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FLOW IN POROUS MEDIA, PHASE BEHAVIOR
AND ULTRALOW INTERFACITAL TENSIONS:
MECHANISMS OF ENHANCED PETROLEUM RECOVERY

Department of Chemical Engineering and Materials Science
University of Minnesota

ABSTRACT

A major program of university research, longer-ranged and more fundamen-
tal in approach than industrial research, into basic mechanisms of enhancing
petroleum recovery and into underlying physics, chemistry, geology, applied
mathematics, computation, and engineering science has been built at Min-
nesota. The 1985-86 outputs of the interdisciplinary team of investigators were
again ideas, instruments, techniques, data, understanding and skilled people:

e 28 scientific and engineering publications in leading journals.

e Two Ph.D. theses, the author of one going to industry, the other
to a university.

e Numerous presentations to scientific and technical meetings, and to

industrial, governmental and university laboratories in the U.S.,
Europe and South America.

e Vigorous program of research visits to and from Minnesota.

This report summarizes the papers and theses that emerged during the
period 1 Oct 1985 to 30 Sept 1986 and features fifteen major accomplishments
of the program during that year. Abstracts of the 28 publications and 2 theses
are reported and several major accomplishments are reported in greater detail.
Further details of information transfer and personnel exchange with industrial,
governmental and university laboratorires appear in Quarterly Reports avail-
able from the Department of Energy and are not reproduced here.



INTRODUCTION

This report summarizes the outputs that emerged from the Minnesota
research program during the period 1 Oct. 1985 to 30 Sept. 1986. The goals of
the program are ideas, instruments, techniques, data, understanding, and skilled
people for enhancing the recovery of petroleum in the short term as well as in
the longer term, and doing so especially by elucidating basic mechanisms. For
then the uncertainties of process design, particularly in scale-up, control and
optimization, are reduced, and innovative process development is promoted.

The original focus was surfactant-based chemical flooding, but the
approaches taken were sufficiently fundamental that the research, longer-ranged
than most industrial efforts, has become quite multidirectional. Many current
outputs of the program are basic enough to pertain to pertroleum recovery more
broadly and to other energy-related technologies as well.

- Research Highlights

The emphasis of the research program is on understanding basic physical
and chemical mechanisms with the goal of transforming this knowledge into the
concepts and mathematical formulations needed for engineering process design
and analysis. The research reported here can be discussed conveniently under
three broad headings:

1. SCIENCE OF MICROSTRUCTURED FLUIDS AND APPLICATION TO
THEIR PHASE BEHAVIOR, INTERFACIAL TENSION, AND RHEOLOGY.
Leading examples of fluid microstructures are the surfactant-based micelles,
microemulsions, liquid crystals, vesicles, etc. all of which are found in chemical
flooding formulations. Interfaces and adsorbed layers or thin films on solids are
fiuid microstructures that aid and abet the wettability syndromes that govern
capillary pressure and relative permeability behavior.

Microemulsions and their precursors. The alm of the Minnesota program
has been to identify the microstructure of microemulsion in midrange composi-
tions (oil and water present in comparable amounts) and to determine what role
this microstructure plays in the ultralow tensions useful to enhanced oil
recovery. It has long been generally accepted that at low water or oil content a
microemulsion is a solution of sphere-like swollen micelles or inverted micelles.
However, where ultralow tensions are observed between both coexisting oil-rich
and water-rich phases the oil /water ratio is near unity and there has been con-
siderable controversy concerning the microstructure there. The hypothesis put
forward by Minnesota researchers at 1975 and 1976 Gordon Research Confer-
ences was that microemulsion in midrange compositions is a bicontinuous fluid
with oil-rich and water-rich regions separated by sheet-like zones of surfactant.
The existence of bicontinuous microemulsions has now been confirmed by Min-
nesota researchers and several international groups elsewhere. The current
state of understanding of microemulsions is presented in Section 1. There also
the behavior of microemulsions is contrasted with that of molecular solutions in
which the surfactant is replaced by mere amphiphiles such as monohydric
alcohols. Many of the patterns originally associated with microemulsions are
common to all hydrocarbon, brine and amphiphile. However, the lifetime or



persistence of microstructure distinguishes microemulsions.

New controlled environment, wvitrification electron microscopy system. The
most direct method for determining the microstructure of microemulsions and
liquid crystalline dispersions is to freeze fluid samples and view them in the elec-
tron microscope. However, to avoid freezing to artifacts requires that freezing
take place fast enough to vitrify the fluids, i.e., to suppress cyrstallization of
solid phases. Such a system has now been constructed for viewing thin layers
(2,000 — 3,000 A) of microstructured fluids. It is described in Section 2. The
University of Minnesota has applied for a patent for the system. It controls the
activities of the volatile components of the fluid to prevent composition change
and plunges the sample in liquid ethane or propane which freezes it fast enough
for vitrification. The controlled environment vitrification system has been used

to study vesicle and liquid crystalline dispersions and is currently being applied
to micellar solutions.

Mathematical modelling of bicontinuous structures. Surfactants in some
microemulsions and cubic liquid crystals lie in sheet-like zones separating
water-rich and oil-rich regions into separate sample spanning labyrinths. Any
theory or model of the properties of these systems requires a quantitative
description of their microstructures, which amounts to construction of dividing
surfaces of prescribed curvature. The mathematical construction of families of
such surfaces is presented in Section 3 and several examples are pictured.
These constructs form the starting point of an on-going program to determine
the surface forces and phase behavior of microemulsions and liquid crystals.
Applications to X-ray scattering studies of microemulsions are given in D. M.
Anderson’s Ph.D. thesis (Publication 2) which was published June 1986. The
constructs are also useful as cellular models for computing permeability and
dispersion in porous media.

Self-diffusion in  hydrocarbon, brine and surfactant solutions. The
diffusivitities of the different molecules of colloidal dispersions and solutions pro-
vide information about fluid microstructures and their lifetimes. The old tech-
nique of radioactive tracers, chemical analysis, Taylor dispersion and the like
are cumbersome and time consuming. Quasielectric light scattering, a newer
technique, has an uncertain interpretation for concentrated solutions of scatter-
ers. The spin echo, pulsed field gradient (SEPFG) nuclear magnetic resonance
method on the other hand yields the self-diffusion coefficients of all the molecu-
lar constituents of a mixture unambiguously, accurately and relatively rapidly.
We have applied this technique to hydrocarbon brine, and amphiphile mixtures.
We have found that solutions of small ethoxylated alcohols with hydrocarbon
and brine exhibit the same qualitative patterns of phase behavior, electrical
conductivity and quasielastic light scattering as do microemulsions, indicating
that these solutions are also microstructured (See Section 1.) However, the
self-diffusion coefficients of all components of the solutions show that they
diffuse as individual molecules (Publication 8). Thus, the microstructures in the
small ethoxylated alcohol solutions are shorter-lived than those in microemul-
sions. With increasing alkane chain length the ethoxylated alcohol solutions
become typical microemulsions. SEPFG NMR measurements have led to the
discovery in these microemulsions of a temperature-driven transition from a
bicontinuous microemulsion to a swollen micellar solution in a 50/50 oil-water
microemulsion system. This system is presently being studied further.



2. SCIENCE OF POROUS MEDIA AND FLOW THEREIN AND OF
CHAOTIC COMPOSITES. Porous media encompass sedimentary rocks, soil,
other materials in nature and technology. A porous medium is a chaotic com-
posite of solid and void, the void or porespace always containing one or more
fluid phases. The science of porous media and flow therein is the science of
disordered porespace morphology and the flow and transport dictated by this
disorder. The thrust of the Minnesota program has been to introduce the con-
cepts of modern statistical physies (in particular, percolation theory, effective
medium theory, renormalization theory, and fractals) to achieve a unified
theory of porous media and processes therein. During this report period further
progress was made in the advancement of the theory of stability in frontal dis-
placement, the statistical network theory of relative permeability in porous
media, and the molecular theory of fluid-solid interactions and of transport in
micropores. With the aid of the theory a mechanism based simulation of oil
recovery processes is developed and applied to various two- and three-phase
flooding situations. The theory is also used to test Stone’s empirical correlation
for three-phase relative permeabilities.

Wetting films in porous media. The augmented Young-Laplace equation is
used to study the structure, distribution and stability of films and pendular
structures of perfectly wetting fluids in axisymmetric pores (See Section 4). The
elements of the theory are the interfacial tension and disjoining potential (or
pressure). Both continuous and disconnected meniscus geometries have been
considered. The results of these calcuations for single and multiple pore micros-
copic systems have been applied to macroscopic systems by the application of a
statistical theory of multiphase transport in porous media developed by Heiba.
The results indicate the existence of two transport mechanisms: a capillary
jump mechanism by which the non-wetting fluid invades pores and a film
drainage mechanism by which wetting films and pendular structures, remaining
after the invasion of the non-wetting fluid, continue to drain. The difference
between the two mechanisms is apparent at low wetting phase saturation in
both the predictions of the statistical theory and in displacment experiments of
perfectly wetting and intermediately wetting fluids in sintered teflon synthetic
porous media.

Molecular theory of the 1onic double-layer at a charged wall. The generalized
van der Waals theory of inhomogeneous fluids has in recent years been a useful
tool for studying molecular structure, stresses and thermodynamic potentials of
fluids at solid walls. We have applied the theory to the double-layer problem of
an electrolyte at a charged solid surface. The theory compares as well with
Monte Carlo simulations on a model electrolyte as does the more classical
Gouy-Chapman theory. However, the advantage of the van der Waals theory
over the traditional Gouy-Chapman theory is that the solvent density and
dielectric properties can be found self-consistently with the ionic distributions
near the solid surface. Surface tensions, ion adsorption, double-layer electrical
potential, and differential capacitance are predicted by the theory.

Adsorption, diffusion and flow of fluids in microporous media. A molecular
theory has been developed which predicts density profiles, stresses and surface
or disjoining forces, tracer diffusivity, and flow of fluids in micropores and thin
films. The theory compares well with computer simulations (Section 6). In its
simplest form it relates the local transport properties of inhomogeneous fluid to
those of homogeneous fluid at a local average density. The choice of the local



average density is drawn from a rigorous formula for a one-dimensional fluid
(Publication 11). This work complements our earlier work on wetting transi-
tions and extends to thin thin-films and adsorbed layers and our earlier work on
the spreading of thick thin-films.

3. SUPERCOMPUTER-SCALE THEORETICAL. ANALYSES AND
MATHEMATICAL MODELING. The Minnesota group has harnessed applied
mathematics, numerical mathematics, and up-to-date scientific computers and
computer software and is solving heretofore intractable problems. Modern finite
element mathematics has emerged as the workhorse for the two-dimensional
and three-dimensional physics and engineering involved. In many cases a super-
computer is needed. Late in 1981 Minnesota became the first university to
install a supercomputer, a CRAY-1, to the great advantage of the research
group. To this was added the CDC Cyber 205 supercomputer. The Cray-1 was
recently replaced by a Cray-2. The group continues to pursue ever more reli-
able, cost-effective methods, whether on the CRAY-2, Cyber 205, or departmen-
tal VAX and Apollo midi-computers. Among the benefits of these facilities have
been graduates skilled in matrix-handling methods, continuation schemes,
Schwarz-Wenderoff approximation (for integral and intergrodifferential systems),
stability analysis, efficient representation of boundary regions and in automati-
cally adaptive discretizations for systems with sharp fronts or waves.

Adaptive, finite element simulation of frontal displacement. In a continuing
investigation of frontal stability in immiscible displacement we have developed
an efficient algorithm for the one-dimensional two-phase cases (Section VI).
The algorithm incorporates the adaptive finite element method that has evolved
from Benner’s and Heiba's theses. A novel feature is the formulation of tran-
sient asymptotic boundary conditions for the semiinfinite frontal displacement
problem. The code has been developed on the Cray-2 vectorization and multi-
tasking. The accuracy and efficiency of the program has been tested against
the analytic results Foleas and Yortsos obtained from their model. The asymp-
totic boundary condition has proven to be a valuable asset to the analysis.

Mechanism-based simulation of oil recovery. As a natural companion to
development of a multiphase theory of capillary pressure and relative per-
meabilities, the thesis work of A. A. Heiba (Publication 13, 14) presents a one-
dimensional simulator that closes the loop on computation of the local satura-
tion and saturation-dependent properties. The simulator is based on an adapa-
tive finite element method, a predictor corrector algorithm for advancement in
time. A special feature of the simulator is that mass is automatically conserved
in the adaptive redistribution of elements. The properties are computed from
the statistics of pore-filling sequences. Presently, the simulator is time consum-
ing even on a supercomputer and so will be more useful in investigating issues
of three phase displacement where few reliable data on capillary pressures on
relative permeabilities exist, and in rational design of laboratory-scale experi-
ments on three-phase flow. However, as computers become faster and with the
expected continued simplification of the theory it could eventually form the
basis of a practical simulator.

Molecular theory calculations and molecular simulations. In trying to under-
stand the role of interfacial tensions, fluid-rock interactions, thin films and the
like on fluid distribution and flow in porous media, we have developed a



molecular-level program in which theory and computer simulations (Monte
Carlo and molecular dynamics) are closely coupled (Section 6). Theory is tested
against molecular simulations which in turn suggest modifications or new direc-
tions for the theory. In connection with the theoretical work, we have
developed finite element techniques for handling nonlinear integral equations,
further development of the Schwarz-Wendroff method, asymptotic analysis of
boundary regions and adaptive element placement being areas of special inno-
vation. We are currently applying the molecular dynamics technique to surfac-
tant solutions to try to understand at the molecular level the mechanisms of
micellization, liquid crystallization, and microemulsion formation. The algo-
rithm (Section 2) for construction of three-dimensionally distributed surfaces of
prescribed mean curvature is unique, allowing construction for the first time
several known three-dimensionally periodic surfaces, will be valuable in a
variety of applications including surfactant solution microstructure, thin film
and pendular structure distributions in porous media, and foam and emulsion
structural representation. : ' ‘



1. MICROEMULSIONS AND THEIR PRECURSORS

Synopsis

Amphiphiles are generally defined with reference to water. An amphiphilic
molecule possesses a hydrophilic (water soluble) moiety and a hydrophobic
(water insoluble) moiety separable by a mathematical surface. In this paper the
only hydrophobic moieties considered are those composed of hydrocarbon chains
(as opposed, for example, to fluorocarbon chains). According to IUPAC [1], sur-
factants are substances which lower the surface tension of the medium in which
they are dissolved and/or the interfacial tension with other phases. This
definition is too broad as it would include substances such as benzene which
lower the surface tension when dissolved in water but have none of the other
properties expected of a surfactant. A generally accepted restriction of the
definition is that surfactant molecules must be amphiphilic [2-4]. We adopt this
restriction and, furthermore, share the view of Laughlin [5] that those properties
associated Wlth surfactancy (e.g., detergency, co-solubilization of oil and water,
emulsification, foamlng, and the like) are not common to all amphiphiles. He
reserves the term "surfactant" for molecules which form association colloids
such as micelles and liquid crystals. Thus, amphiphiles such as long-chained
fatty acid salts (soaps), sodium alkyl sulfates and sodium alkyl sulfonates
(detergents), and lecithins are clearly surfactants, whereas monohydric
straight-chained alcohols and amines are mere. amphlphﬂes A special property
of the association colloids formed by amphiphiles is that the amphiphiles associ-
ate into monolayer or sheet-like structures with the water soluble moieties on
one side of the sheet and the water insoluble moieties on the other side (a
bilayer is a pair of opposed monolayers). In the spirit of Laughlin, we define
surfactants as amphiphiles which form association colloids distinguished by sheet-
~ like surfactant microstructure.

By alcohol titration of an emulsion of oil and water stabilized by a surfac-
tant, Schulman and coworkers obtained isotropic, transparent fluids [6-9]. Hoar
and Schulman [6] described these fluids as what would in the current language
of the field be called an aqueous solution of ocil-swollen micelles and an oil solu-
tion of water-swollen inverted micelles. Noting that small spherical objects (of
" the order of 5 to 100 nm in diameter) were observed by chemical staining elec-
tron mlcroscopy, Schulman, Stoeckemus and Prince [9] called these fluids "micro
emulsions” and described them as "optically isotropic, fluid, transparent oil and
water dispersions, consisting of umform spherical droplets of either oil or water
in the appropriate continuous phase."

In 1976, Scriven [10,11] put forward the idea that microemulsions containing
‘comparable amounts of oil and water could be bicontinuous, with irregular
sample-spanning water-rich regions separated by surfactant sheet-like zones
from irregular sample- spanning oil-rich regions. As in two-component associa-
tion colloids, the surfactant sheet-like zone admits a dividing surface on one
side of which are the water-soluble moieties of the surfactant molecules and on
the other side are the water-insoluble moieties. Thus, the surfactant sheet-like
zone provides a topological ordering of the water-rich and oil-rich regions of the
microemulsion, water on one side of the surfactant sheet and oil on the other.
To include the possibility of such a microstructured fluid in the classification of



microemulsions we prefer the following definition: A microemulsion is a thermo-
dynamically stable, isotropic, topologically ordered microstructured phase contain-
ing at least surfactant, hydrocarbon and water. With the interpretation that the
topological order is that imposed by sheet-like surfactant zones, the above
definition of microemulsion admits the possibility of dispersed droplet structures
(swollen micellar or inverted micellar solutions) as well as bicontinuous ones.
Often salt, alcohol, or a second surfactant is added to the surfactant-
hydrocarbon-water mixture to obtain an isotropic microemulsion with the
desired phase behavior. In many of the microemulsions of practical importance
the surfactant and hydrocarbon materials are mixtures whose compositions are
often not very well characterized.

SURFACTANT

SURFACTANT
CRYSTALS

CYLINDRICAL MICELLES

INVERTED
2 MICELLES

O1L

Figure 1. Schematic oil-water-surfactant phase diagram with microstructures
depicted. Ref. 12.

In Figure 1, we present an idealized ternary phase diagram in which are illus-
trated fluid microstructures that have been identified in solutions of surfactants
with water and/or oil [12-14]. The existence of solutions of spherical and
cylindrical micelles or inverted micelles is generally accepted as are lyotropic
liquid crystalline phases with lamellar, hexagonal and cubic symmetries. How-
ever, the detailed local shapes of the surfactant sheet-like zones, the role and
importance of molecular fluctuations and bending and stretching motions of the
sheet-like zones in micellar solutions and liquid crystals are issues not entirely



resolved and are the subjects of much current research. A convincing body of
data now exists supporting the existence of bicontinuous microemulsions, but
their detailed microstructure has not been established.

One of the goals of the research program at the University of Minnesota is to
understand the relationship between molecular structure, fluid compositions and
the properties of microemulsions. A logical step toward attaining this goal is
to distinguish solutions of brine, hydrocarbon and mere amphiphile from
microemulsions of brine, hydrocarbon and surfactant. To this end we have
been carrying out a systematic study of the microstructure of a sequence of
solutions of straight-chained ethoxylated alcohols with hydrocarbon and brine
[15-22]. The sequence begins  with  propanol and includes
H(CH,), (OCH,CH,),OH (denoted as C E_) with n ranging from 3 to 12 and m
from O to 7. We have made a concerted effort to investigate the low end of this
sequence to try to capture the pre-surfactant trends and pre-microemulsion pat-
terns of amphiphiles that do not qualify as surfactants. Our work is comple-
mentary to the extensive studies of microemulsions of C,E, carried out by
Kahlweit and coworkers [23- 27] Lindman and coworkers [28 29] and Shinoda
and coworkers [30,31]. :

We report here the status of our studies of CgE,, CyEy, C5; and Cglhy —
hydrocarbon-brine systems. Before giving these results, however, we present in
the next section the established behavior of microemulsions with which we con-
trast that of these simple systems.

Patterns of Microemulsion Behavior

Because of their possible applications in enhancing oil recovery, the phase and
interfacial behavior of microemulsions has received particular attention during
the last decade. The special interest is to find the thermodynamic conditions
for which a microemulsion phase has ultralow tensions against coexisting oil and
water-rich phases. Under these conditions microemulsions 1113ected into an oil
reservoir will surround oil blobs trapped by capillary forces in the pores of the
rock and will lower the overall tension sufficiently to mobilize the trapped blobs
into a recoverable oil-bank.

For a given oil-water-surfactant system, the most frequently used method to
adjust the phase splits and tensions in a microemulsion system is to add an
alcohol and a salt, often NaCl. An example [32] of the phase behavior in a
sahmty scan of a low tension microemulsion system is shown in Fig. 2. The sys-
tem is formed by mixing a given volume of brine solution with an equal volume
of a mixture of alcohol, surfactant, and hydrocarbon. The type and amount of
alcohol have been chosen so that in the three-phase region the microemulsion
(middle phase) will have ultralow tension against both the oil-rich (top) and
water-rich (bottom) phases. In the salinity scan the phase splits obey the 232
progression characteristic of low-tension microemulsions. Following Knicker-
bocker et al. [15 16], we denote by 2 a two-phase system in which the
microemulsion is the lower, water-rich phase; by 3 a three-phase system in
which the microemulsion is the middle phase and contains appreciable amounts
of oil and water; and by 2 a two-phase system in which the microemulsion is the
upper, oil-rich phase.



10

The pattern of interfacial tension behavior of a low-tension salinity scan is
given in Fig. 3. The salinity at which the microemulsion interfacial tensions
against the coexisting oil-rich phase and water-rich phase are equal, i.e.,
Yom = Ywm, Was designated as "optimal" by Reed and Healy [33,34] because in
this state the microemulsion is most favorable for coating and mobilizing
capillary-trapped oil blobs. The ratio of the volumes of oil and water in the
microemulsion-phase oil is approximately unity in the optimal microemulsion
state shown in Fig. 3. Reed and Healy noted this and found that it is generally
true for low tension microemulsions. Besides being a fascinating fact, the corre-
lation of equal oil-water uptake with optimal tension lets one replace tension
measurements by the easier volume uptake measurement in scanning candidate
formulations for ultralow-tension microemulsions.

Figure 2. Salinity scan of a sodium sulfonate surfactant, isobutanol, n-
hexadecane, and NaCl brine mixture. The surfactant is sodium 4-(1-
heptylnonyl) benzenesulfonate (SHBS). Mixtures were in the volume percent of
about 5% surfactant plus alcohol, 45% hydrocarbon and 50% brine. The brine
ranged in salinity from about 0.2 to 2 wt% NaCl. Ref. 32.

As illustrated by the example given above, the search for a surfactant formu-
lation for enhancing oil recovery has generally involved the scanning of at least
two field variables to find conditions under which the microemulsion will have
ultralow tension against coexisting oil-rich and water-rich phases. A field
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variable is defined as one which is the same in all phases in thermodynamic
equilibrium.  Common choices of field variables in microemulsion studies are
the activity of added salt, alcohol or cosurfactant, temperature, pressure,
hy%rocarbon chain length, and chain length of the hydrocarbon moiety of the
surtfactant.
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Figure 3. Interfacial tensions between microemulsion and oil-rich and water-
rich phases. On the right is shown the ratio of volume of water or oil to volume
of surfactant in the microemulsion phase. The system is a mixture of oil, NaCl
brine, tertiary amyl alcohol, monoethanol amine salt of an alkylorthoxylene sul-
fonic acid. Composition is 4% surfactant and alcohol, 48% oil and 48% brine.
Ref. 34.

The phase and tension behavior that has been observed can be summarized
in terms of the generic patterns shown in Fig. 4. In Fig. 4, as Field Variable 1
increases from a low value, a middle or third phase appears, the 3-phase tie tri-
angle springing from a critical endpoint tie line of the 2-phase system. As Field
Variable 1 continues to increase, the middle phase progresses from water-rich to
increasing oil-rich until the tie triangle collapses into a critical endpoint tie line
of the 2-phase system. As one of the critical endpoints (CEP) is approached,
the tension between middle phase and its near-critical partner of course
approaches zero. As Field Variable 2 increases the two CEP’s move together,
i.e., the range of Field Variable 1 needed for a 2 to 3 to 2 scan is reduced. At
sufficiently large Field Variable 2 the two CEP’s collapse into a tricritical point
(TCP). Since all three phases of the three-phase system become identical at the
TCP, it follows that the tension at optimal salinities will decrease as Field Vari-
able 2 is increased towards the TCP. Furthermore, as the three phases tend to
become increasingly more alike it is reasonable to expect oil and water to be
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equally welcome in the middle phase, i.e., to expect the oil-to-water ratio to
tend towards unity as the TCP is approached. In the example shown in Fig. 2,
Field Variable 1 is salinity (which should be converted to salt activity to be a
proper field variable). Field Variable 2 is the alcohol which was added to
advance the microemulsion towards the TCP and obtain ultra-low tension at
optimal. The patterns represented in Fig. 2 have been verified for many fleld
variables. For example, Bennett et al. [35] have observed the trends displayed in
Fig. 4 with both a pure and a commercial alkylaryl sodium sulfonate surfactant
with salinity as one field variable and carbon numbers as the other field vari-
able (in hydrocarbon mixtures average carbon numbers have been found to
function as field variables [36,37]. Kahlweit and coworkers [23-27] have demon-
strated the patterns of Fig. 4 for ethoxylated alcohol-alkane-water mixtures
with temperature and alkane carbon number as field variables. Kilpatrick et al.

{119,20] have found them for alkane carbon number and ethoxylated alcohol
omologous series.

WATER - AMPHIPHILE - HYDROCARBON PHASE DIAGRAMS

:'2-3-T PHASE SEQUENCE =i

FIELD VARIABLE 1

FIELD VARIABLE 2 : TOWARD TRICRITICAL POINT >

~ Figure 4. Generic progression of amphiphile, hydrocarbon, water ternary phase
diagrams. Ref. 20.

To model microemulsion as an isotropic fluid with water-rich and oil-rich
regions separated by sheet-like surfactant zones, Talmon and Prager [38,39]
introduced the following statistical theory. They used the Voronoi polyhedral
construction, Fig. 5, to randomly intersperse oil and water regions. They
assumed that the surfactant lies entirely on the polyhedral faces separating the
oil and water regions. The theory yields the purely entropic free energy density
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f = clcT[qboln(%c-q5o) + ¢y ln(%qﬁw)] , (1)

where k is Boltzmann's constant, T the absolute temperature, ¢, and ¢, the oil
and water volume fractions, ¢ is the number density of Voronoi polyhedra, w a
volume parameter characteristic of the size scale of the microstructure of the
microemulsion, and e the base of natural logarithms. The surfactant per unit
volume ¢, given by the formula ‘

¢ = 5.8205¢Y/3 ¢, — 17.5205¢%2 ooh,, (2)
= [Ac'/® — B¢, -

In this expression, 5.82¢/ 360d, is the mean area of oil-water boundary per unit
volume and 17.5202/3¢0¢W is the mean edge length per unit volume of those
Voronoi polyhedral faces that separate oil and water. The parameter o; gives
the number of molecules per unit surfactant internal oil-water area.

Figure 5. A Voronoi representation of a microemulsion. A) Two dimensional
example. Shaded regions are occupied by oil-rich fluid, unshaded by water-rich
material; heavy lines indicate the surfactant sheets. B) Typical Voronoi
polyhedron. Ref. 38.

The amount of surfactant that can reside between oil and water regions
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depends on the curvature of the surfaces dividing these regions. It is a
mathematical artifact of the Voronoi tesselation that all the curvature lies
along the polyhedral edges. Thus, the parameter o, represents the effect of cur-
vature on the inventory of surfactant in the sheet-like surfactant zones.

In the Talmon-Prager theory A = 5.82c; and B = 17.504 are adjustable
parameters. Davis and Scriven [40] showed that the 232 phase sequence is
predicted by the theory if it is assumed that B = B; + B, ¢, where B,
advances as field variable (see Fig. 6). If salinity is the field variable, the
interpretation of Fig. 6 is that an increase in salinity increases the tendency of
the sheet-like surfactant zones to curve into the water-rich regions.

A=2, Bs B, P,

1.0
-.8 By=-0.075 B,=-0.06 B,=-0.03 B,=-0.01 B,=0.00

L 6
CS-.4

3
h.Z\l klgl/\”/\z

0 ¢0 —> 1.0

1.0
L8 BZ=O‘OO Bz=0.0I 82=O.O3 BE=O.06 BZ=O'095

0 .2¢4 6 810
0 ;

Figure 6. Sequence of ternary phase diagrams, opening and closing at critical
end points (CEP), predicted by the Talmon-Prager model. Ref. 40.

Variations of the Talmon-Prager theory have been developed by de Gennes
and coworkers [41] and by Widom [42]. de Gennes et al. [41] add to the theory
the Schulman concept of zero internal film tension. In Widom’s improvement of
the theory, the characteristic size scale w is obtained as a consequence of
minimization of the free energy. ’



15

0.8

0.6

0.4t

0.2

| | 1
Y02 04 06 08 10
VOLUME FRACTION BRINE

MICROEMULSION COND./BRINE COND.
V]|

Figure 7. Conductivity versus volume fraction of brine in microemulsion phase.
From a salinity scan of a Witco TRS 10-80 surfactant, tert-amyl alcohol (tAA),
n-decane and NaCl brine. The surfactant is a commercial alkylaryl sodium sul-
fonate similar to SHBS. Ref. 32.
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Figure 8. Diffusivities of components of SDS, butanol, toluene and NaCl brine
mixture. Vertical lines denote 23 and 32 phase transitions. Ref. 47.
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If oil and water-rich regions are chaotically interspersed, it is a general pred-
iction of percolation theory that there exists a volume fraction of water, ¢,
below which the oil-rich fluid is continuous, a volume fraction of oil, ¢, below
which the water-rich fluid is continuous, and intermediate range of volume frac-
tions in which the system is bicontinuous. The critical volume fractions are per-
colation thresholds, and, for the Voronoi tessellation, Monte Carlo simulations
yield the estimate ¢y, = ¢, = 0.145 [43]. The implication of the theory is that
the electrical conductivity of a microemulsion should decrease dramatically as
the Water/oil ratio decreases to the value corresponding to percolation thres-
hold. This expected behavior has been verified experimentally for many
microemulsions [13,32,44-46]. In Fig. 7 we compare experimental conductivity
results with those calculated in a Monte Carlo simulation [32,43] of a random
oil-water interspersion on a Voronoi tessellation. Similar agreement has been
obtained for several microemulsions. It should be noted that the percolation
theory refers to the static interspersions. A microemulsion is a dynamic system
and so the conductivity may be expected to have small but not zero value at
the static percolation threshold. French researchers [45,46] have shown that
dynamic effects are indeed present and have investigated these experimentally

and explained them theoretically in terms of stirred percolation or mobile dro-
plets.

Electrical conductivity cannot be used for probing the continuity of the oil-
rich regions. However, self-diffusion provides such a probe and has indeed been
pursued by several researchers using spin-echo pulsed-field gradient, NMR to
measure the diffusivities of each component of a microemulsion. A good exam-
ple of such a study is shown in Fig. 8.

The system is sodium dodecycl sulfate (SDS), butanol, brine and toluene. Simi-
lar studies have been independently reported by two groups [47,48]. The
results indicate that at low salinity the oil and surfactant diffuse together as-a
swollen micelle and that at high salinity the water and surfactant diffuse
together as a swollen inverted micelle. In the midrange we see a maximum in
the surfactant diffusivity as would be expected of a bicontinuous microemulsion.

The data in Fig. 8 are consistent with the picture that as salinity is increased
from a low there is a transition from a water-continuous swollen micellar solu-
tion to a bicontinuous microemulsion in an intermediate salinity range at the
end of which there is a transition to an oil-continuous swollen inverted micellar
solution.

At the 1986 conference on The Physics of Amphiphiles, Les Houches, France,
R. Strey showed freeze-fracture electron micrographs that are convincing evi-
dence that C;oEs-octane-water microemulsions are also bicontinuous under cer-
tain conditions. Diffusivity evidence of bicontinuity in microemulsions involving
C,5E5 has also been presented. It appears then that bicontinuous microemul-
sions exist and that they are not restricted to ionic surfactant systems.

Viscosity is another special fingerprint of microemulsions [32,49]. A common
pattern in a salinity scan is shown in Fig. 9. There are two peaks in between
which there is 2 minimum. The minimum typically occurs at the optimal salin-
ity, i.e., at the point of equal oil /water uptake in the microemulsion phase. In
the several sodium sulfonate surfactant systems studied at Minnesota it
appeared that the high salinity peak occurred near the percolation threshold as
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corresponds to the percolation threshold at which oil becomes the discontinuous
component.
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Figure 9. Microemulsion properties in a TRS 10-80/tAA /n-octane salinity scan.
Ref. 32. ‘

Near the viscosity peaks the microemulsion is somewhat nonNewtonian, shear
thinning by a factor of about 2 to 5 at shear rates of 1000 sec™!. Elsewhere the
microemulsion is approximately Newtonian, although it is shear birefringent.
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Alcohol-Brine-Hydrocarbon Solutions

The patterns of phase behavior shown in Fig. 4 have been observed for many
monohydric alcohol solutions with brine and hydrocarbons [15,16,50,51]. Thus,
the pattern is not specific to microemulsion systems, but rather is common to
amphiphile, brine and hydrocarbon mixtures.

A natural question then is whether optimal tension and the state of equal
water-to-oil uptake volumes coincide in alcohol, brine, and hydrocarbon solu-
tions as they do in ultralow-tension microemulsions (Fig. 3). To answer the
question, r researchers [17,18] in our laboratory studied the phase and tension
behavior of solutions of brine and hydrocarbons with n-propanol and t-butanol.
The results for n-propanol are summarized in Fig. 10. Similar results were
obtained for the t-butanol solutions. In the figure 7,, and ~,, denote the ten-
sion of the alcohol-rich phase against the oil-rich and water-rich phases, respec-
tively. V,, V,, and V, denote the volumes of oil, water and alcohol in the
alcohol-rich phase. The hydrocarbons were normal alkanes. Thus, the field
variables scanned are salinity and alkane carbon number. With decreasing car-
bon number the range of salinity needed to accomplish the 232 phase scan
decreases, the optimal tension decreases and the salinities of optimal tension
and equal oil /water uptake volumes approach one another. From this we con-
clude that, qualitatively, solutions of brine, oil and monohydric alcohols, which
are amphiphiles but not surfactants, exhibit the same trends of phase and ten-
sion behavior as do microemulsion systems.

There are, however, quantitative differences. The volume uptake ratios near
optimal salinity are one or two orders of magnitude smaller in alcohol systems
than in microemulsions. Furthermore, the tensions of microemulsions at
optimal are typically two orders of magnitude smaller than optimal tensions of
the alcohol systems. We believe these quantitative differences arise from the
microstructure of microemulsions and in fact distinguish them from solutions
containing mere amphiphiles.

According to the thermodynamic theory implied by Fig. 4, ultralow tensions
are achieved at optimal salinity by adjusting field variables to move in the
direction of a tricritical point (TCP). In the light of the near-critical point
interpretation, it is at first surprising that the ultralow tensions (0.01-0.001
dyn/Ic)m) can be achieved even when the compositions of the oil-rich and water-
rich phases differ markedly from that of the microemulsion phase. As pointed
out in the preceding paragraph, these ultralow tensions are in contrast to the
low tension of water-hydrocarbon-alcohol mixtures, even though the phase com-
positions in the alcohol system are closer to each other than in the microemul-
sion systems.

This quantitative difference can be understood in terms of the special micros-
tructure of microemulsions. In the near-critical regime, the Talmon-Prager
theory [39] predicts that the interfacial tension obeys the asymptotic formula

N~ 0.175k Tl 2 — $2I3/¢2 (3)

where T is temperature. k is Boltzmann’s constant, qbviv is the volume fraction of

water in phase i, and € = W3 is a length scale characteristic of the microstruc-
ture of the solution.
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Figure 10. Salinity scans of interfacial tensions and volume uptake ratios
versus brine salinity as a function of alkane chain length for mixtures of equal
volumes of n-propanol hydrocarbon and brine. Ref. 18.

Typically in light scattering or small angle X-ray or neutron scattering experi-
ments values of the order of 10 nm are deduced in microemulsions [44, 52]. On
the other hand in molecular solutions of oil, water and alcohol there is no
appreciable aggregation and so € is of the order of molecular sizes, say 1 nm.
Thus, from Eq. (3) it follows that at the same distance from a critical point, as
measured by the value of (¢l — ¢2), the tension of a microemulsion system is
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about two orders of magnitude smaller than that of a simple alcohol-water-oil

system, in agreement the observed differences between alcohol and microemul-
sion systems.

That the values of the volume uptake of water and oil in microemulsion sys-
tems are one to two orders of magnitude higher than in alcohol systems is the

result of the "packaging" ability of the sheet-like surfactant structures present
in microemulsions but absent in alcohol solutions.

C,E; and CgE,—Brine—Hydrocarbon Solutions

If n and m are sufficiently large, C,E_, is known to be a full-fledged surfac-
tant. We want to know to what degree do the amphiphiles C,E, and CgE,
behave as surfactants. Let us first examine C,JF;. Several properties of C4F; in
water and brine have been studied with the aim of discovering micellization ten-
dencies. One of these is the leveling off of the surface tension at amphiphile
concentrations above some critical value, as occurs at the critical micelle con-
centration (CMC) of a surfactant. This indeed happens as is shown in Fig. 11.
The surface tension changes very little beyond a C/E; mole fraction of about
0.02. Substituting 0.2M NaCl brine for water changes the results negligibly.
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Figure 11. Surface tension of aqueous solution versus logarithm of molar con-
centration of C,E; in water (open triangles) and 0.2M NaCl brine(filled circles)
at 25° C. Ref. 21.

The 'C NMR chemical shift is often used to estimate the CMC, at which
concentration there is an abrupt change in the chemical shift. A fairly sharp
change in the chemical shift is evident in the data shown in Fig. 12 at a C,E,

mole fraction of about 0.02. The water and brine results are indistinguishable
within experimental error.
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As is summarized in Table 1, several physical properties of aqueous solutions
of C4E; have been observed to change abruptly with C4E; concentration at a
mole fraction of about 0.02. Thus, on the basis of these properties it appears
that there is significant molecular aggregation suddenly occurring when a criti-
cal mole fraction is reached, similarly to what happens in micellization.
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Figure 12. *3C NMR chemical shift of 5-CH, carbon versus logarithm of molar
concentration of C4E; in water (open triangles) and 0.2 M NaCl brine (filled cir-
cles) solutions. Ref. 21.

Table 1. Physical properties changing abruptly at a C,E; mole fraction of
about 0.02 in water.

PROPERTY TECHNIQUE REFERENCE

Partial molar volume  Densitometry Refs. 53, 54

Partial molar heat Microcalorimetry Refs. 53, 54
capacity

Relaxation frequency  Ultrasonic absorption  Refs. 55

Diffusion coefficient Quasielastic light Ref. 56

scattering

Raman spectra Raman spectroscopy Ref. 57

Partial molar Refractometry Ref. 21
refractive index :

Surface tension Ring tensiometry Ref. 21

Paramagnetic C¥*NMR chemical

shielding

shift

Ref. 21




22

C4Eq

C4E4 C4E,

b — o
WATER

n—HEXANE
c

% 7
| RV \ /uuvuuugi‘_v

WATER C4E; n-OCTANE WATER C4E n-NONANE

" M

n-TETRADECANE

Figure 13. Ternary phase diagrams of C,E;, n-alkane, water solutions at 25° C.
Compositions are in wt%, x’s denote mixpoints, and ends of straight lines or
vertices of triangles denote two or three phase compositions. Ref. 20.

Next consider the behavior of solutions of C,E,, water or brine, and hydrocar-
bons. Kahlweit et al. [25,26] have shown that C,E;-water-decane mixtures exhi-
bit the 232 sequence as a function of temperature, the three-phase triangle
opening at a water-rich eritical endpoint (CEP) at about 23° C and closing at
an oil-rich CEP at about 50° C. The trend with carbon number is shown in Fig.
13. The 232 phase sequence is again followed (with decreasing carbon number)
except, of course, the discreteness of the carbon number variation does not
allow a continuous scan through the CEP’s.

We saw earlier that the electrical conductivity of a microemulsion passes
through a percolation threshold if the water fraction drops to a sufficiently low
value. In Fig. 14 the equivalent conductance is plotted versus weight percent
brine along a composition path passing through the points 2,3,...,6 in Fig. 15.
The equivalent conductance becomes very small below a brine fraction of about
2% by weight. This is qualitatively similar to microemulsion percolation
behavior, although microemulsion percolation thresholds are usually about 10 or

15%.
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Another characteristic property of microemulsions is that quasielastic light
scattering (QLS) indicates large diffusive microdomains (of the order of 10nm) of
refractive index heterogeneities, arising presumably from the microstructure of
the fluid. In Table 2 are given diffusivities of the microdomains deduced by
QLS for the compositions 1-6 shown in Fig. 15. They are quite low in view of
the viscosities (Table 3) of the solution. The implication is that the micro-
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domains are rather large compared to molecular dimensions.

Table 2. QLS results for 0.2M NaCl brine, C,E;, and normal decane mixtures.

Ref. 21.

Table 3. Compositions and viscosities of 0.2M NaCl brine, C,E; and normal

Solution D
H Dx107

Ry
(A)

C Ul O N
A A
QOO

9.4
27
15
20
20
31

decane mixtures. Refs. 21,22.

Solution Composition Viscosity
# (Weight %) (cP)
Brine | Decane C,Ey
1 30.92 0 69.08 4.13
2 13.14 26.60 60.26 2.84
3 12.06 30.76 57.18 2.67
4 8.68 41.96 49.30 2.29
5 5.82 51.41 42.77 1.89
6 5.17 52.82 42.01 1.75
1 0 0 100 2.83
2! 0 30.45 69.55 1.69
3! 0 35.02 64.97 1.67
4! 0 45.99 54.01 1.43
5! 0 53.96 46.04 1.28
6' 0 55.56 44.44 1.22
7 0 74.97 25.03 1.02
g/ 0 95.02 4.98 0.85
9’ 0 100 0 0.84
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If we assume that the domains obey the Stokes-Einstein law, then the radius
Ry of a domain can be estimated from

kT
H™ 6D (4)

where 7 is the viscosity and D is the diffusivity. The radius so-derived is large
compared to the diameters of the fluid molecules, even in the decane-free case

(#1).

