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Objectives

This basis of this research is to apply novel techniques from Artificial Intelligence
and Expert Systems in capturing, integrating and articulating key knowledge from
geology, geostatistics, and petroleum engineering to develop accurate descriptions of
petroleum reservoirs. The ultimate goal is to design and implement a single powerful
expert system for use by small producers and independents to efficiently exploit
TESErvoirs.

The main challenge of the proposed research is to automate the generation of
detailed reservoir descriptions honoring all the available "soft" and "hard" data that
ranges from qualitative and semi-quantitative geological interpretations to numeric data
obtained from cores, well tests, well logs and production statistics. In this sense, the
proposed research project is truly multi-disciplinary. It involves significant amount of
information exchange between researchers in geology, geostatistics, and petroleum
engineering. Computer science (and artificial intelligence) provides the means to
effectively acquire, integrate and automate the key expertise in the various disciplines in a
reservoir characterization expert system. Additional challenges are the verification and
validation of the expert system, since much of the interpretation of the experts is based on
extended experience in reservoir characterization.

The overall project plan to design the system to create integrated reservoir
descriptions begins by initially developing an Al-based methodology for producing large-
scale reservoir descriptions generated interactively from geology and well test data.
Parallel to this task is a second task that develops an Al-based methodology that uses
facies-biased information to generate small-scale descriptions of reservoir properties such
as permeability and porosity. The third task involves consolidation and integration of the
large-scale and small-scale methodologies to produce reservoir descriptions honoring all
the available data. The final task will be technology transfer. With this plan, we have
carefully allocated and sequenced the activities involved in each of the tasks to promote
concurrent progress towards the research objectives. Moreover, the project duties are
divided among the faculty member participants. Graduate students will work in teams
with faculty members.

The results of the integration are not merely limited to obtaining better
characterizations of individual reservoirs. They have the potential to significantly impact
and advance the discipline of reservoir characterization itself.



Summary of Technical Progress

1. Decomposition stem

We have decomposed the overall system development into smaller component
parts to allow us to focus on the expert knowledge required for that component. In
addition, the decomposition will facilitate the implementation of the system and its
validation and verification. The three component systems will be representative of how
each of the experts in geology, geostatistics, and engineering characterizes the reservoir.
Figure 1 describes a model for this breakdown. The concurrent development of these
component systems fits into the development of the large and small scale aspects of the
system as originally stated in the proposal. In Figure 1, each component system in the
model is depicted as interfacing (through the bi-directional links) with a central repository
of reservoir descriptions. Though, portions of these description will essentially be passed
from component to component as more information is gathered (as shown by the bi-
directional links), the model of a central repository is an accurate account of how the
components are integrated, i.e., the final descriptions in the repository are consistent will
all of the information given by the components systems. This system model allows us to
develop the system using an Artificial Intelligence technique called a blackboard system,
in which information is centrally located, i.e., on a blackboard, and experts take their turn
to update, change, and correct the information on the blackboard.

geostatistical
system

reservoir
description
repository

geological
system

Figure 1: Expert System Decomposition

The geostatistical system continues to be tested and updated. We are currently
converting all implemented code into C/C++ for integration. This includes both Fortran
and Kappa-PC implementations of the various component systems that have been
developed to this point. New work reported for this quarter includes a neural network
implementation for log facies recognition that overcomes the difficulties faces by the
previous system. We update the research on marker bed identification. Expert rules have
been developed in more detail for correlating the sand bodies among the wells. We
present these rules and the experiments to indicate their effectiveness. In addition, we
have been performing wavelet transforms to determine the effect of compression to some




part of the original data on the overall performance of the reservoir. The use of wavelets
is believed to be needed for integrating the large-scale and small-scale data.

2. Geostatistical tem

The two-scale, variogram pre-check approach was further studied during this
period. This approach relies on getting an upscaled grid system which matches the “true”
scale BHP’s. We have been unsuccessful in this so far. Futher analysis of the effects of
upscaling were therefore also carried out. We also began to investigate the concepts of
local grid refinement and radius of investigation in the search for an appropriate
upscaling methodology. The constant rate approach was the primary focus.

2.1  Two-Scale, Variogram Pre-Check Approach

This approach, which was mentioned in the last report, uses the variogram-based
change in the simulated annealing (SA) objective function value to determine whether we
flow simulate. In this way, we remove unnecessary expensive flow simulations runs
unless they are beneficial to our objective function. Further, by flow simulating on an
upscale grid, we also reduce the execution time for the SA algorithm.

We have been experimenting with the use of different time ranges for matching
the flow simulation part of the SA objective function. This was prompted by the
observation that the upscaled grid BHP results do not capture the “true” scale BHP’s until
the start of pseudo-steady-state flow, and that even then the match is not ideal. We had
also started to experiment with the weightings used for the variogram and the flow
simulation parts of the objective function and the objective function tolerance, but
decided to hold these constant at 0.5 and 0.05 respectively so that any variations in the
results due to the time range variations may be captured.

