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1. SUMMARY AND CONCLUSIONS

The Department of Energy (DOE), Morgantown Energy and Technology
Center (METC) has been supporting the development of flow models for
Devonian Shale gas reservoirs. The broad objectives of this modeling pro-
gram have been:

1. To develop and validate a mathematical model which describes

gas flow through Devonian Shales.

2. To analyze the sensitive parameters that affect the deliverability

and recovery of gas from shales.

3. To recommend laboratory and field measurements for determination

of those parameters critical to the productivity and timely

recovery of gas from the Devonian Shales.

e
.

To analyze pressure and rate transient data from observation and
production gas wells to determine reservoir parameters, well
performance, future deliverabilities and recovery, and success
of stimulation jobs.

During the current annual period, both a mathematical model des-
cribing gas flow through Devonian Shales and the software for a radial
and one-dimensional mathematical model for the single well performance
were completed and placed into operation. Experiments are being initiated
in several related aspects of mass transfer in the tight matrix of Devonian
Shales and the gas holding mechanism of the Devonian Shale matrix. Continued
effort is underway in the development of a laboratory simulation model
of Devonian Shales. Results from the laboratory experiment will be used to
update the mathematical model developed. The sensitivity analysis of the
mathematical model revealed some of the important parameters which greatly
affect well performance. Field and laboratory measurement of these parameters

will also be initiated.



Several radial and one-dimensional simulations of a Devonian Shale
reservoir were performed to develop an understanding of the productivity
oF such reservoirs for a variety of different reservoir parameters.
These simulation studies indicate the importance and range of reservoir
rarameters which are important in the either early or late production 1ife
of Devonian Shales.

The results of the simulation studies are as follows:

1. The sensitivity analysis showed that early performance of shale
reservoirs is dominated by fracture system parameters, while later
performance is primarily controlled by shale matrix and desorption
parameters.

2. Gas slippage, or Klinkenberg effects, are pronounced in Devonian
Shales, however, to date no experimental data are available for
validation.

3. Fracture system permeability, shale matrix permeability and size,
and desorption isotherms are determining factors of reservoir per-
formance. However, data for these parameters is either scarce or
non-existent,

4. By comparision, the dual-porosity desorption model had a 38 percent

higher 30-year cumulative production than the Denver model.




2.  RECOMMEMDATIONS

As a result of the sensitivity study, reservoir performance appears to
be strongly dependent on shale matrix parameters. This conclusion must
be validated through laboratory experiments since a few assumptions were
made about the transport and gas holding mechanism of the shale matrix.
Battelle's laboratory experiments are expected to resolve this problem.

Permeability measurements on the shale matrix were Timited to a
small number of samples from a few wells. A new method should be designed to
measure very low permeability of the shale matrix and Klinkenberg factors.

Fracture distributions should be related to shale permeability. A well
test method should be designed to estimate fracture permeability. To date,
well testing is the only method of determining a fracture system's per-
meability.

Because of the importance of well stimulation, it is suggested that
efforts be continued to include stimultion boundary conditions into the
present model.

The present radial, one-dimensional computer program should be extended
into two to three dimensions to include the heterogenaity and anisotropy
of shale reservoirs, and to make possible multiwell simulations. With a
more complete and experimentally validated mddel, it would be possible to in-
vestigate some of the parameters which cannot be measured or determined

directly using history matching technique.



3.  INTRODUCTICN

A recent trend in developing new natural gas reserves has been the
intensified efforts to exploit Devonian Shale gas reservoirs in the
Appalachian Basin. The Department of Energy (through the Morgantown Energy
Technology Center, METC) is engaged in the Eastern Gas Shale Project, which is
aiwed at acceleraving the economical deveivpient of Uiis marginally productive
resource.

Advances have been made in the modeling of Devonian Shale reservoirs
in three main directions. The first direction is a general view of the
many physical processes occurring in a Devonian Shale system. A general
Devonian Shale reservoir model includes gas flow through fracture systems,
flow into fracture systems from shale matrices, and desorption from pores
of the shale matrix. It would be difficult to model such a general
system in three dimensions. Attempts both theoretical as well as experimental,
are being made to ascertain what needs to be studied. However, the experimental
study is still in the planning stage.

The second direction 1s the formulation of a mathematical description
of a2 much simplified system with an attempt to obtain an analytical
solution. It has been possible to compare numerical with analytical
results.

The third direction is research with a laboratory model to physically
simulate gas transport through Devonian Shales. An attempt has been made

to design an experimental procedure with the cooperation of Battelle.




Modeling efforts during the past year have been directed primarily at
simulating istropic homogeneous, radial, and one dimensional reservoir
performance. It was felt that the need for a better understanding of the
basic behavior of Devonian Shale performance was great enough to warrant
this effort. Consideration has been given primarily to the study of desorption
effects on reservoir performance. The flow model also considers Darcy's
flow through tpe“Devonian Shales including the Klinkenberg effect.

The results of the modeling effort have been used:

1. To determine the effect of reservoir parameters on reservoir

performance.

2. To determine the possible range of the importani parameters

that will permit predicting of reserves and deliverability of
production wells.

3. To improve the understanding of fracture and matrix systems in

relation to the desorption process.



4. MATHEMATICAL MODEL

Most Devonian Shale reservoirs are expected to consist of very tight
porous shale formations which may be rather highly fractured in certain
tectonically and/or overburden stressed terranes. Under these conditions,
the fractures may provide most of the gas permeability, but contribute
very little to the overall storage capacity. By comparison, the matrix
of the shale may provide most of the storage capacity, but contribute
very 1ittie to flow because of the low permeability. The gas release
and adsorption isotherm data from the Devonian Shale samples indicate that
gas resides in the matrix of the shale as a free gas phase and as an
adsorbed gas phase.] Figure 1 shows methane sorption isotherms at
28°C for the shale samples from the I1linois Basin.] In Figure 1, the
upper curves measure the total gas content (free + adsorbed gas) as
a function of pressure, while the lower curves measure physically
adsorbed gas.

The transport of gas through any porous material is largely determined
by the pore structure. Since the pore size of the shale matrix is small,
gas slippage phenomena cannot be ignored. Moreover, gas desorbs from the
pore walls into the shale matrix as pressure drops.

2,3,4 as shown in Figure 2. All

A fractured reservoir can be idealized
the fractures can be vertical (see model 1 in Figure 2), or all vertical
and semi-vertical fractures can be replaced by an equivalent orthogonal
fracture network {see model II in Figure 2). The mathematical formulation
will be the same for both models. However, the approximation for the
matrix block will be a cylindrical element for model I and a spherical

element for model 11.5




It is assumed that gas transport in Devonian Shale reserveirs occurs
only in a porous Tracture medium into which matrix blocks of contrasting
physical properties deliver their gas contents. That is, the matrix acts

as a uniformly distributed gas source in a fracture medium,4

Gas desorp-
tion from pore walls will be treated as a uniformly distributed source

within the matrix blocks.

General assumptions made for the development of the mathematical model

are as follows:

1. The reservoir has single phase gas flow.
The reservoir is horizontal with homogeneous matrix properties.
The reservoir is at an isothermal condition.

The well is centrally located in a finite circular reservoir.
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Surface diffusion of adsorbed molecules on the walls of the pores
will be neglected in the mathematical model. However, those gases
which are adsorbed on pore walls pass through more efficiently
than those which are not. For example, helium is not easily
adsorbed at ordinary and higher temperatures and therefore, does
not flow readily through a porous medium. The adsorbed phase must
contribute to the overall flow. Thus, neglecting surface diffusion

in the model will reduce the flow rate from the matrix.



The gas flow through the fracture systems can be described as:

ke p P f
£t fq . 3 T (1)
v [u z Y pf_} 3 m = 3% (%f Z )

Hhere:
kf = fracture permeability, darcy
u = viscosity, cp
®f = fracture porosity, dimensionless
Pf = fracture pressure, atm

t = time, sec

z = real gas deviation facter

9% = volumetric flow rate per volume of shale matrix element,

cma/sec/cm3
I e
Vm 1 an surface
Am = surface area of matrix elements, cm2
Vm = volume of matrix element, cm3
n = normal dirvection o surface

The gas flow through the element of shale matrix, including the

Klinkenberg effects, can be described as:

kK, P b Py 2 P (2)
m - o .
v [Sf& 7z (T * ET') Vgn] = % 3 T % 31 2
m




Where:

b = Klinkenberg factor
kgnzﬂ permeability to gas, darcy
Pm = matrix pressure, atm
¢y = matrix porosity
kz = absolute permeability, darcy
p, = mean local pore pressure, atm
dcd
$q & RT, dimensionless
= i 3 -
R Universal gas constant, cm atm/g mole X
0
T = Reservoir temperature, K

The source term in Eq. 1 can be determined from the solution of Eq. Z.
The soltution of Eg. 1 with respect to following initial and boundary

conditions then gives the pressure distribulion in a Devonian gas reservoir,

Detailed development of the mathematical wodel is presented in Appendix A,



5.  ANALYTICAL SOLUTIONS

The flow equations developed in previous sections for Devonian Shale
gas are complex and not amenable to exact solution except under special
condifions. Analytic solutions typically require very simple and idealized
reservoir models and flow conditions (initial and boundary conditions and
source/sink terms). Such results cannot be expected to model accurately
all of the important features of real producing geophysical systems.
Nonetheless, analytic solutions have received a considerable amount of
attention, and they may contribute in several ways to the goal of predictive
reservoir modeling.

At the most fundamental level, analytic solutions to idealized gas
flow problems help to provide a better understanding of the basic fiow
phenomena. They may also be used to explore, in a very general and
qualitative manner, the sensitivity of modeling predictions to a variety
of different effects.

A much more immediate connection between analytic solution techniques
and the modeling of real systems is the fact that many existing gas
reservoir models actually involve a combination of both analytical and
numerical methods. Typically, the detailed conceptual model of a real
geologic system will contain elements which are thought to have a secondary,
but significant effect on reservoir behavior. In order to keep the
numerical analysis within manageable bounds, these elements might be
approximated in a manner which allows an analytic solution. This solution
is then combined interactively with numerical treatments of the other system
elements within the overall numerical approach. Unfortunately, this type
of approach may sometimes be motivated more by the need for a tractable

model than by the reliability of the assumptions involved.

10




Because they do offer exact solutions to well-defined problems,
analytic methods also provide very useful benchmarks for model testing
and refining and for revealing potential problem areas with the more
cumbersome (but hopefully much more powerful) numerical solution techniques.
Certainly, the accuracy or reliability of any large-scale computer code
should never be assumed without extensively testing the ability of that
code to reproduce the results of a variety of exact analytic solutions.
It must also be recognized that such comparisons still do not assure that
the numerical routine will continue to be accurate and reliable when
applied to more realistic and complex problems.

Another interesting and sometimes useful class of analytic solutions
to flow eguations arises in connection with the interpretation of well
test flow data which are taken in order to learn about local in situ
reservoir properties. Such well tests are extremely important as sources
of the data needed to define reservoir model parameters. The analytic
solutions used in well test analysis usually apply only to rather specialized
(often very inconvenient) test conditions such as a well shut down after
flowing at a constant rate {pressure buildup), or the opening of a shut-in
well to a constant flow rate (pressure drawdown}. The available analytic
solutions also require highly idealized models of the reservoir properties
near the well of interest. In practice, the required assumptions are never
entirely fulfilled, and one is forced to choose between several qualitatively
different "type curves," one of which must then be used to perform semi~-
guantitative interpretation of the data to obtain an estimate of Tocal
reservoir parameters. Despite the many difficulties, analytic solutions
to well test problems have apparently been of significant value over the
years in the petroleum industry. With the development of improved and

more readily available numerical flow models, the use of analytic solutions

1



is now decreasing in favor of the more general-purpose computer methods.
This is currentiy an active research and development area in the petroleum
industry. Similar trends might be expected in connection with well test
analyses.

In summary, much of the general, qualitative understanding of gas flow
equations is based upon exact analytic solutions to special cases. In
addition, These exact soiutions are directiy reievant tu Devonidn 3iaie gas
reservoir modeling as a basis for testing and refining more powerful
numerical solution methods. The importance of this role should not be
underestimated, as the possibility of otherwise undetectable deficiencies
in humerical calculations is very real. Although analytic solution
methods have also been extensively employed {and still are to some extent)
for special problems such as well test analysis, current emphasis is being
placed on the development of more general-purpose numerical schemes. It
should not be expected, however, that analytic solution methods alone will
be capable of predictively modeling the detailed behavior of real Devonian
Shale gas reservoirs.

The following simplifying assumptions in addition to the initial
assumptions have been made in the development of the analytical solutions:

1. An isotropic finite reservoir of uniform thickness h.

2. A1l formation properties independent of pressure.

3. No Klinkenberg effect.

4. No desorption within the matrix elements.

5. Matrix elements consist of cylinders with radius a and height h

which are equal to the formation thickness.

6. Well produces at a constant pressure.

12




Under these conditions, Eq. 1 and initial and boundary conditions

for the fracture system becomes:
i Pe 4 o [ Pr (3)
V[;u" V{)f]'i-z"ﬁ*; qm :-«lzm;m»émf .,,...2,
=r=r (3a)

p. {r ,t) = p ., t > 0; constant flowing pressure
F v wf at the wellbore (3b)

®r) =0,t>0 (3c)
ar r=r

Equation 2 and initial and boundary conditions for the matrix element

I O T (4)
v 'Pm ook, et z

Pm (Y'sD)”P]- » Oirga (43)

become:

Pm (0.t) = finite, t > O (4b)

P (a,t} = Pe» t >0 ; at the surface of the matrix (4c)
element

The solution of Eq. 3 in terms of pseudo-pressure with respect to
initial and boundary conditions for a finite reservoir is developed in

Appendix B and is given by:

o - Myr Uy (a,rg.r) {(5)
f s U (asrypeTe)

Where:
¢f = fracture pseudo-pressure

s = Laplace space variable

13



o = L\ + —
n(s) saky IO(Aa) ne

lz = s/nm

11, I0 = Modified Bessel function
2 _ s
[+ 2 '_(”‘)"n S
Ade = ahi. - W
i R WT
Uo(u,re,r) = K (are) I, {ar) + I (ure) Ke (ar)
U](a,rw,re) = K (are) I (urw) + 14 (ure) Ky (arw)

K1, Ko = Modified Bessel function

This equation gives the Laplace transform of the pseudo-pressure
distribution in a finite-dual porosity gas reservoir producing at a
constant pressure.

The volumetric flow rate entering the wellbore at a constant pressure
is given as:

_ YAbur Up(asrysre)

Qg /5 n(s) U](a,rw,re) (6)

Where:

v o= ﬁkfh r TSC
W‘-I'r—'“““
Psc
Uz(a,rw,re) = Ky (ure) Il(urw) - I](are) K](arw)

The exact inversion of Eq. 6 is complicated. Therefore, the flow
rate (qsc) is computed using a numerical Laplace transform inversion
technique.

Further, the cumulative production (Qsc) vwill be determined, which is
related to q.., by:

t

Use = s qg. dt' (7)
0

14




The Laplace transform of er is:

1) =qsc mym’{’h{f Uz(a’rw’re) (8)
¢ s S 3/{/ﬁf§T Uylanr,,re)

This equation will also be inverted using the numerical Laplace

transform inverter.
Computed values of QSC and U5 from Eqs. & and 8 will be used to

check the values of’QSC and Qe from the numerical solution.

