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ABSTRACT

This study compares well-to-well tracer test and transient pressure test responses in a
5-spot pattern with permeability variations to examine: (a) the sensitivity of test responses to
the presence of heterogeneity, and (b) quantification of permeability variation from the analysis
of well test data.

The first part of this research deals with non-communicating layered systems. Analytical
models are used to compute pressure and tracer flow behavior for several hypothetical systems.
Drawdown and buildup pressure responses are found to be insensitive to the degree of layering
and permeability contrast. Because of balanced flooding conditions, differential depletion and
the associated humping on a Horner buildup graph do not occur. Thus the pressure buildup
behavior is different from that reported for bounded layered systems. Well-to-well tracer test
responses are seen to be sensitive to both the degree of layering and permeability contrast.
These results suggest that individual layer properties can be calculated by deconvolving tracer
test data, while only averaged properties can be obtained from the analysis of conventional
pressure test data.

The second part deals with single-layer areally heterogeneous systems. Simulation of
transient pressure tests shows that the geometric mean of effective permeabilities around the
injection and production wells is a good approximation for the steady-state interwell permeabil-
ity. A dimensionless permeability difference defined in terms of these quantities can be corre-
lated with a heterogeneity index, defined as the product of permeability variance and a dimen-
sionless correlation length scale. Simulation of well-to-well tracer flow indicates that tracer test
data can be matched with solutions of the convection-diffusion equation to calculate effective
dispersivities only when the heterogeneity index is small. When the heterogeneity index is
large, preferential flow paths are generated in the system, which requires a pseudo-layered
mode] to match tracer test data. A reservoir description procedure, based on the heterogeneity
index and a combined analysis of pressure and tracer test data, is proposed.
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1. INTRODUCTION AND SCOPE

A brief background on the use of well test data for reservoir description is presented. The
motivation for this research is described, and its scope and methodology are outlined.

1.1. INTRODUCTION

The overall efficiency of a fluid injection program for enhanced oil recovery (EOR)
depends on two factors - the volumetric conformance of the process, and its local displacement
efficiency. Displacement efficiency depends on the interaction between the injected fluid and
the oil in-situ, while volumetric conformance depends on the heterogeneity of the reservoir
rock and the mobility contrast between injected and in-place fluids. For the simple case of
water displacing oil, reservoir heterogeneity can be responsible for reducing volumetric sweep,
and hence, overall process efficiency. For the more complex case of carbon dioxide displacing
oil, heterogeneity may interact with phase behavior, and also aggravate viscous instability,
thereby lowering displacement efficiency as well. Thus it is necessary to determine what kinds
of heterogeneities might be present in a reservoir with EOR potential, so that these may be
properly represented in performance forecasting models.

Unlike process description, i.e., aspects related to fluid mixing and phase behavior which
can be developed on the basis of laboratory experiments, reservoir description, i.e.,
enumeration of the nature of variations in porous media properties (e.g., permeability), is
possible only through indirect means. Typically, some disturbance is imposed on the physical
system, and the resultant response is analyzed to obtain a qualitative and/or quantitative
description of the material properties of the system. Thus the detection of formation
heterogeneities for reservoir characterization and modeling represents a classic inverse problem.

Two kinds of well tests are commonly used for this purpose: (a) well-to-well tracer
testing, and (b) transient pressure testing. Interwell tracer tests are used to track subsurface
fluid movement and infer formation characteristics (Brigham and Abbaszadeh-Dehghani, 1987).
Such a test involves injecting a tracer slug driven by a chase fluid, and monitoring the tracer
concentration at an adjacent producer. Pressure transient tests are used to estimate average
formation properties and wellbore conditions, and detect barriers for fluid flow (Ramey, 1982).
Such a test is carried out by perturbing the flow rate at one well and monitoring the resultant
pressure response at the same or adjacent wells.

The influence of heterogeneities on pressure and tracer test responses has been the subject
of several studies, both in the petroleum and groundwater literature. A majority of these studies
have sought to characterize heterogeneities through lumped parameter modeling, ie. by
computing some effective medium property (e.g., permeability, dispersivity) corresponding to a
fictitious homogeneous system, whose behavior matches that of the real heterogeneous system.
However, if distributed heterogeneities are to be detected qualitatively and/or quantitatively by
well tests, some knowledge of the relationship between these effective parameters and system
heterogeneities is required. An associated question of importance is the definition of conditions
under which such effective medium approximations can be used for describing heterogeneous
media. It is also useful to know the relationship between tracer and pressure test responses for
the same system, so that information from both tests can be integrated.

The need to synthesize information from different sources becomes more obvious if one
recognizes the possibility that the sensitivity of pressure and tracer test responses to
heterogeneities may be different. As pointed out by Ramey (1983), one observation from



pressure test analysis to date is that field data often match mathematical models derived for
homogeneous systems. This is frequently found to be the case even when a priori information
about the reservoir indicates the system to be heterogeneous. This suggests that pressure data
as presently interpreted may not contain detailed information concerning certain reservoir
heterogeneities. Tracer tests, on the other hand, may be more sensitive to the presence of
heterogeneous elements in the reservoir because of the convective nature of the flow test.

1.2. SCOPE AND METHODOLOGY

In this context, this research seeks to contribute in two major areas. The first is in
providing a comparative assessment of pressure and tracer test responses when heterogeneities
are present in the system. The second is in developing methods for computing simple
measures of heterogeneity from the analysis of well test data. For the purposes of this study,

the problem of detecting, identifying and representing heterogeneities based on well test
analysis can be posed as follows:

(1) Given a reservoir description (i.e. a distributed permeability field), what are the pressure
and tracer test responses?

(2) How are these responses affected by heterogeneities? To what extent can heterogeneous
systems be represented as effectively homogeneous media?

(3) Can distributed heterogeneities be identified, and/or an integrated measure of
heterogeneity computed, from the analysis of well test data? '

The flow geometry of interest is a 5-spot pattern within a repeated and balanced
injection-production pattern, where permeability variation is assumed to be the only source of
heterogeneity. This research is restricted to two simple kinds of nonidealities in the formation:
(a) vertical permeability variations in a layered system with noncommunicating strata, which
can be modeled as a stack of permeable layers with no interlayer crossflow (i.e., alayer-cake
system), and (b) areal permeability variations in a single-layer system, where a spatially
continuous permeability field can be discretized into a set of grid-block permeabilities.

In order to achieve the objectives of this work, several hypothetical heterogeneous media
will be generated with assumed statistics of permeability variation. Pressure and tracer test
responses for these systems will then be simulated using analytical or numerical models as
appropriate. Simulated well test data will be analyzed to examine the sensitivity of the

responses to heterogeneities. The possibility of inferring simple measures of heterogeneity
from pressure and tracer test data will be investigated.

The rest of this dissertation is organized in four major sections. In Section 2, a brief
review of pertinent past work is presented. Sections 3 and 4 deal with well test analysis for
noncommunicating layered media and areally heterogeneous systems respectively. Finally,
conclusions and recommendations from this study are presented in Section 5.
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2. REVIEW OF LITERATURE

The theory of pressure and tracer test interpretation is reviewed. Previous work relating

to the analysis of well test data from noncommunicating layered systems and areally
heterogeneous systems is summarized.

2.1. THEORETICAL BACKGROUND

Pressure behavior during single-phase fluid flow in porous media is described by the
pressure-diffusion equation, whereas tracer flow is described by the convection-diffusion
equation. The derivation of these equations and their application in pressure and tracer test
analysis is presented briefly in the following.

2.1.1. Pressure Test Interpretation

The partial differential equation governing fluid flow (and pressure behavior) in a porous
medium, which can be derived by combining a mass balance expression (equation of
continuity), an equation of state (density-pressure relation), an equation of motion (Darcy’s
law), and assuming small and constant compressibility, is:

V- [k-Vp]=¢uc,%€— (2.1.1)

where p is the pressure, k the permeability tensor, ¢ the porosity, W the fluid viscosity,
and ¢, the total system compressibility. This equation is analogous to those governing heat
conduction (Carslaw and Jaeger, 1959) and chemical diffusion (Crank, 1957), and is generally
referred to as the diffusivity equation. The transmission of a pressure pulse being a diffusional
process, Eq. 2.1.1 is also described as the pressure-diffusion equation.

For single-phase radial flow to a well in a homogeneous and isotropic porous medium, .
Eq. 2.1.1 reduces to:

Fp 13 _ % dp
52 + oy P (2.1.2)

With appropriate initial and boundary conditions, this equation can be solved to yield pressure
as a function of radial distance and time. As an example, the solution for constant flow rate to
a line-source well in an infinite medium is:

Pw=pPit - El{ T } (2.1.3)

where Ei denotes the exponential integral:

oo

- Bi(-x) = |

x

e*du

(2.1.4)
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Similar solutions for different initial and boundary conditions, as well as different system
geometries, have been summarized by Matthews and Russell (1967), Ramey et al. (1973),
Earlougher (1977) and Lee (1983).

Pressure test interpretation involves matching pressure-time data with an appropriate
solution of the pressure-diffusion equation to extract values of effective permeability, initial (or
average) pressure in the system, a measure of wellbore damage, etc. Such a process can be
either graphical, using straight line graphs, dimensionless solutions or type-curves (e.g.,
Ramey, 1976), or automatic, using nonlinear regression methods (e.g., Rosa and Horne, 1983).
Interpretation methodology for a variety of well-reservoir configurations has been described in
the recent literature (Gringarten, 1985).

2.1.2. Tracer Test Interpretation

The partial differential equation governing transport of a conservative and nonreactive
solute in a fluid of constant density and viscosity is:

%+V-{Vc}=v-{n-vc} 2.1.5)

and is known as the convection-diffusion equation. Here C is the solute concentration, V
the interstitial velocity vector, and D the dispersion coefficient tensor. In this equation, total
solute flux is represented as the sum of two components, the convective flux (the flux term on
the left hand side) and the dispersive flux (the flux term on the right hand side). Dispersive
transport is assumed to be Fickian, i.e., the dispersive mass flux is assumed to be proportional
to the concentration gradient in analogy to molecular diffusion.

As used in the preceding, convection refers to bulk fluid flow, and dispersion to
spreading of the solute due to a combination of molecular diffusion and local velocity
fluctuations (mechanical dispersion). Diffusional effects are important only at the pore-scale,
and/or at low displacement velocities (Perkins and Johnston, 1963). Consequently, it is
customary to lump all dispersive factors into one transport parameter, the dispersion coefficient,
D. Based on laboratory measurements, D is generally expressed as the product of
displacement velocity, v, and a constant, o, known as dispersivity and taken to be a
characteristic of the medium (Bear, 1972).

Laboratory experiments have demonstrated that the convection-diffusion equation is often
satisfactory for matching core-scale displacements. In such cases, the one-dimensional version
of Eq. (2.1.5) is usually solved with appropriate initial and boundary conditions. Experimental
data is fitted to the proper solution to compute effective dispersivity. Several methods can be
used for this purpose : (a) the graphical procedure suggested by Brigham ez al. (1961), (b) the

method of moments (e.g., Fischer et al.,, 1979), or (c) conventional nonlinear regression
methods (e.g., Beck and Arnold, 1977).

Application of the one-parameter convection-diffusion equation to field-scale problems
(i.e., for tracer test interpretation) has often yielded inconsistent results, particularly with
respect to dispersivity. Field dispersivities have been found to be orders of magnitude higher
than those measured in the laboratory, even for similar media. Moreover, dispersivity has also
been observed to be dependent on the scale of displacement. Such scale-dependence has been
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ascribed to large-scale formational heterogeneities, which are successively encountered as tracer

transport progresses in space. Gelhar et al. (1985) provide an excellent review of pertinent
field evidence.

While the one-parameter convection-diffusion equation is adequate for fairly
homogeneous cores (e.g., sandstones), experience indicates that it has to be modified in order
to explain the long tailing observed in displacements from carbonate cores. One way of
matching such experiments is to use a model which partitions the pore space into flowing and
stagnant fractions with mass transfer between the fractions, as suggested by Coats and Smith
(1964). While such a bi-continuum model is the simplest one available for this purpose, it has
little physical basis, and moreover, scaling of mode! parameters to actual field-scale conditions
has not been demonstrated.

2.2. REVIEW OF LITERATURE

This review is divided into two major parts. The first part deals with noncommunicating
layered systems, and the second with areally heterogeneous systems. In each part, the
literature pertaining to pressure and tracer testing is summarized in separate sub-sections.

2.2.1. Noncommunicating Layered Systems

Pressure Test Response

.The pressure behavior of layered systems with noncommunicating strata (i.e., systems
made up of several isolated homogeneous layers of different permeability) has been studied by
many investigators. Lefkovits er al. (1961) presented analytical solutions describing the
pressure behavior of bounded multi-layered systems. They showed that the drawdown behavior
of multi-layered systems is similar to that of single-layer systems, with three distinct periods
corresponding to infinite-acting, late-transient and pseudo steady-state flow. The thickness
averaged formation flow capacity can be determined from the slope of a semi-log straight line
of the early-time data, as in the single-layer case. Moreover, the duration of the late-transient
period may be orders of magnitude longer than that for single-layer systems. They further
observed that during buildup the shut-in pressure is initially influenced by the more-depleted
(high transmissivity) layer(s), which results in an early flattening of the buildup data.
Subsequently, with crossflow taking place from the less-depleted to the more-depleted layer(s)
through the wellbore, there is repressurization and the pressure begins to rise. This causes a
hump in the buildup pressure-time graph, which is recognized as a diagnostic feature of
bounded layered systems without interlayer crossflow. '

Cobb et al. (1972) used the solutions of Lefkovits er al. in a detailed study of the buildup
behavior of a bounded two-layer reservoir, where only the permeability contrast between the
two zones was allowed to vary. Buildup behavior was studied using single-layer analysis
methods proposed by Muskat (1937), Miller et al. (1950) and Horner (1951). Under well
defined conditions, all methods could be applied to calculate total system transmissivity and
average reservoir pressure. Raghavan et al. (1974) extended the study of Cobb et al. to systems
with two layers of varying thickness and permeability. They suggested using the Horner graph
to calculate average pressure, and proposed a method to calculate the layer permeability ratio,
provided the thickness of the layers was known.
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Earlougher et al. (1974) included the effects of wellbore storage and skin in their model.
They concluded that wellbore storage in multi-layered systems had an effect identical to that in
the single-layer case. They also observed that only under certain conditions would the buildup
behavior have distinctive layered system characteristics, and in general, no guidelines could be
established regarding typical layered system behavior.

Tariq (1977), in making a comprehensive study of bounded multi-layered systems,
considered differences in permeability, thickness, skin effect and outer radius. He found that
false wellbore storage effects could appear when the permeability contrast was high, and a
higher permeability layer had a smaller outer radius than the low permeability layer(s). He also
found that layered system data could be analyzed under some ideal circumstances to yield
information about the permeability ratio and the outer radii of the layers.

Larsen (1981) studied the pressure behavior of multi-layered systems with unequal initial
pressures and skin factors in various layers. He observed that the slope of the infinite-acting
semi-log straight line could be a function of time for unequal layer properties and nonzero skin
factors. Since this slope is always greater than the theoretical value of 1.151, formation flow
capacity computed from the slope of any apparent straight line will be underestimated. Larsen
also quantified conditions under which the behavior of multi-layered systems would be
indistinguishable from that of single-layer systems.

Ehlig-Economides and Joseph (1985) examined transient pressure and flow rate responses
of multi-layered systems with variable interlayer crossflow. They developed a procedure for
esumatmg layer permeabilities, skin factors and effective vertical permeability. This method
requires the combined analysis of wellbore pressure and individual layer flow rate data.

Tracer Test Response

Work on the quantitative analysis of well-to-well tracer tests in layered reservoirs has
been reported by several workers. Brigham and Smith (1965) derived equations to compute
tracer response (for a slug injection) in a homogeneous, developed 5-spot by combining tracer
dispersion and areal sweep effects. Dispersion was evaluated by assuming radial flow towards
the producing well. This solution was extended to the case of noncommunicating stratified
systems by volumetrically adding the tracer arrival curves from different layers to obtain the
overall tracer breakthrough curve. This model was used to analyze a field test with a trial-
and-error procedure being utilized to estimate layer permeabilities and thicknesses. Baldwin
(1966) also analyzed the same field tracer test data reported by Brigham and Smith. He used
equations for radially convergent-divergent flow to calculate the effects of tracer dispersion.