If we were to stop at this point in the examination of the properties of the
C,E; solutions, it would be reasonable to designate C,E; as a surfactant owing
to (1) the implications of spontaneous aggregation implied by the measurements
summarized in Table 1, (2) the patterns of ternary phase behavior, (3) the per-
colation threshold of the conductivity and (4) the microdomain sizes deduced
from QLS. However, in a QLS experiment, scattering objects are tracked for
microseconds only. In the micellar or swollen micellar (or inverted micellar)
regimes of microemulsions, the self-diffusivities of the surfactant and the com-
ponent dissolved in the micelle (or inverted micelle) are approximately the same
and are similar to the QLS diffusivity. This is not the case for the C,E; system.
Self-diffusivities determined by spin echo, pulsed field gradient NMR (SEPFG
NMR) are given in Table 4 for the composition path 1-6 and along the water-
free path 1’ - 9’ shown in Fig. 15. The SEPFG NMR measurements were made
for two diffusion times, 40 msec and 300 msec, and the results were the same to
within the 1% error in the reproducibility of the experiments.

The Stokes radii for all the components are consistent with simple molecular
diffusion. In fact the Stokes radius of C/JE; varys very little with solution com-
position, including the cases of pure C,E; and its binary solutions with oil and
water. Thus, the molecular association responsible for the results of Table 1
and the microdomains responsible for the light scattering have too short a life
time or are too small in population to affect significantly the diffusive migration
of the molecules of the solution. This is in sharp contrast to micellar solutions
and microemulsions. On this basis then we judge that at n = 4 and m =1,
C,E_, has not quite made it to the status of surfactant and is not quite capable
of forming a microemulsion. Nevertheless, it does exhibit many of the patterns
associated with surfactants and microemulsions.

A similar, but not as detailed analysis has been made for solutions of CgE,
with brine and dodecane. The QLS and SEPFG NMR results are given in
Tables 5-7 for the composition paths labelled in Fig. 16. Again, although the
QLS indicates microdomains larger than molecular sizes we see that, as in the
case of the C,E; solutions, these domains do not appreciately retard molecular
diffusivity.



Table 4. SEPFG NMR results for 0.2M NaCl brine C,E;, and normal decane
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mixtures. Ref. 22.
H50 n-decane C.E,

Solution Dx107 Ry Dx10’ Ry Dx107 Ry
# (cm?/sec) (A) | (cm?/sec) (A) | (cm?/sec) (A)
1 44 1.2 - - 26 2.0
2 53 1.5 52 1.5 37 2.1
3 48 1.7 57 1.4 39 2.1
4 47 2.0 71 1.3 45 2.1
5 - - 84 1.3 49 2.3
6 - - 87 1.4 53 2.3
1/ - - - 39 2.0
2/ - - - - 63 2.1
3 - - - - 65 2.0
4 - - - - 81 1.9
5! - - - - 83 2.0
6’ - - - - 88 2.0
7 - - - - 110 1.9
g’ - - - - 142 1.8
9 - - 159 - - -

X ¥ - o M X M Y. X. M E'
0.2 M NaCl BRINE n-DODECANE

Figure 16. Pseudoternary phase diagram at 25°C. Compositions are given in
weight percent. Ref. 20.
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Table 5. Compositions and viscosities of 0.2M NaCl brine, C¢E; and normal
dodecane mixtures. Ref. 21,22.

Solution Composition Viscosity

# (Weight %) (cP)

Brine  Dodecane Cglly

A 24.61 0 75.39 9.31
B 13.71 36.56 49.73 5.66
C 12.74 40.80 46.46 5.23
D 3.80 68.16 28.04 2.45
A/ 0 0 100 6.8

B’ 0 43.01 56.99 2.97
c’ 0 47.98 52.72 2.76
D! 0 71.86 28.14 1.87
E/ 0 100 0 1.34

Table 6. QLS results for 0.2M NaCl brine, C4E,; and normal dodecane mixtures.
Ref. 21.

Solution D Ry
# Dx10"  (A)
A 6.2 3.8
B 5.3 7.1
C 5.2 7.4
D 3.6 25.7




Table 7. SEPFG NMR results for 0.2M NaCl brine, CgEy and normal dodecane

28

mixtures. Ref. 22.
H,0 Dodecane Cellq
Solution | Dx10’ Ry Dx107 Ry Dx107 Ry
# (em?/sec) (A) | (cm?/sec) (A) | (ecm?/sec) (A)
A 51 0.5 - - 11.8 2.0
B 31 0.5 44 0.9 16.5 2.3
C 25 1.7 51 0.8 18.2 2.3
D - - 117 0.8 40 2.2
Al - - - - 15 2.1
B’ - |- - - 31 2.4
C! - - - - 35 2.3
D! - - - - 45 2.6
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2. CONTROLLED ENVIRONMENT VITRIFICATION SYSTEM:
ELECTRON MICROSCOPY OF SURFACTANT SYSTEMS

Synopsis

Cryofixation of liquid samples for electron microscopy is facilitated by the
Controlled Environment Vitrification System (CEVS). The CEVS permits
cryofixation of hydrated biological and colloidal dispersions and aggregates from
a temperature and saturation controlled environment. Specimens prepared in
uncontrolled laboratory atmosphere are subject to evaporation and temperature
fluctuations that may introduces artifacts due to concentration, pH, ionic
strength and temperature changes. Moreover, it is difficult to examine micros-
tructure of systems when conditions of interest are at temperatures other than
ambient (e.g. biological systems at in-vivo temperatures). The system described
here ensures that a liquid or partially liquid specimen is maintained in its origi-
nal state while it is being prepared prior to vitrification, and once prepared,
vitrified with minimal alteration of its microstructure. A controlled environ-
ment is provided within a chamber where temperature and chemical activity of
volatile components can be precisely controlled while the specimen is being
prepared. The specimen is mounted on a plunger, and a synchronous shutter is
opened almost simultaneously with the release of the plunger, so the specimen is
propelled abruptly through the shutter opening into a cryogenic bath. We
describe the system and its use, and illustrate the importance of the technique
with TEM examples of vesicles and liposomes of surfactants where artifacts
were avoided by using the CEVS. We also discuss apphcatlons to other tech-
niques like SEM and freeze-fracture, and to novel "on the grid" experiments
that make it possible to freeze successive instants of dynamical processes such
as membrane fusion, chemical reactions, and phase transitions.

Introduction

Specimen preparation has long been recognized as the most complicated
step in the electron microscopy (EM) of fluid, labile systems, like biological and
colloidal dispersions and aggregates. While EM has the potential of providing
high resolution images for study of morphology (size, shape, form), connectivity,
topography and texture, and, with analytical techniques, chemical composition,
the high vapor pressure, low V1s<3051ty (leadmg to motlon) susceptibility to elec-
tron beam induced damage, and low contrast in organic systems have prevented
sub-nanometer resolution. Since the pioneering days of Ruska, much effort has
been directed towards developing techniques for viewing 1abile systems by
transmission and scanning microscopy with minimal changes to the specimen.
These techniques, known generally as "fixation," address the problems of lower-
ing vapor pressure, preventing motion, reducing electron-beam induced damage,
and, in conjunction with staining, enhancing contrast.

All fixation techniques may produce artifacts (i.e. changes in morphology,
composition, or texture), and some fixation techniques produce phase changes
that may introduce microstructure not present in the original sample. The
microscopist must judiciously select the technique that reduces artifact forma-
tion and prevents phase change. While negative-staining and chemical fixation
techniques may still find use, the current method of choice for fixing labile
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systems is well recognized to be thermal, i.e. cryofixation. Cryofixation with
vitrification (i.e. rapidly cooling a liquid without detectable crystallization into
a highly viscous, low vapor pressure, glassy state) prevents phase separation,
rearrangement, art1fact formation due to crystal growth, and problems of elec-
tron optics associated with a crystalline matrix (e.g. bend contours thickness
fringes, moire fringes, and contrast reversal). Adrian et al.! (1984) were the
first to demonstrate a practical method to vitrify thin specimens of water or
aqueous dispersions for TEM. Fast cooling was achieved by plunging a thin
layer of specimen on a holey-film-covered or a bare electron microscope grid into
hqu1d ethane at its melting pomt A detailed descrlptlon of fast freezmg tech-
niques is given by Newbury et al.? Elder et al.® have discussed various plunge-
cooling methods and necessary precautions to obtain high cooling rates. The
thin-film vitrification technique has been applied to the TEM study of a large
variety of samples by several researchers Lepault et al! (1983) (phages,
catalase), Lepault®(1984), Downmg (1984) (electron diffraction from DNA pla-
telet crystals), Milligan et at.” (1984) (ribosomes, bladder membranes, gap junc-
tions), Talmon® (1986) (natural and synthetic liposomes and Ves1cles) and Bel-
lare et al.® (1986) (surfactant liposomes, vesicles and micelles).

Although fixation has received much attention by microscopists, preparation
of the sample prior to fixation has generally been more casual. Sample prepara-
tion, i.e. steps that are taken from the time the sample leaves the test-tube (or
the culture-plate, organism, etc.) to the time the sample is fixed, determines
what microstructure is fixed. For example, vitrified-hydrated-unstained (VHU)
samples are prepared for the bare grid TEM method by placing a small (typi-
cally 5 microliters) drop of liquid on a bare or holey-film coated grid. A thin
layer of the liquid is formed by blotting away most of the liquid with absorbent
media like filter paper. The sample is then thermally fixed by plunging into a
cryogen like liquid ethane or freon. The assumption that microstructure of the
specimen just prior to fixing is the same as that of the original sample is not
always true. Liquid-containing samples, if prepared in uncontrolled laboratory
atmosphere, are subject to evaporation and temperature changes. This can
concentrate solutions and suspensions several fold, change pH, increase ionic
strength, and affect electrolyte balance. Concentration and temperature
changes can in turn change the microstructure of the specimen. When the sam-
ple is far away from a phase boundary concentration changes may have only
minor effects such as increase in number density. However, if the sample is near
a phase boundary, drastic microstructural changes can occur: previously nonex-
isting structures can be introduced (e.g. crystals of a salt may appear in a solu-
tion which is near its solubility limit, or vesicles and hposomes may appear in
single-phase solutions of surfactants, as shown by Talmon® (1986)) or structures
may agglomerate or invert. Wlthout adequate prior physico-chemical
knowledge of the sample, it is impossible to tell if structures seen in microscopy
are 'real”" or induced by phase-change, unless adequate precautions have been
taken to prevent phase changes during sample preparation and fixation. Tech-
niques Wh1ch rely on evaporation to form thin films for cryofixation (Jaffe and
Glaeser!? , 1984) should be evaluated in this context.

Moreover it is difficult to prepare specimens at conditions different from
ambient temperature when the microstructure of the sample is desired under
such conditions, e.g. biological systems at in wivo conditions, or thermotropic
liquid crystals that have phase-boundaries at temperatures higher than
ambient. Also, when preparing specimens which may be toxic, virulent,
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infectious or poisonous, special precautions have to be taken to avoid personal
harm. Jeng et all! (1987) have discussed a system that permits sample prepara-
tion with cryofixation for such toxic systems. Our goal has been to develop the
Controlled Environment Vitrification System (CEVS) that avoids inducing con-
centration, temperature and phase change artifacts (Bellare12 1986, and Bellare
et al.l® 1986). We describe here the latest CEVS system, how it is used, and
results demonstrating the power of the system. We conclude with potential
applications for SEM and freeze-fracture techniques. This account opens with a
description of the CEVS and its use, gives a set of TEM micrographs that
demonstrate the importance, power and potential of the system, and concludes
with a discussion of the application of CEVS to SEM, freeze-fracture, and TEM
of more complex systems.

Description of the CEVS

The CEVS (Fig. 1) consists of four sub-systems: an environmental chamber
in which specimens are made, a cryogen reservoir in which specimens are frozen,
an assembly to transfer them from the cryogen reservoir to a storage dewar
without temperature rise or frost deposition, and an instrument cluster provid-
ing measurement and control of environmental chamber conditions.

The environmental chamber (Fig. 2) encloses a vertical shaft on which a
specimen support plate (e.g. a TEM grid) can be mounted with tweezers. The
shaft, 3mm in diameter, can slide axially in a phenolic bearing and can be
locked with a pin at a position where a spring inside the bearing is compressed
to provide downward force on the shaft. The CEVS tweezer (e.g., Dumont 3c)
has a sliding o-ring around it to permit holding of a specimen support plate.
The tweezer has a magnetic strip attached to it, and the tweezer can be easily
clamped to the shaft which has a mating magnetic strip in a recessed housing,
assuring precise repositioning; this allows viewing of the specimen with a long-
working distance stereomicroscope mounted outside the chamber. Illumination
of the specimen support plate at near normal incidence is achieved by directing
a fiber-optic light source down one ocular of the microscope, and viewing mono-
cularly through the other ocular.

The polycarbonate environmental chamber, 10cm wide, 10cm deep and
20cm high, is suspended over a base plate. A reservoir with a cup for the vitri-
fying cryogen (typically ethane at its melting point) can be reproducibly posi-
tioned under the environmental chamber in locating plates on the base plate.
The cryogen reservoir (Fig. 3) has a receptacle in which a specimen transfer box
(Fig. 3, O, made from a grid storage box) can be mounted under the cryogen.
After the specimen has been cryofixed, it can be placed into one of the 4 slots of
the transfer box. A cover with carrying handle (Fig. 3, P) is used to mount and
remove the specimen transfer box from the cryogen reservoir for storage in a
liter liquid nitrogen dewar. The specimen transfer box is based on a similar
device designed by Gatan, and it fits their model 626 cryotransfer system.

The environmental chamber has reservoirs for two liquids (water or organ-
ics) with wicks to saturate the gas inside the chamber. More reservoirs for addi-
tional fluids could be added easily. A nozzle is provided on the chamber to per-
mit introduction of an inert gas, or to draw a partial vacuum to enable safe
disposal of air that may be contaminated with a toxic specimen. A capacitance
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Figure 2. The environmental chamber (with insulation, used for operation from
80 to 90° C, removed for clarity) with tweezers (I) on the plunger shaft, saturat-
ing reservoirs (J) with wicks (K), port with split rubber septum (L), and shutter

(M).
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A halogen-quartz lamp mounted inside the chamber is used as a compact
source of heat, and a low-profile brushless fan provides forced convection (Figs.
4 and 5). Two thermistors are mounted near the specimen support plate; one is
used to measure the temperature with a digital thermometer, the other to con-
trol the temperature with a proportional controller varying the power supplied
to the lamp. A third thermistor may be placed in the saturating wicks to pro-
vide the wet-bulb temperature; this can be used to determine the chemical
potential of a saturating component, if psychrometric data is available.

Stainless steel fins on the inside back face of the chamber are in thermal
contact with an insulated reservoir mounted on the outside back face of the
chamber. These fins are used to cool the chamber gas by circulating or stati-
cally placing a refrigerant (e.g. liquid nitrogen or dry-ice cooled acetone) in the
reservoir. Thus the chamber gas temperature can be controlled from -5°C to
+90° C, stable to better than 0.1° C.

The digital thermometer, temperature controller, humidity meter, and con-
trols for the fan are mounted in an instrument cluster (Fig. 1). A multiconduc-
tor shielded cable from the CEVS carries signals to the instrument cluster.

The environmental chamber walls are assembled in a double C
configuration: the top, bottom and front faces form one C, the two sides and
back form the other C. The two assemblies slide together in grooves machined
in the faces; thus the chamber can be opened to gain access to internal parts,
and then sealed shut. A spring clip is provided in the chamber in which a
stoppered 5 ml vial of sample can be placed prior to specimen preparation to
allow equilibration to chamber conditions.

Three ports are provided on the chamber, one each on the left, right and
bottom faces. The left and right openings are covered with split rubber septa
and permit introduction of a pipette to remove a drop of sample from the bottle
and place it on the grid, and to introduce and manipulate blotting media
wrapped around a stainless steel strip (0.5 x 10 x 100 mm). The opening on the
bottom face of the chamber is closed with a precision iris-type Prontor self-
cocking camera lens shutter, set to "T" (for "time," so that the shutter remains
open after firing).

When the sample is ready to be cryofixed, a pin holding the shaft is ejected
with one leg of a photographic double cable release (Nikon AR-7). The other leg
of the cable release fires the shutter, opening it just before the specimen support
plate is forced through with spring-loaded impulse into the vitrifying medium.
The plunge depth (i.e. depth below the surface of the vitrifying medium that
the sample travels) can be adjusted (from O to 30 mm) b3y positioning a travel-
stop on the shaft. “Costello et al.'* (1982) and Elder et al® (1982) have discussed
optimum conditions of the plunge depth for vitrification (which depends on the
cryogen and any temperature gradients that may exist in it). The range pro-
vided in the CEVS covers the depth recommended. Thus the chamber is kept
gas-tight and insulated until the specimen is plunged, maintaining environmen-
tal control and preventing phase-change and specimen pre-cooling.
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Sample Preparation with the CEVS

In this section we describe the procedure for preparing thermally fixed TEM
specimens on bare or holey-carbon-film-coated grids with the CEVS. The fol-
lowing materials are required: bare (400 mesh) or holey-carbon-coated (200
mesh) grids, 90mm circles of paper (Whatman #1) or glass (Schleicher &
Schuell #30) filter media, liquid nitrogen, ethane (99.0% cylinder size 3 with a
single stage regulator is convenient; other cryogens can be used — e.g. freon,
propane), a long surgical forceps, a pair of tweezers (e.g., Dumont 3c), and a 10
microliter repeating dispenser with pipette tips.

The sample preparation procedure is carried out with the CEVS inside a
fume hood to prevent the fire hazard due to presence of ethane. Safety goggles
or a face shield, and rubber or cotton gloves are also recommended because
accidental skin contact with liquid ethane, unlike liquid nitrogen, can cause
painful freeze-burns. However, ethane is superior to other commonly used cryo-
gens for vitrifying the sample because in addition to the large difference
between its melting point (-182°C) and its boiling point (-83°C), it forms a
solid crust on the sample when it is placed in liquid nitrogen that protects the
sample during transfer, and readily sublimes away when the sample is in the
pre-pump chamber.

The following is a step-by-step description of specimen preparation:

. The environmental chamber is opened by sliding the two sides backwards.
The saturating reservoirs are filled with the most volatile component(s) of
the sample (Fig. 6). Each reservoir holds approximately 30 ml. If the sam-
ple is an aqueous dispersion, water is used in both reservoirs; if the sample
contains both water and volatile organics, one reservoir is filled with water,
the other with the organic liquid. Although this selection is adequate for
most samples, complex systems near a phase boundary may require that
chemical potentials of each of the sample components be matched in the
liquid and vapor phase. This, in general, is difficult to achieve practically,
but can be done by sequentially placing the sample itself (rather than pure
components of the sample) in the chamber, allowing vapor-liquid equilibra-
tion, and then removing the sample. The goal is to be able to keep a sample
in the chamber so that none of its components will evaporate into the vapor
phase.

2. A grid is held in the CEVS tweezers by sliding the o-ring to clamp the
tweezers closed. The tweezer is fixed onto the shaft with the magnetic
clamp (Fig. 7).

3. The shaft is manually raised in its bearing until it locks after compressing
the spring.

4. A 5 ml stoppered vial of sample is placed inside the chamber in the spring
clamp.

5. The environmental chamber is closed by sliding the two sides forward. The
shutter is closed by partially depressing the cable release.

5. If an inert atmosphere is desired inside the chamber, a stream of the desired
gas is introduced into the chamber nozzle. If a hazardous sample is to be
used, a vacuum aspirator can be turned on. The discharge of the aspirator
can be disposed of with suitable precautions.

6. The fan inside the chamber is turned on.

= O
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Figure 7. The CEVS tweezer with a grid is mounted on the magnetic clamp
on the shaft.
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7. The digital thermometer is turned on.

8. The temperature controller is turned on and the controller set point is set to
the desired temperature.

9. If below ambient temperature is desired, the cooling reservoir on the back
face of the chamber (Fig. 5) is filled W1th a refrigerant. Liquid nitrogen may
be used for this as it usually is at hand; however water-ice-brine or dry-ice
acetone provides longer operating times. The refrigerant may be circulated
from a large auxiliary reservoir if extended operation without refilling is
desired. Cooling will permit precise temperature control even for tempera-
tures just above ambient temperature.

10. At this point the temperature and humidity can be monitored on the
instrumentation cluster. If controlled humidity less than 100% is desired
(e.g. for controlled intentional evaporation), salt solutions can be placed in
the reservmrs instead of pure water. A chemlstry handbook (e.g. Weast and
Astle®® , 1981 or Perry, Green, and Maloney,!® 1984) lists which salt and what
temperature is required for a given humidity. Alternatively, the humidity
meter output can be used to control a valve that mixes streams of saturated
air and dry air (or other gas) that can be introduced into the chamber noz-
zle.

11. While the temperature and humidity stabilize (Which takes about 20
minutes for 90°C but only 5-10 minutes for 30°C), the filter media is
wrapped around stainless steel strip and inserted into the left port septum.

12. When the temperature and humidity have reached a steady state, liquid
nitrogen is poured into the outer chamber of the cryogen reservoir. After the
vigorous film boiling has subsided, ethane gas is directed into the cup inside
the cryogen reservoir by means of a syringe needle connected to a Tygon
tube leading from the ethane gas regulator (Fig. 8). The gas condenses into
a liquid as heat is removed through the cup walls to the liquid nitrogen. The
cup is filled to the brim with liquid ethane. The cryogen reservoir is covered
with a styrofoam cover and the ethane is allowed to freeze on the walls of
the cup.

13. The long forceps is inserted into the right port septum and the cover of the
vial is removed and placed on the inside bottom face of the chamber. The
forceps is withdrawn from the port.

14. The repeating dispenser volume is set to 5 microliters. A pipette tip is
placed on the dispenser and inserted into the right port septum. The tip
temperature is allowed to equilibrate with the chamber by waiting a few
minutes.

15. Five microliters of sample are withdrawn into the pipette (Fig. 9) and
placed on the front face of the grid (Fig. 10). Moving the tip around the face
of the grid while depositing the sample helps in getting complete coverage of
the grid. The pipette is withdrawn from the port septum.

16. With the filter medium present in the left port, the back face of the grid is
wiped until the sample begins to wet the filter (Fig. 11). Similarly the front
face of the grid is wiped (Fig. 12). The front and back wipes are repeated
once or twice. this leaves a thin film, approximately 250 nm thick, on the
grid. In general the number and duration of the wipes varies from sample to
sample, and is determined by factors like interfacial tension, viscosity and
grid-hole size. A few trials may be required before the right procedure is
obtained. When working with a bare grid, the optical stereomicroscope can
be used to view the specimen during blotting, and it is possible to determine
when the film thickness is acceptable. Figure 13 shows successive stages in
the blotting of a water film on a bare grid as photographed through the
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Figure 10. The sample is placed on the grid.



47

*yoeq oU} woij Jeded 19917 ® Yim P3330[q S plIs aq} Uwo

doup ejdwes aqJ, ‘1T oIn31g




48

“quodj o7} wodj $uI330[q £q pewmio] si sjdwres Jo Wy UIY} V ‘GI aIn3iy




49

"sejoy oY} ueds )eY) SuI|
peydesgojoyd se pus aieq & uo dolp Jojem ® Jo Sulpo[q oy} ul (

(e

u1y} Suimoys adoososdiur [ed13do Y3 ysnoayy
) 01 () woij) seSe)s eAlsse0ong gl N3y



50

optical microscope. With a holey-carbon film the hole size is too small to
resolve the liquid film spanning the holes.

17. The specimen is now ready to be cryofixed, but it may be kept in the
chamber without evaporation or unintended temperature changes to allow
relaxation from the shear imposed during blotting. Additional on-the grid
experiments may be conducted at this stage, e.g. the sample can be heated
to drive a chemical reaction, or cooled to induce a phase change. A chemical
reagent may be placed on the grid to initiate a reaction, e.g. a gelling pro-
cess, followed by further blotting to re-thin the specimen.

18. When the specimen is ready to be cryofixed the cryogen reservoir is placed
under the environmental chamber against the locating plates and the styro-
foam cover is removed.

19. The cable release is depressed: this opens the shutter and rapidly plunges
the specimen into the liquid ethane (Fig. 14).

20. A pair of tweezers is introduced under the liquid ethane and inserted
between the tines of the CEVS tweezers holding the specimen grid, and
twisted slightly to force the specimen tweezers open and thus drop the speci-
men into the liquid ethane cup (Fig. 15).

21. The CEVS shaft is raised to lock it and the cryogen reservoir is removed
from under the environmental chamber and placed on a work surface in the
hood. The CEVS tweezers is detached from the shaft and the shutter is
closed to permit the environmental chamber to equilibrate from the transient
imposed by the plunging action.

22. The specimen grid is removed from the ethane with a pair of tweezers (Fig.
16) and rapidly moved through cold nitrogen vapor boiling from the reservoir
and immersed in liquid nitrogen surrounding the ethane cup. It is then
placed in a slot of the specimen transfer box under liquid nitrogen. After all
the slots are filled with vitrified specimens, the transfer box may be covered
by screwing on its cover.

23. The specimen transfer assembly is removed from the cryogen reservoir and
is quickly placed into a liquid-nitrogen-containing dewar for transport to the
electron microscope, or for further processing (e.g. freeze-substitution or frac-
ture and replication) if desired. The specimen transfer cover and the liquid
nitrogen that is carried in the slots of the specimen transfer box protect the
specimen from frost deposition or temperature rise. The specimen can be
cryotransfered into a cold stage and into the microscope following well esta-
blished techniques (e.g. Perlov et al.,!” 1982).

Additional samples can be prepared by replacing the CEVS tweezer
with a new grid, replacing the filter medium, and allowing the chamber tem-
perature and saturation to reach equilibrium. Cycle time depends on the
operating temperature and is typically 5 to 15 minutes.

Sample Results

Surfactants are molecules having hydrophillic and hydrophobic ends. When
dispersed in water, they form a variety of structures, e.g., vesicles (closed shells
made of surfactant molecules arranged in a bilayer), liposomes (multilayered
vesicles), micelles, and isotropic molecular solutions, depending on the type of
surfactant, the temperature, the concentration and the presence of additional
components like alcohols, oils, and salts. These structures are associated with
thermodynamic phases.
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Figure 16. The vitrified specimen is removed from the ethane and tranferred
into liquid nitrogen.
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Surfactant dispersions are ideal test specimens to evaluate specimen
preparation procedures because their phases have been, in many circumstances,
well characterized by physico-chemical techniques like optical microscopy, light,
x-ray and neutron scattering, rheology, and conductivity. Optical microscopy,
and in particular, video- and computer-enhanced differential interference optical
microscopy (Miller et al.,'819 19874, 1987b), of vesicles and liposomes provides a
good comparison with electron microscopy because particles with diameters in
the neighbourhood of a micron can be observed by both methods. Also, small
variations in compositions or temperature can cause a drastic change in micros-
tructure if the surfactant dispersion is near a phase boundary. Thus, if the
results of electron microscopy do not agree with overwhelming data from other
techniques, the integrity of the sample preparation technique can be questioned.
We have used three surfactant dispersions to evaluate the performance and
establish the advantage of the CEVS.

The major obstacles to direct visualization of surfactant microstructures by
optical microscopy methods are 1) contrast limitations place a lower bound on
the size of aggregate that can be slected for study, while 2) resolution limita-
tions restrict the amount of structural information that can be extracted from
microscopic observations. ‘

Many surfactant aggregates, vesicles and microtubules in particular, are of
inherently low contrast and cannot be distinguished from the background solu-
tion with orduinary light microscopy techniques. With video enhanced micros-
copy, contrast enhancement is obtained in three ways: 1) Optically, image con-
trast is boosted by the use of rectified differential interference contrast (DIC).
This technique gives high contrast light or dark bands at regions in the sample
where here are sharp refractive index gradients (such as surfactant aggregate-
water interfaces). 2) Electronically, image contrast is increased through the use
of a video camera instead of the human eye as the detection device. Unlike the
human eye, a television camera is a linear device; it responds equally well to
small diferences in intensity no matter what the background light level is. Thus
a television camera linked to a DIC microscope (VEM) improves contrast by
responding linearly to contrast at all light levels. 3) Digitally, image contrast is
increased by by using a real-time digital image processor to perform background
subtraction and gray-scale transformations. As a result of these manipulations
the background pattern created by inaccessible dirt and lens imperfections is
subtracted frame-by-frame in real-time video image, and the narrow region in
gray-scale space occupied by the image (e.g., from gray level 120-140) is
expanded to cover the full gray-scale of the display device (e.g., 0-255).

As a result of this contrast enhancement, small, isolated colloidal particles
with diameters as small as 50 nm (such as unilamellar vesicles or polymer latex
spheres) can be clearly and dynamically visualized. This is an important result,
since it means that VEM can be used as a detection device in the study of col-
loidal microstructure; further microstructural details can be obtained by cryo-
TEM. While there is no theoretical limit to the size of an isolated particle that
can be detected by VEM (given sufficient contrast to distinguish the particle
from the background), it is limited in resolution by the wave nature of light: the
resolution limit of VEM is 100-250 nm. Higher resolution images can be
obtained with cryo-TEM.
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Materials

Sodium 4-(1’-heptylnonyl)benzene sulfonate (SHBS) was synthesized at the
University of Texas and purified as described by Franses?’ (1979). Octyldode-
cyldimethylammonium bromide (ODDAB) was kindly provided by Dr. R. Zana
of CNRS, Centre de Research sur les Macromolecules, Strasbourg. Dioctadecyl-
‘dimethylammonium bromide (DODDAB) was kindly provided by Dr. D. F.
Evans of the University of Minnesota, Minneapolis. The surfactants were
-dispersed in doubly distilled water further purified by dialysis. Liposomal
dispersions were made by pouring water into weighed quantities of surfactants
and gentle shaking by hand.

Methods

Vitrified-hydrated-unstained (VHU) specimens were made on holey-carbon-
film-coated grids using the CEVS as described in the earlier section. Unless oth-
erwise stated all specimens were made with the environmental chamber at
25° C and 100% relative humidity.

Specimens were examined in a JEOL 100CX analytical microscope, operat-
ing at 100 kV in the conventional TEM mode. The vitrified-hydrated-unstained
specimens were mounted into a modified JEOL EM-SCH cooling holder using
the cold stage transfer module described by Perlov etal.l’ (1982). The specimen
holder temperature in all experiments was -168°C. Images were recorded on
Kodak SO-163 film exposed for maximum rated speed, and developed for 12
minutes in full-strength Kodak D-19 developer.

| Test Results

We have tested the CEVS with aqueous dispersions of ODDAB and DOD-
DAB. A 2.0% solution of ODDAB, originally at 20° C was prepared for TEM.
No vesicles are expected to be seen because at this concentration the surfactant
forms aggregates smaller than 5 nm. Specimens prepared without environmen-
tal control (Fig. 17 a) have crossed a phase boundary (at about 2.5%, 20°C)
due to evaporation and show vesicles; specimens prepared in the water-
saturated environment of the CEVS show no evaporation-induced artifacts,
demonstrating the importance of saturation that the CEVS achieves. Smaller
aggregates may be present in the system, but cannot be resolved without
further image processing.

DODDAB has a phase transition at about 30° C. Figure 18 a shows a 0.5%
sonicated aqueous dispersion, originally at 20°C, examined by cryo-TEM.
Large surfactant sheets and smaller lens-shaped structures are seen. Samples
prepared at 50° C, using the CEVS, show (Fig. 18 b) vesicles and multilamelar
liposomes, but no large sheets or lens-shaped structures. Preparing the speci-
men from 50 ° C would have been a difficult task without the CEVS.

These two test specimens conclusively demonstrate the importance of
environmental control that the CEVS achieves during specimen preparation.
We have also applied the technique to examine microstructures in SHBS at
90 ° C, where it had been previously believed that the solution was isotropic.
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Figure 18. VHU specimens of 0.5% aqueous dispersion of dioctadecyidimethy-

lam moninum bromide (DODDAB): (a) Sample prepared with CEVS from

20°C; (b) Prepared from 50°C. Note absence of lens shaped (X) and large
sheets (Y) seen in (a). Bar = 250 nm.
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However, as Fig. 19 shows, vesicles and liposomes can be seen; these microstruc-
tures have been also observed by hot stage optical microscopy. We have also
appli)ed the CEVS to study the sol-gel processing of ceramics (Bellare et al.,?!
1987).

Results

We now present and compare some video enhanced optical and cryo-
transmission electron micrographs of microstructures formed by double-chained
surfactants in water. A typical phase diagram for such a system is shown in
Fig. 20. Our micrographs clearly demonstrate that aggregation in the "water +
liquid crystal” region and in the isotropic, "micellar solution" phase is more com-
plex than once thought.

SHBS: A diversity of structures.

A VEM picture of a six-month old 1.7 wt% SHBS sample (Fig. 21) shows the
existence of polydisperse liquid crystalline aggregates with a wide diversity of
structures. The large structures (points A,B, Fig. 21) show birefringence and
the Maltese crosses characteristic of liquid crystalline liposomes when the VEM
optics are switched to polarizing optics without moving the microscope slide.
The undulations of individual layers within the birefringent liposomes (point B,
Fig. 21) and the caged movement of smaller vesicles entrapped within larger
vesicles (point C, Fig. 21) can be followed in real time. Of particular interest is
the "unstructured" spherical region of diameter =~ 9 microns, point D, Fig. 21,
which in real time shows a "sand storm" appearance associated with very small
structures. A large number of other small structures which are beyond the reso-
lution limit of the light microscope are also evident.

The cryo-TEM pictures of the same 1.7 wt% SHBS sample (Figs. 22-25)
reveal the co-existence of vesicles within vesicles (Fig. 22), coiled tubules within
vesicles (Fig. 23) and liposomes (Fig. 24) in which bilayer walls are visible in the
clear field produced by vitrified ice: particularly interesting is Fig. 23, in which,
incorporated inside the core of the larger vesicles, is an astonishing menagerie of
coiled tubules, smaller vesicles and beaded tubes which appear to have been
frozen in the process of transforming to small unilamellar vesicles. These intri-
cate structures do not appear to be artifacts associated with sample prepara-
tion since the same structures are obtained when the thinned samples are held
in the environmental chamber for 30 minutes before plunging into liquid ethane.
Note that the large birefringent liposomal structures (=~ 5 microns) evident by
polarizing microscopy and VEM are absent and probably located in the regions
of the vitrified ice that are too thick for viewing.

Of particular interest for the comparison of cryo-TEM and VEM is the
enclosed vesicle structure (point A, Fig. 22) of diameter 1.75 microns which con-
tains a large number of small unilamellar vesicles. We believe that this strue-
ture is similar to the VEM structure of point D, Fig. 21. In fact, the sequence
of structures point C, Fig. 21 (Diameter = 15 microns), point D, Fig. 21 (D = 9
microns), point A, Fig. 22 (D = 1.75 microns), point B, Fig. 24 (D = 0.01
microns) suggests that cyro-TEM and VEM visualize a continuity of self-similar
structures (i.e., structures of similar topology but different sizes). We return to
these structures later.
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The collection of microtubules displayed in Fig. 25 demonstrate the
existence of both single-walled and multiwalled microtubules. The multimicro-
tubule attached to the liposome structure (point A, Fig. 25) are reminiscent of
larger, but similar vesicle-filament structures seen by VEM with didodecyldi-
methylammonium hydroxide partially neutralized by HBr.

The preceding observations allow some important conclusions to be drawn
regarding the use of cryo-TEM and VEM. While cryo-TEM, because of its
much higher resolving power, is clearly the technique of choice when detailed
structural information is desired, it cannot be used exclusively to characterize a
given sample. This is because the sample preparation procedure seems to cause
a sorting of aggregates based on size. The result is that aggregates of certain
sizes are over-represented in TEM pictures while other aggregates are excluded
(recall that the large birefringent liposomes seen with VEM are absent in the
TEM micrographs). Since VEM images all structures from 50 nm to 500 Cum,
it is used to initially characterize a solution in terms of size, type and relative
number of aggregates present. Subsequent detailed structural information on
these aggregates can be achieved using cryo-TEM.

Microstructure in isotropic phases: vesicles and micelles.

Didodecyldimethylammonium hydroxide and carboxylates form clear non-
viscous solutions up to 0.5 M (Miller et al.'®, 1987b). In dilute solutions (0.001
to 0.001 M), only small particles beyond the resolution limit are detected by
VEM. Examination of 2C;3N2C;0Ac by cryo-TEM establishes the presence of
vesicles (Fig. 26(a)) which decrease in size upon concentration (Fig. 26(b)).
Above 0.1 M, both cryo-TEM and VEM give pictures devoid of any structure.

The decreasing size of = vesicle structure with concentration for
2C,,IN2C,0Ac constitute a direct visualization of the conclusions drawn from
fluorescence measurements. These conclusions were that the fraction of surfac-
tant present as vesicles in the solution decrease from =~ 0.99 at 0.001 M to =~ 0
at 0.001 M and that the micelles were small (aggregation number 45) and
remained of constant size across the vesicle-micelle transition range. This
behavior can be rationalized by direct force measurements between bilayers
which link head group forces directly to curvature and microstructure.

The same vesicle-micelle transformation with increasing surfactant concen-
tration can also be induced in SHBS by addition of the cryptate C222
(Miller et al,,1® 1987b). This macrocyclic compound forms large inclusion com-
plexes with the sodium counterion thereby pulling it out from amongst the sur-
factant head group. The resulting electrostatic repulsion drives the head groups
apart and induces more curvature which favors smaller aggregates. For a 0.5%
SHBS solution containing C222 only small vesicles are visible (Fig. 27(a)). For a
2.0% SHBS solution with C222 (Fig. 27(b)) the electron microscope picture is
devoid of any structure (it is impossible to decide where the residual graininess
are micelles or noise). For comparison purposes (=~ 2%) SHBS without €222 is
shown in Figs. 22-25.



87

Figure 26. Aqueous dispersion of didodecyldimethylammonium acetate prepared
with CEVS and examined with cyo-TEM. Bar = 250 nm. (a) Large single- and

double-walled vesicles (arrow) at 0.5 wt %; (b) smaller single-walled vesicles at
1.0 wt %.
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Figure 27. VHU ecryo-TEM pictures of aqueous dispersions of SHBS plus the
macrocyclic cryptate C222. €222 complexes the sodium counterion of SHBS
which results in liposomes transforming to vesicles in dilute soluions and
micelles in concentrated solution. (a) 0.5 wt % SHBS with a C222-to-surfactant
ratio of 0.6. Note unilamellar vesicles with a few multilamellar liposomes. (b)
2% SHBS with a C222-to-surfactant ratio of 1.0. No microstructure is evident.
Compare with Figures 23-26. Bar = 250 nm.
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High temperature systems.

The chemical systems which display vesicle-micelle transitions described
above involve unusual counterions ( OH™, Ac™ ) or complexing agents. This can
be understood in terms of a primitive model theory if these counterions behave
as large "hydrated" hard-core spheres. Of more interest to our main theme is a
system employing didecyldimethylammonium bromide ( 2C;,N2C;Br ) with the
more familiar bromide counterion. At elevated temperatures, this system forms
a clear isotropic "micellar" phase. Its microstructure, which has not been previ-
ously explored, varies continuously within a single phase region and surprisingly
shows the same vesicle-to-micelle transition as the unusual counterions at lower
temperatures. Thus if dilute 2C;(N2C,Br is heated to 70°C in the CEVS
chamber, and then plunged into liquid ethane, small vesicular structures (Fig.
28(b)) are seen. Upon concentration, only clear fields are seen in eryo-TEM pie-
tures (Fig. 28(c)). Parallel to this, with VEM at 70° C very small structures are
observed in dilute solution, no structures in concentrated solution. For com-
parison cryo-TEM (Fig. 28(a)) micrographs of 2C;,N2C;Br at 25° C show multi-
walled vesicles and liposomes. These observations provide a challenge to existing
theories which can account for these phenomena only if postulated hard-core
size depends on temperature. The power brought to bear by parallel use of
these techniques is evident.

Discussion

The micrographs shown here demonstrate the ability of the CEVS to reduce
artifacts arising from phase change induced by evaporation or temperature
changes while preparing the specimen. The micrographs also illustrate the
power of the system to permit sample preparation from temperatures different
from ambient. Bellare et al.?! (1987) have also demonstrated the capability of
the CEVS in capturing instants of dynamical processes like sol-gel transforma-
tions. :

In this account we have described the CEVS technique for preparing thin-
film VHU specimens for TEM. However, the CEVS can be easily used to
prepare specimens for SEM by using a 3 mm diameter flat copper plate as the
specimen support. The CEVS can also be used for preparing specimens for
freeze-fracture by making the specimen sandwich (between the copper plan-
chettes) in the environmental chamber, and mounting it in the CEVS tweezers,
as shown by Burns and Talmon®2(1987). . o L ‘

The controlled environment chamber can be used as a "mini-laboratory” to
conduct dynamic experiments such as vesicle fusion, phase transitions, and
chemical reactions on the grid. This permits freezing of successive instants of
dynamical processes, which can then be studied by electron microscopy.
Dynamical processes can be initiated, propagated and terminated by suitable
combinations of parameters such as changes in temperature or saturation, on-
the-grid mixing, or external irradiation e.g. ultraviolet light. Sol-gel processing
for ceramics is being studied by this technique by applying, in succession, a
drop of sol and a drop of catalyst onto the grid, blotting it, and then waiting
for the reaction to proceed to the desired stage before cryofixing the specimen.
Further processing steps, like drying and sintering can be conducted in the
microsope with cold- and hot-stages.