2.2  Upscaling Analysis

We found that the errors from upscaling when we used the tensor method' were of
the same order as those for the geometric averaging and renormalization methods. This
led us to begin to consider local grid refinement and radius of investigation approaches.

With respect to local grid refinement, this modification does not seem to be a
worthwhile consideration since it will allow matching with the fine-scale BHP’s only up
to the time when the radius of investigation is equivalent to the upscaled gridblock size.
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We are still looking at the radius of investigation considerations, but one idea is to
use this concept to “fix” the near-well permeability values using the transient inflow
performance relationship.

2.3  Laplace Transform Modifications

A preliminary study of the use of the Chen et al approach2 as a way of correcting
the variable rate problem mentioned in the last report seems to suggest that this
methodology may introduce a significant “extra load” on the execution time of the
algorithm. The equation for the “corrected” BHP in Laplace space is given by:
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;wD (s) is a Laplace space approximation for a variable rate p,,,

s; is the Laplace variable based on #, — 5, |

C,, is the wellbore storage coefficient
t,, is dimensionless time
g, is dimensionless rate

G(s) is defined by the equation: p,, = 1. p(s).
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The first problem is that this equation may be incorrect, so we will have to verify
its accuracy before any further consideration of its usage. Nevertheless, the structure of
the equation suggests that, in order to determine the variable rate Laplace space BHP for
a particular value of s, we have to determine the constant rate Laplace space solutions for
a number of s values equal to the number of times the rates are changed. -For this reason,
we have suspended further consideration of this approach and for the moment we are
concentrating on the constant rate approach.

3. Geological System: Sand Body Identification

In order to analyze well log data, we solve the following two problems
sequentially:

o Well log segmentation problem
e Log facies identification problem

Well log segmentation. Given a well log data file the system determines the endpoints
of every sand body present in the log file. This is needed to divide the well log (gamma
ray) into discrete stratigraphic units. Such segmentation is for log facies identification and
well-to-well correlation. A rule based system is applied to the original data file to
determine the cuts or segments. The resulting file is then fed to the system in charge of
solving the log facies identification problem.

Log facies identification. Given a well log data file and the predetermined cuts, the
system determines which kind of facie or sand body is between any two cuts. A neural
network is used to solve this problem. The input to the network is an intermediate file
generated by the rule-based system.

Our neural network was previously trained with expert-classified well logs to
recognize the following set of fundamental shapes:

bell, funnel, blocky, symmetrical, linear

The log files used for training must undergo a scaling and normalization process
to compensate for well-to-well variations in gamma ray values as well as variations in
thickness. Also, the same shape may have different sizes which, again, requires some
kind of normalization.




3.1  Advantages of Neural Networks

Neural networks are particularly well suited to solve the sand body recognition
problem for several reasons. Among its most important features are:

e Human -brain-like processing

e Abilily to recognize patterns for systems such as:
1. pattern recognition systems
2. handwriting recognition systems
3. classification systems

Models for neurons and neural networks are available extensively in related
literature as well as several techniques to train them which have been thoroughly tested.

3.2 Neural Network Architecture

Despite all the knowledge available on neural networks, no standard procedure
exists to determine an optimal network configuration to solve a given problem. Such
procedures exist only for the most simple kind of problems which are known as linearly-
separable problems requiring very simple structures (single layer configurations).

However some guidelines exist to solve more complex problems (non linear-
separable problems) and they require multiple layer structures. Tests must be made to
ensure that a network structure will be capable to solve the problem up to some level of
confidence.

In order to solve the log facies identification problem the following three-layer
structure showed to give acceptable results:

e Input Layer (16 neurons): every shape is discretized so it will consist of 16 points.
Each one of these points is fed to a neuron in this layer. In consequence, the network
is looking at a whole shape at any given time.

e Hidden Layer (100 neurons): this layer is used by the network to store what is known
as the internal representation.

¢ Output Layer (5 neurons): this layer is the output of the network which is designed
and trained to recognized five fundamental shapes. Each neuron in this layer
correspond to a different shape (bell, funnel, blocky, symmetrical and linear)

The neural network is fully connected, that is every neuron in a layer is connected
to every neuron in the following layer.

3.2.1 Supervised learning algorithm

A supervised training algorithm is applied to train the neural network. The
algorithm is known as error-back propagation algorithm. The output of the network is
compared against that of an expert and errors at the output layer are computed. Errors are
then propagated from the output layer to the input layer and weights are updated. It is an
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iterative process. The network is considered to be trained when the maximum number of
iterations is exceeded or when the error is below some value. The algorithm is based on
the well known gradient-descent technique and it tries to minimize a quadratic error
measure.

