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Objectives

The basis of this research is to apply novel techniques from Artificial Intelligence
and Expert Systems in capturing, integrating and articulating key knowledge from
geology, geostatistics, and petroleum engineering to develop accurate descriptions of
petroleum reservoirs. The ultimate goal is to design and implement a single powerful
expert system for use by small producers and independents to efficiently exploit reservoirs.

The main challenge of the proposed research is to automate the generation of
detailed reservoir descriptions honoring all the available "soft" and "hard" data that ranges
from qualitative and semi-quantitative geological interpretations to numeric data obtained
from cores, well tests, well logs and production statistics. In this sense, the proposed
research project is truly multi-disciplinary. It involves significant amount of information
exchange between researchers in geology, geostatistics, and petroleum engineering.
Computer science (and artificial intelligence) provides the means to effectively acquire,
integrate and automate the key expertise in the various disciplines in a reservoir
characterization expert system. Additional challenges are the verification and validation of
the expert system, since much of the interpretation of the experts is based on extended
experience in reservoir characterization.

The overall project plan to design the system to create integrated reservoir
descriptions begins by initially developing an Al-based methodology for producing large-
scale reservoir descriptions generated interactively from geology and well test data.
Parallel to this task is a second task that develops an Al-based methodology that uses
facies-biased information to generate small-scale descriptions of reservoir properties such
as permeability and porosity. The third task involves consolidation and integration of the
large-scale and small-scale methodologies to produce reservoir descriptions honoring all
the available data. The final task will be technology transfer. With this plan, we have
carefully allocated and sequenced the activities involved in each of the tasks to promote
concurrent progress towards the research objectives. Moreover, the project duties are
divided among the faculty member participants. Graduate students will work in teams
with faculty members.

The results of the integration are not merely limited to obtaining better
characterizations of individual reservoirs. They have the potential to significantly impact
and advance the discipline of reservoir characterization itself. /

Summary of Technical Progress

1. Decomposition of System

We have decomposed the overall system development into smaller component
parts to allow us to focus on the expert knowledge required for that component. In




addition, the decomposition will facilitate the implementation of the system and its
validation and verification. The three component systems will be representative of how
each of the experts in geology, geostatistics, and engineering characterizes the reservoir.
Figure 1 describes a model for this breakdown. The concurrent development of these
component systems fits into the development of the large and small scale aspects of the
system as originally stated in the proposal.

The geostatistical system continues to be tested and updated. This sytem includes
the use of wavelet transforms to determine the effect of compression to some part of the
original data on the overall performance of the reservoir. Concentration on the geology
system has been placed on upgrading the neural network output for log facies recognition.
In addition, we continue to develop rules for correlation of zones among wells. The
marker bed recognition system is considered complete at this time, though later
enhancements may be added. The individual components (completion rules, type curve
matching, and linear regression components) are currently being integrated to form a
complete well test interpretation system. The graphical system is currently being designed
for implementation to visualize correlations between wells. This system will be augmented
as the other system components mature. The designing of the overall user interface to
integrate all of the systems will begin in the following quarter.
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2. Geostatistical System: Incorporation of Dynamic Constraints in a Reservoir
Description Process

2.1  Summary of Progress

During this quarter, the following areas were studied: (1) Upscaling methods, (2)
Use of ECLIPSE for the simulation part of the simulated annealing (SA) algorithm, (3)
Convergence rate factor for the “temperature,” (4) Weightings to apply to the components
of the SA objective function.

2.2  Upscaling Methods

2.2.1 Modified Geometric Average Upscaling

As previously noted, the conventional upscaling techniques do not perform
adequately in matching the pressure behavior between scales. As an example, Figure 1
shows the relative errors (defined below) when a 90x90 grid is upscaled to an 18x18 grid
and the flowing BHPs from the fine scale and coarse scale grids are compared.

Relative Error = M ¢))
wf,
where Ap,, = fine scale flowing BHP change

Ap,; = coarse scale flowing BHP change
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By modifying the upscaling procedure in the near-well region, we can obtain a
much better match as Figure 2 shows.
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In this case, the relative errors lie between +5% after 0.1 days. Note that Figures
1 and 2 are plotted on the same scale for purposes of comparison. The methodology for
modifying the geometric averaging approach was outlined in a previous report.

