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GYPSY FIELD PROJECT
IN RESERVOIR CHARACTERIZATION

Objectives

The overall objective of this project is to use the extensive Gypsy Field laboratory and data set as a

focus for developing and testing reservoir characterization methods that are targeted at improved
recovery of conventional oil.

The Gypsy Field laboratory, as described by Doyle, O’Meara, and Witterholt (1992), consists of
coupled outcrop and subsurface sites which have been characterized to a degree of detail not possible
in a production operation. Data from these sites entail geological descriptions, core measurements,

well logs, vertical seismic surveys, a 3D seismic survey, crosswell seismic surveys, and pressure
transient well tests.

The overall project consists of four interdisciplinary sub—projects which are closely interlinked:

1. Modeling depositional environments.

2. Upscaling.

3. Sweep efficiency.

4. Tracer testing.
The first of these aims at improving our ability to model complex depositional environments which
trap movable oil. The second entails testing the usefulness of current methods for upscaling from
complex geological models to models which are more tractable for standard reservoir simulators.
The third investigates the usefulness of numerical techniques for identifying unswept oil through

rapid calculation of sweep efficiency in large reservoir models. The fourth explores what can be

learned from tracer tests in complex depositional environments, particularly those which are fluvial
dominated.

Summary of Technical Progress

During this quarter, the main activities involved the “Modeling depositional environments”
Project”, for which the progress is reported below:




1. Introduction. We study the determination of possibly discontinuous reservoir param-
eter functions from sparse pointwise measurements supplemented with measurements of a
nonlinear function of the parameter. The specific application we have in mind is that of
determining a permeability function or tensor from core measurements and pressure data,
cf [3]. In a previous report we describe our efforts for models with two spatial dimensions,
see also [7]. However, here the focus is on models with three spatial dimensions. !
Our approach which is described in [7] involves two steps. The first is to detect the
discontinuous behavior, and the second is to isolate and refine the region containing it. For
the first step we use a regularized output least squares procedure in which the reservoir
mapping is approximated by linear combinations of bicubic B-splines. The regularization
used is the H! seminorm that is related to the potential energy functional of an elas-
tic membrane. This regularization gives sufficient compactness to obtain the existence
of a solution to the associated minimization problem while implying minimal additional
smoothing. Moreover, it seems to be well suited for the detection of the discontinuities
and sudden changes so often exhibited by geological mappings [2,5]. Having as least de-
tected an anomaly, we next attempt to isolate it by estimating its magnitude and a region
containing it. The result of the procedure is to obtain a discontinuous function. We then
essentially subtract this function from the model coefficient thereby, at least intuitively,
reducing the discontinuous behavior. Again we consider the detection step to test for
further discontinuous behavior. The procedure is repeated for further refinements.

The regularized output least squares estimation procedure along with its differen-
tiablility and resolution properties have been described in previous reports and papers
[6,7]. we present the results of numerical experiments for the three dimensional case. |

To formulate the problem suppose that € is a domain in R that is 2 unit cube for the
purposes of our discussion. We also assume that there are data available that we indicate
along segments (wells) 1-5

{(ziyyi,2):0 < 2z < 1},

see Figure 1. Consider the equation in Q

(1.1) -V. (KVa) = —(k1pz)z — (kZPy)y —(ksp:z): = f
where
kk 0 O
K=1]0 %k 0
0 0 k3

and k; = ki(z,y,2). We assume that the boundary condition

-KVp-n = 0.
The function f models injection injection along 1 ,
(1.2) f(z,y,2) = Fé
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where 6 represents a Dirac-delta function with mass distributed along the well 1. Note it is
not necessary to for the injection well to run the full depth of the cube or for that matter
to be a straight line segment. We also assume that the pressure at well 3 is given by

(1.3) p(z3,y3,2z) = 0.
Under suitable conditions, it is well-known that (1.1)-(1.3) possesses a unique solution, [1].

To specify the estimation problem, we wish to determine the coefficients ki, k2, and k;
from measurements kg-o) (%i,9i,2) of k; at the x-y locations (zi,y;) for ¢ = 1,...,5 with
j=1,2,3and 0 < < 1. In addition we also assume that measurements of p are available
at these locations as well. Although dependence of the data has been represented as.
continuous, in fact the use of data at the more realistic case of discrete z-points makes
no difference in the formulation and solution of the problem. The general technique by
which we formulate the estimation problem in terms of the minimization of a fit-to-data
functional that includes the squared difference between model values and data values along

with a regularization term is referred to as a regularized output least squares technique.
This procedure we use to detect a discontinuity.

2. Estimation of the Discontinuity. Having detected a discontinuity by means of
the regularized output least squares method (actually by any procedure), our next step is
to isolate and obtain some estimate of it. We proceed by considering an example in which
the admissible permeability functions k;,7 = 1,2, 3 have a discontinuity determined by two
regions within  parameterized by 2 real numbers a and b. We denote these two regions
by (a,b) and £ \ Q(a,b). An admissible permeability function for i = 1,2,3 k; is also
parameterized constants k;; and k;, modelling the magnitude of the discontinuity between
the regions. Hence, k; takes the form

(21) ki(m’ Y, z) = kiO(ma Y, z) + kie(:c’ Y, z)
where
kie(z,y) = ki if (z,y) € Q(a,b), and k;; otherwise.