3.3  Well Log Segmentation

Well logs have to be scaled and normalized in order to set a common ground on
which the problem can be solved. In consequence every log file is scaled in such a way
that:

e maximum gamma ray value maps to 1
e minimum gamma ray value maps to 0

As a result of this process all the gamma ray values will be within this range (0-1).
This is done before attempting to solve either the log segmentation or the facies
identification problems.

To segment the well log, we use a rule based system that is structured as a two-step
system:
1. IHdentify local maxima
2. Apply rules to obtain breaks

The following rules are used by the system:

e Rule 1: a local maximum is a candidate break. This rule requires local maxima to be
previously identified and is the reason for step 1 in our system.

e Rule 2: the local maximum following a candidate must not be seen from the previous
identified break. By not seen we mean that the candidate is below the straight line
joining the previous identified break and the local maximum following the candidate.




3.3.1 Applying Well Log Segmentation Rules
This figure shows how this rules are applied to a section of a log:
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3.3.2 Segmentation Results

Figures comparing the neural network performance against expert classification
for one testing log (gamma ray) is presented here. Squares are cuts.
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The output of this system is then applied to the neural network.

3.4  Log Facies Identification

A neural network is also used to identify the fundamental shapes of sand bodies.
The log facies must be normalized and discretized scaled so they can be fed to the
network.

e Scale/normalize individual segments: a facie occurs between two consecutive breaks.
All points between two consecutive breaks are scaled so:
1. maximum value maps to 1
2. minimum value maps to 0
e Scale/discretize depth values for each facie: the original data is linearly interpolated at
16 equally-spaced depth values and discretized accordingly. Points 1 and 16 are
breaks.
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3.4.1 Identification Results

Table 3.1 illustrates the interpretations obtained from the neural network as
compared with the human expert for identifying the well log segments or cuts.

3.5 Neural Network Training and Testing

To identify the sand bodies, the neural network was trained using 11 different well
logs with a 97.2% recall rate or correct classification when compared to that of the expert.

The performance is described in Table 3.2 below.

Bell 49 49
Funnel 54 54 100.0
Blocky 81 79 97.5
Symmetrical | 80 80 100.0
Linear 25 19 76.0
Total 289 281 97.2

4. Geological System: Marker Bed Identification

In order to identify log facies and correlate stratigraphic units within wells across
a reservoir, a reference point must be available that identifies the interval of observation
for such analysis to take place. Marker bed identification provides the beginning and

ending interval depths for this analysis.

A marker bed is a specific unit of formation that is widely distributed and laterally
stable across an area. Marker beds can be traced universally between different continents,
regionally across a whole basin, locally in a field-scale area, or for a very limited area of

interest of some formation interval. The scope of study extends to marker bed

identification in a local field-scale area.

Dt et nake catlis ~

1

well6] 34 40 15.0 29 72.5
well6u 31 29 6.9 22 75.9
well7l 32 39 17.9 24 61.5
well7u 27 23 174 17 73.9
well8l 39 43 93 29 67.4
well8u 32 30 6.7 22 733
Total 195 204 4.4 143 70.1
Table 3.1




The focus of our study is to identify the main marker beds that are common across
all the wells within a field and their corresponding beginning and ending depths. While a
marker bed can be easily identified in the logging curves by the naked eye of an expert,
the prototypical expert system requires the processes, rules, and experiences be captured
in order to arrive at the same conclusions as the expert.

4.1 Background

Different approaches have been attempted in order to identify the main marker
beds in a field. The first approach involved applying a set of heuristics that characterized
marker beds to the gamma ray, resistivity, and sp logs of wells in a field. This approach
identified a set of potential marker beds which included the real marker beds in each well
of the field. The second approach involved applying a cross-correlation algorithm to the
gamma ray or resistivity log of one well with the gamma ray or resistivity log of the
potential marker bed of another well. Positions of high correlation between these two
logs should show areas where the real marker beds lie across these two wells. The cross-
correlation algorithm did reduce the search of main marker beds from a series of wells by
identifying the potential marker beds within a single well. However, the overall results
showed that it does not guarantee main marker bed identification across a set of wells in
all cases. More details of this research and the results are available in the last quarterly
reports.

Because the approaches described above for identifying the main marker beds
across a set of wells were not sufficient, we have devised an alternate approach using a
sum-difference algorithm. We describe this work and the results further.

n
(L -TLy
i=0
n
Z (TL)
i=0
where

=  gamma log for well under study
= type log for field under study
n=  number of feet of marker bed in

type log

Figure 4.1 Sum-Difference Equation
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42  The Sum-Difference Approach

One of the characteristics of main marker beds is that they have high gamma ray
values and low resistivity values. The sum-difference algorithm exploits these
characteristics by identifying areas in a log where such characteristics exist. The areas
identified by the algorithm are then interpreted as being marker beds for that particular
well. '

A type log is provided to the algorithm that generalizes the marker bed
characteristics for that particular field. Two type logs are required. Open-hole wells and
cased-hole wells often have different gamma ray characteristics. As a result, one type log
generalizes the marker bed characteristics for open-hole wells, and the second generalizes
the marker beds characteristics for cased-hole wells for the field under study.