15



6.  NUMERICAL SOLUTIONS

Simultaneous solution of the equations presented above is achieved
each time-step considering the following three principal aspects of the
problem: (1) desorption of gas from pore walls of the shale matrix,

(2) Darcy flow through the pores of the matrix into a fracture system
considering the "Klinkenberg effect", and (3) Darcy flow through the fracture
system to a producing well. Figure 3 shows the geometry of a one-
dimensional radial model which will be used in simulating single well
behavior with radial symmetry.

In the first stage, the production of gas from the wellbore causes
a pressure drop in the fracture system. This in turn provides a reduced
pressure on the outer surfaces of the shale matrix which causes Darcy
flow modified by the Klinkenberg effect within the shale matrix. As this
flow occurs, the pressure in the pores of the shale matrix decrease and
gas is "fed" into the fracture system. Finally, this reduction in
pressure within the pores of the shale matrix causes gas to be desorbed
from the walls of the pores which provides “feed gas" to the matrix.

Once gas desorbs from the pore walls it flows through the shale matrix
element to its outer surface where it can enter the fracture system via
Darcy's law, giving the source term for the reservoir equation:

m r=a

Here, a, Am, and Vm are respectively, the radius, surface area, and
volume of the matrix element and Nm is the number of elements per reservoir

volume unit; i.e.:

N = reservoir grid-block grain volume
m matrix element volume

16




For continuity of pressure at the matrix-fracture interface
(pm)r:a must equal Pe- Thus, the reservoir pressure serves as a boundary
condition for the shale matrix element.

Using q, as a source term for the radial diffusivity equation, together
with a closed outer boundary and a specified rate or pressure at the well-
bore, the reservoir pressure distribution as a function of time may be
obtained. Details of the solution procedure are given in Appendix C. Care
must be taken to assure that, at the end of each time-step, reservoir
pressure, matrix element pressure, desorption rate, and source rate are

consistent. The procedure described below was developed for this purpose.

Iterative Solution Procedure

Step 1. Begin new time-step by initializing matrix source rate 9 to zero
and solving for reservoir pressure distribution, pgm); where

m = number of iterations, m =1, 2, ---.

(m}

Step 2. Use reservoir pressure py ’/, from Step 1 as a boundary condition to
e i

{m)

solve for matrix pressure P

and source rate Uy then use a9, to
. +1).
calculate new reservoir pressure, pf(m 1)

Step 3. Set m=m+] and calculate average of last two reservoir pressures,

; -1
pgmzavg) T (p§m) * Pgm ))

Step 4. Use pf(m) as boundary condition to solve for new matrix

i.e.:

pressure, pm(m+1)'
Step 6. Use p (m+1) and N to solve for new Source rate q_.
2LEP > m m m

. +
Step 6. Use new source rate to solve for new reservoir pressure, pf(m 1).

17



Step 7. If | Pf(éﬂé) - Pf(m+}) | is less than a specified tolerance,

{m+1)

accept Ps as the new reservoir pressure, and go to Step 1;

otherwise, go to Step 3.

Wellbore conditions include the capability to simulate a variable rate
or pressure history with skin damage and wellbore storage effects upon
shut-in. A back pressure option is provided so that a specified wellhead
pressure as a function of time may be used directly as input data.

The mode'l consists of a main program, which has approximately 1000
lines of FORTRAN IV code, together with several subroutines for repetitive
procedures such as transmissibility and bottom-hole pressure calculations.

A user's manual including listing of the program is presented in Appendix D.

18




7.  RESERVOIR-INPUT PARAMETERS

The Devonian Shale gas reservoir simulator requires inpul of all informa-
tion describing the geometry of the flow system, shale and gas properties,
adsorption and desorption properties of the shale matrix, the initial
condition of the system, and wellbore conditions.

A simulation model may represent the behavior of Taboratory equipment,
individual wells, or reservoir systems. The simulator enables the engineer
to examine and evaluate the physical and economic consequences of various
alternative production policies. But a successful output from a simulator
is really dependent on the reliability of the input data. Perhaps the
most critical data are matrix and fracture permeabilities, Klinkenberg
factors, fracture spacing and desorption data. Unfortunately, most of
the necessary data for Devonian Shale reservoir simulations are not reliable.
There are no available data for fracture spacing, geometry of the matrix
elements, and desorption characteristics of the shale. In the following
paragraphs, some of the data used in the simulator will be discussed.

Gas slippage, or Klinkenberg effects, are pronounced in Devonian Shales.
Jones and Owens6 noted that the conventional extrapolative procedure (in
which permeability ploted versus reciprocal arithmetic mean pressure is
extrapolated to zero reciprocal pressure) for determining Klinkenberg
permeability, kg’ might not yield a straight T1ine for very low permeability.
Unfortunately, there are no experimental data to validate or refute this
statement for the Devonian Shale.

The equation for the Klinkenberg "b" factor used in the simulator is
given by:

-0.33
b =0.86 k, (16)

19



Where:
b = atm
K£= md
This equation is only valid for:
0.0007 md < kg <1 md
and the shale matrix permeability may go several orders of magnitude below

VN | L I NN S Bl bl Fa mdenin v 4 h Artrmvemi
Uauuur i, i eiToic, Wik o TaCLoy NCEGIT Yo S8 dotovmined ov

arimentally
for shale samples. There is no systematic measurement of matrix permeability
for Devonian Shales. Schett?er7 et al. have presented some diffusion
constant measurements at atmospheric pressure and an equation to relate
permeability and the diffusion constant for the shale matrix.

Except for some measurements of high pressure adsorption isotherms for
shale samples from the ITlinois Basin} (as shown in Figure 1), and the work
done by Schettler on shale samples, at atmospheric pressure, from Lincoln
County, WV, there are practically no data available on the Devonian Shale.

As stated earlier, fracture spacing is an important parameter for which
there is no known measurement technique. However, Muskat presented an

equation for fracture permeability as:g’9

o 21083, darcy (11)
f 12 S
Where:
Y = fracture width, cm.
S = fracture spacing, cm.

Figure 8 shows fracture spacing versus fracture permeability for
various fracture openings as calculated from the above equation. Thus,

if provided with good data on fracture permeability {determined from

20




reliable well test data) and fracture openings (measured form core samples),
the fracture spacing can be approximated by Eq. 11.

The fracture permeability calculated from Eq. 11 ustally yields high
values because open tension fractures must be filled by an intruded foreign
rock or a recrystaliized component of the surrounding rock. 1In the
Devonian Shale, fracturcs might be filled with either carbonate or pyritic
materia].10’1]

As a reservoir is produced, some permeability reduction in the fracture
system might be expected because fractures created during stress conditions
rmight become sealed after release of the stress.n

As a last resort, the history matching technique with production or

pressure data (or both) can be used to determine some of the reservoir

parameters from the simulator. However, combinations of at least ten

parameters for a typical Devonian Shale reservoir must be used to find a
good match between field data and simulated data. Thus, the uniqueness of
the matching may not be achieved if many perrutations of the parameters
are possible.

In summary, much of the general, qualitative and cuantitative under-
standing of the gas transport mechanism and reservoir parameters have to be
based on field and laboratory measurements. In order to make an engineering
analysis, it is essential to determine and measure all of the necessary
basic information about the actual Devonian Shale reservoir. Then a
"sound" reservoir model can be build and simulation runs can be made.
Otherwise, one may end up with a useless solution which is called "garbage

in--garbage out!"
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8. RESULTS OF SENSITIVITY ANALYSIS

Due to its complexity, the validity of the numerical model was
impossible to prove for stability and covergence using current technicues
of analysis. Therefore, it was necessary to conduct numerical
experiments to evaluate the Devonian Shale reservoir simulation techniques
described above. Use of finite difference approximations in the solution
of Egqs. 1 and 2 introduce tirme and space truncation errors. If these
tyuncation errors are sufficiently small, the numerical solution will be
satisfactory. To evaluate the accuracy of these numerical solutions,
the Devonian Shale gas simulator was used to calculate the performance

of single and dual porosity models for which analytical solutions. exist.

S1ider]2 presented an equation for a single porosity gas reservoir
producing at a constant pressure as:
2 2 2
0 - 0.101 ¢h vy ¢ (pi ” pwf) Qtp (12)
MSCF z avg Tf
13

QtD can be read from the van Everdingen - Hurst'~ table for a given tD'
Where:
¢ = porosity
h = formation thickness, ft.
r = wellbore radius, ft.
¢ = compressibility of gas, psia"]
P; = initial reservoir pressure, psia
Pyf = flowing wellbore pressure, psia
QtD = dimensionless cumulative production

z = ayerage compressibility factor, calculated at

(pi + pr) /2 and Tf

—
1

f formation temperature, R
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-3

. 6.33 10 "k t
t,., =
D c r2
U o
t = time, day
k = permeability, md
p = viscosity, cp

Cumulative production values calculated from the simulator for a single
porosity model should be the same as cumulative production calculated from
£Eq. 12. The differences in cumulative production values calculated from
the simulator and Eq. 12 are less than two percent, even though Eq. 12
is not an exact solution of the unsteady-state gas flow.

By eliminating the desorption from the simulator, the model reduces to
the dual porosity system described in the Analytical Methods section. The
cumulative production results calculated from the analytical solution
(Eq. 8) and from the simulator wére presented in Figure 9. The numerical
results were within two percent of the analytical solution. These compari-
sons show that the numerical solutions are of satisfactory accuracy for
most engineering calculations.

The effects of reservoir parameters on the cumulative production of a
Devonian Shale gas well which produces at two constant pressure Tflowing
periods will be discussed. More specifically, the effects on production
of fracture system parameters such as permeability and porosity, and shale
matrix parameters such as permeability, porosity, Klinkenberg factor,
desorption and size of the matrix element will be examined. For this series
of parametric calculations, it is convenient to consider a base case and
to vary parameters of interest around the value assumed in the base case.
Parameters for the base case (roughly based on the Lincoln County,

West Virginia DOE wells 20401, 20402, and 20403) are listed in Table 1.
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Those parameters which are not known for these wells either are selected
from other available data or ave just assumed. Table 1 also presents
possible ranges of the parameters which were used for the sensitivity
analysis for a Devonian Shale gas reservoir. A1l the computations
reported here were for a production peried of 30 years.

The upper curve in Figure 10 represents cumulative production as a
function of time for a dual-porosity model with desorption and Kiinkenberg
effects. The second curve from the top shows cumulative production as a
function of time for a dual porosity model without desorption but includes
Klinkenberg effects, while the third curve from the top does not include
Kiinkenberg effects. As noted previously, the gas slippage {K1inkenberg
effect) factor is one of the important parameters which has considerable
effects on gas production from Devonian Shales. The difference between
the upper curve and second curve from the top is due to desorption from
the pores of the shale matrix. These curveg show that the effect
of desorption is also important. The lower curve in Figure 10 represents
cumulative production versus time for single porosity. It can be con-
cluded that during the early life of the reservoir, the effects of
matrix parameters with or without desorptien on production are srall.

But after the initial flow period of a few years, gas from the matrix of
the shale is very pronounced. The vesults of these calculations would
seem to make a strong case for further investigation of the Klinkenberg
and desorption effects on Devonian Shale gas production.

As discussed earlier in this paper, fracture system permeability,
kf, is one of the important parameters in Devonian Shale reservoirs as
illustrated in Figure 11. This figure shows cumulative production as a
function of time for various fracture permeabilities. A1l the reservoir
parameters in these three cases are the same except kg. The flow behavior

of this model was dominated by the permeability of the fracture system.
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Secondary poresity and desorption improve the well performance; in fact
the well with a 933 feet drainage radius acts in an infinite system, even
after 25-30 years of production. Long life of an individual well makes
Devonian Shales a valuable resource even though production rate is usually
low.

Figure 12 shows the shale matrix permeability, km, to be another
important parameter which effects well productivity. As the matrix per-
meability decreases, the effect becomes very dominant. The dual porosity
model behaves like a single porosity model if the matrix permeability

is high enough (order of 10*7

md) and the size of the matrix element fis

small enough (order of 50 cm). In fact, the parameter km/a2 (where:

km = matirx permeability, a = radius of matrix element) can be treated as

one of the major parameters controlling gas production from the shale matrix.
The relationship between cumulative production and matrix permeability is not
1inear; i.e., if the permeability is increased from 0.69 x 1077 md to 0.69 x
10"8 md the increment in cumulative production will be 8 percent. However if
permeability is reduced from 0.69 x 10"9 md to 0.69 x 10"10 md the reduction
in the cumulative production will be 18 percent in 30 years.

Figure 13 presents the cumulative production values for different
fracture porosities (¢f) as a function of time. The effects of fracture
porosity on the cumulative production is almest negligible. The range
of fracture porosity that is ¢f = (0.0025 to 0.04 may be representative for
Devonian Shales.

Figure 14 describes well performance for different values of matrix
porosity (¢m). Here the effect of matrix porosity on cumulative production
is small. However, a maximum matrix porosity of 10 percent may be very low
for Devonian Shales because the commercial Rercury porosimeter has a lower
1imit of pore-diameter penetration of about 30° AngstromT (R). But according

0
to Ref. 1, the pore-diameters for Devonian Shales can be less than about 4 A,
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Figure 15 shows that a twofold increase in matrix size causes about a
13 percent decrease in cumulative production. But a fivefold decrease in
matrix size only causes a 7 percent increase in cumulative production. If
the matrix permeability is greater than 10"7 this effect is almost negligible.
But when matrix permeability decreases, the effect of matrix size will dominate
1well nerformance.

Figure 16 shows cumulative production for various drainage radii
as a function of time. Here the effect of the outer boundary was felt
by the well after about 6 years for Yo © 500 feet. However, cumulative produc-
tion continues to increase as a function of time due to the contribution from the
matrix element. A Devonian Shale reservoir with a drainage radius of 933
or 2000 feet acts as an infinite reservoir.

Figure 17 shows production rate versus time as a function of fracture
system permeability (kf). The rate decline is very slow as in the actual
curves in Figure 6 of Ref. 14. Figure 17 also shows that the production
decline is not an exponential decline as given in Ref. 15. The Jjump in
the production rate after four years is due to a change in pressure at the
wellhead. Figure 18 shows production rate as a function of time with and
without the Klinkenberg effect. 1t can be seen from this figure that the
Klinkenberg factor strongly affects the production history of Devonian Shale
gas wells. Using the Klinkenberg factor in the model results in more than a

one hundred percent increase in production rate.
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rigure 19 shows a breakdown of resource recovery at low values of

matrix permeability (km). Recovery factors are defined as follows:

. G. G

r. = total recovery = total production _ "iT - "r

t G, G,

iT iT

re = recovery of initial gas = gas produced from fractures _ Gif - Gf
in fracture system Gif Gif

r_ = recovery of initial = 325 Produced from matrix _ Sim - Sn

g gas in matrix Gim Gin

ry = recovery of initial = "desorbed" gas produced _ Gid ~ Gd
adsorbed gas Gid Gid

Where:

Gif = initial fracture gas

G, = initial matrix gas

Gid = initial adsorbed gas

Gr = remaining total gas

Gf = remaining gas in the fracturing volume
G_ = remaining gas in the matrix
G

d - remaining gas adsorbed

o]
|

3717 G55 * G+ B4y

As matrix permeability approaches zero, a single porosity system is
approached where gas is oniy produced from fracture systems. As km increases,
the recovery of original fracture and matrix gas approaches a common value.
For the base case value of k_ (.69 x 10"9}, the matrix and fracture recov-
ery was 26.2 percent at 30 years, which is close to the average of re and
o in Figure 19. Note that as matrix permeability increases, the recovery
of adsorbed gas increases since a higher km results in larger pressure drops
in the shale matrix which in turn 2llows more gas to be desorbed. Of
particular significance is the fact that for a low, but not unreasonable,

-10

matrix permeability of .1 x 10 md, the total resource recovery, ys is

only 12 percent after 30 years.
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Although the previous figures show the sensitivity of each parameter
which affects the reservoir performance of Devonian Shales, a composite plot
of a1l of the parameters is shoun in Figure 20. In Figure 20 the abscissa
denotes time and the ordinate denotes the percent increment or reduction in

cumulative production. The percent change is defined as:

percent change = (Q \ 100

Where:

%

QB = cumulative production for the base case parameter

i}

cumulative production for a given time and parameter

In previous paragraphs the effect of all of these parameters have been
discussed. But the curves in this figure compare the effect of each
parameter relative to other parameters. Again, fracture permeability,
desorption, Klinkenberg slip factor, matrix size and permeability are the
factors that determine Devonian Shale gas reservoir performance.

