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ABSTRACT

This report summarizes research progress made during the period October 1, 1988-September 30,
1989. We report advances in the following general areas:

1. Chemical-Steam Simulation Model

2. Vapor-Liquid Flow in Porous Media

3. Foam Flow in Porous Media

4. Caustic Flooding at Elevated Temperatures

5. Reservoir Heterogeneity

Additional efforts have been devoted in the last quarter of the past year in upgrading and
debugging the simulator. New features were added in three-phase relative permeabilities, the
vertical equilibrium and the phase behavior subroutines.

The study of vapor-liquid ﬂoﬁ in porous media continued. Three aspects v&;ere addressed: (i)
The onset (nucleation) of phase change (evaporation-condensation); (ii) The subsequent growth of
the gas phase; and (iii) The macroscopic description of various processes involving simultaneous
steam-water flow.

We used percolation models previously developed to study nucleation during the liquid-to-vapor
phase change (evaporation, desorption) in porous media. A cavity model to describe the geometry
of nucleation sites was proposed and the stability of vapor-liquid interfaces in porous media was
examined. Effects of general pore size distibutions were also incorporated in the percolation ap-
proach. Analytical expressions for Bethe lattice representations of the porous media were obtained
based on which the effect of nucleation was assessed.

The subsequent to nucleation growth of the gas phase was analysed in two different contexts,
one in which the driving force is the pressure decline (typical of gas in solution), and another driven
by temperature difference (typical of boiling). The latter study is still in progress, thus we report
only on the solution gas process. We examined the growth of a gas “bubble” in porous media by
studying in detail the roles played by diffusion, interfacial forces, pressure decline rates and the
imposed supersaturation.

It was found that under conditions of slow pressure decline rate the Pprocess is qudsi-static and
can be approximated by an (invasion) percolation approach. The models previously Qeveloped

may be used to quantify the critical gas saturation and the relative permeabilities. Under the
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same conditions but with negligible capillarity, on the other hand, the growth is described by
Diffusion-Limited- Aggregation (DLA), for which critical gas saturation and relative permeabilities
are undefined. v

The knowledge gained from our previous pore level studies was subsequently used to model
vapor-liquid processes at the macroscopic level for two flow configurations, one involving counter-
current flow and the other concurrent flow. The latter is typical of steady-state experiments for
steam-water relative permeabilities and it is still in progress. A unified description was developed.
Specific emphasis is placed on effects of heat conduction, capillarity and vapor pressure lowering
(Kelvin effect), which have been either neglected or misrepresented in previous studies. We ex-
amined saturation profiles and the dependence of the critical heat flux on the system parameters,
notably the permeability.

The experimental study of the parameters that affect foam generation and propagation in porous
media continued. The effect of flow rate of gas and the surfactant phases on foam generation were
investigated. The results point out to the existence of a minimum pressure gradient for foam
formation and flow. Within experimental accuracy, a discontinuity was observed in the dependence
of the pressure drop on the flow rate. Effects of the use of a foam generator were also evaluated.
Experiments are under way that employ continuous pressure monitoring along the core, in order
to study foam incubation.

On the theoretical side, we examined the modification of the classical Buckley-Leverett and
Johnson-Bossler-Newmann methods when one (or both) of the flowing phases is non-Newtonian
of a power-law rheology. The appropriate approach was formulated, and sensitivity studies were
performed. The effects of fluid rheology (shear thickening or shear-thinning) and flow rate on the
displacement features were investigated. A modification of the JBN method was also suggesteﬂ.

Td critically evaluate the suitability of caustic solutions as steam additives, experimental studies
were conducted using long cores. It was found that for temperatures exceeding the 120°C, caustic
consumption increases significantly and results into a large drop in the solution ‘pH. This sharp pH
decline is due to an irreversible reaction involving silica, caustic and clay, previously unnoticed due
to short residence times and/or low temperatures. This interaction is likely to impose substantial
requirements on the volume of the caustic injected. It was concluded that caustic injection at

elevated temperatures in reservoirs with moderate clay content would not be economically feasible.
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Necessary requirement for the understanding of vapor-liquid flow in heterogeneous media (e.g.
steam injection in naturally fractured systems) is the elucidation of capillary effects at the regions of
heterogeneity. Previous works have been restricted to either static conditions or outflow end-effects.
We have undertaken a study to analyse capillary heterogeneity effects under general flow conditions.
The saturation response to various forms of heterogeneity was examined both analytically and
numerically, and the effects of process parameters, such as mobility ratio, flow rate, and scale and

correlation of heterogeneity were investigated.






1 INTRODUCTION

This report covers part of the work performed in the area related to physicochemical factors for
the improvement of oil recovery efficiency in steamfloods. Specific goals of the original subcontract
were the further development of a chemical-steam simulator, the study of the mechanisms of vapor-
liquid flow, the effect of foaming agents on oil displacement and the effect of caustic solutions at
elevated temperatures. Upon renewal of the subcontract on October 1, 1988, additional objectives
were added involving studies of heterogeneity and non-Newtonian flow.

A chemical-steam simulator has been partly developed over a period of several years with the
~support of previous DOE contracts to USC. Activity on this subject has slowed down in the last two
years. A renewed effort started in the last quarter of the past year to further debug and upgrade the
simulator. New features were added in three-phase relative permeabilities, the vertical equilibrium
-and the phase behavior subroutines. The simulator consists of several thousand Fortran statements
1in 13 files, each containing several subroutines. At present, we are in the process of debugging and
upgrading the energy balance section. We shall provide a complete report upon the completion of
the task. ‘

The study of vapor-liquid flow in porous media confinued in an effort to understand the ba-
sic mechanisms involved in vapor- liquid flow, phase change and transport. Three aspects were
addressed: (i) The onset (nucleation) of phase change (evaporation-condensation); (ii) The subse-
quent growth of the gas phase; and (iii) The macroscopic description of various processes involving
simultaneous steam-water flow.

Particular emphasis was placed on nucleation phenomena in phase change in porous media. For
this, the percolation models previously developed need to be modified. Appropriate heterogeneous
nucleation (cavity) models to describe the geometry of nucleation sites are also necessary. Finally,
the stability of vapor-liquid interfaces in porous media must be analysed. This effort is described
in Section 2. For completion, effecis of general pore size distibutions are included, to circumvent
the limitations of previous models. For quantitative assessment, analytical expressions for Bethe
lattice representations of the porous media are developed.

The growth of the gas phase subsequent to nucleation occurs by different mechanisms depending
on the process. In one case the driving force is the pressure decline (typical of gas in solution),

while in another application the growth is driven by temperature difference (typical of boiling).



The latter study is still in progress, thus we report only on the solution gas process. The growth
of a gas “bubble” in porous media is examined by studying in detail the ‘roles played by diffusion,
interfacial forces, pressure decline rates and the imposed supersaturation. This effort is reported
in Section 3. Particular attention is placed on the effect of pressure decline rate on both nucleation
and buuble growth. The conditions for quasi-static growth, required for the applicability of a
~ percolation approach, are delineated. Corresponding implications to relative permeabilities are
investigated.

In parallel, a detailed modeling of vapor-liquid processes at the macroscopic level was initiated
for two flow configurations, one involving countercurrent flow and the other concurrent flow. The
latter is typical of steady-state experiments for steam-water relative permeabilities, it is still in
progress and will be reported in the future. For the case of vapor-liquid steady-state counterflow,
a unified description is attempted, valid for both heat pipes and geothermal applications. Specific
emphasis is placed on the effects of heat conduction, capillarity and vapor pressure lowering (Kelvin
effect), which have been either neglected or misrepresented in previous studies. This effort is
reported in Section 4. We examine& saturation profiles and the dependence of the critical heat flux
on the system parameters, notably the permeability.

The experimental study of the parameters that affect foam generation and propagation in porous
media also continued. The effect of flow rate of gas and the surfactant phases on foam generation
were investigated. Specific objective was the investigation of a minimum pressure gradient for foam
formation and flow. Effects of the use of a foam generator were also evaluated. Experiments are
under way that employ continuous pressure monitoring along the coi'e, m order to study foam
incubation. We report on this activity in Section 5.