70

Figure 28. Didodecyldimethylammonium bromide prepared at 25 and 70 ° C
with the CEVS: (a) 25°C and 1.5 wt % showing large liposomes; (b) 70° C and
0.4 wt % showing the transformation to vesicles in dilute solution; and (c¢) 70° C
and 1,6 wt % giving a clear field with no visible aggregates. Whether the

graininess in this electron micrograph represents micelles or noise is unresolved.
Bar = 250 nm.
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Construction plans for the system are available (Note 1). Ongoing work is
directed towards adding a programmable temperature controller, electrical
triggering of the plunging action, and a high-resolution long-working distance -
optical microscope for viewing the holey-carbon support. These modifications
will permit interfacing the CEVS with a microprocessor to allow precise and
repeatable timing control for accurately capturing desired instants of dynamical
events. Auxiliary inputs, e.g. ultraviolet irradiation to initiate reactions and
spectral techniques like fourier-transform infrared spectroscopy, may be used in
conjunction with the microprocessor to ensure that the desired specimen condi-
tions have been reached before cryofixation. The optical microscope will permit
on-the-grid micromanipulation, e.g. deforming of vesicles, prior to vitrification.
The success of the CEVS in reducing artifacts by preserving conditions very
similar to the native state of the sample, and allowing "on the grid" experiments
affords exciting new possibilities for membrane, virus, liquid crystal, micelle,
microemulsion, polymer, and ceramic research.
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3. PERIODIC SURFACES OF PRESCRIBED MEAN CURVATURE

Synopsis

While there are eighteen triply-periodic minimal surfaces that reportedly are
free of self-intersections, to date there is no known example of a triply—geriodic
surface of constant, nonzero mean curvature that is embedded in R° . We
compute and display five families of such surfaces, where every surface in a
given family has the same space group, the same Euler characteristic per
lattice-fundamental region, and the same dual pair of triply-periodic graphs
that define the connectivity of the two labyrinthines subvolumes created by the
infinitely-connected surface. Each family is comprised of two branches,
corresponding to the two possible signs of the mean curvature, and a minimal
surface. The branches have been tracked in mean curvature, and the surface
areas and volume fractions recorded, with the relation dA = 2HdAV carefully
checked to hold. The three families that contain the minimal surfaces P and D
of Schwarz and the I-WP minimal surface of Schoen terminate at configurations
that are close-packed spheres. However, one branch of the family that includes
the F-RD minimal surface of Schoen, and both branches of the family that
includes the Neovius surface C(P), contain self-intersection solutions and ter-
minate at self-intersecting spheres. On approach to the sphere limit, whether
self-intersection or close-packed, the gradual disappearance of small 'neck’ or
‘connector’ regions between neighboring ’sphere-like’ regions is in close analogy
with the rotationally symmetric unduloids of Delauney. We give what we
suspect are analytical values for the areas of the -WP and F-RD minimal sur-
faces, and a possible limit on the magnitude of the mean curvature in such fam-
ilies is proposed and discussed. We also report that the I-WP and F-RD
minimal surfaces each divide R® into two subspaces of unequal volume fractions.

The numerical method is based on a new approach to the formulation of the
Galerkin, or weak form, of the problem of prescribed — not necessarily constant
— mean curvature. The Surface Divergence Theorem is applied directly to a
vector-valued function that is the product of a scalar weighting function and. a
vector field chosen to enforce the boundary conditions. This formulation
applied in the context of the finite element method provides a robust algorithm
for the computation of a surface with: 1) mean curvature as a prescribed func-
tion of position, and 2) contact angle against an arbitrary bounding body as a
prescribed function of position or of arc length. A parametrization scheme for
triply-periodic surfaces is described that calls only for knowledge of the two
'skeletal’ graphs; this is demonstrated by the computation of the triply-periodic
minimal surface S'— S” hypothesized by Schoen, who described only the skeletal
graphs associated with the surface. The parametrization allows for easy calcu-
lation of the scattering function for various density profiles based on the solu-
tions, as well as the areas and volume fractions. For the three minimal surfaces
— P, D, and C(P) — whose areas and volume fractions are known analytically,
the numerical results are in agreement with these values. Furthermore, we
review the history of such surfaces, and clear up some inconsistencies in the
literature over the D minimal surface. ‘
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Introduction

This research was stimulated by the need for mathematically well-
characterized surfaces that divide space into two distinct, multiply-connected,
intertwined subspaces — spatial structures that are called bicontinuous.
Sponge, sandstone, apple, and many sinters are examples of relatively per-
manent though chaotic bicontinuous structures in the material realm. In these,
one of the subspaces is occupied by a solid that is more or less deformable and
the other, though it may be referred to as 'void’, is occupied by a fluid. Certain
lyotropic liquid crystalline states are probably also examples, one subspace
being occupied by amphiphile molecules oriented and aggregated into sheet-like
arrays that are ordered geometrically, the other subspace being occupied by sol-
vent molecules; the characteristic scale of these structures is so small — 5 to.50
nm — that the issue of their bicontinuity has not been settled, however.!™
Related liquid crystalline states that contain two incompatible kinds of solvent
molecules, e.g. hydrocarbon and water, present a further possibility in which
one subspace is rich in the first solvent, the other in the second, and the surface
between 11es within a multlply—connected stratum rich in orlented surfactant
molecules’. If two distinct surfaces dividing hydrocarbon-rich from surfactant-
rich and surfactant-rich from water-rich are envisioned, thls microstructure
could be considered tricontinuous.

Certain equilibrium 'microemulsion’ phases that contain comparable
amounts of hydrocarbon and water as well as amphiphilic surfactant may be
chaotic bicontinuous (or tricontinuous) structuresg maintained in a permanent
state of fluctuating disorder by thermal motions'®; for they are fluid and give
no mdlcatlon of geometric order but there is some evidence of multiple con-
tinuity®"®°. Here we concentrate on geometrlcally-ordered bicontinuous struec-
tures. That these are mdeed promising models for lyotropic liquid crystalline
states known as ’cubic’ or 'viscous 1sotroplc phases has been demonstrated in
X-ray diffraction studies by Lindblom et al.!°, and Longeley and MecIntosh®; see
also Larsson!!. However, the apparent matches of data with model could
depend on the large number of parameters they used to define their structural
models, which were based on approximations to the constant-mean-curvature
surfaces of the type presented here.

Other possible areas of application of the periodic surfaces, or of disordered
relatlves of these, include structure of superconductors in the intermediate
state!?, sintering kinetics!'®, fluid flow through porous media'?, the topology of
spacetlme at the scale of Planck length'®, the structure of the Qrolamellar body

16 1 :
in certain plastics™, certain phase- segregated polymer blends™’, semiconductor
based separations processes'®, shape-selective catalysts'®, and Fermi surfaces in
electron band theory?®, see also Andersson®l.

The rest of this section provides some mathematical background and a brief
historical review of the study of periodic minimal surfaces. In the next section
we introduce the computational methods, for constructing a surface whose mean
curvature is a prescribed function of position, and which meets a given body at
a prescribed contact angle; elsewhere?? the method is generalized to curves of
prescribed space curvature lying in a known surface. In the Results section we
present five new families of triply-periodic surfaces of constant mean curvature
- and record the areas and volumes of unit cells as we track in mean curvature;
surfaces with prescribed nonconstant, smoothly varying mean curvature are also
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computed.
Mathematical background

In 1865 the mathematician H. A. Schwarz published the first example of a
minimal surface with full three-dimensional periodicity and free of self-
intersections (or embedded in R3)23'24, a surface now known as Schwarz’s 'Dia-
mond’ surface (or 'D’). The designation?® refers to the branching of the two
congruent, intertwined but disjoint labyrinths lying on opposite sides of the
infinitely-connected orientable surface. Each labyrinth contains in its interior a
diamond-branched, symmetric graph of degree four, that is, a periodic array of
nodes connected by edges in which four equivalent edges meet at the
tetrahedral angle at each equivalent node (some authors, e.g. Mackay?®, give
the name 'F’ to this surface since it is of face-centered cubic symmetry). In Fig-
ure 1 are shown: (a) an extensive portion of this surface, together with the two
graphs, (b) a lattice fundamental region (a lattice-fundamental, or L-F, region is
the region that exactly fills space when the translational symmetries of the Bra-
-vais lattice are applied), and (c¢) a primitive patch bounded by straight lines
lying in the surface (figure (c)) reproduced from Schwarz?. This primitive
patch is the surface of minimal area that spans a circuit of four edges of a regu-
lar tetrahedron (it was also derived independently at about the same time by
Riemann?’. This was the first analytical solution to a general problem later
named after Plateau, in which the surface of least area spanning a given closed
loop is sought, representing the equilibrium configuration of a soap film span-
ning the frame. Schwarz’s 1865 publication also mentioned that a periodic sur-
face could be built up by rotating the patch through 180° rotational symmetry.
Second, the surface is connected and free of self-intersections, even though it
contains a network of edges of congruent regular tetrahedra and regular
tetrahedra themselves cannot fill space without self-intersection.

Figure la. The Schwarz 'D’ or "Diamond minimal surface. Four lattice-
fundamental regions are shown, making the Euler characteristic -16. The space
group is F 43m, that of diamond close-packed spheres. The two graphs thread
the two labyrinths created by the space-dividing surface.
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Figure 1b. A single lattice-fundamental region of the Schwarz D minimal sur-
face, of Euler characteristic -4.

Figure 1lc. A primitive patch of the D minimal surface bounded by straight
lines that are axes of 180 ° rotational symmetry on the periodic surface (Figure
reprinted from Schwarz“‘l).
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It can be shown that any solution to a Plateau problem must be a surface
whose mean curvature H at each point is zero (H = (1/2)[k; + Ky]) , where &,
and Ko are the principal curvatures, reciprocals of the principal radii of curva-
ture). A minimagl surface is thus defined to be a surface of everywhere vanishing
mean curvature?® derived a partial differential equation for a surface of least
area that is equivalent to the condition that H = 0). Each coordinate xj of a
minimal surface can be written as a harmonic function of certain surface coor-
dinates®; see also Bonnet®, i.e., 3% /Ou’+ %%, /Ov? = 0. The reflection princi-
ple of harmonic functions then guarantees that a strai%ht line lying in the sur-
face is an axis of two-fold rotational symmetry Schwarz?%. The maximum princi-
ple for harmonic functions requires that a minimal surface be wholly contained
in the convex hull of its boundary curve. It can also be shown that, apart from
the special case of a plane the Gaussian curvature K is negative except at iso-
lated points where it may be zero®3? review these properties|. Mean and Gaus-
sian curvature are the basic scalar invariants of the curvature dyadic, or
second-rank tensors b(r), which describes the local state of surface curvature at
points r on the surface. The curvature dyadic is the negative of the tangential
gradient, or surface gradient V, of the unit normal vector n to one side of the
surface® (in the classical treatment of the differential geometry of a surface,
this operator is suppressed). Thus:

b(r) = — Vgn, H =1/2 tr(b) = —1/2 Vgn . (1)

Excepting the plane, the integral Gaussian curvature (or 'total curvature’) of a
minimal surface is negative. Thus the integral Gaussian curvature of a periodic
minimal surface must be infinite. B% the Gauss-Bonnet theorem (the theorem
for éeodesic triangles is due to Gauss®, and a more general form is due to Bon-
net®®; see also Darboux®®, [[K dA4Y; JCikyds = 2wy , the Euler characteristic
x of such a surface is infinite. But the Euler characteristic of a lattice-
fundamental regions is finite, and in the case of Schwarz’s Diamond surface x =
- 4. The relation [[¢Kda = 2mx holds for every lattice-fundamental surface
patch treated here because each is bounded by geodesic curves Ky = 0).

Schoen?® has taken the relation g = 1-x/2, which gives the genus g of a
closed body in terms of its Euler characteristic, and applied it to a lattice-
fundamental region of 17 of the 18 triply-periodic minimal surfaces known (the
eighteenth surface was added in proof in a footnote, and not discussed in any
detail); thus he listed the value 3 for the genus of a lattice-fundamental region
of the D surface, and of its conjugate surface P (see below). However, the
correct formula for the genus of a surface with r closed boundary loops (r holes)
is g = 1-(x+r)/2. The Euler characteristic of an nxnxn array of L-F region of
the P surface is —4n®, and the number of boundary loops is 6n%, so that the
genus per L-F region of the infinite P surface is in fact:

grp =lim, _, o[l —( —4n% +6n?)/2]/n® =2 . (2)

In fact, the value listed by Schoen for the genus of a L-F region must in each of
the 17 cases be diminished by one to give the correct value for the genus per L-
F region. The correct value can be found from the Euler characteristic listed in
this paper by dividing this value by -2. The genus of an orientable surface is
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the maximal number of disjoint closed cuts which do not separate (disconnect)
the surface. In the science of porous media, the average genus per unit volume
of a dividing surfaceg whether periodic or not, provides a measure of the ’hole-
ness’ of the medium.>"*®

Schwarz made his discovery with the aid of Welierstrass’s integral represen-
tation of minimal surfaces in terms of the following trlplet of harmonic fune-
tions of the complex variable u+iv, where the domain is a complicated Riemann

surface: | ‘ _
' u+lv
x(u,v) = % Re | XV—% IR )
u-+iv ' - ‘
(o) =R ] %‘“—L e (4)
u+iv

z(u,v) = K Re f v—'dU (5)
Schwarz was able to deduce tha{}h_e_d.l_a_m.ond surface 'D’ could be obtained by
taking R(0)=1—14z0%+ o6&, k = V2/K(1/2) = 0.8389222985..., and © = 0. The

three conjugate harmomc functions, generated by taking © = 7/2, define the
conjugate minimal surface to D also studied extensively by Schwarz This
second surface is also periodic and free of self-intersections and is now known as
Schwarz’s 'Primitive’ or P’ Surface (see fig. 32), because each of the two
labyrinths created by the surface contains a symmetric graph of degree six (six
edges meet at each node) with cubes). The Bravais lattice of P is sunple cubic,
and its space group is Pm3m (no. 221 in the Crystallographic Tables®’ Wyckoﬁ
notation 'n’ with 48 equivalent posmons the Bravais lattice of D is face-
centered cubic, and the space group is F 43m (no. 216), Wyckoff notatlon by
Wlth 96 equivalent positions [see Schoen %5 and the Results section].

Neovius, a student of Schwarz, discovered another minimal surface periodic
and embedded in three dimensions®. It is referred to simply as the 'Neovius
Surface’, or as ’C(P)’.25 Schoen has introduced the concept of 'complementary’
minimal surfaces, and his notation C(P) designates Neovius’s Surface as the
complement of Schwarz’s P Surface. Two surfaces are said to be complemen-
tary if they contain the same straight lines and have the same space group.
Despite these remarkable similarities, C(P) is considerably more complicated
than P, the Euler characteristic of a lattice-fundamental region (which is also a
unit cell) being -16 as opgosed to -4 for P. The conjugate of Neovius’s surface
contains self-intersections™ Neovius and Schwarz together discovered a total of
five periodic minimal surfaces free of self-intersections, and no further examples
were published until 1968. An example of a doubly-periodic minimal surface is
Scherk’s surface?!, also studied by Schwarz

Schoen?®*? has proven or hypothesized an additional thirteen triply-periodic
embedded minimal surfaces. For one of these surfaces, which Schoen named the
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'gyroid’, an analytic solution with Weierstrass integrals was obtained. The sur-
face is in fact related to both P and D by an ’associate transformation’, in
which the function R(0) and the Reimann surface in the Weierstrass representa-
tion are kept the same, and only © is changed. The Gauss map, which maps
each point of the surface to a point on the unit sphere representing the normal
to the surface, is invariant under the associate (or 'Bonnet’) transformation,
and since the algebraic area of the Gauss map yields the Euler characteristic,

the Euler characteristic of a corresponding region of the 'gyroid’ is the same as
that of P and D.

The remaining twelve examples discussed in Schoen’s note must be con-
sidered conjectures. In many cases physical models were built from plastic, or
with soap films. Although analytic representations for these surfaces have not
yet been found, Schoen’s contribution to a subject which had seen little progress
in over 75 years was substantial, and is carried further in this work. In this
regard it should be recalled that even in the case of rotationally symmetric sur-
faces, the constant-mean-curvature solutions*® do not admit closed-form ana-
lytic representations [see also Kenmotsu®?).

Schoen's system of notation for periodic minimal surfaces will serve equally
well for periodic surfaces of constant, but not necessarily zero, mean curvature.
Each surface is named after the ’skeletal’ graphs contained within the two
labyrinthine regions into which RS is partitioned by the surface. The two skele-
tal graphs are referred to as dual skeletal graphs and each has the same space
group as the surface itself. If the surface contains straight lines, then these
lines are two-fold rotation axes whose action is to interchange the two sides of
the surface, and this implies that the two labyrinths — and therefore the two
skeletal graphs — are congruent. The skeletal graph can then of course be
called self-dual. The skeletal graphs of P, D, and C(P) are all self-dual, and
hence these surfaces can be specified by the name of just one graph. In the
cases of P and D, this graph is symmetric.2>%® A graph is said to be symmetric
if: 1) there exists a symmetry operation that is transitive on the edges that
meet at a node; 2) there is a symmetry operation that is transitive on the
nodes; 3) every vertex is joined to its z nearest neighbors (z is the degree of the
graph); and 4) every vertex lines at the centroid of its z nearest neighbors. In
the case of C(P) the §raph is self-dual but not symmetric, having coordination
symbol 12:4 [see Lines*®] (this graph is constructed by connecting the centroid of
each cube to the twelve edge-midpoints, in a simple packing of cubes). Schoen
chose to name the Neovius surface by its complementary relation to P rather
than by this skeletal graph.

In cases where the minimal surface does not contain straight lines, it is pos-
sible that the skeletal graph is not self-dual (although it may be, as in the
gyroid, where the two graphs are identical except that one is left-handed and
the other right-handed). In cases where it is not, Schoen has given hyphenated
names indicating both skeletal graphs. The three such cases which will be pur-
sued in this work are called F-RD, I-WP, and S’ — S". F refers to the face-
centered cubic graph, which is a symmetric graph of degree 12 obtained by con-
necting nearest neighbors in a face-centered cubic lattice; its dual graph is not
symmetric, and is named RD because it consists of all the edges of space-filling
assembly of rhombic dodecahedra (each rhombic dodecahedron defines a
lattice-fundamental region in the face-centered cubic lattice). Alternatively, the
RD graph can be constructed by joining the centroids of nearest neighbor
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polyhedra in a space-filling assembly of regular octahedra and regular tetrahe-
dra, indicating clearly that the coordination symbol of the graph is 8:4. The I
graph is the body-centered graph, a symmetric graph of degree 8 obtained by
connecting all nearest neighbors of a body-centered cubic lattice; its dual graph
is not symmetric, and is named WP because a unit cell resembles the string of a
wrapped package. The WP graph is constructed by joining the face centers to
the four edge-midpoints for each cube in a simple packing, so the coorindation
symbol is 4:4 (the coordination symbol 4 is reserved for the symmetric graph of
degree 4). The graph S' is made by starting with parallel identical square tesse-
lations, and joining corresponding edges in adjacent layers at their midpoints by
edges which are perpendicular to the layers; its dual graph S” starts with paral-
lel identical square tessellations positioned halfway between the S’ layers and
oriented 45° to the 8’ squares, and edges ?erpendicular to the layers are
erected at alternative vertices. Schoen’s note®® contains photographs of plastic
models of F-RD and I-WP, but no visualizations of 8’ — 8" are given.

Thirteen of the eighteen examples introduced or reviewed by Schoen contain
plane lines of curvature, though many of these do not contain straight lines
(including the important examples F-RD and I-WP). A plan line of curvature is
a curve on a surface which lies in a plane and whose tangent at each point is
parallel to one of the Principle directions of the curvature dyadic. By
Joachimsthal’s theorem3®*?, the surface meets this plane at a constant angle,
which in all the periodic surfaces treated here is 7/2. In these thirteen cases
Schoen has listed a 'kaleidescope’ cell — one of the seven convex polyhedra pro-
ven by Coxeter®® to be the only generators of discrete groups of reflections —
which orthogonally bounds a primitive patch of surface. The periodic surface
can be obtained by repeated mirror reflections through these kaleidescope cell
(or 'Coxeter cell’) faces. For example, Schwarz showed that a primitive patch
of the D surface is orthogonally bounded by a certain tetrahedron named
tetragonal disphenoid’ by Coxeter. Thus D can be constructed by either solv-
ing a fixed-boundary problem and extending by repeated rotations, or by solving
a free-boundary problem and extending by mirror reflections. The same is truce
of P and C(P), while others such as F-RD and I-WP that are not self-dual can
be generated only by repeated reflections of a surface patch meeting orthogo-
nally the faces of a Coxeter cell. The lattice-fundamental region for each
periodic surface in this paper is composed of an integral number of Coxeter
cells, and because the boundary curves are plane lines of curvature and the sur-
face meets this plane at an angle of 7/2, the boundary curves are geodesics, as
stated above.

Given fixed volume fractions, q and 1-q, of the two subvolumes into which a
given convex body is to be divided by a surface of a fixed topological type, the
dividing surface of minimum area a) has constant mean curvature, and meets
the boundary of the body orthogonally. General existence proofs, in_the context
of geometric measure theory, can be found in Massari®® and Giusti®®. However,
these proofs do not provide partitioning surfaces of prescribed topological type.
Results regarding interior and boundary regularity have recently been extended
from area-minimizing surfaces to surfaces of stationary area.’’*? The problem
of computing a surface of prescribed mean curvature and topological type is a
fundamental one which is a natural generalization of the minimal surface prob-
lem, yet very little is known about the case of nonzero. mean curvature.
Nitsche! has reviewed the work on the problem of perturbing a minimal surface
so as to have prescribed mean curvature, including the associated eigenvalue
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problem; however, very few constructive results exist for the case of orthogonal-
ity boundary conditions. Schoen?® has noted that the concept of dual skeletal
graphs should apply to a constant-mean-curvature surface of the same topologi-
cal type and space group as a periodic minimal surface. Recently the Weier-
strass representation has been extended to surfaces of nonzero mean curva-
ture®, but to use his formulae to generate such a surface evidently requires its
Gauss map, which in general is not known apriori. There has been no calcula-
tion of a triply-periodic embedded surface of constant, nonzero mean curvature
reported in the literature.

In this paper we report such surfaces, that we have computed with a new
finite element formulation. Rivas® has noted that finite difference techniques
are not well-suited for handling contact angle boundary conditions. The finite
element method has been shown to be an effective and versatile tool for the
computation of minimal surfaces;>>®, even when the surface does not admit
singly-valued orthogonal projections onto planes. The method we have
developed can produced surfaces of non-uniform, nonzero mean curvature that
is a prescribed function of position, and we report triply-periodic examples of
these as well. And the method can produce a finite surface, of prescribed mean
curvature, whose contact angle against a given boundary is a prescribed func-
tion of position; the obvious application of this feature would be to fluid hydros-
tatics and hydrodynamics.

A rigorous mathematical existence proof for a periodic surface of small,
nonzero constant mean curvature can be obtained with the methods of the
theory of nonlinear elliptic differential equations. The resulting surface would
be a perturbation of a known periodic minimal surface. But the intent of this
paper is rather to exhibit numerical solutions that extend over wide ranges in
mean curvature. The surprising fact that at the limits of these ranges simple
close-packed sphere configurations are encountered might provide guidance to
this seeking analytical representations of the solutions displayed.

Computational Method

In this section we introduce the computational method in the form used for
the surfaces exhibited in the Results section, i.e., where the prescribed mean
curvature of the computed surface is everywhere constant, and the boundary
conditions are determined by two dual periodic graphs. We also give generali-
zations of the prescribed mean curvature of the computed surface is everywhere
constant, and the boundary conditions are determined by two dual periodic
graphs. "We also give generalizations of the method for the computation for a
surface of prescribed — not necessarily constant — mean curvature, with
prescribed contact angle against a given surface. Generalization to the compu-
tatlon of space curves of prescribed curvature or geodesic curvature is avail-

able.?

Given a pair of dual period skeletal graphs, G’ and G” with a certain space
group, the first step is to identify the Coxeter (or of filling space by repeated
applications of the mirror symmetries of the space group.”® There are only
seven possibilities for this cell, each of which is either a tetrahedron, a rec-
tangular parallelopiped, or a right prism. Let C;,C,,..,C; be the faces of C.

This polyhedron C will contain at least a portion of one edge of each of the
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graphs, since the group of reflection symmetries which exactly fills space when
applied to C also generates G/(G") when applied to the intersection of G/(G")
with C. Call the edge-portions ly,ls,..,};¢G'NC and m;,m,,..,m; eG'NC. If i or k
> 1, then f > 4 and in this case C is divided into tetrahedra {qu; the
tetrahedron T is exactly the convex hull of the segments 1, and m,. If I, and
m, are parallell) then Ty, is not included. Let the faces of T be Ty 1 =1, 2,

3, 4. Any face in the entire collection {qur that is not part of any én is shared
by exactly two tetrahedra.

The unit interval 0 < u < 1 is divided into i subintervals {Ip}, and 1; is
parametrized by a linear mapping from L

r=a,+bu , ul. (6)

similarly O < v <1 is divided into k subintervals {Jq} and m, parametrized by
a linear mapping from Jg;

r=a,+byv , v J . (7)

The entire tetrahedron T, is now parametrized by sending a spine®” from each
point on 1, to each point on mg :

r(u,v,w) = ( a, + byu )(1-w) + (aq + bq V) w=

= a,(,v) + bp(u,v)w, uwel,vel, o<w<l1l. (8)

u=1

-r¥(u”,v7) = r(u®, v, w (u®,v)

r*(o,v') =r (0,v',w" (0,v')}

u=0

Figure 2. Parametrization of the primitive cell. One boundary spine and one
interior spine are shown.
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The (u,v) computational domain D consists of the union of the rectangles
Ry = Ix Jg, one for each tetrahedron T,,, with a pair of edges of two rectan-
gles R an(é Ry identified if Tp, and ’IPp/q: share a face. In the cases of high
symmetry exammed in the next section, the identification of duplicated edges
occurs automatically when the rectangles are assembled in the unit square. The
parametrization of the surface patech S which spans C and is sufficient to gen-

erate the entire periodic surface by application of the group of reflections is
defined by:

r*(u,v) = apq(u,v) + bpq(u,v) w¥(u,v) . (9)

The condition 0 < w* < 1 is necessary, though not sufficient, for the periodic
surface to be free of self-intersections. The function w*(u,v) must be found to
complete the characterization of the surface. Traditionally one solves the par-
tial differential equation Vg n = — 2H, which is a second order p.d.e. for
w*(u,v). A finite difference or finite element solution for w*(u,v) is sought usmg
basis functions ¢;(u,v) and finding coefficients o4 such that:

N ,
wH(u,v) = g,lai@(u,v) . - (10)

A common way of generating residual equations from which o;'s are determlned
is the Galerkin method, which yields: :

ffs ¢;[Vs'n +2H] dA =0, j=1,..., N. (11)

It is advantageous to replace eqn. (5) by an equivalent expression with lower
differentiability requirements on the basis functions, in which the boundary con-
ditions are automatically satisfied. The approgrlate 1ntegrat10n by parts for-
mula is the Surface Divergence Theorem (SDT), which is an integral relation
for a piecewise-differentiable vector-value function f defined on a surface:

ffs Vg FdA = fasm'Fds - ffs 2Hn-FdA ; (12)

here F is an arbitrary C! vector-valued function defined on a surface S with
normal n and area element dA, Vg is the surface divergence operator on S, H
is the surface mean curvature, and ds and m are the differential arc length and
outward pointing unit tangent along the boundary OS of the surface. The out-
ward pointing tangent is defined to be orthogonal to both the surface normal n
and the unit tangent t to the boundary curve 0S;

m = txn = (dr*/ds)xn , r*€ 35 . (13)

However, if F is taken to be n¢;, the result is equation (5), and so the SDT can-
not be used to integrate (5) by parts since the SDT contains equation (5) as a
special case.
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The key to the present method is to choose the test functions F; in terms of
the fixed parametrization (2) and the Welghtlng functions ¢;(u,v). An expedient
choice for the test function F; in the ] 5t b residual equation equatlon is:

Fj =M ¢j (14)
where
M = dr / Ow; (15)

in the present case M = b,,. The scalar multiplication by the weighting func-
tion qb is done so that We1ghted residuals result on apphcatlon of the SDT.
Since each spine is parametrized by w, the vector M is tangent to the spine
given by (u,v,); in particular, if (u,v) is on the boundary of the computational
domain, so that this spine rounds along some C,, then M will lie in the plane of
that face. The orthogonality boundary conditions for the desired surface are
equivalent to the condition that m-F;( = m-Mg¢;) =0, and the orthogonality
boundary conditions are enforced by s1mply strlkmg the boundary term from
each residual equation.

To carry out a computation H is prescribed and the surface operator Vg,
the surface normal n, and the area element data are expressed in terms of the
solution (3) and its first partial derivatives. The Jacobian of the parametriza-
tion (2) is easily calculated to depend only on w:

A(x,y,2)/0(u,v,w) du dv dw = ¢, w(1—w) du dv dw , (16)

where c,=(byxb,)-(a; —a,). The transformation of course is singular along

and m,, Where w = 0 or 1, but the surface lies inside the C and does not
intersect these segments The surface normal is computed from the surface
basis vectors r *= 9r*/0u, and r,* = Or*/dv, where in differentiating (3) we
encounter the partials Bw*/au and ow* [Ov:

n=r*x rv*/lru* xr,] . (17)

The surface operator is expressed in surface coordinates using a standard for-
mula:

VS=SI a/au+52 a/aV (18)

(Gr,* — Fr,*) (BEr,* — Fr,*)
= o/0 a/ov 19
EG — F? /9u+ EG — F? / (19)

where E =r * r,* ,F =r,* r,*, and G =r,*  r,* are the fundamental mag-
nitudes of first order. The vectors s; and s, are the surface reciprocal basis
vectors.
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In the finite element method®®®%, the basis functions are of compact support
-- that is, each qu is nonzero only on a small rectangle in D. Since the quanti-
ties that we want to calculate from the solutions, such as area, volume, and
other surface or volume integrals such as the scattering function, do not call for
explicit knowledge of the second or high partial derivatives, the most economi-
cal choice is bilinear basis functions, which are piecewise first differentiable. A
method for estimating the Gaussian curvature from the solution is described
later in this section.

The Galerkin-weighted residual equations are obtained by inserting the

expression (3), (4), (8), (10) and (11) into the SDT (6), with the boundary term
deleted:

The integrals are evaluated by numerical quadrature, with the local mean cur-
vature H prescribed at each Gauss point. The equations can be solved for the
o4's by Newton iteration.

Mean curvature is a dimensional quantity, with dimensions of inverse
length. One definition of a dimensionless measure is the product H* = H- a of
mean curvature times the lattice parameter. Thus the solutions presented can
be scaled to any size lattice. Correspondin% areas and volumes are found by
multiplying the dimensionless quantities by a“ and a2, respectively.

A good initial estimate of the solution is necessary, and this often requires
considerable trial-and-error. Techni%ues for generating an estimate for the first
solution in a family have been given 2. in the families treated here the minimal
surface was found first, since the nonlinearities in the term containing H gen-
erally slow convergence. Once a single solution is available, first-order continua-
tion® in parameter H* can then used to examine a full range of constant mean
curvature surfaces with the same space group and skeletal graphs as the known
surface. In this continuation scheme, the change in the nodal values resulting
from 2 small increment in H is predicted by solving for 3/3H in the matrix
equation: ‘

BR; /Dy, (aak/BH)+(8Rj/5H), i=1,.,7 . | (21)

where the inverse of the Jacobian matrix [0R;/Ocy] is known from the final
Newton iteration at the old value of H. The column vector on the right-hand
side of (13) has already been calculated as one of the contributions (after multi-
plication by 2H; see eqn. (12)) in the residual R;:

OR;/0H = [[nFjdA, j=1,.7 . | (22)

For each surface of non-zero H*, the sign convention for H* reverses when
the (orientable) surface is viewed from the other side. For the cases where the
skeletal graph is self-dual, this corresponds to the two choices for the unit cell,
one in which the centroid is a node of G' and one where it is a node of G'.
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Thus in these cases we need only substitute positive values for H* in the com-
putation, and use this transformation to display unit cells with H* negative. In
cases where G’ and G" are not congruent, both positive and negative values of
H* must be explicitly substituted. A

It is a simple matter to compute the area of each computed surface, as well
as the volume fractions of the two labyrinths created by the partitioning sur-
face:

A(H)=fdeA=ffD VEG — Fldudv

w¥(u,v

‘ )
V(H) = fffw<w*dV = 1;]] £ epgW(1—w)dwdudv

=X cpaf Jo [ /2 — w/3)dudv . (23)
P g

This latter integral gives the volume in C lying on the same side of the surface
as the skeletal graph G'. The relation: ‘

dA = 2HAV or A/(H) = 2HV/(H) (24)

applies because each surface in a given family hits the faces of C orthogonally,
and provides a check on the numerical accuracy of the constant-mean-curvature
surfaces generated31'34, derived a formula for the first variation of a surface
which is easily reduced to (17) when H is constant; the authors do not know
where (17) was first explicitly stated). :

If H is specified as a function H(u,v) of the surface coordinates then this
function is evaluated at each Gauss point P, where the value H(P_,) is needed
in those residual equations R; satisfying ¢j(Pm)!=0. Clearly a more rapidly-
varying function will require a finer grid. If H is a specified function of spatial
position H(r), then this is rewritten, via (2,3), as a function of u, v, and the
solution w*(u,v). Examples of this are in the Results section. In principle it is
possible to prescribe H as a function of position and slope by including in the
prescribed function the values of 8w*/du and dw*/Ov already calculated at the
Gauss points, though this has not been tried. When H is prescribed as a func-
tion of position and/or slope, then the Jacobian matrix should include the
dependence of this prescribed H on the nodal values; however, if this function is
slowly-varying and the user is willing to sacrifice quadratic convergence, this
contribution to the Jacobian can be neglected or approximated.

The method is easily generalized to allow specification of the contact angle
~ between S and the surface JC of a known body C along 0S = S N 9C; the
precise definition of this contact angle is the angle between the surface normal
n and the normal R to dC, both taken at r*(u,v) € dS. Since the surface VC is
known, its normal N*(u,v) presumably can be written (except perhaps on a set
of measure zero) as a function of position in space, and ultimately of u,v, and
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w*(u,v) using (2) and (3). In cases where C is a polyhedron, N is a constant
independent of u and v along faces of the polyhedron.

The parametrization r(u,v,w) of C must always be defined in such a way
that the spines whose (u,v) coordinates are on the boundary 0D of the computa-
tion domain lie entirely on the boundary 0C of the body C. By the work of
Kistler and Scriven® it is known that the finite element method accommodates
virtually any parametrization of the solution in terms of the coeflicients, up to
and including the representation of a surface by its intersections with
predefined space curves selected as spines. In much of Kistler’s work the spines
were defined individually, with the basis function ¢; providing the interpolation
between nodes. However the notion of a parametrization with spines also
includes as special cases all of the traditional coordinate systems, normal per-
turbations to a known surface??, and most importantly here, parametrizations
that are interpolated between boundary z spines running along the surface of a
given body, an example being the ’'spine fields’ concocted above to fill the Cox-
eter cells. Curved spines must be invoked if OC is itself curved, unless OC is a
ruled surface (such as a generalized cylinder) in which case the generators could
be taken as straight spines. The equations of this section have been developed
in full generality of arbitrary spine parametrizations, and since the residual
equations can be written immediately with low-order differentiability require-
ments on this parametrization, the method is quite general.

Recently®® it has been noted that the generalized Coxeter cells of
Bashkirov®® which can have curved faces, could be used to determine ortho-
gonality boundary conditions for periodic minimal surface (and so for constant
mean curvature variants, we suggest). The generalization of the present
method to curved spines provides one possible solution scheme to this approach.

Where curved spines must be invoked the w-dependence of r(u,v,w) will be
more complicated than the linear dependence in (2). Nevertheless we still define
F; via equation (8), recognizing that M is now a function of u, v, and w*. In
aédition to this tangent vector OC along the (u,v) spine, we define another vec-
tor Mtalso tangent to C but orthogonal to the spine: '

M} = MxN (25)
and then

Ff =Mfo; (26)

we take N to be normalized so that Fj=NxNji.

Combining this with equation (7), we have that:
Fym = (N x Ff)-(t xn) . (29)

By a simple vector identity this can be rewritten:
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Fym = (N-t)(F{n) — (N-n)(N-n)(F-t)

= — cosfy(Fji't) (30)

where the contact angle v is specified between the normalized vectors n and N,

and the dot product of the normal and tangent vectors N and t to OC is zero.

Another simplification occurs when we notice that the differential arc length ds

in the expression t = dr* /ds cancels with the ds in the integrand of line integral
of the SDT:

F;mds = — cos'y(Fji-dr*/ds)ds,

= — cosF-dr* (31)

We specify the contact angle v at each point of the boundary dS by insert-
ing (18) into the SDT (6). In many cases the parametrization (Equations 8,9)
and the boundary D of the computational domain are such that the line
integral can be performed analytically between nodes. For example, if C is.a
polyhedron parametrized as in the past section, then each Mji (and therefore
M ) is independent of w, since only straight spines are needed; furthermore r*
is linear in u and v since the representation (Equations 8,9) with bilinear basis
functions is piecewise linear along the polygonal boundary 0D. Thus if the con-
tact angle is to be everywhere constant, the integration over a boundary grid
line is easily performed analytically, as is done in an example in the Results sec-
tion. If the contact angle has a relatively simple analytic form as a function of
u and v or of arc length s, again the analytic integration should be possible.
One can imagine, on the other hand, situations where the contact angle
prescription is sufficiently complicated (particularly a function of the spatial
coordinates on JS) that the integration would have to be performed by numeri-
cal Gaussian quadrature.

In the expansion in bilinear basis functions, the Gaussian curvature is con-
centrated in the solid angles at nodes, where four surface elements meet. The
following scheme is a sensible method of estimating K at each node, and gives
an accurate value of the integral Gaussian curvature over any region comprised
of a nontrivial number of elements.

The integral of the Gaussian curvature over an area of surface S is exactly
the algebraic (or signed) area of the image on the unit sphere of the spherical
map, which for every point on S assigns a point on the unit sphere correspond-
ing to the direction of the normal on S. The area of the spherical image is
taken to be negative if the orientation of a closed loop is reversed with respect
to the orientation on S, and positive if the sense is preserved. If this rule is
applied to a very small surface patch S, over which the Gaussian curvature is
approximately constant, then a value approximation to the average pointwise
Gaussian curvature is:

K (signed area of spherical image) / (area of S)

The normals to a surface defined with bilinear basis functions are most accu-
rately calculated at the midpoints of elements; in this calculation only first-
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partial derivatives are required. Thus if we are interested in the value of K at
an interior node Nj, a simple calculation at the midpoints of each of the four
elements meeting at N; supplies four points on the unit sphere. Girard’s
theorem then provides a convenient means of evaluating the area of the spheri-
cal patch bounded by geodesics that form a circuit through these four points.
By choosing geodesics to join consecutive points, we also insure that neighboring
quadrilaterals join up exactly, without gaps or overlap; this is very important
for the calculation of the total integral Gaussian curvature over a region of sur-
face. To apply Girard’s theorem we will need the angle between two geodesics
g, and g, where g; passes through points on the unit sphere corresponding to
the unit vectors m; and n;, and g, passes through the endpoints of n; and ny.
But this angle is just the dihedral angle between the planes whose sections on
the sphere are g; and g,. The unit normal to the plane containing n; and n; is:

nij=nixnj/|nixnj|, (32)
and similarly for ny.. Then the angle w between g, and g, is given by:
coSW = nj;myy . (33)

After calculating the four angles of the geodesic quadrilateral, its area is given
by Girard’s theorem as the sum of the four angles, minus 27. A convenient test
for the sign of this integral Gaussian curvature is to check the sense of the loop
n; — Ny — Nz — Ny, by:

sign K =sign { [ (ny — n;)x(n3 — ny) |'ny} . (34)

The resulting value of the integral Gaussian curvature is then divided by the
area of the surface element, given by one term in equation (15).

To estimate K at a node that lies on_the boundary of D, we have used a
method based on Joachimsthal’s theorem.?” Whenever the boundary conditions
require a fixed contact angle against a plane (or against any surface, such as a
sphere, on which every point is an umbilic), then the curve of this intersection is
a line of curvature. In the triply-periodic surfaces of this paper, whether of con-
stant mean curvature or not, the boundary curves on the primitive patch S are
thus plane lines of curvature. A scheme to estima‘ue)iI KJIT, the magnitude of the
curvature of this plane curve at a given point, is to circumscribe a circle about
the triangle determined by three consecutive points centered about the given
point. If a, b and ¢ are the sjdes of this triangle and s = (a + b + ¢)/2, then
the radius of curvature R =1 I‘Gll is given by Heron’s formula:

R = %Cl\/s(s ) =D — o) . (35)

There are then only two choices for the second principle curvature, because the
sum of the curvatures equals -21-I|{* To distinguish between the two possibilities
Ky = o1 *—| fcll and Kk, = 2H* /cl], the magnitude of k, is estimated using the
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above formula applied to the images of three points that begm at the given
node and move directly into D.

P Family: Results

We now describe a family of triply-periodic embedded H-surfaces that each
have space group Pm3m and divide space into two labyrinthine regions, which
are threaded by two fixed dual symmetric P graphs of degree six. The solution
for H = 0 is the Schwarz P minimal surface, and the limiting configuration on
each of the two branches consists of simple cubic close-packed spheres. Except
for these limiting configurations, the Euler characteristic of a unit cell of sur-
face, which is also a lattice-fundamental region, is -4, and the number of boun-
dary loops is r = 6.

The Coxeter cell C for each member of this family is a quadrirectangular
tetrahedron, e.g., given by 0 <z < x <y < 1/2. Among the edges of C are
representative edge portions of each of the two skeletal graphs G' and G":[;
{0, u/2,0) 0 <u <1} € G'and my: 1/2 1/2,v/2) ) <v<1}ean Thus
the vector field M is simply M(u,v) = (1/2, 1/2-u 2 V 2). The generic residual
equation is now determined, using the equatlons of e previous sectlon The
constant c,, in the Jacoblan Eqn. (9), is simply 1/4.

