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GYPSY FIELD PROJECT
IN RESERVOIR CHARACTERIZATION

Objectives

The overall objective of this project is to use the extensive Gypsy Field laboratory and data set as a
focus for developing and testing reservoir characterization methods that are targeted at improved

recovery of conventional oil.

The Gypsy Field laboratory consists of coupled outcrop and subsurface sites which have been
characterized to a degree of detail not possible in a production operation. Data from these sites entail
geological descriptions, core measurements, well logs, vertical seismic surveys, a 3Dseismic survey,

crosswell seismic surveys, and pressure transient well tests.

The overall project consists of four interdisciplinary sub-projects which are closely interlinked:
1. Modeling depositional environments.
2. Upscaling.
3. Sweep efficiency.

4. Tracer testing.

The first of these aims at improving our ability to model complex depositional environments which
trap movable oil. The second entails testing the usefulness of current methods for upscaling from
complex geological models to models which are more tractable for standard reservoir simulators. The
third investigates the usefulness of numerical techniques for identifying unswept oil through rapid
calculation of sweep efﬁciéncy in large reservoir models. The fourth explores what can be learned
from tracer tests in complex depositional environments, particularly those which are fluvial

dominated.



Summary of Technical Progress

During this quarter, the main activities involved the "Modeling depositional environments"
sub-project. In this report we formulate systems based on finite element approximations to parabolic
initial value problems modeling the transient pressure behavior. We then study problems to estimate
reservoir parameters (permeability) from measurements of the transient pressure. Of particular
interest is the differentiability of the estimated reservoir parameters with respect to data. These
considerations allow one to analyze the sensitivity of estimates with respect to perturbations of the

data. Tools are developed that will be used to assess the inherent resolution supported by the data.
The finite dimensional problem. In this section we present the formulation for the parabolic
models. A detailed discussion of finite dimensional approximations to elliptic problems is included
in [6]. To fix ideas, let Q be an open bounded domain in R” with a Lipschitz boundary 0Q.

LetH=L*(Q) and V=H'(Q). Let

fe L*0,T:H) and a € O < L™(Q).

We assume that there is a positive constant v such that

a(x) > v almost everywhere in Q

Consider the initial boundary value problem given by

ou

(1) 5 V-(aVu) = fin Q x (0,7)
) % _0on Q,
on



and

3) u(,0) = u, € H

with f € L*(0,T.H) and a € Q < L~(Q). For ease we will take u, = 0. Itis well known [2] that
there exists a unique solution u € L*0,T ;V). Furthermore, if @, ~ a in Q for a, > v, then the
sequence of associated solutions u(a,) converges weakly to u(a)in L*(0,T;¥), [2]. In formulating
a regularized output least squares estimation problem, we suppose that Q is a Hilbert space that

imbeds compactly into L “(Q).

We study systems of initial value problems obtained from finite element approximations [4].
Suppose that {Bi}?i1 and {bi}?fl are linearly independent functions in ¥ and Q, respectively.

Express # and a as sums and

u(t) =i c(DB,
and

vt
a=Yab
i

respectively. Given the coefficient a, we seek # = u(a) such that

@) % [uOBdx + [ avu) - VBx = [ fiBax, t € (0.1

for i = 1,...,N. Introducing the representation of a as the above sum and collecting terms, we define

component stiffness matrices as the N x N matrices G* with entries



®) _ .
G; = bekVBi VB dx

fork=1,...,.M and

Gyy = fQBﬁjdx.

Define the column N-vector valued function ¢ - F{(f) with entries

F(t), = fgf(t)Bldx

fori=1,...,N and set

and

e 0]

0]

We also write ¢ = c(a@) when it is desirable to emphasize the dependence of ¢ on a. The stiffness



matrix is given as the linear combination of the component matrices

M
G = G(a) = Y aG®
k=1

and the semidiscrete version of the initial boundary value problem (4) is thus given by the equation

(5)() GO%c + Gla)e = F

with initial condition

(3)@) c(0) = 0.
Setting
Q) S@)() = expltGy'G(a)]

the solution to (5) may be represented by

7 o« = [ 'S(t-HG, ' F(r)dr.

Suppose there are given continuous real-valued linear functionals {An}nNg1 on ¥V and {@}ivll on

Q to serve as observation functionals, [3]. From these functionals we construct the operators

C, : LXO,TV) = Z, = L*0,T:R")

and C, : 0 » Z, = RVas



<A (5>

CH() =
<AN0,v(t)>
and
.<®I>¢>-
Cy = ,
<®Nl’¢>

respectively. The minimization problem is formulated by introducing a fit-to-data functional
N 1

N0 ‘
Ja) = [T 30 (B> = 50F + 3 (Bpa > K
=1

k=1

+[1t; D% + v, [VaPlds

where v,, and v, > 0. The functional J(a) is to be minimized over an admissible set O , = Q.For

example, O _, may be taken to be

(8) Q,={aecH(Q):a>v>0}

cf. [5].
The finite dimensional formulation of the fit-to-data functional is obtained by introducing the

N,yx N matrix (0}



®. = <A B>
ij Py

fori=1,.., Ny andj = 1,...,N, the M x M matrix

H, = fQ[ylVbl. © Vb, + y,D?bD?b]dx

fori, j = 1,..., M, the N;x M matrix

¥, = <0,b>

y

fori=1,..,N, andj = 1,....M, the N,column vector

5
Z = s
.ZNO i
the N, column vector
-Kl )
K=|. |,
.KN] J




Let
O, =0®and ¥, = ¥'¥

where * denotes matrix transposition. The functional J(-) may thus be viewed as being defined on R

and is expressed as

) Ja) = fo Te* @ c - 22°®c + z'z)dt + a’(H + P)a - 2K'%a + KK

where a € Qag and Qa]:f serves as an appropriate admissible set in R™.
To study the effect of perturbations of the data on interior optimal estimators, our starting
point is the system of equations characterizing optimal estimators. Note the Frechet derivative of

c at a with increment @, Dc(a)a , satisfies the equation
d
(10) Goz[Dc(a)a 1 + G[Dc(a)a 1=-G(a )c(a).

with initial condition

[Dc(a)a 1(0) = 0

so that

[De(a)a 1(f) = - fo " S(t-H)G, 'G(a Ye(a)(T)dx.

