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Executive Summary 

The objectives of this project are to develop an efficient, general-purpose finite-element 

simulator with unstructured grids to model complex reservoirs. Most reservoirs are fractured to a 

certain degree and now there are better tools to characterize and map faults and fractures, field-

wide.    Generation of reservoir domains with faults and fractures using relevant geological 

information is one of the tasks. This project would make it possible to incorporate this enhanced 

characterization directly into a reservoir simulation framework.   One key idea is to develop 

multi-scale computing schemes so that phenomena at different scales are represented and solved 

efficiently.  This feature will be very important in solving a data set with a number of 

faults/fractures expeditiously.  The goal was also to create a fast simulator with all the modern 

computational tools.  Parallelization of large unstructured grid systems and standardization of 

files and various components employed are the activities designed to provide the outcome of a 

parallel, modular simulator of complex systems that is accessible and user friendly.   

Significant accomplishments in the current year are listed below. 

1. A methodology to grid complex, three-dimensional objects with faults and fractures was 

identified.  The approach is to use CUBIT, the general gridding program created at 

Sandia National Laboratory.  Using this tool and the scripts written at the University of 

Utah, it is now possible to take complicated faulted/fractured domains and create grids to 

honor the complicated geometry. 

2. Three-dimensional, three-phase simulations were performed on grids generated using 

CUBIT.  Methods to perform these computations with or without the matrix (fracture-

only) simulations were developed.  



3. Multiple ways of creating field-wide fracture networks were identified.  Simulations on 

domain with a complicated set, generated using Fracman (software developed by Golder 

Inc.), are underway.  

4. A thermodynamics simulator (obtaining compositions of vapor and liquid phases) using 

the successive substitution method was completed.  This is the first step toward the 

development of a compositional simulator for fractured/faulted systems. 

5. Formulation of thermal simulation equations was completed.   

6. Intuitive well models of complicated wells for the mixed finite-element simulator were 

developed.  

7. The simulator structure was modified to use not only the conventional reservoir 

simulation boundary conditions (bottom hole pressure and rate constraints) but also 

constant flux boundary conditions and Dirichlet (constant pressure) specifications.    

8. In order to facilitate the modularization and standardization of simulator components, 

decoupling of the discretization method and the numerical model was performed.  The 

input file was standardized to use the universal xml format.   

9. Paralleization has been built into the structure of the simulator.  

10. Seamless coupling with PetSc was accomplished leading to the use of the most advanced 

linear solvers such as GMRES and TFQMR.   

Integration of geologic information and reservoir engineering evidenced in this project is 

achieved with a team of geoscientists and engineers.   

 



Background 

Reservoir simulation is a mature science.  Significant advances have been made in the 

last few years.  Simulation is increasingly being used for reservoir development planning, 

forecasting and management.  Most of the commercial and state of the art reservoir simulators 

use structured grids utilizing the finite-difference method.  At the University of Utah, a series of 

finite-element simulators for fractured reservoirs have been developed.  The feasibility of using 

finite-element reservoir simulators was demonstrated by showing an excellent match between the 

performances of these simulators and Eclipse the most commonly used finite-difference 

simulator.These simulators, utilizing the unstructured grid system, are more suitable to represent 

and model complex geometries and domains.   

The unstructured grid systems would also be more suitable in modeling complex well 

systems.  The advantages of using completely unstructured grids have been demonstrated in 

medical applications, where the grids body-fit the geometrical domain.  This project will develop 

the infrastructure for the use of fully unstructured grids in reservoir simulation. The finite-

difference simulators have had a 50-year history and are well-tuned to handle reservoir problems.  

The finite-element simulators need to be optimized for speed.  The use of finite-element 

simulators is common in aerospace and in CFD (computational fluid mechanics). Lessons from 

these fields need to be brought into the area of reservoir simulation. The simulators at the 

University of Utah use PETSC (Portable Extensible Toolkit for Scientific Computation).  The 

most modern linear and nonlinear solvers are used in this package, developed at the Argonne 

National Laboratory.  Enhancements in the form of multigridding methods, generalized parallel 

computing for domains with complex set of fractures and wells are needed.   



An oil reservoir may undergo several recovery processes (water flooding, gas flooding, 

thermal recovery, etc) over its lifetime.  The current simulator structure requires the use of 

different simulators to study each phase in the life of the simulation.  Constructing a reservoir 

simulator using different modules will allow examination of different recovery processes using 

the same geologic data set and grid.  Compositional and thermal simulation modules will be built 

in this project to allow the study of compositional and thermal processes with a fully 

unstructured grid and with discrete fractures and faults (if, necessary).  A structure to allow this 

type of development, much more easily than in the past, is also necessary and will be built first.    