Yuen er al. (1979) revised. the analytical solution of Brigham and Smith to include the
effects of converging-diverging flow on dispersion. They developed a computer program
which could decompose an overall tracer breakthrough curve from a multi-layered system, and
compute layer properties (e.g., fractional layer porosity-thickness and permeability-thickness).
The curve-matching was done by a trial-and-error procedure.

Abbaszadeh-Dehghani and Brigham (1982) developed equations for computing tracer
breakthrough curves in several developed flooding patterns by analytically formulating tracer
dispersion effects. They also proposed a nonlinear regression technique to deconvolve tracer
concentration-time data from multi-layer systems and calculate layer properties.



2.2.2. Areally Heterogeneous Systems

Pressure Test Response

The effects of a distributed permeability field on pressure behavior has been examined by
several workers in the petroleum and groundwater literature using stochastic methods. The
pioneering study in this area was presented by Warren and Price (1961). They investigated the
effect of permeability variation on steady-state and transient pressure behavior in a discretized
three-dimensional system. Individual block permeabilities were drawn randomly from specified
probability distribution functions. For a log-normal permeability distribution with no spatial
correlation, they found that the most probable behavior of a heterogeneous system approaches
that of a homogeneous system with an effective permeability equal to the geometric mean of
the input distribution. This value was also found to be approximated by the permeability
obtained from a transient buildup test.

Several workers in the field of groundwater hydrology have arrived at the same relation for
steady-state flow in two space dimensions when permeability is log-normally distributed and
has an isotropic spatial correlation structure (e.g. Gutjahr et al., 1978; Dagan, 1979). For
three-dimensional media, Gelhar and Axness (1983) evaluated the components of the effective
permeability tensor using spectral analysis and found that the geometric mean is a first-order
approximation for the effective permeability in isotropic systems only for small permeability
variances (such as those used by Warren and Price).

Recent studies have indicated that such logarithmic averaging of permeabilities (i.e., the
geometric mean relationship) may be invalid when permeability does not have a univariate
frequency distribution, such as in sand-shale sequences (Desbarats, 1987), or discrete fracture
networks (Long et al., 1982).

Tracer Test Response

Several stochastic studies have dealt with the problem of tracer transport in a distributed
permeability field. Warren and Skiba (1964) extended the study of Warren and Price to
investigate the effects of tracer dispersion (spreading) due to macroscopic permeability
variations over a discrete three-dimensional grid. Grid block permeabilities were drawn from a
log-normal probability distribution and were assumed to be uncorrelated. By matching
simulated tracer breakthrough behavior with a simple one-dimensional solution of the
convection-diffusion equation, they computed effective dispersion coefficients and related these
to the variability of the permeability distribution. One of their important conclusions was that
the effects of field-scale heterogeneities cannot be simulated at the laboratory scale.

Schwartz (1977) considered the case of one-dimensional solute transport with
heterogeneities randomly inserted as low permeability inclusions in a high permeability
medium. He found that under certain conditions, it may not be possible to obtain an effective
dispersivity. He also observed that the magnitude of dispersion is strongly dependent on the
contrast between the high and low permeability elements comprising the medium.

Gelhar er al. (1979) were concerned with longitudinal dispersion produced as a result of
vertical variations in hydraulic conductivity in a stratified aquifer. Using spectral analysis to
solve the resulting stochastic partial differential equation, they showed that the dispersive
process has a transient part, during which it is non-Fickian. At large times, the longitudinal
dispersivity becomes constant and is proportional to the variability and correlation length scale
of the permeability field.
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Smith and Schwartz (1980) expanded upon the earlier work of Schwartz to add the
effects of two-dimensional flow and spatial correlation in permeability. They concluded that
over finite domains, diffusional models may be inadequate to describe tracer transport because
of insufficient spatial averaging. Their sensitivity studies indicated that considerable
uncertainty may be present in Monte-Carlo simulation results, even when statistical features of
the porous medium are known.

Gelhar and Axness (1983) used spectral analysis to calculate the components of the
macroscopic dispersion tensor, based on the statistics of permeability variation. Their three-
dimensional theory is quite general in that it includes the effects of local dispersion as well as
anisotropy in the permeability field.

Smith and Brown (1984) used an approach similar to that of Smith and Schwartz to study
dispersion in a two-dimensional cross section for a developed 5-spot. They matched their
breakthrough curves to a one-dimensional solution of the convection-diffusion equation, and
correlated longitudinal dispersivity with statistical parameters of the permeability distribution.

Arya et al. (1985) investigated the behavior of grid-block scale and inter-well scale
dispersion for two-dimensional flow. They found that the degree of autocorrelation in the
permeability field determines whether or not interwell scale dispersivity can be uniquely
defined. If the correlation length scale is large compared to medium dimensions, dispersivity
grows with distance. For small correlation lengths, dispersivity stabilizes at some constant
value which depends on permeability variance. They also showed that the medium acts as
effectively layered when the correlation length scale is comparable to system dimensions.

2.2.3. Summary of Past Work

As stated in the introductory section, a major objective of this study is to compare
pressure and tracer test responses in a balanced flooding pattern, where permeability varies
either vertically or areally. For the stratified system case, a model for computing tracer flow
behavior is available (Abbaszadeh-Dehghani and Brigham, 1982). However, none of the
previous studies on transient pressure testing have considered the case of layered systems with
a constant pressure outer boundary, which is the proper boundary condition for the injection
case. Therefore, one objective of this research will be to develop a theory to compute pressure
behavior in such systems, and examine the effect of stratification on drawdown and buildup
pressure response.

For the areally heterogeneous system case, the scope of most studies on pressure behavior
has been on estimating steady-state effective permeabilties. Detailed analysis of averaging
effects during transient flow conditions (prevailing during drawdown or buildup tests) has been
dealt with only briefly. Moreover, the problem of obtaining some measure of permeability
variation from single or multi-well pressure data does not appear to have been addressed in the
literature. Hence, these aspects will be emphasized in this research. As far as tracer flow in
such systems is concerned, a 5-spot pattern geometry has not been considered by previous
workers. Such a study should be useful in examining the extent to which analytical solutions
derived by Abbaszadeh-Dehghani and Brigham for homogeneous media can be used to analyze
tracer breakthrough curves from heterogeneous systems.
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3. WELL TEST ANALYSIS FOR NONCOMMUNICATING LAYERED SYSTEMS

Analytical models for simulating pressure and tracer tests in noncommunicating layered
systems are described. The effect of heterogeneities on well test data is analyzed, and the
problem of quantifying permeability variation is examined.

3.1. INTRODUCTION

Petroliferous formations are generally sedimentary in nature, the sedimentation process
occuring over geologic time. Because of the cyclic nature of the depositional process, different
kinds of rock-forming material may be deposited at different times, thus resulting in a stratified
(or layered) system upon compaction and/or diagenesis. Layering, which is observed in many
outcrops (Fig. 3.1) as well as in well logs (Fig. 3.2), is a common feature of sandstone
formations. Usually, complex stratigraphic sequences are not used in geologic model
descriptions for reservoir performance calculations. Simple models which consider the physical
system to be composed of a combination of permeable (e.g., sandstone) and impermeable (e.g.,
shale) strata, as shown in Fig. 3.3, are used more frequently as idealizations of actual
reservoirs - particularly in analytical methods for computing displacement performance (e.g.,
Dykstra and Parsons, 1950).

In this section, systems such as those described in the preceding paragraph are
considered. The flow geometry of interest is a layered system, comprised of homogeneous
permeable sand strata and impermeable shale strata so that there is no interlayer crossflow,
within a developed and balanced 5-spot pattern. The sand layers are assumed to have different
permeabilities, which causes the system to be heterogeneous.

3.2. REPRESENTATION OF HETEROGENEITY

Field evidence, based on core measurements, indicates that permeability can vary over
several orders of magnitude. In many cases, the log-normal distribution has been found to
match the permeability histogram well, particularly when the frequency distribution is unimodal
(e.g., Law, 1944; Warren et al., 1961). A convenient measure of permeability variation is then
given by the Dykstra-Parsons permeability variation coefficient (Dykstra and Parsons, 1950):

Fe kg
E

Vpp =

(3.2.1)

Here k is the median (i.e., the 50 percent value) and ks the permeability at one standard
deviation (i.e. the 84.1 percent value) on a log-permeability cumulative probability distribution

function (CDF) graph. Fig. 3.4 shows an idealized permeability CDF on log-probability paper,
and the graphical computation of Vpp.

Distributions other than log-normal have also been used to describe permeability data
(e.g., Bennion and Griffiths, 1966; Jensen et al., 1985). Bennion and Griffiths found the
normal distribution to be more appropriate for some data sets. Jensen et al. suggested using a
power transformation to convert the raw data and fit a normal distribution, and showed that the
log-normal distribution is just one member of this family of transformations. However, for the
purposes of this study such models offer no particular advantage, and hence the assumption of
log-normality will be made primarily for convenience.
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Fig. 3.1 Layering observed in outcrops.
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Fig. 3.3 Idealized layer-cake model in a 5-spot pattern.
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In reality, the permeability distribution should usually be continuous. However, when a
real system is approximated by a layer-cake model (Fig. 3.3), it is necessary to reduce the
continuous permeability distribution to a discrete form. When Vpp and k are known, kg
can be calculated from Eq. 3.2.1, and a continuous log-normal CDF can be constructed by
drawing a line on log-probability paper which passes through k and kg For a system with a
finite number of layers, assignment of layer permeabilities should then be made so as to honor
the CDF. Willhite (1986) suggests a graphical procedure for this purpose, where the CDF is
first divided into several intervals (equal to the number of layers required), and then the
permeability of the layer is selected at the mid-point of the interval. Permeabilities thus
assigned can be checked for internal consistency because the geometric mean is equal to the
median value. Figure 3.5 demonstrates this technique for a 10-layer system with Vpp = 0.55,
and k=35 md. The layer permeabilities are selected at the 5%, 15%, 25%, etc. points to
correspond to the midpoint of each of the layer ranges. This simple procedure reproduces the
distribution reasonably, since the computed geometric mean is 35.2 md and compares well
with the input median of 35 md. Layer permeabilities thus calculated for other cases are
tabulated in Table 3.1. Corresponding rock and fluid properties for these systems are given in
Table 3.2, and will be used later as input to pressure and tracer test models.

A one-parameter representation of heterogeneity (using the Dykstra-Parsons coefficient
Vpp) characterizes only spatial variability. A proper description of permeability variation
should also include some measure of the spatial correlation structure of permeability.
Fortunately, in dealing with layered media, the ordering of layer permeability values is
important only if gravity effects are considered. When gravity is neglected, as in this study (as
well as in most theoretical models of pressure and tracer test analysis) - the use of Vpp to
describe heterogeneity is sufficient.

3.3. PRESSURE TEST RESPONSE

A review of pertinent literature (Section 2.2.1) indicates that none of the studies consider
the case of layered systems with a constant pressure outer boundary, which is the proper
boundary condition in a balanced flooding pattern (e.g., Fig. 3.3). Therefore, the focus here
will be to develop a theory for computing the pressure behavior in such systems, and use it to
examine the effect of stratification on drawdown and buildup pressure response for several
hypothetical systems.

3.3.1. Mathematical Model

The physical system of interest is shown in Fig. 3.3. Because of the balanced 5-spot
pattern, the drainage boundary of each production well is a constant pressure square. With
litle loss of generality, this square can be replaced with a circle having the same area.
Furthermore, the radius of the constant pressure circle is assumed to be the same for all layers.
Other assumptions of importance are:

1.  Single-phase flow in radial geometry,
2. Layered system with noncommunicating strata,

3. Commingling only at the wellbore,

4.  Constant total surface rate,
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TABLE 3.1

LAYER PERMEABILITIES FOR HYPOTHETICAL STRATIFIED SYSTEMS

Layer Vpp = 035 Vpp = 0.55 Vpp = 0.75
NL=5 NL=10 NL=5 NL=10 NL=5 NL=10

1 60 70 98 130 195 330
2 43 54 54 80 70 140
3 35 46 35 60 35 86
4 28 41 23 48 17 58
5 20 36 13 38 6 41
6 33 32 29
7 29 26 20
8 26 21 18
9 22 15 8

10 17 0.8 4
3 34.7 34.5 35.4 352 34.5 35.5

TABLE 3.2

ROCK AND FLUID PROPERTIES

Area, A

Outer radius, r,
Wellbore radius, r,,
Porosity, ¢
Thickness, &
Median perm, k&
Water saturation, S,,
Dispersivity, o
Tracer injected, Vg

20 acres

3725 ft

0.25 ft

0.25

100 ft

35 md

0.50

0.1ft

0.1 Pore volume
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5.  Constant wellbore storage coefficient,

6.  Each layer homogeneous, uniform and isotropic with respect to k, ¢ and ,
7.  Slightly compressible fluid with constant p and c,,

8.  Wellbore radius and instantaneous sandface pressure the same for all layers, and
9.  Outer boundary at constant pressure.

The diffusivity equation for layer j is:

2
oP . 19%;_5 9

o> r or T ot (3:3.1

where storativity S; = (¢ck); and transmissivity T; = (kh/p);. Initially, the system is in
pressure equilibrium:

pir0) =p; (3.3.2)

The outer boundary is at constant pressure:

piret) =p; (3.3.3)

An infinitesimally thin skin causes a pressure drop at the inner boundary:

PuwfD) = piry.t) — s;y r 5 0 (3.3.4)

The total surface flow rate is constant, but the sandface rate may be time variant due to
wellbore storage:

dp,; M 3p;
=-C—=+3Y 2nT;4r =2 3.
q = El; nj{r T (33.5)

where NL is the total number of permeable layers in the system. The following dimensionless
variables are now defined:

ppj=—— [pi—-pjl (3.3.6)

= 72‘- (3.3.7)
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rp=— (3.3.8)
rW
C
Cp= 33.9
D an’r?v ( )

where total transmissivity, T,, and total storativity, S,, are defined as:

NL NL kh

T,=%Ti=Y%{= (3.3.10)
=1 AL H
NL NL

S;= 2 8=231 ¢csh (3.3.11)
1 F1 i

Rewriting Eqgs. 3.3.1 - 3.3.5 in terms of the dimensionless variables gives:

1 BI dpp; }: Sj/S. dppj _ fij 9ppj _ . 0pp,

- = = 3.3.12
p arD LrD arD T:,/ T, atD f2] BtD g atD ( )
ppirp:0) =0 (3.3.13a)
Poirepstp) =0 (3.3.13b)
opp;
Pwp = [PDj - §j aTI;I J (3.3.14)
rp=
dp.p Nt opp;
1=C - Y f s (3.3.15
b dtD J=Zl ¥ BrD rp=1 )

Here f;=S;/S, is the fractional layer storativity, foj=T;/ T, the fractional layer
transmissivity, and f; = fy; / f;. This set of equations, i.e., Egs. 3.3.12 - 3.3.15, was solved
using the method of Laplace transformation. The Laplace transformation is defined as:

oo

Pup() = J €™ pup(t) dt (33.16)

where [ is the Laplace space variable. First, Eq. 3.3.12 is transformed using the initial
condition of Eq. (3.3.13a):

dpp; 1 dpp;
+ — ST A———
d r% 14)) dr, D

= If, By (3.3.17)
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The transformed boundary conditions are then obtained as:

ﬁDJ(reD)=o
Fup = | Py — s dpp;
wD Dj  § er rp=1
1 _ NL dp"D.
= =Cpl pup — 2. foj
1 " j=l 4 er rD=1

A general solution to Eq. 3.3.17 can be written in the form:
Ppj = Aj Io(rpB)) + B; Ko(rpB))
where ;= \ﬁf . Substitution of this expression in Eqn. (3.3.19) yields:
Pup = A; Io(B)) + B; Ko(B) - s; A; B; h(B) + 5; B; B; K1(B)
Defining two new expressions:

O = Io(B)) — 5; B; 11(B))

dx = Ko(B)) + s; B; K1(B))
Equation 3.3.22 can be simplified to:
Pup = Aj 6+ B; 0g
Substitution of Eq. 3.3.21 in Eq. 3.3.18 yields:
0 = ppi(rep) = Aj Io(Y)) + B; Ko(Y))

where ;= r,pf; This leads to the relationship:

- ~ Ko(y)
! 7 Io(y)

(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

(3.3.22)

(3.3.23a)

(3.3.23b)

(3.3.24)

(3.3.25)

(3.3.26)

This expression can be substituted in Eq. 3.3.24 in order to evaluate the coefficients A; and

B;, which are obtained as:

A = = PwD KO(‘Yj)
T 8 Io(y) — 8 Ko(y)

(3.3.27a)
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and

B + Pup 1o(Y))
7 8k I(y) — & Ko(y)

(3.3.27b)

Now substituting Eq. 3.3.27 in Eq. 3.3.24 and simplifying, an expression for the dimensionless
wellbore pressure in Laplace space is obtained as:

NL
— i
Pup(D) = | Cpl* +

]E S, (a3byj — ayb3)

foi KNI (asyj + aybs)

(3.3.28)

The various coefficients a and b in this equation are as follows:

aj=1Bp, b= Ko(B)
ay=NL(B, by=Ki(B)

az; = Ip(Y), baj = Ko(Y))
As previously defined, B;=+If;, and v;=r.pB;

Numerical inversion of Eq. (3.3.28) was obtained using the Stehfest algorithm (Stehfest,
1970). The solution was verified against the single-layer constant pressure boundary type-
curves presented by Kumar and Ramey (1974), an example comparison being given in Fig.
3.6. The maximum difference between the two solutions, with 8 terms in the Stehfest
approximation formula, was less than 0.5%.