On the theoretical side, the methods for determination of relative permeabilities in non-Newtoni-
an flow were examined. It is required that the classical Buckley-Leverett and Johnson- Bossler-
Newmann methods must be modified, when one (or both) of the flowing phases is non-Newtonian
of a power-law rheology. The appropriate approach is formulated and sensitivity studies are per-
formed in Section 6. Effects of fluid rheology (shear thickening or shear-thinning) and flow rate
on the displacement features are investigated. The proper modification of the JBN method is also
suggested.

To critically evaluate the suitability of caustic solutions as steam additives, the extent of the



caustic/rock interaction and the rate of propagation of pH fronts at elevated temperatures must be
determined. Specifically, the state of equilibrium at higher temperatures, an issue of importance
to the models developed, must be investigated. To this end, experimental studies were conducted
using long cores. Temperatures as high as 180° C and flow rates in the range 0.2-4.8 ft/day were
the parameters jraried. This effort is reported in Section 7.

Finally, in an effort to assess effects of heterogeneity on the process performance, the elucidation
of capillary effects is necessary. This is particularly needed in the modeling of steamfloods in
naturally fractured systems, a topic of future interest in this work. Unfortunately, previous works
even for the standard, immiscible flow have been restricted to either static conditions or outflow end-
effects. We have undertaken a study to analyse capillary heterogeneity effects under general flow
conditions. The saturation response to various forms of heterogeneity is examined both analytically
and nufnerica.lly, and the effects of process parameters, such as mobility ratio, flow rate, and scale

and correlation of heterogeneity are investigated. This effort is reported in Section 8.



2 NUCLEATION AND PORE GEOMETRY EFFECTS ON CAPILLARY
DESORPTION

M. Parlar and Y.C. Yortsos

2.1 INTRODUCTION

Experimental vﬁpor sorption isotherms are indispensable means for the characterization of the
texture of porous solids [2, 39, 51, 52]. The commonly used approach relies on Kelvin’s equation
for the description of capillary condensation and evaporation, and on a model representation of
the actual pore geometry and topology. Owing to its obvious significance, the latter has attracted
considerable attention.

Early works made use of the simplified model of a bundle of parallel capillaries. Such models
have limited success, since they neglect connectivity and topological issues by emphasizing only local
(single pore) phenomena [41, 40]. It is now accepted that capillary evaporation in a pore depends,
in addition, on its accessibility to other vapor-occupied pores or to the bulk phase outside. The
resulting hysteresis cannot be captured by local effects alone, and, as pointed out by Everett [39],
requires the interplay of pore space topology.

Network models incorporating percolation concepts have emerged as useful alternatives and have
been successfully used to predict several characteristics of primary [71, 76, 109] and secondary [70,
72] sorption processes. A comprehensive approach outlining the relevance of percolation theory in
the description of primary and secondary sorption processes was developed in [80]. Although regular
lattices were also examined, Bethe lattices were exploited to obtain exact solutions. Results in [80]
generalized previous expressions derived by Fisher and Essam [44] and Flory [45] to arbitrary (non-
zero) fraction of initial source sites. In a concurrent study, Mason [72] revised his previous model
[71], likewise pursuing a percolation approach that led to results similar, although not identical, to
those in [80].

All previous network and percolation models for capillary sorption rely on two important
premises: the neglect of nucleation phenomena in the liquid-to-vapor transition, and the postu-
late of some form of relationship between site and bond size distributions.

Lack of nucleation attributes ﬁercolation-like features to primary desorption. It appears to

have been partly justified in some experiments on porous glass [14, 36, 55, 89], and for a variety of
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adsorptives (including xenon [14], nitrogen [36], n-decane [89], carbon tetrachloride, benzene, and
water [55]). The experimental results of Barrett et al. [6] on the silica-gel/nitrogen system also
reveal a similar behavior. On the other hand, deviations from a percolation behavior have also been
noted and variously attributed to nucleation, finite size, vapor compressibility, or other effects. At
present, a quantitative assessment of the importance of nucleation during desorption is lacking.

A similar uncertainty exists in the interrelation between pore body and pore throat sizes. This
issue is common to any model of porous media, and of particular interest to processes involving two
phases, where occupied throats determine phase conductivity, while occupied bodies determine the
phase volume. To be sure, any such relationship would be material-specific, reflecting the particular
history (diagenetic, etc.) of the porous medium. With few exceptions, most studies bypass the
issue by considering site-only or bond-only processes. In the mixed bond-site problem considered in
Chapter [80], use was made of an algebraic relationship proposed in [71] to relate site and bond size
distributions. This relationship is the lower limit of a general inequality reflecting the constraint
that a pore body has size greater than its associated pore throats. The model developed in [80]
relies exclusively on this limiting condition, thus unduly prohibiting the consideration of largely
arbitrary site and bond distributions.

In this section, these two issues are explored in some detail. Conditions to estimate nucle-
ation effects in desorption are outlined, and simple models for nucleation during desorption are
presented. The previous expressions are also generalized to account for arbitrary site and bond
size distributions. The approach taken entails the special case of Zhdanov et al. [123], where all
bonds have the size of the associated site reduced by a constant factor. The local hysteresis in the
adsorption-desorption cycle of cylindrical elements is also briefly discussed.

Capillary sorption, by virtue of the phase change involved, may be the prototypical process,
among many others involving immiscible phases (e.g., mercury porosimetry), for the direct applica-
tion of percolation theory to porous media. This process is further coupled here with a nucleation
mechanism that leads to accessibility-controlled growth from internal sources. Besides its direct
physical relevance, the ensuing analysis may thus be useful to other percolation processes as well.
Phase change in porous media is common to many applied processes (e.g., vapor-liquid flow in oil

and geothermal reservoirs [75, 79]), which stand to benefit directly from the present investigation.



2.2 EFFECTS OF NUCLEATION

Before pfoceedi.ng, we briefly summarize the postulates of the present model. The porous medium
is represented by a network of bonds and sites (throats and bodies) of size distributions a(r) and
a,(r), and of coordination number Z. Sites and bonds have approximately spherical and cylindrical
shapes, respectively, although nucleation pits on rough surfaces are also allowed (gee below). Aside
from this, other issues of roughness, notably those of fractal structure of the surface [104, 4], are
not considered. Additional assumptions are that each pore unit (body or throat) is occupied by a
single phase only, vapor or liquid, and that volumetric contributions are obtained from sites only,
unless otherwise noted. Stability considerations [41] require that, if a throat is occupied by vapor
(as in desorption), the adjacent two bodies are also occupied by vapor, while if a body is occupied
by liquid (as in adsorption), all emanating throats are also occupied by liquid. For convenience,
surface adsorption effects [15, 29, 33] are ignored.