Well geometries are also becoming increasingly complex.  Drilling maximum reservoir 

contact wells (MRC) is common worldwide.  It will be difficult, if not impossible to represent 

and model these wells using the current practice of structured grids.  When wells with complex 

geometries are placed in structured grids, complicated well models are required.  New well 

models for unstructured grid geometries are needed and are proposed in this project.  

Geometrical construction of the reservoir domain is performed manually in most cases, 

making the task cumbersome, particularly for complex systems. When faults and fractures are an 

integral part of the reservoir domain, uncertainty in creating a reliable geologic data set is higher 

than when the reservoir is not fractured.  A rule–based algorithm to create and map fractures and 

simulate the resulting set of realizations quickly (“on-the-fly”) to match field observations is 

necessary to reduce the uncertainty in the geologic model.  This will also be accomplished in this 

project.  

The growth in the reservoir simulation technology has been explosive, but also haphazard 

to a certain degree.  Since there are so many different protocols, it is difficult to utilize and 

transfer the advances in some components to other simulation features.  Some level of 



component standardization is necessary to overcome this problem and provide a plug and play 

type of environment for integrated reservoir simulation.  At a recent Reservoir Simulation Forum 

sponsored by the SPE (Forum Notes, 2003), this capability was one of the most desired by the 

industrial participants. The U.S. Department of Energy (the SciDAC program) has taken the lead 

in establishing Common Component Architecture (CCA) in a number of high-performance of 

computing applications.  

Some of the common components in reservoir simulation are  

• Physical models,  

• Numerical algorithms 

• Well models 

• Petrophysical models 

• Gridding 

• Parallel computing 

A CCA platform would integrate these applications so that advances or modifications in 

one would have an immediate impact on the efficacy of the complete application.    

Parallel computing is not widely used in reservoir simulation.  This is because the 

technology is still out of reach of most users.  Use of parallel computing would allow simulation 

of extremely complex domains with millions of unstructured grid blocks.  Parallel computing is 

built into the University of Utah discrete-fracture, finite-element simulators.  It is important to 

generalize the parallel computing concept for unstructured grids.  From the user perspective, this 

development needs to be seamless.  The problem definition and proposed solution is outlined in a 

schematic in Figure 1.  

 



 

Figure 1:  The problems in being able to simulated complex (realistic) reservoir domains and the 
solutions proposed 
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Objectives 
The goals of this project are based on the prior discussion of problems, proposed solutions 

and the state of the art, and are enumerated below.  

1. This project will focus on developing a fast finite-element simulator capable of performing 

compositional and thermal simulations on complex fractured, faulted systems. Such a 

simulator is currently not available.  The simulator will provide the means of studying all 

possible physical processes using a grid that is created to fit the reservoir (and well) 

geometries.  

2. This project will develop new multiscale methods to model large fractured systems.  Most 

reservoirs are fractured to a certain degree.  Hence, this development will have a number of 

industrial applications.  

3. Intuitive well models for the finite-element simulators will be developed.  These will 

streamline the representation of simple (vertical, horizontal or slanted) and complicated 

(multilateral, maximum reservoir contact) wells.  The need to develop special well models 

for specific well types and grid geometries will be eliminated.  

4. The project will develop a process to map and verify faults and fractures.  Integration of data 

into rule-based algorithms, quick gridding and simulation using the generated domain and 

verification with existing production data, will be the components of this process.   

5. New parallel schemes for dealing with data sets with a large number of fractures will be 

developed in this project. These schemes will make fractured reservoir simulation with a 

large number of cells (elements) practical.  

6. A platform to standardize the various components of reservoir simulation will be created.  

Common Component Architecture (CCA) will be used.  This platform will be a 



demonstration of how completely different components can be linked in a plug and play 

mode.  It will be possible to create a repository of interconnected software modules that is 

accessible and usable by the entire community.   



Results and Discussion 

Simulator Development  
This task was concerned with improving the performance of the existing black-oil simulator and 

adding compositional and thermal modules to the simulator. The simulators can use the most 

modern linear and nonlinear solvers by linking with PetSc.   Most of the simulators use the 

GMRES linear solver in PetSc.  The use of multigrid preconditioners to further optimize the 

performance of the simulators is being explored.   

This task also required the decoupling of the reservoir model (called the physical model in this 

report) and the discretization method.  This was achieved by creating two separate modules for 

the physical model (PM) and the discretization method (DM).  The idea was to be able to 

combine different physical models (black oil, compositional, thermal, etc.) with the 

discretization method of choice (finite difference, finite element, etc.).  This decoupling was 

suitable for any problems which were described, in general by a conservation law of the type 

shown below. 
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In this equation, u represents any type of flux (material or heat) and ρ  represents the conserved 

property (saturation or energy).  The DM defines the number of control volumes and transmits 

that information to PM.  The PM has knowledge of the properties of the control volume.  