3.3.2. Drawdown Behavior

The drawdown response of hypothetical stratified systems is shown as graphs of
dimensionless sandface pressure p,, against dimensionless time tp, where p,p is:

2rT,

Pwp = [Pi— Pur] | (3.3.29)

Since use of a pressure derivative graph has been shown to enhance the pressure response
signal for a variety of conditons (e.g., Tiab and Kumar, 1978; Bourdet et al, 1984),
drawdown data is also shown in terms of the dimensionless pressure derivative group:

dwa _ 271'Tl
din(tp) q

(3.3.30)

dp; — Puwp
din(?)
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Fig. 3.6 Verification of model for generating pressure response.



.21 -

Figures 3.7 and 3.8 are semi-log graphs showing the effect of layering and permeability
contrast on drawdown behavior. Also graphed for comparison is the dimensionless pressure
behavior of a homogeneous system. Three flow periods are evident in both multi- and single-
layer responses: an infinite-acting period, a late-transient period and a steady-state period.
During the infinite-acting period, multi-layer responses closely follow the homogeneous system
curve. The effect of permeability contrast (Fig. 3.8) is clearly greater than that of layering
(Fig. 3.7) in shifting the multi-layered system curve from the homogeneous response. This
shift may also be interpreted as an apparent skin effect, the skin being proportional to the
degree of permeability contrast. Usually, this apparent skin will be small.

Another important observation is that the slopes of the infinite-acting semi-log straight
lines (corresponding to the layered systems) appear to be approximately equal to that of the
homogeneous system. An examination of the derivative graphs (Figs. 3.9 and 3.10) shows a
slight time dependence in the early-time data, which implies that the corresponding semi-log
slozpes may not be constant. However, regression results show a high degree of linearity
(R > 0.9999) in slopes computed between ¢, of 100 and 10000. Table 3.3 gives values of
such slopes calculated for different hypothetical stratified systems. The maximum error (as
compared with the theoretical value of 1.151) corresponds to the highest value of Vpp , but is
less than 2%. It follows that during the infinite-acting period, a multi-layered system will
behave like a single-layer reservoir for practical purposes. Since the definition of p,,p includes
the total transmissivity, T,, the slope of a semi-log drawdown graph will be inversely
proportional to the total system transmissivity. However, because of the error in slope (which
is always positive), total transmissivity will be slightly underestimated. These results are
essentially similar to those reported in other studies of multi-layered system pressure response
during the infinite-acting period (see the review by Raghavan, 1986).

A second interesting observation from the derivative graphs (Figs. 3.9 and 3.10) is that
the transition from infinite-acting to steady-state is longer for a layered system with a constant
pressure boundary, as compared to the equivalent homogeneous system. This is similar to the
response of layered systems with a no-flow outer boundary, where the transition time from
infinite-acting to pseudo steady-state is greater than that for the equivalent single-layer system.
The steady-state behavior for multi-layered systems is identical to that of homogeneous media,
although steady-state is attained later in the multi-layer case.

3.3.3. Buildup Behavior

The buildup response, which can be generated from the drawdown solution using the
principle of superposition, is analyzed using the method of Horner (1951). Dimensionless
shut-in Horner pressure ppyor is graphed against Horner time ratio [ 2, + Ar]/ Az, where
PDHOR is defined as:

21T,

PDHOR = [ Pi — Pus 1 = Pup(toptAtp) — pyp(Atp) (3.3.31)

Here t,p is the dimensionless producing time, and Afp the dimensionless shut-in time.
Figure 3.11 is a dimensionless Horner graph showing the effect of permeability contrast and
producing time on buildup behavior. As in the drawdown case, the homogeneous system
response is also given for comparison. The early-time (infinite-acting) data produces a semi-log
straight line with a slope approximately equal to 1.151. An examination of the corresponding
derivative graph (Fig. 3.12), where the derivative of pppor is taken with respect to the
logarithm of the Horner time ratio, shows a slight time-dependance in these slopes. However,
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TABLE 33

DIMENSIONLESS SEMI-LOG SLOPES FROM INFINITE-ACTING PERIOD DATA

(a) Drawdown Data

Vpp NL  Slope  Error (%)

0.55 5 1.1595 0.71
055 10 1.1606 0.81
0.35 5 1.1555 0.37
0.75 5 1.1695 1.57

(b) Buildup Data

Vpp NL  Slope  Error (%)

0.35 5 1.1553 0.35
0.55 5 1.1584 0.62
0.75 5 1.1634 1.05
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regression calculated slopes of apparent semi-log straight lines, between Afp of 100 and
10000, show a maximum deviation of approximately 1% from the theoretical value of 1.151
(see also Table 3.3). As observed before, layered system responses are displaced from the
homogeneous system curve and the degree of deviation increases with Vpp. In general then,
the early-time buildup pressure behavior of a multi-layered system can be considered similar to

that of a single-layer reservoir with an effective transmissivity equal to the total transmissivity,
Tt-

Further examination of the buildup derivative graph (Fig. 3.12) indicates that the
transition between infinite-acting and steady-state periods starts earlier and lasts longer for the
layered system case, as compared to the homogeneous system response. However, the steady-
state behavior is the same, i.e., initial pressure is attained so that ppyor = 0. The effect of
producing time on layered system buildup behavior is also similar to that of single-layer
systems, in that the dimensionless Horner graphs shift to the right before bending over as 1,
increases. The general trend of buildup behavior in a multi-layered system with a constant
pressure outer boundary is thus similar to the equivalent homogeneous system.

This is an important observation with regard to the effect of the outer boundary. The
classical buildup behavior of a closed-boundary layered system shows a hump due to
differential depletion between layers (Lefkovits er al., 1961). An example is Fig. 3.13, which
is the Horner graph for the same systems as in Fig. 3.11, but with a no-flow outer boundary.
The greater the permeability contrast, the more pronounced is the hump because of increased
differential depletion. No such phenomenon is evident in Fig. 3.11 because fluid recharge has
balanced fluid withdrawal, and hence differential depletion as well as the hump on the Horner
graph are absent.

When the principle of superposition is used to generate the buildup response (as in Eq.
3.3.31), it is implicitly assumed that all wells in the pattern are shut-in at the same time. In
reality, only one well (the production well of interest) is shut-in, while all others in the pattern
continue to produce and/or inject. For such conditions, the appropriate buildup equation is:

2rT,
pmm——;}—' [ Pi = Pus 1 = Pup(typ+dip, CPB) = p,p(Atp, INF) (3.3.32)

where the first term in the right hand side refers to the dimensionless pressure function for the
constant pressure boundary case (injection-production pattern), and the second term refers to
the dimensionless pressure function for a well in an infinite medium. In order to evaluate the
difference between Eqs. (3.3.31) and (3 3.32), buildup responses were generated for the 5-layer
case with Vpp=0.75, and 1,p = 107. The response computed with Eq. (3.3.31), where all the
wells are shut-in (i.e. the balanced system), and that with Eq. (3.3.32), where only the well of
interest is shut-in (i.e. the unbalanced system), are graphed together in Fig. 3.14. During the
infinite-acting period, both situations produce the same pressure-time behavior. However, once
the effect of the outer boundary is felt, the two responses begin to differ. Pressure in the
balanced system case approaches the initial pressure, whereas pressure in the unbalanced
system continues to increase because of fluid influx from injectors. However, the infinite-acting
period is really the segment of interest since it yields the semi-log straight line from which
total transmissivity can be computed. Hence, for practical purposes, the actual buildup
equation used is of little consequence.
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3.4. TRACER TEST RESPONSE

The objectives here are to generate tracer test data using the model of Abbaszadeh-
Dehghani and Brigham (1982) for systems whose pressure behavior was described in the
previous section, and provide a comparison of the effect of stratification on pressure and tracer
test responses.

3.4.1. Mathematical Model

The theoretical treatment in this section closely follows that of Abbaszadeh-Dehghani and
Brigham. The basic assumptions are :

1. Originally one mobile fluid in the system,

2. Completely miscible with resident and chase fluids,
3.  Unit-mobility ratio displacement,

4,  No tracer adsorption and/or reaction,

5. Small tracer slug compared to pattern volume, and

6.  Steady-state flow conditions.

As shown by Brigham (1973), the approximate equation describing mixing in such
situations for one-dimensional tracer transport is:

C 1 s—3
= = erfc 34.1)
Cj 2 { V262, }

where ©,, is a measure of the mixing zone length, and corresponds to the standard deviation
of a normal (Gaussian) probability density function. Since the length of the mixed zone is a
function of : (a) fluid movement through the porous medium (the longer the distance travelled,
the greater the mixed zone), and (b) geometry of flow path (the wider the passage, the
narrower the mixed zone), the total change in G,, can be expressed by:

do,, = do, + do, (3.4.2)

where the first term on the right hand side refers to change due to movement, and the second
term refers to change due to geometry of the passage. For a system of arbitrary shape,
integration of Eq. 3.4.2 with proper expressions for do, and dc,, as derived by
Abbaszadeh-Dehgani and Brigham, gives:

¥
L6 = 200°(5) [ = (3.4.3)
0 V()
where v is the velocity of the fluid along the streamline at location s or §, o the

dispersivity, and ds the incremental path along the streamline.
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Consider now a repeated flooding pattern such as a 5-spot (Fig 3.15a), into which a tracer
slug is injected followed by a chase fluid. The tracer is divided between the many streamtubes
comprising the pattern volume, and mixes with both the resident fluid (at the leading edge, 5)
and the chase fluid (at the trailing edge, 5;). Using Eq. 3.4.1 to approximate mixing at both
these edges, tracer concentration in a streamtube can be expressed as:

S — 57
_ie,fc 2

1 s -5
Ci"j 2 V 26ml 2 ‘\/—2?”:_2

(3.4.4)

Figure 3.15b illustrates the notations used in this equation. The size of the tracer slug in any
streamtube is constant at all times (because of the conservative tracer assumption), but the
undiluted width of the tracer (W =75 — 5;) is a function of position, and hence a function of
the width of the streamtube at that location. Assuming a small slug, Equation 3.4.4 can be
rewritten in terms of the derivative of the error function as:

2
c __W exp [——B——Zﬂ—] (3.4.5)

Cij  ~2moZ 207,

This equation expresses the concentration of the tracer at any location within the streamtube, in
terms of the distance along the streamline. However, it is more convenient to express this in
terms of volumes. As derived by Abbaszadeh-Dehghani and Brigham, this is given by the
following expression:

cw) _ 0.453384 4 r p |- 0.645776 a
Cinj VY (y) o’ y) o

2
{Vpum(\lf) - Vip } } (3.4.6)

where V,ppr{(V) is the pore volumes of displacing fluid injected into the pattern to fill a
streamtube under study, V,p is the total pore volumes of displacing fluid injected, and F, is
the size of the tracer slug injected as a fraction of the pattern pore volume. The Y term is
related to the line integral in Eq. 3.4.3, and is derived in their Appendix C by Abbaszadeh-
Dehghani and Brigham.

At any time, the composite breakthrough curve at the production well is due to tracer
production from all streamtubes. By integrating over the symmetry element shown in Fig.
3.14, the following expression is obtained:

5"
T 0.645776
s ©Xp {— Yoy % {VpDBT(W) - VpD} ay
Cp = 0.577266 ‘[ - (3.4.7)
VY(y)
where the dimensionless tracer concentration Cp, is given by:
Cp=—C (34.8)

a
Cinj Fy '\/ o

and C is the effluent tracer concentration at the production well.



-130 -

O

3.15 (a) Repeated 5-spot pattern with symmetry element.

3.15 ()  Strcamline geometry showing mixing of tracer slug.

Fig. 3.15 Mixing in a symmetry element of a repcated 5-spot.
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This solution can be extended to the multi-layer case under unit-mobility ratio
displacement conditions. The major assumptions required are : (a) layers are homogeneous
with respect to k, ¢ and A, and (b) dispersivity, o, and water saturation, S,, are the same
for all layers. Because of the unit-mobility ratio condition, any material injected is distributed
among the layers in proportion to the layer transmissivities. If V(1) is the total volume of
displacing fluid injected at time 7, the pore volume injected into layer j is given by:

L Vm
O vy (3.4.9)

The effluent tracer concentration at a producing well is the volumetric sum of the tracer
concentrations from individual layers:

_ R
C(v) = Cinj —(1— Z ? Frj CD](T) (3.4.10)
1 1

where F,; is the tracer slug size injected into layer j, in terms of the pore volume of layer j,
and the total amount of tracer injected Vg,

Fr' — Tj VTr

77T, AS(oh) G410

C—Dj('c) is the dimensionless concentration from layer j, calculated as a function of VopA(T)
from Eq. (3.4.7).

3.4.2. Tracer Concentration-time Behavior

Figures 3.16 and 3.17 show tracer breakthrough curves for 5- and 10-layer systems with
Vpp = 0.55 with other data as listed in Table 3.1. In general, the number of peaks in each case
is equal to the number of layers. This indicates that the presence of layering with permeability
contrast between layers creates preferential flow paths for the tracer, and thus each layer
produces a concentration peak. However, only nine of the ten layers have broken through in
Fig. 3.17, because of the limited time-scale shown.

Figures 3.18 and 3.19 show tracer breakthrough curves for 5-layer systems with
Vpp =0.35 and 0.75. All 5 layers can be seen in the first case (Fig. 3.18), since the layer
properties are fairly uniform, and the tracer slug is more evenly divided between the layers
than in Fig. 3.19. As permeability contrast increases, more tracer is confined to the high
permeability ‘layers, which are the only ones apparent in the concentration-time data of Fig.
3.19. Another observation from these curves is that for a given number of layers, tracer
breakthrough is accelerated for a higher Vpp . This implies that the degree of heterogeneity
does affect the tracer flow behavior, unlike the transient pressure response.

Figures 3.20 and 3.21 show the effect of the level of dispersion (as characterized by
dispersivity, o) on tracer concentration-time data. For small o (i.e., Fig. 3.20), the flow is
convection dominated and hence the concentration peaks are much sharper, reflecting the lack
of spreading. Increasing o tends to smooth out a front, although the influence of layering
clearly persists in the multi-modal nature of the breakthrough curves (Fig. 3.21).
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Tracer breakthrough curves from multi-layered systems (such as those presented) can be
analyzed to obtain individual layer properties. Because of the nonlinear nature of the
interpretation model (Eqs. 3.4.9 - 3.4.11), it is necessary to use a nomnlinear regression
procedure for curve fitting. The objective is to minimize the function:

NPT G
SSQ = z Cobs,i - Ct,i (3412)

i=1

where SSQ is the residual sum of squares (the error criterion), C,, is the observed
concentration, C, the model computed overall concentration, i an observation point, and
NPT the number of data points.