It was subsequently observed however, that this modified approach did not give
consistent results. As Figure 3 shows, in some cases the errors remained relatively high
with this approach.
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Figure 3

As can be seen however, some of the wells were “well-behaved” while others were
not. For example, well 9 displays low errors, but those for well 1 are high. It was
determined that the magnitude of the fine scale wellblock permeability determines how
good the modified geometric average upscaling approach works. This may be explained by
considering that, when the contrast between the wellblock permeability and those of the
nearby gridblocks is large, upscaling will be dominated by the permeability of the other




blocks and so skewed away from the wellblock permeability. This will magnify the
difference between the pressure responses observed at the fine and coarse scales.

well 1
8.65 5.63 9.20 16.27 9.84
10.62 145 8.31 10.12
9.76 . 5881 1 -1.43 6.41}
12.51 10.53 2.18 9.23 10.92
12.73 8.43 4.64 8.88 11.76
well 9

42.31 35.22 23.32 24.98 26.26
43.69 39.81 31.56 22.96 22.23
48.46 42.00| - 3059 25.90 21.59
58.83 36.66 31.65 18.71 24.28
47.94 4475 37.20 28.91 14.37

The above figure shows the actual values of the 25 fine scale permeabilities in the
near-well gridblocks for wells 1 and 9. The wellblock location and permeability value are
denoted by the shaded value at the center. It can be seen that for well 1, the wellblock
permeability value is relatively low, when compared to the surrounding values. In the case
of well 9 however, this is not so. To verify whether this analysis was valid, another case
was flow simulated in which all the fine scale wellblocks were set to permeability values
comparable to those of the surrounding gridblocks. Figure 4 shows the results in this case,
which supports our analysis.
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Here again Figures 3 and 4 are plotted on the same scale to facilitate comparison.
We may thus conclude that the modified geometric average upscaling technique may be
used when the wellblock permeability is not very much lower than the surrounding values.




2.2.2 Upscaling Approach Suggested by Ding'

Another procedure for upscaling in the vicinity of wellbores was presented by Yu
Ding. In his approach the upscaled parameters consist of the transmissibilities and
numerical productivity indices (PIs) around the well(s). He points out that this is a purely
numerical problem, for which we need to determine the equivalent permeability on coarse
grids from known values on a fine grid. This is different from the effective permeability
defined in accordance with the spatial distribution or the correlation of the fine- scale
values. Because his procedure requires the numerical solution of a steady-state problem
using a fine scale sub-grid around each well, the solution is somewhat more complex and
time-consuming than the modified geometric average upscaling method, however, it
consistently performs better than that approach. As Figures 5 and 6 below show, the
errors in the pressure response are better-behaved (in that the convergence to zero is
“smoother”) and smaller than those from the modified geometric average upscaling
method.

Ding Upscaling Ding Upscaling
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We use the pressure results from about one day for comparison purposes in the SA
algorithm, thus both upscaling approaches may be used -- except that in the case of the
modified geometric average upscaling method, the permeability contrast in the near-well
region cannot be too great.

2.3  Use of ECLIPSE for the Simulation Part of the SA Algorithm

During the period under review, we also started to test the usage of the ECLIPSE
black oil reservoir simulator for performing the flow simulation part of the SA algorithm.
This required segmentation of the code into several executables (among which the calls to
ECLIPSE were imbedded) which were then run under UNILX via a batch file. However, an
extensive amount of input/output now becomes necessary since we have to read and write
to the datafiles between calls from one executable to the next. This has made the algorithm




very inefficient. We are investigating however, procedures which may improve the
efficiency of the code, and so make this approach more feasible.

2.4  Convergence Rate Factor for the “Temperature”

The default value being used for the convergence rate factor for the “cooling
schedule” (i.e. the multiplicative factor by which the SA temperature is reduced) was 0.5,
defined by Perez® as the “optimum” value. However, this value was optimum for a
variogram-only objective function. As pointed out by Aarts and Korst,® a requirement for a
finite-time implementation of the SA to result in an approximation of the optimal solution
is that “quasi-equilibrium” is attained at each temperature level. Thus there is a “trade-off”’
between large decrements in the control parameter (temperature) and small homogeneous
Markov chain lengths (the Markov chain length represents the number of perturbations or
different distributions generated at a particular temperature). We experimented with
values of the convergence rate factor larger than 0.5 and found that the fastest
convergence was obtained for a factor of 0.1.

2.5  Weightings to Apply to the Components of the SA Objective Function

2.5.1 Sagar’s Approach

To date, the default weight used for each component of the objective function was
0.5. Some testing was initiated on determining “appropriate” weights for our problem. We
started with the 10,000-block case and, following Sagar’ we defined the weights as:

S JE -
0
\Pl = k=1 EZ (23.)