The computational domain is the unit square in u and v, and this was
divided into a 15 x 15 mesh; i.e., 225 elements, and 16 x 16 = 256 nodes, so 256
basis functions and 256 residual equations. The Jacobian matrix was banded
with a total bandwidth of 35. The first solution computed was the minimal sur-
face, for which the initial estimate was an hyperbolic paraboloid. The nonlinear
system of residual equations was solved by Newton iteration on a Cyber 124,
each iteration using about 1 second cpu time. For nearly all the surfaces calcu-
lated, the mesh was an even mesh over the entire unit square. However, for the
surfaces just near the close-packed spheres (CPS) limit, the nodes were evenly
spaced in the u-direction but placed as follows in the v-direction: v = 0, 1/60,
1/30 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. In the
case H* =0 the stralght lines on the Sulface should’ satlsfy w = 1/2 on nodes
where u = v, and this was satisfied to 13 digits (the accuracy of the Cyber 124
with single precision) for every such node; this remarkable accuracy was in fact
observed for all three minimal surfaces treated containing straight lines, namel
P, D, and C(P). Also for these surfaces, the volume fraction calculated was 1/2
to 13 significant figures.

The computer graghms were prepared using a Cray-1S with the graphics
package MOVIE.BYU.”® In this program, surfaces are represented by polygons.
To meet this limitation, system at the University of Minnesota set an upper
limit of 8,000 polygons. To meet this limitation, the 15 x 15 mesh was thinned
to 8 x 8. A front clipping plane was used to reduce clutter, and to eliminate
nodes of the skeletal graphs that would appear with the wrong coordination
number, where the polygon limitation did not allow all of the edges coincident
at these nodes to be included.

~In the case of the P family, it was found best to exhibit an amount of sur-
face that corresponds to 1 - 7/8 unit cells. There are two obvious choices possi-
ble for the unit cell; if a node of the G’ (lighter) skeletal graph is designated as
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the origin, with the principle directions of the lattice coinciding with the coordi-
nate directions, then the unit cube {('x, y, z) | - 1/2 x, y, z 1/2} centered at
this origin could serve as the unit cell; alternatively the cube {(xy,2) | 0 x,y,2
1 } centered at a node of the G (bolder) graph could be chosen. We have
elected to exhibit both cells, which share the common octant { (x,y,2) | o X,Y,2
1/2 }. Thus we have a conception of both the ’solid’ and the 'void’ regions, as
it were, as well as a common octant showing how these join. Another octant of
surface, different from this shared octant, has been exploded and shaded
differently; this is done not only to better define an octant of surface, but also
because exploding this octant helps reveal the shared octant that would other-
wise be obstructed.

Figures 3a through 3e are the resulting computer plots for five selected
values of H*. Because the P skeletal graph is self-dual, a plot for any nonzero
value of H* represents both the surface H = H* and H = -H*, the sign depend-
ing on which side of the surface one is viewing it from, or equivalently, which of
the two unit cells described in the previous paragraph is the object of interest
and which is part of the 'void’. The volume fraction V of that portion of a unit
cell lying on the same side of the surface as the lighter skeletal graph is plotted
versus H* in figure 3f; likewise the sign convention for H* is that we take the
sign as seen from a node of the G’ skeletal graph. Figure 3g is a plot of A
versus V, so that the slope dA/dV of the curve at any point is 2H*. In each
graph the endpoints represent simple cubic close-packed spheres, where:

A=mandV=7x/6orl —7/6,H*=20r —2 . (36)

Fiure 3a. The Schwarz P surface, the solution with H* = 0, space group
Pm3m, Euler characteristic -4 per lattice-fundamental region.
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Figure 3a’. Contour plot of Gaussian curvature for the Schwarz P minimal sur-
face, H* = 0. The interval between contours is 1.56.

Figure 3b. The solution with H* = 1.0, same space group and topological type
as the Schwarz P minimal surface. : -
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Figure 3b'. Contour plot of Gaussian curvature for an octant of the surface in
figure 3b. Contour interval is 3.0.

Figure 3c. The solution with H* = 1.7974, same space group and topological
type as the Schwarz minimal surface.
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Figure 3c’. Contour plot of Gaussian curvature for an octant of the surface in
figure 3c. Contour interval is 11.44.

Figure 3d. Solution with H* = 2.0, same space group and topological type as
the Schwarz P minimal surface.
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Figure 3d’. Contour plot of Gaussian curvature for an octant of the surface in
figure 3d. Contour interval is 25.94.

=3

Figure 3e. Solution with H*¥ = 2.133, same space group and topological type as
the Schwarz P minimal surface.
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Figure 3h. A contact angle of 57.3° and a constant mean curvature of H* =
1.6 have been perscribed.

The point H* = 0 represents Schwarz’s primitive minimal surface, the only case
for which the two choices of unit cell are congruent by virtue of the fact that
this minimal surface contains straight lines.

Throughout this paper we will continue to reserve the word 'branch’ for a
set of surfaces that constitute all of the H-surfaces attainable from a certain
close-packing of spheres through a succession of H-surfaces having strictly the
same sign of H. In the present family there are exactly two branches satisfying
this definition, so that they can be called simply the positive-H branch and the
negative-H branch. Each branch will be broken down into three ’subbranches’
for discussion, those subbranches in the positive-H branch being called A, B,
and C, and those in the negative-H branch being A’; B’; and C’ in the self-dual
cases and D, E, and F in the non-self-dual cases (I-WP and F-RD).

A contour plot indicating the distribution of Gaussian curvature over an
octant of the minimal surface is shown in figure 3a’. The values of K at the
nodes were computed by the method described in the previous Section. While it
is true that there exists*® a simple, closed-form analytic formula for K, the coor-
dinates in that formula — those of the Weierstrass representation (1) — are not
the curvilinear coordinates used in the present representation; thus, only in spe-
cial cases can we determine what point on the computed surface corresponds to
a value of K calculated with the analytic formula. Where it was possible to
compare, the values of K computed compared very well with the analytical
values, and the integral Gaussian curvature over the actant was within 19 of
the value required by the Gauss-Bonnet theorem, namely -7 (the value E = -4
for a unit cell corresponds to an integral Gaussian curvature of 27 (-4) = -8m).
The point at the center of the octant, which lies on an axis of three-fold sym-
metry, is the only point with K =0 — "there can be no points of strictly positive
Gaussian curvature on a minimal surface.
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On the solution subbranches labeled A and A’, surface areas are decreasing
as H* increases in magnitude, and the volume fraction of the labyrinth of net
positive curvature is monotonically decreasing; that is, on subbranch A where
the net curvature is toward the G’ graph, the volume fraction of this G
'labyrinth’ decreases monotonically as H* becomes more negative. Figure 3b
represents both H* = 1.0 and H* = -1.0. The fact that the area is stationary
at H = 0 is simply a consequence of the relation dA = 2H*dV which governs the
entire family because of the orthogonality boundary conditions. The fact that
the area is actually a local maximum within this family is discussed in the con-
clusion. Again it should be emphasized that the term 'minimal’ surface refers
to a property of area-minimization under boundary conditions determined by a
fixed boundary curve.

Figure 3b' is the contour plot of the Gaussian curvature for the surface H'
= 1.0, and also for H* = -1.0. In the cases of H* nonzero, there is no analytic
formula for K as in the case of the minimal surface. However, the integral
Gaussian curvature was again within 1% of the required value of -m: the Euler
characteristic of the surface remains -4 throughout the family. Note that
regions of positive Gaussian curvature — ’synclastic’ regions — have grown out
from the point on the three-fold axis; the increase in integral Gaussian curva-
ture from this region is countered by the more highly negative values of K along
the boundary of the octant.

The relation dA = 2H*dV implies a relation between the first nonzero
coefficients H* in the expansions of A and V about H = 0. While the first varia-
tion of the area is zero at H = 0, the coefficient of H*? is nonzero:

AH*) = A(0) — cH*? 4+ --- (37)
So dA = 2cH*dH*, which must equal 2H*dV, giving dV = -¢dH’, or:
V(H*) =V(0) — cH* + --- (38)

The value of V(0) is of course 1/2, and the value of A(0) is also known in terms
of complete elliptic integrals of the first kind:

A(0) = 3K(1/2)/K'(1/2) = 2.3451068 - - - (39)

The value of A(0) computed with a 15 x 15 mesh was 2.34547, which is within
0.015% of this analytic value. Concerning the question of the analytical value
for ¢, we mention that there is a simple formula, using a quantity that appeared
in the Introduction as a normalization constant in the Weierstrass representa-
tion of the P and D minimal surfaces, that yields a value within 0.019% of the
observed value. Recall the constant k¥ = \/%l JK(1/2) = 0.8389222985...; if the
representation is considered a dimensional equation, as is often conceptually
useful, then this x should be given units of inverse length. The observation is
that the computed value of the constant ¢ for the P family is, within the error
of 0.03%, equal to 1/(2/5)3 = 0.21171167..., and furthermore, the dimensions of
both ¢ and 1/(2x) are those of [length]®.” We suspect that this is indeed the
exact value for the slope of the V-H* curve in the P family.
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The points labeled H *, where A and A’ subbranches end and B and B
begin, correspond to minima in area over the entire family. By the relation dA
= 2H*dV these also appear as cusps, with the V-A curve approaching and leav-
ing with asymptotic slope 2H*. The magnitude of H at these points is H* =
1.7974 + 0.0002, and the area of a unit cell is A = 2.0025 - 0.0005; the
volume fraction of the side of greater curvature is V = 0.2488 4 0.0002. The
computer graphic representing these two points is shown in figure 3c.

It is seen from figure 3¢ that three of the boundary curves to an octant of
surface are very close to being linear near their midpoints, giving the surface a
describing the locus of points at which the Gaussian curvature vanishes, to
these midpoints (figure 3¢’). At some value of H¥, this contour W separating the
synclastic (K > 0) from the anticlastic (K < 0) regions makes tangential con-
tact with each boundary curve, and does so at the midpoint of the curve by
symmetry. Since Joachsimsthal’s theorem guarantees that the three curves of
lines of curvature, and since K = 0 at a point implies that one of the principle
curvatures is zero, it is true that each curve is asymptotically linear at its mid-
point, at that value of H* was, within an error of about 0.15, equal to the value
of H,* at which the minimum in area was recorded, for each branch where this
was examined.

On subbranch ]% the magnitude of H* is still increasing, but now the area is
increasing with IH*, and the volume fraction of the labyrinth of net positive
curvature is increasing. Figure 3d is a graphic of the solution on this subbranch
with H* = 2.0, and 3d’ is the contour plot of K. At this value of H*, the sur-
face is largely synclastic, while the 'neck’ regions of negative Gaussian curva-
ture exhibit some values of K less than -200. The fact that H* is increasing in
magnitude means that the graph of A versus V in figure 3g is concave upward,
although this is slight because the increase in H* is only form 1.7974 to 2.1335
+ 0.0005, the maximum value of H* attained in this family. The endpoint of
subbranch B(B') corresponds to this maximum H*, which appears as a turning
point in figure 3f and as an inflection point in figure 3g. First-order continua-
tion in H* enabled us to get very close to this turning point, and the solution
with H* = 2.133 is figure 3e. '

Past the turning point, on subbranch C or C', the magnitude of H*
decreases from the maximum value of 2.1335 to the value 2 of the limiting CPS
configuration. The curve in figure 3g is thus concave downward. Surfaces on
this subbranch are very well described as spheres with small, nearly-unduloidal
necks connecting nearest neighbors. On approach to the CPS limit, the necks
become increasingly smaller in both average radius and length. Because the
neck length is shrinking while the lattice parameter is remaining constant, the
average radius of the sphere-like region in a cell must be increasing, and thus
the area of a unit cell is increasing rather sharply as the C and C' subbranches
approach their CPS limits. The analogy with the pinching-off progression that
occurs in the rotationally symmetric case is very close, and has been examined
more closely.? ‘

In figure 3h is shown a unit cube of surface with H* = 1.6 which has been
computed to make a contact angle of 57.3° with the cube faces, uysing the equa-
tions of the previous section for prescribing contact angles. Obviously this sur-
face would not be smooth if continued periodically, but is is intended rather to
demonstrate the generalized method.
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D Family: Results

The starting point for this family is Schwarz’s D minimal surface that is
conjugate to the P minimal surface of the preceding family under the Weier-
strass representation. The D minimal surface has been the object of investiga-
tion for many researchers in _both the mathematical and the physical sciences,
notably Schwarz??, Riemann?’, Weierstrass®®, Schoen?, Nitsche®!, Longeley and
MecIntosh®, and Mackay?®, and we begin this discussion by clearing up certain
inconsistencies in the literature. The space group of the minimal surface has
been designated as Pn3m by some authors and F 43 by others, resulting, for
example, in differing values published for the normalized surface-to-volume ratio
of a lattice-fundamental region of D.2® This apparent conflict will be resolved in
this subsection, and the results of these authors will be shown to be in perfect
agreement except for a difference with respect to treatment of the orientability
of the minimal surface. F 43m is the space group of each of the two symmetric
skeletal graphs of degree four, and of the diamond-cubic CPS limiting
configuration, with a packing fraction of 0.3401. Pn3m is space group of the
double-diamond packing found, for example, in cuprite®®, or ice VII.

A simpler example of the effect of orientability on the space group of a
minimal surface is provided by the P minimal surface. We saw above that the
space group of the P surface is Pm3m, when the surface is viewed as an
oriented surface with two distinct sides facing two distinct skeletal graphs.
However, the space group of the surface, considered as unoriented, with its two
sides and two associated labyrinths equivalent, would be body-centered cubic,
Im3m. This is because the point (1.2, 1/2, 1/2), for example, would be
equivalent to the origin, since the two labyrinths in the case of H = 0 are
congruent (this of course requires that H be identically zero, because of the
change in sign of the mean curvature associated with crossing a surface). This
has been pointed out by Fontell?, in the context of a physical problem. It does
not seem to have been mentioned in the literature but it is true that the hexag-
onal faces of the truncated octahedron that encloses a lattice-fundamental
region of the body-centered Bravais lattice cut the minimal surface along
straight lines lying in the surface. Thus in the case of the P minimal surface
there is a perfect analogue to the lattice-fundamental region proposed for the D
minimal surface by Schwarz (his Tafel 2), Nitsche (Abbildung 27), Longeley and
Mclntosh (figure 3), and Mackay (figure 1). This L-F region for D consists of six
replicas of the minimal surface patch that spans a circuit of four edges of a reg-
ular tetrahedron; the twelve edges that lie on the boundary line also on the
faces of a cube which determines both an L-F region and a unit cell. In the
case of P, however, the truncated octahedron which determines an L-F region
severs the surface into patches that meet only in point contacts.

This explains why the values of normalized surface-to-volume are different
for Mackay and Schoen. The value of 1.9193 given by Mackay is for an L-F
region which is only half that of SCI/'IOBII in both volume and area. Therefore it
should be less, by a factor of 273 than Schoen’s analytic value AJVE =
2.4176538..., or 1.91889309...

The volume determining the L-F region of the surface when considered
oriented is composed of 24 replicag of the tetahedron known as the ’tetragonal
disphenoid’. As noted by Schoen®®, this is the Coxeter cell C for a primitive
patch of the D surface; note that this primitive patch is different than the one
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in figure 1b, which is bounded by straight lines, and continued by rotations
about these edges. The faces of C are isosceles triangles, and there are two
right dihedral angles — these correspond under the conjugate transformation to
the two right angles in the skew quadrilateral discussed above as lying in the P
minimal surface. Giving the name U to the unit cell of Mackay cited above, the
coordinates of the four vertices can be taken to be: P; (1/4, 1/4, 1/4), Py (-
1/4,-1/4, -1/4), P3 (1/4, 1/4, -3/4), and P, (3/4, -1/4, -1/4). The edge 1; con-
necting P, and P is clearly parallel to a body diagonal of U, and in fact
belongs to one of the skeletal graphs, say G'; a representative of the dual graph
G" is the edge m; connecting P, and P,. Each face of this cell C is indeed a
plane of mirror symmetry passing through a mid-plane of one of the six carpets
T, and C contains a primitive patch S with a surface area amounting to exactly
one-half of such a carpet. One can convert to the coordinates of the F 43m
unit cell by the transformation (x',y',z/) = 1/2(x + 1/4, & + 1/4, z + 1/4).

Figures 4a through 4c are the graphics representing solutions for selected
values of H* = Ha, where the lattice parameter a is that of the F 43m space
group. Since the D skeletal graph is self-dual, the surfaces H* = h and H* = -
are identical except for interchange of the roles of the two skeletal graphs.
Generally speaking the progression of solutions found above in the P family
from the minimal surface, through a minimum in area at H.*, past a turning
point in H* and to a CPS limit, is observed again in the D family. One
difference is that the value of H * at the area minimum is greater than the
value at the CPS limit in the D family, whereas it lies below the CPS value in
the P family. This fact alone suggests that any link provided by the general-
ized Weierstrass representation53 between the P and D families would be lim-
ited, or at least more complicated than a simple rescaling.

The residual equations were solved for a 15 x 15 mesh on the Cyber 124 for
values of H* less than 4. For values greater than this it was found necessary to
increase the mesh to 20 x 20, and the equations were solved on a Cray-1S super-
computer. With a vectorized code, each iteration required approximately 0.18
seconds cpu time. A 20 x 20 mesh for a primitive patch is equivalent to 38,400
elements per unit cell. ;

In figure 1a we have exhibited four L-F regions of the minimal surface; thus
the surface area is equal to that in an F 43m unit cell, and the Euler charac-
teristic is -18. The distribution of Gaussian curvature over a region made of six
primitive patches is shown in 4a'. With the lattice parameter of the P minimal
surface, and of the D minimal surface, set equal to unity, the values of K for
these two conjugate surfaces do not agree, as they would if the two surfaces
were as calculated in the Weierstrass representation. The constant K =
0.8389222085... in equation (1) was chosen to make the edge-length of the regu-
lar tetrahedron discussed above equal to unity, and with this same constant the
lattice parameter of the P minimal surface is 2k, not 1. In order to see the
equality of K at corresponding points of the P and D minimal surfaces it is
necessary to rescale the values plotted in 3a’ and 4a’ according to these dimen-
sions. The value of a principle radius of curvature at the midpoint of a funda-
mental rzpsed;ch (as in figure lc) of the D surface, estimated numerically by
Mackay?® at 0.29, can be evaluated analytically, using Schwarz’s formula for
the Gaussian curvature, as 1/[8(2- \/?)K(7 -4 \/3—0] = 0.296603823..., where K
is the complete elliptical integral of the first kind.
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Figure 4a’. Contour plot of gaussian curvature for a portion of the Schwarz D
minimal surface shown in figure 1a. The contour interval is 1.166.

Figure 4b. Solution with H* = 3.8, same space group and topological type is
the Schwarz D minimal surface.
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Figure 4b'. Contour plot of Gaussian curvature for a portion of the surface in
figure 4b,‘ Contour interval is 3.166.

Figure 4c. Solution with H* = 4.836, same space group and topological type is
the Schwarz D minimal surface.
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On subbranches A and P/, the area of the surface decreases as H* increases
in magnitude, so that the area of the minimal surface is a local maximum, as in
the P family. Also in analogy with the P family, the volume fraction of the
labyrinth lying on the side of net positive curvature is decreasing as H*
increases in magnitude (see figure 4d). The coefficient of H* in the expansion of
V about H* = 0, which is of course the coefficient of H 2 in the series for the
area, is, within the error of 0.03%, equal to exactly 2/3 times the value for the
P family. As in the case of the constant ¢ for the P family, we cannot now
prove that this relation analytically. Figures 4b and 4b’ are for H* = 4 3.8.

At the end of subbranches A and A/, and beginning the subbranches B and
B, is the surface of minimum area at a value of |{H,* = 4.836 4 0.001, shown in
figure 4c. The normalized surface-to-volume ratio for an L-F region at this
minimum is 1.6527 4 0.0005, which represents the smallest value for any surface
in the five families treated here. It is interesting that this value, which is also
lower than any value previously listed for a triply periodic minimal surface,
occurs for a surface in the D family even though the P minimal surface has a
value lower than that of the D minimal surface by 3%. In addition, the volume
fraction ratio at this area minimum is 0.869195:0.130805, which represents the
largest ratio of any surface (free of self-intersections) in the five families
treated. This is not surprising since the packing fraction in the CPS limit is
only 0.3401. Figure 4e is a plot of A versus V, in which the two minima in area
appear as cusps.
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Figure 4d. Plot of volume fraction versus H* for the D family.
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On subbranches B and B’ we find surfaces consisting of sphere-like regions
lying inside the symmetry domains®®, with nearly-unduloidal necks piercing
through each of the four faces of each symmetry domain and providing connec-
tions to the four neighboring sphere-like regions. The magnitude of H* then
reaches a maximum of 5.6 £ 0.2, and past this turning point it begins to
decrease, on subbranches C and C!. On C and C' the area increases dramati-
cally as the unduloidal necks pinch off, and H* decreases slowly to its value of
8V 3 corresponding to the diamond-cubic CPS limiting configuration.
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Figure 4e. Plot of area per unit cell versus volume fraction for the D family.
The slope at each point is 2H*.
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I-WP Family: Results

The minimal surface in this family was proposed by Schoen®® as the conju-
gate to a self-intersecting minimal surface partly studied by Stessmann.®’
Schoen also built plastic models of the surface, and identified the space group
as Im3m and the Coxeter cell as the quadrirectangular tetrahedron identical to
that in the P family. Since the I graph is not self-dual — it and its dual WP
were described in the Introduction — there cannot be straight lines lying in the
minimal surface. This also means that the volume fractions of the two
labyrinths need not be 1/2 (Mackay's®® claim that all the known triply-periodic
surfaces divide space into two congruent regions is thus mistaken). and Schoen
did not give values for the volume fractions nor for the surface area. The Euler
characteristic of an L-F region for any value of H* is -6.

We have described the quadrirectangular tetrahedron C above, but the
edges of C that represent the two skeletal graphs will be different from the P
case. We take G' to be the symmetric '’ or body-centered graph, and G" to be
the nonsymmetric "WP’, or "wrapped package" graph, and take the sign con-
vention to be that the mean curvature is positive if the net curvature is toward
the I graph. Then the representative of G’ is 1;: { (u/2, u/2, u/2) lo<u< 1},
and of G" is my: {(v/2, 1/2, 0) 10 <v <1 }. The cases of P, WP, and C(P)
in fact correspond to the three ways of choosing opposing edges of the qua-
drirectangular tetrahedron. These two edges determine the parametrisation in
the usual way. From the minimal surface solution it is necessary to continue in
both positive-H* and negative-H* directions explicitly, as opposed to the self-
dual P and D cases. The subbranches on the positive-H* branch will be called
A, B, and C, while those on the negative-H* branch will be called D, E, and F.
The residual equations for a 15 x 15 uniform mesh were solved on a Cyber 124.

Figure 5a is the minimal surface, with the I skeletal graph bolder and the
WP graph lighter. We have elected to show the same 1-7/8 unit cells as were
displayed for the P family. However, because of the body-centered symmetry,
the two cubes (which share an octant) contain regions of surface that are ident-
ical, and this is true for all values of H*. For the minimal surface, the volume
fraction of the labyrinth containing the I graph is 0.53604 4 0.0002, differing
significantly from 1/2. The area of a unit cell of surface is 3.467 + 0.003, and
since an L-F region is one-half a ynit cell, the value of A/VQ/3 for an L-F region
is less than this by a factor of 21/3, or 2.7521, which is 17.3% higher than the P
value. Figure 5a' shows the distribution of Gaussian curvature over an octant
of unit cell. Each of the six ’corners’ of this patch is an isolated point of zero
Gaussian curvature.

Continuing in the positive H* direction, the volume fraction of the I
labyrinth decreases along subbranch A (see figure 5d), and the area decreases.
The constant ¢ in formula (19) is 0.1385 4 0.0005, and this constant applies for
approach to H* = 0 from either above (subbranch A) or below (subbranch D).

Subbranch A ends at the value H,* = 1.940 &+ 0.005 which corresponds to a
local minimum in area and a global minimum in volume fraction. Figures 5b
and 5b' are for H* = 2.0, and it is already evident at this value of H* that the
solution is approaching the BCC-CPS limiting configuration. Subbranch B ends,
and C begins at the turning point H* = 2.82 4 0.01.
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Figure 5a. The I-WP minimal surface, space group Im3m and Euler charac-
teristic -6 per lattice-fundamental region. Fifteen octants are shown.

Figure 5a’. Contour plot of Gau551an curvature over an octant of the surface in
figure 5a. Contour interval is 4.42. :



108

I S

Figure 5b. Solution with H* = 2.0, same space group and topological type as
the I-WP minimal surface.

Figure 5b/. Contour plot of Gaussian curvature over an octant of the surface in
figure 5b. Contour interval is 11.3.
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Figure 5c. Solution with H* = -3.55, same space group and topological type as
the I-WP minimal surface

+8
. p3 B -

Figure 5¢’. Contour plot of Gaussian curvature over an octant of the surface in
figure 5¢. Contour interval is 12.0.
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Subbranch D, on which the volume fraction of the I labyrinth is monotoni-
cally increasing, extends all the way to the value H* = -4.52 &+ 0.05
corresponding to the global minimum in area, and the global maximum in
volume fraction. The volume fraction ratio at this maximum is 0.857:0.143 (see
figure 5d), almost as high as the maximum ratio in the D family, which is
remarkable because the volume fraction ratio at the CPS limit on this branch is
0.6073:0.3927. The value of A/‘VQ/3 for an L-F region of this surface is 1.96 +
0.01. Figures 5c¢ and 5¢’ are for the global maximum in volume fraction. The
volume fraction ratio at this maximum is 0.857:0.143 (see figure 5d), almost as
high as the maximum ratio in the D family, which is remarkable because the
volume fraction ratio at the CPS limit on this branch is 0.6073:0.3927. The
value of A/‘V2 3 for an L-F region of this surface is 1.96 & 0.01. Figures 5¢ and
5¢/ are for H*¥* = - 3.55. Figure 5c” shows a larger portion of the surface,
without the skeletal graphs. Subbranch E ends at the turning point at H* =
-5.28 + 0.05. The CPS limit consists of spheres of radius 1/4 centered at each
face-midpoint, and each edge-midpoint, of every unit cell. Figure 5d gives V
versus H*, and 5e is the plot of A versus V.

We suspect that the analytical value for the dimensionless area A/V2/3
an L-F region\;:f_hb.e I-WP minimal surface is 3K(k)/K(k') with k = V13/32
(and so k' ="V19/32). This value, 2.751347..., is approximately 0.013% lower
than the value computed from the numerical solution; in the cases P and D of
low Euler characteristic where the analytic value was known, the analytic value
was approximately 0.01 to 0.015% lower than the computed value (note also
that Mackay’s value for the D surface, computed with a finite difference
method, was about 0.02% high). The formula A/V?/® = 3K(k)/K(kK') is due to
Schoen?®, who adapted a result of Schwarz*®, and the work of Stessmann 7
shows that the formula applies to the I-WP minimal surface as well as the F-
RD minimal surface. Stessmann’s analysis was not complete enough to yield
the modulus k, but by Schwarz's work it is known that k= (a; — ag)/(a; — a3)
where {a;,a9,33} are roots (in descending order) to a cubic polynominal that is
not explicitly known for the I-WP surface, nor for the F-RD minimal surface.
For the I-WP surface, the roots {1,3/16, -1} yield the value just given; for the
F-RD minimal surface, we suspect the roots to be {14, -7 + 4V3, -7 -4 3}.
where the latter two roots are roots to the polynominal s? + 14s + 1 that occurs
in Stessmann’s analysis, and the three roots satisfy a;+ ap+ ag = 0. This has
been discussed in more detail.?

F-RD Family: Results

As in the I-WP case, the minimal surface in this family was proposed by
Schoen as the conjugate of a self-intersecting minimal surface studied by
Stessmann (number V in Stessmann®’; the conjugate to I-WP is number VI).
Once again, the surface contains plane lines of curvature (corresponding to the
straight edges that bound the patch of the conjugate surface) but no straight
lines, and does not divide space 50:50. Schoen identified the space group as
Fm3m and the Coxeter cell as a "trirectangular tetrahedron” (which is actually
one-half of a tetragonal disphenoid), and incorrectly listed as genus of an L-F
region as 6, meaning that its Euler characteristics is x =2 —2 -6 = 10, which is
the correct value for x. This L-F region is determined by a rhombic dode-
cahedron, and the edges of this space-filing assembly of rhombic dodecahedra
comprise the nonsymmetric RD skeletal graph that is dual to the symmetric F
graph.
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The origin of the coordinate system will be taken to be a node of the F
graph, and the other three vertices of a Coxeter cell are P,(0,1/4,1/4), P,
(1/4,1/4,1/4). The segment PP, is one-half an edge of the F graph, and P5P,
is an edge of the RD graph, and as usual these two representative edges deter-
mine the parameterization.

We make the sign convention that the curvature is with respect to the F
graph, and for H* > 0 we will display one L-F region, composed of 48 cells C.
However, for the surface from the negative-H* branch that is exhibited, we
have shown a portion of surface made from 72 copies of ¢. The F graph is
shown in bold and the RD graph as lighter. The residual equations were solved
on a Cyber 124 using a 15x15 uniform mesh, or in some cases on a Cray-1S
using a 20x20 mesh; as in the 1-WP case, no values for area or volume fraction
have been published for the minimal surface to compare with.

The minimal surface in Figures 6a and 6a’ has volume fraction 0.5319 +
0.000}. The area computed for a unit cell was 4.773 + 0.001, giving a value of
A/‘V2 3 for an L-F region of 3.0065. This is in accord with the general trend of
increasing values of A/‘V2 8 as the Euler characteristic of the L-F region
increases in magnitude. Figure 6a’ is the contour plot of K over a patch of sur-
face corresponding to six Coxeter cells.

Subbranch A, on the positive-H* branch, continues to a value of H = 1.86
+ 0.02 correszponding to the global minimum in area of 4.639 + 0.001 (for a
value of A/V 3= 2.922). There is some doubt involved in calling this a global
minimum since the minimum in area on the negative-H* branch is very close to
this, namely 4.6395 + 0.001. The volume fraction of the F labyrinth at H* =
1.86 is 0.489 + 0.0002. The contour plot for H* = 1.86 is shown in Figure 6b'.
Since the FCC-CPS limit corresponds to H* = 2V2, the value of H*¥ at this
area minimum is considerably less than the CPS value.

Convergence is comparatively easy to achieve on the first portion of sub-
branch B, in contrast with the I-WP case. Figures 6¢ is for H* = 2.5, and in 6¢
it is quite clear that the solution branch is approaching the limiting FCC (12-
coordinated) sphere-pack. The volume fraction at H* = 2.5 is 0.4691 4 0.0002,
and the area is almost exactly that of the minimal surface, being 4.779 4+ 0.001.
The volume fraction first exceeds 1/2 at H* = 2.67 + 0.02.

Subbranch C begins at the turning point where H* reaches the maximum of
2.92 4 0.01. Using an unduloid as initial estimate, it was possible to converge
to a solution on this subbranch corresponding to H* = 2.89914. This value is
simply 1.025 times the value of H* at the limit, 2V2, and an unduloid of mean
curvature 2.05 was rescaled by V2 for the initial guess. The area of the solu-
tion was 5.997 + 0.005 and the volume fraction 0.6303 4 0.005.

Self-intersecting solutions occur on the negative-H* branch. The edges of
the RD skeletal graph are all of equal length, and one can easily i ine a lim-
iting configuration consisting of close-packed spheres of radius V3/8, centered
at each node of the RD graph whether 4- or 8-coordinated, but this is not found
to the limit. Rather, the branch seeks a limit which puts spheres of radius

3/4 at 8-coordinated nodes only, and self-intersection ust occur since
nearest-neighbor 8-coordinated nodes are only a distance \;2/2 apart. As seen
in Figure 6d (H* = 2.4), for solutions on this branch before the point where



113

Figure 6a. The F-RD minimal surface. One lattice-fundamental region is
shown. Space group is Fm3m and the Euler characteristic per lattice-
fundamental region is -10. The twelve 'necks’ are orthogonal to the twelve
faces of the rhombic dodecahedron outlined by the lighter skeletal graph.

Figure 6a’. Contour plot of Gaussian curvature over a portion of the F-RD
minimal surface. Contour interval is 3.889.
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Figure 6b. Solution with H* = 2.5, same space group and topological type as
the F-RD minimal surface.

N

Pigure 6¢. Solution with H* =-2.4, same space group and topological type as
the F-RD minimal surface.



Figure 6¢/. Contour plot of Gaussian curvature over a portion of the surface in
figure 6c. Contour interval is 14.0.
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self-intersections oceur, the 4-coordinated nodes are centers of connector regions

which join four neighboring sphere-like regions.
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The slope at each point is 2H*.

We have stated that self-intersections are not examined closely in this
study, but one important point must be made about the self-intersecting solu-
tions on this branch. If the volume of overlap is counted twice in each case, one
can complete the area-H*, volume-H*, and area-volume curves for this branch
all the way to the limiting configuration with the fundamental relation dA =
%I;_*_dy obeyed throughout. For the limiting con%m;z_tjon, the sphere radius of

3/4 gives a volume and area per sphere of 7 3/16 and 3m/4, respectively;
since there are four spheres associat ith each unit cell the equivalent volume
fraction for the RD labyrinth is 7V3/4 = 1.360349...and the area per unit cell
is 3m = 0.42477.... So we must assign a negative volume fraction to the F
labyrinth, namely - .360349. Applying the mean value theorem between this
endpoint — where H* = —4 = -2.309... — and the solution for H* = 2.4
where the area is found to be 5.0048 and the volume fraction of the F labyrinth
is 0.54531 yields: AA/AV = (37-5.0048)/(-.360349 -.54531) = -4.8806 = 2H*,
where H* = -2.4403 is an acceptable intermediate value because the most nega-
tive value obtained on the path joining these solutions is -2.51 + 0.02. In Fig-
ure 6e showing area versus volume fraction, this is seen as a nearly-linear por-
tion of the curve ending at the limit just discussed, with the slope of the curve
lying between 2 x -2.51 and 2 x -2.309. The maximum value for the volume
fraction of the F labyrinth on this branch, namely .6272 4 0.0002, is achieved
at H* =-1.76 & 0.02, well before self-intersections occur.

We suspect that the exact analytical value for the dimensionless area
AV of an L-F region of the F-RD minimal surface is 3K (k) /K(k') where k* =
8 \/g/(Ql + 4 V3). This value, 3.00534..., is approximately 0.05% lower than
the value computed from the numerical solution; if this is indeed the correct
value, the higher error in this case over that in the preceding cases would be



117

value, the higher error in this case over that in the preceding cases would be
due to the higher magnitude of the Euler characteristic per L-F region. In the
previous subsection the source of this value of k was discussed; a further discus-
sion is available??, '

C(P) Family: Results

The minimal surface in this self-dual family is often called simply "Neovius’
surface" after the pupil of Schwarz who discovered the surface and its Weier-
strass representation.?* As mentioned in the Background section, Schoen
named the minimal surface C(P) to indicate that it is complementary to the P
minimal surface, containing the same straight lines and having the same space
group Pm3m. While the unit cell, which is also an L-F region, and the Coxeter
cell are the same as for the P surface, the Euler characteristic per L-F region is
-16 as opposed to -4 for the P family. The nonsymmetric, self-dual skeletal
graph is constructed by connecting the centroid of every cube in'a packing to
the twelve edge-midpoints, so that the coordination symbol is 12:4; the two
replicas of the graph are offset by (1/2,1/2,1/2). :

The edges of the quadrirectangular tetrahedron C that represent the skele-
tal graphs G’ and G" are f: {(u/2,u/2,0)] 0 <u <1} and m: {(v/2,1/2,v/2) |
0 <v < 1}. For the minimal surface, the straight line segment that lies in that
part S of the surface contained in C is the locus of u = 1-v, w = 1/2, or in
(x,y,z)-coordinates, x = 1/4, y+z = 1/2, exactly as for the P minimal surface in
either coordinate system. However, the integral Gaussian curvature over this
patch is four times as great in C(P), being -27r/3. To capture the regions of
sharp curvature requires a fine mesh, and it was found necessary to use a 20x20
mesh in all cases. Even with this refinement, the accuracy in area and volume
fraction values was much lower than that in the preceding cases; for example,

the computed area of the minimal surface was higher than the analytic value
by about 0.1%.

Figure 7a shows the minimal surface, corresponding to the cube -1/2 < x,y
< 1/2,0 <z <1; that is two neighboring unit cells have been bisected and two
adjoining half-cells exhibited. This brings out the non-circular nature of the
"holes" surrounding four-coordinated nodes. The area of a unit cell of the
minimal surface, which is also the value of A/‘V2 8 for an L-F region, is known
analytically to be 3K(V2/3) /K(1/V3 ) = 3.51048... [Neovius*’; Schoen’].

On subbranch A the area, and the volume fraction of the labyrinth of posi-
tive curvature, decrease as always but only very slightly in this family (Figures
7¢ and 7d). By the time the subbranch ends, at the area minimum correspond-
ing to H,* = 0.604 0.02, the area has decreased only by about 0.2%, and the
volume fraction is 0.480 =+ 0.001. Figure 7b shows the surface with H* = 1.05.

On subbranches B and B' a maximum |H* of 1.48 + 0.01 is reached, with
the area increasing very rapidly past H* = 1.4. As in the RD branch of the pre-
vious family, we must again count intersection volumes twice, so that the rela-
tion dA = 2H* dV is observed all the way to the limit point. When this is done
we find that the endpoint of the B (B') branch, where the value H* = 1.48 is
reached, corresponds to a volume fraction just less than unity, and the area is
approximately 50% greater than that of the minimal surface.
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Figure 7a. The Neovius minimal surface C(P), space group Pm3m and Euler
characteristic -16 per lattice-fundamental region. One unit cell is shown, which
is also a lattice-fundamental region.

Figure 7b. Solution with H* = 1.05, same spﬁce group and topological type as
the Neovius surface.
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Subbranches C and C’ _consist of self-intersecting solutions. The limiting
configuration has H* = V2, A= 27, and "pseudo"-volume fraction 1.48096....
Taking a point on the subbranch B — H* = 1.35, A = 3.7555, V = 0.59273 —
and applying the mean-value theorem yields AA/AV = 2.8458 = 2 x 1.4229,
which is a good mean value for a path from H* = 1.35 to a maximum of 1.48
and back to V2.

Generalized P Surfaces: Results

In this subsection we discuss surfaces with the same topological type as
("homeomorphic to') the Schwarz P minimal surface, with mean curvature a
prescribed periodic function of one spatial coordinate, say H = f(y); the period
of f will coincide with the period of the surface, or with twice that distance.
Such a surface with f nonconstant is of lower symmetry than the Pm3m sur-
faces treated above because of the loss of invariance under the interchanges
y+——x and y«——z. The space group will in fact be P4/m2/m2/m, number 123
in the Crystallographic tables, with 16 equivalent positions. This tetragonal
space group is characterized by two lattice parameters, the unit cell having
dimensions a x b x a. As in the previous cases, dimensional analysis shows that
we can take a = 1 without loss of generality. The Coxeter cell C is a right
prism the base of which is a right isosceles triangle; the mirror planes compris-
ing the faces of the prism are x =z,x =0,z =1/2, y =0 and y = s; the rela-
tion between s and the lattice parameter b is given next.

We give the name "six-armed cell" to the cell that is homeomorphic to a
unit cell of the P minimal surface. If the length s of this six-armed cell is equal
to the full period of the function f(y) (or any integral multiple of it) then the
six-armed cell is also a unit cell and b =s. If in addition f(y) possesses mirror
symmetry about the plane y = b/2, i.e., f(y) = f(b - y), then this is a plane of
mirror symmetry for the periodic surface. In these cases this mirror plane
allows us to divide the six-armed (unit) cell into sixteen equivalent portions.
However, in the cases where the length s of the six-armed cell is only half the
period of f, the crystallographic unit cell is actually of length b = 2s and is of
Euler characteristic -8. In these cases each of the sixteen positions of the space
group P4/m2/m2 m corresponds to one-eighth of the six-armed cell, while in
the first case with b = s the portion corresponding to a position of the space
group is half that, one-sixteenth of the six-armed cell. In order to write a single
code to handle all these cases, we chose to divide the six-armed cell into eight
equivalent portions, ignoring the fact that in special cases these may be further
bisected.

The parameterization used was:

2v,s,1/2)(1—~w)+(0,5—2us,0)w if 0 <uL1/2
2v,5,1/2)(1—w)+(0,2us—s,2u—1)w if 0<v<1/4,1/2<u<3/4
1/2,3s/2—2vs,1/2)(1—w)+(0,2us—s,2u—1)w if 1/4<3/4,1/2<u<3/4
2—2v,0,1/2)(1—w)+(0,2us—s,2u—1)w if 3/4<v < 1, 1/2<u<3/4i.

(40)

(
r(u,v,w) = E
(

The computational domain was divided into 1401 elements, for 186 nodes.
With this coarse grid, errors in area determinations were on the order of 0.5%
(volume fractions errors were about 0.2%). With s set equal to unity, f was
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chosen to be sinusoidal with period 2: f(y) = « sinl 7(y - 1/2). Thus the unit cell
is actually homeomorphic to two unit cells of the P surface, so that b = 2. The
amplitude o was varied up to a value of 0.6, and the result for 0.6 is shown in
Figure 8; two unit cells are shown side-by-side.

Figure 8. A periodic surface with the same topological type as the Schwarz P
minimal surface, with sinusoidally-varying mean curvature in the vertical direc-
tion. Two unit cells are shown side-by-side.

With f identically zero, s was varied from 0.98 to 1.04, to investigate expan-
sions of the area and volume fractions in s about s = 1. Strictly speaking, there
is a (removable) singularity in the curve of area of a unit cell at s = 1 because
of the change in symmetry from tetragonal to cubic (when f is constant), so we
choose to report tl}e area of a six-armed cell. It was found that to within 0.5%,
the value of A/V2 3 remained constant at the value 2.3451...of the Schwarz sur-
face. The equivalence of the two labyrinths when H is identically zero guaran-
tees that the volume fractions remain exactly at 1/2, at any value of s for

which a solution exists; this held to within the error of 0.2% over the range
examined.