Figure 21 compares the cumulative production values using different
mathematical models for Devonian Shales. As shown in this figure, the
Denver modelz4 (Cox's model) calculates the lowest values of cumulative
production for the same set of reservoir parameters. Even the dual porosity
model, without desorption and Klinkenberg effects, calcualtes a cumulative
production of 16 percent more than the Denver model. The model including
desorption and Klinkenberg effects calculates a cemulative production of

36 percent more than the Denver model at the end of 30 years.
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NOMENCLATURE

Radius of shale matrix element, cm
Concentration, g mo1e/cm3
Diffusivity, cmz/sec
Fracture permeability, Darcy

Matrix permeability, Darcy

Molecular weight, g-mole

Volumetric flow rate from matrix element,
cms/sec/cm3

Production rate, cmB/sec

Fracture pressure, atm

Initial reservoir pressure, atm

Matrix pressure, atm

Flowing well pressure, atm

Radius, cm

Well radius, cm

Drainage radius, cm

Universal gas constant, atm~cm3/g mole K
Laplace space time variable

Temperature, Ok

Mass flow rate from shale matrix element,
g/sec/cm3
Time, sec

Real gas deviation factor
Fracture porosity

Matrix porosity

Density of gas, g/cm3

Pseudc~pressure,‘atm2/cp

Viscosity of gas, cp
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APPENDIX A

DEVELOPMENT OF FLOW MODEL FOR DEVONIAN SHALE RESERVOIRS

Under the assumption made in the main text, the gas flow through the

fracture systems can be described by the following equation:

v {o ;i vsaf] + v (Pest) =§—t (¢¢ ») (A-1)
Where:
p = density, g/cm3
kf = fracture permeability, darcy
p = viscosity, cp

g = fracture porosity

Pg = fracture pressure, atm
t = time, sec
W = mass flow rate per volume of shale matrix element,
g/sec/cm3

The equation of state for real gas is given by:

_n P (A-2)
p RT =z

Where:

M

It

molecular weight, g mole

= Unj 3 _
R = Universal gas constant, cm atrn/g mole K
T = Reservoir temperature, K
z = real gas deviation factor

Substitution of Eq. A-2 into Eq. A-1 yields Eq. 1 in the main text

which is:

ke P, p p
f f +°f q. @ . f
v {:ﬁw— z VY Pr ] 7 " Tt (%f z ) (A-3)




Where:
4 = volumetric flow rate per volume of shale matrix element,

cm3/sec/cm3

A (e
Vm U n surface

surface area of matrix element, cm2

-l
1

volume of element, cm3

-
fl

Equation A-3 describes gas flow through the fractured shale reservoir
with a source term which is the contribution from the shale matrix. Gas
transport through the matrix is also described by the diffusivity equation
with a source term due to desorption of gas from the pore walls of the

matrix. The following equation describes the motion of gas through the shale

matrix. )
’ l:pm el prn:| fug =gr (g o) (h-4)
Where:
kgm = permeability to gas, darcy
Wy = desorption rate, g/sec/cm3 shale
Py = matrix pressure, atm
¢m = matrix porosity

The rate of desorption can be expressed as:
VW, = - M .d_cgl. EE.[E. (A“S)
d dpm ot

Where:
Cq = concentration of gas at the surface of pore walls;
moTe/cmssha]e

dc
(EEQ' slope of gas desorption isotherm curve, mo1e/cm3 shale/atm
m
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The gas permeability of a porous medium usually exceeds the 1iquid
permeability of the same medium. The difference in these permeabilities
is due to the phenomenon known as gas slippage which is related to the
mean free path of the gas molecules relative to pore diameter. Consequently,
the gas permeabilitv of a porous medium should be a function of the
temperature, pressure, and the nature of the gas. Kiinkenberg developed
the relationship between gas permeability of a porous éedium to a non-

reactive Tiquid,®V yiz:
- 4
kg = Ky (1 + r) (A-6)

This equation was derived assuming that all the capillaries in the
porous medium are of the same diameter, and are oriented at random through
the solid material. In Eq. A-6, kg is gas permeability, kz is Tliquid
permeability in a single phase completely filling the pores of the medium
at constant temperature, A is the mean free path of the gas molecules, r is
the radius of capillaries, and C is a proportionality constant. The mean
free path can be expressed as:

3= 1 = RT
Vo dn Von EﬁNdZ

(A-7)

where d is collision diameter, n is concentration of molecules per unit

volume, N is Avogadro's Number, p_ is mean local pressure, T is temperature,

m
and R is the universal gas constant. The following is obtained by combining

Egqs. A-6 and A-7:
CRT -
kg = kp (1 +'——1L““3;:‘) = kp (1 + 2;—) (A-8)
\IZn'rNd P P
where b is the Klinkenberg factor, which is constant for a given gas and a
given porous medium at a constant temperature. A graph of kg VS. 1/5&

should result in a straight line with an intercept of k2 and a slope of bkl.
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Thus, gas permeability is greater at low pressures.

As can be seen from Egq. A-8, kg is a function of mean pore pressure
and pore diameter only because all other parameters are constant for a
given gas and a given temperature. Since pore diameters are small for
Devanian Shales, "b" is expected to be large. Therefore, the Klinkenberg
effect or slippage factor cannot be ignored in the Devonian Shale model.

Substitution of Egs. A-2, A-5, and A-8 into Eq. A-4 yields:

Y [";L E% (i'*’%m>vpm] ) ‘;’d;%l +¢m%E (;Hi) (A-9)
m

Where:
dcd
¢d = & RT, dimensionless

The source term in Eq. A-3 can be determined from the solution of
Eq. A-9. The solution of Eq. A-3 with respect to Tollowing initial and
boundary conditions then gives the pressure distribution in a Devonian
gas reservoir.

Initial Condition:

Initially the reservoir pressure will be assumed to be uniform and
equal to Ps. Mathematically this can be stated as follows:

p{r,0) = p, (A-10)

Inner Boundary Condition:

For a general purpose simulation, the flow rate or pressure will be
assumed to be a function of time at the inner boundary (wellbore). Mathe-

matically, a variable rate or pressure condition can be expressed as:

ap(r,t)

. o r . a(tu (A-1T)

Variable rate: (}__SF_ﬂ;>rurw T

Variable pressure: p{r_,t} = p ¢ (t) (A-12)
w wf
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Outer Boundary Condition:

The reservoir will be assumed to be bounded with no flow at the

outer boundary i.e."

(r agir,ti) =
rEry

ar

(A-13)
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APPENDIX B
ANALYTICAL PROCEDURES

The flow in the fracture systems is given by Eq. 3, with respect to
initial conditions Eq. 3a, and boundary conditions Eg. 3b and 3c.

Equations 3 to 3c can be linearized by applying the pseudo-pressure trans-

formation. The pseudo~pgessure18, ¥, 15 defined as:
f
ve=27 Prodpg (8-1)
0 zp

The variable e has the dimension of pressure-squared per centipoise.
Equations 3 to 3c can be rewritten in terms of the pseudo-pressure in radial

coordinates as:

13 (rampf)— 2k (ampm> 1 LR (B-2)
roer ar akf ar jr=a e 2t
Ay {r,0) = 0 ; Py ST <1y (B-3}
Mpe (rpt) =89 05 >0 {B-4)
(=)
v Jr=re - 03 ©0 (B-5)

Where:
Bbe = 0y - byr

Ng = kf
Foeguty

To solve equation 8-2, (subject to initial conditions Eq. B-3,
and boundary conditions Egs. B-4 and B-5) Eqs. B-1, B-4 and B-5 are trans-

formed in Laplace space as:
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Y. k aAY _—
18 fl_ _m m .S Ay _
r or (r r ) akf ( r ) r=a g f (B-6)

(B-7)

e =0 (B-8)
ar Y‘:“Y‘e

To solve Eq. B-6, aAwm) must be determined and therefore the
r=a

ar
flow equation for the matrix element must be solved.

The flow in the matrix element is given by Eq. 4, with initial and
boundary conditions given by Eqs. 4a, 4b, and 4c. Equation 4 can be

linearized by applying psuedonpressure8 in radial coordinates as:

s () o1 % (B-8)
r ar ar N ot

£q. B-8 will be solved for a cylindrical matrix element subject

to the following initial and boundary conditions:

0; 0<r=<a (B-9)

sy, (r,0)
AY (0,t) = finite 5 t > 0 {B-10)

Ay (a,t) = Ape itothe surface of the matrix element; (B-11)
>

Where:

n,6 = km
M omCy ¥y
P p
= _a p
lpm - i 2u m

The general solution of Eq. B-8 subJect to Egs. B-10 fo B-i1 in

Laplace space is given by:

Aﬁﬁ = AE% I, (ar) /7 1, (ra) (B-12)
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Where:

S
i
3 ‘m

fil

Taking the derivative of Eq. B-12 with respect to r, and setting r

equal to a yields:

aaﬁﬁ B
™ =g =AU 11 {(ra) / 10 {ra)

Substitution of Eq. B-13 into Eq. B-6 yields:

gAY
1a_ fY__s .+ .
roar (} ar ) n(s) Avg 0

Vihere:
1 ) 2 k. S I;{xa) L1
n{s) sake I,(xa) e

(B-13)

(B-14)

The solution of this equation with respect to boundary conditions

Egs. B-7 and B-8 gives Eq. 5 shown in the main text.
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APPENDIX C

NUMERICAL PROCEDURES

The flow equations for fracture systems and matrix elements are given
by Egs. 1 and 2 in the main text. These two equations must be coupled with

the source term into the fracture system. The source term is given by:

Ak ap
s .MM m -
77 V, v (ar )vca N (c-1)

Simultaneous solution of Egs. 1 and 2 coupled with Eq. C-1 and the fact
that Pg js a boundary condition for the matrix element, describes gas trans-
port through the Devonian Shale.

In discussing finite-difference techniques for solving Egs. 1 and 2,

subscripts "f" and "m" will be dropped for simplicity and readibility.

Solutions of Flow Fquation for the Fracture System

Equation 1 may be efficiently solved numerically using the following
stepwise procedure.
Step 1: Define a block-centered grid with radii defined as illustrated
in Figure 4.
Step 2: Write the finite~difference approximation of Eq. 1 for node i
over a time interval At as:

Tse [1 Bk _3py Bk 3B,
pSCT :"T‘_; uz  dlnr’ 1+k wz 3dlnr’ i-%

+ (q (C-2)

sc)i -

(rigg = Ty

T ¢
sc 71 ntl n
pscTAt Ep/z)~] (p/2)1:l
Superscript "n" denotes time and UYee js the source rate in SCF/day/

cu. ft.
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Step 3: Expending the flow terms in Eg. (-2 at the grid block
boundaries, using the relationship for radial flow through
beds 1in series, and multiplying Eq. (-2 by the grid block

volume the implicit-difference form becomes:

+ + + + + +

Wl (3 - o) il (R ) =)
(qsc) i =T [(D/Z)?H - (p/z)‘.}‘J

Where:

T
e+l _ 5C y n+] n+1
TRin‘/z = 7h (ps(-T) T”i-lé (pi_] top; )

= interblock transmissibility

po= Tsc (vp)i
i pSCT At
V.o o_ ,
p = pore volume
k. 1 ki
-1
T, = Lal i

SCF/day

G%c)i
The grid block volume used in Eq. (-2 is defined as:

Step 4: Expand the p/z term on the RHS of Eq. (-2 to get:

n+l n_ .n 11 V.1 ntt on
(p/z)'i - (p/Z)’i = Py zn+1 N F 2n+-l Py Pj (€-5)
i i i

Step 5: Define an iteration scheme for solving Eq. £-3 with the RHS

expanded as in Egq. C-5. Begin with old time level values for

in Eq. C-5; then iterate until no further
change in pressure is observed; i.e., if "*" denotes the
latest calculated values for p and z then Eq. C-2 can be

written as:
41



AT B Y0 L S A S R A e
i, (pi—i s ) t Ry, (Pi+1 " P ) ¥ (qsc) j=  (C-6)

Equation C-6 can be written as a tri-diagonal system:

n+l n+l n+1 .
A, n h. A . . . = . -
I N M M d] (C-7)
lWhere:

on Q*
a1 - Tl'i"'-l/g

_ * *
c; = TR1+%

- B n,.n
di = ~(a5c )i = T (ef/25)

19

The Thomas Algorithm ~ may be used to solve the system of equations
given in Eq. -7 for new reservoir pressures. TR*'S and z*‘s are then
recalculated and the process is repeated until the maximum change in
pressure at any node is less than some specified tolerance. Note that at
ntl

*
convergence, Z, will be essentially equal to z;

20 and has been

This iterative procedure is described by van Poolen
found to work very well. Usually it will converge in two or three itera-
tions and seldom requires more than six iterations, even for very large

changes in wellbore conditions.

Boundary Conditions: The external reservoir radius is closed which 1is

easily accomplished in the Thomas Algorithm by setting:

cy = TRy, = 0 (C-8)

where N is the outermost node.
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The internal reservoir radius will be less than the wellbore radius
and will also be closed by setting:

81 = TR}_’_% = 0- ((;"9)

Fhus, node 1 will actually be "within the wellbore" as shown in

Figure 5. This permits easily specifying either a constant rate or a

constant pressure over any time-step.

Solution of the Flow Equation for the Matrix Element

Solution of Eq. 2 may be accomplished using the same basic procedure
described above. Subscript "j" will be used to distinguish the matrix
equations from the reservoir finite-difference equations.

The Klinkenberg term can be handled by using the relationship:

(kp)s = kp (1 + b/p0) (C-10)

An additional term due to the desorption in the matrix flow equation
is present. The finite difference-scheme for [q. 2 is as follows:

W (5 ) o (s w) s e

_\_,.'j_ ..d._..(_;. *k pr_]+1 - pn
At tdp Pj J J

*
where: ** denotes the average of pj and p?.

A tri-diagonal system is again present as:

n+l ntl ntl | _
35 Pjoy H by Pyt Py g (¢-12)
*
where: =2y TRj_%
* * r. V.
bj = o= TRj_a,z" TRJ'.{.:,z_M-l.._J de ) s
* At \dp/p;
Z. J
J
= ¢, = TR,
G s



= - ..,._J_ ._.‘}M gE_ *k r.!
d n Bt (dp) p; | Fi
2" i

The Thomas Algorithm and the iterative procedure described in the

previous section may again be used to solve Eq. C-12.

Boundary Conditions for the Matrix Element

The pressure in the outermost node will be held constant {over a time-
step) at the prevailing fracture pressure of the reservoir node in which

the matrix element lies as in Figure 6.

