---- datafile is Frac_2.dat ----}
while not Eof(datafile) do
begin
i5:=15+1;
readin(datafile,Lfx1[i5],Lfy1[i5],Lx2[i5],Lfy1[i5]);
end;
n:=is;
close(datafile);
END;
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PROCEDURE Assign_Lengths_to_Fracts_Along Fracts; {-- generate and display vertical fractures --}
BEGIN
fori:=0 toR2-1do {---- Assign lengths to fractures ---}
begin
iFL[f,i+1]=1 then
begin
yL=Lfy1[i2];
Ix:=Abs(Lfx2[i2]-Lfx 1[i2])/(R2);
xfl:=LEx1[i2]+1x*i+1x/2;
xf2:=Lfx2[i2]+1x*i+1x/2;
Sort_Fractures;
Choose_The_Next_Fracture_Below;
setcolor(1);
Read_Fract_2_Data;
if (y2>=0) and (y2<=500) then
begin
Line(Trunc(sx+(xf1)*Magnif+3),Trunc(y1),
Trunc(sx+(xf1)*Magnif+3),Trunc(y2));
Append(datafile3);
writeln(datafile3,xf1:3:2, ",y1:3:2,"",
xf1:3:2,' ',y2:3:2);
close(datafile3);
end
else y2:=yl;
end;
end;
END;

PROCEDURE write_program_parameters_to_file; {--- make a datafile of the parameters used ---}
BEGIN

Assign(datafile3,'c:\p\files\r_text.dat");
Rewrite(datafile3);
writeln(datafile3 Lacunarity:3:2," ' Lacunarity2:3:2,' ', .
Fractal_Dim:3:2,' ' Fractal_Dim2:3:2,"",
Step,' ',One_d_Generations,' ,One_d_Generations2);
close(datafile3);
END:;
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BEGIN (—- The Program starts here and executes the procedures---------- )
initialize;
write_program_parameters_to_file;

generate_inidal_fracture_set;

display_initial_frac_data; {---- displays initial program info ------ )

G2:=0; {— initialize G2 -~}

REPEAT {----- Start 2-d fracture generation ------ J
G2:=G2+1;

generate_horizontal_fractures;
UNTIL G2=Two_d_Generations;

close(datafile); {--- Datafile is Frac_l.dat, containing the endpoints of the horizontal fractures ---}
Eliminate_redundant_fractures; (--Remove duplicate fractures from frac_I.dat and save as frac_2.dat --}
Read_Fract_2_Data; {---Reintialize variables with unique fracture values ---}

Assign(datafile3,'c:\p\files\ract_3.dat"); (--- Create the datafile: fract_3.dat to store vertical fractures ---)
Rewrite(datafile3);

close(datafile3);
fori2:=1toudo {--- uis the total number of horizontal fractures ---}
begin
if Abs(Lfx2[i2]-Lfx1[i2])>=20 then  {- start vertical fractures only along horizon. fractures with length > 20 iunits -}
begin

Generate_Fractures_Along_Fractures;
Assign_Lengths_to_Fracts_Along_Fracts;

end;
end;
setcolor(14);
outtextxy(trunc(0.8*getmaxx),20,Done.");  {--- Print a message that the program is finished -—}
readin; {-— wait until a key is pressed ---}

closegraph; {--- exit from graphics mode ---}

END. (- Program ends here —-e-meer }
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Appendix B: Program Listing: Box-Counting Procedure

S type boxtest3.c
#include <stdio.n>
#include <stdlib.h>
¢include <math.h>

#define SIZE 80

/* Function prototypes */
void box_count ( float a[], int, float );
void read me( int, FILE*, float );
float least squares( double a[(}, double b(}, int ):

main()

{

char read file[20]};

int fracture_number=0;
float initial ruler length;
FILE *ifp;

printf ("\n\n\nEnter the file to be read: ");
scanf ("%s", read file);

printf ("\n\n Enter the initial ruler length:: ");
scanf( "%f", &initial ruler_length):;

ifp=fopen(read file,"r");
if( ifp = NULL )

{
fprintf (stderr, "%s", "\n\n\t\tSorry, File cannot be located.....Try again!");

exit( 1 );
} .
/*call function to read in data*/

read me( fracture number,ifp, initlal_ruler length);
close (1£fp)

/*end main*/
}

'

void read me( int fracture_number, FILE *ifp, float initial ruler length )

{ .
int 4i=1, k; SCC\”Jn
float x: —]:

float fract{ SI2E };

fract{ 0 )] = 0;
39



Session Name: Vvax A

while( ! feof( ifp ))

{
fscanf( ifp, "%f", &x ): 'I:
fract({ 1 ] = x:
1++;
fracture_number++;

/* end read me*/

box_count ( fract, fracture_number, initial ruler_length);
}

void box_count ( float fract(], int fn, float initial ruler_length )