The type logs are then used along with the scaled gamma ray log for a particular
well to find marker bed areas in that well. For example, if the type log indicates that a
marker bed for the wells in the field under study are 3 feet in depth on average, the sum-
difference algorithm calculates a ratio for every 3 feet increment of the gamma ray log for
a particular well based on the sum-difference equation shown in Figure 4.1. The sum-
difference equation calculates a ratio by comparing the gamma ray characteristics of the
well log to that of the type log for the 3 feet interval. A ratio of zero indicates that the
area under scrutiny (also referred to as the match position) in the well log is an identical
match with the marker bed of the type log. An exact match is indicated by match
position 67 in Figure 4.2. As a result, a ratio close to zero points to a marker bed in the
well under study.

Open Hole Well: Self81

Sum-Difference Ratio

Match Position

Figure 4.2

4.3 Results

The sum-difference algorithm is first applied to the open-hole type log for the
field under study. For those wells whose marker beds cannot be identified by the open-
hole type log, the sum-difference algorithm is applied once again to the cased-hole type
log for that field. A marker bed for a well is identified if the ratio at a particular interval
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falls within the designated threshold specified by the user prior to the commencement of
the testing phase.

The sum-difference algorithm was applied to fifteen wells dispersed in the
Glenpool field. Nine of these wells were open-hole wells, and the other 6 were cased-
hole wells. Marker beds of nine out of the fifteen wells (seven open-hole and two cased-
hole) were identified successfully. Examples of the results of an open hole as well as a
cased hole well is shown in Figures 4.3 and 4.4. Marker beds in these graphs lie at the
match positions whose ratios approach zero.

Open Hole Well: Self56

2
=
&
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=}
8
E
=
wn
Match Position
Figure 4.3
Cased Hole Log: Self69
g
g
8
=
=
wn

Match Position

Figure 4.4

Four out of the fifteen wells tested (two cased-hole and two open-hole) indicated
marker beds in the wells where none existed. Finally, the sum-difference algorithm was
not successful at identifying marker beds in the two remaining wells (both cased-hole).
For these six wells in which marker beds were not clearly identified, it was decided that
heuristics would be constructed to isolate the real marker beds. These heuristics are
discussed further in the upcoming section. It was also suggested that upon application of
the heuristics, those wells in which marker beds could not be clearly identified would be
returned to the user. The user would then select marker beds for a well from the potential
marker beds based on knowledge of the reservoir under study.

14




4.4 Conclusions

One of the heuristics under study is to apply the algorithm to the resistivity logs of
all wells under study. By finding common marker beds identified by both the resistivity
logs as well as the gamma ray logs, we narrow the number of potential marker beds while
increasing confidence that the marker beds identified are indeed real ones for that
particular well. By constructing and testing similar heuristics, we hope to refine the sum-
difference approach.

The results of the sum-difference approach indicate that it alone will not suffice
in identifying the main marker beds. As with the cross correlation approach mentioned
earlier, our approach does reduce the search of main marker beds from a series of wells
by identifying the potential marker beds within a single well. While our approach will
identify potential marker beds within a single well, it still needs to be modified to identify
the main marker beds across a set of wells. We are currently considering extensions to
this approach as well as other alternatives.

5. Geological System Components: Correlation Program

Well-to-well correlation is a complicated process that involves several aspects of
depositional units. The most important ones are the position with respect to the marker
beds, log facies shape and thickness of the beds being compared. However, certain factors
are considered more important than others to a geology expert. We discussed this
problem with the associated geology experts and used their opinion about the relative
weights that can be assigned to various factors. The weighting scheme provided by the
geologist is shown in Table 5.1.

factors | same | close | different
mbed_dist 3 2 1
thickness_diff 6 5 4
log shape 3 na 2
Table 5.1

Three factors are considered in Table 5.1: (1) the distance of the bed from the
marker bed (mbed_dist), (2) thickness difference between the two beds being compared
(thickness_diff) and (3) log shape. The distance of the bed from the marker bed is
computed by taking the difference in depth of marker bed and the depth of the mid-point
of top and the bottom boundaries of the bed. Thickness difference is the absolute
difference in thickness between the two beds. Log shape is the facies as identified by the
facies identification program.