As shown by Abbaszadeh-Dehghani and Brigham, Egs. 3.4.9 - 3.4.11 can be rewritten in
the form:

(3.4.13)

o= NL (kh)j (kh)j r (kh)j
UG (Oh); Xkh Ykho | (0h); Yhh

where T is the functional form obtained from the preceding equations. Then, minimization of
Eq. 3.4.12 with C,; in the form of Eq. 3.4.13 can be achieved by a variable projection
algorithm for nonlinear optimization, as implemented in the subroutine VARPRO (Golub and
Pereyra, 1972). Abbaszadeh-Dehghani and Brigham have demonstrated the application of this
algorithm for several hypothetical cases, as well as a field case.

3.5. DISCUSSION OF RESULTS

The results presented here indicate that conventional pressure testing of layered systems
without interlayer crossflow produces an integrated response during the infinite-acting period,
from which only total system properties can be calculated. Although the various systems
examined show slightly different responses, these differences are not great enough to be used
for diagnostic purposes. Moreover, if the outer boundary is at constant pressure (i.e., the fluid
injection case, as in this study), typical layered system diagnostic features (e.g. humps) may
not appear on the pressure buildup trace. This implies that at least under the conditions
discussed here, effects of reservoir stratification may not appear in a pressure transient test.
However, it may be possible to resolve this identification problem by a combined analysis of
bottomhole pressure and layer flow rate data (Ehlig-Economides and Joseph, 1985).

On the other hand, tracer tests appear sensitive to reservoir heterogeneities. Qualitatively,
the shape of the tracer breakthrough curve is indicative of the presence of stratification. The
level of layering may be seen from the number of concentration peaks, the magnitude of
permeability variation is reflected in the time to breakthrough, the dispersivity affects the height
of the peaks, and the relative size of the individual layers influences the height and width of
the peaks. Such behavior is significantly different from the integrated response obtained from
a transient pressure test in the absence of individual layer flow rate data. Moreover, if the
tracer test is run long enough, and the value of total transmissivity is available from a pressure
test, it is possible to obtain layer properties from the tracer concentration-time data using the
deconvolution method described previously.

As pointed out by Brigham and Abbaszadeh-Dehghani (1987), pressure and tracer tests
are complementary and not competing methods. Information from both types of tests can be
combined to better describe the reservoir. The results of this section suggest that the important
difference between conventional pressure testing and well-to-well tracer testing is in the level
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of detail regarding permeability variation present in test data. The resolution of each technique
must therefore be kept in mind when constructing descriptions of a physical system based on
well test analysis.
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4. WELL TEST ANALYSIS FOR AREALLY HETEROGENEOUS SYSTEMS

Numerical models for simulating pressure and tracer test response in areally
heterogeneous systems are described. The effect of heterogeneities on well test data is
analyzed, and the problem of quantifying spatial permeability variation is examined.

4.1. INTRODUCTION

Sedimentary deposits are characterized by variability in material properties in both areal
and vertical dimensions. Vertical variations manifest themselves as individual strata, such as
discussed in the previous section. Within each layer, lateral variations in rock properties may
be caused by decaying emergy of the depositional process. An example would be a fan
deposit, which is more homogeneous at its mouth than its tip (Richardson et al., 1987).

In this section, the concern is with the effect of lateral changes in rock properties. The
flow geometry of interest, Fig. 4.1, is one quadrant of a single-layer developed 5-spot pattern
being flooded under balanced conditions. Heterogeneity is assumed to be only due to areal
variations in permeability.

4.2. REPRESENTATION OF HETEROGENEOUS MEDIA

Field evidence indicates that properties of porous media such as permeability vary from
point to point in a random manner, and also exhibit spatial correlation. In the petroleum
literature, variation of permeability has been analyzed statistically by many investigators (e.g.,
Law, 1944, Warren et al., 1961; Bennion and Griffiths, 1966; Jensen et al., 1985).
Measurements of spatial continuity have been undertaken only recently using geostatistical
techniques (e.g., Da Costa e Silva, 1985; Goggin et al., 1986; Stalkup and Ebanks, 1986).
Hoeksema and Kitanidis (1985) provide an excellent analysis of the spatial variability and
structure of material properties for several groundwater aquifers.

As it is difficult to describe heterogeneities in complete deterministic detail, a
geostatistical (stochastic) approach is adopted. Permeability is assumed to be a random
function with known mean, variance and spatial correlation structure. Furthermore statistical
homogeneity (i.e., stationarity) is also assumed to be valid in the flow domain (Journel and
Huijbregts, 1978), which implies: (a) the mean is independent of location:

E [z(x) — z(x+h) ] =0 “4.2.1)

.and (b) spatial correlation between two samples depends only on their separation:

2
2yh)=E Hz(x) — z(x+h) } J (4.2.2)

The notion of stationarity in this case is appropriate only for an infinite domain, of which only
a finite sub-space is considered. Here E is the statistical expectation (i.e., the average value),
x the spatial coordinate vector and h the lag vector. The quantity y is called the semi-
variance, and the function relating Y to h is known as the semi-variogram. Because of the
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assumptions of Eqs. 4.2.1 and 4.2.2, it is possible to estimate semi-variances for a one-
dimensional process from the expression:

= 1 n(h) " 2 4
YO = T [ 20 - st | (42.3)

where n(h) is the number of pairs of observations separated by 4.

Usually, the semi-variance, v, is observed to increase with increasing lag, A, to some
maximum, beyond which it remains unchanged (Fig. 4.2). This maximum variance is the sill of
the semi-variogram, and is also equal to the variance, 03. The lag at which the sill is reached
is referred to as the range of the semi-variogram. The range, A, marks the limit of spatial
continuity in the property concemed. In this work, the term correlation length scale is used in
preference to range. A dimensionless correlation length scale can then be defined by
normalizing A with some characteristic flow length, L (Fig. 4.1). Such semi-variograms
(with a finite variance or sill) describe the spatial correlation structure of properties which
become more dissimilar on the average with increasing separation, and are characterized by a
finite lag within which all variation is encountered. Some typical functional forms for semi-
variograms of this type are given in Table 4.1.

Alternatively, one might encounter properties which appear to vary increasingly without
limit with sampling area/volume, and which never seem to reach the origin when variations
over ‘successively smaller distances are examined. There is always some finite variance, no
matter how small the sampling unit. Such behavior can be described by a semi-variogram of
the following form:

V) = x K (4.2.42)

Here x is a constant and O a positive number greater than 0 and less than 2 (McBrateny and
Webster, 1986). Eq. 4.2.4a also implies statistical self-similarity, because variations over any
scale bh can be related to variations over a scale A by:

Y(bh) = b° ¥(h) (4.2.4b)

This representation is identical to the idea of fractals developed by Mandelbrot (1982), and is
also referred to as fractional Brownian motion. Ordinary Brownian motion corresponds to the
value 6 = 1. Mandelbrot has shown that when 0 ranges from 1 to 2, a family of trails
smoother than those of Brownian motion are obtained. Conversely, for 0 values between 1
and O, traces are noisier than Brownian motion. Some typical semivariograms of this type are
shown in Fig. 4.3. Recently, Hewett (1986) argued that reservoir rock properties may also
exhibit fractal characteristics.

However, for the purposes of this study, permeability is assumed to be isotropic in two-
dimensions, and the transformed variable z = In(k) is assumed to follow a circular semi-
variogram model. This simple model can be visualized as that occuring in the middle of a large
geologic deposit, such that an isotropic circular zone of influence prevails. Furthermore, z is
taken to be log-normally distributed, so that its variability can be characterized by the
Dykstra-Parsons coefficient (Dykstra and Parsons, 1950):

k—k
VDP = T g = 1- exp ( — cln(lc) ) (425)
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TABLE 4.1

SOME COMMON FUNCTIONAL FORMS FOR SEMI-VARIOGRAMS

MODEL EQUATION COMMENT
Linear ¥(h) = 6° [%] O<h<A
= o? h2A
)
Circular (k) = 6* 1—--;2t—Cos“l %]-F%‘\/l_%} O<h<A
= ¢? h2A
3
Spherical y(h):oz{%——;- [—%]} O<h<Ah
= 02 h 2 )\,
Exponential (k) = o2 { 1 —exp [_Th] }
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where k is the median permeability (i.e., the 50 percent value), k, is the permeability at one
standard deviation (i.e., the 84.1 percent value) on a log-permeability cumulative distribution
function (CDF), and c,z,,(k) is the variance. An idealized log-permeability cumulative
distribution function was shown in Fig. 3.4.

Several methods are available for generating spatially correlated parameter fields when
the mean, variance and correlation length scales are known (Luster, 1985). The moving average
method was used in this research, since it is conceptually simple and produces an isotropic
log-permeability field with a circular semi-variogram in two dimensions. Briefly, this technique
can be described as follows.

1.  Extend the simulation grid in each dimension by A , and generate a set of uniform
random numbers, r(u), ranging from zero to one, over the entire augmented grid.

2. Attribute to each node, s, in the simulation grid a value, y(s), equal to the sum of
all r(u) located inside a circle of diameter, A, and centered at s .

3. Standardize the resulting realization, y(s), to mean zero, and variance one, and then
rescale so that the mean equals In(k), and variance equals olzn(k). This produces a
normally distributed log-permeability field, z(s).

4.  Exponentiate these values of z(s) to obtain permeability values over the required
simulation grid.

A computer program for generating autocorrelated permeability fields with the moving
average method is given in Appendix C. Figure 4.4 shows the perspective of a typical
permeability data set generated using this procedure, where the permeability surface represents
the variation of 2z =In(k). Actual permeability value vary rather widely, from 1.3 md to
52.7 md. The semivariogram corresponding to this permeability field is shown in Fig. 4.5, and
is obtained by weighting equally the x— and y—directional semivariograms calculated with Eq.
4.2.3. The semivariances are first computed along the rows (i.e., the x-direction), and then
along the columns (i.e. the y-direction). The global semivariogram is finally estimated as the
average of the two directional semivariograms, which is consistent with the assumption of
isotropy. As seen from Fig. 4.5, the moving average procedure reproduces the input variance
(c,z,,(k) = 0.48) and correlation length (Ap = 6/15) reasonably. Table 4.2 presents other rock and
fluid property data, which will subsequently be used as input to pressure and tracer test
simulation codes. All of the results presented in the following sections are for a 15 X 15 grid.
The effect of grid refinement on pressure and tracer test responses is discussed in Appendix B.

4.3. PRESSURE TEST RESPONSE

As indicated by the literature review in Section 2.2.2, most studies have attempted to
estimate effective permeabilities under steady-state conditions. Detailed analysis of averaging
effects during transient flow conditions (e.g. buildup or drawdown testing) has been dealt with
only briefly (Warren and Price, 1961). Moreover, the problem of obtaining some measure of
permeability variation from single or multi-well pressure data does not appear to have been
addressed. These aspects will be the focus of this segment of the research.
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TABLE 4.2

SYSTEM DATA FOR MODELING PRESSURE AND TRACER RESPONSE

Area, A 20 acres

Grid size NX * NY) 15*15

Thickness, h 10 ft

Porosity, ¢ 0.i0

Median perm, k 10 md

Injection rate, g;,; 106.3 bbl/day (0.50 pore volumes/year)

Production rate, gp,4 106.3 bbl/day (0.50 i)ore volumes/year)
Tracer Slug size, Vrg  0.10 pore volumes

Vpp [012,,(,‘)] 0.35 (0.18), 0.50 (0.48), 0.65 (1.10)

Ap 1/15, 6/15, 16/15
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4.3.1. Simulation of Pressure Behavior

The flow geometry of interest (Fig. 4.1) is a quadrant of a 5-spot from a repeated,
balanced flooding pattern. The system is discretized into a set of grid-blocks, each of which is
assigned a permeability according the procedure described in Section 4.2. The other
assumptions of importance are: (a) single-phase flow in two areal dimensions, (b) constant ¢
and h, (c) slightly compressible fluid with constant p and ¢, and (d) production and
injection rates constant over time, and equal to each other.

For these conditions, the depth-averaged pressure-diffusion equation is given by:

¥ _ -9 | Ko 2 | Ko
hoc, <L — gh = = [ =0 Rl Rl (4.3.1)

This equation was discretized using a forward-in-time, central-in-space (FTCS) finite difference
formulation (Aziz and Settari, 1979), which leads to:

AL bij —Pij ]

ij

[k z,,} 2 [ty | [k,h] 2 [ - o2 |
_ B gy Axjt+ A Booficwny  Axi+ Ax,y;

E3 2 [ -rt ] ] 2 [ e |
+ P12 ij-1/2

M Ay + Ay 11 Ay;j+ Ay

4.3.2)
Ay;;

Here i and j denote the two space indices, and rn denotes the time index. The interblock
transmissibilities are evaluated by a harmonic average of grid-block transmissibilities as:

{_"ﬁ } = Axisy + A (4.3.3)
[ ST X PAx + BAX
kch ij k:h i+

with the y-directional transmissibility evaluated in a similar manner. Now multiplying both
sides of Eq. (4.3.2) by Ax; Ay; and using the following grouping of terms:

{1, } = 2 29 (4.3.42)
112, {_& } + {_}JA_X_ }
ij i+

kh kh

{ry } = 2 Axiy (4.3.4b)
i1 {.E_A_x } . {Ez }
kyh ij ij+l
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one obtains after some manipulations:

nhlo| nrl o4 el | 1
- [Tx]i'*l/ZJ [p g ] [T’ ]i.i+1/2 [p ‘J*‘] [Tx]f—ln.i [p "‘J] [T’]u—m [p 'J‘l]
+| 11 +['c +[1:] +[1:] # 24 ["“]

* Ji+124 Y lij+12 T Ji-1724 Y ig-12 - At Pij

S

where S = h¢c,AxAy and Q = ghAxAy . Equation (4.3.5) may also be written as:
AP™l=B (4.3.6)

where A is a sparse pentadiagonal matrix of coefficients, B is a vector acting as the driving
function, and P is a vector of unknown pressures to be evaluated. The matrix, A, is time-
invariant as long as the viscosity of the injected fluid is the same as that of the fluid in-situ, but
not time-step invariant. Thus it is updated only if the time-step size is changed. The vector, B,
contains well flow rate terms as well as pressures from the previous time step. This system of
equations, Eq. (4.3.6), which is implicit in pressure, can be solved using direct solution
methods. The matrix-solver used was a band-solve algorithm based on a modified Gaussian
elimination procedure.

The simulator also uses an automatic time-step selection process, with logarithmic time
incrementing suitable for conventional pressure analysis. Several test runs were made for a
homogeneous system to select initial and maximum time step sizes. Initial time step sizes
ranging from 0.001 days to 0.01 days were tested, and a value of 0.005 days was finally
selected as a compromise between accuracy and stability. The maximum time step size was
fixed such that no more than a preset fraction of a grid block pore volume could be injected or
produced during a time step. This fraction was selected as 0.1, again as a compromise
between accuracy in result and stability of the numerical algorithm. A flow chart for the
simulator is given in Fig. 4.6.

4.3.2. Interpretation Methodology

Since a balanced injection-production pattern is being considered, the system will reach
steady-state some time after the onset of injection and withdrawal. The transient pressure
decline at the production well, and the transient pressure rise at the injection well, can be
analyzed to estimate effective permeabilities around these wells. Assuming infinite-acting radial
flow, permeability, k;, can be related to the slope, m;, of the linear portion on a semi-log
pressure-time graph (Earlougher, 1977):

= gt
) = T (43.7)

where the subscript j denotes injection (inj) or production (prd) as the case may be. In oil-
field units, when g is in bbl/day, | in cp, h in ft, m in psi/log-cycle, and k in md, the
numerical constant becomes 162.6 instead of 1/4n. The effective permeability calculated
with Eq. (4.3.7) measures some average property in a finite zone of influence around the well
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block. This value, referred to as the injection (or production) well permeability, is not
necessarily the permeability of the grid-block containing the well.