Given a pore element (site or bond) of size r, there is a corresponding value of the relative
pressure (P,/P,,) given by Kelvin’s equation:

"= RR/R g

with the characteristic radius r., defined by

Teh = gf-%{;’,—‘fé- (2
Here, oy is the surface tension, V7, the liquid molar volume, R the gas constant and T the absolute
temperature, while P, and P,, are equilibrium and saturation vapor pressures, respectively. The
parameter s is geometry dependent: In sites, for bofh adsorption and desorption, it takes the
value 1. By contrast, in the cylindrical geometry bonds, s changes from 1 for desorption to 1/2
for adsorption. This difference reflects local hysteresis for elements of cylindrical geometry, and
it is tacitly assumed negligible [70, 71, 72, 76, 109, 123]. In the case of a single pore (infinite
connectivity), the above define the relative pressure for phase change in the element of size 7. One
: may then parameterize the process (adsorption, desorption) by a variable radius, denoted hereafter
for consistency [56, 57, 80, 79] by r4, and obtained from (1) and (2) by taking s = 1.
Capillary adsorption (whether primary or secondary) is independent of accessibility or nucle-

ation effects, although it may be subject to local hysteresis. At any stage rq, vapor in all sites with



r < rq and all bonds with r < r4/2 is allowed to (and will actually) condense. However, all bonds
emanating from a liquid-occupied site (size » < ry) would also condense in view of the stability
considerations outlined above. Thus, a substantially larger fraction of bonds would be occupied by
liquid, and the effect of geometry during adsorption would be greatly minimized. In fact, if the
volumetric contribution of bonds is taken to be negligible (possibly more appropriate for uniform
sphere packs), as in the a.nalysis below, local geometry has no effect on the primary hysteresis
loop. By contrast, local hysteresis would affect secondary desorption, where bond statistics are of
primary concern. We shall postpone further discussion of this interesting case to a future study.
Desorption, on the other hand, depends strongly on accessibility, and possibly, on nucleation
(heterogeneous being the most likely mechanism). In the absence of the latter, vapor occupancy
during primary desorption occurs solely through access to the outside bulk vapor, first established
at the percolation threshold. In secondary desorption, the liquid-to-vapor transition originates
also from preexisting vapor sites. Furthermore, when nucleation is in effect, vapor occupancy will
ﬂso take place in liquid-occupied pores that are not necessarily connected to a vapor site. In the
general case, therefore, the following two conditions must simultaneously hold, for an element to

be occupied by vapor:
1. The pore (site or bond) is allowed to desorb, r > ra.

2. The pore (site or bond) has access to:

(a) the bulk vapor outside (e.g. in primary desorption in the absence of nucleation),

and/or to

(b) vapor-occupied pore elements acting as internal sources. The latter either may
have been present initially (e.g. in secondary desorption) or may be generated through

nucleation during the process (whether primary or secondary).

Clearly, if nucleation is allowed, the formation of an infinite cluster is not required for a primary
desorption process to initiate and proceed. In fact, percolation characteristics could very well be
erased from the desorption isotherms. To assess their importance, the two nucleation mechanisms

are discussed separately.

2.2.1 Homogeneous Nucleation



Figure 1: Schematic of a nucleation site in a pore body.

Existing models for nucleation rates in single-component systems make use of kinetic expressions

of the form (2, 43, 112, 122]
41rar3

i) ®)

where kp is the Boltzmann constant, K is a kinetic parameter [43], and r. is the radius of critical size

J = K exp[—

nuclei related to pressure via Kelvin’s equation. The dimensionless function f represents effects of
wettability and nucleation site geometry. Its value lies between 0 and 1, to cover the range between
perfectly heterogeneous to homogeneous nucleation. For example, for conical cavities in spherical
pore bodies, as in Fig. 1, as long as the liquid-vapor meniscus is inside the pit,

_ 2sina(l - sin(f — a)] + cosf cos*(§ — a)
- ‘ 4sina

f

, (4)

where 6 is the contact angle and a the half pit angle. When the interface is at the pit mouth, f is

given by
f= 2sinal + cos(¢ + )] + sin®(¢ + 1)[3cos 6 — 2sin(¢ + ¢ + )]

4sina

(5)
where ¢ is the angle between the tangent drawn to the meniscus (assumed spherical) at the pit
mouth and the tangent to the spherical pore body at the same point (see Fig. 1), and varies
between (r/2 + 8 — a — ) (when the meniseus first arrives to the pit mouth) and 0 (when the
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meniscus radius r,, equals the pore body radius ). The angle 1 depends on the ratio of pit to

pore size,
N 4
% = sin 1(7‘)1 (6)
while the meniscus radius depends on geometrical parameters through
w
r = —_——T 7
sin(¢ + ) ()

Usually, the onset of nucleation is arbitrarily defined at the rate J = 1 nucleus per sec-cc. The
precise definition is immaterial, since both the critical size and the corresponding supersaturation
are insensitive to large variations in J. For example, for xenon at 151 °K, an increase in J by eight
orders of magnitude (from 10~% to 10*) reduces the nucleation radius

= (- 222 R ®
from 15.4 to 13.8 A, for f = 1, clearly a negligible change. It follows that a quite sharp and fixed
threshold for the onset of nucleation can be identified.

- 'When rg > ry (vapor pressure greater than nucleation pressure), no phase change occurs via
homogeneous nucleation, while when r4 < 7y, there is vapor occupancy via homogeneous nucleation

in all pore elements (bonds and sites) of radius r > ry. We recall that in the absence of nucleation,

the onset of primary desorption is at the percolation threshold, defined in terms of a radius rp,

./':w ap(r)dr = v 1_ T (9)

pt

for a Bethe lattice. Note that the bond size distribution is used, since desorption is controlled
by pore throats, in view of the stability premises outlined above. Thus, whether nucleation is a
significant factor in a desorption experiment or not largely depends on the ratio ry/ry:. Nucleation
would be clearly negligible if the latter is significantly smaller than 1.

Quantitative estimates are possible if a;(r) is relatively smooth. For Z not too large, it can be
easily shqwn that r,; is of the same order as the mean throat size A,. For example, for the size

distribution
mre

Tr
ap(r) = 2% exp[— m]a (10)

we have :
A(, x ?

(11)



the RHS of which is close to 1 for typical values of Z. Thus, for all practical purposes, the ratio

rN _ [3kpTIn K/4ro]!/?
o £ = (12)

may serve to measure the importance of homogeneous nucleation. An insignificant contribution is
expected for media of larger mean size, a likely occurrence in many applications.

On the other hand, sorption experiments are of utility insofar as the corresponding isotherms
are not too steep, so that reasonable resolutions are possible. In turn, this requires smaller pore
sizes. For instance, the slope of the sorption isotherm in a (liquid volume) vs. (relative pressure)

plot is roughly equal to
dSg, r? Teh
A2 P as(r) exp(-7), (13)

h
if equal volume sites are assumed. For a distribution of the type (10) with an average site radius
A,, the slope has an estimate of order A, /7, near the onset of desorption. Similar conclusions are
reached if it is required that the relative pressure at the onset of desorption be not too close to 1.
For example, a value equal to 0.8 requires Ap/rep (R 7pt/7Ten) = 4.48.

It follows that successful sorption 'experiments ought to be conducted under conditions such
that simultaneously, Ap/rch is not too large, and A\y/7n is not too small. The two requirements
are favored at higher values of o and lower values of T, conditions commonly practiced in sorption
experiments. Percolation-type theories that do not account for homogeneous nucleation, may then
be successfully used for the determination of the size distributions. It can be shown that this
is likely the case in typical experiments. For example, for the conditions in [14] and [55], the
relative pressure for homogeneous nucleation of xenon (water) is 0.406 (0.385), while experimentally
observed desorption thresholds are approximately at 0.525 (0.670). These data clearly suggest that
at the onset of nucleation, most of the pore elements are already vapor-occupied via percolation

mechanisms, free of homogeneous nucleation.

2.2.2 Heterogeneous Nucleation

While homogeneous nucleation can be adequately estimated, this is hardly the case for the hetero-
geneous case, due to the uncertainty in the state of wetta;bi]ity and the geometry of the nucleation
sites. Specific models or a probabilistic approach may then be necessary. Typically, the surface
roughness is approximated by conical pits of the type studied by Ward et al. [112] and Forest [46].
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Figure 2: ‘Schematic of meniscus radius-volume relationship for bubble growth in a hydrophilic

conical cavity.

Geometric and interfacial properties of the latter may further be assigned a probability distribution
function. To be specific, consider a nucleation site of conical pit geometry in a pore element (pore
body) of size r (Figure 1). The pit would be characterized by a half-width W, an angle a, and
a contact angle 6. Clearly, we must require that the conical pit be considerably smaller than the
pore element itself, thus we take the ratio

p=2
r

(14)
to be constant and small (e.g., § = 0.1), for a not too small. One is then interested in determining
the relative pressure (radius) at which the pore element becomes fully occupied by vapor via
heterogeneous nucleation, and the corresponding effects on the desorption curve.