Subsequently, DM will query the required pressure (or temperature) information from PM and 

compute flux according to the geometric information of elements.  This gradient information is 

passed back to PM upon which PM attaches the model specific properties (relative 



permeabilities, specific heats, etc.) to form the model prescribed flux.  This is combined with the 

accumulation term to create residual functions.    

 

For example, the residual function for each phase in a black oil model is described by: 
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Based on the concepts described, pf , zf  and all direct derivatives are calculated by DM while 

the property-based terms and derivatives are calculated by PM.  

  

Work on the development of a standard finite-element compositional simulator was begun.  As 

first part of this, a thermodynamic simulator that would provide vapor and liquid compositions 

and amounts was written and verified.  This simulator was written using the successive 

substitution method.  A Newton’s algorithm is now being applied to solve the same problem.  

The compositional flow equations were written.   The degree of uncoupling described earlier 

would require that only the physical compositional equation module be written. The numerical 

method and meshing will already be in place and will be linked to the new reservoir module.  

In a similar fashion, formulation of the thermal reservoir model with the oil, steam and gas 

phases was completed.  The code for both the compositional and thermal modules is almost 

complete.   

 



Development of a Compositional Module 

Introduction 
 
Fluids in petroleum reservoirs contain thousands of chemical components that influence the 

physical properties and phase behavior during oil production. It is impractical to describe 

petroleum fluids in terms of all individual components. 

Pseudo components (groups of molecules) with average physical properties are used to describe 

the reservoir fluid. Reservoir fluids are classified into various types based on the formation value 

factor and API gravity as black oils, volatile oils, retrograde gas, wet gas etc. 

 

Black oil models are used to study the conventional recovery techniques in reservoirs for which 

fluid properties can be expressed as functions of pressure and bubble point pressure. 

 

Compositional models are used when either in-place or injected fluid causes fluid properties to 

be dependent on the composition also. Examples of problems generally requiring compositional 

models are (1) primary production or injection process (such as nitrogen injection) into gas 

condensate and volatile oil reservoirs, (2) enhanced recovery from reservoirs by CO2 or enriched 

gas injection. The black oil model is a special case of 

compositional model, where the phase equilibrium relations can be reduced to linear relations 

between pressure and component mole fraction. 

 

Sometimes it is inappropriate to use a black oil model, and oil and gas must be represented by 

more than two pseudo components. The phase behavior, in this case is represented by an 

Equation of States (EOS) and phase equilibrium relations. 



 

The number of equations in a compositional model increases from that of a simple black oil 

model and the choice of equations and variables gets more complex. The performance of the 

simulator (convergence of non linear and linear iterations) can be strongly influenced by these 

factors. 

Formulation of the Equations 

Compositional models can be classified as mass balance type and volume balance type 

depending on the equations used to solve. Mass balance type is most commonly used and is 

discussed here. The mass balance equation for each hydrocarbon component and water are the 

equations for this type of model. 

 

 
 
Phase equilibrium relations for each hydrocarbon component are needed in addition to the mass 

balance equations. Water and hydrocarbon components are completely separated and hence only 

two--phase equilibrium between the oil and gas phases is considered. The condition for vapor 

liquid equilibrium from thermodynamics is the equality of the fugacity in the liquid and vapor 

phase. Hence, we have 

 

 



 
There are some linear constraints in addition to the mass balance and phase equilibrium 

equations that complete the system of equations. The constraints to be satisfied are: 

 
• Mole balance constraints 

 

 
 

• Saturation or volume constraint 

 
• Capillary pressure constraint 

 

 
Hence, the 2 1cn + non linear equations and five linear constraint equations make the 

2 6cn + equations that represent the compositional model. 

 

The 2 1cn +  non linear equations are the mass balance equations and the phase equilibrium 

relations, of which the 1cn +  independent mass balance equations constitute the primary 

equations. The primary equations are those needed to be solved to fix both the intensive and 

extensive state of the system. They are also the equations solved simultaneously in a fully 

implicit model. The mass balance equations are a natural choice since their number equals the 



number of primary equations. The remaining nonlinear equations form the secondary equations 

are solved after the primary equations. 

 

Different researchers have put forth various models and they differ in the variables and equations 

are chosen. Coats model is used in this work. 

 
The 1cn + mass balance equations for the cn components and that of water constitute the primary 

equations and the equality of fugacity constitutes the secondary equations. The variables solved 

for in this model are: 

 

 
 
The variables for different control volume may differ and we need to switch variables when a 

hydrocarbon phase disappears or reappears. The variable selection in this model is called the 

natural variable selection, since the equations can be directly expressed in terms of these 

variables and evaluation of the derivatives in the Jacobian is easy. The model was proposed as a 

fully implicit model, but can be reduced to IMPES by variable elimination. 