The steady-state pressure drop between the wells, Ap, , can also.be used to calculate a
steady-state interwell permeability, k&, . The appropriate interpretive equation, based on the
injectivity equation for a repeated 5-spot, is (Craig, 1971):

k, = }-;‘iA’”—’j— (43.8)

In oil-field units, when Apg, is in psi, and the rest are in the units mentioned previously, the
numerical constant becomes 282.4 instead of 1/n. The geometric factor, F, which is a
function of the interwell distance, d , and effective well radius, r,, is defined as:

F=In { A }— 0.619 (43.9)

T

and is calculated in two ways. The first method is based on calibrating a steady-state
simulation of a homogeneous system with known permeability. Using the data listed in Table
4.2, and a homogeneous system with k= 10 md, the simulated Ap, is obtained as 3333 psi,
which corresponds to F = 2.775 and r,= 44.3 ft. The second method is based on calculating
ro analytically from the formula given by Abou-Kassem and Aziz (1985). For a repeated 5-
spot quadrant with corner wells, simulated with a 5-point block-centered finite-difference
formulation, their Table 1 gives a geometric factor of 0.63888, which corresponds to
r,=44.84 ft and F = 2.763. Both these values agree well with those computed by the first
method.

4.3.3. Analysis of Pressure Test Data

In order to illustrate the general nature of simulated pressure-time graphs, a homogeneous
system simulation with k& = 10 md is shown in Fig. 4.7. The early-time data resembles the
early-time response of a finite radius well (which is expected as the effective wellbore radius is
large compared to the grid block size), the middle-time data appears to correspond to the
infinite-acting radial flow period, and the late-time data corresponds to steady-state. The slope
of the semi-log straight line from the middle-time (infinite-acting) period yields the correct
permeability value when used with Eq. (4.3.7). The duration of this period, shown in Fig. 4.7,
can be converted to a dimensionless time based on the formula:

_ kt
due,r 3,

Do (4.3.10)

In oil-field units, when ¢ is in days, ¢, in psi”!, and r, in ft, the numerical constant
becomes 6.33 x 10~ instead of 1. The limits shown in Fig. 47, ie. ty, = 0.03 days, and
t.nd = 0.50 days, correspond to dimensionless times of 3 <z, < 50 for the beginning and end
of the semi-log straight line. Other simulations for homogeneous systems, with permeabilities
ranging from 2.5 to 25 md, gave similar dimensionless time bounds for the semi-log straight
line.

For each combination of Vpp and Ap, pressure responses were simulated for 20
different realizations of the permeability field. Only two different pressure responses are
graphed from each set of Vpp and Ap for the sake of brevity. These are shown in Figs. 4.8
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through 4.16. In general, heterogeneous system responses were seen to be similar to
homogeneous system behavior. Use of Eq. (4.3.7) for computing transient permeabilities
requires the development of a semi-log straight line on apressure-time graph. Acceptable
straight lines were found in most cases. In other cases, the smoothly varying data from the
middle-time period was fitted with apparent straight lines. The slopes of these semi-log
straight lines were used to calculate effective injection and production well permeabilities. The
beginning and end of the semi-log straight lines were also determined, and converted to
dimensionless form with Eq. (4.3.10). These were then checked against the dimensionless time
bounds from homogeneous system data for internal consistency. Details of the fitting procedure
are given in Appendix A. For each of the figures presented in this section, the semi-log slope,
the effective permeability, and the dimensionless time limit of the semi-log straight line are
indicated. '

Figures 4.8 through 4.16 also show the probabilistic nature of these Monte-Carlo
simulations. Because each permeability field is the outcome of a random generation procedure,
some statistical variation is to be expected in pressure responses from one realization to
another. Such variations also appear as differences in injection and production well pressure
responses. When Vpp and Ap are small (as in Figs. 4.8 and 4.9), the permeability fields are
quite uniform, leading to almost similar injection/production well behavior as well as similar
overall pressure responses in both realizations shown. As Vpp and Ap increase (e.g. Figs.
4.12 and 4.13), systems become more nonuniform, and greater variability can be seen in the
pressure responses. For larger values of Vpp and Ap (Figs. 4.15 and 4.16), injection and
production well responses are distinctly different from each other, and statistical variability
between realizations is also distinct. It is clear that as Vpp and Ap increase, there is a
greater probability of clustering of like-permeability blocks, and thus the nonuniformity in well
pressure responses will be more pronounced.

The computation of transient effective permeabilities, described previously, reflects
averaging over scales localized around the wells. Another measurement, over a different scale,
can be obtained by calculating a steady-state interwell permeability k,, from Eq. (4.3.8).
Tables 4.3 through 4.5 summarize &, k4 and kg values calculated for each of the 20
realizations for each set of Vpp and iD. With few exceptions, values of k,, were found to
lie between k;,; and &k, . This suggested that some weighted average of kinj and k.,
could be used as an estimator of kg . The geometric mean was tested for this purpose and
found to yield good results. The agreement between k,, values calculated from Eq. (4.3.8)
and those computed from the geometric mean approximation is shown in Figs. 4.17 through
4.19. The root mean squared difference was used as a measure of the goodness of fit between
calculated and estimated k;, values, and was calculated to be 5% for Vpp = 0.35 (Fig. 4.17),
12% for Vpp = 0.50 (Fig. 4.18), and 17% for Vpp = 0.65 (Fig. 4.19).

The geometric mean relationship described above is not unexpected in view of the fact
that permeability is assumed to be log-normally distributed. Warren and Price (1961) have
shown that for random variations in permeability with a log-normal distribution, the steady-
state effective permeability is the geometric average of the distribution. When the flow domain
is effectively divided into injection and production well drainage areas, the transient effective
permeability in each zone is essentially the geometric average of permeabilities within that
area. Thus the geometric average of the two well permeabilities should approximately equal
the steady-state interwell permeability.

Conditions under which kg, might not be bounded by ki,j and k., are: (a) the presence
of a high permeability streak along the diagonal joining the injection and production wells,
which would cause kg to be higher than both well permeabilities, and (b) the presence of a low
permeability streak in the transverse direction, which would result in kg being lower.
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TABLE 4.3

PERMEABILITIES CALCULATED FROM SIMULATED

PRESSURE DATA, Vpp=0.35

Run Ap =115 Ap = 6/15 Ap = 16/15
ki kpra ks | King  kpra  kss | ki kpra ks
1 6.9 9.8 8.9 90 119 10.2 8.0 53 7.1
2 10.2 8.9 9.8 89 11.8 10.2 6.4 5.8 7.0
3 8.5 99 9.1 12.1 74 0.5 5.1 16.4 8.6
4 8.5 9.3 9.0 | 123 9.1 10.5 80 146 110
5 9.6 8.8 | 9.6 7.4 7.5 19 7.4 7.6 8.1
6 11.2 102 10.7 120 7.3 9.3 11.0 7.7 9.5
7 99 9.8 10.1 9.1 114 105 99 6.1 8.2
8 8.6 109 9.5 6.6 8.2 8.1 5.6 5.7 6.6
9 9.2 8.3 9.2 82 112 100 | 10.6 128 11.1
10 10.2 99 10.6 | 13.7 11.6 126 44 114 7.0
11 8.1 8.5 8.4 93 140 11.0 5.6 5.8 6.3
12 94 10.1 96 | 125 100 11.6 | 142 83 10.5
13 8.2 104 92 | 11.2 5.1 7.6 | 123 92 105
14 9.5 8.6 9.1 7.0 6.0 7.0 6.7 6.1 7.3
15 11.3 112  11.2 8.8 7.8 9.0 42 148 7.2
16 10.0 10.3 10.2 8.8 13.2 11.1 8.0 4.6 6.4
17 11.2 7.3 9.2 6.8 6.0 6.7 10.4 8.0 94
18 10.8 9.3 9.9 8.1 11.0 94 90 126 10.3
19 8.7 98 . 931 11.0 120 116 94 8.1 9.3
20 8.3 7.7 8.3 4.1 11.2 67 | 124 120 122
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TABLE 44

PERMEABILITIES CALCULATED FROM SIMULATED

PRESSURE DATA, Vpp=10.50

Run Ap = 1/15 Ap = 6/15 Ap = 16/15
Kij  kpra ks kinj  kpra ks | ki kpra K
1 1.5 9.8 8.9 2.8 11.2 5.1 16.5 4.6 7.6
2 1.5 8.7 85 | 13.0 11.8 135 74 155 10.5
3 10.1 8.7 9.3 | 14.1 6.4 99 | 17.8 3.1 6.8
4 98 11.1 11.0 7.7 9.5 94 | 123 4.5 6.9
5 9.5 7.1 8.2 5.3 9.7 7.7 | 14.2 6.3 9.5
6 8.5 6.2 79 | 16.7 4.2 7.9 8.7 42 59
7 10.2 7.6 9.1 | 125 4.3 7.7 41 173 8.2
8 72 10.2 89 | 12.8 86 114 | 13.0 6.4 9.1
9 6.3 9.3 7.7 8.4 128 109 26 172 5.5
10 7.8 10.2 9.2 3.8 13.6 6.6 | 104 1.7 9.2
11 8.8 9.1 89 | 139 88 11.7 | 17.2 52 5.4
12 7.2 11.1 8.6 | 129 115 118 | 13.8 142 140
13 10.0 6.2 8.4 | 14.0 6.4 9.1 8.0 133 10.2
14 11.8 8.2 9.3 | 13.1 125 113 5.1 16.0 8.2
15 10.0 7.8 8.7 | 12.2 82 10.8 | 145 52 7.9
16 9.6 10.1 96 { 12.7 14.7 13.7 139 129 134
17 10.1 7.1 8.9 4.8 49 531 10,0 109 10.6
18 8.6 6.4 8.1 15.6 8.6 11.2 3.6 4.7 4.4
19 8.9 5.8 74 | 14.7 126 13.0 | 16.5 8.8 11.6
20 8.9 9.4 9.3 53 17.0 94 | 127 9.1 10.7
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TABLE 4.5

PRESSURE DATA, Vpp=0.65

Run Ap = 1/15 Ap = 6/15 Ap = 16/15
kinj kprd kss kinj kprd kss kinj kprd kss
1 34 100 59 | 12.7 2.0 42 | 100 175 126
2 8.4 6.1 8.0 | 16.6 5.2 8.8 3.3 3.7 4.2
3 5.1 54 6.2 7.4 8.1 89 2.1 158 3.9
4 11.8 6.0 8.4 69 119 8.1 ] 16.1 1.6 3.6
5 6.4 9.8 8.1 43 112 7.5 | 18.1 94 126
6 8.4 8.8 9.5 70 129 96 | 109 151 13.1
7 6.5 83 7.5 | 13.9 5.8 9.7 9.7 201 13.2
8 10.9 9.2 9.6 1.7 7.4 3.7 | 21.2 53 10.1
9 9.5 10.2 9.9 94 150 126 34 166 6.2
10 87 11.8 10.2 2.7 3.9 3.8 22 190 4.8
11 10.5 8.0 9.8 2.6 7.1 45 | 19.2 9.8 14.0
12 81 110 9.8 5.7 115 7.7 6.5 125 9.2
13 82 105 102 g1 127 108 | 21.0 4.7 8.3
14 6.2 7.5 7.0 | 187 92 138 {112 105 11.0
15 7.9 50 70 | 160 11.8 134 7.2 121 103
16 6.8 4.6 65 | 114 8.6 9.8 22 240 5.3
17 7.2 5.8 6.7 4.1 4.3 47 1 190 159 171
18 6.6 8.9 83 | 120 102 119 | 152 168 165
19 6.1 9.0 7.5 34 8.2 5.1 1.0 122 2.3
20 10.0 5.1 1.2 44 127 14 1.2 170 2.8
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However, only a few high permeability blocks along the main diagonal of flow can increase
kg, while more low permeability blocks are needed in the transverse direction to divert flow
significantly and thus reduce k. Such behavior has been observed in the simulations reported
here, kg, being higher than both well permeabilities on 17 cases, and lower than both on only 2
cases (see Tables 4.3-4.5).

The fact that effective permeabilities could be calculated for heterogeneous permeability
fields suggests that the pressure response is not sensitive to permeability variations. In other
words, the pressure test acts as a filter to smooth the effect of heterogeneous elements in the
system. The variability of these effective permeabilities from one simulation run to another
was seen to increase with Vpp and Ap. This is to be expected, because greater Vpp and
Ap imply greater heterogeneity, and hence more variability between the response produced by
different realizations of the permeability field.

Thus each simulation produces three permeability measurements, which represent
averaging over different spatial scales and locations. While each individual measurement cannot
distinguish heterogeneous structures present within the averaging area/volume, some
combination of the three should correlate with some measure of heterogeneity. For this
purpose, a dimensionless permeability difference is defined as:

| kinj = Kpra |

AkD =
kss

(4.3.11)

which can be interpreted as a normalized permeability variance over the scale of the problem.
For each combination of Vpp and A, the average value of this parameter as obtained from
all 20 simulation runs was calculated. Fig. 4.20 shows the behavior of the averaged value of
Akp as a function of Vpp and Ap. These data are also tabulated in Table 4.6. As the
dimensionless correlation length Ap increases, the mean value of Ak also increases, and the
increase is larger when Vpp is also large. The trend in Fig. 4.20 suggests that some suitable
combination of Vpp and Ap might prove to be a single correlating parameter. One possible
grouping is c,z,,(k)lu , since Vpp and c,,l(,c) are related through Eq. (4.2.5). This parameter
group, termed the heterogeneity index, is a convenient measure of heterogeneity because it
captures both the variability and the spatial continuity of the stochastic permeablhty field. The
choice of clzn(k)lp as a correlating parameter was based on two lines of reasoning, which are
described next.

As shown by Taylor (1920), the variance of spatial locations of a swarm of tracer
particles moving in a stochastic velocity field is:

2 Tx

20;
of = —- l[ [[ p(k) dh dx (4.3.12)
V
where o2 is the variance of velocity, v is the mean velocity, ¥ the mean distance of travel,

and p(h) the autocorrelation function, which is related to the semi-variogram by the following
expression:

Yh) = o [ 1-p(h) ] (4.3.13)

Dispersivity, o = 6,25 / 2x, can be used as another measure of spreading instead of the variance,
and can be computed from Eq. (4.3.12) if the form of the autocorrelation function (or the
semi-variogram) is known. For semi-variogram models with a finite sill (Table 4.1),
characterized by the correlation length scale, A, and for the case when the mean distance of
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TABLE 4.6

STATISTICS OF DIMENSIONLESS PERMEABILITY DIFFERENCE Ak,

95% Confidence

1% A o2\ A <Akp>

DP D In(k) D D Cak, Interval
0.35 1/15 0.0124 0.154 0.149 + 0.065
0.35 6/15 0.0740 0.276 0.280 - +0.123
0.35 16/15 0.1984 0.433 0.391 + 0.171
0.50 1/15 0.0320 0.268 0.139 + 0.061
0.50 6/15 0.1920 0.607 0.540 + 0.237
0.50 16/15 0.5120 0.954 0.740 + 0.324
0.65 1/15 0.0735 0.336 0.246 + 0.108
0.65 6/15 0.441 0.726 0.494 + 0.217
0.54 16/15 1.176 1.813 1.774 1+ 0.777
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travel, X, is much greater than A, it can be shown that:

o
o= — A 4.3.14)

v

For one-dimensional flow in heterogeneous media, where variations in permeability are directly
responsible for velocity fluctuations of the tracer particles, it is reasonable to assume that

G,/ V=0, k= Oiny- A normalized dispersivity, scaled with the characteristic length, L, is
then obtained as:

o _

2 A
7 Clnk) 1= In(yMD 4.3.15)

Thus, a relationship between dispersivity due to convective effects and the parameter group
c,n(k)KD can be derived. Gelhar and Axness (1983) have developed a similar relanonshlp for
multi-dimensional transport using spectral analysis. Since a major objective of this work is to
compare pressure and tracer responses, it is useful to establish the way in which permeability
variability (as obtained from pressure test analysis) can be linked to this group.