Closely paralleling the analysis in {46, 111, 112), it can be shown that under favorable wettability
conditions (high contact angle), vapor bubbles do indeed form in the pits. However, as long as the
radius ry associated with the prevailing vapor pressure is greater than the half-width W, such
bubbles are restricted near the pit mouth and would grow to a generally small size with the

meniscus located near the pit mouth. Figure 2 shows a qualitative schematic of the relationship
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Figure 3: Schematic of change in Helmholtz free energy-volume relationship.

between vapor-liquid meniscus radius (r) and bubble volume (V') for a hydrophilic conical cavity
(8 — a < n/2) satisfying the inequality 8 < cos(6 — a). The meniscus exhibits successively a local
maximum (W/ cos(f — a), point A), a lotal minimum (W, point B), and a global maximum (r, =
site radius, point C), where the entire site becomes occupied by vapor, to be followed by an eventual
reduction in radius to that of the associated bonds (point D). From such diagrams, the stability
of the equilibrium states may be readily identified. As with the case of homogeneous nucleation,
however, and for all practical purposes, kinetic considerations would prevail in determining the
occurence of vapor occupancy.

The corresponding relationship between the change in the Helmholtz free energy AF and the
bubble volume V is qualitatively shown in Figure 3, for the most interesting case W/ cos(d — a) >
rq > W. Two energy barriers exist. If a bubble forms with volume greater than that corresponding
to the first barrier (AF)), it would grow to a metastable state at the pit mouth. However, for
the occupancy of the host pore element by such a bubble, a second energy barrier (AF;) must be
overcome, the kinetics of which are favorable only if ry < W. Thus, the pore may become vapor-

occupied via heterogeneous nucleation, although at a relative pressure P}/ Pyo, which is considerably
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smaller than that of the pore element itself, P,/ Py,

Pt P,
5. = B 9

Identical conclusions can be reached for the hydrophobic case [46]. Since 3 is assumed to be small,
heterogeneous nucleation is, thus, likely to be important only in larger pore sizes, hence in porous
media with wide size distributions and long tails (such that Py/Py, can be close to unity). It is
worth noting that, at least for such model porous media, heterogeneous nucleation is pore size-hence
relative pressure-dependent, in contrast to the homogeneous case.

The simplest model to be considered contains pits in each site with a constant 8 (half-width W
is a fixed fraction of the site radius), all such pits having the same contact angle 6 and half-angle a.
A precise nucleation radius ry can then be defined from (8). Note that ry = oo if f =0, as tacitly
assumed later. If ry4 > ry, there will be no heterogeneous nucleation. If r4 < rn, heterogeneous ’
nucleation will take place in all pores with radius rp > [cos(6 — a)/f]ra. However, while in most
pores growth will be limited to the pit mouths (with negligible effect on volume considerations),
occupancy of the entire pore elements will occur in those with radius v, > r4/B. With this type
of simple, but instructive, model it is possible to make a quantitative assessment of nucleation, as
discussed in later sections.

One concludes that the relative contribution of heterogeneous nucleation to primary desorption
can be measured by the ratio of the maximum pit width to the percolation radius, 8r, ma= [Tpt OF -
BTy maz/ s, in view of (11). The use of the maximum site size should be noted. When this ratio
is substantially less than unity, for instance in relatively narrow size distributions, we anticipate
that nucleation-free percolation dominates the process. Several practical applications are likely to
satisfy this condition. In the opposite case, vapor occupancy of pore elements would also occurr
from internal sources (nucleation sites). While the likelihood of the latter is less, a quantitative

assessment of its importance would be desirable and is explbred below.

2.2.3 Accessibility Functions

The uncertainty of nucleation effects necessitates the use of a probabilistic approach. We shall
postulate that at any pressure level, parametrized by r4, a fraction fq of the sites (or fp of bonds)
with radius r > 74 is also allowed to undergo a liquid-to-vapor transition via (heterogeneous) nu-

cleation. The resulting vapor-liquid menisci advance and occupy adjacent pores until a pore throat
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with radius smaller than ry is encountered. In the absence of a specific model, the nucleation prob-
ability fraction f, (in general, variable with 74 or pressure) is unknown. Therefore, the accessibility
functions derived below are general and apply to any functional f; (or f;). Note that for the simple
model introduced in the previous section, the nucleation fraction (f; or f,) at any r4 can be simply
obtained:

1 o
fr=— a;(r)dr, (j=8,k=gq;j=0k=p). 16
w= e j(r)ydr, (j=s,k=¢qj=>bk=p) (16)

Ps=¢q= / a,(r)dr,

d

m=p= / ay(r)dr,
rd

represent the number fraction of sites and bonds, respectively, in the allowed interval [rg4, co]. For

simplicity, the two fractions will be related by the expression [71]

(1-g=01-p2 (17)

A generalization to arbitrary sizes is presented in the next section. As previously pointed out, the
analysis for secondary desorption does not include local hysteresis.

Tt is recalled that, in the absence of nucleation, primary desorption is an ordinary percolation
process [71, 72, 76, 80, 109, 123], while secondary desorption requires the solution to a growth
problem from a fixed number of sources as discussed in [80]. In the presence of nucleation, the
desorption process (primary or secondary) is neither of the above. Here, in addition, sources (sites
or bonds) are cdnsta.ntly generated during the process. three cases are distinguished, pertaining
to bond percolation (no site participation), site percolation (no bond participation), and a mixed
site-bond problem. The analysis is for a Bethe lattice, although appropriate algorithms for regular

lattices may be readily constructed.

Bond Percolation

At the initiation of secondary desorption, a fraction p; of bonds are vapor-occupied (initial sources).
At any étage p > p;, the fraction of bonds allowed for vapor occupancy is p. Some allowed pores will

be connected to initial sources, some will be connected to generated sources in the newly allowed
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interval, p — p;, and some will be isolated without access to either type of source. Denoting the

actually occupied fraction by Py(p; pi, f,) and the isolated fraction by I, we obtain

PBy(p; pi» fp) = p — Ii(p; iy fo)- (18)

The fraction I, consists of isolated clusters of bonds of various sizes. A bond in any such cluster has
size in [rg, r;] (probability p — p;) and may not be a source bond (probability 1 — f,). Furthermore,
all perimeter bonds have sizes in the interval [0, r4] (probability 1— p). Therefore, the total isolated
fraction at any stage is

o0

Ib(P; Pi, fp) = Z Bn(P - Pi)ﬂ(]- - fp)n(l - P)tn, (19)

n=1

where B,, is the configuration coefficient [44]

_2AZ-1)[(n+1)(Z-1)-1]!

Bn (n— 1)l ’ (20)
and t,, is the perimeter,
th=(Z - 2)n+ Z (21)
The infinite series in 19 can be evaluated [44, 80]
1—
Py(pipi, fp) =p— (1 - fu)(p - p‘_)[_l__:i_']z(Z—n’ (22)
where z is the solution in the interval [0, 1/(Z — 1)] of
2(1-2)"* = (1 - f)(p - m)(1 - p)" 2. (23)

Equations 22 and 23 give the accessible fraction for bond percolation and a nonzero nucleation
probability fraction f,. The latter can vary with p as desired. The agreement with the expressions in
[80] in the absence of nucleation (f, = 0) is noted. Figures 4 and 5 depict the accessibility functions
obtained for p; = 0 (primary desorption) and p; = 0.05 (secondary desorption), respectively, for
Z = 4 and various values of the constant f,. It is apparent that, in the presence of nucleation, the

sharpness of the primary desorption curve is greatly reduced as the nucleation probability increases.
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Figure 6: Accessible fraction of sites as a function of allowed fraction ¢ for various values of f,:

Z= 4, ¢; = 0.
Site Percolation

A similar approach is taken for site percolation. We shall omit the details and simply note that
both the configuration coefficient and the perimeter are different than those in bond percolation

[44, 80]. The final result is

Pu(gign fo) = 0= (L folla - sl —2I%, (24)

where z solves 23 with g, ¢;, f; substituted in place of p, p;, f,, respectively. The accessibility

functions are qualité.tively similar to those in Fig. 4 as shown in Fig. 6.