{

/*fn=fracture_number*/

int delta=l,i=0,k;

int i=0;

int a_fracture_was_covered=FALSE:
int rulers_covered=0;

float ruler_increment;

float ruler_length;

float initial _length;

int rulers{ SIZE ]:

int del[ SIZE ):

double fractal regime{ SI2E |;
int size_of rulers_array;
double delta fractal[ SIZE ]:

\

initial_ length=fract[--fn]; /* printf("\n\n$%f",initial length);return;}*/

printf (™ Delta Rulers_covererd\n");

while( rulers_covered < fn )
{
rulers_covered = 0;
1 =0;
ruler_increment = initial ruler length/delta;
ruler_ length=ruler_ increment;

while( ruler length <= initial ruler_length )
{
a_fracture_was_covered=FALSE;
while( fract[i] <= ruler _length ¢& i < £n )

{
a_fracture_was_covered=TRUE:
1++;

}
if( a_fracture was_covered ) rulers_covered++;
ruler length+=ruler_increment:

}
printf (" %d $d\n",delta, rulers_covered);
/**** eliminate first linear regime ****/

1f( rulers covered != delta && rulers covered != fn)
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{
rulers{ 3 ] = rulers_covered; /**temporary arrays**/
del[ § ] = delta; /**to 1lsolate fractal region**/
1++;
} A

delta*=2;

}
size_of rulers array = 3;

/** for (k=0; k<j; k++)printf("\n\nrulers: %d del: %d",rulers(k],del(k]);
printf("\n size of= %d",size_of rulers_array): **/ /*check*/

\5\

/***Print Headers***/

printf ("\n\n\t\t\t----- FRACTAL REGION—-=~-——- \n");
printf ("\n\t Delta Rulers Covered"):
/***eliminate linear saturation***/
k=Q;
while( k < size of rulers_array )
{
1f( rulers{ k ] != rulers[ k + 1 ] )
{
fractal_regime( k ] = rulers[ k ];
delta fractal[ k ] = del( k ]:
printf ("\n\t  &f %f",delta_fractal(k], fractal regime(k]):
k++;
}

else break;
}
size_of rulers_array = k;
for( Xk = 0; k < size of rulers _array:; k++ )
{
fractal regime[ k ] = loglO( fractal_regime{ k ] ):

delta_fractal( k] = loglQ{ delta fractal[ k] )
/** printf("\n$%f %f",delta_fractal[k] fractal_regimefk]): **/

least_squares (fractal_ regime, delta_fractal, size_ of_ rulers_array):
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Session Name: Vax A

$ type least_squares.c
tinclude <math.h>

float least_squares( double y(], double x[], int n ) 5(4}‘b” ’g—
{
float m; /** m = slope **/

float b: /** b = y~intercept **/

float m sigma; /** standard deviation in slope **/

float b_sigma; /** standard deviation in y-intercept **/
float upstairs = 0;

float downstairs:

float xy_sum = 0.0;

float x_sum = 0.0;

float y_sum = 0.0;

float sum_square = Q0.0;

float product_sum;

float square_sum;

int 1 = O:

while( 1 < n)
{
Xy_sum += x[1] * y[i];
x_sum += x[i];
y_sum += y[i];
sum_square += x[i] * x[1];

Vo printf("\n%f %f n= %d",x(1i],y[i],n); **/ /*check*/
/* printf("\n%f = xysum",xy_sum); **/
14+

}
product _sum = x_sum * y sum;
square_sum = x_sum * x_ sum;

m= (n * xy sum - product_sum) / ( n * sum square - square_sum );
printf ("\n\n\tThe slope of the line = %f.",m);
/** printf ("\nsumsquar=%f\nprodsum=%f\n", sum_square,product_sum); **/
/** printf("\nx_sum=%f ysum=%f",x_sum,y_sum); **/

/** y-intercept calculation......y-intercept = b **/
b = (sum_square * y sum - X_sum * xy_sum)/( n*sum_square - square_sum);
b = pow( 10.0, b): -
printf ("\n\tb = %f", b):
/** least square error analysis **/
/* Standard deviation of slope */
for{( i = 0; 1 < n; 1i++)
{
?pstairs +=pow((y( 1] - (m=*x[ 1] +loglO( b))), 2.0):

upstairs *= n;

if( n ==2)

42



Session Name: Vax A

{
printf ("\n\n\tThere must be more than two data values for a complete"):

printf ("\n\terror analysis.");
exit( 1 );
}

downstairs = sqrt ((double) (n-2) *( n*sum_square - square_sum));
m_sigma = upstairs / downstairs:

/** Standard deviation of y-intercept **/
b_sigma = sum square * upstairs / downstairs;

printf ("\n\t\tError Analysis::\n"):;
printf("\t m = %f +- %£.",m, m_sigma);
printf("\n\t b = %f +~ %f.",b, b sigma):

/* End function---least_squares */
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