We have computed surfaces with piecewise linear f, namely f(y) = py + ¢, 0
<y <s fy)=p2s-y)+qs <y <2s with p and q small. Defining H,,, =
ps/2 + q, we _estimate the area per six-armed cell to be
~'(2.3451 — 2.117HZ,, — .023p2)52/3. For the case s = 1, we can give estimates
for the volume fraction V of the labyrinth containing the origin and of the aver-
age radius Ry (Rg) of the hole in the plane y =0 (y = s): V ~ 0.5—0.2117H,,,
Ry ~ 0.2540.095H,,,+0.047p, Rg ~0.254+0.95H,,,—0.047p.

S' — 8" Surface: Results

In this subsection we demonstrate, by means of an example, the
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computation of a triply-periodic minimal surface from knowledge of only its two
skeletal graphs. As mentioned in the Background Section, Schoen hypothesized
a minimal surface that he named S’ — S”, for "large-square graph, small-square
graph"”, and described the skeletal graphs S’ and S”, but did not provide pic-
tures or any other data on the surface. Contrary to the cases of I-WP and F-
RD that were also conceived by Schoen, S' — S” is not known to be related to
any surface whose Weierstrass representation is skew pentagon, the five edges
being normal to the five faces of the Coxeter cell C for S’ — S” described below,
and while Schoen proved that only eight such pentagonal modules could gen-
erate surfaces with discrete non-cubic symmetry groups, he did not elucidate
these surfaces. The results in this subsection support, but of course do not
prove, the existence of the minimal surface S' — S".

As noted by Schoen, the space group for S’ — S" is tetragonal, P4/m 2/m
2/111, the same as that of the previous subsection, and again the Coxeter cell C
is the isosceles right triangular prism with faces: x =z, x =0,z =1/2,y =0
and y = b/2. The unit cell has been given dimensions 1xbxl, and no change of
symmetry would occur for b = 1, as opposed to the case in the previous subsec-
tion. There are two edge-portions of each of the skeletal graphs G’ (= 8")
among the nine edges of C; call these {; : {(1/2 - u, b/2,1/2)[ 0 < ?1 <1/2},
1, : {(0, b - by, 1/2)] 1/2 <u < P €G and m, : {(0, b/2-v,0)l 0<v <
1/2}, my: {(v - 1/2,0, v - 1/2) | '1/2 < v < 1} € G". The three pairs
Lym,, lym,, and Lhm, of opposing edge-portions determine spines that fill out C
exactly, and the pair of parallel edge-portions 1, and m; does not contribute
any spines, of course. The three rectangles in the u-v unit square corresponding
to the three active pairs determine an L-shaped computational domain, with
the square {(u, V)T 1/2 <u<1,0<v<1/2} corresponding to the inactive
pair lym; omitted. e have thus determined the parameterization, and the
residual equations, without ever having seen any portion of the surface.

An initial estimate was formulated by inventing a "composite" distance from
an arbitrary point to each skeletal graph (details in Anderson®?), and the sur-
face determined by the locus of points equidistant in this measure from the two
graphs was used successfully for the surface with H* = 1.0075 and b = 0.936.
From this converged solution, b and H* were incremented to smaller values
simultaneously, with convergence becoming steadily easier, until a minimal sur-
face with b = 0.64 was found. The area of such a unit cell was 2.0185; this
area increased to 2.2640 when b was i}lcreased to 0.76, and within the error this
represents a constant value of A/‘V2 3 (equal to 2.718). We were not able to
achieve convergence with b = 0.80, but his is not a proof that no minimal sur-
face with b > 0.80 exists, of course. Figure 9a is a line drawing of a unit cell of
the minimal surface with b = 0.78. Figure 9b is a line drawing of a unit cell
with b = 0.78 and H* = 2.015. The feature that best distinguishes S’ — S” from
the P minimal surface has to do with the connectivity between unit cells lying
at the same value of y; to get from the centroid (0,0,0) of one unit cell to the
centroid, say (1,0,0), of a neighboring unit cell while remaining within the
labyrinth containing G' requires a jig-jag path, say via the point (1/2, 0, 1/2).
On the other hand the P minimal surface allows straight paths connecting
nearest neighbor unit cells. The "holes" in the §' — S” unit cell centered about
y = 0 are very similar to those in the surface C(P); in both cases, at each edge-
midpoint of the cube a "throat" comes in orthogonally to the two adjacent cube
faces, with throats from each of the four cells that share this edge-midpoint
joining smoothly. In the C(P) surface, this situation is repeated at each of the
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twelve edge-midpoints of the unit cell, whereas in S’ — S” it occurs only on the
four edges parallel to the y-axis.

N
NS

)
27
.

X
.

N

4
i\

tgss\‘{\;{\
NN
/ $§
A

¥

LN

2
I
finl
il
""'I
N
T

S

R
R N
W
N
\\\

7
Il'
of
L]
%
L)
AT
S
=
AL

"7'/7//’/ (:f‘
s e
s
Vi

Figure 9a. Schoen’s minimal surface S' — S” with b = 0.78. One unit cell is
shown, looking almost directly down the y-axis.
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Figure 9b. Variant of the surface in figure 9a with b = 0.936 and H* = 1.0. In"
this view the y-axis is vertical. '
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Scattering Function Calculations

At the time of this writing, the most immediate application for the surfaces
discussed in this section is to provide models for viscous isotropic phase liquid
crystals and certain phase-segregated polymer blends and block copolymers. In
this subsection we show how to calculate diffraction peak intensities from a
class of model structures based on these surfaces. The method applies to
scattering density profiles (electron densities for X-ray scattering) determined
by:

contrast between the surface — imagined as a thin layzar —
and two labyrinths of equal density ('film’ scattering); or
C) a combination of A) and B).

A; contrast between the two labyrinths ("bulk’ scattering)
B

Case C) involves three (electron) densities, one for each labyrinth and one for
the surface layer. Because relative intensities are all that are usually measured,
only one parameter is needed to allow for any combination of three densities.
The scattering function calculated in case B) is what is frequently referred to as
the structure factor of the surface; for a minimal surface characterized by a
self-dual skeletal graph, this will correspond to a different space group than
that o)f A) or C), or of case B) with nonzero mean curvature (see the 'D’ family,
above).

A model structure of type AO, based on a triply—periodlic embedded surface S
parametrized via the present method as S:{ r(u,v,w*(u,v))l(u,v)eD}, is in general
described (for the purpose of relative intensities) by the following step-change
density profile:

(41)

1 if r € "labyrinth containing G’
po(r) = 0 if r € "labyrinth containing G" .

The portion of the volume inside the unit cell U for S that is part of the
labyrinth containing the skeletal graph G’ is exactly described by the condition
w<w*, and w>w* describes the G"-labyrinth, or:

' 1 ifw<<w*(u,v
RO (2

so that:

Agh) = [[[po(r)e®d’r = [[[  eMdr . (43)

In case B, all of the scattering contrast is from a high density region concen-
trated in a layer or 'film’ about the surface. The singularity can be considered
the limiting value of the project, of the excess density and the layer thickness;
that is, a region [r*+ sn, r*e S, | s < 7/2 )] of density 1/7 in the limit as 7 |O.
The strength o can be assigned to the film contrast by multiplying the unit-
strength singularity by o«. The unit-strength singularity yields the structure
factor A; of the surface:
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at zero wave vector, a unit-strength singularity at the surface, taken over a
unit cell of surface, yields the area of the surface. :

The amplitude in case C) at a wave vector of h is the sum of the amplitudes
of Ay and A; from the bulk and film contrasts:

A(h) = Ayp(h) + aA(h) . (45)

The integration is over the unit cell U, and this region is produced by applying
the mirror symmetries of the space group (but of course not the translational
symmetries) to the Coexeter cell C. However, since the dependence on h is
through the dot product h'r it is equivalent to apply the mirror symmetries of
the space group to the vector h and integrate over just the Coxeter cell for each
permutation of h, and then add the resulting partial amplitudes.

Because of the perfect periodicity of these profiles, the intensities will be
nonzero only at a discrete set of wave vectors. The Miller indices (hkl) of the
allowed reflections, as listed in the Tables of X-ray Crystallography for a given
space group and Wyckoff position, determine the wave vectors for which intensi-
ties must be evaluated. The wave vector that corresponds to the reflection with
Miller indices (hkl) is h = (27h/a, 27k /a, 27l/a), where the lattice parameter a
can be taken equal to unity here. The dot product hr is then 2m(h,k,])r and
by equation (2) r=a(u,v) + b(u,v)w, so:

h'r = 27(h,k,1) - [a(u,v) + b(u,v)w] = p(u,v) + q(u,v)w . (46)

We need then to calculate the volume integral of e’h"‘r, where h;, j=1,...n are
the permutations of h (with n typically 48), over the portion C, of C satisfying
w<w*, and the surface integral over the surface patch S, inside C. As is well
known, for a unit cell which is centro-symmetric ((r)=n(- r)), the sine part of
e ' does not contributed to the amplitude, and this is true here in all cases for
both amplitudes. We have shown in Section w that the Jacobian of the

transformation from u-v-w to x-y-z coordinates is of the form cw(1-w) (see Eqn.
(9)), so that:

w¥

Ap(h) = i:,;fﬂ){cos(hj'r)cw(l—Q)du dv dw , (47)
j=

where D is the computational domain for S, as always.

The integration over the domain D is of course done one element at a time,
and in all cases we have used four Gauss points per grain square. Therefore the
functions p and q are approximately constant over the (small) region Dy of D
belonging to a given Gauss point Py, with values py and gy respectively. The
integral over Dy is then approximated by:

W*

fg)kfcos(hi- r)ew(1—2)du dv dw = cos(py = qyw*k)o Aulv . (48)
0
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These terms are summed over the set of Gauss points, and then over h;,j=1...,n
to yield the amplitudes A, and A;. When h = 0, then p and q are zero for all
(u,v), and the last formula reduces to that used for the determination of surface
area. Thus for small wave vectors, say heal < 1, we should expect accuracies
on the order of that seen in the area determinations, which are better than
0.05% for the P,D, I'WP and F-RD families. For larger values of h this accu-
racy decreases. For zero wave vector the bulk amplitude Ay yields the volume
fraction of the G’ labyrinth, so that the accuracies for small wave vectors are
better than 0.01%.

Table 1 lists the two amplitudes for three members of the P family. For the
minimal surface, the reflections that are forbidden in BCC symmetry are listed
as zero amplitude, and in each case the computed amplitudes was less than
10719, For the I-WP family, there is no change in symmetry for H*=0, as seen
in Table 2. The structure factor for the D minimal surface is shown in Table 3,
and the last column in this table lists the values published by Mackay®®; the
results are in agreement.

When the amplitudes A, and A; have been calculated, the intensity I(h) is
calculated as I = [Ap+aA(]®. Thus a listing of the two amplitudes for each
reflection permits easy calculation of the intensities for any number of choices

of a this simplicity is important in fitting the parameter o to experimental
data.

A member of a family characterized by a self-dual graph can define a strue-
ture that has a different space group than that of each skeletal graph, by con-
sidering the region between the surfaces H* = h and H* = - h to be the region
of unit density. We have seen that the transformation (u,v,w) — (1-u, 1-v, 1-w)
takes a surface S with H¥*= - h — positive with respect to the G’ graph — into
its counterpart with the same curvature toward the G” graph. This situation is
easily represented in the present parametriziation by introducing the upper
limit of integration w”(u,v) =1 - w* (1-u,1-v), and e"" is integrated over we
IW*,W”]; the condition w”>w* must of course be observed over the entire sur-
ace, and for the P and D families this hold s over the branches A and A/, and
portions of B and B'. This represents, for example, an idealized density profile
for a binary amphiphile-water cubic phase in which two equivalent but disjoint
layrinths of water are separated by a continuous bilayer of amphiphile.>® Table
4 shows the results of the calculation for the first eight allowed reflections for
this case, based on the P surface with H* = 1.8.

Conclusion

A new approach to the computation of surfaces of prescribed mean curva-
ture has been described and five new families of embedded, triply-period sur-
faces of constant mean curvature tracked between periodic limiting
configurations of sphere packings. These five families include as members all of
the embedded triply-periodic minimal surfaces that can be constructed from
minimal surface patches spanning identical skew quadrilaterals, or from conju-

. w69
gates of such patches — for it was proven by Schoenfliess [see also
Schwarz®®, Stessmann67] that exactly six periodic minimal surfaces can be con-
structed from minimal surface patches spanning quadrilateral boundaries, and
of these surfaces and their conjugates (which are bounded by four plane lines of
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curvature), all but five are known to contain self-intersections. The representa-
tion of the surface in the new formulation allows for accurate calculation of
scattering functions for a class of density profiles determined gy the solutions.

Many important questions and conjectures remain unresolved. It is not
known whether these solutions are the only embedded H-surfaces for the five
dual pairs of skeletal graphs studied, for example. An important issue is
whether or not there exists a bound on the mean curvature attainable in such
families; for all of the branches studied here, and for the family of undulmds
with a fixed repeat distance,® the dlmensmnless mean curvature HT=H\ i
always less than 7, where X is the sphere dlameter in the sphere-pack limit. It
is possible that there exists an upper bound on H* lower than 7 that depends
on the coordination number, or the Euler characteristic. And for the P, D, I,
WP, F, and RD branches, the islands R™ regions at a critical mean curvature
that is the same (to within an error in H* of about 0.15) as the value H*,
corresponding to the local minimum in surface area. And we have given what
we suspect to be analytical values for the areas of the I-WP and F-RD minimal
surfaces, and for the first nonzero coefficient in both the area and volume
expansions about H* = 0 in the P family.

The fact that a local maximum in area occurs at H* = 0 in each family is
not predicted by any known theorem. Schwarz?® showed that under the ortho-
gonality boundary conditions the second variation of the area is negative for a
minimal surface bounded by the planes of a tetrahedron, but this only means
that some normal perturbation which preserves the orthogonality boundary con-
ditions decreases the area, and does not say anything specifically about those
perturbations with constant mean curvature.

The I-WP and F-RD minimal surfaces have been shown to Tgrowde two
counterexamples to a conjecture that has previously been made:® "A triply-
periodic minimal surface disconnects R® into two regions with asymptotically
the same volume". The volume fraction of the labyrinth containing the sym-
metric skeletal graph is 0.536040.0002 for the I-WP minimal surface and
0.531940.0001 for F-RD.

In all of the solution branches investigated, we have observed qualitatively
similar behavior: surface areas first decrease moving away from the minimal
surface until a minimum in area is reached at some H*_, which also corresponds
to the point of most unequal volume fractions; then, past H*, a turning point in
H* occurs at some H*_ .., and past H*_ ,, areas increase dramatically until a
limiting configuration is reached consisting of identical spheres, either close-
packed or self-intersecting. Table 5 records some of the significant parameters
observed on the branches examined. The branches are listed according to the
coordination number in the sphere-pack limit; if two branches have the same
coordination, the symmetric graph is listed first. Some trends are indicated by
the table, namely that for branches with higher coordination number in the
sphere hmlt we observe: 1) lower values of H" ... 2) lower values of Y
V(H*), 3) lower values for the slope dV dH#IH o of the V-H* curve at H
0; and 4) higher values of A(H,)/V(H, )23 per lattlce fundamental region.

A heuristic argument can be given as to the source of the trends in Table 5.
Near the CPS limit on a given branch, the solution patch inside a single Cox-
eter cell is well-approximated by a patch of an unduloid, and in fact we have
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successfully used unduloids as initial estimates for solutions near the CPS limits
of the P and F branches. In the case of unduloids it can be shown?? that H¥
increases monontonically from H#=2 at the sphere limit to the limiting value of
H7=n at the cylinder limit. However in each of the branches treated here, H

increases from 2 on moving away from the s#here limit but must eventually
start to decrease and head toward the value H"=0 of the minimal surface. It is
not unexpected that a higher coordination number would impose greater con-
straints on a brach of solutions, so tht the family of unduloids with its coordina-
tion of two would reach the highest value of H" ., while those branches with
coordination numbers of twelve never go higher than H” = 2.1. In short, we are
imposing constraints on the solutions, by fixing a higher coordination number,

that tend to limit excursions in the mean curvature, in volume fraction ratios,
and in surface areas.

Table 1. Amplitudes for three P surfaces.

H*=0 H* =-1.8 H* =2 (CPS)
(hkl) Ay A Ay A Ay A
000 0.5  2.345107 0.751.23 2.00264 0.52360 3.14159
100 0.16696 0 0.13022 -0.58291 0.15915 0
110 -1.66E-05 -0.44936  -0.04747  -0.20807 0.00392  -0.68158
111 -0.06067 0 -0.00837 0.57051  -0.04261  -0.43061
200 -1.41E-05 -0.54494  -0.01823 -0.15113 -0.03979 0
210 -0.0147 0 -0.01027 0.19855  -0.02041 0.30209
211 -1.29E-05 0.45618 0.02748 -0.13002  -0.00079 0-40312
220 -1.57E-05 -0.04256 0.00263 0.22521 0.01822 0.18147
221 0.01863 0 -0.00758 -0.30676 0.01768 0
(300 -0.01849 0 0.00477  0.01301 0.01768 0
310 -7.36E-05 0.09885 0.00185 0.05618 0.01311  -0.15432
311 0.01583 0 -0.00608 -0.12509 0.00672  -0.25285
222 -3.13E-06 -0.40418 -0.01295 0.36989 0.00028 -0.28684
320 -0.00633 0 0.01065 -0.07833 -0.00501 -0.26224
321 -1.24E-05 -0.21779 -0.00703 -0.09816 -0.00853 -0.19387
Table 2. Amplitues for three I-WP surfaces.
H* =-3.55 H* =0 H* =2.0

(hkl) Ab Af Ab Af Ab Af
000 0.8477232 2.60518 0.5360401  3.466965  0.3521078  3.197987
110 0.04481  -0.67059 0.10465 -0.30988 0.11261 0.10664
200 -0.08244 0.89956 -0.09021 -0.52743 -0.01901 -0.97923
211 0.00172 0.12524 -0.02475 -0.12206 -0.02093 -0.43372.
220 -0.03122 -0.07605 0.00983 -0.28466 -0.00459 -0.12859
310 0.02583  -0.10469 -0.00127 0.68039 -0.02468 0.2102
222 - 0.00489 -0.51241 -0.00108 0.50945 -0.01796 0.06465
321 -0.00203 0.17153 0.00344 -0.03437 0.00541 0.24275
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Table 3. Amplitudes for D minimal surface (H = 0). Mackay’s figures included
for comparison.

(hkl) Ay (this work)  Aj (this work) A; (Mackay)

000 0.5000 1.91928 1.9193
111 0 0 0
200 0 0 0
220 -2.000E-08 0.4780 0.4775
311 0 0 0
222 -2.400E-08 0.4840 0.4866
400 -1.400E-08 -0.2610

Table 4. Amplitudes for P surface with H* = 1.8, bilayer arrangement.

H* =1.8
(hkl) Ay (Bilayer)
000 0.50246
110 -0.09614
200 -0.03845
211 0.05381
220 0.00669
310 0.04401
222 -0.2352
321 -0.01289

Table 5. Parameters indicating excursion in mean curvature, volume fraction
and surface area.

Branch Coordination H*max [|V(0-V(H, dV/dHHH#=0 A(H,)/[V(H,)*/?

D 4 242 0.369 0.327 1.653
WP 4 264 0.357 0.277 1.960
I 6 2.13 0.250 0.212 2.002
1 8 2.45 0.117 0.160 2.530
RD 8 (2.18) 0.095 0.083 2.922
B 12 2.07 0.093 0.102 2.922
C(P) 12 (2.09) 0.020 0.032 3.503
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4. EQUILIBRIUM THIN FILMS ON ROUGH SURFACES:
TWO-PHASE TRANSPORT IN IDEALIZED PORES

Synopsis

The structure and stability of perfectly wetting fluid menisci in axisym-
metric pores have been investigated using the augmented Young-Laplace equa-
tion as solved by the Galerkin/finite-element method. Both continuous and
disconnected menisci geometries have been considered. The results of these cal-
culations for single and multiple pore microscopic systems have been applied to
macroscopic systems by the application of a statistical theory of multiphase
transport in porous media. The results indicate the existence of two transport
mechanisms: a capillary jump mechanism by which the non-wetting fluid
invades pores, and a film drainage mechanism by which wetting films and pen-
dular structures, remaining after the invasion of the non-wetting fluid, continue
to drain. The difference between the two mechanisms is apparent at low wet-
ting phase saturation in both the predictions of the statistical theory and in dis-
placement experiments of perfectly wetting and intermediately wetting fluids in
sintered teflon synthetic porous media.

Introduction

In an earlier paper!, we used the augmented Young-Laplace (AYL) equa-
tion?™* to calculate menisci shapes on two types of idealized surface roughness
and to model film drainage processes in porous media. In this paper, we intro-
duce an idealized pore model, calculate menisci shapes and stabilities for per-
fectly wetting fluids in these 1deahzed pores, and apply a statistical theory® to a
population of these pores to model the capillary pressure behavior of a displace-
ment process in a porous medium. In Section 2, the AYL equation, the ideal-
ized pore model, and the statistical theory of dlsplacement are all introduced.
In Section 3, the Galerkin /finite element formulation of the AYL equation is
developed f1om an energy principle. In Section 4, computational results for film
profiles and stability are presented, and the implications of the menisci
configurations (in the form of a microscopic capillary pressure curves) for
macroscopic properties of a porous medium are interpreted through the use of
the statistical theory. The predictions of the model for perfectly wetting and
intermediately wetting fluids are compared to experimental data from displace-
ment processes in uniformly wet porous media and shed light on the different
mechanisms for two-phase transport in porous media.

Theory

Where menisci lie far from any third phase the pressure drop across the
meniscus is governed by the Young-Laplace equation. When the meniscus
separates a thin film from a bulk phase it is the augmented Young-Laplace
equation that controls the pressure drop.

The Young Laplace equation,
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2Ho = Ap (1)

describes the shape of the meniscus between bulk fluid phases, where H is the
mean curvature, o is the interfacial tension, and Ap is the capillary pressure
(pressure difference between the bulk phases). If one phase becomes colloidal in
one dimension due to the presence of a third phase (either solid or liquid), the
Young-Laplace equation must be augmented by a disjoining pressure contribu-
tion, to yield

9Ho + II(h) = Ap , 2)

where II is the disjoining pressure, a function of the film thickness, h. Equation
(2) is called the augmented Young-Laplace (AYL) equation. For the current
work, we use the following form of the disjoining pressure:

II(h) = — (3)

where A is the Hamaker constant, which depends on the molecular interactions
between the two fluid phases and the solid. The inverse cube dependence of the
disjoining pressure on film thickness is commonly used to describe the disjoining
pressure in films of non-polar fluids thinner than 20nm.

The idealized pore model consists of an axisymmetric sinusoidal pore. The
aspect ratio, or ratio of pore body radius to pore throat radius, and the ratio of
pore length to pore throat radius are the only two inputs to the pore geometry
model. In the limiting case in which the aspect ratio is one, a model pore is
simply a cylindrical tube. Everett and Haynes® have considered capillary con-
densation in cylindrical tubes in the absence of disjoining interactions. For the
axisymmetric geometry, two types of meniscus shapes have been investigated
(see Figure 1). They are classified as bicontinuous, continuous in both the wet-
ting and nonwetting phase, and discrete clusters of the non-wetting phase. Two
expressions for the mean curvature are required for these geometries, one in
spherical coordinates and one in cylindrical coordinates:

1 .
(1 + Y2 1+
2 4 ot — fiy,
(12 + 7%

(cylindrical)

(spherical)

where f is the position of the meniscus.

Statistical Theory of Displacement

For a given meniscus configuration of a wetting fluid in an idealized pore,
we can caleulate the wetting fluid volume in that pore. The statistical theory is
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needed to average these microscopic or pore properties over an assemblage or
population of pores. The theory, developed by Heiba et al. (5), supposes that
for the non-wetting phase to displace the wetting phase from a pore (pore ini-
tially filled with the wetting fluid), two conditions must be satisfied. First, the
capillary pressure must be high enough to force the advancing meniscus through
the constriction at the pore throat. Assuming that the advancing meniscus
takes the shape of a hemispherical cap, we can write the allowability (or entera-
bility) criterion for a pore in terms of the pore throat radius, the interfacial ten-
sion, the contact angle, and the capillary pressure

WETTING FILMS

\/\ NON-WETTING PHASE

\ / AXIS OF
’ X SYMMETRY

(a) ‘ (b)

Figure 1. Meniscus geometries for (a) bicontinuous and (b) discrete configurations
configurations in idealized axisymmetric pores.

Ap > 20(1059 (5)

where 6 is the contact angle.

The second condition is the result of topological constraints imposed by the
network nature of the porespace. At any point during the invasion of the non-
wetting fluid, an individual phase can be occupied only if it is accessible to the
invaded phase. For example, at high wetting phase saturations at the begin-
ning of the drainage process, some of the larger pores that are allowed to the
non-wetting phase at a given capillary pressure may be isolated from that phase
by clusters of disallowed but accessible smaller pores occupied by the wetting
fluid. Thus, a pore can be invaded only if it is part of the accessible fraction of
allowed pores. Below a certain limit of allowable pores called the percolation
threshold, none of the pores are accessible, i.e., a percolating or sample span-
ning cluster of pores must be allowable for any of the pores to be accessible.
The percolation threshold, as a volume fraction of the pore space, is determined
solely by the geometry and topology of the pore space and it is independent of
the displaced and displacing fluids.
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A Bethe lattice model (uniformly coordinated network with no reconnec-
tions) was used to specify the accessible fraction of pores as a function of the
fraction of pores allowed to the non-wetting phase. The Bethe lattice model is
particularly convenient because it yields an analytic form for the accessibility’

oo/ Q>X,
:F@={§“(QM) ]Q<& -

where Q is the fraction of pores allowed to the advancing phase, X4 is the frac-
tion of pores accessible to the advancing phase, X, is the fraction of bonds
required to form a percolating cluster, and z is the coordination number of the
network. Here Q 1is the root of the following equation:

*

Q(1-QY?-Q1-Qp?%=0 (7)

For a Bethe lattice, the percolating fraction is”

X, =1/(z — 1) (8)
The non-wetting phase saturation, S,, (volume fraction of porespace) is®

e o]

XA(Q)f p(r)s,(Ap ,A,O’,I‘)Vp(l‘)dl‘

*

Sn(Ap,A,0) = ————— 9)
Q { p(r)vp(r)dr

where r is the the smallest pore throat radius that satisfies Equation (5), Q is
defined by

Q = [p(r)dr , (10)

s, is the microscopic non-wetting phase saturation in an individual pore, vy is
pore volume, and p(r) is the pore-size distribution.

Numerical Methods

The Galerkin /finite element formulation of the microscopic problem consists
of three steps: (i) AYL equation is written in dimensionless form, (ii) the unk-
nown mensiscus configuration is expanded in finite element basis functions, and
(iii) the dimensionless form of the nonlinear AYL equation is written in weighted
residual form. In addition a finite element basis set, a discretization scheme,
and an iterative method to solve the nonlinear set of algebraic equations must
be specified. For the current problem, we have selected linear basis functions,
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both uniform and adaptive discretization® schemes, and a Newton-iterative
method with a first-order adaptive continuation routine. The Newton iteration
method is chosen because it results in rapid (quadratic) convergence. The first-
order adaptive continuation scheme used in conjunction with Newton iteration,
allows us to trace out solution branches in parameter space and locate turning
points and other bifurcations. An adaptive step-sizing routine for the continua-
tion scheme keeps the method within the tube of convergence surrounding the
solution branch.

Equation (2) is reduced to dimensionless form through the specification of a
characteristic length scale, L. We choose the pore throat radius to be the
characteristic length and write the dimensionless form of the AYL equation as

*

A
2+ 55 = &' (1)

where the dimensionless quantities are as follows:

H =HL A" =A/L%

12
h' =h/L Ap = ApL/oc (12)
For the remainder of Section 3, as a notational convenience we have suppressed

the asterisks on the dimensionless quantities; all quantities are understood to be
dimensionless.

The Galerkin/finite element forms of the AYL equation in the two coordi-
nate systems are:

JU@+ 8272 — (A0 =T | ¢ + 1,851 + 1)/}
J{(e = 12 + £7)72 — (Ap — ID)|¢' + 1,6 (% + f})—lﬂ}sined%g)

where f = Eifigbi and {¢;} is the set of finite element basis functions. The {f;} is
the set of nodal values for the position of the meniscus, i.e., the the set of unk-

nowns for the problem. A schematic of the domain and discretizations for the
three problem geometries is presented in Figure 2.

It is more useful, however, to restate the AYL problem in terms of an
energy principle. Such a formulation allows us to do stability analy51s for the
equilibrium menisci configurations. Following the approach of Hubh®, Brown and
Scriven'?, and Marmur!! for static fluid interfaces and Brown and Scriven!? and
Benner!® for rotating drops, we define a mechanical energy functional, E, which
has the following representation in cylindrical and spherical coordinates.

The quantities fUaﬁ dz and fU sind df represent the solid-fluid interac-
tion energy of a pore occupied by two-phases relative to that of a phase occu-

pied by one-phase (wetting fluid). Expanding the meniscus position in the finite
element
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CYLINDRICAL

SPHERICAL | CYLINDRICAL | SPHERICAL

Figure 2. Schematic of the discretization scheme for the two menisci configurations.

J{E + £H)Y2 — £2Ap /2 + U,p,Hda

14
J{EER + )2 — £*Ap /3 + Uy g, }sinddd 14)

basis functions and minimizing the functional with repect to the unknown
coeficients of the expansion, we find that for ry/ = OE /0f;,

{10+ Y2 + (@ — Ap)iléy + 81 + £2)7/2)dz

Hwﬁ+%@+ﬁrm+Fm—Amﬁ+mW+$rwwmwﬁm

Iy =

Stability is investigated by examining the eigenvalues of the Jacobian matrix, J

R

Jik= aflafk . (16)

This approach to stability analysis highlights the utility of the finite ele-
ment method. The Jacobian matrix is calculated as part of Newton’s method
to provide updated values for the unknowns (and solutions) based on a local
linearization of the residual equations, and it also serves to provide stability
information for these solutions.
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Results and Discussion
Shape and Stability of Menisci in Idealized Pores

We have solved Equation (15) for two pore geometries and for several men-
isci conﬁguratlons In general, 40 quadratic elements were used to resolve the
meniscus 'head’ in spherical coordinates, and 25 quadratic elements were used
per half-wavelength of a pore (e.g. for the dumbell shaped blob in Figure 2b, the
number of elements is 40 4+ 25 = 65 leading tp 131 equatlons) Convergence of
the solutjon, as deﬁned by the inequalities %l < 1078 for the residual vector
and Tl of |l| < 1078 for the solution update vector, was typically achieved in four
iterations. All of the film profiles apgearlng in this paper were calculated at a
reduced Hamaker constant value of A = 107*

For axisymmetric sinusoidal pores, more important than the aspect ratio
and pore length is the ratio of the local mean curvature of the pore wall at the
pore throat and the pore body. We define the curvature ratio, &, as follows:

K= chroat/ Hbody'

We have studied menisci configurations in pores with aspect ratio four and
with & > 1 (pore wavelength, A = 20 pore radii) and £ < 1 (A = 5). In addi-
tion, we have examined the bicontinuous two-phase geometry and the discrete
non-wetting phase geometry for up to four pore volumes for each of the two
pore geometries. The results show that qualitatively different sequences of
events lead to loss of stability, i.e. different transport mechanisms are at work
for the two pore geometries. First, we consider the bicontinuous menisci solu-
tions in these two pore geometries. The solution branches for the X = 5 case
are presented in Figure 3. The wetting phase saturation, S, is defined as the
volume fraction of the porespace occupied by the wetting phase. The high wet-
ting phase saturation branches (B, C, and D) all emanate from a cylindrical
meniscus solution. The cylindrical mensicus is unstable with respect to Ray-
leigh disturbances, i.e. pinch-off points in the menisci profiles. In Figure 4, we
show the development of pinch-off in these unstable menisci profiles.

Branch A represents a stable thin-film branch. Figure 5 shows a sequence
of profiles that depict pronounced thickening of wetting layers in the pore body
with small changes in the corresponding thicknesses at the pore throat. For the
X =5 pore, £ < 1 and the mean curvature in the pore wall at the pore body is
greater than at the pore throat. The films thicken first in the pore body as a
consequence of the higher pore-wall curvature in that region.

Stability is lost at Point 1 on Branch A (Figure 3) with respect to a non-
constant volume disturbance. The instability indicates that continued thicken-
ing of the wetting layer leads to a lower energy configuration. At Point 2, a
second unstable mode appears in the solution and leads to choke-off at the pore
throat with the wetting phase disconnecting the non-wetting phase. The
sequence of profiles corresponding to the unstable region of branch A is depicted
in Figure 6.
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SOLUTION BRANCHES FOR THIN FILMS
IN SINUSOIDAL AXISYMMETRIC PORES
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Figure 3. Solution branches for a bicontinuous meniscus in an axisymmetric

pore with an aspect ratio of four and a pore length of five (unstable -
regions indicated by dashed curves).
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Figure 5. Menisci configurations corresponding to the stable portion of branch A in
Figure 3.
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Figure 6. Unstable meniscus from branch A showing pinch-off developing at the pore
throat.
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In Figure 7, we present the solution branches corresponding to Branches A
and B in Figure 3 for the A = 20 pore geometry. It is immediately obvious that
there are significant differences between these two figures. For the A = 20 pore,
a large gap exists between S, ~ 0.1 and S, ~ 0.9 in which no bicontinuous
solutions exist. This result is quite different from the result for the A = 5 pore
in which Branches A and B form an almost continuous curve between S, = 0
and S, = 1.
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4.0 |
3.0
20 [
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/
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SATURATION

REDUCED CAPILLARY PRESSURE
o

Figure 7. Solution branches for a bicontinuous meniscus in an axisymmetric
pore with an aspect ratio of four and A = 20 (unstable
regions indicated by dashed curves).

The gap results from the increased curvature ratio for the A = 20 pore. The
wetting layers thicken primarily in the pore throats and the menisei become
unstable with respect to the choke-off instability at branch A (in Figure 7). It
is because the films thicken in the throats first that the instability is reached at
a much lower wetting fluid saturation and the large gap is created. The onset
and development of the choke-off instability is traced in Figure 8. These profiles
are very similar to those calculated by Gauglitz'® for a similar geometry using
idealized flow equations.

The discontinuous or discrete non-wetting phase solutions to Equation (15)
illustrate similar behavior, but in a somewhat different form. Solution branches
for the two pore geometries are presented in Figures 9 and 10. In each case,
two solution branches are plotted. The most obvious difference between the two
is that the X\ = 5 branches are continuous, whereas the A = 20 branches are not.
The discontinuity between branches for the A = 20 geometry is again due to the
choke-off instability.

The branches of discrete solutions for the N = 5 geometry (Figure 9)
represent symmetric expansions of blobs of non-wetting fluid about a pore body
(Branch A) and a pore throat (Branch B). Examples of these profiles are shown
in Figure 11. The maxima in these curves represents the capillary pressure
required
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Figure 8. Choke off instability in Branch A.

to push the 'head’ meniscus of the non-wetting phase front through the con-
striction at the pore throat. Advancing beyond the pore throat, the meniscus
becomes unstable and advances rapidly into the neighboring pore in what is
commonly referred to as a Haines jump. The decrease in capillary pressure for
the advancing meniscus reflects the increase in the radius of curvature as it
occupies the next pore (see Figure 12).
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Figure 9. Branches of discrete solutions; A = 5.
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REDUCED CAPILLARY PRESSURE
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Figure 10. Branches of discrete solutions; A = 20.
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Figure 11. Discrete blob profiles from Figure 9 and Branch A.
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Figure 12. Onset of instability as meniscus advances beyond the pore throat.

Branches for the A\ = 20 geometry are presented in Figure 10. Again,
Branch A represents menisci profiles of blobs expanding symmetrically about a
pore body, and Branch B represents profiles of blobs expanding about a pore
throat. The solutions for larger non-wetting fluid volumes (V,, > 2.5)
corresponding to those presented for the A\ = 5 geometry in Figure 9 also exist,
but as isolated branches like Branch B in Figure 10. From a dumbell-shaped
blob with V,, ~ 2, both an increase and a decrease in the blob volume result in
choke-off or fissioning of the blob at the pore throat (see Figure 14).
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Figure 13. Microscopic drainage curves for perfectly wetting (solid) and
intermediately wetting (dashed) fluids.
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Figure 14. Drainage curves for ry,, = 10u, coordination number z = 5, 6, 8.

These predictions indicate that for certain pore geometries (i.e. geometries
in which k > 1) choke-off will occur behind an advancing front, leading to gen-
eration of a foam or emulsion , and behind a retreating front, acting to isolate
clusters of non-wetting phase and preventing complete recovery of the retreat-
ing non-wetting phase. ‘

Macroscopic Drainage Behavior

Having presented a detailed microscopic picture of the structure and stabil-
ity of menisci in an idealized pore (or pores), we now use the statistical
approach outlined in Section 2 to translate the microscopic menisci geometries
into macroscopic properties of a porous medium. The microscopic (single pore)
drainage curve for a perfectly wetting fluid (6 = 0°), corresponding to the solu-
tion branches presented in Figure 3, is represented in Figure 13 by the solid
curve. Below Ap = 2, the entry level capillary pressure, the non-wetting phase
is unable to invade the pore. Above that value, the non-wetting phase invades
and leaves behind a stable wetting film (see solution branch 1 in Figure 3 and
the mensci profiles in Figure 5). The analogous drainage curve for an inter-
mediately wet fluid (0 = 45°) is represented by the dashed curve in Figure 13.
For the intermediately wet case, a pore is either completely occupied by the
wetting phase (below the invasion capillary pressure) or completely occupied by
the non-wetting phase (above the invasion capillary pressure); no films or pen-
dular structures exist in this case. Note also that in accordance with Equation
(5), the invasion capillary pressure for the intermediately wet case is one-half
that for the perfectly wet case.

These microscopic drainage curves for perfectly wetting fluids were calcu-
lafed for vaJues of the reduced Hamaker constant ranging from
A =102%2toc A" =101 For a solid-fluid system with known interfacial
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tension and Hamaker constant and at a known applied capillary pressure, the
pore throat radius uniquely determines the reduced values of the Hamaker con-
stant and the capillary pressure and thus also uniquely determines the wetting
saturation for an individual pore. Restating Equation (9) in terms of the dimen-
sionless variables, we find

fp o(Ap" A v, (r)dr
Sy = . (17)

[o,e]

pr(r)vp(r)dr

0

The microscopic saturation s (Ap A) is 1nterpolated from IIllCI‘OSCOplC
capillary curves calculated for values for A ranging from 107 %to 10710, Usmg
Equation (17), we can calculate the capillary drainage curve for a macroscopic
medium with a known pore-size distribution (a Rayleigh distribution was used).

Four studies have been performed to determine the impact of pore-size dis-
tribution, aspect ratio, coordination number, and wettability on the predicted
drainage behavior of the model. The results show that for all the cases studied
with the sole exception of changes in wettability, variations in the input param-
eter produce no new qualitative features in the predicted drainage curves. In
Figures 14-16, we summarize the quantitative comparisons for different coordi-
nation number, aspect ratio and pore-size distribution, respectively. Variations
in coordination number affect the threshold capillary pressure. The higher the
coordination number, the lower the percolation threshold and the lower the
threshold capillary pressure required to create a percolating cluster of allowable
pores (see Figure 14). We have also compared the predictions for cylindrical
pores, aspect ratio equal to one, and pores with aspect ratio equal to four. As
is shown in Figure 15, there are some small differences due to the shape of the
pores. For the pore-size distribution, we used a Rayleigh distribution, p(r) =
2ar exp{—arg}, where «a is an adjustable parameter controlling the location of
the peak of the pore-size distribution (rp,;). In tighter media (smaller pore-
sizes and larger o) the percolating cluster consists of smaller pores and thus the
threshold capillary pressure must be higher (see Figure 16).

Comparisons between perfectly and intermediately wetting fluids (see Figure
17) show both qualitatively and quantitatively different drainage behavior, par-
ticularly at low wetting-phase saturations. There are two primary differences in
the displacement curves: one at high wetting-phase saturations the other at low
wetting-phase saturations. At high wetting-phase saturations, the threshold
capillary pressure for the macroscopic displacement process is lower for the
intermediately wet case, again as a consequence of Equation (7). A more pro-
found difference exists at low wetting phase saturations. The difference in the
predictions of the model at low wetting saturations reflects a difference in the
dominant transport mechanisms near the wetting phase percolation threshold.
For the intermediately wetting case, as the drainage process proceeds to low
wetting- phase saturations, the non-wetting-phase displaces the wetting phase
from increasingly smaller pores. Finally, when the wetting phase percolation
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Figure 15. Drainage curves for pore aspect ratios of one and four
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Figure 16. Drainage curves for z = 5 and ry,, = 10um and rp,, = 5um.
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threshold or irreducible wetting saturation is reached, the wetting phase exists
only in isolated clusters and subsequent increases in capillary pressure produce
no further reductions of the wetting phase saturation (the drainage curve
becomes vertical). In contrast, for the perfectly wetting case, the wetting phase
is completely connected throughout the porous medium. Clusters of occupied
pores are never isolated; even at low saturations, clusters can drain through
continuous film pathways along pore surfaces. Consequently, there is no irredu-
cible wetting saturation for a perfectly wetting fluid. Such a fluid will continue
to drain down to very low saturations at extremely high capillary pressures.

The crossover behavior in the drainage curves at the percolation threshold,
seen in predictions of the statistical theory in Figure 17, have also been seen
experimentally. Morrow'® has found crossover of this type for displacement
experiments in porous cores of sintered teflon. In these experiments the wetting
fluids were either pentane, hexane, or heptane, and the intermediately wetting
fluids were ethylene glycol and water. In the displacement tests, air was used
as the non-wetting invading phase. An example of this behavior is shown in
Figure 18. Our model predicts a much lower percolation threshold (crossover
saturation) than was measured by Morrow. The discrepancy between the two is
the result of the cubic dependence of the pore volume on the pore throat radius
in the idealized pore geometry used here.