Source Term for Reservoir Equaticon

In order to evaluate the source terms (qsc) in Eq. (-3 we observe that

i
the flow rate out of the matrix elements within reserveir block i due to

holding Py constant at pg ; is:

(qsc)i = TRy, (Pm,j~x - Pf,-i) (Nm) i (c-13)

Where: pf,i and pm’j denote the fracture and the matrix pressure respec-

tively, TRj_% = transmissibility between the two outer matrix nodes:
2 2 .
W) (“m i )(‘ - 4’1) (C-14)
mJ i a2

In developing the code it was found that the use of Egq. C-13 sometimes
gave inconsistent results with a = 10 cm due to the very small distances
and very small pressure drops involved. Thus, an alternative method is

used which determines A from material balance considerations as shown

below:

s'ﬁecrease in gas amount of gas
(qSC) i = antent over + desorbed overir,i (C—]S)
1 time-step time-step At
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It was determined by comparison with both analytical and numerical
models that the pressure distribution within the matrix element was

correct.
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APPENDIX D
USER PROCEDURE AND PROGRAM LISTING

1. WELLBORE OPTIONS

In addition to the capability to specify any rate or pressure each
time-step, the numerical model has the following options and special

Tealures:

2]

1.1 Skin damage. As presented by Craft and Hawkins,®’ the "infinitesimail"

skin factor, s, introduced by van Everdingen22 can be related to a

finite damaged zone of radius r and permeability kd as follows:

skin

s = ——d p[_skin (D-1)

In the finite-difference model it is convenient to take Y3 = Yorin

as shown in Figure 7. Thus, for any specified skin factor, we can

solve Eq. (D-1) for the correct value of k, to find:
- 3 (D-2)
d 1 % S

Jn(r3irw5

Where k2 is the undamaged permeability of Node 2.

1.2 Wellbore storage (afterflow). If the wellbore (tubing and annulus)

is full of fiuid at the time of shut-in, which is nearly always the
case for gas wells, the sand-face rate after shut-in must satisfy

9y Bgdt = Y, ¢, dp (D-3)

Solving for U and using the definition of gas formation volume

factor gives

dp
9e = P77 "ww dt (D-4)
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1

.3

For a real gas, the compressibility of the wellbore fluid, ¢

WD
becomes
-1 .1 dz_ -
g 5 z dp (D-5)
This gives, after some manipuiation,
q = TS(:V!.'J d{p/z) (D-6)
s¢ P SCT dt
In finite-difference form Eq. D-6 is
TV
41 +
ates = 2=t L {oe™ - (p/2)"] (0-7)
s¢

Equation D-7 is used for the wellbore storage in the numerical
simulator.

Since node 1 is 'within the wellbore' in the reservoir grid system,
it is only necessary to assign the entire wellbore volume to this
node in order to simulate wellbore storage effects after the well is
shut-in. Of course, the calgulated node 1 pressure will then be the

average wellbore pressure.

Back pressure equation. The Culiender-Smith Equationz3 solved for
bottom-hole pressure is:
pgh = g pgh + qﬁCFD 6 Tazg X ess— 1 (D-8)
40000 d
Where:
G = gas gravity
Ta = average wellbore temperature, deg R
z, = average gas deviation factor
f = friction factor
X = well depth, ft.
d = tubing 1D, in.
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P = wellhead pressure, psia
Pop = bottom-hole pressure, psia
S=.0375 6 K/Taza.

The friction factor is given as a function of Reynolds Number (RE)
and pipe roughness in Figure 7-3 of Kat223.
For laminar flow(600<RE<2100) f is given by

f = 64/RE (D-9)
If RE is greater than.4000, f many be obtained by solving

1/F% = 2 log(d/e) + 1.14 - 2 ]og[] +9.34 (d/e)/RE fl/‘*] (D-10)

where e is absolute pipe roughness in inches. The Reynolds Number
is given by

RE = 20 Quepn G/ud (D-11)

A subroutine FRIC has been written to solve Eq. D-10 for f using
the Mewton-Raphson technique. The routine also uses Eq. D-9 for
laminar flow, sets f to zero for RE less than 600, and uses a
default value {specified by the user) for the critical range

{2100<RE<4000).

Another subroutine (PBH) uses the value of f determined by FRIC in

Eq. D-8 to calculate bottom hole pressure, Phn given values of well-

head pressure and other parameters. Since Z, depends upon the
average pressure, and Poh is not a priori known, an iterative pro-
cedure is required. Once Pon is calculated z, is updated and the

calculations repeated until Pbh stabilizes.

Also, since q depends on p., in the simulator, iteration must be

performed at the end of each time-step using

- 0.5 (q" + "N (D-12)

an
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0f course, each time a new rate is used the friction factor must be
updated. The point is that at the end of each time-step the values
of bottom-hole pressure, production rate, friction rate, and z-factor

are consistent.

These options provide a very powerful tool for studying gas well
performance. In fact, together with the capability to vary rate or
pressure as a function of time, virtually any gas well test or
production performance can be simulated, with or without the effects

of the dual porosity system and gas desorption.
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2. DATA PREPARATIGN

The code is written in FORTRAN IV with some IBM extensions, Unless
otherwise specified, integer and real variables are read with 15 and
F10.0 format specifications, respectively. The simulation model consists
of a calling program with several subroutines for performing special
functions such as the calculation of interblock transmissibilities and
bottom-hole pressures.

A1l data are read by the main program in this model. Detailed instruc-
tions for preparing input data are given below. Where the designation

'title card' appears, the card may contain any desired information.

Input Data

1. Title Card

2. Reservoir & Wellhead Temperature & Shale Density --- FORMAT(3F10.0)
7
TSURF

RHOSH

3. Title Card

4, Gas Gravity & Wellbore Parameters ------------ FORMAT(7F10.0)
GR ~mmmemm e Gas specific gravity
1] Tubing ID (in)
E omm e e e Tubing roughness (in)
X mmmmm e Well depth (ft)
DFTV mmmmmem e Default value for friction factor
ODIA crom e e Tubing 0D (in)
CSGID = ommm s Casing 1D (in)
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oh

10.

1.

12.

13.

Title Card

Number of Gas Property Cavrds to be Read ---- FORMAT(15)

NT1

PTT —o e Pressure (psia)
VIS — oo e Viscosity (cp)
IT mmmmmmm e z-factor

NTl cards are read.

Title Card

Number of Values in Isotherm Table

NTO

2 U Pressure (psia)

FORMAT{3F10.0)

FORMAT(I5)

FORMAT(2F10.0)

CT mmmmm e e Concentration{cc @ STP/gm)

NTO cards will be read.

Title Card

Initial Parameters for Isotherm Equation --- FORMAT(2F10.0)

Bl
B2

See comments in program listing for details.

Note that if B1=0.0,

no desorption will occur giving a 'dual porosity' simulator.

Title Card
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14.

15.

16.

17.

18.

19.

20.

21.

Reservoir Grid Parameters ---—-s--oemmwammnn FORMAT{15,2F10.0)

MR ~—wmmmmmmmmci e Number of grid-blocks

ALPHA ---mmmemmoe Geometric multiptier

DR(1) —---=wmmmm Size of first grid-block

J memmemvnme e Grid-block index

DR{I) ---—m-mmmmnn Size of grid-block I (ft)

See comments in program listing for details. MNote that since a
block-centered grid is used, the outer radius will have index NR+1.
Title Card

Reservoir Thickness =—-—-—weommmm oo oo FORMAT(F10.0)

H

Title Card

Reservoir Grid Data FORMAT(15,3F10.0)

J mommmmem e Grid-block index

PHI(I) —~=-mmmmm- Porosity

K(I) =mmmmmmmmmmmem Permeability{md)

P(I) ~=remmmmmm e Initial pressure (psia)

Title Card

Skin Factor =——mmmmmmm e e e FORMAT{F10.0)

S

If S=0.0, nothing happens; if S is positive, the node 2 permeability
is altered as explained in the section on Welibore Options; negative
values of S are not permitted.

Title Card
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22.

23.

24.

25,

26.

27.

28.

29,

30.

Klinkenberg Parameters ---eemmmommcmmmemn FORMAT(3F10.0)

BK mmm o e Klinkenberg factor ‘b’
o B Parameters for Klinkenberg
[2 —ommmmmm e equation

If BK=0.0, b=0; if BK is positive, b=BK; if BK is negative, b is

determined from b = (] k] ~C2, where k] is the absolute matrix permeability.
Title Card

Matrix Element Parameters -—~ee—e—mmcmmmeans FORMAT(15,F10.0)

L Number of matrix element grid-blocks

ARAD -=-mvmmm e Matrix element radius{cm)

Title Card

Normalized Cumulative Radii --w=rommeuaeoon FORMAT(15,F10.0)
J o Matrix element grid-block index
RAN(J) ~mmeemm Cumulative radii

Note that, since a block-centered grid is used, the outer radius will

have index NRM+1.

Title Card

Matrix Element Properties -------mrecmmmnmnn FORMAT(F10.0,E11,4)
PHIM e Porosity

KLM mm e e Permeability(md)

Title Card

Master Code -—~--—r-mmmmcmem e FORMAT(15)

MCODE
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31.

32.

33.

34,

If MCODE = 0, all matrix element calculations are bypassed giving a
standard 'single porosity' radial gas simulator. If MCODE = 1, a
normal run will occur; if MCODE = 2 a normal run will also occur, but
with suppression of any matrix element grid-block pressures greater
than the initial pressure. This was found to be necessary in one or
two cases involving low reservoir porosities to avoid physically
unreal adsorption rates due to intermediate calculated pressures

{(i.e. before convergence) one or two psi higher than the original

prassure.

Title Card

Title Card

Variable Pressure Parameters ~--=-====mmemm-- FORMAT(215)
NVPN —mmemmmmm e me Number of different pressures

KBACK ~—=-=vmmmmme Back pressure 'switch’

If KBACK = 0, all specified pressures are assumed to be bottom-hole
flowing pressures. If KBACK = 1, all specified pressures are used as
flowing wellhead pressures and the bottom-hole pressure is calculated

as explained in the section on Wellbore Options.

Well Pressure History ~——w—-mememmommme—m—m—— FORMAT(F7.0,4x,4F8.0,5x%,
4r8.0)

3 Well pressure(psia)
D} ~-vmmmm i Day |
Hl ~mmmm e e Hour

) "on time"
Ml wemmmre e Minute for PUL
SECl —-mmmmmammm o Second
37— Day |
HZ e e Hour

"off time"
M2 mom e e Minute for PUL
SECZ ~enmmmmme e mm Second
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35.

36.

37.

38.

39.

The value of PWL is assigned as the well pressure whenever "on time"

< simulation time (@ end of step) < "off time". HMNote that NVPN cards

are read.

Title Card

Title Card

Number of Variable Rates ~wwrecmammmon o FORMAT(15)
NVQN
Hell Rate HiStory w-—e om0 FORMAT(F7.0,4x,4F8.0,5x,
rF8.0)
QV mememm e Well production rate (MCFD)
Dl - Day
H] crmem e e ~—== Hour "on time"
L Minute for
rate QV
SEC] ~mrmme e e Second
D2 ~eee oo Day
H2 e e o e e e Hour "off time"
M2 e Minute for
rate QV
SEC2 —-mmmm e Second

The value of QV is assigned as the well production rate whenever "“on
time" < simulation time (@ end of step) < "off time". Note that NVQN

cards are read.

Title Card
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40.

41.

42.

43.

44.

Wellbore Storage Parameter ------=w-mm—seome-s FORMAT(15)}

KSTOR

The parameter KSTOR has no effect unless the well is shut-in. Upon
shut-in, a non-zero value of KSTOR causes the node 1 volume to be

altered to include the actual wellbore volume {tubing & annulus} so

that afterflow may occur. For details see the Wellbore Options section.

Title Card

Run Paramelers = —mwmme o me oo m e s i o e FORMAT(15,5F10.0,15)
NMAX ~-mmmmmmmm Maximum number of time-steps

THAX ~—mmmmmmm i e Maximum simulation time

ERR —wrmmmmcmmmmm Reservoir pressure cycle tolerance

ERRM ~-=mwmmmemmmn s Matrix pressure cycle tolerance

ERRF ~-memme e Tolerance for iteration procedure

DPY mmmmr e e Tolerance for bottom-hole pressure calcs.

KT] ==-=mmmmmmmmmmm Skip print parameter

A complete printout will be obtained every KTith time-step, including
the first and last step. The convergence pressure tolerances should
be in the range 0.1 to 0.001. ERRF has the most effect on reservoir

material balance errors.

Title Card

Time-step $izes —--~=mmmmomsmmms s s e s FORMAT(4F10.0)
DAY

HOUR

MIN

SEC
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As many cards as desired may be read. For each card read, the time-
step size is converted to days for internal use. If N cards are read,

all time-steps after step N will be the same as step N.
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3. COMPUTER PROGRAM LISTING
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Z/AKSUNGAS JGB (6S2803F4,3017)
FEIDAPARY [ 2840L.=9
7#HOUTE  PRINT RMT1?
¢/ EXEC FCRTGCLG.PARM.FGRT="NCSCURCE" ,PARFLKEE=*LET,LIST' ,REGION=2JCK
J/EORTLSYSIN DD *
IMTLICIT REAL®8 (A-F,0-2)

#
#
4
&
£
1
!
i
{
H
i
i
|
|
1
I
c
A
Gy
ped
N
{
f
1
[
i
1
[
i
{
|

o
C FaplabL FLCW MCDEL FOR (UNCCHVERT ICANALY GAS FRCDUCTICW FROM DEVONIAN SHALS
- LIEVELOPED FOR SCIENCE AFPLICATIONSs INCaes NORCANTOUNY BV
Creak ARNMAYS FOR (FRACTURED) RESERVIIF
TEAL=8 K(QO)gKI(40)sMCFIqHCFC-NCFA;1HBE»NEE-NSC
SIV”\SIC‘ DRUALISTROGLI»VPL40)+TPL(E0)»TFZ{EI)}+FPWLI(S3) e TCGLI(5D),
TA2{F3)sCV(S0)+PHI{A2)+08CLA40)sP(40)+PN{40)+PG(40).PF(40) .
5°STPQ(40) BE(40)>VIS(40)2Z2(40)+ZN{40)yGAVMA(4Q)»BRKLF(40)
J-QW(101).PW(533);FwH(533)-CUMPRD(SOJ)-CUMIhJ(SJG)-FCZAVG(EJC}v
ETT(S00)+OM{B00 }»QL(S500),CUMDSFIZ00)»CUMP{A40)+CUNIL40)
CEEES AETAYS FOR MATRIX ELEMENT
FEAL®8 KLMsKGM{Z20)+»MCFMI oMCEDISMCFNALZIMBEM(4C)s MBEMLGO) .
ENFE(LI)SININSMCFDAZINI{(4D) s NSCH {40 ) ¥BEN
DIMENSICN RAN(EI)-RA(ZI).VCLN(EO);UPM(EOJ-FM(QO-ZO)-FMN(40;20).
EPME{20)»PASTAR(Z20) e VISM{Z20) s ZH(20+20) +ZMN{40,20),
ETRM{21)sGAMI{2I)+AZM(2D)IvBIVMEZI )L CIMI2I)LDZM(2I)
EsQ0(20) s A(2+s2)sFF(2,50)sB3¢2r.C0CC{40)+GASMI(40).GMCAL(40)sCMA(40)
EeGAACTIAY) »PRD{40)POLD(4G0)
SRRy ARRAYS FOR GENERAL USE
INTESER®Z HEADIN(4D ) sPFLAGHCFLAGIFLAGLIR(4))
REAL A8 M1 M2,MIN
DIMENSION FT{S0)sCT{S80)sYE(SOI»LEVIEO)LAZ{40)+EZ(40),C2(40),
c EDZCUAYIVEZCA4L )2 FZI4E) 2 UZ(43)sPTLI(SI)Z2T(50)sDUN(E0),DLMI(50)
C
DATA PSCy TSCHINDWETI/ 14479520420y 0.3/
DATA TRy TRM:GAMICUMPRD  PUH/ A 13 002215003205 Cals 20050250000/
DATA CUMINIZCUMDSFE QM QD 4y GMCAL/ES00F 0204 500% 0038333 0e0+802%2,.0,
CaD0.0/+yCUMP yCUMIZ40%) 203000/
DATA MBEyRVOL«NCFIZMCFCyMCF A 00020203004 0.090.07
C
DAT A RVCLM JMCFMIsMCFDIZMCFEMAY 00,00l 004Ce8/
DATA NRMAX MRMNMAXA4D420/
c
FCUXsBl+52)=EI%X {1l + BE?KI
DFDX (XY ZI=YA L o+ 25X F{L e+ 2X )1
FRI{XsAyB) = AxX33B
C
C