The second argument, which is more heuristic in nature, is as follows. The dimensionless
parameter Akp , which is a measure of the difference in mean effective permeability at the two
wells, quantifies the significance of the trend in the permeability distribution over the scale of
the problem. When trends are significant, i.e. Ap is of the order of unity, the probability of
clustering of like-permeability blocks is high. Thus, if the average permeability around the
injection well is higher than the median, the average permeability around the production well
would be lower than the median. The difference between these two values would then be
proportional to O, Since the steady-state interwell permeablhty is related to &, this implies
that Akp =0,/ k= Oiny- It follows that the group o,,,(,,)XD is a suitable correlating
parameter, at least over some range of Akp. Fig. 4.21 is a graph of the expected value of
Akp against c,,,(k)ku on log-log coordinates. Also shown are 95% confidence intervals

around the data points. A least-squares fit of this data set yields the following power law
relationship:

2 12
AkD = 1.3 O,n(k)XD (4.316)

This simple relation provides a way of quantifying in-situ permeability variation from pressure
transient data alone.

4.4. TRACER TEST RESPONSE

As indicated in the review of literature in Section 2.2.2, the convection-diffusion equation
may be an inappropriate model for field-scale tracer dispersion in spatially correlated
permeability fields. Therefore, it is necessary to investigate whether the solutions of
Abbaszadeh-Dehghani and Brigham (1982), derived for homogeneous systems, can be used to
analyze tracer breakthrough curves for heterogeneous media and yield effective dispersivities.
Associated objectives are to examine the range and conditions over which the convection-
diffusion equation is valid, and to relate field-scale dispersivity to some measure of
permeability variation.
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4.4.1. Simulation of Tracer Flow

The numerical tool used in modeling tracer flow under steady-state unit mobility ratio
miscible displacement conditions was the USGS Solute Transport simulator (Konikow and
Bredehoeft, 1978), which is based on a method of characteristics scheme first proposed by
Garder et al. (1964) to simulate miscible displacement processes. Details of the model and the
computer code can be found in the USGS report by Konikow and Bredehoeft. A brief review
is given in the following. The nomenclature of Konikow and Bredehoeft is modified slightly to
conform to that of this dissertation.

The basic assumptions in the development of the simulator equations are :

(a) Unit-mobility ratio miscible displacement;

(b) Constant porosity;

(c) No chemical reactions;

(d) Negligible molecular diffusion; and

(e) Density, viscosity and temperature gradients do not affect velocity distribution.

For two-dimensional transport, the convection-diffusion equation is:

ac _2 [, acl, 2, ac], 2, ac
at‘ax[D“ax]+ay D”By]+ax D”ay}
9 oc |_ 9o _9 ]_Qﬂ.
* oy Dy ax} ox [CVX] dy [va oh 4.4.1)

where D; are the components of the hydrodynamic dispersion tensor, C’ is the solute
concentration of the source/sink fluid, and ¢ the rate of injection and/or withdrawal expressed
as volume flux per unit area. For steady-state conditions, the equation of continuity gives:

aV. ov.
i —2=_4 4.2
ox dy ¢ (4.4.22)
where V, and V| are the interstitial velocities:
ki 9 k 3 :
Vo= = %2 . y=_2%L (4.4.2b)
*oop ox Y op dy

Substitution of Eq. (4.4.2a) in (4.4.1) results in:
ac _ 2 [ b 3C ] 3

ac d aC
or  ox | % ox +8y D”Byjl+ax[nyayjI
2, 8l , ac_, 2, aic-c]
t5 [P 5 ] L R (4.4.3)

At this point, it is useful to introduce the concept of material derivative:
dC _3C  3C dx 3 dy

dr ot oOx dt dy dt (4.4.4)
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which is the rate of change of concentration observed when moving with the fluid particle. The
more common derivative, dC/0t, is the rate of change of concentration observed from a fixed
point. Now:

dx

=Z = 44.

o Ve (4.4.52)
d

—d{ =V, (4.4.5b)

Thus, combining Eqs. (4.4.3) through (4.4.5) yields:

ac_a [, o), 2, ], 2, a
'ET“ax[D’“ax}’Lay[D”ay}+ax[D"’ay]

3|, 2], gre-c
+ % Dy, = ]+ o (4.4.6)

The solutions of Egs. (4.4.5) and (4.4.6) can be given as:
x=x(t) ; y=y1 ; C=C@® 4.4.7)

and are called the characteristic curves of Eq. (4.4.3), the solutions to which may be obtained
by following the characteristic curves. In other words, the solution is represented as the
trajectory in the composition space, and is obtained numerically by introducing a set of
reference particles that can be traced within the stationary coordinates of the finite-difference
grid. Each point has a concentration and position associated with it, and is moved through the
flow field in proportion to the flow velocity at its location.

The first step in this particle-tracking procedure (which simulates convective transport) is
placing points uniformly over the entire grid. The model allows either 4, 9 or 16 points to be
specified. A few trial simulations were run with 16 points per grid, but the increased resolution
in tracking the concentration front was offset by the significant increase in computation time.
Hence, all simulations performed in this study used 9 points per grid. After the particles have
been placed, the position of each particle is specified by its x- and y-coordinates. The initial
concentration assigned to each point is the initial concentration of the grid containing the point.
During a time step, the displacement of each particle is computed as follows:

Xpn = Xppt T AL Vi(z vl (4.4.9)

Yon =Ypn1 T AL Vy 1o 1y 1 (4.4.10)

Here p refers to the index number for particle identification, and » the current time step.
The x- and y-velocities at the position of any point p are calculated using bilinear
interpolation over the area of half a grid using the velocities at adjacent grids and block
boundaries. After all the points have been moved, the concentration at each node is
temporarily assigned the average of the concentrations of all points located within the grid-
block. This is denoted by C; i where n" is the new time level only with respect to
convective transport.
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Changes in concentration due to hydrodynamic dispersion and fluid sources/sinks are
calculated using a finite-difference approximation to Eq. (4.4.6), which is given by:

0 oC oC 0 oC aC
MEYAEIVE SN A

+ Ag[C-C1]

ok = ACijn (4.4.11)
This equation can also be written in the form:
ACijn = [AC:.,-,,- ] ¥t [ACi,;,,. ] " (4.4.12)

where the first term on the right-hand side (also the first term on the left-hand side of Eq.
4.4.11) refers to concentration changes due to hydrodynamic dispersion, and the second term to
concentration changes caused by mixing at sources and sinks.

The major interest in this segment of the research is the evaluation of tracer dispersion
(i.e. spreading of the tracer slug) due to convective effects in a heterogeneous flow field, and
hence hydrodynamic dispersion will be neglected in the simulations. The method of handling
changes in concentration due to hydrodynamic dispersion is derived in detail by Konikow and
Bredehoeft (their Eqs. 29-38), and will not be presented here. Briefly, an explicit finite-
difference approximation is used in which all concentrations and their gradients are evaluated
at the old time level.

For practical purposes, only the change in concentration due to fluid sources/sinks (in
addition to that already attributed to convective transport) must be evaluated. This term is
calculated using an explicit finite-difference approximation and is given by:

At ’
[AC,- in ]” = oF % {c,- i1 = Ci J-,,,} (4.4.13)

Even though this procedure defines a method for solving the characteristic equations, there is a
problem of consistency. Proper representation of solute transport requires that Egs. (4.4.5) and
(4.4.6) be solved simultaneously. However, Eq. (4.4.5) is solved by particle movement using
implicitly computed velocities, while Eq. (4.4.6) is solved explicitly with respect to
concentrations, i.e. nodal concentrations and concentration gradients are evaluated at the old
time level. The remedy is to use a two-step explicit procedure, where Eq. (4.4.11) is solved at
each node by giving equal weight to congentration grgdients computed from time level (n-1) ,
and those computed from time level n , where n is the new time level with respect to
convective transport. This procedure can be expressed as:

At {C"Jm—l = Clijn } {Ci"’"' = Clin }
[Aci,/,n ]” = +

on T 2 2

(4.4.14)

By ignoring concentration changes due to hydrodynamic dispersion, the new nodal
concentrations at the end of time level n can be computed as:
Cij,n = Ci,j,n. + [AC,-J-,,, ]” (4.415)
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A flow chart for the USGS simulator is given in Fig. 4.22. Other details of the computer
model, such as stability criteria of the explicit finite-difference formulation, treatment of
boundary conditions, handling of sources and sinks, have been discussed in detail by Konikow
and Bredehoeft and will not be repeated here.

The computer program was verified by matching simulated tracer breakthrough curves for
homogeneous systems with the analytical solutions of Abbaszadeh-Dehghani and Brigham.
Two test cases were simulated, a continuous injection case with purely convective flow
(oo =0 f?), and a slug-injection case with convective-dispersive flow (o = 10 fz). Comparisons
between analytical and numerical model results are graphically shown in Fig. 4.23. These
results indicate that use of the method of characteristics effectively eliminates the problem of
numerical dispersion, which is a major drawback of conventional finite difference or finite
element modeling of the convection-diffusion equation. The fluctuations in tracer concentration
as seen in Fig. 4.23 simply reflect the fact that the number of tracer particles used in the
simulations is finite.

4.4.2. Interpretation Methodology

The basis for interpreting simulated tracer test data in heterogeneous media is the
analytical solution of Abbaszadeh-Dehghani and Brigham, which has been discussed in detail
in Section 3.4. When possible, the objective is to use this solution to calculate effective
dispersivities by a least-squares minimization procedure. The function to be minimized is the
residual sum of squares, SSQ, defined by:

NPT 2 o
SSQ = Z Cabs,i - Ccalc,i (4416)
=1

where NPT is the number of data points to be fitted, C,,; the observed concentration, and
C.qc the calculated concentration, which is a function of : (a) volume injected, V, and (b)
dispersivity, o. Minimization is achieved by a modified Levenberg-Marquardt algorithm, as
implemented in the IMSL subroutine ZXSSQ. A description of this algorithm (and several
others for nonlinear parameter estimation) can be found in Beck and Amold (1977), and will
not be presented here.

Tracer flow simulations were carried out in three stages. First, injection and production
was initiated under balanced conditions till 0.25 years, at which time steady-state had been
attained. Then a tracer slug of 0.1 pore volumes (7758 bbl) was injected over a period of 0.2
years. Finally, the tracer slug was displaced for 3.8 years (1.9 pore volumes or 147400 bbl).
The output was reduced to a data set of 200 points using cubic splines with information on
volume injected (bbl) and the corresponding effluent concentration (ppm). In each of these
simulations, the dispersivity was set to zero, so that dispersion (spreading) only due to
convective effects could be analyzed.

4.4.3. Analysis of Tracer Test Data

Tracer responses were generated for each of the 20 simulated permeability fields
corresponding to each set of Vpp and Ap , of which only a few are presented here. Figures
4.24 through 4.32 show tracer breakthrough curves for the same physical systems whose
pressure responses were graphed in Figs. 4.8-4.16. In these figures, simulated tracer test data
are shown as solid lines, while the model fits are indicated as dashed lines. The basis for the
interpretation models, and the fitting procedure, are described in a later section. As expected,
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Fig. 422 Flow chart of USGS solute transport simulator.
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tracer concentration-time data show greater sensitivity to permeability variation than do
transient pressure data. Similar behavior has been observed for layered reservoirs with
noncommunicating strata in a repeated 5-spot pattern, as discussed in the previous section.

The first observation from the simulated tracer tests is that tracer breakthrough occurred
much earlier than a time corresponding to an injected volume of approximately 56000 bbl
(0.72 pore volumes), which is the theoretical value for breakthrough in a homogeneous 5-spot
(Craig, 1971). This indicates the presence of preferential flow paths and/or fluid mixing. Since
the simulation model considered no dispersion and numerical dispersion effects have been
minimized through the use of the method of characteristics, these effects must have been
caused by velocity fluctuations in a spatially varying permeability field.

The overall shapes of the tracer breakthrough curve also indicate the nature of the flow
system. In general, two types of flow behavior can be distinguished, at least qualitatively. The .
first kind (e.g., Figs. 4.24, 4.25a, 4.26a), which is termed diffusive, or Fickian, produces a
tracer response resembling that of a homogeneous system where the slug has been dissipated
by mixing. In this case, the tracer response can be matched with the appropriate solution of the
convection-diffusion equation (Abbaszadeh-Dehghani and Brigham, 1982) to calculate an
effective dispersivity. Since slug dilution is attributable only to velocity/permeability variations
in a heterogeneous flow field, the computed effective dispersivity is essentially a measure of
permeability variation.

The second kind of flow behavior (as exhibited by the rest of the examples), is termed
convective, or non-Fickian, and is characterized by multiple peaks in the tracer breakthrough
curve, indicating the presence of more than one discrete channel for fluid flow. Responses such
as these, which provide a verification for the qualitative speculation on pseudo-layering by
- Brigham and Abbaszadeh-Dehghani (1987) (see their Fig. 13), cannot be matched with a one-
parameter solution of the convection-diffusion equation using a single layer with a single value
of dispersivity. However, it is useful to picture such a geometry, consisting of multiple discrete
flow channels within a single layer, as being equivalent in effect to a layered system with
several noncommunicating strata. Because of unit-mobility ratio displacement conditions, tracer
response in this system can be modeled by superposition of individual layer solutions, as
presented in Section 3.4. Moreover, the nonlinear optimization procedure using the subroutine
VARPRO, discussed previously, can be used to deconvolve the integrated tracer breakthrough
curve for estimating pseudo-layer properties.

Figures. 4.24-4.32 also demonstrate the influence of the statistics of permeability variation
(as represented by Vpp and Ap) on tracer breakthrough behavior. In general, Fickian
behavior can be seen when both Vpp and Ap are small, and non-Fickian behavior can be
seen for larger values of these parameters. Moreover, the difference between breakthrough
curves from one realization to another is small when Vpp and Ap are small (i.e. Fig. 4.24).
As Ap increases (i.e. Figs. 4.25 and 4.26), one realization shows Fickian and the other non-
Fickian behavior. Fig. 4.27, where Vpp is higher but Ap smaller as compared with Fig.
4.26, is similar to Fig. 4.24 in that both breakthrough curves are monomodal, even though the
level of spreading is higher. As Ap increases, the variability between the output from
different realizations increases, but now both Figs. 4.28 and 4.29 show non-Fickian behavior
because of a higher Vpp . The trend in Figs. 4.30-4.32 is similar, in that all breakthrough
curves show non-Fickian behaviour because both Vpp and Ap are large. Such qualitative
behavior was observed in all of the simulated tracer test responses.
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4.5. VALIDITY OF THE CONVECTION-DIFFUSION EQUATION

The Fickian model for field-scale dispersion has been shown to be appropriate (i.e. the
convection-diffusion equation is valid) only for large time and length scales (Gelhar, 1986).
When the dimensions of the flow field are fixed, as in this study, this implies that Fickian
behavior can be expected only if permeability variation and correlation lengths are small
enough to permit sufficient spatial velocity averaging during tracer transport. This was found to
be qualitatively true in these simulations, Fickian behavior being observed for small Vpp and
Ap . For larger values of Vpp and Ap preferential flow paths were generated to cause a
pon-Fickian (multi-modal) tracer response, and the convection-diffusion equation with a single
value of dispersivity could no longer be used to match the tracer concentration data.

It seemed reasonable to test whether these observations could be quantified using the
heterogeneity index (G,zn(k)?‘,D) defined previously. This group contains information on the
degree of permeability variation, as well as the spatial scale over which such variations persist.
In Fig. 4.33, the percentage of simulation runs showing non-Fickian behavior is graphed as a
function of U}n(k)}»p . "As expected, the relationship is monotonically increasing, and
asymptotically approaches Fickian and non-Fickian limits at the two extremes. The dashed
portions show extrapolation beyond the range of the actual data. Figure 4.33 establishes the
uncertainty associated with Monte-Carlo simulation results of convective flow processes.
However, it is possible to deduce approximate conditions under which Fickian or non-Fickian
behavior will be dominant. Figure 4.33 suggests that Fickian behavior is restricted to values of
oz(k)KD less than 4 x 1072, and non-Fickian behavior is to be expected when the value of

mphp is greater than 4 X 107,

Smith and Brown (1984) computed effective dispersivities in a two-dimensional
heterogeneous medium by fitting space-averaged concentration-time data to a Fickian model.
The maximum value of c,zn(k)lD considered by them was about 8 x 1072 (see their Fig. 6a),
which is slightly higher than the limiting criterion for diffusive behavior derived in this work.
This also explains the general success of the Fickian model in matching their simulated data.