MACROSCOPIC DRAINAGE CURVE

4000

AECIPROCAL CAPILLARY LENGTH
g

a®
o

WETTING PHASE SATURATION

Figure 17. Macroscopic drainage curves for perfectly wetting (solid) and inter-
mediately wetting (dashed) fluids; Xe is the percolation threshold.

Conclusions

In this paper, we have established two points: (i) the augmented Young-
Laplace equation is a useful tool for studying equilibrium configurations of wet-
ting menisci in idealized pore geometries and is also a probe of the stability of
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Figure 18. Drainage data for perfectlY wetting and intermediately wetting fluids
in sintered teflon cores, after Morrow™* .

these menisci; and (ii) a statistical approach can be coupled to this or any other
simple microscopic model to yield macroscopic predictions that qualitatively
agree with experiment and which sheds light on the microscopic transport
mechanisms responsible for the macroscopic experimental results. Displacement
of an intermediately wet fluid is a percolative process that ends when the
irreducible saturation (percolation threshold) is reached. In contrast, a per-
fectly wetting fluid drains through films and pendular structures along con-
nected surface pathways beyond the percolation threshold. If these films become
unstable as they thin, a surface percolative process will eventually limit the
extent to which drainage can occur. Better agreement with theory can be
achieved by a more judicious choice for the pore geometry.
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5. THEORY AND COMPUTER SIMULATION OF STRUCTURE,
TRANSPORT AND FLOW OF FLUID IN MICROPORES

Synopsis

An overview is given of recent progress made in our laboratory on this topic. -
The density profiles of fluid in micropores are found by solving numerically an
approximate Yvon-Born-Green equation. A related local average density model
(LADM) allows prediction of transport and flow in inhomogeneous fluids from
density profiles. A rigorous extension of the Enskog theory of transport is also
outlined. Simple results of this general approach for the tracer diffusion and
Couette flow between planar micropore walls are presented. Equilibrium and
flow (molecular dynamics) simulations are compared with the theoretical predic-
tions. Simulated density profiles of the micropore fluid exhibit substantial fluid
layering. The number and sharpness of fluid layers depend sensitively on the
pore width. The solvation force and the pore average density and diffusivity
are oscillating functions of the pore width. The theoretical predictions for these
quantities agree qualitatively with the simulation results. The flow simulations
indicate that the flow does not affect the fluid structure and diffusivity even at
extremely high shear rates (10'%7!). The fluid structure induces large devia-
tions of the shear stress and the effective viscosity from the bulk fluid values.
The flow velocity profiles are correlated with the density profiles and differ from
those of a bulk fluid. The LADM and extended Enskog theory predictions for
the velocity profiles and the pore average diffusivity agree very well with each
other and with the simulation results. The LADM predictions for the shear
stress and the effective viscosity agrees fairly well with the simulation results.

Examples of fluids confined in pores and spaces of molecular or nanometer
dimensions abound in technological and natural products and processes. These
include wetting and lubrication, zeolite-supported catalysis, silica gel based
chromatrographic separations, drying of paper products and clay dispersions,
aggregation of colloids, permeation of Vicor and other sintered glasses, the for-
mation of soap films, foams and emulsions, and water or oil rich zones in lytro-
pic liquid crystals and vesicular bilayer structures. In such confinement the
fluids can be strongly inhomogeneous and so the usual theories of fluid structure
and dynamics may not be applicable. Owing to the molecular dimensions
involved, experimental characterization of fluid in micropores is also difficult.
Thus, computer simulation on model systems becomes an important tool to test
ideas and supplement experiments on real systems in trying to understand the
behavior of fluids confined on the nanometer scale.

In this paper, we report recent progress made in our laboratory in using
molecular theory and computer simulation to understand the structure, flow
and transport of fluids confined by planar solid walls separated by a few molec-
ular diameters.



152

Molecular Theory of Structure and Transport
Equilibrium Theory of Fluid Structure

In all the theoretical work reported hereln, we assume that the particles
interact with pair additive forces whose pair potentials can be approximated by

u(s) = ug(s) + ua(s) , (1)
where

ug(x) =00, s<o

=0, s>0 (2)

and uu(s) is the continuous, attractive part of the pair potential. The pore
walls confining the fluid will be represented by the conservative potential u®(r).
At equilibrium the density n(r) of the fluid obeys the Yvon-Born-Green (YBG)
equation

kgTVn + 0Vu® — n [n(r+s)g(r, r + s)%uA’(s)dSS

+ nkgT [n(r + ok)g(r,r + ok)o’kd*k =0 . , (3)

where g (r,r’) is the pair correlation function, kg is Boltzmann’s constant and T
is the absolute temperature. ki is 2 unit vector lying along the line of centers of
a pair of molecules in contact. d?k denotes an element of solid angle associated

with k.

Equation 3 is exact for fluids obeying Equations. 1 and 2. However, in order
to compute the density n(r) from the YBG equation one must know the rela-
tionship between density distribution and the pair correlation function of inho-
mogeneous fluid. Such a relationship is not avallable in general. However, an
approximation introduced by Fischer and Methfessel' has been shown to give
fairly accurate predictions of the density profiles in liquid-vapor and liquid-solid
interfaces. It has also been shown that their approximation gives the exact
density distribution for one-dimensional hard rods in an external potential u®.
The main assumption of Fischer and Methfessel is that the pair correlation
function can be approximated as

(rr +5) = £°ilr + 35)) (4)

where g° is the correlation function of homogeneous fluid and n is a local aver-
age density defined by
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1
(15 /6) r <fa/2

n(r) = n(r +R)dR . (5)

Equation 4 renders the YBG equation solvable. However, as did Fischer and
Methfessel, we shall further simplify the theory by making the van der Waals’
structureless fluid approximation (g =0,s <o, g=1,'s > o) in the integral
involving the long-ranged continuous force u,’. The YBG equation thus
becomes

VikgTihn + u® + [n(r+s)us(s)d’s) + kpT [ g°(a;ﬁ(r+%k)02kd2k =0. (6)
To finally complete the model a formula for the contact value of the pair
correlation function g° must be given. We choose the Carnahan formula
1- %oﬁﬁ
glon) = ———— (7)
(1 — —c*n)®
6
shown by Carnahan and Starling® to be accurate in hard sphere fluids.
In the calculations to be reported in what follows we shall consider planar
systems, i.e., flat pore walls so that u® = u®(x) and n = n(x), where x is the dis-

tance from a pore wall. In this case Equation 6 can be integrated to give

+o0

p'= In(x) + -1-{-}-;-;17_ n(x)uy(x — x)dx’
+ 270" [ax! [ dgen(x! + ox)g (R + o)) — —‘f—{%l (8)
0 -1 B
where
+o/2
n(x) = (6/0‘3)_f/2(.2502— (x — x)})n(x')dx’ (9)

The parameter u* is the constant of integration. It plays the role of the
chemical potential.

The external potential, u®(x), arises from the solid walls at x =0 and x = h.

u*(x) = ¢y(x) + dy(h — %) (10)

where each wall exerts a 10-4-3 potential®;
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(11)

¢yand o, are characteristic wall-fluid particle energy and separation distance
parameters.

The fluid-fluid intermolecular potential,

uy(x) = f_-:oqu(s)dydz (12)
is taken to be

Tu(x) = —2med®, Wl <o

27mec®
=—=", >0 (13)

X

This corresponds to the attractive part of a "6 - 00" Lennard-Jones poten-
tial; namely,

6
uA(s)=—46 < , 8§>0
s
= 0 , s<co (14)

The normal pressure Py in the fluid confined between the walls varies with
wall separation and is not, in general, equal to the bulk pressure Py of fluid at
the same chemlcal potentlal The difference Py — Py is the solvation force per
unit area,? f;, and can be calculated from the equilibrium density profiles by

B d¢w(X)

d%}f x) dx (15)

o

The equilibrium densfcy profiles are obtained by solving Equations 8 and 9
for a modified density n*(x), where

n*(x) = n(x)e“e(x)/ kT | (16)

This modified density is a more slowly varying function of x than the den-
sity. The domain of interest, 0 < x < h, is discretized uniformly and the tra-
pezoidal rule is used to evaluate the integrals in Equations 8 and 9. This results

|
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in a system of nonlinear, coupled, algebraic equatjons for the nodal values of
n and n. Newton's method is used to solve for n and n simultaneously. The
domain is discretized finely enough so that the solution changes negligibly with
further refinement. A mesh size of 0.050 was adopted in our calculations.

Solutions were obtained initially for a wall separation h = 400, where at the
midpoint the density is equal to the bulk fluid density, ny. Then, solutions for
decreasing pore width were found using the previous solution at larger h as a
first guess for the next width. Pore width was gradually decreased to h = 2.250
using small enough steps to ensure that quadratic convergence was observed at
each new pore width. Step sizes ranged from a few o’s to 0.050.

Local Average Density Model (LADM) of Transport

In the spirit of the Fischer-Methfessel local average density model, Equation
4, for the pair correlation function of inhomogeneous fluid, a local average den-
sity model (LADM) of transport coefficients has been proposed® whereby the
local value of the transport coefficient, A(r), is approximated by

\(r) = °(@(r)). (17)

X°(n(r)) is the transport coefficient of homogeneous fluid at the local average
density n(r).

According to this model the diffusivity of a molecule at position x in the
planar pore system of interest in this paper is D°(n(x)) and so the pore
diffusivity is

h
n(x)D°(n(x))dx/ { n(x)dx , (18)

OLﬂCT'

Dpore

since D°(n(x))n(x)Adx/N is the probable diffusivity of a particle lying between x
and x + dx in the pore. ' '

The stress tensor T according to LADM is
o=
r(r) = LEE 05 4 997] 4+ pi(ate) - Zwe@evvr (o)

where ¥ is the mean flow velocity, V! is the transpose of Vv, 7°(n) and n(n)
the shear and bulk viscosity coefficients of homogeneous fluid at density n.

The attractive feature of LADM is that once the fluid structure is known
(e.g., by solution of the YBG equations given in the previous section or by a
computer simulation) then theoretical or empirical formulas for the transport
coefficients of homogeneous fluids can be used to predict flow and transport in
inhomogeneous fluid. For diffusion and Couette flow in planar pores LADM
turns out to be a surprisingly good approximation, as will be shown later.
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Enskog Theory of Transport

Enskog’s theory of hard spheres, with introduction of a temperature depen-
dent hard sphere diameter, gives surprisingly accurate estimates of the
diffusivity and viscosity of real fluids®. This is because in simple fluids the
short-ranged repulsive forces between molecules dominate in the collisional dissi-
pation leading to transport phenomena. The long-ranged attractive interac-
tions contribute importantly to the energy of the fluid, and thus to phase tran-
sitions and interfacial structure, but apparently are less effective in collisional
dissipation. With this view of fluid behavior Enskog’s theory of transport in
bulk fluid has been generalized to strongly inhomogeneous fluids.

Consider a fluid of molecules interacting with pair additive, centrally sym-
metric forces in the presence of an external field and assume that the collisional
contribution to the equation of motion for the singlet distribution function is
given by Enskog’s theory. In a multicomponent fluid, the distribution function
fi(r,v;,t) of a particle of type i at position r, with velocity v; at time t obeys the
equation of change

Bfi 1 e
"‘BT + Vi * Vfl —_ E Vui ¢ Vvifi
1

1
_— ]E ;l fVui‘f‘(r—r') . Vvififjgi(rir,, t )d3 I',d3Vj

=3 [gii(r,r + oyk)ti(r,vY, 8)E(r + oyk,v{, t)
j Vj;‘k >0

—_ gij(r,r — Gijk)fi(r,vi,t)fj(r — Uijk,vj,t)] Gi?vji'kdzkdgvj , (20)

where V and Vvi are gradient operators with respect to r and v;, m; molecular
mass, u the potential of the external force, ui‘jo‘ the pair potential of attractive
forces between particles of types 1 and j, g; the pair correlation function
between i and j, o = (o + ij)/2, o; the harcll sphere diameter of i, k a unit
vector directed from the center of i to that of j, and vi'the velocity of i after a
hard-sphere collision with j.  We recall that v{=v;—v;-kk, where
Vi = V; —v/. The attractive interaction uf is assumed to be sufficiently

slowly varying that it does not contribute to coflisional dissipation.

The local density n; of species i is related to the velocity distribution funec-
tion by

n(r,t) = [fi(r,v;,t)d%; , (21)

At equilibrium the distribution function is of the form
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fi = ni(r)éi(vi) (22)
where ¢; is the Maxwell velocity distribution function,

my

2 7TkB T

3/2
] exp(— m;v?/2kgT). (23)

gi(vy) = [

With this distribution function, velocity factors out of Equation 20 yielding
the exact YBG equation, Equation 3, for equilibrium fluids whose interaction
potential is given by Equation 1.

The Chapman-Enskog method has been used to solve for steady state tracer
diffusion®. According to the method the singlet distribution function for the
diffusing species 1, present in a trace amount (n;<< n;, i % 1) in an otherwise
equilibrium fluid, is approximated by

f; =ni(r)Py(vy) [ 1 + ay(r)vy | (24)

and a,(r) is obtained from the Enskog equation. The result for the linearized
diffusion flux J; of species 1:

J = ff1V1d3V1 = - nlokBT.‘:l_1 ’ Vln(nl/nf) (25)

where ¢ is the friction tensor,

SILEDY

21 T My

m, [27kgT |/ o

my; = m;m;/(m;+m;), g;(r,r+oy;k) the equilibrium pair correlation function,
nf(r) the equilibrium density distribution of species 1, and n;(r) the diffusive
density distribution.

As expected from continuum theory, the friction and diffusion coefficients
are replaced in inhomogeneous fluid by tensors whose symmetry reflects that of
the inhomogeneous media.

For the special case of self-diffusion (tracer molecules dynamically identical
to solvent molecules) in the y-direction in a planar pore, it follows from Equa-
tion 25 that the pore average flux obeys?

dnpore
dx

h
1
Jpore = 'il_lede = — Dpore (27)
o

h
where npe=h""[n,dx and
(o]
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h h
Dpore= [Dr(x)n°(x)dx/ fn°(x)dx . (28)

(o]

Dr(x), the local diffusivity parallel to the pore walls, is given by

1/2
D) = O ,

40% [ g%(o,7°(x + —;—5))11°(x + o€)(1 — £2)d¢

(29)

a result enabling one to calculate the pore diffusivity from the equilibrium den-
sity distribution function.

Equation 28 is similar to the LADM formula for pore diffusivity, except that
in LADM Dx(x) is replaced by

_ (kgT/mm)'?
 (80%/3)g%(0,n(x))n(x)

D°(n(x))

(30)

The Chapman-Enskog theory of flow in a one-component fluid yields the fol-
lowing approximation to the momentum balance equation!®.

18,V + 0v-Vv + —Vu® — V':P = — M;:V¥ + M,:VV¥ (31)
m

where P is the local pressure tensor and M; and M, are third and fourth rank
tensors accounting for viscous dissipation. In isotropic fluid P = PI, I the unit
tensor, M; = 0 and M, is a fourth rank isotropic tensor. The symmetries of P,
M, and M, depend on the symmetry of the inhomogeneous fluid. The general
Chapman-Enskog formulas for M;and M, are very complicated and will not be
recorded here. However, if the deviation of the velocity distribution function
from its local Maxwellian form (¢ = (m/2mkgT)*/? exp|— m(v — ¥(r))?/kgT]) is
neglected, the following relatively simple formulas are obtained!®

mkgT 12
M(r) = [ 2 ] o®n(r) [n(r + ok)g(r,r + ok)kkkd’k (32)
| kaT 1/2
M, = [ — ] o*n(r) [n(r + ok)g(r,r + ok)kkkkd’k . (33)

These formulas become increasingly better approximations as the density
increases'l.

For the steady, planar Couette flow to be examined in a later section, the
momentum balance equation yields



du® dPy
n ™ + - =0 (34)
and
BVY 5‘2x7y :
0= M) + M) | (35)
where

1
M, (x) = 2(mmkgT)20®n(x) [ n(x + of)g(ox,x + o€)(1 — £9)EdE  (36)

-1

1
M,(x) = (mmkgT)20*n(x) [ n(x + of)g(oyx,x + of)(1 — E9)E%E  (37)
-1

It can be shown that Equation 34 is the YBG equation determining the den-
sity distribution n(x) of the fluid. With the Fischer-Methfessel closure, the den-
sity distribution is all that is needed to calculate the coefficients M;(x) and
M,(x). Integrating Equation 35, we find

}dX"Q(X”)
Vy(x) = vy(0) + [vy(h) = S0 (38)
de"Q(X")
where .
Q") = exp [ — | dXMy(x)/My(x)] - (39)

LADM also leads to Equation 35, but with M;=dn°(n(x))/dx and
M,= n°(n(x)), which yields

} dx"[n°(a(x")] ™ |
Vy(x) = Ty(0) + F(b) — H(o)] 5 , - (40)
AP

The theories of structure and transport outlined above will be compared
with molecular dynamics in what follows.
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Molecular Dynamics
Equilibrium Stmulation

The equilibrium simulations described here were carried out by Magda et
al.?. The pore walls modelled are two flat, semi-infinite solids separated by a
distance h in the x-direction. The wall-fluid potential is the 10-4 or 10-4-3
potential, i.e.,

10 _ (o /ol Vs
Pu(x) = 6w‘[OA(o-w/X) (o /x)" + 3(x /o, + 0.61/\/5)3} J (41)

where 0 = 1 in some simulations and § = 0 in others. The particle-particle
potential energy is chosen to be the truncated 6-12 Lennard-Jones potential

11(1') = ¢LJ(I‘) - ¢LJ(re) , 1<r,
=0, T > T, (42)

sl

€ and o are energy and particle size parameters and r, is the truncation dis-
tance (typically taken to be 2.5 to 3.50 in computer simulations).

where

The temperature, pore width and average pore densities were the same as
those used by Snook and van Megen in their Monte Carlo simulations, which
were performed for a constant chemical potential'®, Periodic boundary condi-
tions were used in the y and z directions. The periodic length was chosen to be
twice r,. Newton’s equations of motion were solved using the predictor-
corrector method developed by Beeman'®. The local fluid density was computed
form

n(x) = ii—f(a - x), (44)

where A is the area of a pore wall and N(O — x) is the long time average of
the number of molecules found between O and x. The normal pressure exerted
by the fluid on the pore wall was computed from

1 N due(xi
Py=5r <— 217_l>

X
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h e
= — -;—gn(x)dld)(})-dx , (45)

or the Irving-Kirkwood pressure tensor mentioned below!®. <--—-> denotes an
ensemble average or a long-time average (used in molecular dynamlcs)

The self-diffusion coefficient parallel to the pore walls was computed form
the mean square particle displacement,

Do = lim 30 < (t) =50 + ()~ OF> . (as)

and the Green-Kubo formula

1 e o]
Dpore= ;f ) + hy(t)]dt o (a7)
; 0
where the velocity autocorrelation function ,(t) is defined by

B =

T Mz

1
N <v;,(t)v;,(0)> , v =%, v, or 2. (48)

Couette Flow Simulation

MD typically simulate systems at thermodynamlc equilibrium. For the
simulation of systems undergoing flow various methods of nonequilibrium MD
have been developed!®!’. In all of these methods the viscosity is calculated
directly from the constitutive equation.

The nonequilibrium MD method we employed® is the reservoir method!®
which simulates plane Couette flow. The effective viscosity is calculated from
the constitutive relation

Txy = neﬁ& imp (49)

where 7y, is the xy component of the stress tensor, 7,4 an effective coeflicient of
shear viscosity, ’71mp is the imposed shear rate.

In this method the liquid of interest is sheared between two semi-infinite
reservoirs. The reservoirs contain particles identical with the ones in the main
liquid slab and at the same density. The reservoir particles and the particles of
the main liquid slab interact by exerting forces on each other but they do not
mix because they are separated by impenetrable hard walls extending on the yz
plane. Therefore, the reservoirs are fluid-like and confine the main liquid slab
in the x direction. Despite appearances, the main liquid slab behaves like a
bulk fluid because the reservoirs induce no significant structure in the confined
liquid. Furthermore, the hard impenetrable reservoir walls are not to be
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confused with the flat 10-4 LJ pore walls mentioned in the previous subsection.

The flow is induced in the following way: External forces are applied on the
particles of each reservoir in order to keep the average y velocities of the reser-
voir constant. The imposed motion of the reservoir shears the liquid slab. The
work supplied in order to keep the reservoirs moving eventually is dissipated
and heats up the liquid. In order to remove this extra heat from the system the
velocities of the reservoir molecules are scaled at each time step so as to keep
the average reservoir temperatures constant. The imposed shear rate is obvi-
ously

;7 imp = (Vy,u— Vy,l)/s (50)

where, \_ryu is the average velocity of the upper reservoir particles, v, the aver-

age velocity of the lower reservoir particles, and s the width of the main liquid
slab.

Depending on the density in the vicinity of the reservoir walls some slip
might be observed. Therefore, the actual shear rate that the liquid slab experi-
ences might be lower than the imposed one. This actual shear rate 7is deter-
mined empirically from the simulation by calculating the average velocity of the
liquid slab particles which are located next to the reservoir walls. The actual
shear rate 7rather than the imposed shear rate 7y, is to be used in Equation
49 for the calculation of the effective viscosity 7.g.

The structure 1s induced by a pore wall potential, which has the form of the
potential used in the equilibrium simulations (Equation 41.) with 6 = 0, €, = 4e
and o, = 0, (¢, o are the parameters of the truncated 12-6 LJ potential of the
pair interactions of particles in the main liquid slab and the reservoirs.)

The arrangement described above allows one to turn off the flow and/or the
wall potential at will and, therefore, to simulate bulk fluid and fluid confined
between planar micropore walls both at equilibrium and under flow.

We simulated two systems: (1) bulk fluid (no wall potential) at equilibrium
and undergoing Couette flow, and (2) fluid confined between planar micropore
walls at equilibrium and undergoing Couette flow.

The location of the pore walls does not coincide with the location of the
reservoir walls that confine the particles of the main liquid slab. This was done
in order to minimize the slip at the reservoir walls as explained in detail in
Referrence 5.

In the flow simulations we address the following issues:

e the effect of density structure on the flow properties, such as the
flow velocity profile, the shear stress and the viscosity, by comparing
the bulk and the structured systems under flow. ‘

e the effect of flow on the density structure and the diffusivity by
comparing the density profiles and the diffusivities of both systems
at equilibrium and under flow. Furthermore, we compare the two
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diffusivities on the plane parallel to the reservoir walls, i.e.,
the diffusivity in the direction of flow and the one normal to the flow,
for both systems undergoing flow.

e the effect of structure on the diffusivity by comparing the
diffusivities of the structured and the bulk system at equilibrium.

The density profile for the micropore fluid was determined as in the equili-
brium simulations. In a similar way the flow velocity profile for both systems
was determined by dividing the liquid slab into ten slices and calculating the
average velocity of the particles in each slice. The velocity profile for the bulk
system must be linear as macroscopic fluid mechanics predict.

The diffusivities parallel to the pore walls at equilibrium were determined
from the mean square particle displacements and the Green-Kubo formula as
described in the previous subsection. The Green-Kubo Formula cannot be
applied, at least in principle, for the calculation of the diffusivity under flow.
The diffusivity can be still calculated from the mean square particle displace-
ments provided that the part of the displacement that is due to the macros-
copic flow is excluded. The presence of flow in the y direction destroys the sym-
metry on the yz plane. Hence the diffusivities in the y direction (parallel to the
flow) and the z direction (normal to the flow) can in principle be different. In
order to calculate the diffusivities that is due to the flow must of course be
excluded. Therefore,

o1 N1 _ ; ,
Dyjore= lim 7o <BO-F-wOF> ()
. 1= . ’

where V is the flow velocity at the location of particle i and

1N o
Dypore= im =319 0 <[ai(t) — 5O > (52)

since there is no flow in the z direction.

The shear stress is uniform throughout the main liquid slab for Couette
flow®. Therefore, two independent methods for the calculation of the shear
stress are available; it can be calculated either from the y component of the
force exerted by the particles of the liquid slab upon each reservoir or from the
volume average of the shear stress developed inside the liquid slab from the
Irving-Kirkwood formula!®. For reasons explained in Reference 5 the simpler
version of this formula can be used in both our systems although this version
does not apply in general to structured systems. The Irving-Kirkwood expres-
sion for the xy component of the stress tensor used in our simulation is
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pa

_ i
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I
—

1 X ( N, N,
+ 9. kz (xj— Xk)Fli[) + EkZ (xx— XGDS)Fl(Qf) > (53)
jlom1 j=1k=1

Viore 1s the volume of the main liquid slab.
is the number of particles in the main liquid slab
N; is the number of particles in both reservoirs.
Vx j»Vy i are the x and y components of the velocity of particle i
Vy(yi)yis the y component of the flow velocity at the
- current position of particle i
X;,y; are the x and y coordinates of particle i
Xapg is the location of the Gibbs dividing surface between the main
liquid slab and the reservoirs.

where ?Xy is the average shear stress over the main liquid slab
[

Discussion of Results
Equilibrium Systems

Magda et al. have carried out an equilibrium molecular dynamics simulation
on a 6-12 Lennard-Jones fluid in a slit pore described by Equation 41 with § =1
with fluid particle interactions given by Equation 42. They used the Monte
Carlo results of Snook and van Megan to set the mean pore density so that the
chemical potential was the same in all the simulations. The parameters and
conditions set in work were €, = 27, 0, = 0, 1, = 3.50, kT /e =1.2, and n,0® =
0.5925. ¢ and o are the Lennard-Jones parameters of the fluid and n, is the
density of a bulk phase in equilibrium with the pore fluid.

To compare molecular theoretical and molecular dynamics results, we have
chosen the same wall-particle potential but have used the 6 - oo fluid particle
potential, Equation 14, instead of the truncated 6-12 LJ potential. This is done
because the molecular theory is deve]oped in terms of attractive particles with
hard sphere cores. The parameter g in Equation 8 is chosen so that the den-
sity of the bulk fluid in equilibrium with the pore fluid is the same , nbo‘?' =
0.5925, as that in the MD simulations. ‘

Figure 1 typifies the agreement found between the fluid density profiles
predicted by Equation 8 and that obtained in the MD simulations. For this
example the porewidth equals 40. The fluid density distribution has three large
peaks (the maximum bulk density possible for a Carnahan-Starling fluid is
nbo3=677r1.9) indicating a strong layering effect of the pore walls on the
confined fluid.
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The number and sharpness of fluid layers depend sensitively on the
porewidth as is illustrated by the theoretical results (which agree qualitatively
with simulations) plotted in Figure 2. As porewidth is increased from say h =
0, there appear one, two, three, etc. density peaks. A transition from N to N +
1 peaks occurs as the porewidth varies from a value at which N layers are
favored to a value at which N + 1 are favored. A quantity which measures this
tendency is the so-called restricted pore average density.

h .
1
Daye = h — 2A {D(X)dx ’ . (54)

where A is the thickness of the region near the pore wall which is empty of par-
ticles (A 0.80 for the wall potential used here). Predicted and simulated values
of n,,, are plotted in Figure 3. n,,, has local maxima where a given number N
of layers is favored and local minima where this number is not favored. For
example, one layer is favored at h = 1.950 and two layers are favored at h =
2.950, as witnessed by local maxima in n,,,, whereas the local minimum
between 1.95 and 2.950 indicates a defective layering 1.95 and 2.950 state in
which neither one nor two layers are optimal. This behavior can be seen in Fig-
ure 2 in which the two density peaks decrease dramatically as the pore width is
decreased from h = 2.950 to 2.600.

In the simulations the maxima and minima of n,,, are shifted to slightly
smaller porewidths compared to predictions of the theory. This trend is con-
sistent with the fact that the 6-12 Lennard-Jones potential is not infinitely
repulsive at an interparticle separation of o, whereas the 6-co potential is
infinitely repulsive at o.

It is now well established experimentally that the solvation force, f,, of
confined fluid is an oscillating function of pore wall separation. In Figure 4 we
compare the theoretical and MD results for f; as a function of h. Given that
pressure predictions are very demanding of a molecular theory, the observed
agreement between our simple theory and the MD simulations must be viewed
as quite good. The local maxima and minima in f; coincide with those in n,,
and therefore also reflect porewidths favorable and unfavorable to an integral
number of fluid layers.

Similarly, the pore diffusivity Dy (Figure 5) has local maxima and minima
resulting from the layering structure of the confined fluid. As one might expect
the local maxima and minima in Dy, coincide with the minima and maxima in

nave'

In Figure 5, the MD results are compared with predictions of the
Vanderlick-Davis extension of Enskog’s theory and with LADM predictions
using for D° the Enskog formula, Equation 30, and the theoretical density
profile. The extended Enskog theory and LADM agree quite well with one
another and are in qualitative agreement with the MD results. The maxima
and minima of the MD results are shifted to smaller porewidths because of the
softer core of the 6-12 LJ potential as compared to the 6-00 potential. For the
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same reason, the bulk diffusivities of the theories are lower than that of the
simulation. If, as is done in applying the Enskog theory of bulk phase transport
coefficients to real fluids, we choose for the 6-co model an effective diameter o,
the agreement between theory and simulation can be improved. For example,
with o, = 0.9720 Enskog’s diffusivity of bulk fluid agrees with the simulation
and improved agreement pore diffusivities result (Figure 6).
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Figure 5. Pore diffusivity versus pore width. MD fro/m Ref. 12. Theory is for
6-co LJ fluid. Units of diffusivity are (30/8)(kgT /7m)Y/2.
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Beyond a porewidth of about 120, the theory and the MD results agree that
the fluid profile is fully developed at each pore wall and further wall separation
simply recruits more almost bulk fluid the middle region of pore with very little
change in the density profile of the four or five layers near the pore wall.

Flow systems

In this subsection we present the results of our Couette flow simulations.
Most of these results were first presented in Reference 5.

i) Density profiles: The density profiles for the bulk fluid and the micropore
fluid are shown in Figures 7 and 8. We first note that the density profile for the
bulk fluid is uniform throughout the pore except from a very narrow region next
to the reservoir walls. But even there, the density gradients are entirely
insignificant compared to the extremely strong density gradients of the micro-
pore fluid caused by the pore wall potential. Therefore, we conclude that the
presence of the reservoirs does not induce any significant structure in the fluid.
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1.0 local average
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|2 N
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x/e xla *
Fig. 7: Density profile of the bulk system. Fig.8: Density and local average density profiles

of the micropore fluid
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The density profile for the micropore fluid is highly structured, showing sub-
stantial fluid layering. The local average density profile (see Section 1) of this
system is also shown in Figure 8. A very important feature of the local average
density that results from the smoothing procedure involved in its calculation is
that it varies slowly and remains bound to physically possible homogeneous fluid
densities. This is essential if one is to employ some theory for the viscosity of
homogeneous fluids to predict local viscosities and flow velocity profiles as
explained in Section 1. From Figure 8 we see that the local average density of
the micropare fluid is everywhere lower than the hard-sphere closest packing

density (V2 0) and the maximum density for the solution of the Percus-Yevick
equation (6/m0°).

Although only one density profile is shown in each of the Figures 7 and 8
the density profiles of the two systems both at equilibrium and in the presence
of flow that have been determined. A conclusion of great importance that is
suggested by the Couette flow simulations is that the density profiles of the two
systems in the presence of flow coincide with the equilibrium density profiles, even
at the extremely high shear rates employed in our simulation. A detailed statisti-
cal analysis that justifies this point was presented in Reference 5.

i) Diffusivities. Our results for the diffusivities of both systems are summarized
in Table I. The pore average transverse diffusivity for the bulk fluid at equili-
brium agrees very well with experimental and simulation values for the
diffusivity of Argon at the same density and temperature'®125.

Table I. Diffusivities. Units are (0% /m)/2.

Bulk Fluid Micropore Fluid
Simulation
equilibrium 0.10940.002 0.10740.002
parallel to the flow 0.10940.003 0.11440.004
normal to the flow 0.10940.002 0.113+0.003
Experiment 0.111
LADM
‘using Enskog theory 0.107
- using empirical formula 0.112
Extended Enskog 0.108

As explained in Section 1 three diffusivities were calculated for each system.
These were the equilibrium transverse diffusivity and the two nonequilibrium
(flow) diffusivities parallel and normal to the direction of flow. As we can see
from Table I, they all agree with each other within the limits of statistical
uncertainty. We conclude, therefore, that the flow has no effect on the diffusivity
even at such high shear rates as the ones employed in our simulation. At even
higher shear rates a significant dependence of the diffusivity on the shear rate
has been reported'® but one should consider that our shear rate is already ord-
ers of magnitude higher than the ones encountered in realistic flow situations.
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As shown in Table I the LADM predictions agree very well with the simula-
tion results. The first of these values employed the Enskog hard-sphere theory
for homogeneous fluids for the prediction of the local diffusivities. The second
value emplo%ed an empirical formula that fits MD results for the diffusivity of
liquid Argon®>'®. As we can see much of the disagreement is due to the inaccu-
racy of the Enskog theory and not to the LADM. The third value is the predic-
tion of the generalization of the Enskog theory for tracer diffusion in strongly

inhomogeneous fluids™®. This value also agrees very well with the simulation
result.

A final point has to do with the relative insensitivity of the pore averaged
diffusivity on the density structure. Both the LADM and the generalized tracer
diffusion theory provide a rational explanation for this fact. The reasons for
the insensitivity may be identified in the double (triple for the tracer diffusion
theory) smoothing induced by the volume averaging and by the very nature of
the molecular interactions in liquids which makes some type of averaging over
the densities in the neighborhood of a certain point necessary.

ili) Velocity profiles. The velocity profiles for the bulk fluid and the micropore
fluid are shown in Figures 9 and 10. The profile for the bulk system is linear in
agreement with the macroscopic prediction of fluid mechanics. This fact shows

that the flow properties of our first system are identical with the ones of a bulk
fluid, despite the presence of the reservoirs.
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Figure 9. Velocity for the bulk system.
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Figure 10. Theoretical and simulation velocity profiles for the micropore fluid.

The velocity profile for the micropore fluid exhibits large deviations form
linearity. An extremely important point which motivated the development of
the LADM is the clear correlation between the velocity and the density profiles of
the micropore fluid. One can easily distinguish two regions of low slope (shear
rate) next to the reservoir walls and a center region of high slope. These clearly
correspond to the two large density peaks next to each reservoir wall and the
low density center region of the density profile. The theoretical velocity profile
predicted from the LADM is also shown in Figure 4. It agrees with the simula-
tion profile almost within the limits of the statistical uncertainty.

In Figure 10, we present flow velocity predictions of the high density approxi-
mation, Equations 32 - 33, 38 and 39, of Davis’ extension of Enskog’s theory to
flow in strongly inhomogeneous fluids. The velocity profile predicted in this way
is also plotted in Figure 10. The predicted profile, the simulated profile, and
the profile predicted from the LADM are quite similar.

Finally the knowledge of the velocity profiles allows the determination of
the actual shear rate exerted upon the liquid slab. For the bulk system some
slip is observed at the reservoir walls. No slip is observed for the micropore
fluid as a result of the high density close to the reservoir walls, which facilitates
the momentum transfer between the reservoir and the liquid slab particles.

iv) Shear stress and viscosity. As explained in Section 1 three independent esti-
mates of the shear stress can be made for this particular type of flow. For both
systems they all agree within the limits of statistical uncertainty as shown in
Table II. The shear stress in the micropore fluid is significantly lower than the
bulk fluid, which shows that strong density inhomogeneities can induce large
changes of the shear stress.
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Table II. Shear stress and viscosity

Bulk fluid in planar Couette flow
—Shear Stress _ Shear Rate  Viscosity |

Simulation ; ;
force on upper reservoir 0.182

force on lower reservoir 0.180

Irving-Kirkwood formula 0.181

average 0.18140.004 0.14940.005 1.2140.04
Experiment ; - 1.23
Enskog | 1.14

Micropore fluid in planar Couette flow
Shear Stress Shear Rate Viscosity

Simulation

force on upper reservoir 0.119

force on lower reservoir 0.122

Irving-Kirkwood formula 0.122

average 0.121+0.003 0.156 0.65+0.02
LADM ,

using Enskog theory 0.77

using empirical fit 0.70

Units /> (¢/ma?)!/? (me)'/%6?

For the bulk system the constitutive equation
n= Txy/ v (55)

is rigorously valid. The simulation result for the viscosity of the bulk system
agrees with the experimental argon viscosity within the limits of the statistical
uncertainty.

If one insists on Equation 55 for the micropore fluid an effective viscosity
(which is an experimental observable) must be used instead, i.e.,

Neg = Txy/;y (56)

The simulation value for the effective viscosity is almost half the viscosity of
the bulk fluid. According to the LADM the effective viscosity for plane Couette
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flow can be identified as
K]
N =s [ [n°(n(x)]'dx (57)
(o)

where s is the distance between the reservoir walls, n(x) the local average den-
sity at x (defined by Equation 9), and 7°(n(x)) is the local viscosity at x, i.e., the
homogeneous fluid viscosity at density n(x)

Two predictions of the LADM for the effective viscosity are shown in Table
II. The first was made by using the Enskog hard-sphere theory for the calcula-
tion of the local viscosities. It agrees qualitatively with the simulation result in
that it predicts a large decrease of the effective viscosity as a result of the den-
sity structure. For the second prediction the local viscosities were calculated
from an empirical formula?® that fits experimental value of the argon shear
viscosity over a wide range of densities and temperatures?®?!. The agreement
with the simulation result is much better, which suggests that much of the

discrepancy is a result of the poor Enskog predictions at high densities and not
a deficiency of the LADM.

A final comment has to do with the concept of effective viscosity in strongly
inhomogeneous fluids. For these systems the definition of the effective viscosity
depends on the type flow, hence different effective viscosities will be measured
for different flow situations in the same system with the same density profile.
Therefore, the effective viscosity is a concept of limited value and measurements

of this quantity do not provide much information about the effects of density
structure on the flow behavior.
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6. SIMULATION OF ONE-DIMENSIONAL, TWO-PHASE, DARCY FLOW

Synopsis

In developing a two-dimensional, and subsequently a three-dimensional,
two-phase flow simulator, it is logical to tackle the simpler one-dimensional case
first. Using this relatively simple system as a foundation has several advantages.
From the standpoint of computer programming, developing first a simpler algo-
rithm and then building upon it is much easier than attempting a large problem
at once and then having to spend weeks to exterminate the bugs. More impor-
tantly, analytical solutions of special cases of the one-dimensional case are more
likely to be available than of any two-dimensional case. The best way of
assessing a numerical routine’s performance is to compare its results to the
analytical solution, if one is available. Fortunately, in 1982 Fokas and Yortsos!
published a closed-form solution of a realistic one-dimensional, two-phase flow
problem. The one-dimensional flow simulator developed here is tested by solving
their problem for nine cases displaying a range of saturation front behavior.

This chapter presents the details of the numerical algorithm, the two-phase
flow model and solution of Fokas and Yortsos, comparisons of simulated and
analytical results, and CRAY-2 considerations, such as timing, vectorization,
and multitasking of code.

Physical Model

The physical situation is one of immiscible, two-phase, one-dimensional,
incompressible flow through a homogeneous, isotropic porous medium. The
medium (e.g. rock) is initially saturated with oil, apart from the so-called
irreducible saturation of water (a misnomer, actually). At time t = 01 water is
injected at constant flow rate into the sample through one face, displacing the
oil until the irreducible oil saturation is attained.

The relevant property of the porous medium is its absolute permeability, k,
a measure of how easily a fluid can be forced through the medium by a mechan-
ical potential gradient. For single-phase flow, k is the proportionality constant
in Darcy’s Law, the generally-accepted foundation for describing “‘slow’ flow in
porous media:
v=-%yp (1)
7
v is the vector velocity of the fluid phase, p is its viscosity, and VP is the
imposed mechanical potential gradient, which may include pressure, gravita-
tional, or centrifugal contributions, among others.

Darcy’s Law is extended to multiphase flow by introducing the concept of
relative permeability, a measure of how one phase’s presence affects the flow
rate of another phase. The presence of another fluid generally decreases a fluid’s
flow rate under a given mechanical potential gradient. The two phase relative
permeability of an incompressible phase A is defined as the ratio of its
volumetric flow rates at a given VP 1) with phase B present in significant
amounts to 2) B at its irreducible saturation. This quantity is most strongly a
function of saturation and saturation history, although other parameters such
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as viscosity ratio may have small effects.?® Darcy's Law for multiphase flow is
kkr]‘
v, = — VP (2)
Hj
where subscript i denotes phase i, and k; is its relative permeability. Figure 1
summarizes the physical situation as well as the relevant properties of the
medium and the fluid phases.

Mathematical Formulation

The final parabolic partial differential equation which describes the evolu-
tion of the oil saturation profile is derived from the equations of continuity and
Darcy’s Law for each of the two phases, in conjunction with the physical
assumptions stated above. The equations of continuity for each phase are

OSy Odyy
¢‘ oS, i da, “a )
ar o€

¢ is the porosity (void fraction) of the medium, S; is the saturation of phase i,
and q; is the volumetric flow rate of phase i per unit cross sectional area per-
pendicular to the flow direction. & and 7 are dimensional position and time
coordinates, respectively. The one-dimensional form of Darcy's Law for each
phase, with the imposed pressure drop as the sole contribution to the mechani-
cal potential gradient, is

G = __kkrw opP,, 5)
" My O€

kk, OP,
Qo = — Ity ag (6)

Completing the system are these boundary conditions. Before water injection,
the oil is at its maximum saturation throughout. Also, in this semi-infinite
medium, the oil concentration sufficiently far from the injection face remains at
this maximum value for all time. Finally, water is injected at constant flow rate
q into one face of the medium. These three conditions are, respectively,

So (E’O) = 1—Sur (7)
So(007) = 1 =8y, (8)
4w (0,7) = q (9)

The best starting point for combining Equations (3) through (6) is a statement
of the incompressibilities of the water and oil phases:

q = g, + qy (10)

Equation (6) is inserted for q,, and the definition of capillary pressure
P, = P, —P, (11)
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Figure 1. Diagram of the physical setup. Water is injected at a constant flow
rate q, displacing the oil, originally at its maximum saturation.
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is inserted for P,. The spatial derivative of P, is eliminated by Equation (5).
Finally, this equation is solved for g, and inserted into Equation (3). Dimension-
less variables are defined as

X = I, (12)
t = ﬁ— (13)

where L is a characteristic length of the system, resulting in the following non-
linear, parabolic partial differential equation:

08 [on) 2] oS : ;
S denotes the oil saturation, and
d My
h(S) =
® = 5 |53 (15)
kk, Ny dP, .
gs) = — (16)
Lau, X+ >‘w 98
where X is the mobility of phase i,
1 ’u’l

g(S) and h(S) are functions of oil saturation through the relative permeabilities.