— k=1 1
N YE-E] YE-E ‘2‘”
2w

k

where E} = Initial Energy for Component,
E! = Perturbation, Energy for Component,
M = Number of Perturbations
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then Ef = E};E{‘ +E—§Ez" 3)
where E* = Overall Objective Function

Whereas Sagar found that 0.06 cycles of perturbations was adequate for obtaining
stable weights, we found that more than 12 cycles were required for our case. Also the
stable weights obtained from our analysis varied between 0.55-0.65 for weightl and
correspondingly 0.45-0.35 for weight2.

2.5.2 Deutsch’s Approach®
In this approach, the weights are determined as:

1 |
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N
then Ef = %Z‘HE} (5)
B
where E°=>YE’ (6)
i=1

Here N is the number of components of the objective function and A is a large
number of independent perturbations, say 1,000. Analysis of this approach is continuing.

3. Integrated Lithofacies and Petrophysical Properties Simulation

In this section we present the new procedure developed to generate reservoir
characterization by simultaneously simulating the lithofacies and petrophysical properties,
i.e., porosity and permeability. The technique used is the conditional simulation method
which is capable of honoring the original distribution of the data and the associated spatial
relationship. The method is capable of predicting several equiprobable images of the
reservoir. The procedure used in simulating the lithofacies is the indicator simulation
whereas the porosity is simulated using sequential Gaussian simulation. The permeability
distribution is simulated using conditional distribution technique.

The program is developed using the C++ language. We intend to incorporate some
pre-and-post processing tools in the program to help the user in applying the program. At
present time, important classes required for this program have been completed. The future
work is to develop the main driver and to test the program with the available data.




3.1 Conditional Simulation Methods

Conditional simulation is a geostatistical method to generate description of
reservoir properties which uses the available quantitative and qualitative data. This method
is a stochastic approach because reservoir properties are represented by random variables.
The description of the properties generated by this method are conditional since the
available data are honored at the sampled locations. And, the method simulates several
equiprobable descriptions of the actual distribution of a property in the reservoir. In
constructing the possible reservoir descriptions, the constraints imposed on the simulation
process may include prior distribution of the simulated variables, spatial relationships in
various directions and geometry of geological shapes and sizes. As more constraints are
incorporated in a conditional simulation process, more similar would be the equiprobable
images.

3.2 Co-Simulation of Rock type and Petrophysical Properties

Common practice in generating reservoir description in the industry is the two
stage approach where at the first stage the rock type or the geological facies is simulated
followed by the simulation of the petrophysical properties at the second stage. The process
at the second stage requires a lot of computation time and computer storage to hold the
temporary results which will be discarded after combining with the results of the first stage
through filtering process. Therefore, if we can combine these two processes in one, an
efficient simulation will be obtained.

To eliminate the two stage approach and to reduce the computation time, the grid
block is visited only once. Using the same search neighborhood, the geological facies is
estimated first, followed by porosity and permeability. The method accounts for
correlations among these variables as well as the spatial relationships. This reduces the
storage requirements and makes the process computationally efficient while maintaining
the consistency between the generated petrophysical properties with the underlying
geology.

A co-simulation program to eliminate the two stage processes described in the
previous paragraph is being developed using the C++ language. The program is the
translation and modification of the original COSIM program which was written in Fortran.
In the Fortran version, both facies and porosity simulation are conducted using the
sequential Gaussian technique. It is believed that an indicator variable such as lithofacies
will better be simulated using indicator simulation rather than a Gaussian technique which
will be more suitable for continuous variables such as porosity. In addition, a modification
is also being made to account for the uncertainty of the data.

During this quarter, the creation of the required classes has been completed. Table-
1 presents the description of each class. The main driver of this program is now being
developed. Upon completion, this program will be tested using the available sandstone
data of Glenn Pool field and carbonate data of North Robertson Unit - Texas. The future
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work will also include the creation of the pre-and-pbst processing tools to make this
program user friendly.

Class Name Description

Grid Provide the grid block network of the simulation system that includes the neighborhood
searching technique such as super block search.

Variogram Provide the calculation of variogram and/or covariance value between any two points in
3D for a given Variogram model.

CovTab Provide the calculation and storage for the covariance table. This class is inherited from
Variogram Class.

Kriging Provide the procedure to estimate the node value either by Simple kriging or Ordinary
kriging technique.

CondDist Provide the procedure to perform the conditional distribution technique in generating
the permeability distribution and the storage of the related correlation among variables

Simulation Provide the procedure to perform the simulation either Gaussian or Indicator
techniques.

Point3D Provide the structure to represents a 3D point. This class is generated using a template
that can accept any data-type.

Utility Provide several utility functions that are common in geostatistical simulation technique
such as random number generator, inverse of Gaussian data, normal transformation,
etc.

listClass Provide the link list of the data to store variable with unknown size. This class is also
templated to accept any data-type.