AZ{1)=0.0
NRM¥M=NRMAX+]
NRMAT=NRMMAX+1

C
CHxx% READ RESERVCIR £ WELLHEAD TEMPEEATURE £ SkEALE CDENSITY
SEAD E3+HEADIN
READ 137,T+TSURF, RHCSH
PRINT 91 TsTSUKRF»RHOSH
T=T+460.
TSURF=TSURF+4&0.
TA=0 «G*(T+TSURF)
CON=P5C+Tx 1000 ,/TSC
COM1=14./CON

C
READ 69.HEADIN
READ 137'GFsDIAvaX.DFTV-ODIA-C&GI?
ERINT 177-GR.QIA.E-X;DFTV,UCIQ'CSG G
AI"GR*TA XA(H020D £ #DFAEXS)
2= JITE=GREXATA
C
C
Coxam QEAL GAS VISCGSITY & Z-FACTCE DATA

READ &9,HIADIN

READ 1,NT1

READ 92 (PT1(L)»VIS(L),ZT(L) ,L=1aMTL)
PRINT 93

BRINT S5

DRINT 97 (PTL(L) W VIS{L)»ZT (L) L =1,NT})

C

Casxxa=EAC ISCTHERM TABLE
REZAD 69 HEADIN 59
READ 1.NTJ



FEADY 200 {PTLI)»CTLI) e d=1a8TQY
PRINT 9%
PRINT 101
SRINT 103, (PT{J)LT{J)+d=1 4NTD)

Casws MCN COMVERT TG DESIRED UNITS(BSIA & SCF/CU FT)
< CONSTENT 1+0566 CCNVERTS FRCM 0 DEG € TO &0 LCECG F
- {MOTE THAT CC AT SC/CU CM = SCF/CY FT)

50 23 J=1aNT2
AT =AT( ) %1447
99 CT{a)=CT{ J}HERHCSH*1 . 1569
w45 HETSAMINE LEAST SCUARES CUEFFICIEN
w=an INITIAL ESTIMATES OF CCEFFICIENTS 81 £ E2 IN TrE ECUATION
21#p/{1 + BE*F)
1 UBUALLY TID WAST SATS

A AC An TRTTTAL CUEGR
IF Bl IS READ AS ZEAC

T oLEOMT el
c GESCHETIEN witb CCCUF

TN
ac
mn
<.
rnm

a

-

S IAIARSEREREM]
A 4

o=

= 0 LHWO

1 =l Am e

PRINT 1370

-
»
AOP

)
)

e
(ol ol o
e »
~~ N
|

Pl

MO == 0 300
A T AW Am

NTOPT+CTsAsBE,CX3FF,EZ4YEDEVDUN DUV

IR I R W (e Pl -3
IO D= G0

J ey
~—~T

C
ChFEkd =ZS5TA
C

L 1SH RESERVOIR GRID OIMENSICNS

REAL 63 HEADIN

AEAD 1+NEALPHALDR(1)

NR1=NR+1

ZRINT 3aNR

IF(D2(1)}stE-0ad)GLC TO 104

IF DR{1}elL.E-Z&ERJ READ ALL DF(I}'5

GT«ZERD0 USE ALPHA TQ TALCULATE CTHERS
+NR1

A%DR(I-1}

P{1)sI=14NR1])
[O-EL.OCK CENTERS
K1

#{DR(I=1)+DR{1)]

3
R

0
R
4
S

Yy~ gile
(5 M of 1V

bt o] @ s [T
¢+ e

INT 5
SRINT 7+(3+DR{IIIDUM{T) IS MK)
ARINT 7.HR1,0R{NEL)

Gx3.25 * {CSGIDHLSGID - (COIA*CCIA~DIA*DIALY) * X/144.
g * 006328 ¢ CON1 % H
AZ G VRELLZTPI

T 00N
2z

I(IY+K(ID)eP(1)al=]NRD

1+PHICID+K(I}»PTL ) l=1sNE)

CTURE PLROSITY(NATURAL FRALTURES)
TURE PERMEABILITY ) .

IAL ERESSURE IN FRALIURE SYSTEM
TIAL PRESSURE IM SHALE MATRIX

anonn
v
-
i1
i
z

s NR

B+
T 2

P N
N

214  ON
C

Cxwx%w REAC 5 ACTCR (MUST BE PCSITIVE)D
READ &
READ 1
L -5) GC 70 21¢&
1e + S/DLOG{DOR{ZI¥CR{2)))

Cawak READ KL INKENBERG FACTAR

216 RSAD 69 ,HEADIN
READ 137.8KaCl,4C2
IF(BRLTadad) PRINT 31)9+C1.CE

c IF(EK.GE«0.0) PRINT 3111.8K

Camk® TSTABLISH MATRIX ELEMENT GRID HIMENSIONS
SEAD FOL,HEADIN 60




1

R}
£
R
ik
Y

A -
ELO ]
3+
A3

(NN

[#]]
[

OO OV
X
e
e

ono*
)

N M NN
TS
(¥ Y]

26D
C

READ 51 +HRMy ARAD

NRM]I=NRM+1

PRINT 19, ARAD

FEAD NORMALIZED CUNMULATIVE RAJQII
DEAD 69,HEADIN

REAND Sl (JsRAN{J) s d=]1yNEML )

0o 12 J=l.NrMI

RAlJ mRAN(J)#AFAD

AT 21

ST 234 {JdRAN{II+RA(I) =t NEMLD
NCY CONVEIRT RA TC FEET

D5 128 J=1,HNEMI
R (SI=RA{J}/S G428
ARAD=ARAD/ 3D W4 E
ARADP=ARAD®ARAL

QEAD MATRIX GRID JATA(PHIM § Xuy)
READ 69,yHEADIN

MM =F

READ 1377 PHIMKLM

DRINT (777.PHIN,KLHM

READ MATRIX CCDE (IF MCODE=DY ALL HATRIX CALCULLATICKRS witlL BE EYPASSED)
FEAD 69.HEADIN

SEAD 1 L.MCODE

IF{MCODE.ECa2) PRINT 3115

IF{MCODE.EC.Y) GG TO 258

INITIALIZE MATRIX PHESSURES & Z~FACTCRE
20 218 I=1.NR

BR=P (1)

CALL INTFPLIPT1+ZT+NT1,FPsZZ)

I 218 J=14NEM

ZA{I43)=2Z

PM{IsJ)=P(1I)

CONT INUE

CALCULATE NUMEEFR CF MATRIX ELEMENTS IN EACK CRIC-ZLCCK
ME(13=0.0C

D0 2576 I=Z.NR

NTLTIYe(DREI41IRICR{I+1) — DROIVADR{I)) % (1.~-FrI{I}}/ARADZ
CONTINUE

CALCULATE PORE VOLUME & INITIAL GAS I ®LACE
wwwwwwwwww FRACTURES w—mwmmm— ot

CALLL INTRPILI(
2C(I¥=CON=* 227
GAS=VRP( L) /UG

A

I{1)=27

IF{MCCOE.EC.0Q) GC TC 248

GMY = L231%(1.—-PHI{I}) % VOL # bl = F(I})/(1l. + E24F(1})
¥YCFELI = MCFDI + GRD

PRIMT lll»I'VCLgVP(l)oFVuL 22 EG(I) sCAS+VCF1WMCFOI
CONTINUE

DRVGOL=1 . /RVEL

IF{MCODE.EQ.0) GC TO 268
wwwwwwwwww MATRIX —————me——==
(ASSUME INITIAL MATPIX PRESSUKE 5 LCCAL FRACTURE FREESLRE)

VOLMO I =22 141563 (FACI+HL YRS I-RALLI=RALS) Y 3FY
VEA(I)I=PHIMEVELM{I)

SVOLM=SRVCLM+HVYPNM L)

PRINT 1114 JaVOLM(I),VRM{) $RVILK

CONTINUE

ORINT 235

DO ZES5 I=1 .NR

DPA=R ()

CALL IMTRPLIPTI+ZTWNTLsFP+22)
ACUAH=CONEZ 2/ FP

GASN=RVCLM/8GM.4
GASMI{II=GASWANE( 1} 61
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3739

nar
=0
Lol =

MCEVMI=MCFMIFGASMILT)
PRINT 111+ 1 +BGMMyGASMaNE (1) +0AEMI( L]} MCFNE
CONTINUVE

TGTABLISH WELL FRES3SURE HISTCRY

Tl 3GTTOMMCLE PRESSURES- IF KEACK = O

———— WELLHEAD PRESSURES IF KEALK = 1

2T AD 6T, HEADIN

IEAD S89,HEADIN

3240 1B3,NVPh,KEACK

IF(KBACK.EC.1) BRIMT 163

KB =K BACK

IF(NVPN.EQ.0) GC TO 272

vrrﬂp rn_\\nrth 19Q

IF(KP.ECa1)PRINT 185

SRINT 131

0O 270 L=1.NVEN

GEAD 125:PWL{L) +»DIHLsNLSECILE2.F2,N2,SECR
DRINT 127sPUL(L)sDLlsHL M1, SELL1.D2 412,42, 8EC2
TAT(L) = DI + R1/24. + M}/154). + SECL/35400.
T92(L) = D2 + M2/Z64. + MA/1440. + SECE/BE400.
CONTINUE

CONTINUE

ESTABLISH WELL PRODUCTICN RISTCFEY

READ 69+HEADIN

RTAD 69.HEADIN

PEaD 1,NVEN

IF(NVAONLEQ.2) GG TO 282

ARINT 1&7

PRINT 169

S0 230 L=1,NVGN

REMD 125,0V(LY+DLyHL2ML4SECL LR 2 b2y BECR
PRINT 127,CV{L)sD1eHL, ml,s&c1.az.ha.~%.sac2
TQL{L) = DI + bl/24s + MIZ1680, + SECL/BEACC.
TOZ2(L) = D2 + h2/24. + M2/146460. + SEC2A86400.
CONT INUE

COMTINUE

DEAD VWELLBCAE STOCRAGE PARAMETER

FEAD 69,HEADIN

READ 1,KSTCR

IF({KSTORWNE.J) PRINT 151

KS=KSTOR

BT AN RUN PARAMETERS

QEAD 65, HEADIN

READ 1o“.NMAA.TMAXgERQ.nRSMaEFﬁFyDFt,KTI
IRINT 1ZS.NMAX, THAXsERFWE CRRAMYERFFLLEW KT 1

KT=KT1

PRINT INITIAL INVENTORY OF GAZ I [LACE
PRINT 3123

PRINT 32117

DRINT 211G MCFILNCEMIMCFOI

TGAS = MCFI + NMCFMI + MCFDI

FGF = MCFI/TGAS * 100,
FGA = MCFMI/TGAS #* 1J2.
£GD = MCFDI/TGAS * 10D.

PRINT 2121+TGAS,FCEF 2FGVN.FGY
ORINT 3123

ENTER TIMI~-STEP LLCCH
RELD 6YL.HEADIN

IF(PKelTeda) ORKLEFK{KLML1,02)
IF (KWL Te0e0) PRINT 4709y KLNWC1l.L24+EXL
CARUATI(A/TIS5, TEARAMETERS KLY .C1C2,E8KL ARED "L AELIS.ESS)

IF{ 2ManE.B.0) ZKL = BK

20 274 I=1 .Mk

K1{Ir=n{l)

XKFE=K(I)

IF(EKLTa0a0) SKLF{II=FR{XKF,C4C2)

IF{TKsL.TaDed} PRINT 471148 {1)aRKI(I )+ XKF 2 CL2CE2ERKLF(T)
IF(BrGEDJal) EKLF{I)=EK

CONTINUL

FORMAT(/TZ, "WALUES OF KEI) RILI I 2AKFSCLVvC2,8KLF (1) ARE:

62
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NF A= NRM-1
i) 1)3) Fle=l s (4MAX
-

SHiN)=

SFL ﬂo"'——"

NELAG=D)

ROCY=0

27=1Jd0.

DPAINS1000 .