Flash Calculations 
Compositional models are more complicated than black oil models in their formulation. 

Moreover, they require additional flash calculations. The phase equilibrium relations can be 

reduced to a set of linear constraints between component mole fractions and pressure in black oil 

models. Hence, black oil model is a special case of compositional model. 



Compositional simulation require flash calculations to be performed at every Newton iteration of 

each time step. 

At a given temperature and pressure, flash calculations yield the number of moles of component i 

in the liquid phase, and in the vapor phase, given the total number of moles of each component in 

the feed. If the mole fraction of each component in the fluid is known, we solve for the liquid 

and vapor mole fractions. The condition for equilibrium is given by, 

 

 
 
which are systems of nonlinear equations. This system can be solved by a direct successive 

substitution method or Newton's method. 

 

In practice equilibrium ratios iK are introduced. 

 

 

 

The overall mole fraction is related to the liquid and vapor mole fraction as 

 

 

Where, vf  is the hydrocarbon vapor mole fraction in the fluid. 

Mole fractions ix  and iy  can further be expressed in terms 

of fv, zi, and Ki: and in practice, equilibrium ratios 

Ki are introduced. 



 

 

 

 

The above equations are combined to nonlinear equation that is solved iteratively.   

 

 

 

It can be shown that Ki is related to the fugacity coefficients 

 

ilφ  and ivφ  as follows.  

 

 

 

1. Solve for fv 

2. Computed xi yi from equations shown above  

3. Calculate compressibility factor for each phase from an Equation of State (EOS) 

4. Calculate the fugacity of each component in liquid and vapor phases. 

5. Check for convergence. 

6. If not converged, update equilibrium ratios from equation for fugacities.  



 

The Newton method involves computing derivatives of the equilibrium equation in the Jacobian 

matrix. The equations are solved for one of the following sets of variables: 

 

 

 

The successive substitution method converges slowly but convergence is usually achieved, 

whereas the Newton method converges rapidly near the true solution. So, a typical approach is to 

use successive substitution method first, after the error is reduced to a certain level, the Newton's 

method is invoked for rapid convergence. 

 

The flash calculation procedure is also used to compute the phase properties. The molecular 

weight of a phase is given by 

 

 

 

The density of a phase p is computed by the following relation 

 

 



where Zp is one of three roots of the cubic EOS. The smallest root is used for the oil phase and 

the largest for the gas phase, the intermediate root representing an unstable phase. 

Equation of State Used 
The hydrocarbon liquid and gas phase densities and component fugacities are computed from a 

cubic equation of state such as Redlich--Kwong, Peng--Robinson equation of state. The Peng--

Robinson equation of state used in this case is given by 

 

 

where 

 

 

 

The equation can also be written in a cubic form as: 

 



 

The compressibilities of the liquid and the gas phases are obtained by solving the cubic equation 

of state with their respective compositions.  The largest root is the compressibility for the gas 

phase and the smallest root that of the oil phase. 

 

The fugacity of a component i is given by 

 

 

and the exponential term iφ in the fugacity coefficient term is given by 

 

 

Verification of Flash Calculation 
The flash algorithm discussed above with a Peng--Robinson equation of state was tested for a 3 

component and a 10 component system. The results of the flash were compared with the results 

of an isothermal flash from a commercial simulator Winprop of CMG. A three component 

system consisting methane, butane and decane was chosen as a test system. An isothermal flash 

was performed at 1600 psi and 1680 F. The results of the flash calculation are presented in the 

Table 1.  



 

 
 
Ten component system  

A ten component system comprising of C1, C2, C3, C4, C5, C6, C7, C8, C9 and C10 was chosen 

as a test system. An isothermal flash was performed at 2750 psi and 2200 F. The results of the 

flash calculation are presented in the Table 2.   

 

 
 
 
In a control volume, there may be up to two hydrocarbon phases (oil and gas). The pressure, 

temperature and overall composition determine whether two hydrocarbon phases exist or not. 



The existence of hydrocarbon phases needs to be established during simulation. If only a single 

hydrocarbon phase exists, equations and variables for some models may have to be changed. 

 

When a control volume has two hydrocarbon phases, we need to monitor its condition, to find 

when it will change to a single hydrocarbon phase. For each Newton iteration, we solve the flow 

equations, and get the saturation solutions. If either So or Sg is negative, it is set to zero before 

initializing for the next iteration. Then the overall mole fractions is set to the oil or gas 

saturation. 