Information about the top and bottom boundaries and the log shape are provided
by the respective programs. The weights are computed for the two units based on the
above scheme. The pairs with the maximum weights are considered correlatable. It may
be noted that the parameters “same”, “close” and “different” in Table 4.1 are defined by
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certain tolerance. mbed_dist is considered same for two beds if the difference is less than
x*tan(theta), where x is the horizontal distance between the two wells and theta is the
stratigraphic dip of the bed. In absence of a stratigraphic dip, a value of 5 degrees is used.
At this time, there is no usable definition for “close” but we have included it in the table
as it relates to the weights. Any value that is not “same” is considered “different”.
Thickness difference between the two beds is considered “same” if the difference is less
than 4 feet. Otherwise they are considered “different”. The log shape can be either “same”
or “different” as well. The program has been written and tested on sample data provided
by the geologist.

16
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The sample data files for three wells are shown in Tables 5.2A - 5.2C. Distinct
numbers are given to each sand body in a well for the correlation for identification. The
facies types are numbered from 1 to 5 for bell, funnel, blocky, symmetrical, and linear,
respectively.

Well No. 78 (Markerbed depth: 1460-1462 ft)

sand no. | top depth (f) | bottom depth (ft) | facies

11 1463 1469 1

12 1470 1488 1

13 1489 1493 1
Table 5.2A

Well No. BG 18-33 (Markerbed depth: 1434-1436 ft)

sand no. | top depth (ft) | bottom depth (ft) | facies

7 1437 1461 1

8 1462 1481 3

9 1482 1515 3
Table 5.2B

Well No. self 81 (Markerbed depth: 1429-14311t)

sand no. | top depth (ft) | bottom depth (ft) | facies

8 1432 1440 1

9 1441 1452 1

10 1453 1462 1
Table 5.2C
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The results of the program run for computing the weights are given in Tables
5.3A - 5.3F. The “c” in computed weight indicates the well to which sand bodies are

being compared.

Well No. 78 | BG18-33 [ BG18-33 | BG18-33

Unit id 11 7 8 9

top depth (ft) 1463.0 1437.0 1462.0 1482.0

bottom dep. (ft) | 1469.0 1461.0 1481.0 1515.0

facies 1 1 3 3

computed wgt. |c 8 7 7
Table 5.3A

Well No. 78 | BG18-33 | BG18-33 | BG18-33

Unit id 12 7 8 9

top depth (ft) 1470.0 1437.0 1462.0 1482.0

bottom dep. (ft) | 1488.0 1461.0 1481.0 1515.0

facies 1 1 3 3

computed wgt. | c 9 9 7
Table 5.3B

Well No. 78 | BG18-33 | BG18-33 | BG18-33

Unit id 13 7 8 9

top depth (ft) 1489.0 1437.0 1462.0 1482.0

bottom dep. (ft) | 1493.0 1461.0 1481.0 1515.0

facies 1 1 3 3

computed wgt. | c 8 7 7
Table 5.3C

Well No. BG18-33 | self 81 | self 81 | self 81

Unit id 7 8 9 10

top depth (ft) 1437.0 1432.0 1441.0 1453.0

bottom dep. (ft) | 1461.0 1440.0 1452.0 1462.0

facies 1 1 1 1

computed wgt. | c 10 10 10
Table 5.3D

Well No. BG18-33 | self 81 | self 81 | self 81

Unit id 8 8 9 10

top depth (ft) 1462.0 1432.0 1441.0 1453.0

bottom dep. (ft) | 1481.0 1440.0 1452.0 1462.0

facies 3 1 1 1

computed wgt. |c 9 9 9
Table 5.3E
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Well No. BG18-33 | self 81 | self 81 | self 81

Unit id 9 8 9 10

top depth (ft) 1482.0 1432.0 1441.0 1453.0

bottom dep. (ff) | 1515.0 1440.0 1452.0 1462.0

facies 3 1 1 1

computed wgt. | c 9 9 9
Table 5.3F

It may be noted that in some cases the correlation weights shown in the above
tables may be same for different pairs of units under consideration. Under such
circumstances mbed_dist is given priority in order to decide the actual correlation.

‘Based on the above results, the correlation in Table 5.4 is presented for the three
wells namely well 78, well BG18-33 and self 81. The table shows the correlation results
for the three wells. Each row contains results about a pair of depositional units belonging
to two different wells. For example the first row indicates that unit 11 and unit 7 of wells
78 and BG18-33 are correlatable. “Topx” and “Botx” are the top and bottom depths of
unit 11 of well 78 and “Topy” and “Boty” are the top and bottom depths unit 7 of well
BG18-33.

Wellx | Welly | Unitxid | Unityid | Topx(f) | Topy(f) | Box(f) | Boty(f)

78 18 11 7 1463 1437 1469 1461

78 18 12 8 1470 1462 1488 1481

78 18 13 7 1489 1437 1493 1461

18 81 7 8 1437 1432 1461 1440

18 81 8 9 1462 1441 1481 1452

18 81 9 10 1482 1453 1515 1462
Table 5.4

Table 5.4 correlation results shows discrepancy for unit 7 of well BG18-32 . Unit
7 of well BG18-32 is correlatable with both unit 11 and 13 of well 78 as per the
computed weights. This kind of anomaly occurs due to the rigid assignment of weights to
several factors. In practice the geologists change the weights assigned to various factors
such as distance from marker beds, log facies, thickness difference etc. This issue needs
further consideration by geology experts and is, in fact, the biggest challenge in
automating the correlation process.