Application | Provide the main driver of the program.

Table 1 C++ Class Description of the COSIM program.

4. Geological System: Sand Body Identification

In order to analyze well log data, we solve the following two problems
sequentially:

o Well log segmentation problem
o Log facies identification problem

Well log segmentation. Given a well log data file the system determines the endpoints,
called cuts, of every sand body present in the log file. This is needed to divide the well log
(gamma ray) into discrete stratigraphic units. Such segmentation is for log facies
identification and well-to-well correlation. A rule-based system is applied to the original
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data file to determine the cuts or segments. The resulting file is then fed to the neural
network to solving the log facies identification problem.

Log facies identification. Given a well log data file and the predetermined cuts, the
system determines which kind of facie or sand body is between any two cuts. A neural
network is used to solve this problem. The input to the network is an intermediate file
generated by the rule-based system.

Our neural network was previously trained with expert-classified well logs to
recognize the following set of fundamental shapes:

bell, funnel, blocky, symmetrical, linear

2.2  Well Log Segmentation

Well logs have to be scaled and normalized in order to set a common ground on
which the problem can be solved. In consequence every log file is scaled in such a way
that:

e  maximum gamma ray value maps to 1
o minimum gamma ray value maps to 0

As a result of this process all the gamma ray values will be within this range (0-1).
This is done before attempting to solve either the log segmentation or the facies
identification problems.

3.3.1 Applying Well Log Segmentation Rules
Figure 7 shows how this rules are applied to a section of a log:

Determining Cuts: Only maxima are
candidates

07
06 +
05+
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02+
0.1 +
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Figure 7




3.3.2 Segmentation Results

Currently, the neural network has problems recognizing the cuts between facies. It
only recognizes about 70 percent of the actual cuts. We believe that this recognition
problem is due to the neural network using the high frequency information improperly. As
a result, the facies identification rate is lower than expected. Thus, it was necessary to
create a new approach to improve the percentage of correct facies recognition. This
approach consists in a digital filter that cuts off the high frequency.

The digital filtering process can be represented by the block diagram in Figure 8.

Figure 8

where x(n7) is the unfiltered data or the excitation and y(n7) is the filtered data or the
response of the filter. The response is related to the excitation by some rule of
correspondence. This fact can be indicated notationally as

y(nT) = Rx(nT)

where R is an operator.

The type of filter used to filter the well log is time-invariant, linear and
nonrecursive. Time-invariant means that the operator R does not depend on the time of
the application of the excitation. Linear means that R satisfies the next conditions:

Rooe(nT) = aRx(nT)
ROxy(nT) + x; (nT)]= Rey (nT) + Ry (nT)

for all possible values of o and all possible excitations x,(n7) and xAnT). Nonrecursive
means that the response to the filter at instant n7 is the form

y(n) = f{.,x(nT-21),x(nT - T, x(nT),x(nT + T),x(nT+21),...}

Because the filter used is /inear and time-invariant, y(nT) can be expressed as

yuT)= Sayx(nT—iT)

j=—00

where a; represents constants.

The a used to filter the well logs is the following:
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The main characteristics of this are the sum of all a; is equal to 1, the maximum is
at i = 0 and it is symmetric respect to the maximum. So that, the gain of the filtering
process is 1 and there is not phase delay between the unfiltered and filtered well logs. The
result of the filtering process is shown in Figure 9.
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Figure 9

We expect improvement from using this low-pass filter before to using the neural
network to find the cuts because it filters out the high frequency component that normally
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is noise. Therefore, the probability of error finding correct cuts between facies is lower.
This means the probability of recognizing the type of facies is higher.

There are several steps we need to perform to: determine the extent of
improvemen the filtering process has on the percentage of correctly identified facies.
First, we must retrain the neural network using filtered and unfiltered well logs and
evaluate the results. Next, we need to create an additional pre-processing module that
performs a dynamic normalization of well logs before or after to use the filter. The reason
for creating this new module is because in some well logs the information has less
magnitude.

- 8. Geological System Components: Correlation of Log Curves

In this section, we detail the current approach to the correlation of log curves.
Implementation is underway of an initial rule set to generate a matrix of compatibilities of
zones in wells. Expert rules are being developed to analyze the matrix to determine the
appropriate correlation of the zones.

5.1 Overview of Approach

The approach has been to develop a set of rules for correlation of two log curves.
The rules are based on similarities in well log trace shapes, thickness and vertical position
of the zones. The segmentation of the well logs and log-facies identification by the neural
network and depths of identified marker beds will be given as input.