 

Negative flash could also be used to ascertain the phase. A flash calculation is performed. If the 

liquid mole fraction, fl < 0, then the oil phase does not exist anymore, else if fl > 1, then the gas 

phase does not exist anymore. 

• If gas phase disappears, 0, set 0 and 0g g cS S y≤ = =  

• If oil phase disappears 0, set 0 and 0o o cS S x≤ = =  

 

When a control volume has only a single hydrocarbon phase, we need to monitor its condition 

for the reappearance of the oil or gas phase. When the the control volume changes to two 

hydrocarbon phases we may need to change the equations and variables. 

 

When a control volume has only one hydrocarbon phase at the end of a Newton iteration (i.e. 

 or g oS S  is zero), a saturation pressure is computed for the single phase control volume. If the 

calculated saturation pressure is less than the control volume pressure, the control volume 



remains in the single hydrocarbon phase, otherwise both hydrocarbon phases exist and the absent 

phase saturation is set to 0.001. 

When a control volume has only one hydrocarbon phase at the end of a Newton iteration, we can 

also perform a negative flash as mentioned above with pressure and overall composition as the 

inputs. If lf  is between 0and 1, then both hydrocarbon phases exist and phase saturations are 

initialized once again. 

Saturation pressure is calculated in the manner proposed bu Fussel and Yanosik. They proposed 

the solution of 1cn + equations. 

 

 
 
for the 1cn +  unknowns using the Newton--Raphson method to obtain the saturation pressure of 
a liquid phase. Improved convergence has been found by replacing the above equation with: 
 

 
 
For the liquid-phase compositions and saturation pressure, the following equations are used.  
 

 
 
This saturation pressure computation is performed for each control volume where 



 or g oS S are zero. The recalculated saturation pressure and absent phase composition are stored 

and used as starting values for the next iteration's Newton Raphson solution of equations. 

The saturation pressure computation algorithm discussed was tested for a 3 component, and 10 

component. The results of the saturation pressure computation were compared with the results of 

a commercial simulator Winprop of CMG. 

A three component system with methane, butane and decane was chosen as a test system. The 

initial composition was 0.5, 0.3 and 0.2 respectively. The saturation pressure and vapor phase 

composition was computed at 1680F. The results of the flash calculation are presented in the 

Table 3.  

 

 
A ten component example is shown in Table 4.  



 
 

Development of a Thermal Module 
 
As a first step toward development of a thermal simulator, a black oil model which accounts for 

a water phase and an oil phase was formulated.  Energy balance is added to see the temperature 

distribution in the oil reservoir.  The non-flow heat transfer due to heat conduction of the solid 

matrix is also evaluated in the energy balance equation by Fourier’s law.  Fluid fluxes are 

calculated from Darcy’s equation. 

The structure of simulators being developed at University of Utah allows coupling of different 

physical models (PM) to various discretization models (DM).  The thermal model being 

developed will first be linked to the two-dimensional, block-centered finite element DM. Once 

results are found satisfactory, it will be coupled to a three-dimensional DM.  The ultimate goal of 

thermal model is to add the energy balance equation to the compositional model (under 

development) to observe the distillation effect.  

 

Governing equations of the thermal model are shown below.  



 
Mass balance: 
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:if  Volumetric flow flux of phase i (ft/day) 
:iρ  Molar density of phase i (lbmol/cu-ft) 
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iΦ   Source term of phase i (lbmol/cu-ft day) 

 
Energy balance: 

1

1

ˆ( (1 ) )
Phase

i i i R R Phase
Ei

i i i C
i

S U U
f H k T

t

φ ρ φ ρ
ρ=

=

∂ + −
= − ∇ +∇ ∇ +Φ

∂

∑
∑ i i  

:iU  Molar internal energy of phase i(Btu/lbmol) 
:R  Rock 

:iH  Molar enthalpy of phase i (Btu/lbmol) 
:Ck  Heat conductivity of rock (Btu/ft day R) 
:EΦ   Source term (Btu/cu-ft day)For the calculation of the volumetric flow flux, Darcy’s 

equation is used.  
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=  Gravity const ( lbf/lb) 

:Z  Deep (ft) 
 
In solving the above equations, dependent variables must be chosen. The following dependent 

variables were found to be appropriate.  

 
Po: Oil phase pressure 
Sw: Water saturation  
T: Temperature 
 



Equations are solved using these additional constraints.  
Saturation: 1W OS S+ =  
Capillary pressure: COW O WP P P= −  

( )COW OP f S=  
 
It is necessary to choose fluid property relationships. The fluid property relationships used along 

with appropriate derivatives (necessary for Jacobian calculations) are shown below.  