6. Well-Test Interpretation

Transient testing is a major source of vital information about reservoir parameters
like permeability, reservoir pressure, wellbore conditions, reservoir discontinuities and
other information that is essential for reservoir studies. The accuracy of these properties
estimated from well tests depends on prior identification of a model that describes the
reservoir accurately. This model is known as the ‘well test interpretation model’.

The procedure for finding an appropriate model can be quite complex. It usually
resides deep in the expert's mind. The failure of mathematical models to solve the
problem can be attributed to the nature of the problem itself since the procedure is not
completely quantitative and relies on experience. Computerized well testing involves
interpreting the various forms of the time vs. pressure data and other well data and to
determine the well model and calculate the various parameters. Basically this can be
grouped into two parts: the qualitative analysis, and the quantitative analysis. Qualitative
analysis deals with selecting the appropriate well model from the input data. Quantitative
analysis involves calculating various well parameters like permeability, skin factor (if
applicable) etc. Estimation of well properties depends upon the selection of the right
model and hence qualitative analysis is a crucial part of the problem.

The expert system component developed for the well test interpretation consists of
rules and facts for buildup test analysis gathered from an expert in this field. These
carefully extracted rules simulate the reasoning process used by an expert to identify the
appropriate interpretation model for a well test. In this approach, the system is designed
to use a description of the shapes of the derivative plot. When needed, the system seeks
information in addition to test data from relevant sources such as known reservoir and
fluid properties, production statistics, well logs and geological data.

This section presents the well test interpretation package. The different modules
that make up the system, and the steps to use the system are discussed in the following
sections.

6.1 System Overview

The well test interpretation system can be divided into two main modules. The
model identification model deals with analyzing the input data to characterize the well.
The other module is the parameter estimation model that used the model information to
calculate the parameters required. Figure 6.1 shows the components in the system.
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Figure 6.1 : System modules

The input to the system is the time and pressure derivative. This information is
provided to the system in an input file. The model identification module analyses this
input and creates a description of the shape of the plot in terms of primitives. This shape
is then compared with the available model and shape information to select a model. In
case of multiple choices, the selection is narrowed down using geological information
provided by the user. Once the module is able to classify the input, the model
information is then used to estimate the parameters. The parameters that are to be
estimated is specified by the user. The user may also specify the range of values that
each parameter can have. This helps in making the estimation process more efficient.
The output from the parameter estimation module is the final output required from the
system. The following section describes each module in greater detail.

6.2  System components

The following are the main modules used in the system.

6.2.1 Model identification

The model identification process is made up of two distinct steps. These are:
creation of the internal representation of the plot using symbols, and matching this
representation with the shape information stored in the system. Each of these steps are
discussed below.
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The input data is analyzed and converted into an internal representation for further
analysis. This provides a simple and efficient method of matching shapes. This
representation is done in terms of the following symbols:

up, down, flat, maximum, minimum, plateau, valley

A flat segment is a segment with slope smaller than 0.1 in absolute value. An up
segment is one which has slope greater than 0.1. Plateau, valley, maximum and minimum
are determined from the primitives up, down and flat. This convention is similar to that
of Startzman and Kuo® who first observed the usefulness of the symbolic representation
of log data.

The algorithm begins by calculating the slopes between the data points. This data
is stored in a list. Then the algorithm proceeds by scanning this list and replacing each
slope with a symbolic representation. Heuristic rules are applied to create the correct
representation. The algorithm does a second scan through the list to come up with a final
representation of the whole plot. Here the algorithm uses rules which have been
developed to eliminate redundant symbols, or identify new ones based on the primitive
symbols (up, down, flaf). Small disturbances due to noise which slightly distort the plot
is also eliminated here. Typical rules are as follows:

up followed by an up is up

down followed by down is down

up followed by flat followed by down is a maximum if the number of flats in between
is sufficiently small, otherwise it is a plateau.

Using such rules, the algorithm produces a final list of representative symbols
which describe the whole plot. Though it depends upon the particular data used, usually
four to five symbols describe one complete graph. Consecutive identical symbols (e.g.
up, up) are compressed into a single symbol representing several segments.

An interpretation model is usually obtained by combining several components
which produce the observed shapes on different parts of the derivative. The expert system
is provided with the models and a representation of their derivative.