Mixed Bond-Site Problem

We next examine the site accessibility in a bond-controlled process, which is most pertinent to
capillary desorption, and to many other drainage processes as well. For simplicity, it is assumed that
only sites are likely to generate sources (nucleation in pore bodies only), although the alternative is

straightforward. The quantity of interest is the accessible fraction of sites, given an allowed fraction

of bonds.
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Figure T: Accessible fraction of sites as a function of allowed fraction p for various values of fg:

Z=4,p;=0.

Since the process is controlled by bonds, the fraction of isolated sites is determined by first
evaluating the fraction of isolated bonds and subsequently calculating the number of associated

sites. The accessible fraction X, ; will be

X,i=q— Lu(pipi, fq)- - (25)

As before, attention is paid to I, 3. At any stage rq, each bond of an isolated cluster has size in [r4,
ri] (probability p — p;). The condition for the bond cluster to be isolated is that all perimeter sites
have size in the interval [0, r4] (probability 1 — p). Additionally, none of the sites contained in the
isolated cluster may be a nucleation site. The probability of the latter event is (1 — fortt. The

density of isolated clusters of size n is thus

Py = Ba(p— p)"(1 = f)" "' (1 - p)"™ (26)

The number fraction of bond clusters of size n is simply P, ,/n. The associated fraction of sites is

obtained directly by noting that a bond cluster of size n defines a site cluster of size n 4 1, that Z
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" bonds emanate from each site, and that each site is shared by two bonds. Then,

Z3n+1 n "
Li=3%Y "IBa(p-p)"(1- )" (1 - p)~. (27)
n=1
Evaluation of the series leads to the final result
1-—
Xoi=[1-(1-p)7]- (1= £)(1—2)% - (1 - %], (28)
where z solves

2(1- )22 = (p-p)(1 - fo)(1 — p) 772 (29)

In the limit f; = 0, we obtain previously developed expressions for secondary desorption in the
absence of nucleation ( [80]). Figs. 7 and 8 show the results obtained for Z = 4, various values of

Jq (taken constant), p; = 0 and p; = 0.05, respectively. As with Figs. 4, 5, a notable effect due to

nucleation is observed.

2.3 ARBITRARY SIZE DISTRIBUTIONS

The previous expressions for the mixed problem were based on the assumption that site and bond

distributions are related by (17). Fig. 9 shows a schematic of this constraint for a fixed bond size
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Figure 9: Effect of coordination number on limiting site size distribution.

distribution. An increase in Z leads to a corresponding shift of the site distribution toward larger
sizes. This interesting effect is worth noting since it couples geometry and topology in the porous
medium. The underlying principle is that no pore body has size smaller than its associated Z pore
throats. However, as noted previously, expression (17) is only the marginal limit of the stronger
statement [72]

¢>1-(1-p)%, (30)

for every ¢ and p. In fact, it may be shown that the additional constraint
42 /P (31)

derived from the condition that a bond has size smaller than the adjacent two sites, must also be

satisfied (see also [20]). Equivalently,
[fo' a,(r)dr'] < min[( /o ap(r')dr)?, 1 ( /,m p(r')dr')' /2], (32)

for every r. For any distributions, the equality sign must be obeyed at the limits ¢ = p = 0
(r=o00)and ¢ = p=1 (r = 0). Obviously, a large variety of such functions (e.g., overlapping,

nonoverlapping) satisfy the above restrictions. Generalizing the previous results to arbitrary sizes
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as dictated by (30,31) is not as trivial as it might appear. In fact, it is shown below that the
limiting relationship (17) plays a rather special role in a network model and facilitates calculations

considerably.
2.3.1 Associated Fraction ¢*

To proceed, the associated fraction ¢* will first be defined. Consider a fraction of bonds p and sites

g, corresponding to the same radius, r,

p = ./'°° ab(r')dr',
/w a,(r')dr’,

*

q

and assume that all such elements are actually allowed (they are occupied by vapor as in primary
adsorption). By definition, all bonds are associated (terminate) with sites of size greater than r.
The number fraction of these sites, ¢*, will be termed the associated fraction. It will be shown that

g > ¢*, regardless of the particular size distributions,
¢2¢ =1-(1-p7. (33)

The proof is straightforward: The probability that a randomly picked site is associated with at
least one bond in [rg, oo] (probability p) is equal to 1 minus the probability that all of the bonds
emanating from it are in [0, r4] (each having probability 1 —p). The probability of the latter event is
(1- p)z , and Eq. (33) follows immediately. The latter holds both below and above the percolation
threshold, p., and yields the total fraction of sites associated with either finite or infinite bond
clusters.

To obtain the fraction contained in finite clusters requires some analysis. Bond clusters of size

n have the usual probability
P, = B,,p"(l - P)t"s (34)

while their number is P,/n. Applying the usual reasoning that Z bonds emanate from each site,
each bond is shared by two sites, and (n + 1) sites associate with a bond cluster of size n, the total

fraction of sites associated with finite bond clusters is
. zZ & P,
F = 3 d(n+ 1)
-7 n=1 :
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Zn+l_ —o)m
= 32 Bnp™(1 — p)(Z-2m+Z, (35)

n=1 n
The latter becomes
. 1 — Pz 4
i = 17227 - (1-p)%, (36)
where z is the solution of
z(1 - :c)z‘2 =p(1l - p)z—z_ (37)

For p < p. = 1/(Z — 1), the relevant root is z = p. Substitution in (36) yields (33) again. On
the other hand, for p > p., (36) yields only the fraction associated with finite bond clusters. The
fraction contained in the infinite bond cluster, ¢%,, is obtained by deducting (36) from (33)

¢o=1- (:7)2/<Zf’>, (38)

where x solves (37).

2.3.2 Absence of Nucleation

We are now in a position to proceed with the general problem. We shall first consider secondary des-
orption in the absence of nucleation, thereby extending the percolation problem in [80] to arbitrary
size distributions. The mixed bond-site problem is examined. |

At the conclusion of adsorption (r = r;), a set of bonds and sites of fraction p; and g;, respec-
tively, are vapor-occupied. Given p;, the associated fraction of sites ¢} is defined. The remainder
set (g; — ¢} ) is occupied by vapor but it is associated (connected) with bonds that have size smaller
than r;. At any stage ry < r; during secondary desorption, this fraction (¢: — ¢7) may further be
viewed as connected to bonds in either [r4, r;] (probability p — p;) or in [0, r4] (probability 1 — p).

Consider now an isolated bond cluster. It contains interior bonds in [r4, ;] (probability p — p;),
perimeter bonds in [0, 4] (probability 1 — p), and includes sites that may not be initial source sites.
The probability for a site to satisfy the latter condition is (1 — ¢;)/(1 — g}), if one notes that all
sites in ¢} are contained in clusters that have bonds in [r;, co] (probability p;), thus, they cannot
be associated with bonds of smaller size. The fraction of sites associated with such bond clusters

is calculated as before. We obtain the isolated fraction

Z3n+1 tar L = @it
= = - ) (1 — p)tr[— ) 39
Ly=73 2_1: —Ba(p - pi)"(1 - p) [1—q;] (39)
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which, after evaluation of the series becomes

' l1-p.z z211 -4
Ly=[(—)-(1-
La =22 - -p7 T, (40)
where z is the solution of the equation
Z-2 z-21—Gi
z(l1-2)"""=(p-p)(1 - p) I—g (41)
1

The accessible fraction of sites at any stage p can now be evaluated. It shall consist of three terms
X,i=¢" —Lp+ S: (42)

The presence of ¢* instead of ¢ on the first term reflects the fact that in this bond percolation
process, only sites associated with allowed bonds (of fraction p) are eligible (contrast with (25).
The second term is the usual isolated fraction. Finally, S; denotes the fraction of initial vapor sites,

which are surrounded by bonds of size in [0, r4] (probability 1 — p)

5i= 152 Z)1 - p)%, (43)
-4

This latter set contains vapor-occupied sites not included in ¢*, and must be accounted for. Upon
substitution of (33), (40), and (43) in (42), the simple expression is obtained

Xoi=1- [ al2F, (44)
where z solves (41). It is interesting to note that, in contrast to the nucleation case below, the
accessil;ﬂity functions are independent of the current value of the site fraction ¢, although they do
depend on the initial value g;. In the absence of nucleation, the only way a liquid-occupied site
changes occupancy is by becoming connected to a source site via allowed bonds. This mechanism
is independent of the site distribution function, a,(r).