 
Fluid properties: 
 
Viscosity: 
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Density: 
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Internal energy: 
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Rock property correlations are also essential in completing the formulation.  
Rock properties: 
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Density: 
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Thermal conductivity: 
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Absolute permeability: 
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Relative permeability: 
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The equations are reduced to the mobility form to help construction of the Jacobian matrix.   
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Energy balance: 
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A general discretization procedure for the differential equations is shown.  
 
Mass balance: 
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Finally, the residuals shown above are evaluated in an iterative manner by using the Newton’s 

method.  Jacobian matrix required is calculated analytically.  
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Multiscale Methods 
When physical phenomena at different scales are coupled for simulation, the time step size 

needs to conform to the smallest one.  This approach is computationally demanding.  Multiscale 

simulation is the best technical approach to solve this problem.  For example, in reservoir 

simulation local time-stepping method has been applied to grid refinement around wells. The 

goal is to adopt the multiscale method for fractured/faulted reservoir simulation.  This will allow 

faster and more accurate fractured reservoir simulation. The simulation grid block volume of 

subsurface fractures and rock matrices differ usually over two to four orders of magnitude as 

shown in Figure 2.  The fracture width has been enlarged for visibility.    
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Figure 2: A grid for fracture simulation. 

When large volume differences appear in multiphase flow simulation, the time-step size 

has to be adjusted to accommodate the smallest volume in order to capture the saturation changes 

within the smallest control volume.  In this case, small time-step size is required because of the 

presence of fractures.  Consequently, small time steps have to be used for the entire simulation, 

leading to excessive computational effort. One solution to this problem is applying the multiscale 

method.  The success of the multiscale method heavily depends on the synchronization of these 

two time scales.  At time equals t1 and t2 these two time scales need to be synchronized to ensure 

global and local mass balance.   

The first part of this activity required the incorporation of fractures/faults in finite element 

(MFE)-based simulations and examination of performance without multiscale.  This task was 

completed and simulation results for a complicated domain with sloping fractures are shown in 

Figure 3.   
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Figure 3: Example of a three-dimensional, three-phase simulation with sloping discrete-fractures in 
a complex domain 

 In the development and verification of multiscale algorithms, it is important to be able to 

simulate a variety of boundary conditions at junctions of fractures or other features.  It is now 

possible to simulate domains with no-flow boundary conditions in the interior of the domain.  An 

example of this simulation in two-phase flow is shown in Figure 4.  The faults shown in Figure 3 

are now no-flow barriers.  The water diversion around the faults to production wells is clearly 

seen.  
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Figure 4: The same faults shown in Figure 1 are modeled as no-flow.  Water diversion and oil 
trapping (red) are seen.   

Wells for Unstructured Grids 
Basic well models (vertical, horizontal and slanted) developed for structured grids are not 

appropriate for simulating unconventional wells (multilaterals, MRCs, etc). The basic idea is to 

calculate the well bore pressure and well bore inflow within a box shaped domain that contains 

the entire well through the use of Green’s function.   The box domain is then mapped to the real 

computational domain and the same boundary conditions are applied to solve for block 

pressures.  Based on well bore pressure, well bore inflow rate and block pressure, a well index 

can be calculated for each well segment.  Heterogeneity around such well is accounted for by 

introducing a skin factor along the well trajectory.  Figure 5 shows this idea. 
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Figure 5. Picture showing how unconventional wells are modeled in structured grids. 

The above approach is complicated and requires significant preprocessing.  After all the 

calculations, negative well indices may result.  In this project, intuitive well models, fully 

integrated with the system grid will be developed for unstructured systems.  These well models 

will not require special algorithms. Conventionally wells are placed at the center of a block in 

reservoir simulation with structured grids.  A multiplication factor is necessary if the well is off-

center. In the intuitive well model, the well will be placed at the corner. The advantage of this 

placement is more obvious for unstructured grids.  The same non-conventional well in Figure 5 

is shown in Figure 6 with a few tetrahedral elements surrounding one segment of the well.  One 

advantage of this intuitive well model is that the unstructured grid used for the simulation 

completely conforms to the layout of the well.  The flux between tetrahedral elements and the 

well can be calculated based on the pressure at the block center and well bore and the geometry 

of tetrahedral elements.  The intuitive well model requires no preprocessing of any kind and 

heterogeneity around wells can be fully accounted for. 
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Figure 6. The intuitive well model, where the system grid conforms to the well.  

 

Consider a nonconventional well in three dimensions (shown in Figure 7). The control volume is 

adjacent to the well.  With the robust gridding method described above, the well is directly 

incorporated in the grid that is created.  The flux between tetrahedral elements and the well can 

be calculated based on the pressure at the block center and wellbore, and the geometry of 

tetrahedral elements.  The interpolation function for flux calculation between the element and the 

well is based on the steady state solution to the cylindrical well flow problem. 