It is assumed that the function k;¢ is known. Introducing the characteristic function = of
the set Q(a, b), we may write

(2.2). kie(z,y) = (ki1 — ki2)=(z,y) + ki2.

To fix ideas let us suppose that (a,b) is a rectangular solid of the form (zo — a,z0 +

a)x(yo — b,yo + b)x(20 — ¢, zo + ¢). However, we assume that in fact ¢ is known from core
data. The stiffness matrices are now given as

zotc pzot+a  pyot+d
(Gi)ij = / (ko + ki2)Va - Vajdedydz + (kiy ~ kiz) / / Va;-Va;dzdydz
Q z y

29—cC o—a o-b
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for | = 1,2,3 where {a;}{_,; form a set of basis functions for the finite element approxi-
mation of (1.1)-(1.3). Setting

(Go)ij =/ Va; - Vajdzdydz,
Q

(Gn)ij =/ kwVea; - Vajdzdydz,
Q

and
zotc pzota  pyotb
(2.3) Gaditet) = [ [ [ Gay Vaydnay,
Zp0—C -zo—a yo-b
we have
3
(2.4) G = Z Gu + (ki — k12)Giz(a, b) + k12 Go.

I=1
Thus, we obtain an equation analogous to (2.16) given by
(2.5) Gec = p.
with the approximating solution u expressed as u = Zfil Ciq;.
Define the criterion

N,
J(a,b, K1, Kz) = ((®j,u) — z;)?

i=1
and the functional
Ny
N(a,b, K1, K2) = Y ({8;,K) — K;j)

j=1
Under discretization, the functional J takes the form

J(a,b,K1,K3) = c*Hpc— 20*c + c;

Note that M(a,b, K1, K>) is a discontinuous function and is, in fact, a piecewise constant
function of a and b. Hence, we look for a, b, K, and K, that minimizes J while keeping
N(a, b, K1, K>) at its minimum value, call it M. That is, we seek

a, b, K;, and K, minirhizing J(a, b, K, K;) subject to N = AN,
3. A numerical example. We consider a problem in which we specify a coeffi-
cient K(x,y) and generate pressure data based on that function by solving the problem
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(1.1)-(1.3)for p with a specific forcing function f by finite elements. Using this data we
then attempt to recover K. Let Q = (0,1)x(0,1) and suppose that measurements of pres-
sure and permeability can be made at locations (0.175,0.175,2), (0.835,0.175,2), (0.5,0.5,z),
(0.175,0.835,z), and (0.835,0.835,2). For a test permeability function we use the following

_ 9+ sinm(z +y + 2) for (z,y,2) € R/Q,
kitest(z,9,2) = { 10 + 2sina(z + y + 2), for(z,y,z) € Qo, N

- J 6+ cosm(z +y + z) for (z,y,2) € 2/,
katest(2,,2) = { 11 + 2cosn(z + y + 2), for(z,y,2) € Qq,

= J T+sinm(z +y + 2) for (z,y,2) € Q/N,
katest(2,,2) = { 12 + 2sinw(z + y + 2), for(z,y,2) € Qo,

shown in Figures 2-4. In the plots we have graphed all functions as functions of x and y on
(0,1)x(0,1) with z = 1/2. Further, we suppose that p = 0 at the point (0.835,0.835) and that
fluid is injected at the point (0.175,0.175). For the approximations to the pressure, we use
tensor products of cubic B-splines [5] defined on a uniform mesh determined by subdividing
(0,1) into 5 subintervals. Since imposing Neumann boundary conditions improves accuracy,
we use 125 basis functions for approximating pressure adjusted to incorporate the Neumann
boundary condition. For approximating the parameter, we again use tensor products
of cubic B-splines but defined on a mesh determined by subdividing (0,1) into 3 equal
subintervals. We use 64 basis functions to approximate the parameter. Using data at the
observation points, we apply the regularized output least squares method as a detection
procedure resulting in Figures 5-7. Based on this result, we search for a coefficient of the

form
ki(z, y) = {kil if (:C, y) € (0, a) x (01 b)’

kio otherwise

A

using the technique discussed in [7]. We then apply further detection by again using the
regularized output least squares method to estimate the coefficient k; where the perme-
ability has the form

k(z,y) = ki(z,y) + ka(z,y).

The results are portrayed in Figures 8-10. Based on these computations, we again can use
the procedure for detecting further discontinuities coefficients using a regularized output
least squares procedure followed by a discontinuous searching procedure. These techniques
may be alternated until it is determined that only background is being estimated.

4. Conclusions. We have applied the output least square estimation technique as a
detection tool for the estimation of a discontinuous permeability tensor using core data
and pressure data In addition we introduced a method to estimate the location and mag-
nitude of a jump discontinuity. We also presented a numerical example for the location of
discontinuities in a permeability function in the presence of a background. By alternating
detection and discontinuity estimation procedures, it seems to be possible to construct
coefficients with discontinuities in the presence of a background function. -
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