We test three limiting cases. First, X, ; = 1 in the limit ¢; = 1, as expected. Second, if ¢; = ¢}
(all source sites associated with source bonds), (44) and (41) reduce to the expressions derived
previously ( [80]). Finally, when ¢; = 0, we obtain the ordinary percolation results in [71], since ¢}
and p; are necessarily equal to zero. Figs. 10 and 11 show the resulting accessibility functions for
the two values p; = 0 and p; = 0.05, for various values of ¢; and for Z = 4. The notable departure

from the previous cases ( [80]) is stressed.
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Figure 10: Accessible fraction of sites as a function of allowed fraction p for various values of g;:

Arbitrary size distributions, Z = 4, f, =0, p; = 0.
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Figure 11: Accessible fraction of sites as a function of allowed fraction p for various values of ¢;:

Arbitrary size distributions, Z = 4, f; = 0, p; = 0.05.
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2.3.3 Nucleation Effects

The above can be easily extended to include nucleation effects. For simplicity, only nucleation in
sites (pore bodies) will be considered. At any stage rq, a fraction (in general variable) f, of the sites
with radius » > r4 can be activated to generate internal sources for vapor occupancy of adjacent
sites and bonds. The method of evaluating accessibility is as follows. |

We distinguish four sets of sites. One contains all sites associated with bonds in [rg, co], of
fraction ¢*. The second set is the usual isolated fraction, with the additional requirement that
sites may neither be initial sources (probability per site (1 — ¢;)/(1 — ¢})), nor nucleation sites

(probability 1 — f,). The isolated fraction becomes

Lo= 23 P b (o pira - gyt - SR, (45)

n=1

which is evaluated to yield

By7 _ (1 - p)]l;

Qt :
46
1-gq" (16)

Ly=(1- f)l(3=2
The third set comprises sites that are initially occupied by vapor and completely surrounded By
liquid-occupied bonds in [0, r4] (probability 1 — p), namely the set described by (46). The final set
contains all sites that are in [rq4, 00], but not associated with bonds in [rg, co], they are initially
not occupied by vapor (probability (1 —g¢:)/(1 —¢7)), and they become nucleation sites (probability
(¢ = ¢*)fy)- The accessible fraction is, thus,

X = L-(-p)%-(-f)(Z )[(1 2y (1~ p)7]

+ -pf(EE ”')+(q q‘)fq( q) (47)

where z is the solution of

2(1-2)7"? = (p— p:)(1 - )*" °(1 - f) (%), (48)

1-¢;
Note that, unlike the previous case, the site accessibility here also depends on the current value
of ¢. One interesting limit is p = 0 in the case ¢; = p; = 0. Then, X, ; = qf,, as expected, since
only the sites that can nucleate are occupied by vapor. Also in agreement, the percolation limit

considered in Chapter [80] and [71] is obtained, when ¢; = p; = 0 and f, = 0.
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2.4 DISCUSSION

An illustration of some of the above effects will be next presented. Figs. 12 and 13 depict calculated
primary desorption curves for nitrogen at 78 °K. A Bethe lattice representation was used, with a
coordination number Z = 4. Both bond and site sizes were assigned a Rayleigh distribution

* (r—ro;) [ T (r—1o;)?

E(ra..‘i - ro.:i)z —Z("'a,.‘i - ro.j)z], i=b (49)

aj(r) =

with minimum and average values equal to r,; = 10 A and Tap = 20 A for bonds, and Tos = 15
and r,, = 45 for sites, respectively. Liquid saturations were evaluated using (47) along with
the assumptions that only sites contribute to volume and the number fraction is also the volume
fraction. The nucleation fraction f; was held constant in one run (Fig. 12) and allowed to increase
during the progress of desorption in the other (Fig. 13), according to the ad hoc expression, f, =
exp(—aP,/P,,). To a different degree, both cases reflect the increasing likelihood of heterogeneous
nucleation as the relative pressure decreases. We note no discernible differences in the results of
these two different models. Both figures show that the desorption isotherm may rapidly lose its
percolation character, provided that sufficient nucleation is allowed. The deviation resembles vapor
compressibility [89] or finite size [109] effects. Similar effects exist in secondary desorption.

In the above, the nucleation fraction was left largely arbitrary. In reality, this is in general not
the case, as pointed out by the simple model of Section 2.2.2. To illustrate the difference, nucleation
effects corresponding to (16) are shown in Fig. 14, with all other parameters held constant. It is
recalled that the parameter J is the ratio of pit size to pore size, in general a small number ( e.g.s
0.1-0.3). For the latter range, it is suggested from the results of Figure 14 that nucleation effects
in capillary desorption may not be overemphasized. Equivalently, if either one of the previous ad
hoc models were to be used, constant fraction f; should be not greater than 0.05, while parameter
a should be not smaller than 5. Of course, the self-similarity and uniformity assumed in (16) are
not expected to hold in general, although the former is often a property of fractal structures. A
more sophisticated model may perhaps be constructed with the parameter 8 being a distributed
variable, to reflect wettability nonuniformity, and the additional increase in the fraction of activated
nucleation sites upon a pressure decrease.

As stressed previously, homogeneous nucleation should be negligible in properly designed des-

orption experiments, while effects of heterogeneous nucleation may be present, since the la.ttgr is
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size-specific. As stressed above, and for typical cases, this likelihood (f;) is expected to be small
in the range of relative pressures near the onset of desorption. At the same time, it should be
kept in mind that, in porous media with long tails in the size distributions and with sufficient
heterogeneity in wettability properties, heterogeneous nucleation effects can become comparable
to percolation. Such may be the case in phase change processes in natural porous rocks (e.g.,
geothermal reservoirs).

The effect of arbitrary size distributions on secondary desorption is shown in Fig. 15. To
illustrate a notable feature, distributions with a maximum cut-off size in nucleation-free (f;, = 0)
processes were considered. We take Rayleigh-type statistics with r, = 10, vy = 15, and 14 maz = 25
A for bonds, and 15, 25, and 45 A for sites, respectively. All other parameters take the same values
as those in Figs. 12, 13. We note that some of the secondary isotherms are fiat i:or a range of
relative pressures after the initiation of desorption, since no phase change would occur until the
pressure is reduced to that corresponding to the largest pore throat. This feature is inherently
absent in media satisfying (17) and it could be used to identify the largest throat size, provided

of course that other effects (resolution, nucleation, compressibility, etc.) would not obscure the

28



08}

0.7

04

0.2}

0.1}

A

0 A A i A
0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8
R /Pyo

Figure 15: Model prediction of secondary desorption curves for sorption of nitrogen: Z = 4, fe=0.

interpretation of the data.

It should be emphasized that in a network model, bonds and sites can be assigned sizes at
random provided that relation (32) is not violated. We recall that the first of the restrictions
follows by noting that the fraction of sites in an interval (rgq, oo) is, in general, greater than
the fraction associated with bonds in the same size interval. Similarly, the second restriction
expresses the fact that the fraction of bonds in the size interval (0, rq) is generally greater than
the fraction associated with sites in the same size interval. When local hysteresis in bonds during
the two processes (adsorption/desorption) is neglected, relationship (31) does not enter in any of
the accessibility calculations although, of course, the distributions must still satisfy the restriction.
Incorporating the local hysteresis into a network model does not appear to be as trivial as one might
expect, even when the volumetric contribution of bonds is neglected. While primary processes and
secondary adsorption remain unaffected by local hysteresis, secondary desorption woul_d be altered.
Additionally, if the bond volume is not ignored, all processes would be influenced. The significance
of this effect should be investigated.