 

 

 

 

 

 

 

 

 

Figure 7: Intuitive well model for complicated deviating wells 
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In the above, q is the phase flow rate, rw is the well radius, P is the block pressure and Pbhp is the 

bottom-hole pressure.  The well model shown here does not require special algorithms.  The 

advantage of this intuitive well model is that the unstructured grid used for the simulation 

completely conforms to the layout of the well.  The intuitive well model requires no 

preprocessing of any kind and heterogeneity around wells can be fully accounted for. 

 

The well model can also be used for representing multilateral and “fish-bone” type wells.  In 

these representations, the gravity head due to different phases needs to be accounted for 

accurately and special algorithms have been developed to consider these effects.   

Fracture Characterization and Mapping 
This task is concerned with generating faults and fractures using all the geologic data, simulating 

the resulting domain (or multiple realizations) quickly and verifying and adjusting fracture 

networks using all the available production data.  

 

Several methods of generating fracture networks were tested.  The properties of fracture affected 

rock can vary widely.  Depending on the way in which fractures are formed, they may be open 

conduits or deformation bands which restrict flow.  One conceptual diagram with possible 

variations in grid block permeabilities due to the presence of fractures is shown in Figure 8. 
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Figure 8: Conceptual diagram showing different types of fractures or deformation bands 
contributing to the permeability of the host rock. 

The type of porosity and permeability that can be generated quantitatively in these settings was 

calculated and is shown in Figure 9.   

 

 

 

 

 

 

 

 

 

 

Figure 9: The figure shows enhancements and reductions in porosities and permeabilities from 50 
md and 500 md matrix rocks.   
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Another approach integrates fieldwork with deterministic and stochastic modeling to gain insight 

into how three-dimensional permeability structure of a fault develops through time. Using 

general conclusions drawn from the physical model, a three-dimensional stochastic model for the 

fracture structure can be developed.  A tool that can construct stochastic fracture features is 

Fracman.  A fracture network created using this tool (supplied by Golder Inc.) is shown in Figure 

10.  A grid is being created for this domain and simulations with in the discrete-fracture model 

and in the upscaled mode are being performed.   

 

 

 

Figure 10: Figure showing fracture networks generated using a stochastic approach 

Once the fracture networks (like the one shown in Figure 10) are created, it is important to create 

grids for these complex three-dimensional fractured systems. Several different tools were 

examined to accomplish this goal. These included CUBIT (developed at the Sandia National 
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Laboratory), LaGriT (developed at the Los Alamos National Laboratory) and Tetgen (developed 

at the Weierstrass Institute for Applied Analysis and Stochastics, Germany).  CUBIT has been 

found appropriate to grid curved features also.  A gridded complex domain with curved fractures 

is shown in Figure 11.    

 

 

Figure 11: A domain with complex curced features gridded using CUBIT 

Three-phase simulations were performed on this domain, results of which are shown in Figure 

12.  

 

 

 

 

 

 

 

Figure 12: Gas saturations after primary production and water saturations after water injection in 
a complex system with curved features 
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Parallel Computing Schemes 
The emphasis was on parallel codes for highly heterogeneous systems, where fractures/faults and 

wells intersect and form complicated domains.  The most important consideration in performing 

computations in parallel (on multiple processors) is robust domain decomposition. ParMetis and 

Zoltan were evaluated for domain decomposition of unstructured systems.  ParMetis is a general 

domain decomposition tool developed at the University of Minnesota.  Zoltan is a dynamic 

parallel data migration program developed at the Sandia National Laboratory.  Scalability of a 

250,000 element system on 16 processors was shown using this approach.  A similar approach is 

being used for decomposition of fractured/faulted systems.   

 

Effectiveness of parallel computation is determined by the quality of domain decomposition.  A 

nonconventional well in a regular finite-difference grid is shown in Figure 13.  If the domain is 

decomposed into the four regions shown in the figure, blocks that the well passes through (which 

happen to be in domain 3) must be assigned as ghost blocks to domain 2, since communication 

between these blocks is required.  This dramatically increases the communication time between 

the processors and reduces the parallel computing effectiveness.   

 

 

 

 

 

 

 

Figure 13: Difficulty of domain decomposition with regular grids and nonconventional wells 

1 4

2 3
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To overcome this difficulty, well location and connectivity of the well with the surrounding 

elements are automatically taken into account in the approach developed at the University of 

Utah.  The concept is shown in Figure 14.  

 

 

 

 

 

 

 

 

 
Figure 14: Domain decomposition concept for unstructured grids with nonconventional well 

In Figure 14, a two-dimensional domain with an unconventional well is shown.  Connectivity of 

the well to the neighboring elements is identified and specified.  Based on this ParMetis performs 

the domain decomposition of the type shown in Figure 13.   