The initial implementation includes the description of two models which are:

Finite wellbore radius well; Infinite isotropic reservoir; Single porosity system.
Fully penetrating vertically fractured well; Anisotropic Single porosity system.
Finite wellbore radius well; Infinite isotropic reservoir; Dual porosity system.
Fully penetrating vertically fractured well; Anisotropic Dual porosity system.
Fully penetrating line source well; Anisotropic Dual porosity system

bRl adl i e
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The characteristic derivative shapes associated with these models were determined and
are as follows:

1. modell: [up, maximum, down, flat}
2. model2: [up, flaf]
3. model3: [up]

Model3 is an alternate representation of model2. All the above models are a
representation of the plots that show the time vs. derivative curve.

The matching algorithm is designed along the lines of the work done by Allain
and Homne’. The aim is to find the model that qualitatively matches the data. The
algorithm starts with selecting all the models that match with the input data at the first
symbol. It then proceeds to the next symbol and eliminates all the models which do not
match with the input symbols at any stage. Finally at the end of the process, the algorithm
ends up with the correct model, or no model in case there is no match. In certain cases,
the system cannot narrow down the search to a single model. This may be due to the
nature of the input where it matches more than one model. The geological information
may be used to proceed further.

Our matching algorithm has been modified to work correctly with the symbolic
representation of models in our system. A particular input data matches a model if its
sequence of symbols completely match with those of a particular model. Since the model
information is complete and has not been broken down to different regimes, a complete
match of all the symbols of the input data with those of a model is considered. This
approach is simpler than considering the different regimes (as done by Allain and
Horne?), and works well when complete model information has been coded in the system.

The fact that one can hardly select an appropriate interpretation model from the
pressure transient data alone emphasizes the need for incorporation of external data into
well test analysis. This information can help in narrowing down the choice of models.
The system presently uses 5 parameters to make its decisions. The parameters and their
possible values are shown in Table 6.1.
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Parameter Possible values

Geometry Vertically Radial Well (VRW)
Horizontal Well (HW)

Vertically Fractured Well (VEFW)
Radially Heterogeneous Well (RHW)

Layered System (LS)
Penetration Fully Penetrating
Partially Penetrating
Porosity Single porosity
Dual porosity
Conductivity Finite Conductivity
Infinite Conductivity
Group This parameter can be any of the possible

values in the above groups or any of their
possible combinations.
Eg: Vertically Radial Well-Fully Penetrating

Table 6.1

The parameter Group is used by the system to select the set of interpretation
models. All the other parameters are taken as input from the user. Information about
Geometry and Penetration is usually available. Porosity and Conductivity on the other
hand may not always be known.

6.2.2 Parameter estimation

Parameter estimation is carried out after a model has been selected by the system.
Though they are not intended to be the final result of the interpretation, these estimates
constitute the starting point for an automated type curve matching analysis. The system
was thus extended to include a very powerful parameter estimation algorithm. Figure 6.2
shows the parameter estimation module in relation to the other modules in the system:
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Figure. 6.2: Parameter estimation module

Presently, the system carries out the estimation process only after a single model
is identified. In case multiple models are selected, the user needs to narrow down the
choice to only one model. The user then selects the parameters that are to be estimated.
The user is provided with an interface for this purpose. Based on the model identified
and the parameters specified, the system builds up an input to the estimation program.
The estimation module is then executed. The output from this module is obtained in an
output file which gives the values of the required parameters.

The parameter estimation module also produces the calculated pressure and
derivative values based on the model and the parameter values. This data is displayed to
the user and helps in judging the correctness and the accuracy of the estimated values.
The user may decide to accept these values, or run the estimation procedure again.
Refining the estimated values may require changing certain parameters used by the
estimation program.
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6.3  Using the system

The system provides the user with an interface that makes it easy to provide input
and analyze the results. Using the well test interpretation system is described using the
following example. The interpretation process is started by the user by clicking on the
‘Interpret’ button. The user is then prompted for the input file name. This file is loaded
by the system and the plot is displayed to the user. The system then matches the plot to
the stored model information and prints out the model identified. As shown in Figures
6.3, 6.4, and 6.5, the system comes up with two candidate models. In this case, the plot
information was not enough to select a single model.

Insert figures here
A single model needs to be selected before the parameter estimation algorithm can
be executed. The user can provide the model to the system using the Enter model button.
External information can also be to possibly narrow down the search. This information is
entered into the system using the External Data button. In this case, the knowledge that
this is a fractured well was is entered by choosing the corresponding entry in the
Geometry field in external data entry screen.

Running the interpretation after providing this information resulted in the system
discarding the first option based on the external data, and the second model was selected
(Figure. 6.5).

The parameter estimation module is executed using the Estimate Parameters
button. The options that need to be specified, like the parameters to be estimated, and
their range, is entered by clicking on the Set Parameters button. This invokes a screen to
enter these values.