Defining the column N-vectors

dPa) ) = f 'S(t-9G, ' GPe(a)(t)dr
0

and the N x M matrix



DY@G) - [ @H Oy @O,

we may write

[De(@a'[§) = ~Dya)(ne .

The dervative ol .7 satisfies

(i) i-m(a}af = f:{fﬁzc(&}—@‘z}" [De(@e] dt - ({(H - Fpe - ¥'E) e’

Introducing the vector = = T(a,z) as the sofution ol the svslemn,

d .
(12) -EGO’E + Glayn = D.e(e) - D'z,

TI:(D = 0:

we gce that

f (@,e(a) 22 [Deara ] dt = - T n(a.2) Gla Yel(a)de
40 S
holds. The solution of {12} may be rcpresented by the [ormmuk:
ma2)() - [ "SE-DG, (Pye(@(®) - PrENd.
4!

Definc the column M-vector X — Xfa,z) with entries,

{13) | Xian = | ez G Pola)r.
k ~ 0



The derivative of ] may now be expressed by the formula

(14) ' é—DJ(a)a't = [(H+P)a - T'K - X'a’.

Thus, the optimality conditions statisfied by an interior solution are given by the following, cf

[5).

If a is an interior local minimum for the estimation problem, then a satisfies the optimality system

15)) Gaﬁ;c(a) + Gla)e(a) = F in(0,7)
c(@)0) = 0

(;5)(&1} ~Gn-§;7:(a,z) + GlaR@) = &e(@) - O'zin 0.0
(e, I{T)=0

(15}(iii)} (H+¥)e - ¥'K - X(a,2) = 0.

where the components of X{a,z) are given by (13).
The optimality system in (15) establishes a relationship between the data vectors z and K and
an optimal estimator @. We next obtain conditions such that the relation given by the optimality

conditions of (15) determines a function z = afz) from R™ into R™. To this end, define the

function
F:R™x Z, x R~ R¥
by
(16} FazK) = (H + ¥)a - V'K - X(a,K)

10



For the time being we are interested only in the dependence ofe on z. Hence, we viewX as a

constant vector and set

F(a,;z) = F(a,z,K).

Of course, existence of an interior solution for data z implies that the relation
{17) F(a,z) = ©

holds. At a pair(a,,z,) for which F(ayz,) = 0, the implicit function theorem asserts that if the
Frechet partial derivatives, D _F(a,,z,) and D F(a,z,) exit andD“F{ao,za)”’ exists, thenz ~ a(z)
is

determined as a Frechet differentiable function in a neighborhood of z,, [1].

Forany &', with D% = D n(a,2),andDc = De(a),

(8) 6y (D, 7e ) G@IP,Ma '] = ~G(a ) (Do) )

and initial condition

(D, ma'I(D) = 0.

Defining the N x M matrix P(a,z)(f) with columns

PO = Pan)e) = [ TS(t-7)G, G Pn(a,n(n)dr

fork=1,..,M, and the N x M matrix

p@® = | TS(t-0G, ¥, D, (a)(0)dx,

11



In addition, it is easy to see that for D% = D _7(a,2)

(D, (@,a () = ~(P(a,D)@)D(a)(Na’

(1) »G‘,i[(p;z)zﬁ +G@ID,mez] = -®2’

(0. mz YD =0,

and

(p,mz7 = - j TSt-0)G, @z (1)dw.

It follows from equation {13) that

pXfana’ = ff{ [D,7(a,2)a'G Pe(a) +7(a,2) "G V[De(a)a Tyt

and

DXy a0z’ = f r’[Dﬁ(a,z}z 1°G Pc(a)dt.
9

Hence, we obtain the expressions

b X(ane' = ([ (@G ORI * D@

+7(a,2)(0)"G PDy(@)(O}drla’

12



pXanz’ = L i fo *o(@)(0)' GBS -0)dG, ‘Bz (T

Setting

f “ela)m) G Vst -;)d‘c‘
4]

X(a,2)() = - . G, @,

f ‘e(a)(x) G #OS(T-Hdt
" o p

WE may write

(20) DF@zz’ = [ X2z 0d.

Furthermore, define the MxN matrices K, and X, in which the k-th rows are given by

K2, = [ Te@X0C XP@OD@ONM:
]

and

K (a2), = jo "(a,0)(0G DD (a)()t,

respectively, and set

K = K(a,z) = K(a,2) + K (a,2).

13



From {16), we see that

D F(az) = H + ¥, + K(a.2),

and from the implicit function theorem we have the following.

Suppose that F(ayz,) = 0.[fmatrixd + ¥, + K is invertible, then there is a neighborhood N(z,)

such thatz = a(z) is defined as a function on N(zp), and

Da(@z' = (H# + ¥, + K@) [ X(@2)(®z (0.
¥ Q

It is also of interest to calculate the second derivatives ofz = a(z). The following is a

. consequence of a straight forward calculation.
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