In reference [80], the relationship between the slopes of secondary desorption and primary
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adsorption at the onset of desorption,

dSLsp _ NZ-1
dSo.4 =1-(1-p)°", (50)

was suggested as a means for the direct estimation of the throat density function ap(r), subject to

(17). The extension of (50) to the more realistic case (30) can be readily obtained:

dSLsp _ d1-p).(1-q) B (1- q‘_)z
dSra Zd(l - Qi)[(l -p) (1- p'.)z]' (51)

In contrast to (50), however, now it is a differential rather than an algebraic equation that relates
data (LHS) to parameters (RHS). When (17) is assumed, (50) can be used to estimate p;, and the
adsorption data would yield the volume distribution V,(r). In the general case (33), on the other
hand, an assumption about the volume distribution V,(r) is necessary, for further progress. The
adsorption data may then yield g; (hence, a,(r)), which is to be used for a (numerical) integration
of (51). Fig. 16 portrays a typical schematic of secondary desorption isotherms for some model
distribution satisfying (30). It can be reasonably argued that an assumption about the volumne of a

site is more justifiable than the postulate (17). For both cases, of course, the coordination number

30



Z must be properly chosen to match the percolation threshold. This may require a trial-and-error
procedure. It also should be cautioned that relations (50), (51) have been derived based on a Bethe
lattice representation and may not warrant application to other networks. _ '

A limitation of the above analysis is the thermodynamic equilibrium assumed in the occupancy
of pore elements, although one should also note the kinetic considerations in estimating nucleation
effects. Equilibrium times associated with capillarity in porous media vary with the size distri-
butions, among other variables, long times associated with systems with disparate scales [104].
Under this qualification, the above may be extended to other growth processes perhaps with some
modifications. Nucleation in multicomponent systems in porous media (e.g., oil-gas mixtures) are
interesting processes, where diffusion may introduce additional nonlocal effects. Application of the
more general relationship (30, 31) to immiscible phase equilibria and flow (capillary pressure, phase
permeabilities [56, 57]) would affect currently used models for quasistatic flow in porous media. Ex-
tensions to other related processes following the lines of [79] are obvious directions. Finally, the -

ini'estigation of such processes in regular lattices may be worth considering.

2.5 SUMMARY AND CONCLUSIONS

The present study is an extension of previous work in capillary sorption processes in porous media.
The issues of nucleation and pore size distributions were explored in more detail. It was concluded
that nucleation may be negligible in typical vapor desorption experiments. Heterogeneous nucle-
ation, being pore size-specific, has a higher likelihood to affect the desorption isotherms. Simple
models were developed to account for the latter case in Bethe lattice pore networks. Deviations
from a percolation behavior, previously attributed to compressibility [89] and finite size [109], can
likewise be explained by nucleation.

Consideration of largely arbitrary pore size distributions leads to a nontrivial modification of
the previous expressions. While primary desorption is unaffected, secondary processes are notably
influenced, particularly in the presence of nucleation. It is suggested that such an effect is inherently
present to any network model of porous media, and should be accounted for in the various capillary

processes, where site occupancy and volumetric estimates are dictated from bond connectivity.
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3 LIQUID-VAPOR PHASE CHANGE IN POROUS MEDIA

M. Parlar and Y.C. Yortsos

3.1 INTRODUCTION

Processes involving phase change in porous media are routinely encountered in numerous appli-
cations. The liquid-to-gas transition, in particular, is common to applications such as geothermal
systems, thermal methods for oil recovery, solution gas-drive reservoirs and cavitation. With few
exceptions, these phenomena.‘have been treated on a phenomenological basis, where the important
roles of the microstructure of the porous medium are largely ignored. And while there is wide
recognition of the fundamental differences between internal and external drives, surprisingly little
has been published to quantify such effects.

The change of phase in porous media is described by the two consecutive processes of nucleation
and phase growth. For the porous media of interest to us, the nucleation mechanism is fundamen-
tally identical to common nucleation, with due emphasis to heterogeneous nucleation (although see
also Ref. [49] for phase transitions in tight porous media).

Bubble growth, on the other hand, is controlled by the pore wall curvature and geometry that
may stabilize otherwise unstable gas bubbles. This is a basic difference to bubble growth in the bulk,
a process studied in great detail since the pioneering works by Plesset and Zwick [85] and Scriven
[93]. Additional parameters of importance in porous media involve the critical gas saturation,
and the effect of imposed supersaturation (pressure decline or superheat in solution gas-drive or
boiling) on the growth pattern of the gas phase. The geometry and topology of the porous medium
constrains the growth of the new phase and poses novel problems.

In general, vapor-bubble dynamics are classified into two broad categories [84]: one involving
vapor-bubble growth due to a reduction of the liquid pressure (sometimes to negative values, as in
the case of homogeneous cavitation), and another involving vapor growth in a superheated liquid,
corresponding to boiling. The two processes are physically similar in many respects: In addition to
common inertia, viscous and surface forces, bubble growth is controlled by diffusion of the volatile
species in the first case, and by diffusion (conduction) of heat in the latter. In this paper, however,
our emphasis will be on the pressure reduction in a binary mixture consisting of a volatile (solution

gas) and a non-volatile (oil) component, and we shall defer the analysis of boiling to a future study.
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The body of literature on nucleation and bubble growth in bulk liquids is immense. A very
selective and subjective review of relevant works will be briefly summarized here. The state of the
art in homogeneous nucleation is reviewed by Binder [10] with emphasis on Monte-Carlo methods.
From an engineering viewpoint, phase transitions are elucidated by Springer [98]. Heterogeneous
nucleation is reviewed by Cole [22] who summarized the original ideas by Fisher [43], and Bankoff
[6] in the context of boiling, and by Crum [26] in the context of cavitation. Additional contributions
to heterogeneous nucleation were made by Ward and Forest [111], and by Forest [46] for a binary
system, the homogeneous nucleation of which was first presented by Ward et al [110]. The reduction

- of the vapor pressure of the less volatile component (Kelvin equation) and the nuclei stability were
thoroughly analysed. The homogeneous nucleation of multi-component mixtures was reviewed by
Blander and Katz [13], and by Thome and Shock [103]. Effects of phase behavior in reducing the
effective supersaturation were also highlighted.

Bubble growth in supersaturated systems has been treated in the seminal work by Scriven [93),
‘where diffusive effects are considered in the absence of inertia, viscous and surface forces. Closed-
form asymptotic solutions are obtained for the growth of bubbles in the bulk. The growth of an
isolated spherical bubble by solute diffusion was numerically studied in the important papers by
Szekely and Martins [101], and by Szekely and Fang [100]. These authors provide a comparative
study of the significance of inertia, viscous, mass transfer, and non-equilibria effects in bubble
growth.

A useful review of bubble dynamics in general, with empha..sis on cavitation was presented
by Plesset and Prosperetti [84). These authors addressed in a subsequent publication [87] vapor
growth in a superheated liquid. The various asyxhptotic, perturbation and approximate techniques
in bubble growth and their domain of applicability were systematically appraised by Vrentas and
Shin {107, 108]. Significantly fewer are studies in the growth of a population of bubbles, where
various size bubbles compete for a fixed mass of solute through diffusion. We cite the work by
Engelking [37] who applied coarsening ideas by Lifshitz and Slyozov [66] as also confirmed by
Marqusee and Ross [68] to infer that initially broad population densities asymptotically peak to a
single-(large) size distribution.

In sharp contrast, the literature on phase change and bubble growth in porous media is substan-

tially leaner. Early experimental studies on nucleation focused, rather inconclusively, on the effect
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of the rate of pressure decline [60, 63, 99, 115]. Similar experiments using glass micromodels were
recently reported [28]. Theoretical issues of nucleation in the liquid-to-vapor transition in porous
media were addressed in recent studies by Parlar and Yortsos [80], and by Hirasaki et al. [59], in
the contexts of vapor desorption and cavitation in a capillary centrifuge. Both works emphasize the
importance of heterogeneous nucleation in porous media. Parlar and Yortsos [80, 81] also proposed
a quantitative nucleation model for estimating nucleation fractions.