6.4 Further extensions

The program as shown in the previous section was coded in KAPPA. For greater
efficiency and scalability, this is being converted to C++ code. Though the internal
representation and some of the interfaces have been enhanced for better performance, the
basic functionality provided by the system remains the same. The following extensions
are required in the system:

1. Extending the model information in the system: The system needs to be extended to
handle all possible well models. This process does not require any major change to
the system. Only the shape information for new models need to be provided.
Entering the shape information into the system is all that is required to extend the
system. This can be done by the following steps:

2. Eliminating noise: The system needs to be extended to handle noisy data. This can
be achieved by simply adding a smoothing routine to smooth the plot before
analyzing it.
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6.5 Conclusion

The well test interpretation system is an efficient tool to analyze well data. The
system starts with the minimum information available (derivative data), and tries to
classify the well. Other information is used if required. Once the well is classified, the
system can then be used to estimate the parameters for that well. This system has been
developed as a stand-alone tool to be used by an expert. It frees the user of the routine
and tedious task of classifying the wells and estimation of parameters. The information
obtained from the system is also useful, and can be used by other groups in the project.

7. Wavelet Transform Base Simulation

Wavelet transformations are being used to take cross sectional data of the well site
and reduce the number of data points it in such as manner that analysis computations can
be performed more quickly and without loss of critical information. This section presents
the results of a single phase flow simulation where the permeability distribution has been
transformed into frequency domain space using a wavelet transform, compressed with
different compression factors, and back-transformed into its original space using the
inverse wavelet transform. The objective of the flow simulation is to see the effect of
compression to some part of the original data on the overall performance of the reservoir.
Early results were obtained on a Sun workstation using MatLab in conjunction with a
public domain wavelet package, WaveLab. All testing was done with the Coiflet-2
wavelet of order 3. A MatLab script has been written to run the 3-D wavelet
transformation and inverse transformation on a 2-D matrix of data. Specific results were
optimistic. After more data is analyzed, different wavelets functions can be tried and the
order of the wavelet can varied.

Several compression factors have been used in this process, i.e., 25%, 50%, 60%,
75%, 80%, 85%, and 95%. Each compression factor signifies the amount of data removed
from the frequency domain. For example the 95% compression factor means 95% of the
data has been removed and only the remaining 5% were kept. Intuitively, the smaller the
compression factor, the closer it would be to the character of the original distribution. In
all cases the overall features of the original distribution are captured by the transformed
data even though it is quite clear that as the compression factor increases the distribution
becomes smoother. The flow simulation is then required to see whether this
transformation and compression process did or did not change the flow performance.

A single phase flow simulation model for this purpose has been developed using
90x90 grid blocks. Six wells are defined in the model. The difference between the initial
pressure and the bottom hole pressure (the pressure drop) of each well for each
compression factor is calculated. Then, the relative error of this pressure drop as a
function of time, as defined in the following equation, is calculated for each case.

P,— P -~~~
R€l. Err=( n wf ariginaf;islribu;n n i compressed distribution X 100%
( in~ Lwf )griginal distribution
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Comparisons of the relative errors for 25%, 50%, 75%, and 95% compression factors are

presented in Figures 7.1A - 7.1D.
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Fine Scale (90x90) - 75% Compression
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Figures 7.1A and 7.1B present the results of 25% and 50 % compression. There is
no significant difference between them. Figure 7.1C and 7.1D present the results for 75%
and 95% compression factors. With 75% compression the error start to increase. This
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increase is clearer for the compression factor of 95%. Another aspect that can also be
observed from the result of the 95% compression is the fact that at late time (close to 200
days) the simulation result does not converge to zero as in the other cases. Thus, this
result indicates that there is a certain cut-off value of compression factor, which is 75% in
this particular case, that needs to be used if we want to compress the original data through
the wavelet transform while keeping the overall performance of the reservoir.

One problem thaf i‘\/ésiéﬁg:pantered in using this transformation is the presence of
negative permeability. This occurs when a very low value is transformed. At this time,
this problem is temporarily solved by:assigning a very low positive value to replace the
negative number. A two phase flow model will be tested for these data in the near future.

8. References

1. Aasum, Yngve: "Effective Properties of Reservoir Simulator Grid Blocks", PhD
Dissertation, The University of Tulsa, Tulsa, OK (1992)

2. Chen, Chih-Cheng and Raghavan, Rajagopal: “An Approach To Handle
Discontinuities by the Stehfest Algorithm”, SPE 28419 presented at the SPE 69th
Annual Technical Conference and Exhibition held in New Orleans, LA, U.S.A,,
25-28 September 1993

3. Allain, O. F. and Homne, R. N.: “Use of Artificial Intelligence for Model
Identification and Parameter Estimation in Well Test Interpretation”, paper
SPE18160, 1988.

4, Startzman, R. A. and Kuo, T. B.: “A Rule-Based System for Well Log
Correlation”, paper SPE15295, 1986.

30

e g —— o STy — N Nt yrv——— Py, X r—————