Arya et al. (1985) followed a similar procedure for matching concentration-time data in
two-dimensional randomly heterogeneous media, and found that the Fickian model may not be
appropriate when permeability variation and correlation length scale are large. Their results
suggest that diffusive behavior is limited to cases when A, is less than 0.1 — 0.2 L, where
A, is the integral range of an exponential semi-variogram of log-permeability values, and is
approximately equal to 0.32 A. Arya et al. used a Vpp value of 0.6 (Arya, A., personal
communication), for which case their  criterion  becomes equivalent to
ohwhp < 3~ 6x 1072, and is consistent with the criterion of Fig. 4.33.

4.6. SIGNIFICANCE OF EFFECTIVE PARAMETERS

At this stage, it is useful to ask if the effective parameters calculated from tracer test data
(i.e. dispersivities and pseudo-layer properties) can be correlated with some measure of
permeability variation such as the heterogeneity index. Based on the criteria derived from Fig.
433, it was inferred that Fickian behavior was more probable for : (a)
Vpp=0.35, Ap=1/15, and (b) Vpp=0.50, Ap=1/15. For these two cases, effective
dispersivities were computed for all simulation runs qualitatively exhibiting Fickian behavior
(i.e. with unimodal tracer breakthrough curves). The average value of dispersivity, o, for each
of these two data sets, normalized by the characteristic flow length, L, is tabulated in Table
4.7, and is graphed in Fig. 4.34 as a function of cr,z,l(k)lD. The straight line shown is the
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TABLE 4.7

EFFECTIVE DISPERSIVITIES FROM SIMULATED TRACER TEST DATA
SHOWING FICKIAN BEHAVIOR

Run Vpp =035 ,Ap =1/15 Vpp = 0.50 , Ap = 1/15
2L/o 2L/o
1 560 922
2 1022 Non-Fickian
3 No convergence* No convergence*
4 Non-Fickian 175
5 596 No convergence*
6 No convergence* 257
7 1060 312
8 188 No convergence*
9 611 249
10 536 176
11 Non-Fickian 129
12 1021 371
13 334 705
14 380 Non-Fickian
15 Non-Fickian 164
16 247 151
17 362 Non-Fickian
18 658 Non-Fickian
19 550 425
20 485 320

*The regression program developed by Abbaszadeh-Dehghani and Brigham (1982) did not

converge to an answer.
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analytical result of Gelhar and Axness (1983) for two-dimensional isotropic media:

% = 032 012,,(,‘)7\.1) (4.4.16)
Also shown are the 95% confidence limits on the mean value of o /L. The agreement
between simulation results and predictions of stochastic theory are reasonable in view of the
limited number of Monte-Carlo runs used for averaging.

For the non-Fickian examples, (i.e. Vpp=0.50, Ap = 16/15; Vpp =0.65 , Ap = 6/15;
and Vpp=10.65, Ap=16/15) it was possible to match most tracer breakthrough curves with
a two-layered model. In each case, the dispersivity, o, was fixed at an arbitrary value of 1 ft
to make the problem convection dominated. The regression program developed by
Abbaszadeh-Dehghani and Brigham (1982) was then used to fit the simulated breakthrough
data. Each match yielded four parameters, two for each pseudo-layer - the fractional ¢ and

kh products. These results are summarized in Tables 4.8-4.10. No trend was observed in any

of these parameters as a function of Vpp, Ap or a combination of the two. This suggests
that a pseudo-layered interpretation model can at least be used to reproduce tracer response,
though it is clear that the parameters obtained apply only at that scale and only for the specific
realization under study. These parameters can also be used in conjunction with simple models
- for computing displacement performance, such as those described by Pande et al. (1987).

Since the tracer flow simulation code assumes that the wells are distributed over the
entire grid-block, it is reasonable to expect that the effective pore volume available for tracer
flow is less than the actual value. Another way of expressing this is to state that the sum of the
pseudo-layer ( ¢4 / Zdh ) values will be less than one. This was observed to be true (Tables
4.8-4.10) for the heterogeneous system simulations. For the homogeneous system case (i.e.,
Fig. 4.23b), regression calculated fractional ¢4 was also found to be less than 1.

4.7. DISCUSSION OF RESULTS

A Monte-Carlo simulation approach has been used to demonstrate how pressure and
tracer test data show different degrees of sensitivity to the presence of a heterogeneous
permeability field. A parametric connection between the two test responses has been
established empirically using the concept of heterogeneity index. This parameter also forms
the basis of a proposed reservoir description procedure, which is outlined in the following.

1.  From transient pressure data, compute knj and k,,. Calculate k; from steady-
state data, or use the geometric mean of kinj and k,, as a working
approximation.

2. Compute dimensionless permeability difference Ak, from Eq. (4.3.11), and
estimate heterogeneity index o,z,,(k)lD from Eq. (4.3.12).

3.  Predict the qualitative nature of the tracer test response (i.e. Fickian or non-Fickian)
using the criteria derived from Fig. 4.33.

4. If Fickian behavior is expected, calculate the approximate effective dispersivity from
Eq. (4.4.16). If non-Fickian behavior is anticipated, then tracer test data may be
needed to quantify the nature of heterogeneities.

5. When tracer test data are available, verify the results of Step 3, or compute pseudo-
layer properties.
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TABLE 4.8

PSEUDO-LAYER PARAMETERS FROM SIMULATED TRACER TEST DATA
SHOWING NON-FICKIAN BEHAVIOR; Vpp = 0.50, Ap = 16/15

Run Layer 1 : Layer 2
khiZkh OH/ZHh kh/Zkh OhIZOh
1 0.89 0.75 0.05 0.16
2 0.59 0.52 0.27 0.28
3 Fickian -
4 0.74 0.63 0.08 0.12
5 Fickian -
6 0.76 0.50 0.15 0.38
7 Fickian -
8 0.58 0.53 0.34 0.39
9 0.78 0.60 0.20 0.35
10 0.44 0.40 0.55 0.58
11 Fickian -
12 0.42 0.42 0.50 0.52
13 0.83 0.72 0.13 0.24
14 Fickian -
15 0.44 0.39 0.44 0.55
16 0.48 0.40 0.50 0.55
17 0.50 0.31 0.33 0.50
18 0.72 0.70 0.18 0.22
19 0.50 0.44 0.44 0.48
20 Fickian -
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TABLE 4.9

PSEUDO-LAYER PARAMETERS FROM SIMULATED TRACER TEST DATA
SHOWING NON-FICKIAN BEHAVIOR; Vpp = 0.65, Ap = 6/15

Run Layer 1 Layer 2
khiZkh Oh/Zdh kh/Zkh Oh/Zoh
1 0.55 0.44 0.42 0.47
2 0.46 0.35 0.36 0.45
3 0.50 0.38 0.45 0.48
4 0.61 0.54 0.34 0.41
5 Fickian -
6 Fickian -
7 0.55 0.37 0.36 0.48
8 0.50 0.33 0.28 0.37
9 0.78 0.72 0.20 0.35
10 No convergence -
11 0.80 0.77 0.14 0.21
12 Fickian -
13 0.56 0.35 0.30 0.50
14 0.45 0.40 0.50 0.54
15 0.80 0.75 0.12 0.20
16 Fickian -
17 0.78 0.52 0.15 0.42
18 0.75 0.51 0.18 0.35
19 0.57 0.65 0.40 0.31
20 Fickian -
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TABLE 4.10

PSEUDO-LAYER PARAMETERS FROM SIMULATED TRACER TEST DATA
SHOWING NON-FICKIAN BEHAVIOR; Vjp = 0.65, Ap = 16/15

Run Layer 1 Layer 2 |
kh/Zkh Oh/Zdh kh/Zkh Oh/Zoh
1 043 0.39 0.56 0.60
2 0.48 0.39 0.47 0.54
3 Fickian -
4 0.45 0.38 0.53 0.51
5 0.63 0.63 0.27 0.34
6 Fickian ] -
7 0.68 0.55 0.27 0.40
8 0.56 0.48 0.38 0.45
9 No convergence -
10 0.66 0.52 0.18 0.29
11 Fickian -
12 0.46 0.39 0.48 0.52
13 0.54 0.50 0.40 0.42
14 0.72 0.51 0.18 0.33
15 075 0.52 0.20 0.40
16 0.78 0.40 0.15 0.50
17 Fickian -
18 0.73 0.55 0.22 0.39
19 0.67 0.52 0.30 0.44
20 0.50 0.46 0.44 0.49
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Simulation results reported here are based on a Vpp range of 0.35-0.65, and a Ap
range of 1/15-16/15 (ie. 60 <A < 1000 ft). Such Vpp values are believed to be
representative of actual field conditions, even though these are less than typical core
Vpp bounds, because a reduction in variance occurs (due to averaging effects) when
core measurements are scaled up to grid-block values (Journel and Huijbregts, 1978).
However, the same degree of confidence cannot be assigned to the A values used. The
uncertainty arises from the lack of information regarding permeability correlation length
scales under reservoir conditions. Data from groundwater aquifers suggest that A may
be of the order of tens of kilometers (Hoeksema and Kitanidis, 1985), and may also be
scale dependent because of nested scales of variation in rock properties (Gelhar, 1986).

Da Costa e Silva (1985) presented data on permeability variation and spatial
continuity from a North Sea oil reservoir. He fitted a spherical semi-variogram model
(Table 4.1) to permeability measurements, and estimated G,Zn(k) = 0.85, and
A = 3.4 miles (5.4 km). These parameters have been used to calculate heterogeneity
indices as a function of well spacing. The results of this computation, shown in Fig.
4.35(a), indicate that under typical field scale displacement conditions (i.e. when well
spacing is of the order of 10-100 acres), non-Fickian behavior can be expected to be the
norm based on the criterion derived from Fig. 4.33.

This data set can also be used to calculate correlation length scales required for
Fickian behavior to be observed when the variance is known, assuming that the Fickian
limit corresponds to a G;",,(k)XD value of 4 x 1072 Fig. 4.35(b) shows A as a function
of well spacing at the Fickain limit for the North Sea data set discussed previously. It is
clear that A values must be quite small for Fickian behavior to be observed. Based on
limited field measurements of correlation length scales (i.e. Da Costa e Silva, 1985;
Hoeksema and Kitanidis, 1985) this does not appear to be true, although more field
studies are required to substantitate such general remarks.

Simulations of convective tracer flow in heterogeneous media reported in this study,
as well as those of Smith and Schwartz (1980), show that tracer breakthrough curves may
exhibit considerable variation from one Monte-Carlo run to another, even when the
statistics of permeability variation are known. This occurs because a convective flow
process is strongly dependent on the actual permeability network used. Two different
realizations with the same statistics might be such that one has a high permeability streak
running from well to well, while the otherhas a similar streak along the other diagonal.
Thus, even though the average measures (variance, correlation length scale) would be the
same in both cases, their tracer flow behavior would be completely different. It is
apparent that some additional statistical parameter which measures the connectivity effect
would reduce such uncertainty, though it is not obvious what that parameter should be.

Under such conditions, only qualitative comments regarding tracer or miscible fluid
flow (e.g. Fickian as opposed to non-Fickian) can be made with any reasonable degree of
certainty. Quantitative predictions (e.g. time to breakthrough etc.) will have too high an
uncertainty to be of practical use. These observations are obviously more appropriate
when the scale of heterogeneities is no longer negligible compared to interwell distances,
i.e. when tracer flow is non-Fickian. It also explains the lack of any definite correlation of
pseudo-layer properties with Vpp and Ap , as observed from the non-Fickian tracer test
interpretations.

Thus the general use of the convection-diffusion equation for modeling tracer (and
miscible fluid) displacement in heterogeneous media is open to question. In the
groundwater literature, the current philosophy is to obtain some knowledge of the spatial
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variation and continuity of the permeability field and then use this with results from
stochastic theory to calculate the components of the dispersion tensor (Gelhar, 1986).
Such an approach may be useful in the context of contaminant transport, but its
applicability in petroleum reservoir engineering seems limited because of the small
number of wells available for sampling the permeability distribution. The alternative is to
ignore the dispersion formulation, and view spreading of the tracer slug as being purely
the result of convective effects in a heterogeneous flow field. This modeling approach
also requires a detailed knowledge of the permeability field. However, by using
information from cores, logs and pressure tests, permeability values can be obtained at
some pilot points (wells). Conditional simulation (Journel and Huijbregts, 1978) can then
be used to construct the entire permeability field with some interpolation in the inter-well
region while honoring known information at the wells. This semi-stochastic methodology
has the advantage of better representing the physics in that no pseudo-mixing has been
introduced, as in the dispersion formalism. Hewett (1986) has used similar ideas to
match field displacement performance for fractal rock property distributions.

The need for well-designed field tests for detecting reservoir heterogeneities is
paramount. A single-well pressure test would only reveal some average permeability in its
drainage area, but the combination of several such tests has the potential of revealing
structures in permeability variation, albeit in some averaged sense. Even though there are
limits to detection with well tests, procedures such as those developed in this section can
yield simple measures of in-situ permeability variation. That, in itself, is an important first
step in describing a reservoir and forecasting its performance.



.08 -

5. CONCLUSIONS AND RECOMMENDATIONS

Major findings from this work are summarized. Some avenues for future research on the
use of well testing for reservoir description are suggested.

5.1. CONCLUSIONS

The results from Section 3, dealing with well test analysis for noncommunicating layered
systems with a log-normal permeability distribution, suggest the following conclusions:

1.

Conventional pressure drawdown or buildup testing in an injection-production
system is insensitive to the degree of layering and permeability contrast. On the
other hand, well-to-well tracer test response is influenced by the number of layers
(which affect the number of concentration peaks) as well as the degree of
permeability variation (which affects tracer breakthrough time).

Tracer tests can provide information regarding individual layer properties, but a
conventional pressure test can only yield an integrated property (e.g. total
transmissivity). However, the combined analysis of transient pressure and individual
layer flow rate data has the potential of providing layer properties.

The buildup responses of layered systems with no-flow and constant pressure outer
boundaries are significantly different. This is particularly true in the presence of
high permeability contrast between layers, when differental depletion can be
significant in the bounded system case and lead to the characteristic hump on a
Hormner buildup graph, but will be neutralized by fluid recharge in the injection case.

The results from Section 4, dealing with well test analysis in single-layer areally
heterogeneous systems with log-normal spatially correlated permeability distributions, suggest
the following conclusions:

1.

The geometric mean of effective permeabilities around injection and production
wells in a 5-spot pattern, as calculated from transient pressure data, reasonably
approximates the steady-state inter-well permeability.

By combining permeability measurements over different spatial scales (i.e. around
the injection and production wells and across the interwell region), a simple
measure of heterogeneity called the heterogeneity index, defined as the product of
permeability variance and a dimensionless correlation length, can be computed.

Tracer test data can be matched with solutions of the convection-diffusion equation
to calculate an effective dispersivity only for small values of the heterogeneity
index.

When the heterogeneity index is large, preferential flow paths are generated in the
system, which cause tracer concentration-time data to resemble the response of a
layered medium.
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5. . A reservoir description procedure, based on the concept of heterogeneity index and
a combined analysis of pressure and tracer test data, is proposed.

In addition to these specific conclusions, some general observations regarding the use of
well test data for reservoir description may also be made. Single-well transient pressure test
data will yield a permeability which is a localized average. Several such measurements may be
used to create a permeability map, either with simple interpolation methods, or with more
sophisticated techniques such as kriging. The simultaneous analysis of transient flow rate and
pressure data also offers a powerful tool for reservoir definition, particularly in the presence of
vertical stratification.

Permeability measurements from several single-well tests can also be used to calculate the
heterogeneity index and qualitatively predict tracer flow behavior. Tracer test data, if available,
add an extra dimension to the level of information that can be obtained, which is offset to
some extent by the time required to conduct such a test. However, it is possible to obtain some
idea regarding the higher permeability streaks from an analysis of initial tracer returns, and tie
this with pressure test data in order to construct a rough permeability frequency distribution,
using a layered-system model. The use of such a model only implies that the convective flow
response is similar to that of a noncommunicating layered system, even though the actual
medium may be different. This simplistic modelling approach honors the physics of a discrete-
flow-channel behavior and is suitable for computing displacement performance, at least over
the scale from which the data were obtained. Real systems are certainly more complex, but the
limitations of simple analytical modelling preclude the consideration of more complicated
physical geometries.