Boundary conditions (7) and (8) translate directly to the derived system;
condition (9), however, requires special treatment. Integration of Equation (3)
and insertion of the dimensionless variables yields :

* 88 p Qw
o‘{, ot dx' = q (18)

Replacing the time derivative by Equation (14), integrating, and applying the
result to the face at x=0 (where q=q,,) provide the third boundary condition:

S| .
95 S S I
™ (0,t) Gl 1 1_fs w,h(s )ds'| (19)

In general, Equation (14) does not possess a known closed-form solution.
Therefore, a numerical scheme is required to obtain the evolution of the oil
saturation profile.

Galerkin Finite Element Formulation

The QGalerkin finite element method is a special case in the broad class of
methods of weighted residuals. An approximate solution to a partial or ordinary
differential equation
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Ly = f(x) on {1 (20)
is expressed as a linear combination of linearly-independent basis functions ¢j:
N
= 3 ud¢ (21)
j=1

1 is required to be a solution to Equation (20) by forcing the inner products of
the residual L[)-f with each member of a set of weighting functions {w;} to be
Zero:

é(L[ﬁ] —fwidl = 0 (22)

Hence the name methods of weighted residuals. If the weighting functions are
chosen as the basis functions of {i, Galerkin’s Method results.

[ Lig] —1£)¢d2 = 0 i=1,2,..N
Q

Finally, if the spatial domain {2 is divided into discrete subdomains and con-
venient ‘‘nearly orthogonal” finite element basis functions are used, this
becomes the Galerkin Finite Element Method, commonly referred to as finite ele-
ments. A partial differential equation is thus reduced to a finite set of N equa-
tions in the coeflicients u;.

(23)

In this work, piecewise linear (also known as ‘“hat’) basis functions are
used. Each function ¢; is nonzero only on the elements immediately to the left
and right of its peak. Figure 2 gives the traditional element and node number-
ing as well as a segment of the linear basis function set for a general one-

dimensional mesh. With the maximum value of each basis function equal to
" unity, the linear combination coefficients u; are the values of the approximate
solution 1 at the nodes (element boundaries).

Application of the Galerkin finite element method to the partial differential
equation (14) involves two complications. First, this is a transient problem.
Instead of obtaining N (generally nonlinear) algebraic equations immediately, a
set of N nonlinear first order differential equations in the u; results:

At = F(u) (24)

Integration of these equations is possible through either simpler methods (e.g.
Euler, Crank-Nicholson) or software packages, which generally employ more
sophisticated techniques. To obtain the results presented here, implicit Euler
and Crank-Nicholson time stepping are used; further details appear later. The
second complication is the nonlinear character of the PDE — the presence of
the nonlinear functions g(S) and h(S). The usual derivation of the residual equa-
tion set yields terms such as
d¢ a4

déi 4
)] ad
o dx dx [p( )] dx o n dx dx [p

where p(S) is a nonlinear function of S. Applying the Swartz-Wendroff approxi-
mation '

N

j=1

N N
P[Z uj¢j] ~ 3 p(w)d; (25)
J=1

=1
linearizes the equations in (bj so the above term becomes
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i-1 i i+1 Elements

Figure 2. Segment of the finite element mesh, with piecewise linear, ‘“nearly
orthogonal’ basis functions.
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N de; dé,

ng‘lp( ) dX dX dX
The Swartz- Wendroff approximation is known to have a global error propor-
tional to (Ax)?, better than the Galerkin method itself with linear basis func-
tions, in cases of ‘non-extreme’ curvature on any given element.® Therefore,
concentrating elements in regions of high curvature (adapting the mesh), aids
this approximation.

Application of the Swartz-Wendroff approximation and a time integration
scheme transforms the residual equations into a set of nonlinear algebraic equa-
tions

flu) =0 (26)
The solution vector is found by Newton iteration with no modifications, such as
relaxation or late Jacobian updating. A linear algebraic equation set results:

J() [ —uf] = —f(u) (27)
where
af;
Jij = Bu; (28)
and k denotes the iteration. The solution is accepted when
% i u Tt — uiki < e (29)

where €=10"°. The 1-norm of f is required to meet the same criterion to ensure
that a proper root has been found.

Newton’s method requires a ‘“‘reasonable’ initial guess for convergence. The
initial guess used in this algorithm is derived from the most recent solution
available, whether it is from the previous time step or from the previous mesh
on the current time step. If the nodes’ positions have changed, the Newton
iteration guess is linearly interpolated in x from the previous solution and its
mesh. If quadratic basis functions are used, quadratic interpolation would be
appropriate.

Solution Algorithm of the Transient Discretized System

The flow diagram of the general algorithm used appears in Figure 3.
Details of the specific tasks appear in subsequent sections. Adaptation of the
spatial mesh is performed so that elements are concentrated in regions which
would otherwise have higher local error. For linear basis functions, these regions
are those of high solution curvature. (For quadratic basis functions, the third
derivative of the solution is of interest, and so on.) In general, a solution is
found on a given mesh, the estimated error of this solution on each element is
computed, and the nodes are repositioned to equidistribute the total error
across each new element. This process is termed continuation-adaptive; it is
repeated until the average absolute motion of each node from one mesh to the
next is below a specified tolerance. When this tolerance is satisfied, the solution
for the current time level is accepted This entire strategy is very similar to
that used by Benner? and Heiba.’
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Figure 3 suggests that most of the computational burden involves solving
the Newton iterations on each mesh for the values of vu;, for solving Ax=b is
typically expensive and this task is performed most often. The other tasks, such
as mesh adaptation and the computation of the Jacobian J and the right-hand
side -f, are less time consuming. Details of the computational work for each
task are presented later.

Mesh Adaptation

The mesh adaptation scheme equidistributes the total estimated error of
the solution on the ““old” mesh by repositioning the nodes so the total error is
divided evenly among the elements, resulting in the ““new’ mesh. This new mesh
is used to solve the problem again. Such a scheme, termed continuation-
adaptive or explicit-adaptive, has been used previously at Minnesota.>~" This
process is repeated until the mesh converges in the sense that

1 N d !

—_— I X_O _ X‘new < €
N I_Z’; o : !

where N is the number of nodes and € is 5X107°, for example. An alternative

algorithm, termed Newton-adaptive, computes both the solution values and the

nodal positions in a single Newton iteration series. Benner® recommends the

continuation-adaptive scheme for several reasons.

(1) The continuation-adaptive method preserves the Jacobian’s tridiagonal
structure (which exists by virtue of the piecewise linear basis functions),
whereas the Newton-adaptive method does not.

(2) A good initial guess for the convergent nodal positions is not required in
the continuation-adaptive scheme, since they are not determined by New-
ton iteration.

(3) The Newton-adaptive method can suffer from nodal bifurcations, i.e. non-
uniqueness of the mesh which satisfies the error equidistribution criterion.

(4) For Benner's test problems, the continuation-adaptive scheme requires
significantly less CPU time to achieve a given error level, since fewer equa-
tions are solved per Newton iteration.

Accordingly, the continuation-adaptive scheme is used exclusively here.

Since the basis functions are piecewise linear, the error is estimated from
the curvature on element i:

Xi+1 i 2 i
u

Ei =~ (AXi) f |d 2|d_X (30)
X X |

Because the solution is linear within each element, the only contributions to the
integral are from the element’s endpoints. Basically, Equation (30) reduces to
the average of the absolute values of the change in slope between element i and
the neighboring elements i-1 and i+41. For boundary elements 1 and N-1, the
absolute slope change with the single neighboring element is used for E; and
EN_]_-

Once the E; have been computed, the equidistributed error on the new
mesh is



185

1 N-1
% = N_1 i§1 E; | (31)
Figure 4 shows the graphical representation of the adaptive process, including

the interpolation resulting in the new nodal positions. Note that the nodes
remain ordered; i.e. they do not jump over each other.

If the error is distributed in such a way that nodes jump relatively far from
the old to the new mesh, convergence on two fronts is hindered. First, the node
positions may experience overshoot and oscillate, converging only slowly.
Second, large node jumps hinder the convergence of the succeeding Newton
iterations, for the initial guess vector is linearly interpolated from the solution
on the old mesh. If the mesh adapts too quickly, the solution on the new mesh
may be outside the Newton radius of convergence. To address these problems,
roots of the estimated errors E; are summed, as opposed to the E; themselves.

_ 1 N1 E 1r
Thus, node motion is damped, and mesh convergence is smooth. After experi-
mentation, r=4 was found to be successful in the cases run here. A smaller
value (e.g. r<<2) may underdamp the mesh, while larger values (e.g. r>8) may
overdamp it, wasting computer time since more mesh iterations are required to
achieve the tolerance e. -

Spatial Domain Truncation

Since the physical model involves a semi-infinite medium, and finite ele-
ments use a finite domain, the related questions of where to truncate the semi-

infinite domain (at x=L) and how to treat the S(oo,t) boundary condition must
be addressed. '

The simplest treatment is to use the boundary condition

oS

o ot) =0
(equivalently, S(L,t)=1-S,), where L is large enmough such that when L is
increased, the solution profiles remain unchanged. This is fine for steep satura-
tion fronts, but for fronts greatly dispersed by capillary forces, L would need to
be ridiculously large. Furthermore, a new, less empirical treatment is available
which provides a basis for setting L on mathematical grounds.

An asymptotic analysis of the PDE can be used both to estimate the
proper domain boundary L and to provide a Robin boundary condition there.
Figure 5 is a graphical representation of the ideas that follow. Far from the
developing front, where S=1—S,,=S,, the coeflicient functions h(S) and g(S)
are approximately constant, producing the asymptotic form of Equation (14):

o8 ., 68 89S

The first order spatial derivative is eliminated using the transformation
E = X + h(soo)t‘ (34)
to yield an equation in the transformed variable S(&,t)

(33)
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Figure 4. After the solution on the mesh in (a) is found, the estimated error on
each element is summed and equidistributed to produce the new mesh in (b).
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Figure 5. Truncation of the semi-infinite domain at L, using the asymptotic
solution to obtain a Robin boundary condition for the finite element problem.
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a3 3%
5 = &) e (35)

Applying the boundary condition S(oo,t)=S., to the general solution of this
equation yields

P Y S
S(€7t) - (Soo B) f{Z(g(Sw)t)l/g

Differentiating with respect to £ and using Equation (36) to eliminate B gives a
Robin boundary condition which is valid in the asymptotic regime. Transform-
ing S(&,t) to the original function S(x,t) produces the final result:

+ B (36)

B (L8) = W[SELt)~Seo] (37)
where the coefficient w is
_52
. R 4g(Sco)t
== (38)
(78(Seo)t) /2 erfe ———§—2
2(g(soo)t)1/

The remaining concern is where does the asymptotic solution hold, i.e.
where is this Robin boundary condition valid? An estimate of L is obtained from
Equation (36). In the process of the error function converging to unity, the
asymptotic solution becomes valid. This occurs when the error function’s argu-
ment is greater than a number M which is about 3, for example. An estimate of
L is then

L = —h(Se)t + 2M(g(Se)t)'/? (39)

The value of M is increased from 2 or 3 until the solution profiles are unchang-
ing.

In general, the value of L monotonically increases from one time level to
the next. Details of the algorithm, however, require that a fixed value of L be
used for all time levels — the value at t=t,,.

Discretization of Time

The Galerkin finite element formulation of this transient problem results in
a set of first order differential equations of the form

Ad = F(u) (40)

where A has tridiagonal structure. Implicit Euler and Crank-Nicholson (also
known as modified Euler) time integration schemes were applied to the set of
residual equations. These standard methods are preferred over software pack-
ages for two reasons. First, no ‘“‘black box" exists which could cause problems
without  adequate warning. Second, evaluation of the various time integration
methods, one goal of this work, is more straightforward. Software routines will
be substituted in the future to conserve computational effort by, for example,
using adaptively sized time steps. ’

Implicit schemes are preferred, since these employ information from all
mesh points at the current time level, whereas explicit schemes use information
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from the previous time step only.® Especially for hyperbolic problems (such as
this one in the zero-capillary pressure limit), which are characterized by waves
travelling in the spatial domain, explicit schemes often require prohibitively
small time steps to ensure reliable solution or even stability. If a component
wave travels farther than the mesh spacing in one time step, unphysical results
ensue; the Courant number is based on this principle. The tradeoff, as expected,
is computational effort. These implicit schemes require solution of a system of
coupled algebraic equations, whereas exphclt schemes allow simple updates at
each mesh point.

The implicit Euler approach replaces the time derivative by a difference
quotient and evaluates the right-hand side F at the new time level (hence
“implicit’): :

A (! — u®) = F(u") At + O(At) (41)

An advantage of this method is that the Jacobian in each Newton iteration is
tridiagonal: JAu=—f is solved for Au by a simple recursive algorithm derived
using LU-decomp051t10n Unfortunately, the implicit Euler scheme has O(At;
error, requiring smaller time steps to obtain the same accuracy as an O(At)
method, such as Crank-Nicholson.

Crank-Nicholson time stepping has been recommended in the literature for
such problems as these’ and is the method used currently in the one-
dimensional, two-phase flow simulator. Its formula is obtained by subtracting
the Taylor series for u in t at two adjacent time levels

u't! = u' + (At)at + (At)2 it - (42)
. - (At) t+1 + 2(At)2ﬁt+1 —_— e (43)

and applying Equation (40):
u* = ut 4 (A AT F) + F(ut)] + O(AL (44)

Unlike the implicit Euler method, however, the tridiagonal structure of the
Jacobian is not preserved, and a full system JAu=—f is solved at each Newton
iteration. While this adds to the computational burden, the increased accuracy
of the solution after many time steps justifies the extra effort.

A more advanced, predictor-corrector time mtegratlon scheme found favor
at Minnesota in the research_of Benner® and Heiba,® who use an algorithm
based on the work of Gresho, Lee, and Sani.!’ Predicted saturation proﬁles at
the new time level are obtained by approximating the time derivative in Equa-
tion (40) by either a first-order-accurate explicit Euler time step, in which case
the corrector is implicit Euler, or by a second-order-accurate Adams-Bashforth
predictor, in which case the corrector is the trapezoid rule. Furthermore, Benner
and Heiba incorporate adaptively sized time steps based on estlmates of the
time truncation error computed from the saturation profile.'® Four implicit
Euler steps are used initially to provide necesgary smoothing before the higher-
order trapezoidal rule integration commences. 5 A high priority is to replace the
current implicit Euler and Crank-Nicholson schemes with this more advanced
method.

How to evaluate the integrals present in the term F(u%) is a subtle concern
which results from mesh adaptation: the nodes at time level t+1 are not in the
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same positions as those in the convergent mesh of time level t. A simple
approach is to interpolate linearly the values from the ‘“‘old” mesh to the
“new,” but Heiba® correctly asserts that this violates a mass balance. Heiba
evaluates integrals involving saturations from the previous time step exactly by
using Gauss quadrature and demonstrates this method’s superiority over
Benner’s. The error in mass associated with Benner’s strategy decreases as the
number of elements increases, for the nodes are more concentrated and linear
interpolation more accurately represents the true values. Since 50 elements are
used here, the simple strategy of Benner produces no ill effects. As the solutions
do not change with increasing the number of elements beyond 50, any mass bal-
ance error is of negligible magnitude.

Up to this point, solving efficiently the full set of equations is not a major
concern — the IMSL routine LEQT2F (IMSL User’s Manual), which employs
Gaussian elimination with partial pivoting to obtain a ‘‘high accuracy’ solution,
is used. The routine accepts the digits of accuracy desired of the solution and
performs iterative improvement, if necessary, to meet this criterion. Five-digit
accuracy is demanded of all solutions; examining their sensitivity to the number
of digits demanded confirms this. Since the one-dimensional simulator is now
performing well, emphasis soon shifts to minimizing computer time, beginning
with solving the matrix equation more efliciently.

System with a Closed-Form Solution

The algorithm used applies to a wide range of physical situations, espe-
cially those of different relative permeability and fractional flow relations.
Results presented here, however, use one model for which the partial differential
equation

a8 08 d a8
o M8 o [g(s) ax] (45)
with the boundary conditions
So(x,0) = 1 =8y, : - (46)
So(oot) = 1 — 8y, (47)
8s Siaco
1
—(0) = ———— |1~ h(S") ds’ 48
o 0 = s | A )

has a closed-form solution.
In the particular case where the coefficient functions take the form

g(8) = (B +)7 (49)

h(S) = a(fS +)* (50)
Equation (45) and the associated boundary conditions are mapped into the heat
equation by an integral transformation of x, thus admitting a closed-form solu-
tion.! Because of its complexity, the solution is not reproduced here (see Appen-
dix A). At each point (X,t,) where the solution is desired, a single nonlinear
algebraic equation is solved (e.g. by Newton iteration) for an auxiliary variable;
this value is then used to compute S(x,,t,)-
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The fact that an analytical solution exists could be a moot point if the
corresponding physical situation is unrealistic. Fortunately, this is not the case.
In terms of the model parameters v and £, the viscosity ratio M of the fluids is

2
1 -8y +—
l'l‘ wr
M= — = 2 (51)

o S +

Furthermore, the parameter (2 expresses the ratio of the magnitudes of viscous
forces to capillary forces:

_ b
. [ dP, ] (52)

ds

Although this is not the strict definition of the capillary number, Ca is used to
convey the same qualitative meaning. Specifying the above forms of g(S) and
h(S) also sets the functional form of the capillary pressure gradient and the
ratio of the relative permeabilities. The dimensionless capillary pressure gra-

dient is
dP. | _ 1
ds 2
k

S—S
S|

-3 -3 53
s+ wr (53)
g
and the ratio of the relative permeabilities is
kro _ S — Sor (54)

K. 1 —S—9S,

Figures 6 and 7, respectively, depict capillary pressure gradient curves for typi-
cal parameter values and the allowable range of relative permeability curves.
Their limiting behaviors are correct for typical water-oil-reservoir systems, and
the intermediate shapes display the generally observed monotonicity.! One
aspect which is lacking, however, is associated with the fractional flow curves.
While most fractional flow curves have an inflection point, which is a crucial
feature for the Buckley-Leverett (zero-capillary pressure) solution, the fractional
flow curves of this model cannot. Figure 8 shows typical fractional flow curves.
These do display the proper monotonicity.

Even with a minor shortcoming, Yortsos and Fokas’ model is physically
meaningful and is a great aid in evaluating the performance of the one-
dimensional, two-phase flow simulator. This specific model is employed in the
remainder of this chapter.

Discussion of Cases Solved

Physical Basis of Macroscopic Dispersion

The evolving oil saturation fronts display a range of behavior from highly
dispersed to not dispersed (resembling plug flow), depending on the physics of
the particular situation.
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Figufle 6. Dimensionless capillary pressure gradient curves for three viscosity ra-
tios.
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Figure 7. Allowable relative permeabilities resulting from specifying the func-
tional form of their ratio (Equation 54). The straight-line relative permeability
of one phase produces the curved line for the other phase.!!
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Figure 8. Fractional flow curves (for water) at three viscosity ratios. Note the
lack of inflection points, which are observed generally for porous media.!!
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Capillary pressure, here defined as the excess of pressure in the oil phase
over that in the water phase, acts through its spatial gradient, VP, A large
capillary pressure gradient at a given saturation implies that one phase is under
a greater driving force (i.e. mechanical potential gradient) than its rival. Thus,
that phase always moves with a greater velocity, if the effects of relative per-
meability and viscosity are neglected. This is the essence of macroscopic capil-
lary dispersion. For the Water/oil displacement process here, significant capil-
lary forces imply a greater mechanical potential gradient in the water phase,
driving it at a greater velocity than the oil. The saturation front is therefore
dispersed. In the limit of zero capillary pressure gradient, the driving forces in
each phase are nearly equal, resulting in plug flow: a sharp front. From a
mathematical point of view, when capillarity is negligible, the second-order
derivative in the associated PDE is insignificant; the equation becomes first-
order and hyperbolic, a classification whose solutions can have shocks, i.e.
discontinuities. '

The second factor which determines the front’s shape arises from the
viscosity difference between the fluids and acts through the fractional flow rela-
tion. Temporarily ignoring the second-order term in the partial differential
equation (yielding the Buckley-Leverett problem) leads to an expression for the
velocity of each saturation on the front: '

W(s) = —h(s) = — o (5) (55)

f(S) is the fractional flow of water as a function of oil saturation. In reality,
however, not all velocities are allowed. For example, if the lower saturations on
a shock front are moving at a higher velocity, a saturation function with triple
valued regions arises. This dilemma was unravelled in the 1950s by applying the
concept of shock formation and the method of characteristics.!?”** Hssentially,
the physical basis of the Buckley-Leverett equation breaks down for fronts with
discontinuities, before triple-valued solutions can appear. Analysis using the
method of characteristics shows that a shock front which has a tendency to
become triple-valued retains its discontinuity and moves with a velocity equal
to the slope of the secant on the fractional flow curve which connects the
shock’s bounding saturations. Fronts with shocks cannot occur in porous
media, for they imply a discontinuity in the saturation profile, a finite change of
saturation over zero distance. The steepest front practical is one which changes
saturation abruptly over a length scale of a few grains.

The velocity of each saturation value as a function of viscosity ratio is
shown in Figure 9. For viscosity ratios of unity and greater, the Buckley-
Leverett solution is a discontinuous front; otherwise, the profile would contain
triple-values. For viscosity ratios less than unity, however, higher saturation
values move faster (legally), effectively broadening the front. Saturation profiles
for systems of viscosity ratios less than unity then, are dispersed both by capil-
lary forces and by this fractional flow phenomenon.

Predicting Dispersion in the Simulated Cases

The one-dimensional, two-phase flow simulator must treat successfully a
variety of cases — including steep and diffuse fronts. As a test, an array of nine
cases was run: the possible combinations of three viscosity ratios and three
capillary numbers (as defined in Equation 52). These are given in Table 1 with
the case numbers. Viscous forces are greater in the first and third rows than in
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Figure 9. Velocities of different saturations (in the Buckley-Leverett problem)
for various viscosity ratios. The velocities for M>1 are not allowed, as triple-
valued solutions would arise.
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Table 1. Array of Nine Test Cases
Ca i

25.0 | 1.0 | 0.04

00 | #1 | #2 | #3

mof/wo 11| #4 | #5 | 70

05 | #7 | #8 | #9

t Ratio of viscous forces to capillary forces

the second row, where the fluids’ viscosities are nearly equal. Since the first and
third viscosity ratios are both a factor of two from unity, their magnitudes of
viscous forces are comparable. A convenient scheme for comparing the viscous
forces among the nine cases appears in Figure 10. Analyzing the trends in
capillary forces is not as straightforward, however, since the ratio of viscous to
capillary forces is varied, not the capillary forces directly. The capillary
pumber is constant down each column, ensuring that capillary forces decrease
and then increase as do the viscous forces. Furthermore, one expects the fronts
to be more broad from left to right across a given row as capillary forces
increase while viscous forces are held constant. This reasoning produces Figure
11, the gray-scale diagram for comparing the magnitudes of capillary forces
among the cases.

Predicting the shapes of the saturation fronts requires combining the effects
of the viscous and capillary forces. A key fact is that only viscosity ratios less
than unity (cases 7-9) exert a dispersive influence on the front, for only then
(with negligible capillary forces). do the higher oil saturations travel faster than
the lower omes (see Figure 9). The Buckley-Leverett (zero-capillary pressure)
solutions of cases 1-6 are thus identical. The viscous forces in cases 7-9 alone
need consideration in arriving at the total dispersion picture. This serves to
increase the dispersion in cases 7-9 over that in cases 1-3, respectively; Figure
12 presents the final expected front dispersion levels for all nine cases. Case 4 is
predicted to have the sharpest displacement front, whereas case 9 should have
the most dispersed front. :

Simulation Results

The saturation fronts for these nine cases do have the predicted dispersion
characteristics. Figures 13 through 21 present the adaptive Galerkin finite ele-
ment solution (only odd-numbered nodes are shown), the analytical solution of
Yortsos and Fokas, and the Buckley-Leverett solution at three time levels for
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Figure 11. Relative strengths of capillary forces across the array of cases.
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Figure 12. Relative strengths of dispersion across the array of cases.
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each of the nine cases in numerical order. Plotting the Buckley-Leverett solution
emphasizes the degree of capillary (physical) dispersion, whereas the amount of
numerical (unphysical) dispersion is evaluated by comparing the analytlcal solu-
tion to the Galerkin finite element results. The parameter values given in
Table 2 are used for all nine cases. Clearly, the Galerkin finite element tech-
nique performs well in all cases, with the exception of case 4.

Case 4 merits discussion and serves to introduce a detail which concerns
the time stepping. It is no coincidence that the steepest front suffers from
numerical stability problems. The physical situation at time t=0% is responsible
for this instability as follows. At the initial condition, S=1-S,,, throughout the
medium. After a finite time step, however, an abrupt change in saturation has
occurred near the injection face, especially if the displacement front is sharp.
Since Crank-Nicholson time stepping employs the saturatlon values from the
previous time level (both to evaluate F(u®) and to update u® itself), this severe
change sets off an 1nstab111ty which ripples through succeeding time levels. In
case 4, the initial instability is above the critical amplitude — it does not decay
with time.

In fact, all nine cases are run with one nitial implicit Euler time step, unless
otherwise noted Since Euler time stepplng uses the previous time level's front
only as a datum (to which F(u®™') is added to obtain u**!), it is less susceptible
to such instabilities. The tradeoff is numerical dispersion: there is a clear
difference between the analytical and Galerkin finite element solutions in the
cases of sharp fronts at time t=0.01, after the Euler time step.

Another possible fix to this stability problem is to begin with a saturation
front at time t=0 which will evolve smoothly, without severe changes. In fact
such a situation is more realistic: discontinuous fronts are simply unphysical —
even the basis of the working equations becomes invalid, as noted earlier. Unfor-
tunately, altering the initial conditions in any way strictly abandons the analyt-
ical solution.

This instability deserves further analysis, perhaps quantitative. While the
above qualitative discussion serves the current purpose,.a rigorous treatment is
more powerful and may be of use in similar problems. Furthermore, when the

Table 2. Parameter Values for All Nine Cases

Number of Elements 50
Time Step 0.010
Critical Average Node Movement, € 0.0005
Root of Estimated Error Summed, r 4
Irreducible Water Saturation, S, 0.0375

Irreducible Oil Saturation, S, 0.15
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two-dimensional simulation work begins, the difference between numerical insta-

bility and physical instability (viz., that which produces viscous fingers) must be
clear.

Mesh Evolution Results

The final topic of discussion in this section is the evolution of the finite ele-
ment meshes in the nine cases. Given the error equidistribution scheme used
(see above section), the nodes should be concentrated in regions of high solution
curvature, since pilecewise linear basis functions are used.

At one extreme, a sharp S-shaped front must have nodes clustered at the
two curves in the ““S’’ with the linear portions remaining sparsely populated.
Ideally, this node density profile persists as the front advances through the
medium, i.e. the dense regions move with the front. As proof of the algorithm’s
success, Figure 22 presents the evolution of the mesh for case 1, which has a
sharp front (see Figure 13). Each row of dots shows the positions of the nodes
on the convergent mesh at that time level. The two dense branches which
evolve mark the regions of greatest solution curvature, which are successfully
tracked by the algorithm. An interesting feature is the narrow sparse region
between the densest areas — this marks the short, linear, central portion of the
front. Also, there is a temporal oscillation in the position of the interior nodes
nearest the injection face; at these early time levels, the front is yet developing.
This minor instability is caused by the rapidly-changing curvature in that
region; again, the effects of the abrupt saturation change at the injection face
are felt. Fortunately, the oscillations are damped quickly, and all nodes assume
a smooth velocity. ‘

At the other extreme, a highly dispersed front, the mesh is expected to
become uniform with no regions of high density. In fact, that is what occurs for
case 9, which experiences the most dispersion (see Figure 21). The corresponding
mesh evolution profile appears in Figure 23, which has initially a high-density
region as the front enters the medium and later a uniform density when the
front is fully developed. There is no hint of the node oscillation mentioned
above, for the saturation at the face changes relatively slowly.

These evolution profiles suggest an improvement to the mesh adaptation
algorithm. Currently, the initial mesh for a new time level is the convergent
mesh from the previous time level. The continuation-adaptive scheme is then
applied. A method of reducing the number of mesh iterations required is to
predict the initial mesh at a new time level by extrapolating from the positions
of the convergent nodes at the previous two or three time levels. The steady
node motion displayed in Figures 22 and 23 suggests that this is feasible,
although there is a point of caution. Small oscillations in nodes’ positions upset
this scheme, as nodes must not cross over each other (they should remain
ordered). These concerns can likely be allayed through minor “‘bookkeeping”
work, which would not consume the gains made in execution time by not solving
JAu=—F as often. Evaluating this idea is a high priority, as a possibly analo-
gous method in two dimensions would be a significant time saver.

Effects of Varying the Numerical Solution’s Parameters

Brief discussions of the impact of changing six key parameters follow. The
six include number of elements, mesh convergence criterion, root of estimated



211

0
°‘—| . L] . v eees LR .
*. L] . o [EX XY . ees » o » L]
- L] L] L] . lno: . L]
] [ L] ¢ * o vens . LN ] D .
o'd [] . " o 0 asvee L] .e . . L] ]
é : '. l. l. .I.O::. ] -t..o. l. .. :
o * ¢ s vess . LI L] . »
64 * 8 @ sneee se 8 [] . .
‘..O’l.l' l: L] | . ) ' Case 1 :
00.! o‘: ) L] . ) Ca’ = 25.0 .
’1 «
° LI g L] . uw/“o — 2-0 .
Q  f— -I'O. . :
-]
) 1 U 1 L U 1 L 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 22. Evolution of the finite element mesh for case

S-shaped front.

Node Positions

1, which has a sharp,



212

0
d—..'.l.l‘..l,llll'llll..ll....lI.l....'ll. ® v ® 8 s 8 8 0o @
*. LN RN IR IO A R A N B B N B B N B I B B B I B I I D K B Y I TR T R B N T R S T D B )
°—1l...t.oo.n..olnlllol!o...ll!l!lo.lcll'll s o e » o 9 LI
"0 LA R R R R NN N RN A N AR I B A B A B A B I R I I I I I R I I I Y Y R Y R ) . []
°.-ll.ll...‘."..."ll'..'.I.l.IIl.l.l.!... « 9 9 8 2 " & L] L] L]
é Cevtteecessesneruiniatnnntetan st e e .
o esssesencsesITIVIOOIBOIERRN OSSP LI BB I BN B I AN B I Y I B B O I B N . . . .
d—.....ll....!l.'l.ll.l'Ul..l'l.lI‘l'.. s s 2 o v " @ (] [] (] L] L]
-y GOONONINNNGNNRNOUORRNOEONCORE O RO DO O E RO B P S T . . . . L] L]
d—q-l.not.ououl.l"'llooll.lll--.0. es s 00 LI ) . . . . L]
Krrrrermermmssseeeseesssssaanasaess s, 7 Case 9
sessscess o s e s 0 0 B @ & L] ] . . Ca — 0.04
\m.ln::.::::.l.::'ol : .O ) . ) /‘I'W/I‘I'O = 0.5
°. EERNSEEEeeteSe SRS 0 £ 8 8 B & @ . . [ L]
o
T 1 L) v T 1 | 1 1 B
0.0 10 20 30 40 60 60 70 8.0 9.0 10.0

Node Positions

Figure 23. Evolution of the finite element mesh for case 9, which has a highly-

dispersed front.



213

error summed, time step, number of initial Euler time steps, and finally, the
domain truncation point. Such a task could easily constitute an entire chapter,
but the goal is to provide succinet, qualitative discussions with some quantita-
tive information.

Number of Elements, N-1

The effect of changing the number of elements in the mesh is perhaps the
simplest to explain, at least qualitatively. Too few elements distributed across
the domain become too sparse when a front possesses any regions of curvature,
to which the nodes migrate. Since piecewise linear basis functions are used, poor
approximations of the solution result as curvature cannot be well represented in
all areas. After many time steps, error accumulates and the solution becomes
unacceptable. On the other hand, using too many elements unnecessarily con-
sumes computer time. Using more elements entails more work for all the
separate tasks, especially mesh adaptation and solving JAu=—f, the rank of
which equals the number of nodes, N.

As is very common in computational work (among other endeavors), a bal-
ance must be reached between the faster-but-poorer solution on a sparse mesh
and the slower-but-better solution on a dense mesh. Finally arriving at the
proper number of elements is done by trial and error, with some intuition ini-
tially. A variety of cases is solved with increasing numbers of elements until the
solutions no longer change with N. This is a basic numerical principle: the solu-
tion should be invariant to the parameters of the computational scheme. In the
nine cases presented here, fifty elements met this criterion. Fortunately, compu-

tational times remained reasonable: all cases required less than one minute of
CPU time on the CRAY-2.

Mesh Convergence Criterion, €

A similar balance must be found for the mesh convergence criterion, the
tolerable average absolute node motion from one mesh to the next at a given
time level. Setting € too large (e.g. €=0.05) ceases mesh adaptation prematurely;
nodes fail to migrate to regions of high curvature and, therefore, do not track
the front well. A qualitative picture of an actual case appears in Figure 24.
Choosing € too small causes problems as well. Even worse than needlessly
adapting the mesh (beyond the point of solution invariance with respect to €) is
the possibility that the mesh may not even converge with an over-strict toler-
ance, for example, e=107%. At this fine level, oscillations in the solutions pro-
duced by the continuation-adaptive scheme prevent convergence.

The value of € used was determined by decreasing € until the solution of
representative cases became invariant to further change. The value used for all
nine cases is €=5X10"%, above the value at which mesh convergence becomes
stubborn and below values which influence the solution when changed.

Root of Element Error, r

As explained above, node motion is damped to aid the convergence of the
mesh itself and of the Newton iterations on the next mesh. A root of each
element’s error, rather than the error itself, is summed to compute the equidis-
tributed error value (Equation 32). This effectively damps the motion of the
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Figure 24. Qualitative diagram showing rarefaction of the mesh in the upper
region of curvature, caused by a large value of €. Based on an actual simulation.
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nodes. If r is too small, either the convergence of the mesh itself or of the New-
ton iterations fails and the algorithm breaks down. If r is too large, the mesh is
overdamped, and many mesh adaptations are necessary for convergence, wast-
ing computational effort.

The proper value of r is obtained as those of N and €. The root is set large
enough for the algorithm to succeed and then increased until the solutions are
invariant. Quantitative details for a typical case appear in Figure 25, which
clearly shows the types of behavior. The critical value of r is evidently depen-
dent on €: a smaller value of € necessitates a larger value of r. Finally, if a mesh
is evolving slowly, € must be sufficiently small so that the adaptation is not
stopped prematurely. The parameters € and r must be considered in combina-
tion. '

Time Step, At

Choosing the proper time step is a concern common to every discretized
transient system. In general, very small time steps produce the most accurate
solutions for a cost, while large steps risk increased time discretization error and
numerical instability. A proper time step is found using the solution invariance
principle applied to the above parameters; t=0.01 is the value used here
throughout with success. More work is required in this area to draw quantita-
tive conclusions; if possible, a theoretical analysis could be attempted.

Number of Initial Euler Time Steps

As discussed in above, one initial implicit Euler time step is used before the
Crank-Nicholson steps in all cases. Its purpose is to insulate the developing
front from the unphysical shock associated with the entrance of a steep front
into the medium. A single Euler step is sufficient for all nine cases except case 4,
which has the steepest front. In this case, instability persists in the Crank-
Nicholson steps, even after five or ten initial implicit Euler steps, suggesting
that the cause may be the change in time stepping methods, not the steepness
of the front only. As shown earlier, since the Euler time stepping error is O(At),
its use should be minified to avoid unnecessary numerical dispersion.

Domain Truncation Point, L

The boundary of the finite element solution domain must be in the region
where the asymptotic solution of the controlling partial differential equation is
valid. The details, including a general starting guess for L and the Robin boun-
dary condition obtained from the asymptotic analysis, are discussed above.
Basically, L is increased until the solution is invariant. Minor caution must be
taken in not making L too large, for then the mesh could become too sparse.

CRAY-2 Considerations

All results presented were obtained on the CRAY-2/1 supercomputer, a
machine at the forefront of computing technology. The two special features of
the CRAY-2 are vectorization and multitasking of code, which, respectively,
enable speedup as measured in CPU time (and, therefore, real time) and in real
time only. This section provides general definitions of these two features, their
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relevance to the finite element algorithm, and specific execution times of the
major tasks in the algorithm. :

Vectorization

In general, vectorization is the performance of floating point operations
(+-* /) on an entire string of scalar values (i.e. a vector) at once, versus on
each scalar value separately. For example, consider the following loop.

DOI=1,N
A(T) = A(T) + K * B()
CONTINUE

A scalar processor sequentially references each value of the vector B, multiply-
ing it by K and adding it to the appropriate value in vector A. On the other
hand, a vector processor references all values of B at once, multiplying them all
by K and adding them to the vector A. This simultaneous execution of the
floating point operations can easily reduce execution time by an order of magni-
tude, depending on the vectors’ length. In reality, the CRAY-2 processors
operate on 64-word sections of the vectors; if a vector is larger than this, it is
divided into segments of that length.

Unfortunately, not all loops are vectorizable. First, only innermost DO
loops can be vectorized. Second, even some of these have characteristics which
prevent vectorization. A simple example is the following loop, which, if vector-
ized, would destroy the values of A which are intended to be assigned to C:

DOI=1,N
A(T) = B(I)
C(I) = A(I+1)

CONTINUE

Also, loops which contain recurrences such as
DOI=1,N
A(I) =B(I) — C * A(I-1)
CONTINUE

must be scalar processed. In general, by examining a loop with the process of
vectorization in mind, one can tell if a loop will vectorize or not.

At compilation, a source code can be requested which provides specific vec-
torization data, listing the vectorization status of each inner loop. This
identifies where potential modifications could be of great help in speeding execu-
tion.

Multitasking

Multitasking (also known as parallel procéssing) is the simultaneous execu-
tion of two or more sections of code (i.e. tasks) by separate processors. This
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feature can reduce the wall-clock time of execution only, not the CPU time,
since a given code requires a fixed amount of computational work regardless of
the number of processors employed. In fact, multitasking increases total CPU
time, owing to the overhead associated with coordinating the processors.

Unfortunately, parallel processing does not enjoy the relatively easy imple-
mentation of vectorization. There are several drawbacks.

(1) Parallel processing is inherently more complex than vectorization, since seg-
ments of code which can be run independently must be identified. Many
algorithms do not make this convenient or even possible.

(2) There are lines in any code at which all processors must have completed
their respective tasks before execution can continue. If the simultaneously-
executing tasks require different amounts of computational effort, proces-
sors which finish first must wait idle, decreasing efficiency.

(3)  Amdahl’s Law, which specifies the real-time speedup associated with multi-
tasking (the decrease in wall-clock time relative to single-processor execu-
tion), places a strict theoretical limit on the possible real-time decrease.
For example, on the four-processor CRAY-2, the best possible speedup for a
code which has 75% of its execution time parallel processed is only 2.28
(CRAY-2 Multitasking Programmer’s Manual). Amdahl's Law assumes no
multitasking overhead or delays, which are present in any parallel-
processed code. '

(4) Of great importance is attempting parallel processing in the current
timeshared environment. As a requirement for the course CSci5399, a mul-
titasked conjugate gradient code (for solving Ax=b with symmetric, posi-
tive definite A) was composed and executed on the CRAY-2/4. At a rare
time when only five or ten users were logged in, a 10% speedup was
observed. This is modest, but a speedup was possible nonetheless. Most
often, the number of users demanding memory and CPU time encumbers
severely the performance of multitasked code, resulting in a great slowdown
versus a speedup. Typically, with over 35 users logged in, the multitasked
code runs six or seven times slower than the single-processor code.

This experience and the other limitations listed above discourage multi-
tasking of the finite element code used in this work. At any rate, multitasking
always consumes more CPU time (investigators’ resources) than single-processor

code, and a real time speedup is not significant for a code which takes one
minute to execute.

Timing of Major Tasks in the Algorithm

The CRAY-2 provides routines for measuring CPU time spent in the vari-
ous tasks of an algorithm. This enables identification of key tasks which should
be modified, if possible, to improve the code’s overall efficiency. Timing results
for the nine cases are similar; thus, Table 3 presents CPU time data for case 1
only. (Figure 3 presents the algorithm.)

A surprise is the amount of time required to compute the analytical solu-
tion at the 51 nodes for a given time step. Yortsos and Fokas' solution and
algorithm for finding S(x,,t,) requires one root-finding task at each value of x,
and t,. While the time per call is high, this solution is required only at the time
steps plotted for comparison to the finite element results. An algorithm
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Table 3. CPU Time Spent in the Major Tasks, Case 1
Task Total (s) | Total (%) | Times Executed | Time/Execution(ms)

All executable statments 59.93
Inverting A (tridiagonal) 1.33 2.22 251 5.30
Evaluating J-f 0.52 0.87 805 0.65
Solving JAu=~f (IMSL) 55.67 92.89 805 69.2
Adapting mesh 0.51 0.85 251 2.0
Computing analytical soln. 1.37 2.28 3 457.
Remainder 0.53 0.89

suggested by H. T. Davis!® eliminates the root finding and should greatly reduce
the execution time for this task.