With this approach, initially for correlating two zones from two different wells the
following four criteria have been chosen:

1. position of the zones with respect to the length of the logs;
2. distance of the zones from the marker beds;

3. thickness of the zones;

4. log-facies of the zones,

Considering the basic rules for each of these criteria as described in our last Annual
Report, we formulated a comprehensive rule set of 54 rules which were also presented in
our 1995 Annual Report. With these rules, correlation between two synthetic wells and
two wells from Glenn Pool field (Self 81 and Self 82) was tested. These two Glenn Pool
logs with identified zones and corresponding log facies and a tentative correlation between
the two wells have been presented as Attachment A. The logs were manually zoned and
the log facies of each zone was identified which were used as input for testing the
correlation rules. The “correlation rank matrix” derived using the two Glenn Pool logs is
presented as Table 2. As can be seen from Table 2, the correlation of zones al, a9 of well
Self 82 with zones b1l and b7 of well Self 81 respectively has been ranked higher than any
other possible correlation combination and hence can be correlated. With some additional
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heuristics about how these ranks need to be interpreted, we feel that the correlation of
other remaining zones can be done with reasonable confidence.

Correlation Rank Matrix

Self 81

Zone b1 b2 b3 b4 b5 b6 b7

at 54 21 27 27 6 3 3
az 52 47 51 27 6 3 1
a3 48 47 51 51 6 3 3
a4 27 39 54 54 47 6 4
ad 6 6 47 47 47 39 4
a6 4 27 9 47 47 39 4
a7 6 27 9 47 47 39; 4
a8 6 6 9 9 54 51 49
ag 3 3 6 6 27 48 54
at0 3 2 6 6 6 9 9

Table 2

While carrying out these tests with different test data, both synthetic and real, we
noted that the comparison of log facies of two zones has been grouped into two
categories: ‘same’ and ‘different’. The logfacies are identified as belonging to one of the
five categories: Bell(1), Funnel(2), Blocky(3), Symmetrical(4), Linear(5). We recognize
that these logfacies represent change in depositional evvironments within a fluvial setting.
Hence while comparing two different logfacies we need to rank the ‘difference’ beteween
them instead of grouping all “different’ comparisions into one category. This will allow to
incorporate lateral facies change in our correlation. When the above concept is
incorporated to formulate a comprehensive rule set, we formed a rule set with 209 rules.
The above two wells (Self 81 and Self 82) and two other wells (11-75 and 11-86) were
tested using the expanded rule set.

S.2  Implementation

The rules developed for the correlation are being prototyped in CLIPS to allow for
fast development and flexible changes prior to porting to C++. CLIPS (C Language
Integrated Production System) is an expert system tool that is designed to facilitate the
development of software to model human knowledge or expertise. There are three ways to
represent knowledge in CLIPS:

¢ Rules which are intended for heuristic knowledge based on experience,
» Functions which are intended for procedural knowledge and
e Object-oriented programming.

CLIPS has a design that allows for full integration with other languages such as C.
In addition to being used as a stand-alone tool, CLIPS can be called from a procedural
language, perform its function, and then return control back to the calling program. The
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CLIPS shell (which performs inferences and reasoning) provides the basic elements of an
expert system.

Fact-list and instance-list : Global memory for data
Knowledge-base: Contains all the rules.

Inference engine: Controls overall execution of rules.

CLIPS also provides a good user interface. Prototyping the rules in CLIPS is
useful because we get quick feedback. Also, the development of the rules and changes to
them can be performed easily in this framework. It is in keeping with the above features
that the well correlation module was decided to be implemented first in CLIPS

An example of a rule in CLIPS

(defrule rank176
(zones ?7z1)
(zones 7z2)
(zones 7z3)
(logl 711)
(log2 712)
(test (and (eq ?z1 diff) (eq 722 same) (eq ?z3 close)))
(test (and (= 711 2) (=712 4)))

(assert (rank 176)))

The above rule gives the rank 176 if the zones have same thickness, if their
respective distances from the marker beds are close, and the log facies are different and
they are of type 2 and 4. The rules first classify the zones being compared based on their
distance from the marker bed, thickness and log facies as indicated in the previous reports.
Then a set of rules similar to the one above are implemented to get a rank.

53 Future Work:

The correlation rank matrix resulting from the use of the expanded rule set will be
analysed to look for any improvement in correlation. We have felt that the ‘Relative
Position’ criterion may seem to be redundant in view of the criterion ‘Distance from
Marker Bed’. We may have to delete this criterion and reformulate the rules accordingly.
More testing will be done to evaluate the results.
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