[ I

IF{iaGT el JETI=a T +DELT

IF(INDLEQLD) READ (So137.END=CQC0) DAY »ATUE W MIN,3EC
IF{INDSEGeY) DELT = JAY + FOY/a4. 4+ 410i/1440e + SECAEC400.
ET{RI=ETIH0ELT

IFIMAa¥00l e NGEQeNMAX 1R NIZQKT)
BRINT 333 ,MNETIWDELTY

HIv=1L./DELT

IF{ETI4+«5%DELTSGELTKHAXIGD 7T 1001
INMITIALLIZE S5CURCE TERMS, STORE '"N-LEVEL' VALLES, & CALC GAWMA £ GAMY
D3 230 I=1eNR

S8C(1)=0.2

ISCL(I)=0.0

DI =P (1)

ZN(I)=Z(I)

SATMALI)=CONL*VE(I)*ILIV

CONTINUJE

IF{YIO2ELEC.I) 3¢ T8 569

DAL ES2 I=laiR

DT 252 JFA sNEM

SENCT s J)=AML T4 d)

ZANLT o D3=ZVL{1vd)

373 R00 J=1 kMNEM
GAad3(JI=CONL=VEMIDIRDTIV

CONTINUE

KECY=F =)

KCYZF=KCYPF+1
IF(REYPF. 6T 9% ) PRINT 4707
IF(¥CYPFGT LSS )ISTCP
IF(KCYPF.ECW1) GC TC 550

STLRT FRACTURE PRESSURES © TATES{ 23C) F&IM LAST CYCLE
DC F410) I=140MR

2Q(1)=GSC(1)

IF(I.GTeal)CSC(IY=2.7

CLLC(IY=PF (1)

PLE)=08%(PF(IX+P(I))

IF(KCYPFoGT+12) PLII=0.S=LF(L}AFRZLCLEY)
IELI)=RLT)

IESET MATRIX PRESSURES

DY G420 I=1.NF

20 TR2) Jrl.NAM

PM{E, JI=PMN(I+J)

CALCULATE NEw MATFIN PRESSUFES & GAS INFLUX IN BACK RESERVOIP GRID-SLOCK
DG Z100 I=2,NR

AZMINRYE)I=D D

TZMINRM)I=1 .0

CZA(NRM) =040

DZAINRM)I=P 1)

KCY¥=0

KCYMSKCY!M+1

2IRET CALCULATE “KLINKENIZRED ArGEHSABILITIES
D253 J=1,NUM

KG#{JY=RKIME (1, + ERLZPM(IWJ))

COLTINUE

NG TALCUL AT . MATHFIX TSANSMISSIGILITIES(TAN)
0 2296 Jdmle R

DP=EY(I4J0)

TALL INTHPI(PT1+ZToNTL1 PP ZLI)

CALL INTRPI(PT1I WIS HT1PPsV3)

AT )=22

TUAIL Ny =2

VIS (J)=VS

oUM{J)=pPP

CONTT NUE 63
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IF{NeFECs]l  ANDLKCYMLLTL2)PRINT 207

CALL TQNRJ(NRM,DJV,TRMyKGﬂQFA.ﬂ&A!,VISMerI)

IF{MNa3Tel w»CORs KCYYaGT .23} CL TC )G

20 2338 J1=1.NRM

a2 INT l@DnZ”(IeJ} VISM(J)1D?M{J) TﬂV‘J?:hKLtK»N{J)vPN(l:J)
CONTINUE

AETERMIMNS ISCTHERM SLUFS FEF SAlE ATHIX SLZMENT MNUDE

CCATINUE

IF (MaEels ND KLYMWLZ2)PRINY J4DC
DO 2231 J=1ehRM

BEUME) 52 (FN(Iy J)+FMN{Ls0))

AUM(J} = DFOX{FPFM,B81.82)

A1104) = «3ILAVOCLM{I) ROIVSDUNV )
IF{NeGTal «OFa KCYMaLl oz b il L il
ARINT 31d7sJeGANI(J)Y OUMCT) OLNILI)
CENTINUE

SET UD TRICIAGUMAL HMATRIX LEING FUSEFVLIA NLDE PRISSLRE AS ECLNDARY CONDe.

o 2312 Jsl.NEML

AZM(I)=TRMLS)

CZA{1I=TRM(J+1)

BZM (I} m~AZM{J)=CZV {J)~GAMIL.I} 72ZFFLJ) & DUl 0J)

DIM( ) = -~ {GANI(II/ZMN(I,+J) + EuML{J)) 2 Fun(Ied)

STORE LATEST PRESSURES & SOLVE ELR QMEW 1ATFIX ELENENT ERESSURES AT NODE I
o0 2014 J=1.NRM

OHI (J)=PW{IsJd)}
CALL LTﬁI(hF'oAZN;EZQcCZﬂnﬁ“”cE AF22UZ)

Ic(f\-EOolaAND KCYN-LC.ﬁ)PQI;\T i"!ai
TE(NaGTeleDFaKCYMLGT2}GO TC Z0ED

90 3016 J=1.NREM

DRINT 111+ 32AZH( ) WBZA(IIE€Z00D) 028 3)+FRICIISLZ0)
CCHTINVE

CONTINUE

CHECK FCR CONVERGENCE
ID=DABS(UZ(1)-FHI(L))
DD 333) J=Z.NEM
IOM=JABS(UZ(II-PRI{I))
IF{C2M. GT« LFIDF=0DFM
CONTINUE

22 ZNaz Jd=
PU(T s J)=UZ
T.

L]
4
=
IF({N+ZQul ol
K
K

IF(RCYM.G DeLReUZINRM) wh T leI)FTLH
ReNLEG«NMAX S DﬂpHﬂEC-nT) PAND s CPLLT $ERRM)
EPRINT 1611 CYH.I’DP.UZ{NR”l),UZ(\FN)
IF(DP.LTLERRMIGE TC 244

G0 TO 5600
CONTINUE

IF{El.LEZ.1.E~&) GO TO 3236

2D5=340

D0 3354 J=]+NRM¥

IF(MCODE.EC.2 +AND. PHM(Led}aBToENL1,4)) BM(Isd) = FNN{1,J)
ON=EU(1,d)

PEANSPANET v )

QDD = Q0D + VEOLM(J)#% (FC{FFMRLEL+EE) — FCIFFM.EL,22))

CONTINUL

QSCD(1) = «D.:1%DIVHECDDaNE(I)
CONTINUE

IF(KCYPF.E0e2) GMN{I)=GMCALI{I)
IFEN.EQ.1) GMN(I)=GASMI{I)
GS¥=)4)

D0 4536 U=} NFEM

CENEFATTS N B

ALl INT&DI{P 1.27 NT1 FEMa Z2¥)
BGUmCONSZZN/D

GE*=5 w+vp“(J}/EGu

CONTINUE

GHCAL{Y) = GSMw»NE(1)
INJ{E)=Q5CH{I)*DELT
SRDC(II=GHNCL

~GMCAL(1) +Ina(T)
64




1)y=PRO(I)}2CIV
CYPF.GTe3) GEC{I) = J.5%5(03CL
CYPF.GT-15) QSC{I) = D.S*x{Lx

Z0el CReNeEQoNAAX oCF o oE C ok
T 3103'(PM(IvJ}y-‘izlcNﬁM)l{-S{
INUE

GsC{
IF(K
IF({K
IF{N
IF(N
LORIN
COMT

™

5
F
F
[
F
P
o]
C

e
o Q
b

=KCY+H1

®

o

i
1€
i

3

ANMNWUNWONN

Y
LCULATE INTER-BLGCCK TRAMEUISHISILITIES(TR)
I=1 +NI?

o~

e ] et et B

1) % {la + 3BKELF(RMIAFP)

NAG~NNATI B N
D U P
Zm =T
Pt H
CRAMLZ~

Q
p

SRINT 139

AT 7 e T UG

18]
guoTmen
Z

-

]

?. L=

VS = (1
Z o=t -~ -
“flge

[
s

CONTINUE
ESTABLISH WELL PFESSURE OR FFCOUCTICN RATE THIS TIME-STEPR

I
k|
*
3t

#
1+
i
o

NOTE THAT ARRAY PYW IS ALVWAYS LELCD TO STJIRE NCRE 1. FRESSELRE;
HENCE IS NORMALLY BCTYOM-HOLE PRESSURE (EUT IS AVE wELLEDRPRE
PRESSURE IF WELLBCRE L5TORAGE CEFTICAN I3 IN EFFECT)

NAONACOAONOON ONW

IFIKCYGT 160 TH 3683

KNT=KNT+]
IF{NaGT ol s ANDWKATLET 1 )30 TC FEEE
SELAGEC

IF(MVPNL.EQ.T) GL TGO 294

o0

1+ NVPN
ME.J) GO TD 29885
LE.TPL(L)«CR.FT{N} BT TF2 L)) SC TC 360

AD G
o 1 TIT O
I3~
[P0 a s ]

—~— -
T wery = T

1~
X

»EQ.0} GC TO 386
= CULLENDER-SKFITH EJUATICM T CALCULLATE ErF

-

—

MNeEQel «ANDe KATL.EC«1)} IFY
MaEQel »ANDs KNT«GTa1l) IFY
NeGTel +ANCs KNTLZG41} IFY

o~
—

fal Ik

-

IFYsEGel) QAV=D.2D
IFY.EQs1) PEHISPWE{LY

-

IFY+EQ.2) QAV=CY(])
IFY+EQs2) PEEl1=BHRP

L L o D B I aslf
IM MM OMTH OMAMTM AN NNTTITO

-

IFY+EQ3) TAV=CW(N—-1)
IFY+EQe3) PEFI=PW{N=-1}

VE=VIS(1)

CALL FRIC{QAVsGRsVS+DIAIELREWF oIF,LFTV)

PYH(N)=PRL({PFLAG)

PHE AD=PWH (N}

CALL PBH{ALyAZ 4CAV,F,OBHL,FHFEAD sOPW yPT1 42T+ NT1 4 FBFZ42ZAV,PAV, IEHP)
PRINT 189IQAVIRE'F.IF!PEH?.'iEHF

bl 3l
o~ o~

[aXgl

FIHP="BH2
0Z(13}=8H>

GO TT 3%0

A2 y=PRL L)
BRINT 1aZ,PvL.(L)

]
o2

U's)
Q

N 3
CONTINUE 65
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IF(NVON.EG.2) GO TO 3I9E

DT 396 L=1,NVLN
IF(FTIN)YLLETOL{L) CR.FTL{N) 4GTTC2{L})CT TL 25€
OFLAG=L

CSC(1i==2V{L]}

PRINT 171.,0V (L)

CONT INUE

COMTINUE

IF WELL IS SHUT=~IN SEE IF wiELLECRE STORACE IFTION FAS EEEN SELECTED

[IH

IF(PFLAG-?Q.J‘-5NC:ﬂOEhAG;EG.J s ANI s KESNZW() SFLAGE=]

IFUSFLAGeLGew2s WS TO S50
GAMMA(L)Y = VwWELL%=CONI®DIV
PRINT 1%53

SET U2 TRIDIAGUNAL MATRIX
DO ZEDY Im1WNR
IF(IeECL]l oAND. PFLAG.NE«O) GT TG =0

AZ(I)=TR(I1)

CZ(II=TR{I+1)

A7 ()= = AZ{(L1)} ~ CZ{I) — GAMMALI}/BLI)
DZLIY = ~ QSC(1) =— GAMMA(I}*FMEI}/ZN(I)
CONTINUE

STURE LATEST PRESSURES £ SCLVE FCR REy (RESERVOIFR) PRESSURES

20 4233 I=1.NR
2G(I)=R({1)

CALL LTRI(NR+AZSZ2CZ.DZ+EZnF 74P}

IF{NJEQal)PRINT 141

IFINLGT.1)GEG TC 4156

DE 410 1I=1sNR

PRINT 1114 1sAZUI)+BZ(L)2Ci(hF DL(I)FGLI).FL1)
CONTINUE
CONTINUE
CHECK FOR MVERGENCE

= ) - PG(1))

DM=0ARS{P
CONTINUE

(1)oLT«0x0) PRINT 203
(1).LTa0ed) STOF
CYaGTL29) FRINT 199
CYeGTa%9g) STOF

((NWEQel a0RaNeECaNMAXDRoNJEGCKTY AND. LPLLTERR)
INT 1E€L4KCY W NyLP,PL1),P(2)
(CP LT. ERR) GG TC 460

GO TO S62

KCy=1
CALCULATE(CR STCRE) PRCDUCTION RATE & wZLL FRESSURE THIES STEP

IF{PPLAG.NEC +LRSFLAGLRELC)Y G¥ (N) = T2Z) 5 (F(Z2} - PL12)
IF(SFLAG.NE.Q) GO TO 4604

IS(QFLAG.NEL3) CH({N) = —0SC(1)

IF(CFLAG.NE LD +CRs PFLAGLEG.D &LFa KP4EJLD) €C TL 4€94
IF(N.GT=1)G0O TG 4898

IF(PFLAG.NELD oANDe KPaSQel «AND. KAT.E£Q.1) GU TJ ZEL

HUST GO BACK AND CO BHS CALCLLATICK WITH Cw(l)

AV =4Gw (1)
GO T3 46213

DAVEDeSHLQW(N=-1) + QW(N)]I
PHHI=AM>

VS=VIS(1) .
CALL FRIC{(OAV,CR,VS+DIA E»PEsF yIF 1CFTV)
OuH (N)=Py L (PFLAG) 66




PHEAD=HEHL &)
CALL PBH(ALy A2+ QAV+FsPEH1 + PHEAD,CP Wy PT 1, 2T+ NTY»FIAKZ, ZAV,PAV + [ EHP)

¢ PRINT 189,QAV,REyF+IFs PBH2 y [ERF
¢
NPRWSPBHE~EHD
C DRINT 197 v KCY 2 KANT »SHPyPAHZ S DEEY
IF{DABS(DPPW).LT.BPUY GO TC 4R0Z
AHP=BBH2
P(1)=3HP
27(1)=9MP
C
50 T S€3
-
GEIZ IFI(NWEQe]l « CReNoEGCaNMAX 2 TR o? e ECa T} WANDe ({KFoEGa1l}))
ESBINT 187PUM(N},#(1)
C
te33  CONTINUE
C
IF(MCODELEQ.0) GG TC 4622
C
IF(KCYPFE.EG.1) GO TG 5400
c .
Ca:sx NOW MUST CHECK ON CONVERGENCE CF FRACTURE PRESSURES

DP=DABS(P(1) - PF({1))

20 4€10 I=1,NR

DM=DABS(P(I) - PF(I)}

IF{DM.GTDPIDP=DM
£61°) CONTINUZ

IF(INCEQ.l «DRaNeELsKT o LR e NEGoNM
E PRINY 1661y KCYPFWNLDP»P LI FPE2
IF(DOLLTCERRPF)Y GG TC 4620

GO TO 54233

IF(SFLAG.NZ.0) GAMMA(L)=VA(1I#CLNI=DIV
By (M)=P{1)

PRCDN=0W(N)*DELT

INJN=D.0

DSO=0.0

IF(MCODE.EQ.0) GO TC 4632

20 4633 I=2,NR

NSO=ASP+HINJLT)

INJN=INJN+ERD ()

CONTINUE

iﬂ) eANDe (CF JLTLERRF))

LN s NNl
4}
n
[~

00
' o>
I

th
&)
I

(NaZEQe I )CUMPRD
(NSEGa1)CUMINI
{N2EQa«l )CUMDSFE
{NaEQ.1)GL TG
CUMERD(N)
CUMINI(M]}
CUMDSP{N}

C
Cx¥%x CALCULATE GAS REMAI
a4zl DPOZAVGIN)=De
SM=0.0
DO 4S50 I=1.+NR
PP=P(I)
CALL INTRPI(PT1sZTaNT1+FP,22)
Z{1)=ZZ
BG(I1)=CON=Z(I}/P(1)
SM=SM+VP {1 }/BG(1)
POZAVGINI=PDZAVG(NI+P(I)YSVO (1) 2Z(1)
450 CONTINUE
BOZAVG(N)=PLZAVGIN)=DRVOL,
SMNSMCFC
IF(NeEQe 1) SMN=MCF 1
MCFC=5M
NSC = SMN — MCFC
IMBE=NSC-PREDN+IMJIN
ACFAm%CFIHCUdpﬁt(N)+CUMINJ(
MBE={MCFC/MCFA — 1.0) % 100
FGR=CUMPRD{N)}/TGASE
IF(MCODE.EQ.0) 60 TO 4732
Cx3#4 CHECK GAS INVENTCRY
2 4RYIY I=2,NR
) CUMI (I} + INJ{
) CumMp (1) + 2RO
) GHMN( L) — GMCAL(I)
b) = GASNMI(T) « CUME{LI) + CUMIL1)

i~
1F
IF
iF

wo
()
o
=
-t
-

RIAL EALANCE ERRCKS, ETC.