Information from pressure and tracer tests needs to be integrated with core and well-log
data so that a unified picture of the reservoir can be obtained. The major difficulty in this
process currently lies in the lack of proper scaling methods for averaging transport properties
(e.g. permeability). Fortunately, such questions are beginning to be addressed in a systematic
manner. As we begin to understand more regarding the detection and representation of
heterogeneties, it is also necessary to realize that reservoir description is best achieved by
synthesizing information from a multitude of sources, as well as a variety of scales.

5.2. RECOMMENDATIONS

This work considered vertical and areal permeability variations separately. In most real
reservoir settings, the physical system would be three-dimensional in nature and include both
vertical and areal variations in permeability. Hence, a three-dimensional geometry should form
the basis for the next generation of comparative studies similar to this research.

Point permeability measurements often indicate a multi-modal frequency distribution, as
well as anisotropy. Moreover, porosity variations can perhaps be correlated in some simple
way to permeability variations. These features should be incorporated in reservoir descriptions
for input to Monte-Carlo simulation studies.

In order to obtain a better definition of the wellbore pressure response, a hybrid grid
arrangement (Pedrosa and Aziz, 1986) should be utilized. Moreover, a better method for
modelling solute transport, other than the USGS code used in this study, should be
implemented. While the USGS simulator effectively reduces numerical dispersion, it can have
mass balance errors because of a nonconservative finite-difference formulation of the
convection-diffusion equation. Moreover, the extension of this method to three-dimensional
geometries is quite complex. A possible alternative is the random walk method (Prickett et al.,
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1981), which also minimizes numerical dispersion, and is easily adaptable to any existing fluid
flow simulation code.

The influence of permeability correlation length scale on fluid transport has been well
established through theoretical studies such as this work. However, the structure of actual
permeability fields (i.e. whether permeability variation can be modelled with a beunded semi-
variogram or as a fractal process), and their relation to depositional environments, is not well
known. There is thus a critical need for field studies which address these aspects.

When the continuum hypothesis of flow through porous media does not hold (because of
variations in material properties over all scales), a reformulation of the fundamental equations
of fluid transport may be necessary. Recently, Wheatcraft and Tyler (1987) have applied
fractal mathematics to model solute transport under such conditions. The applicability of this
concept in reservoir engineering should be investigated.
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NOMENCLATURE

distance between like wells in a 5-spot (L)

pattern area (L2)

total system compressibility (L? M})

concentration (L3 L™3)

concentration of injected tracer slug (L3 L™3)
concentration of source or sink fluid (L? L)
effluent concentration  (L> L™3)

layered system effluent concentration (L3 L™3)
dimensionless wellbore storage

dimensionless tracer concentration

distance between injection and production wells (L)
dispersion coefficient tensor

dispersion coefficient (L? T™")

geometric factor, dimensionless

formation thickness, or lag of semi-variogram (L)
modified Bessel function of the first kind of order zero
modified Bessel function of the first kind of order one
permeability tensor

permeability  (L?)

effective permeability around injection well  (L?)
effective permeability around production well (L%
steady-state interwell permeability ~ (L2) -

modified Bessel function of the second kind of order zero
modified Bessel function of the second kind of order one
characteristic flow length (L)

slope of semi-log 2pressure-time: graph (M L%
pressure (M L™)

flowing well pressure (M L%

shut-in well pressure (M L2)

initial reservoir pressure (M L™

steady-state pressure drop between wells (M L™2)
well flow rate (L3 T

radial distance (L)

effective well-bore radius (L)

skin factor, dimensionless

storativity L3mh

time (7)

producing time (7)

shut-in time (T)

transmissivity (L* T M)

velocity vector

velocity (L T7H)

Dykstra-Parsons coefficient, dimensionless

width of streamtube (L)

spatial coordinate vector

spatial coordinate

average distance of travel (L)

spatial coordinate

natural logarithm of permeability

dispersivity (L)
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semi-variance of z

correlation length scale (L)
dimensionless correlation length scale
viscosity (ML TT

porosity, dimensionless

measure of mixing within streamtube
variance of log-permeability z
variance of spatial location (L?)
streamline index

autocorrelation function
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APPENDIX A
CALCULATION OF EFFECTIVE PERMEABILITY FROM
SIMULATED TRANSIENT PRESSURE DATA

This appendix presents the procedure used for computing effective permeabilities around
injection and production wells from simulated transient pressure data, which are analyzed in
Section 4.3.1. The example data set, shown in Fig. A.1, is for the case of Vpp = 0.50, and
A'D = 6/15.

Since a semi-log straight line on a pressure-time graph, which corresponds to the
infinite-acting radial flow period, can be represented as a line of zero slope on a pressure
derivative graph, its identification becomes much easier on the derivative graph. Hence,
pressure data were first converted to pressure derivatives according to the formula:

op  _ _Pi1 = Pin
dint) In(tyy/t)

(A.1)

Production and injection well pressure derivative data are shown in Figs. A.2(a) and A.2(b).
For the production well case, an apparent straight line is indicated between ¢= 0.11 days, and
t = 0.73 days, and for the injection well case, a similar linear segment is indicated between
t = 0.03 days, and ¢= 0.37 days. Regression fitted straight lines for these linear portions yield
slopes of my,; = 1608 psi/log-cycle, and m,,; = 553 psi/log-cycle. Permeabilities can be
calculated from these slopes with Eq. (4.3.7) expressed in oil-field units:

k= 162.6 gu (A.2)
mh
which yields k,;=4.3 md, and k;,; = 12.5 md.

Checking for internal consistency was then done in the following manner. For the
production well case (Fig. A.2a), the duration of the semi-log straight line is given by
0.11 €t < =0.73 days. The cormresponding dimensionless times can be calculated with Eq.
(4.3.10) expressed in oil-field units:

633 %107 ke

Ipo = (A3)
(N'I'Ct’%

For k,,;=4.3 md, one obtains 5.0 < 1p, < 37.3. Similarly for the injection well case (Fig.
A.2b), the duration of the semi-log straight line is 0.03 < r < 0.37 days. Since k;,j=12.5 md,
Eq. (A3) gives 4.0 < tp, < 49.1. These values are consistent with the bounds 3 < ¢, < 50
obtained from the homogeneous system simulation shown in Fig. 4.7.

When such bounds were violated, the duration of the approximate semi-log straight line
(as indicated from the pressure derivative graph) was adjusted by a trial-and-error procedure,
and permeabilities recalculated, till dimensionless time limits mentioned in the preceding
paragraph were satisfied.
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APPENDIX B
EFFECT OF GRID REFINEMENT ON SIMULATED
PRESSURE AND TRACER TEST RESPONSES

This appendix discusses the effect of grid refinement on simulated pressure and tracer test
responses. The procedure adopted for this purpose was as follows:

1.~ Select permeability distribution on 15 x 15 grid.

2. Divide each grid block into 4 sub-grid blocks, and assign the same permeability as
the original grid-block to each sub-grid block.

3. Simulate well test responses in the refined (30 x 30) grid, and compare with
responses obtained from the coarse (15 x 15) grid.

Simulations were carried out for three different permeability fields, one for each corresponding
to (a) Vpp = 0.35, Ap = 1/15, (b) Vpp = 0.50, Ap = 6/15, and (c) Vpp = 0.65, Ap = 16/15.

B.1 PRESSURE TEST RESPONSE

The interpretation methodology used was the same as that described in Section 4.3.2. The
middle-time data were analyzed as the infinite-acting response to calculate effective
permeabilities around injection and production wells. The steady-state pressure drop between
injection and production wells was also also utilized to calculate steady-state interwell
permeabilities.

Effective permeabilities thus computed are presented in Table B.1. Also tabulated for
comparison are the corresponding values obtained from the coarse grid (15 x 15) simulations.
Even though the two sets of data are not exactly equal, there is good general agreement
between the two (within 10%). This indicates that the coarse grid was sufficient to capture the
essence of the heterogeneous permeability field, at least for the purpose of estimating effective
permeabilities.  Although not shown here, the qualitative nature of fine- and coarse-grid
simulated pressure responses were similar. Injection and production well responses were fairly
symmetrical around the level of initial pressure when Vpp and A, were small. For larger
values of these parameters, the variability between well responses was greater.

B.2 TRACER TEST RESPONSE"

Figures. B.1 through B.3 show tracer breakthrough curves from the fine grid (30 x 30)
simulations. Also shown for comparison are tracer responses from the coarse grid (15 X 15)
simulations. For a small Vpp and small Ap (Fig. B.1), both simulations produced similar
early-time responses, with a concentration peak at around 60000 bbl. However, the fine-grid
simulation showed smaller peaks later, indicating the presence of other flow paths which were
not revealed in the coarse-grid run. Both simulations could be matched with a Fickian model
(with the same value of dispersivity), but such an interpretation is only approximate for the
fine-grid case, as it does not take into account the smaller flow channels.



- 113 -

TABLE B.1

COMPARISON OF EFFECTIVE PERMEABILITIES OBTAINED
FROM FINE AND COARSE GRID SIMULATIONS

Kinj kpra kss
or=0351 109 102) | 90®9) | 10608
Ap = 1/15
‘;ZP:S'ISSO 807 | 9405 | 850.4)
:z”:lgﬁg 9.5(9.7) | 19.9 (20.1) | 13.5 (13.2)

Numbers in parenthesis are results from coarse grid simulations.
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In Fig. B.2, where both Vpp and Ap are greater than that in Fig. B.1, the fine-grid
simulations clearly produces a greater resolution in delineating two major flow paths which
appeared as one in the coarse-grid simulation (around 60000 bbl). Moreover, the second peak
of the coarse-grid run (around 120000 bbl) is seen a little earlier in the fine-grid run. A
possible explanation for such behavior is that this flow path has also been divided into two,
and its second half has not appeared in the fine-grid simulation due to the limited time-scale
shown. The responses from the most heterogeneous case reported (Fig. B.3) show a similar
trend, in that the fine-grid simulation is able to provide a better resolution of the nature of flow
paths present in the system.

The overall features of tracer responses simulated with fine- and coarse-grids are thus
seen to be similar. In both cases, greater heterogeneity produces more preferential flow paths
(and concentration peaks). While the coarse-grid runs reported here may be matched with a
two-layer model, at least three layers are required to match the fine-grid simulations. This also
underscores the fact that not much information can be derived from parameter estimation of
multi-modal tracer breakthrough curves, while effective dispersivities computed for the Fickian
behavior cases can at least be used as a first estimate for computing tracer flow performance.
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APPENDIX C

Computer Program for Generating Auto-correlated Permeability Fields

Purpose : To generate a 2-D permeability field with a
log-normal pdf and a circular variogram using
a moving average method.

Reference : Luster, G.R., 1985, Ph.D. dissertation,
Stanford University.

Author : Srikanta Mishra,
September 1987.

Subroutines :

(a) ggubfs - Generates a uniform random number in [0,1].

Currently the IMSL version is used, although
the user may choose to supply another one.

(b) gamma - Computes the experimental variogram, by equally
weighting the x~ and y-direction variograms.

Variables :
* nx, ny - grid dimensions
* lgmean - median permeability of the log-normal distribution
* lgsd - standard deviation of 1n(k)

* halfrn - half of the correlation length scale of the
permeability field, expressed in grid-block units

* dseed - random number seed, required in ’ggubfs’

implicit real*8 (a-h, o-z)

double precision sim(100,100,2), perm(15,15)
integer halfrn

real*8 lgmean, lgsd
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hkkk read input data Khkk -

read (5,*) nx, ny
read (5,*) halfrn
read (5,*) dseed
read (5,*) lgmean, lgsd

lgmean = dlog ( lgmean )
* k% ok augment simulation grid xkkk

ncols = nx + halfrn * 2
nrows = ny + halfrn * 2

* % % % initialize grid Tk kK
* ok ok % with unifrom random numbers *kkk

do 10 ix = 1, ncols
do 10 iy = 1, nrows

sim (ix,iy,1) = ggubfs (dseed)
continue

* ok k% perform the moving average * ok % %k

hlfrnsg = halfrn ** 2
do 30 ix = halfrn+l, halfrn+nx
do 30 iy = halfrn+l, halfrn+ny

sim(ix,iy,2) = 0. -

do 20 jx = ix-halfrn, ix+halfrn

do 20 jy = iy-halfrn, iy+halfrn

distsqg = (ix-jx)**2 + (iy-jy)**2

if ( distsqg . le . hlfrnsqg ) then
sim(ix,iy,2) = sim(ix,diy,2) + sim(jx, jy,1)

endif
continue
continue
* ok ok k calculate mean and variance Kk ok ok
* ok ok % of the normal values *kk ok
sum = 0.

sumsg = 0.
do 40 ix = halfrn+l, halfrn+nx
do 40 iy = halfrn+l, halfrn+ny
sum = sum + sim(ix, iy, 2)
sumsq = sumsq + sim(ix,iy,2) ** 2
continue
xmean = sum / float (nx*ny)
var = ( sumsq - sum ** 2 / float(nx*ny) ) / float (nx*ny-1)
sdv = dsqgrt ( var )
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%ok ok k standardize the normal values hkkk
**** mp that mean equals 0 and variance 1 ‘***x

sum = 0.
sumsg = 0.
do 50 ix = halfrn+l, halfrn+nx
do 50 iy = halfrn+l, halfrn+ny
sim(ix,iy,2) = ( sim(ix,iy,2) - xmean ) / sdv
sum = sum + sim(ix,iy,2)
sumsq = sumsq + sim(ix,iy,2) ** 2
continue
xmean = sum / float (nx*ny)
var = (‘'sumsq - sum ** 2 / float(nx*ny) ) / float (nx*ny-1)
sdv = dsgrt ( var )

Kk kK calculate thevlognormal values *kkk

sum = 0,
sumsg = 0.
do 60 ix = halfrn+l, halfrn+nx
do 60 iy = halfrn+l, halfrn+ny
sim(ix,iy,1l) = dexp(sim(ix,iy,2)*1lgsd+lgmean)
sum = sum + dlog(sim(ix,iy, 1))
sumsqg = sumsqg + dlog(sim(ix,iy,1)) ** 2
continue
xmean = sum / float (nx*ny)
var = ( sumsqg - sum ** 2 / float(nx*ny) ) / float (nx*ny-1)
sdv = dsgrt ( var )

* ok ok ok write output *ok ok ok

write (6,*) nx, ny
ia = halfrn + 1
ib = halfrn + nx
ic = halfrn + ny
do B0 iy = ia, ic
j = iy - halfrn
do 70 ix = ja, ib
i = ix - halfrn
kx (i, j) = sim(ix, iy,1)
continue
continue
write (6,90) ((perm(i, j),i=1,nx),j=1,ny)
format (15(£5.1))

ko k calculate experimental variogram * %k & &

call gamma ( perm, nx, ny )

end
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subroutine gamma ( x, nx, ny )
implicit real*8 (a-h, o-z)

double precision x(15,15), gamx (15), gamy(15), gam(15)

do 20 j = 1, ny
do 20 i = 1, nx

x(ilj) - dlog(x(i,j))
continue

nlag = nx-1

write (6,*) nlag

do 80 1 = 1, nlag
gamx(l) = 0.
gamy(l) = 0.

*kokk calculate the x-directional variogram * ok ok ok

do 40 j = 1, ny
do 30 i = 1, nx-1
gamx (1) = (x(i+l,J)=x(i,])) =** 2 + gamx (1)
continue
continue
nxpair = ny * (nx-1)
gamx(l) = 0.5 * gamx(l) / float (nxpair)

*kxk Calculate the y-directional variogram *okk ok

do 60 i = 1, nx
do 50 j = 1, ny-1
gamy (1) = (x(i,3j+1)-x(i,3)) ** 2 + gamy (1)
continue
continue
nypair = nx * (ny-1)
gamy(l) = 0.5 * gamy(l) / float (nypair)

*xkk calculate weighted variogram * ok k&

npair = nxpair + nypair
gam(l) = ( gamy(l) * nypair + gamx(l) * nxpair )
/ float (npair)
write (6,70) 1, gamx(l)
format (i3,2x,e10.3)
continue

return
end
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