As expected, most computational effort is required to perform the Newton
iterations. This task has the second-highest time per execution and is the task
performed the most. A 51X51 system of linear algebraic equations is solved each
Newton iteration; these iterations are performed on each mesh on each time
step. Thus reducing this task’s execution time can be attacked from two fronts:

(1) Reduce the time per call by using a faster Ax=b solver, or perhaps re-
express the formulas so that a full Ax=Db system does not result, i.e. try to
preserve the tridiagonal matrix structure associated with piecewise linear
basis functions. Late Jacobian updating would also reduce the time per
Ax=Db solution since J needs to be inverted only once per Jacobian update.
Thus, several Newton iterations at constant J are less expensive than
iterations in which J is updated for each. If late updating results in more
iterations, however, the decrease in execution time is reduced.

(2) Reduce the number of Newton iterations directly or the number of mesh
adaptations (more likely, perhaps by using the nodal position extrapolation
scheme proposed above. The Newton iterations will then need to be per-
formed fewer times. Also, this end can be achieved by using larger time
steps — an advantage of using an efficient time integration software pack-
age.

Conclusions

The adaptive Galerkin finite element algorithm based on Benner’s work
successfully simulates one-dimensional, two-phase flow in porous media in eight
of the nine cases studied. Comparing the finite element results to the analytical
solution of Yortsos and Fokas provides strong evidence to support this claim.
The lone failure is for a nearly discontinuous front, which imparts instabilities.
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Possible fixes include using a sharp front as the initial condition, versus a
medium saturated with oil which is immediately penetrated by a sharp front.

For this work, vectorization is the greatest advantage of the CRAY-2, not
multitasking. The gains from vectorization are independent of the number of
users working on the CRAY-2, whereas experience with a project in CSci5399
indicates that multitasking produces a slowdown (versus a speedup) in a
timeshared environment, even for a code which is highly multitasked. The
simulator’s execution time is between 50 and 60 seconds for all nine cases, not
an excessive amount. Improvement in overall efficiency is best addressed by
modifying the solution of JAu=~f for each Newton iteration or by reducing the
number of iterations per time step. Decreasing the number of steps required to
reach the final time level would help as well; using adaptively-sized time steps is
suggested.

A goal in simulating one-dimensional displacement before tackling the
two-dimensional, or three-dimensional, problem is to obtain insight from the
simpler case. This experience leads to these suggestions for future work:

e The continuation-adaptive strategy performs well, and Benner finds it more
efficient than the implicit-adaptive strategy, in which the nodes’ positions and
the saturation values are computed simultaneously.

e Implicit Euler and Crank-Nicholson time integration routines are effective ini-
tial tools; however, once these are applied successfully, a more efficient software
package or the scheme used by Benner and Heiba based on that of Gresho et al.
is preferred. Performance of these routines can be evaluated by compamson with
the simpler Euler or Crank-Nicholson results.

e Damping the movement of nodes from one mesh iteration to the next prevents
mesh and Newton iteration convergence problems, although higher-order roots
(4, not 2) are required here.

® Mesh adaptation in two or three dimensions is 1nherently more complex than
in one dimension. Dlgestlon of the relevant literature is mandatory, as is taking
advantage of experience at Minnesota (Christodoulou, Pranckh). Simpler
schemes should be tried initially, building a foundation for research into more
complex methods.

e The asymptotic analysis used to determine a proper domain boundary and a
Robin boundary condition there is a new means of addressing the domain trun-
cation issue. A two-dimensional analogy should be derived.

e Computer programs must be composed which take full advantage of the
CRAY-2's vectorization capabilities. On the other hand, the prospect of multi-
tasking future codes is bleak because real time speedup is not crucial and not
even possible in the current timeshared environment. Fortunately, the CRAY-2
has convenient timing devices for pinpointing the most inefficient portions of a
code.

References
1. Fokas, A. S., and Yortsos, Y. C., SIAM J. Appl. Math. 42, 318 (1982).



el

ot

10.

11.
12.
13.
14.

221

Yuster, S. T., Proc. 3™ World Petrol. Congr. 2, 436 (1951).

Lefebvre du Prey, E. J., Soc. Pet. Eng. J. (February 1973), 39.

Davis, H. T., Advanced Mathematics for Chemical Engineers Course Notes,
ChEn 8202, University of Minnesota, Minneapolis, 1986.

Benner, R. E., Jr., Equilibria, Stability, and Bifurcations in the Physics of
Fluid Interfaces, Ph.D. Thesis, University of Minnesota, Minneapolis, 1983.
Heiba, A., Porous Media: Fluid Distributions and Transport with Applica-
tions to Petroleum Recovery, Ph.D. Thesis, University of Minnesota, Min-
neapolis, 1985.

Jerauld, G. R., H. T. Davis, and Scriven, L. E., SPE 13164, presented at
the 59" Annual Technical Conference and Exhibition, Houston, September
16-19, 1984,

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.,
Numerical Recipes, Cambridge University Press, New York, 1986.

Burden, R. L., Faires, J. D., and Reynolds, A. C., Numerical Analysis, 2
ed., PWS Publishers, Boston, 1981.

Gresho, P. M., Lee, R. L., and Sani, R. C., in Recent Advances in Numeri-
cal Methods in Fluids, Vol. 1, ed. by C. Taylor and K. Morgan, Pineridge
Press, Swansea, U.K., 1979.

Yortsos, Y. C., and Fokas, A. S., Soc. Pet. Eng. J. (February 1983), 115.
Welge, H. J., Trans. AIME 195, 91 (1952). ‘

Cardwell, W. T., Jr., Trans. AIME 216, 271 (1959).

Sheldon, J. W., and Cardwell, W. T., Jr., Trans. AIME 216, 290 (1959).
Davis, H. T., Personal Communication, 1987. ,



222
ABSTRACTS OF PUBLICATIONS

Studies in the Microstructure of Microemulsions, Ph.D. Thesis,
University of Minnesota, June 1986. By D. M. Anderson.

A microemulsion is a thermodynamically stable liquid phase in which
oil and water are cosolubilized with a surfactant. Microemulsions show
great promise in enhanced oil recovery processes, and in polymerization
reactions. Recent experimental evidence indicates that some microemul-
sions are bicontinuous, i.e., both water continuous and oil continuous. The
geometric requirements governing the surfactant-rich interfacial film that
divides oleic from aqueous microdomains are elucidated in this thesis, and
incorporated into new microstructural models that are then applied to
scattering experiments. Particular attention is paid to the relation
between microemulsions, and cubic phase and hexagonal phase liquid cry-
stals. ,

While there are eighteen triply periodic minimal surfaces that report-
edly are free of self intersections, to date there has been no example of a
triply periodic surface of constant, nonzero mean curvature that is embed-
ded in R%. In this thesis five families of such surfaces are computed and
displayed with computer graphics. Three of the families evolve continu-
ously from close-packed sphere configurations, through bicontinuous struc-
tures, to sphere packs with mean curvature of the opposite sign as the ori-
ginal sphere pack. These families demonstrate that the transition from
oil-in-water dispersions to water-in-oil dispersions can proceed through
bicontinuous structures without an abrupt inversion, even under the con-
straint of a constant-mean-curvature surfactant film.

A penetrable cylinders structure is proposed as a model of microemul-
sion microstructure, and small-angle X-ray scattering (SAXS) data on
microemulsions made from three pure components are shown to be con-
sistent with the model but not with previously proposed models. The
penetrable cylinders structure is naturally related to hexagonal phase
structure which consists of ordered arrays of cylinders, and, it is shown, to
one of the families of periodic models presented. In the pure-component
system, and in another system with a commercial surfactant, SAXS and
conoscopy data indicate a close relationship between the microemulsions
and liquid crystals studied. The structures of bicontinuous microemulsions,
hexagonal phase, and bicontinuous cubic phase liquid crystals are all shown
to fall under a single framework.

Bicontinuous Microemulsions and the Mean Curvature of the Oil-
Water Interface, J. Phys. Chem. (to be submitted). By D. M. Ander-
son, H. T. Davis, D. F. Evans, and L. E. Scriven.

Recent experimental evidence indicates that some microemulsions are
bicontinuous, i.e., both water continuous and oil continuous. Geometric
requirements governing the surfactant-rich interfacial film that separates
the water and oil labyrinths have not been carefully addressed. We eluci-
date these requirements and show how they are exhibited in proposed
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microstructural models. Particular attention is paid to the relation
between microstructural models for microemulsions and for cubic phase
and hexagonal phase liquid crystals, and it is shown that the area-averaged
mean curvature of the interface provides a structural characterization. We
introduce a model bicontinuous structure constructed from randomly
placed fully penetrable cylinders; the structure is thus related to that of
hexagonal phase liquid crystals. The results of scattering calculations for
penetrable cylinders are applied to small-angle X-ray scattering (SAXS)
data from microemulsions containing the surfactant didodecyldimethyl
ammonium bromide, water, and decane at 23°C. As water content is
increased at equal weight fractions surfactant and decane, the estimated
penetrable cylinder diameter increases as does the average area per surfac-
tant head group, indicating head group hydration and lower curvature
toward water. At the same ratio of surfactant to decane and 56.3 wt.%
water, SAXS indicates a hexagonal phase. In the system Petronate TRS
10-80/ t-amyl alcohol / dodecane / NaCl brine, SAXS and conoscopy are
used to examine a birefringent phase that is in equilibrium with a
microemulsion over some composition ranges. A hexagonal phase structure
is proposed for the birefringent phase, which has been previously shown to
share shear-thinning behavior with microemulsions in the same salinity
scan.

Periodic Surfaces of Prescribed Mean Curvature, Phil. Mag. (to be
submitted). D. M. Anderson, H. T. Davis, J. C. C. Nitsche, and L. E.
Scriven.

While there are eighteen triply periodic minimal surfaces that report-
edly are free of self intersections, to date there is no known example of a
triply periodic surface of constant, nonzero mean curvature that is embed-
ded in R® . We compute and display five families of such surfaces, where
every surface in a given family has the same space group, the same Euler
characteristic per lattice-fundamental region, and the same dual pair of tri-
ply periodic graphs that define the connectivity of the two labyrinthine
subvolumes created by the infinitely connected surface. Each family is
comprosed of two branches, corresponding to the two possible signs of the
mean curvature, and a minimal surface. The branches have been tracked
in mean curvature, and the surface areas and volume fractions recorded,
with the relation dA = 2H dV carefully checked to hold. The three fami-
~ lies that contain the minimal surfaces P and A of Schwarz and the I. WP
minimal surface of Schoen terminate at configurations that are close-
packed spheres. However, one branch of the family that includes the F-RD
minimal surface of Schoen, and both branches of the family that includes
the Neovius surface C(P), contain self-intersecting solutions and terminate
at self-intersecting spheres. On approach to the sphere limit, whether self
intersecting or close packed, the gradual disappearance of small is in close
analogy with the rotationally symmetric unduloids of Delauney. We give
what we suspect are analytical values for the areas of the I-WP and IF-RD
minimal surfaces, and a possible limit on the magnitude of the mean curva-
ture in such families is proposed and discussed. We also report that the I-
WP and F-RD minimal surfaces each divide R® into two subspaces of
unequal volume fractions.
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The numerical method is based on a new approach to the formulation
of the Galerkin, or weak form of the problem of prescribed — not neces-
sarily constant — mean curvature. The Surface Divergence Theorem is
applied directly to a vector-valued function that is the product of a scalar
weighting function and a vector field chosen to enforce the boundary condi-
tions. This formulation applied in the context of the finite element method
provides a robust algorithm for the computation of a surface with: 1) mean
curvature a prescribed function of position, and 2) contact angle against an
arbitrary bounding body a presecribed function of position or of arc length.
A parametrization scheme for triply periodic surfaces is described that calls
only for knowledge of the two ’skeletal’ graphs; this is demonstrated by the
computation of the triply periodic minimal surface S’-S" hypothesized by
Schoen, who described only the skeletal graphs associated with the surface.
The parametrisation allows for easy calculation of the scattering function
for various density profiles based on the solutions, as well as of areas and
volume fractions. For the three minimal surfaces — P, D, and C(P) —
whose areas and volume fractions are known analytically, the numerical
results are in agreement with these values. Furthermore, we review the
history of such surfaces, and clear up some inconsistencies in the literature
over the D minimal surface.

A Controlled Environment System for Vitrification of Liquid TEM
Samples, Proceedings of the 44th Annual EMSA Meeting, New
Mexico, Aug. 11-16, 1986. By J. R. Bellare.

Vitrification of aqueous samples has become an important technique for
visualization of colloidal dispersions and aggregates by electron microscopy
as it prevents phase separation and rearrangement. Thin films of aqueous
samples, made by blotting a drop placed on a grid, can be vitrified with
ultrafast cooling (> 100,000 K/s) by rapid plunging into melting ethane.
However, thinning the sample in uncontrolled laboratory environment
causes evaporation, leading to ionic strength and pH changes which can
drastically alter the microstructure, especially if the system is near a phase
boundary. Such artifacts are prevented by the controlled environment sys-
tem described here. A poly(methyl methacrylate) chamber encloses a verti-
cal shaft that carries a tweezer holding a grid. Two rubber-septa covered
ports in the chamber permit introduction of a drop of sample on the grid,
and filter media to blot the drop. Wicked reservoirs in the chamber are
filled with volatile components of the sample to prevent specimen evapora-
tion during thinning. A shutter mounted in the chamber base is synchron-
ized with a trigger mechanism that drops the specimen carrying shaft
through the shutter opening into a cup of liquid ethane, thus vitrifying the
specimen. The system was tested with a 2.0% solution of octyldodecyldi-
methyl ammonium bromide (which is near a phase boundary); no artifacts
were seen when the sample was prepared with our system, while artifacts
were present when samples were made without evaporation control. This
success permits electron microscopy of systems like liquid crystals and
micelles which have several concentration phase-boundaries.

An Improved Controlled-Environment Vitrification System
(CEVS) For Cryofixation of Hydrated TEM Samples, Proceedings
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of ICEM XIth International Congress on Electron Microscopy,

- Kyoto, Japan, Aug. 31-Sept. 7, 1986. By J. R. Bellare, H. T. Davis, L.
E. Scriven, and Y. Talmon.

Vitrified specimens for TEM prepared in uncontrolled laboratory atmo-
sphere are subject to evaporation, which concentrates solutions and
suspensions, and to temperature changes. Moreover, it is difficult to exam-
ine microstructure of systems when conditions of interest are at tempera-
tures other than ambient, e.g. liquid crystals and biological systems at in
vivo temperature. We report here a temperature and saturation controlled
environment vitrification system (CEVS) for vitrified-hydrated sample
preparation. The system consists of a vertical shaft with a TEM grid
mounted on tweezers, surrounded by a polycarbonate environmental
chamber which has reservoirs with wicks to saturate the air, a capacitance
sensor to measure humidity, a halogen-quartz heater, and a fan providing
forced convection. Thermistors mounted near the grid are used to measure
and control the temperature from ambient to 363K, stable to better than
0.1K. Split rubber septa permit introduction of a specimen drop, and filter
paper to thin the drop. An opening on the bottom face of the chamber is
closed with a camera lens shutter, synchronized to the shaft, so that the
shutter opens as the specimen is dropped into melting ethane. Thus the
chamber is kept gas-tight and insulated until the specimen is plunged,
maintaining environmental control and preventing specimen pre-cooling. A
0.5% sonicated aqueous dispersion of dioctadecyldimethylammonium
bromide, which has a phase transition at about 303K, was used to test the
system. At 293K the system shows large surfactant sheets and smaller
lens-shaped structures which are absent in samples prepared at 323K. The
success of CEVS in preserving conditions very similar to the native state
opens new avenues in biological and colloidal research. '

Microstructural Studies of Surfactant Aqueous Dispersions by a
Vitrification Technique, Proceedings of ICEM XIth International
Congress on Electron Microscopy, Kyoto, Japan, Aug. 31-Sept. 7,
1986. By J. R. Bellare, H. T. Davis, L. E. Scriven and Y. Talmon.

When dispersed in water, surfactants form a variety of aggregates whose
structure depends on the surfactant, its concentration, temperature and
the presence of hydrocarbons, alcohols or other surfactants. These aggre-
gates, e.g., micelles, vesicles, liposomes and microemulsions govern the
behavior, properties, and applications of many systems encountered in biol-
ogy, medicine, chemistry and engineering. Only transmission electron
microscopy can provide direct high resolution images that may determine
unequivocally the microstructure of these systems. We report results of our
work on the liquid crystalline aqueous dispersion of sodium 4-(1-
heptylnonyl)benzene sulfonate (SHBS), and the micellar aqueous dispersion
of cetyltrimethylammonium-3,5 dichlorobenzoate (CTA-3,5 DCB). The Con-
trolled Environment Vitrification System (CEVS) was used to prepare thin
film specimens on holey carbon film-covered grids. Micrographs of 1%
aqueous SHBS dispersions water show a variety of structures that had not
been seen or postulated before in surfactant dispersions, especially tubules
made of surfactant bilayers, and vesicles and tubules encapsulated in
bigger unilamellar liposomes. These tubules did not disappear even when
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the liquid specimens were allowed to relax in the water vapor-saturated
atmosphere of the specimen preparation chamber for 30 minutes prior to
freezing. Micrographs of a 0.1% solution of CTA-3,5 DCB in water show a
network of very long cylindrical micelles about 4 nm in diameter. This
structure explains the viscoelastic properties (high viscosity at low shear
rates, shear thinning) of this dilute solution. This is the first time that such
cylindrical micelles have been directly visualized in their native, thermally
fixed state. When this solution is cooled from 293K to 278K it becomes
turbid. Vitrified specimens of this cooled solution show the formation of
vesicles. These results, in addition to providing new data on the micros-
tructure of aqueous surfactant dispersions, demonstrate the potential of the
technique in colloid science research.

An Adaptive Finite Element Method for Steady and Transient
Problems, SIAM (accepted). By R. E. Benner, Jr., H. T. Davis, and L.
E. Scriven.

Distributing integral error uniformly over variable subdomains, or finite
elements, is an attractive criterion by which to subdivide a domain for the
Galerkin /finite element method when localized steep gradients and high
curvatures are to be resolved. Examples are fluid interfaces, shock fronts
and other internal layers, as well as fluid mechanical and other boundary
layers, e.g. thin-film states at solid walls. The uniform distribution ecri-
terion is developed here into an adaptive technique for one-dimensional
problems. Nodal positions can be updated simultaneously with nodal
values during Newton iteration, but it is usually better to adopt nearly
optimal nodal positions during Newton iteration upon nodal values. Three
illustrative problems are solved: steady convection with diffusion; gradient
theory of fluid wetting on a solid surface; and Buckley-Leverett theory of
two-phase Darcy flow in porous media. The new adaptive technique resists
entanglement of the nodes of the nodal mesh without requiring the special
restrictions upon which the earlier moving finite element method relies.

Spin-Echo Pulsed-Gradient INMR Studies of Self-Diffusion in
Hydrocarbon-Brine-Alcohol Solutions, J. Colloid and Interface Sci.
(submitted). By J. F. Bodet, H. T. Davis, L. E. Scriven and W. G. Miller.

Pulsed-field gradient NMR was used to examine translational self
diffusion of the components of solutions of monoethylene glycol n-butyl
ether, brine (NaCl 0.2M), and decane and diethylene glycol n-hexyl ether,
brine (NaCl 0.2M), and dodecane. Recent studies of those mixtures reveal
association behavior and the presence of fluid microstructures similar to
those in micellar solutions and microemulsions. However, our results distin-
guish these mixtures from microemulsion. The components of the mixtures
studied here diffuse molecularly, indicating a very short life time or small
population of any microstructures present. Viscosities are reported for all
of the mixtures.

Molecular Theory of the Ionic Double-Layer at a Charged Wall, J.
Chem. Phys. 86, 2309 (1987). By E. J. Boyle, L. E. Scriven, and H. T.
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Davis.

The generalized van der Waals theory for ion density distribution is
used with Poisson’s equation to solve the electrical double-layer problem for
1:1, 2:1, and 2:2 restricted primitive model electrolytes in contact with a
diffusively charged, hard, planar surface. Electrical potential and ion den-
sity profiles are compared to Monte Carlo results and are shown to be more
accurate at lower electrolyte concentration and surface charge density than
at higher. In addition, values for the diffuse layer potential drop are shown
to be less exact than those predicted by the hypernetted chain equation,
modified Gouy-Chapman theory and modified Poisson-Boltzmann equation,
but could be brought closer to Monte Carlo results by an appropriate
choice of excluded volume parameter. Surface tension, ion adsorption and
differential capacitance are also reported.

Completeness Theorem for a Product of Self-Adjoint Matrices
Chem. Eng. Commun. 41, 267 (1986). By H. Ted Davis

It is proven that the matrices AB and BA formed from the product a
positive definite self-adjoint matrix A and a self-adjoint matrix B has real
eigenvalues and a complete set of eigenvectors. If B is positive (negative)
semidefinite the eigenvalues are greater (less) than or equal to zero. These
properties have been useful in the analysis of multicomponent diffusion and
distillation processes.

On the Yvon-Born-Green Approach to the Density Distribution of
Inhomogeneous Fluid, J. Chem. Phys., 85, 6806 (1986). By H. T.
Davis.

In applying for Yvon-Born-Green (YBG) approach to the theory of
inhomogeneous fluids, Fischer has introduced the assumption that the pair
correlation function of hard spheres in contact can be approximated by the
pair correlation function of homogeneous fluid at a locally averaged density
n. The purpose of this noise is to demonstrate that Fischer’s approxima-
tion leads to the exact equation for the density distribution n(x;) of one-
dimensional hard-rods in an external field. This result furnishes support
for the accuracy of Fischer’s approximation and perhaps helps explain the
success Fischer and coworkers have had on applying the YBG equation to
adsorption in porous media.

Some Recent Advances in Colloid and Interface Science: The
Dynamics of Wetting and Fluids Confined between Solid Surfaces,"
Revista Mexicana de Fisics (Suplemento) 32 No. S1, S49-S99
(1986). By H. Ted Davis

These lecture notes consist of two independent parts: i) Fluids
Confined Between Solid Surfaces and ii) The Dynamics of Wetting. In part
i) we examine molecular dynamical simulations of the structure, pressure,
tension and diffusivity of a simple fluid confined between flat, structureless
solid walls. We show that the generalized van der Waals theory of
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Nordholm and coworkers accounts for the fluid structure and explains the
observed surface forces. The diffusivity results have implications for the
apparent viscosity of the fluid layers confined between smooth walls. In
section ii) we present some recent developements of the theory of spreading
flows and its use in explaining the behavior of water droplets placed on
glass slides. The drops and thin films are considered thick enough to jus-
tify description of the transport across a solvent substrate as convective
flow.

Porous Media: Fluid Distributions and Transport with Applica-
tions to Petroleum Recovery, Ph.D. Thesis, University of Min-
nesota, Dec. 1985.

By A. A. Heiba.

Accurately modeling recovery processes mathematically and simulating
their performance numerically requires (1) a consistent theory of capillary
pressures, relative permeabilities, and dispersivities that characterize the
flow and distribution of fluid phases, and (2) a flexible discretization of the
governing equations that resolves the moving steep fronts that often
develop. Recent advances in both are combined and applied to two-phase
and three-phase displacements as in cores and reservoir streamtubes.
Cases exemplifying one-dimensional displacement in various water drives
and gas drives are examined. Such simulations can be used to design and

interpret laboratory measurement of flow properties and test of process
performance.

Mechanism Based Simulation of Oil Recovery Processes, SPE
Reprint No. 15593, 61st Annual Technical Conference and Exhibi-
tion, New Orleans, LA, Oct. 5-8, 1986. By A. A. Heiba, H. T. Davis,
and L. E. Scriven. - :

Accurately modeling recovery processes mathematically and simulating
their performance numerically requires (1) a consistent theory of capillary
pressures, relative permeabilities, and dispersivities that characterize the
flow and distribution of fluid phases, and (2) a flexible discretization of the
governing equations that resolves the moving steep fronts that often
develop. Recent advances in both are combined and applied to two-phase
and three-phase displacements as in cores and reservoir streamtubes.
Cases exemplifying one-dimensional displacement in various water drives
and gas drives are examined. Such simulations can be used to design and
interpret laboratory measurement of flow properties and tests of process
performance.

Stability and Sensitivity of Correlation Functions in a Single-
Component Fluid, in Supercomputer Applications, R. W. Numrich ed.,
p. 117 (1985). By J. Kerins, L. E. Scriven, and H. T. Davis.

By computing the pair correlation function g(r;n,T) and the direct
correlation function c¢(r;n,T) at a multitude of (n,T) points, we have
mapped out the three solution spaces associated with the hypernetted-
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chain, Percus-Yevick and Born-Green-Yvon-Kirkwood approximations for a
single-component Lennard-Jones fluid. For each of the HNC, PY and
BGYK approximations, we find a locus of turning-point singularities in the
(n,T) plane. On each locus there is a critical temperature which we iden-
tify as the liquid-vapor critical temperature of the LJ fluid. To further
characterize these solution spaces, we have investigated the parametric
sensitivity of g(r) to c(r’?. These calculations fully utilized supercomputer
resources of large central memory and of vectorization for matrix construc-
tion and for full-matrix Gauss elimination.

Correlation Functions in Subcritical Fluid, Adv. Chem. Phys. 65,
215 (1986). By J. Kerins, L. E. Scriven, and H. T. Davis.

The pair correlation function g(r) and the direct correlation function
¢(r) of a homogeneous, Lennard-Jones fluid at density n and temperature T
are calculated by solving the Ornstein-Zernike equation under the Percus-
Yevick, hypernetted-chain and Kirkwood superposition closure approxima-
tions. Although some solutions are reported for supercritical temperatures,
our main results concern the nature and structure of the solution space for
g(rn,T) and e(r;n,T) as the density parameter n changes at a suberitical
temperature T. For all three closure approximations there is a characteris-
tic or critical temperature T, such that for T < T, turning points in the
density are found in the solution space. Since a finite-element, Newton-
Raphson method is used for the numerical solution of the correlation-
function equations, we can easily track the solution, and its parametric
sensitivity, around such turning points. These density turning points imply
‘singularities in the thermodynamic bulk modulus B(n,T) as a function of n;
in some cases these singularities occur outside the spinodal curve, i.e. where
B(n,T) > 0. We conclude that turning-point singularities are likely to be
generic features in the correlation-function solution space at subecritical
temperatures, and propose that such singularities are the signature of an
underlying clustering of particles. Finally we discuss the implications of
our results for theories of inhomogeneous fluid in which uniform reference
states are assumed, even if the uniform state at density n and temperature
T would be thermodynamically unstable. oo

Microstructure in n-Alkane-Water-Electrolyte Mixtures with
Small Ethoxylated Alcohol Amphiphiles, J. Colloid and Interface
Science, (accepted). By P. K. Kilpatrick, H. T. Davis, L. E. Secriven,
and W. G. Miller. '

The ability of an amphiphilic molecule to form topologically-ordered,
surfactant-like aggregates is probed by studying the ethoxylated alcohols
ethylene glycol monobutyl ether (C4E;) and diethylene glycol monohexyl
ether (CgEy). Density, refractive index, and nmr measurements indicated
C,E,-water-(NaCl salt) solutions are ideal dilute solutions with no solute
association up to a C,E; mole fraction of about 0.018 (ca. 11 wt. %).
Above this concentration, the amphiphile forms aggregates which appear to
be at least weakly cooperative. At high C,E; concentrations, %Na nmr
and quasi-elastic light scattering (QLS) measurements indicated the
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existence of small brine-rich domains (< 10 angstroms) which, though prob-
ably of short life, can interact and exchange with the amphiphile. Addition
of n-decane to C,E;-water-salt and of n-dodecane to CgEy-water-salt mix-
tures leads to strong solution non-idealities evidenced by both brine-rich
and oil-rich critical points. The spectroscopic and QLS data obtained from
amphiphile-oil-brine mixtures at low brine content (1-13 wt. % brine) indi-
cated larger brine-rich domain sizes (25-40 angstroms) than in the oil-free

mixtures. The 23Na nmr data in the oil-containing mixtures were very sen-
sitive to nearness to the binodal separating one- and two-phase samples,
which indicates that the domain size was largest when there was just

enough amphiphile present to completely solubilize oil and brine. *C nmr
measurements suggested that both amphiphiles were oriented in the oil-
containing mixtures with ethylene oxide groups toward water and tail
groups toward oil. From the magnitude of the chemical shifts observed,
Cg4E, appeared to be more oriented than C/JE;. Hence, even with these sim-
plest ethoxylated alcohols, there are indications of surfactant-like aggrega-
tion, i.e. topological ordering, between oil and brine domains.

Molecular Dynamics of Narrow, Liquid-Filled Pores, J. Chem.
Phys. 83, 1888 (1985). By J. J. Magda, M. V. Tirrell, and H. T. Davis.

Molecular dynamics studies are reported for a 6-12 Lennard-Jones
liquid in pore channels ranging from about 2-12 molecules wide. The pore
walls are modeled as flat surfaces interacting with the fluid molecules via a
continuous potential varying only with perpendicular distance from the
wall. Liquid density profiles, solvation forces, interfacial tensions, and
self-diffusion coefficients along the pore axis were computed. The density
profiles indicate multilayer adsorption in the pore, whereas the locally
“defined diffusion coefficients do not vary significantly across the pore. The
pore-averaged diffusivity as well as the solvation force oscillate with vary-
ing pore width at constant chemical potential. For pore widths greater
than ten molecular diameters, the average diffusion coefficient is almost
equal to its bulk value, and the solvation force equals the bulk pressure. In
the smaller pores the mean square displacement normal to the pore walls
never achieves linearity in time, and thus does not reach a diffusive limit.
Thermodynamic equations relating the solvation force to the interfacial
tension are derived, and the appropriate mechanical expressions for these
quantities are identified. Simulation results are shown to be consistent
with these thermodynamic equations. The simulations presented here will
be useful in the development of the theory of fluid structure and transport
in the tight pores occurring in such materials as vicor glass, clay disper-
sions, and biological pores and membranes.

On the Meaning and Structure of Amphiphilic Phases: Inferences
From Video Enhanced Microscopy and Cryo-Transmission Elec-
tron Microscopy, J. Phys. Chem. (submitted). By D. D. Miller, J.
R. Bellare, D. F. Evans, Y. Talmon, and B. W. Ninham.

This paper attempts to come to grips with a major issue confronting
association colloid science which has for too long been buried. Tt does so by
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illustrating some surprising features of aggregates of simple amphiphiles as
revealed by two powerful complementary tools, video- enhanced microscopy
(VEM) and cryo-transmission electron microscopy (cryo-TEM), both of
which allow direct visualization. The nature of these aggregates challenge
existing theories, and show up limitations of some other non-invasive,
though indirect, techniques. The problem of the meaning of amphiphilic
phases and their microstructure is discussed, and the necessity for a
different descriptive language emphasized.

Interfacial Tensions and Phase Behavior of Alcohol-Hydrocarbon-
Water-Sodium Chloride Systems, J. Phys. Chem. 91, 1137 (1986).
By J. E. Puig, D. L. Hemker, A .Gupta, H. T. Davis, and L. E. Scriven.

The phase behavior and interfacial tensions of mixtures of alcohdl,
alkane, water, and sodium chloride that split into two or three liquid
phases at 25°C are reported as a function of type of alcohol and alkane,
and sodium chloride concentration. The patterns of phase and tension
behavior are similar to those observed with surfactant-based microemulsion
systems but in a higher-tension regime. The qualitative patterns of phase
and tension behavior in the alcohol systems appear to be characteristic of
all amphiphile-oil-brine systems, although the magnitudes of the interfacial
tensions of microemulsion against oil-rich or water-rich phases can be some
hundred fold smaller than the corresponding tensions of the alcohol-rich
phase against oil-rich or water-rich phases. This difference appears to be a
distinguishing feature of microemulsions and presumably arises from the
relatively large scale of microemulsion microstructure. Microemulsions in
multiphase equilibria incorporate tenfold or more water or oil than do
corresponding alcohol solutions, and this argues for the topology and per-
sistence of that microstructure. '

Optical Analysis of the Spinning Drop, J. Colloid and Interface Sci-
ence (accepted). By J. E. Puig, Y. Seeto, C. V. Pesheck, and L. E.
Scriven.

The accuracy with which the interfacial tension between two immisci-
ble fluid phases can be determined by the spinning drop method is limited
by the accuracy with which the spinning drop diameter can be found.
Thus it is important to know the factor by which the cylindrical sample
tube and its content magnify the on-axis drop or bubble. By the rigorous
ray tracing method of geometric optics, we have analyzed the image forma-
tion and magnification factor of the spinning drop. Our analysis shows
that when drop, outer wall and inner wall of the tube are concentric, the
ratio of the diameter of the image, as measured by a traveling microscope,
to the diameter of the drop is exactly the refractive index of the denser
fluid surrounding the drop. Our analysis also reveals that the image, a vir-
tual one, is formed concentric with the drop. We have also analyzed the
effect of eccentricity of the walls of the sample tube on the magnification
factor.

Sedimentation of Molecular Solutiohs in the Ultracentrifuge: 1.
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Equilibrium Phase Behavior, J. Colloid and Interface Science 113,
248 (1986). By W. R. Rossen, H. T. Davis, and L. E. Scriven.

A theory is presented for multlcomponent multiphase chemical equlh—
brium in a gravitational or centrifugal field. Bulk fluid in the field is
stratified; the degree of stratification depends on how free energy and den-
sity of the material depend on composition and pressure. Nonideal solu-
tions of low-molecular-weight species can have the sharp composition gra-
dients in the field that are characteristic of solutions containing dense salts
and colloids. Because each phase in the field is not homogeneous, but is
stratified in pressure and composition, the number and composition of
phases in a strong field can differ strikingly from those in earth’s gravity.
The phase rule does not apply to a system so stratified. Metastable states
are possible in the field as well. All of these features are illustrated by the
behavior of simple model nonideal solutions and, in two cases, by experi-
ments. Implications for interpreting ultracentrifuge studies of phase
behavior and fluid structure are discussed.

Sedimentation of Molecular Solutions in the Ultracentrifuge: II.
Sedimentation Velocity, J. Colloid and Interface Science 113, 269
(1986) By W. R. Rossen, H. T. Davis, and L. E. Scriven.

Observed sedimentation velocities in solutions of unknown microstruc-
ture can be misleading. Sedimentation-velocity behavior is governed by the
interplay of three factors: buoyant density, molecular weight or particle
mass, and solution nonideality.  As a result, nonideal molecular solutions
near a plait point can sediment with fronts as sharp as those of ideal solu-
tions of massive colloidal particles. In addition, because phenomenological
transport coeflicients increase without bound near a consolute point, or
plait point, sedimentation velocities can be as high in near-critical molecu-
lar solutions as in colloidal mixtures. Sedimentation profiles computed for
model nonideal, molecular solutions are reported here; these profiles resem-
ble those of colloids, and micelle sizes computed in the usual way from
these profiles appear deceptively reasonable. Hence caution is needed when
1nferr1ng from sedimentation profiles the nature of mlcrostructures present
in solumon

EQulllbrlum Wetting on Rough Surfaces: A Simple Model for Wet-
ting in Porous Media, J. Colloid and Interface Science (submitted).
By J. B. Sweeney, J. A. N. Zasadzinski, H. T. Dayvis, and L. E. Scriven.

The structure and stability of perfectly wetting fluid menisci in axisym-
metric pores have been investigated using the augmented Young-Laplace
equation as solved by the Galerkin/finite element method. Both continu-
- ous and disconnected menisci geometries have been considered. The results
of these calculations for single- and multiple-pore microscopic systems have
been applied to macroscopic systems by the application of a statistical
theory of multiphase transport in porous media. The results indicate the
existence of two transport mechanisms: a capillary jump mechanism by
which the non-wetting fluid invades pores and a film drainage mechanism
by which wetting films and pendular structures, remaining after the
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invasion of the non-wetting fluid, continue to drain. The difference
between the two mechanisms is apparent at low-wetting-phase saturation
in both the predictions of the statistical theory and in displacement experi-
ments of perfectly wetting and intermediately wetting fluids in sintered
teflon synthetic porous media.

Imaging Surfactant Dispersions by Electron Microscopy of
Vitrified Specimens, Collmds and Surfaces 1_9_, 166 (1986). By Y.
Talmon.

Ultrafast cooling of thin, unsupported specimens of aqueous surfactant
dispersions in liquid ethane causes them to vitrify. The ice matrix in these
specimens is non-crystalline. Since no crystallization takes place, there is
no phase segregation during cooling. Electron optlcal effects associated
with a crystalline matrix, which obscure the inner structure of the
dispersed aggregates | in the ice, are also avoided. Contrast in these
unstained specimens is very good when the correct defocus is applied. This
paper presents the vitrification technique as applied to surfactant disper-
sions, gives several sample micrographs of natural and synthetic surfactant
systems, and discusses further applications to more labile or complex Sys-
tems, such as micellar solutlons and microemulsions.

Statistical Mechanics of Rigid Particles in an External Field, J.
Chem. Phys. 85, 6699 (1986). By T. K. Vanderlick, L. E. Scriven,
and H. T. Davis.

- A new density functional is employed which simplifies and unifies the
generalized van der Waals (GVDW) theory and the exact one-dimensional
theory of hard particles in the presence of an external potential or solid
walls. Numerical solution of density profiles in planar systems is made
easy by introduction of the density functional.” Numerical results for one-
and three-dimensional fluids reveal that the GVDW theory fails at high
chemical potentials by admitting negative densities. We have some evi-
dence that the cause of the failure is a negative eigenvalue of the weighting
function defining the local mean density or excluded volume in the theory.
Density profiles of the exact one-dimensional theory are compared to those
of the GVDW theory, those of the former exhibiting similar but stronger
osc1llat10ns and of course no regmns of negatlve density.

Solution of Percus’s Equation for the ‘Density of Hard Rods in an
‘External Field, Phys. Rev. A 34, 5130 (1986). By T. K. Vanderlick,
L. E. Scriven, and H. T. Dayvis. ‘

The theory of a one-dimensional fluid of hard rods has received quite a
lot of attention because it often yields exact results which serve as a guide
to understanding the properties of more complicated fluids. Of particular
interest recently has been the density distribution of nonuniform fluids in
external potentials or between solid walls. The purpose of this short paper
is to report an explicit solution of the nonlinear integral equatlon derlved
by Percus for the density distribution of hard rods.
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Toward an Understanding of Liposome Structure Through the Use
of Computer Graphic Image Correlation, J. Electron Miscroscopy
Technique 3, 385 (1986). By J. A. N. Zasadzinski, J. Kerins, H. T.
Dayvis, and L. E. Scriven.

A computer-aided graphics approach to correlating transmission elec-
tron microscope images of freeze-fractured and thin-sectioned samples is
outlined. Any three-dimensional model of the imaged structure can be
mathematically sectioned to provide a two-dimensional representation of
the model in the "fracture” plane. The method is used to demonstrate that
the structure of lamellar liquid crystalline liposomes is based on a family of
Dupin cyclides; closed parallel surfaces with a conjugate ellipse and hyper-
bola as curvature defects.

Polymerizable Surfactant Design for Transmission Electron
Microscopy, J. Colloid and Interfacial Science 11, 347 (1986). By
J. A. N. Zasadzinski, P. C. Vosejpka, and W. G. Miller.

Polymerized liposomes and vesicles are under close scrutiny as long-
lived, stable substitutes for their natural and synthetic unpolymerized
counterparts. The monomer surfactant, which contains one or more polym-
erizable groups, is dispersed in water at the proper temperature and con-
centration to form the lyotropic liquid crystalline phase of interest and
polymerized while in the liquid crystalline state. In addition to their appli-
cations to slow-release and site-specific drug delivery, membrane-mediated
chemistry, artifical photosynthesis, ete., polymerized surfactant liposomes
and vesicles hold great promise as model systems for TEM investigations of
lamellar liquid crystal structure. One such model polymerizable surfactant
is DBPAI, or N, N-dimethyl-N, N-bis(1,3-pentadecadienyl-carbonyloxyethyl)
ammonium iodide. Polarized light microscopy and differential scanning
calorimetry (DSC) confirm that DBPAI forms lamellar liquid crystalline
liposomes in water. The DBPAI liposomes were polymerized while in the
liquid crystalline state by ultraviolet (UV) irradiation. The DBPAI lipo-
somes-were shown to be identical in structure before and after polymeriza-
tion by a combination of X-ray diffraction and freeze-fracture TEM. How-
ever, turbidity measurements showed that the polymerized DBPAI lipo-
somes were much more stable in acetone and ethanol than the monomer
DBPAI liposomes, demonstrating that the chemical nature of the surfac-
tant in the liposome had changed. The combination of structural preserva-
tion and enhanced chemical stability makes DBPAI a natural choice for
TEM thin-sections. A method of preparing DBPAI liposomes for thin-
section TEM is outlined and bilayer resolution images of the DBPAI lipo-
somes are presented. Polymerized bilayers in thin-section TEM promise the
enhanced resolution required to answer many important structural ques-
tions left unresolved by freeze-fracture TEM.

Finite Elerhent Calculations of Fluid Menisci and Thin-Films in a
Model Porous Media, J. Colloid and Interface Science (submitted).
By J. A. N. Zasadinski, H. T. Davis, and L. E. Scriven.

Finite element solutions of the Augmented Young-Laplace (AYL)
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equation are given for a number of axisymmetric menisci that correspond
to idealized solid-solid contacts in a model porous medium. The influence
of the disjoining pressure on the saturation of a non-polar wetting liquid is
significant for porous media composed of particles with diameters of less
than 100 microns; low interfacial tensions also caused more wetting liquid
to be trapped in thin films. A method of predicting equilibrium wetting
fluid saturation in a porous medium characterized only by the porosity, a
characteristic length scale, the interfacial tension between the two fluids
and the Hamaker constant of the solid-liquid-fluid system is proposed.
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