[T

N PO
W]
<
[oF]
al
Q
“z
-

MCFMI - CUMINJ(N) + CUMDE;(N)



1CFDA = MCFDI — CUMDSP(N}

TGAS1 = MCFA + MCFMA + MCFDA
FCF = MCFA/ZTGAS1 #1J)>.
EGW = MCEMA/TGAS)] #100.
FGD = MCFDA/TGASY #19).
C
FGAF = (MCFI-MCFA)/MCFI
FGoM = (MCFMI-MCFNA)/MCFME
IF(MCEDILNEadad) FGOD = (MCFDI~MCFCAI/HCFCI
IF(MCFDEafQaDa0) FGGD = 0.0
c
C
Ch32%£20RINT NEW DISTRIBUTION & GTHER VALUES
4732 IF(NeNE+l s ANDoh eNENWAX oANDaNoNEWKT) GC TC S58
SDRENT LDLslNe DL T vl Tati s e s SAD L QUM NI . P22AVE0H VLGB LPRoo Iy r e
£41SC
£ 3 IMBELMCFALMCFC, MAELPWINY + S (N)
c
PRINT 157+ (IR(1)+I=1,-NR)
SRINT 158y {P{I}+I=1+NR}
IF(MCODE.E0.0) GL TC $53
PRINT 1571
DG 4500 1=2.NAR
QMIN) = QX(N} + 0SC(1)
GOiNY = aD{N) + QSCDlL}
SRINT 1575,1
DIFF = QSC(I) — QCHD(1}
DRINT 15?31(F’“(IyJ)iJ=erRM)vCSC(I)OCSCC(I)vDIF‘F
4500 CONTINUE
ORINT 1S77sQWINI»CMIN) OD(N}
c
c Do 8700 I=24NR
C PRINT 4723.1
C DRINT 4705+ GASMI{I)-PRO(IISINI(II+NSCALI)»CHMCAL{L)
C700 CAONTINUE
C
Cu%4+ DRINT CURREMNT GAS INVENTCRY
PRINT 4117
SPRINT 311G sMCF AL MCEMA, MCFD A
PRINT 4121 +TGAS1.EGF +FEM,FCD
PRINT 4123+FGGFFCGHFGED
C
C
998 IF(NEUKTIRT=KT+KT}
100) CONTINUE
GO T 1005
1221  NN=N-1 .
GC TG 1010
1005 NMN=N
131} PRINT 163
DO 3002 M=1.Nh
PRINT 188 sNsETIN) »QWINY »PULRY sBHE(N) JCUARRD(N) s FCZAVE(N]D
3002 CONTINUE
1 FORMAT{IS,15F5.0)
3 FORMATI(E(/)+T1S ¢ "hUMBER OF FADIAL SHIC-3LL{CKE —-—- *,13)
5 FORBMATL{//T15, ' CUMULATIVE GRID-ELLCCK RADII & CENTERS{FT)'/)
7 FORMAT(1SX.+1542F15.4)
g FORMAT(3F10.0)
11 FORMAT(///T15,'FORMATICN THICKRAESS(FT) = ",.FEel/s)
13 FORMAT(ISs7F1Jd.0)
15 FORPMAT{S5(/) +»T15,* I-8LOCK PH1 K{MD) BIPEIA) /)
17 FORMAT(T1S53I5¢F12a3,F14.5,F13.21}
1777 FCEMAT(///T15,1 MATRIX PRRESITY & FPERMEAEBILITY(FHIM,KLM) ARE: '
EF12:4+515.6) .
19 FGQM?T(S(/).TIS,'RADIUS GF CYLIRDRICAL MATELIX ELENERT(CN) = ¢,
EFG .1
21 FORMAT(///T1S, "CUNULATIVE GRIC-ELLCCK RADIT{CN¥)}*/)
23 FORMAT{15X+I5+2F12.6)
51 FORMAT({ IS F10.0)
6G FORMAT(40A2)
<} FORMAT(///7//T15 ' RESERVOIR TE¥PERATURE(DECG F) = V,FE.1//
& TiE, 'WELLHEAD TEMPESRATURE {JEC F) = 1 ,FE.1//
Es T1S,"SHALE DENSITYLICRAMS/CC) = 1,FELZ/)
95 FORMAT{ /////7/77T18,1GAS VIGCCSITY & Z-FACJLR TAELE'/)
95 FORMAT(TIS? P{RSIA) ¥U(CP) 2Zv)
97 FOSMAT(1ZX4F10.2:F14a43F15.3)
97 FORMAT{S (/) T1E,HETHANE SORPTILMN ISCTRIRM (AT RESEFVCIF TENPI'/)
191 FORMAT(TIS,.? P{ATM) CC AT STP/GM")
123 FOSMAT(13XsF9al,F12.3)
1)9 FOGMAT(6EX, ! eV v CLNVET,
£t Z 3G MCF CUMMCFEY,
£ MCFDI*/}) 64




111 FORMAT (1Xs 14,8E15.06)

113 FORMATL{OX, ? BVM VM RVLLMY /)

115 FORMAT(S5(/)»T1G+TINITIAL GAS & PLEE VOLUME ~— FRACTUNESY/)

117 FCRIMAT(S5(/)+T1S+"INITIAL GAS & FCRS VOLJAE =~ MATRIX'/)

125 FUORMAT{F 7+ 024X v4FEL DS X0 4F 84 2)

127 FCﬁMAT(1%.F10-2a5Xw¢F8.2-5X-4Fc-/)

122 FGhMAT(/////Tl5;'EDTTEM*HUhE Wile FRESSURE RISTCARY FLLLECWSYS)

121 FORMAT(? P TiMZ CKR (CAYWEFsMINEEC)
EYTIME OFF (DAY WPFRyMIN,SECT /)

133 FORMAT{ IS, GF1J3e0215)

135 FORMAT(///
£ T1E+*MAXTHUM NUVHER OF TIME-S5TLF: = Y, L4/
L T1S5e "MAXTMUM SIMULATICN TINE(OAYE) = "sFd.2/
E TlSy*TIME~STEF CYCLE TOLERANCE{FSIA) = *yFB.2/
£ T1S5, "MATRIX CYCLE TOLERANCE(FSTA) = ' WFBeZ/
& TIB,"RESERVLIA PRESSURE TGLEFRANMCELFSIA) = T,FB.2/
£ T154"SACK PRESEURE EQUATICN TCLERARGE(AS5IA) = VY4 FH.E/
£ T15,'SKIP PRINT FARAMETER = Y,13/,/)

137 FORMAT(BF10.0)

133 FORMAT(/,? I DR VIS 2%,
g K Tt GAMMA Y}

141 FORMAT (/s * I AZ EZ CZts
£ 234 FG F ®)

143 FORMAT(/T)1S.*BCTTCM~HOLE  WELL FRESSLRAE FAS SEEN SEECIFIED '+F8.2.
£* PSIA THIS TIME~STEP'/)
145 FCRMAT{IX+BE1S5.£E}

151 FORMAT( /77 //T18B,,"NUMBER 0OF TIME-STEES CONELETED = "L15/
5 T1E,*SIZE OF CUFRENT TIME~STIF(DAYS) = Y,F15.6/
& TIE,*TCTAL ELAFSELC TIHR(LAYS) = 1, F15.E//
& TIS, ' INITIAL GAS IN PLACELMCF) = t,F15.6/
£ T15s"CUMULATIVE BREGUCTICN(ICF) = ' F15.6/
E T1Ss'VOLUMETRIC AVERAGE F/2 = ?,F15.,€/
& T1S+'FRACTIONAL GAS RECGVERY = 1,F18.€6//
£ T15,'PRODUCT ICN HIS STEE(MCF) = U,F15.€/
€ TIELPINJECTION FRLH MATRIX THIS STEP = *,F15.6/
E T1E»'DESORPTION INTE MAJSRIX THIS STE® = "y Fl5.86/
& T1S+*'SYSTEM CHANGE THIS STEF(MCF) = T,F15.€/
€ T1E5,*INCREMENTAL SRRCE THIS STEF(NCF) = ',F15.6//
£ T1E,*ACTUAL FRACTURE GAS REMAINING(NCF)= ' ,F15.€6/
& T154,'CALCULATEL FRACTURE GA3 AREMAINING = ' ,F15.6/
> T1E.?CUM. MATERIAL EALANCE ERRCR (%) = VL F15.€///
£ T1E,"BOTTCM-HQLE FRESSURE (FSIA) = 9,F15.6/
£ T1E,"PRODUCTIGH RATE THIS STEF(MCFD) = ' ,F15.6///)
158  FORMAT(/(5X1EF7.1})
157  SORMAT(////T25,'¥+%% RESERVCIR FRESSURE CISTRIBLCTICN £33%°//,
E2X41817)
1571 FCRMAT(///T10, *=~==— MATRIX PFEYSUEE CISTRISLTICNS, SCURCE RATE?
5%y DESORPTION FATE, & FREE GAS KATE —oomet,)
1573 FCEMAT(1X,16F8.2)
1878 FORMAT(/TS s *RESEFVGIR NODE "41IZ2)
1577 FORMAT(///T15+%ssorsveses SUPVARY CF FLO4 FATES THIS STEP',
E'(MCFO) snseanrsense?//T5, "WELL FFCOUCTICN RATEY,
€735, 'RATE INTO FRACTURES! T70,'FATE CF JZSCRETICN'/,
ETSy T e i e e e e TSE e e e Y2T70,
BYmmom e e ¥

ETA+F12.3,T326+F12a3+TT3,F13a3)

161 FOOGMAT(TZ, * 4k dakds ENDING CYCLE *'212,4Xs'FCR TIME-~STEPY,
E1XyIA44X4*DP = " ,F11la6saXs?Fll) o ¥3E11.8,3Xs'F(2) = ¥,511.4)}

153 FORMAT(S (/) T18, "Shdkskddksrsns SUMMARY TABLE FCOLLCWS 2ddadkpxdsr,
ELSY N ET R Fw FuH?,
A CUMPRD POZAYGY/)

165 FORMAT(1X s I5+F15.E4F 15033 8F L0 aBsF1EL.23,F10.2}

167 FORMAT(////7/T1E+" WELL PRUQGVCTICN KISTCRY FCOLLOWSY/)

169 FORMATL?® C(MCFD) TIME CN (CAYWERSNMINGSEC) Yy
E'TIME OFF (DAY sFRyMINSSEC) "/}

171 FORMAT(/T15, *WELL PRODUCTICN FATE KAS ESEN 3FECIFIED AT ®,E11 .2,
E' MCFD THIS TIME~STEPY'/)

175 FORMAT(///T1S5, YSKIN FACTOR 1% SFECIFIED AT ',FS.2/
A T1S, *PERMEABILITY CF +LLE 2 HAS EEEN CECREASED TG v,
EF12u€et MDT/)

177 FCEMAT(///T154 "GAS GRAVITY . TUEING ID & ROUGHFNESS(IN)Y,
E'y WELL DEPTHI{FT} & DEFAULT VALUE FUE F I ' 42FCe8,F8.2,F8.5//
ETIO,'TUBING €D & CASING IC {(IN)Y ARE: " ,ZFE.4/)

181 FOSMAT(///TJS.'PARAMETERS AL AZ.VWELLTFI ARE I P, 4FE15.E//)

183 FOEMAT (1615}

135 EOSVAT(////7/TLSe WELLHEAD FRESSUPE FISTCRY FLLLCWS'/)

187 FURMAT(/TS5,'SPECIFIED WELLFEADS FRESZULRE lc YeFH.2,' PSIA ',
E6Xy "CALCULATED ELTTOM-HOLE FRESCGURE IS % ,F1,Z2)

169 FORMAT(TS v'(QAVvREgF’,IFrPBHEI’ILPP)’ = v EELELELT 1J+E12.6:113)

191 FOGMAT{//T15,*WELLBCRE STLRACE CFTICN 1P It. EFFECT WHEN NEITHER *,
EYRATE NOR FRESSURE IS5 SPECIFIEC'/)

163 FORMAT(///T15. 'EACK PRESSURE CFFICM IS5 IhN EFFECT WHFEN ERESSURE ',
E*HISTORY 1S SPECIFIED')

135

FCRMAT(//7/T15, "WELL HAS BEER EH%%;Ih [ STCRAGE CFTICN IS CN?,



L b mmee e VAW Lre A T rLL W v
197 FORVMAT(TS ' {KCY KNT 9 BHP , DFPW ) F Ty 2I5,3E15.€)
16¢ SORMATL(A//TIS, 13223223 0003003555> KLY > GG - RESERVCIR?Y,
£+ ORESSURES WILL NOT CCNVERGE -~ CHECK YCUR INEUT CATA 1 '/}
231 EORMAT(2F10.0)
203 FORMAT(//7T15+" WELL FRRSSURE RAS CONE REGATIVE —= ‘.
cisIMULATION IS5 BEING TERMINATED ')
225 EORMAT(///4X+" 1% EX, "BGYM GASH NE ',
6t GASM1 FCEMIY/)
227 FOAMAT(/+HXs? ZM vISHM DULM TR,
' BKL KGM FMe)
1373 FORBAT(//T15,'SINCE YOU HAME sFECIFLED £1 = 0.0 OO DESCRPTICH',
gt witl CCCUR THIS FUN ') :
1377 FORMAT(F10.0-E11.4)
1411 FORMAT(/ ! J AZM B2.4 Czhr,
) oZM F G FMT)
1611 FORMAT{TZs fkradsrdd CHOINS CATR I SOl AL IR AN VECO NOCER.
E1Xs 18¢a4Xs POPM = T ,E11.444Xs'FM{IsNENM-1) = VLEL1labsdXy
ETEM(T NRM) = % 4EL1.4)
1661 FORMAT{T2,'+++++btt+ ENDING PR CYGLE 1,12,4Xs *FCR TIME-STEP?,
E1XeI18ea4Xs "DPF = *4E11.48,32Xs'P(1} = PLETLL G+ 3XKP(2) = 1,E11.4)
333 FORMAT(3(/)sT5+canvesanse SECLNNENG TIME-STEP ty 14,
&t ELARSED TIME{LCAYS) = P ,4F12.64
£° TIME"‘STEP SIZE{DAYS5) = "#12169' Qu-x‘---o'/)
2131 FORMAT(T1S5, *NEW MATRIX ELEMENT PRESSURES. SCURCE TERM, & DESOR® s
£YPTION RATE ARE AS FOLLOWS:®
3103 FOREMAT(1XsBELS.6)
%105 FORMAT(/TS, ARRAYS GAMJ, DUV, DUN] FLLLOW®)
3107 FCRMAT{1X+15.,3E15.6)
2139 FORMAT{///TS5,:*SINCE YOU HAVE SPEGIFIED A NEGATIVE VALUE FCR®,
£% THE KLINKENBERG NUMBER 1T WILL 6% CETERMINED FRCM THE FUNCTION'.
E/TS.TE = C1 % KLM #%C2 USING TFE VALUES CF C1 & C2 YOU HAVE ',

E*SPECIFIEG
FORMATI(///T15,
Ef B Sy FBa4/)

1,11 *,Ei1lad ! & C2
YRLINKENBERG FACTCR FAS EEEN

FOEMAT(TS, "RESERVCIR WODE '»IZ)

EORMAT (/7 /TLS, 12322553055>> SIMCE ¥YEL HAVE
E* NO MATRIX CALCULATICNS Will EBE PRERFCAMIS <<€L<{C<<L<<Y/)
FOEMAT(///T15,'S5E8855555 INVENTCFY CF INITIAL €AS IN FLACE®
Et(MCF) FOLLOWS 5ESTSEESS8 '/ /TS, "RESERVCIR GAS?,

£T35 1"FREE" MATRIX GAS® s TT7S» P VALSCRBEDY NVATRIX GAS'/»

t,E11a4/)

SFECIFIED AS *

=

SFECIFIED MCCDE=0Y,

WowWe W
[T
[
~

ﬂTS" “““““““““ ——“'17350'“”““_“ _——— ==t “““"T?Eo
£V e mm e mm e £ /)