Common Component Architecture for Reservoir Simulation 
The basic idea in this task was to create standardized modules that can be exchanged between 

different simulators and applications.  A number of steps to achieve this objective have been 

completed.  Decoupling of the physical model and the discretization method has been 

demonstrated.  Most input files now use the XML format and do not need special parsers.  All 

components are modular and use other well-structured modules such as PeTSc.  Parallel tasks 

have been built into the simulators and use ParMetis, the domain-decomposition module.  

1
2

3

Well
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The Common Component Architecture (CCA) developed at the Center for Component 

Technology for Terascale Simulation Software (CCTTSS) is an effort at the creation of a 

component-based software development model suitable for the needs of high-performance 

scientific simulation.  CCA defines specifications for high-performance scientific components, 

and frameworks and is designed to glue components together through network.  CCA also 

promotes the development of domain-specific standard interfaces, for example, a standard 

interface for reservoir simulation. CCA is the answer for creating standards in reservoir 

simulation.  

CCA components will be created from the individual modules using simple header commands 

described in the CCA protocol.  Modules are being created to be CCA compliant.   

Summary 
All reservoirs are fractured to a certain degree.  The main goal of this project was to overcome 

difficulties associated with the representation and simulation of complex fractured/faulted 

systems with complicated wells.  Significant advances were made in achieving this goal with the 

development of modular simulators that are able to access the most modern computational 

algorithms.  A generic well model to represent complex wells was developed and parallel 

computing scheme to decompose unstructured-grids with complex wells was devised.  A 

methodology to create three-dimensional unstructured grids of fractured/faulted domains was 

identified.  First steps in the development of compositional and thermal finite-element models 

were taken.  This will lead to the capability of simulating different physical processes (for 

example, primary production and water flooding followed by CO2 or steam flooding).  A 

number of technology transfer activities were carried out to disseminate the ongoing research 
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efforts.  A close integration of the efforts of geoscientists and engineers made it possible to 

create simulations of geologically realistic domains.  

This project will create tools to better manage fractured/faulted reservoirs and reservoirs with 

complex wells.  Better management of these reservoirs will lead to significant improvement in 

oil and gas production from these reservoirs.  

 

Milestone and Deliverable Schedule 
 
The milestone that was scheduled to be met at the end of first year of the project was complete 
decoupling between the physical models and discretization methods. This was accomplished.  
All the tasks are progressing per schedule.  

 

Briefings, technical presentations 
 

1. A Technical Presentation about the benefits of the project was made to the members of 
the Energy and Geosciences Institute at the University of Utah in September 2004. 

 
2. A Technical Presentation of the results of some of the models was made at a meeting 

with BHP, Occidental and El Paso, Houston, October 2004.  
 

3. A Paper on three-dimensional, three-phase finite-element simulation was presented in 
January/February 2005 at the International Reservoir Simulation Symposium in Houston, 
Texas. 

 
4. One Day Symposium on Fractured Reservoir Characterization and Simulation was 

organized on March 1, 2005 in Salt Lake City Utah.  The Program and presentations are 
available upon request.  

 
5. Two Presentations at the Geologic Society of America Meeting in Salt Lake City, 

October 2005 
 

Budget 
 
The budget for budget periods 2 and 3 is shown below.  
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Budget for Years 2 and 3

Totals for
Year 2 Year 3 Year 2 and 3

Graduate Students (3) 66,000$         72,000$         138,000$       
Undergraduate Students 5,000$           5,000$           10,000$         
Benefits (9%) 6,390$           6,930$           13,320$         
Post-doc 42,000$         45,000$         87,000$         
Post-doc Benefits (33%) 13,860$         14,850$         28,710$         
Faculty Salaries 42,075$         43,350$         85,425$         
M. Deo, Schamel, Forster
Faculty Benefits (33%) 13,885$         14,306$         28,191$         
Consultant (Dr. Jim Evans, USU) 10,300$         10,600$         20,900$         

Total Benefits 34,135$         36,086$         70,221$         

Supplies 5,000$           5,025$           10,025$         
Travel 6,000$           7,500$           13,500$         
Total Direct Costs 210,510$       224,561$       435,071$       

-$                  
Indirect Costs 104,202$       111,157$       215,359$       
(49.5% of all direct costs
except equipment)
U of U Cost Share
Graduate Student Salaries 30,000$         32,050$         62,050$         
Benefits 2,700$           2,885$           5,585$           
Indirect Costs 16,186$         17,293$         33,479$         
Total Cost Share 48,886$         52,228$         101,114$       

Total Costs 314,712$      335,718$      650,430$      

DOE Share 265,826$      283,490$      549,316$      

 