3119 EORMATCTE 1 F12032T263F12.3,T7E,FL203)

3121 FOARMAT(//T1S,?353035500> TCAL. GAS Ih FLACE(NCF) = 0
£2F13e3/7 T1Ss Y esnovsoore pzhCENT GAS IN FRACTURE SYSTEW = ¢
£+5802// TiEBytacssesasas PERCENT GAS IN MATRIX AS FREE GAS = ¥
EvEBu2s/7 TlSs'uossssssss PERCEMT G IN MATRIX AS ACSCREED CGAS = °
EeF342)

3123 FOEMAT (/7777 T8 185 M/ /)

43117 FORMAT(///T15y7SESS835855 CURSENT INVENTOFEY CF GAS IN FLACE'»

59 {MCF) 5555588SS3/ /TS, YREBERVEIR GAS'y
ETBS,VWEFREEN MATRIX GASY 4 T75 " WADSCREED™ MATRIX CASY/,
ETSe ¥ e s smmaoe wommem b g TEG g P el omem b ¥ g T TGy

B o o /)

4121 FORMATUAZT1IS, "222000000> TETAL BEMAINING GAS IN PLACE(NCF) = ¢
EoF13s3/7 T1lSs"nmavasaane REMAINING CAS IN FRACTLRE SYSTEM(X) = *
EsF3a2// TlS1%eosascosee REWFAINING FREE MATRIX, GAS(H) =
51F8-§§/ T15+' c0aunacnes REMAINING ACSGREED NATRIX GAS(%) = v
E+F8a

4123 SFGRM?T(;/fjisc'FRACTICN GF TRIGINAL FRACTURE SYSTEM GAS PROBUCED',

1= oFTul/ /s
& T15, *FRACTION OF CRIGINAL FREE MATRIX GAS FRCLCUCED to
EY = YoFT7a8//
gu 315, 'FRACTIGN OF CRIGINAL AESOREEC CAS PROGDUCED ‘e
= P FTe4/)
4733 FEORMAT(/T15, nummnany SUMMARY CF MATRIX CGAS IN %
E’QPESERVGIR NDDE ) s 13' ’ "lf'*l"'!'l"l"l. ] )

4705 FORMAT(T2),* INITIAL GAS IN FLACE(MCF) = $4FlZa3e/
& TZ20,tPRCOUCTION THIS STER{MC{F) = VWFlZe3s/
& T20,'DESCRFTIGN THIS STEF(VCF) =t E12e3+/
£ T23,*SYSTEM CHANGE TH1EZ STEF{IMCE) = G Fl2.34/
E T20,'GAS REMAINING(MCF) = "yFlZa3)

a7TIT FORMAT(TS,? BF CYCLE LCCHF wiib WCT CCNVERGE~~~DFF= ¥,E12461}

9996 FORMAT(1X,2E15.6}

sSTOP
2000 IND=1
G0 TO 501
END

SALKEDSSYSIN DD x

INCLUDE MYLIB(INTRPLsTRNRD.LTR
A79YLIH DD OSN=CR3Z0EEB.WKSL 18,
A7 UNIT=3330-1.VOL=SER=US3I30
S/GO.8YSIN DD %

£

IC +FBR NLLSCS)
=S+
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SUBROUT INE
IMPLICIT R
DIMENSION
IF(XJ-EQaX
IF{XJd.EQeX
D0 1Y I=2,
IF{XCaGEeX
Yo=Y{I-1}+
RETLEN

10 CONTINUE
END

SUBROUTINE TRNRDIMRP TR, KalIR:ZsVyTF1)
IMPLICIT REAL*E {A-H,0—~2)
REALES K(1)

DIMENSION TR(1).CR{1)-Z(1)sV{1),F(1)
IF(NR.EQ.1)G0U TC €01
DO 75 I=2,NP
TR{I)=TPI #* (P{I-1)+P({I))} % KR{I-%L) * K{I)/
GIK{IY % V(I=-1) % Z{(I-1) % DLtggz.:ﬁﬁil)/(DR(I-1)4DF
EX(I—-1) * VII} % Z{(1) #* DLOG(IUR(IIFOR{I+1))/(Z2.20R(
75 CONTINUE
601 CONTINUE
RETUSRN
END

SUBRCUT INE LTRI(N,AZ;BZvCZaBZuEZaFZ»¥Z)
IMPLICIT REAL%XE (A~-k,0-7)

C
C THIS PRIGRAM SCLVES THE TRIDIAGUNAL SYSTEW
C GENERATED EY ThE SYSTEM OF N ECLATICONG
C
C ACI)I=PUI-1) + B(I)*ULI) + CL{IMaFli1+1) = CLI)
C
C WITH A(L)=C(N) = 0.0
C
DIMENSION AZ(1)+BZ(1)oCZ{12+DZC01T82C1)sF2(1),U2{(1)
8B=1./8BZ(1}
EZ{2)=—~CZ{1)%58
FZ{2)= DZ{1)%B3
DO 172 I=2,N
FF=1e/{AZ(1)3EZ{(IY+BZ(1})
EZ{I+1)=—~CZ{1)%FF
190 FZlI+1)=(DZ(I)~AZ(I)Y#FZUI)3I#FF
UJZ(h)I=FZ{N+1)
K=N
NN=N-1
20 23 I=1,NN
K=K~—1
28 UZEKI=EZ{R+1 )3 UZ(K+12) + FZE{K+4T)
RETURN
EMND
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SUBRCUTINE FRIC(GeGsVsDWEsPFs 2yUFRTVS
IMPLICIT REAL#8 (A-H,0-~Z}

C

Cxwks ROUT INE FCR CALCULATING FRICTICH FACIOR PFCR PIFE FLCW

C ——— FOR LAMINAR FLCW CR THANSITIGN Ch TURBULENT FLOW -~

C

Caak: REFEAENCE === FrabloiLln OF hATUE AL WA SROTMESECTMOH BY KATY

= = 64/RE FOR LAMINAR FLCw (10J30<RE<21C0)

£ = IMPLICIT FUNCTICN (EQ. £7-22) CF KATZ) FCR_TRANSITICN GR
TLRELLENT FLCW

NEUTON-RAPHSGN METHCD USED FOR IMPLECIT FUNCTICA

A DEFAULT VALUE USEZD IF RE FS It ThRE CRICITAL ZCNE

ALSC THE DEFAULT VALUE IS USER IF THE NEWTON~RAPHSIN SCrERME
DCOES NCT CONVERCGE

alslslalaialalslalsialalalalalsliatalialstalse;

0 = RATE «— MCFD
G = GAS GRAVITY
Vv = VISCOSITY ~= CP
D = PIPE ID —- IN
£ = ABSGLUTE RCUGHNESS -~ iR
R = REYNOLDS WUMBER
£ = FRICTION FACTOR (TG BE GALCULATED & RETURNED)
I = NUMBER OF ITERATONS TO CLNVERGENCE
DFTV = DEFAULT VALUE {(USED FCLR CRICITAL ZCANE)
FwG.O
ICRIT=)
A=D/E
R=20e % Q#G/A{VHD)
I=0
IF{(R.LT.1000) RETURN
Cxkks F=S5&/RE NGT VALID FOR VERY LCw FLCW FATES BEFCRE LAMINAFR FLCW IS
C ESTADL ISFED; VALUE €F F RETURNED IN THIS CASE IS 0.C
C
IF(R.LE:E].Q:&)F*E‘}./Q
c IF(fN.LE.2100.)RETURN
IF(FebGT 2132 oANDW RseLE. 4303e¢) GC TGO 20
C

C=%.34%A/R

Cassd USE KATZ EG (7-25) WHICH I3 FIRST TERM OF IMPLICIT FN AS INIT IAL GUESS
X=2 o *DLOGID(A) + 1.14

2 FN = X — 2.0 % (DLCG1O(A/{1+g3X¥T % 057}
IF (CABS(EN) sLE.1.E-6) GC TG 3~
DC=1./C
PDFDX = 1a - «R6AG/(DC + X}
X = X ~ EN/DFDX

=1+1

EF{I+GT<99)PRINT Ss1sXsFN.CFLX

F({I.GT.99) GO TO 12

G TC 2

Fe=1o/(X%K)

RETURN

I
I
1
G

FORMAT(////T2, " LITER, Xs Fle DFLX
FORMAT (///7/TSe "EEYNOLDS NUMEER 1%
£ /T5, ' THEREFCRE DEFAULT VALUKR C
10 F=DFTV

RETURN
20 F=DFTV
PRINT 7o.R.OFTV
RETUSN
EMND

13,2E1%.€}
CRITICAL RANGE == %4F€ 40,
®,FE.4s® 1S EEING USELC'/)
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SUSROUTINE PBH{AL+AR+Q+FrPERIwFRH s LPWPT I ZT o NT Is FERZ ZAVPAV I}
IMPLICIT REAL®E (A-H,0-Z)

DIMENSION PTI{1)2T{1L}

HIX2Z)S(DEXPIX/Z) — lo) & ZuZsX

SwH = FIXED NELLREAD PRESSURE

BEM1 1S STARTING VALUE CF ECTITEM-MOLE FRESSURE
NOTE THAT ITERATICN IS GNLY N 23 BCWEVERs ARY TINE EHF OR
C CHANGES IT IS NECESSARY TC RERFRORM THE ITERATIVE PROCEDURE

I=0
BAV=05%{ PuH+PEH])

CALL INTRPI(PT1:Z2TWNTL1 PAV,ZAV]

FBH2 = DSQRT{DEXPE{AZ/ZAVIFFUMHAPLM + ALMH(AZ,ZAVIFF403%0)
DRPW=PBHZ2~-FBH1

I=I+1

IF{I-GT99)PRINT 7 »PAV+ZAV-PERZCPPW

IF(I«GTa99)RETURN

IF(DABS(DPPW) o LT.DPW) RETURN

P3H1=P3H2
GG TG 1

FOSMAT(// /TS, 'EOTTOM—HCLE FREESURE RCUTINE WwILL NCT CCNVERGE®/

ETS. "PAYV, ZAV, PHHZ2, DPPW ' .ZXs4E15.6/)

HETURN
ENTD
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SURROUTING NLLSCS{MCUEFF'NpTS.XsYoA-E:CsFF.E’YE'DEV,FCTDEV,FP}
IMOLICIT REAL*S (A~-H,0—-Z)

DIMENS ION X(l)-Y(l).A(MCDEFFal)sE(i)-C(i),FF(NCCﬁFF¢lJ:E(l)s
EYE(1)}.,DEV(1)sPCTRDEV(1),,FP(1)

LEAST SQUAFES FROGRAM — APFRUXIMATING FUNCTICN RCN-LINEAR
IN 1TSS COEFFICIENTS: ¥ = AXX/{1 + B¥X)
FIX+BleBR2I=B1%X/ (1. + B2*X)

INSERT ARITHMETIC STATEMENT FUNRCTIUME DESCEIEBING THE PARTIALS UF
F WITH RESPECT TO EACH OF B1482 4020« cvBNCCEFF .

Fl(X.Bl B2)=X/(1.+ BE2%X)

FE{X.BL.BZ)“*BI*X*X/((lo+BE#XQ$$2)

aTalalelaly]

e

DEFDX{XsBl,B82)= B1/( (1 +B2%8) *(1.+EZ%X) )

JRIANT INITIAL ESTIMATES OF THE CCEFFICIENTS TG EE CETERMINED
PRINT 1031,8(1).6(2)
031 FOGMAT(//T15, ¢ INITIALL ESTIMATES CF COEFFICIENTS B1 € B2 ARE: ‘.
E2E1S.6/)

KTR=0

BUILD MATRIX FF BY LETTING FF(I;J)*FI(X(J)-E(l)'E(H)couayﬂ(PCCEFﬁ)}
I=1325c0a9 MCOEFF

U BE 1=
8532=

=000 N NN

[y

+NPTS

=FE1{XX,EBL.BB2)
=F2 (XX, 581, BB2)

D MATRIX As TAKING ADVANTAGE LF SYMMETRY WITH RESPECT TC
AGONAL
+ MCCEFF

[a¥atpl
[as}
<
—
~

L
IF Db Q0 4
~w )

R~
w wrif)

iF(I:J)*FF(Knd)

=
O
a« g = ~f
« 4+ ZOZHm PRZ
M e
!

il I B

A =
T N
m

(XX yBE1BEZIIXFF K ,)

- - X A
m 210~
—“rL LR
o e
T = R

nom
o~

W -
L IR
-~ ™M

002
CHhxkn

= C
ZLAL

Fs

mmp NMAXOOUW
~am] DsaXD~0C0
Nl DAM

ot

ERRE

waww M« = OX
i = W
»rp- G

T

% O |

=N

st e "TY

+#

mam

— )

=NC

-

=

NP

DA

o~

[ALE -

o [

I'IJ—A(lﬁU#A(EoILHH2»2)}

s 4
+ T

- o

ERR=J.2
KTR=KTR+1

(ala

MAKE CORRECTIDNS TO ZSTIMATEE GF ULLEFFICIERTS
0? % I=1.,MCOEFF
g(1)=B{I)+E(1)

5 EGF=ZRR+DAES(E(L))

C IS SUM OF CORRECTICNS TO CREFFICIENTE $HALL ENCLGE
IF(ESRoGT ool s ANDSKTRLTL23¥CC TC 10
IF(KTR.NE.25)GL TC 9

C 1f AFTER 2% TRIALS JuUM OF CURRECTIGNS IS BTLih. TGC LARCE, STTas
WRITE(Es1D5)
125 F?FWAT(QBHNDN*LINEAQ LEAST SQUARZES FSILZZ TC CONVERGE)
STLFP
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uon

90

1%

107
123

PRINT GLT THE CCEFFICENTS

4

J=DEV{J)Y /Y LI} =
az2)

10062
FO(J)=DFDX
CONTINUE
PRINT 137
PRINT 123 (X(J)sY{JIYECIIsDEVII)IFCTDEV(JI)»
FORMAT(/TS, " NON-LINEAR LEAST SCGUARES (LCEEFIC

& C = AP/S{(1 + EBEP) ARE AS FELLUWI®*/»T15,%A

'R = YL,E12.6/)

FGRMAT(T15,® P{PSIA) EST Va
£ PCTDEV DCDOP*) }

FORMAT{1O6X sFGalsF12s3+F12.3,FISuE,Fi0432:E18.€)
RETURN

END

» NEFTSY)
ECLUATION,

[l

ECF/CU FT UE DEV Y,
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TABLE 1 -- MODEL INPUT DATA FOR SENSITIVITY ARALYSIS

Minimum HMaximum
Value Base Case Value

Vellbore Radius - 0.3 ft. v
Drainage Radius 500 ft. 933 ft. 2,000 ft.
Reservoir Temperature —— 100° f ———
Initial Reservoir Pressure - 500 psia -
Wellbore Flowing Pressure —— 200 psia for ——

4 years/

50 psia for

26 years
Specific Gravity of Gas - 0.60 ——
Shale Bulk Density - 2.60 g/cm> -
Gas Viscosity . 0.0115 cp ——
Formation Thickness T 500 ft. e
Formation Depth - 3,720 ft. ———
Fracture Porosity 0.0025 0.005 0.01
Fracture Permeability 0.05 md 0.10 md 0.2 md
Shale Matrix Porosity 0.02 0.06 0.10
Shale Matrix Permeability 0.69x10" Omd  0.69x10"%md  0.69x10"8md
Shale Matrix Element Radius 5 cm 25 cm 50 cm
Klinkenberg Factor 0 b=12.64 km '3 -
Total Simulation Time o 30 years ———
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Fig. 7 - Damaged Zane in Finite-Dj fferance Scheme
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Fig. 10 - Productivity Improvement with Dual Porosity and Desorption
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