Fundamental studies on the subsequent growth of the vapor phase are also sparse. The early
literature reports on laboratory experiments that attempt to simulate a solution gas-drive process.
The importance of diffusion was singled out by Handy [53]. Visualization expeﬁments were reported
by Chatenever et al. [19], and by Dumore [34], while an attempt to analyze the process was
undertaken by Abgrall and Iffly [1]. The latter work, as well as that of Epstein [38] in the context
of inertia-controlled bubble growth, essentially treat the porous medium as an equivalent “bulk”
system, with limited regard due to the microgeometry. Bubble growth controlled by capillarity was
considered in recent studies by Parlar and Yortsos [81, 80] on capillary desorption.

It must be apparent from the above brief review that the issues of phase change and vapor-
bubble growth in a porous medium are far from being sufficiently explored. In view of the routine
occurrence of such phenomena, an investigation of their basic features would be a worthwhile
undertaking. This is the main objective of this section. As previously noted, we shall consider
the phase change in the context of the solution gas-drive process, which for our purposes will be
taken to consist of a liquid phase containing a volatile and a non-volatile species, and a gas phase
containing the volatile component. The process is driven by a pressure decline below the “bubble
point”, P, of the mixture to the value P,,. We shall examine the response of the system, namely
nucleation and bubble growth, to the imposed supersaturation AP = P, — P,,.

By necessity, this section is presented in two parts, one on nucleation and the other on the
subsequent gas-phase growth. The part on nucleation addresses issues of heterogeneous nucleation,
the stability of nuclei in cavities along the pore walls, issues of nucleation rates and critical super-
saturation. The part on phase growth is a study of the dominant processes summarized in terms
of dimensionless parameters. Inertia, viscous, capillary and mass transfer effects are discussed in
terms of the imposed supersaturation. Equilibrium states and their stability are investigated. We

identify the pertinent regimes appropriate to specific cases and the associated growth patterns. In
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the limit of quasi-static growth at low supersaturations, analytical expressions are proposed for
critical gas saturation and gas relative permeabilities in terms of the structural characteristics of

the porous medium.

3.2 NUCLEATION

The basic ideas underlying nucleation are common to any phase change. Here we shall briefly
summarize essentials of nucleation theories in the context of liquid-to-vapor transition and, we will
subsequently apply to the solution gas drive process in porous médja.
Current homogeneous nucleation thepries rely on the theory of fluctuations for the formation
- of critical size nuclei (emb;yos) [10]. This is a modern extension of the phenomenological approach
[22, 98], which uses traditional thermodynamics and kinetics to determine equilibrium sizes, their
stability, and rates of formation. As an example, we consider (metastable) equilibrium gas bub-
‘bles in the bulk of a liquid containing two species, only one of which (component 1) is volatile.
Thermodynamic (mechanical and chemical) equilibrium defines the radius of curvature of the gas
bubble.

2

Py = PL+-rl, (52)
27

" T Ko-py (53)

where Py and Py, are the pressures in the gas and the liquid, respectively, and K is the solubility
constant (see also below). For a fixed concentration C of the volatile species, (2) relates uniquely the
equilibrium radius to the liquid pressure. The above is also valid for any equilibrium vapor-liquid
interface including those in a cavity (typical of heterogeneous nucleation). When component 2 is

slightly volatile, a similar expression can be also derived [110], that generalizes Kelvin’s equation.

'3.2.1 Gas Solubility

Implicit in the above derivation is the use of linear phase relations. Phase equilibria across a flat
B

interface between a liquid and its vapor are in general quite complex. For simplicity, we shall

postulate a linear relationship between the concentration of the volatile component (solution gas)

at equilibrium, C,q¢, and the liquid pressure, the latter being equal to the pressure of the vapor

35



e e R R R R el ol et k

Figure 17: Gas solubility vs. pressure schematic.

when the interface is flat

Pr = KC,a. (54)

It follows that P, = KCq. A given pressure supersaturation AP may then be translated into an
equivalent concentration supersaturation AC = Cqo, —C, (Fig. 17). Although various laws based on
an “ideal solution”, such as Raoult’s or Henry’s laws, and typical gas-oil ratio curves (e.g., Fig. 3.1in
[25]) can be invoked to justify this approximation, we shall refrain from ;loing so, particularly since
for small supersaturations, a linear relationship between pressure and concentration increments can
always be assumed. Of course, the approximation can be severe for large supersaturations.

A more important issue in our context is the value of K, which for the system of Fig. 3.1 in [25],
was estimated to be of the order of 3.75 x 10* psi/gr/cc. The latter value was obtained by using
the arbitrary ratio of 6 between the molecular weights of solution and solute and taking the liquid
density to be 0.8 gr/cc. Substantially more refined methods for phase equilibria can of course be

used for an accurate estimate of the solubility constant K and its variation.
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Figure 18: Schematic of a nucleation site in a host pore body.

3.2.2 Nucleation Rates

An important issue relevant to nucleation is the rate of generation of critical nuclei. In the case of
homogeneous nucleation, classical kinetic theories can be used with relative success to predict the

formation rate
_dN _ NokpTpro AF
J==—mr )

(55)

where A.F = 4nyr2/3 is the free energy to form the equilibrium nucleus, kg and h the Boltzmann
and Planck constants, respectively, and N, is the Avogadro number. For heterogeneous nucleation,
two approaches have been proposed, both of which rely on the existence of surface heterogeneities
or nucleation sites (e.g., conical cavities) that are not liquid-wet. The most popular approach pos-
tulates that such sites contain pre-existing (or trapped) vapor, provided that certain requirements
on the conical and contact angles are met [26]. In such a case, the issue of rate of nuclei formation
is non-existent and the condition for nucleation is obtained by directly applying (2), with the radius

of curvature evaluated as the conical pit mouth radius W (Figure 18)

KC - P = 2W7 (56)
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The other approach parallels homogeneous nucleation in that pre-existing vapor is not required,
although surface sites with the desired wettability and geometry must exist [22]. A nucleation rate
expression similar to (55) is conjectured

dN AF
J=—= = Khet exP("'ic'B—Tf), (57)

where Kjp,; is a kinetic constant [43], and f is a function of site geometry and wettability, ranging
between 1 and 0 in the limits of homogeneous and perfect heterogeneous nucleation, respectively.
Equation (57) can then be used to calculate the nucleation pressure, or the critical supersaturation,
usually defined by arbitrarily assuming J = 1 nucleus/sec-cc

3kpT In Kj,,
dryf

The precise value assigned to J or K}, is immaterial [2]. For example, for the homogeneous

v = ( )2, (58)

nucleation of a liquid with molecular weight 100 and density 0.7 g/cc at 200 °F, the change of J
from 1 to 10° reduces the nucleation radius from 21.7 to 19 A, clearly a negligible change.

3.2.3 Nucleation in Porous Media

During a liquid-to-gas transition in porous media, the occupancy of pores by the gas phase occurs
either through access to bulk vapor (as in external gas /steam drive) or through a nucleation process
inside the pores. The question arises, therefore, as to what nucleation mechanisms would be
typically expected in a porous material.

Homogenebus’ nucleation can be discounted, since it requires the drastic conditions of absence
of impurities, perfectly smooth and liquid wet solid surfaces, and no trapped gases. Moreover, as
previously pointed out the nucleation radius for homogeneous nucleation is of the order of a few
nm, with corresponding supersaturations of several thousand psi. Thus, unless the pore sizes are of
the same order, homogeneous nucleation can be disregarded as a mechanism for bubble formation.

The selection of heterogeneous nucleation as the dominant mechanism drastically reduces the
critical supersaturation, as interfaces of large radius of curvature can form in surface cavities,
given the proper wettability conditions. Unfortunately, additional simplifications are necessary, if
a quantitative model is to be further developed.

We proceed by representing the surface roughness by uniform wettability conical cavities, among

which only the largest one needs to be considered. The contact angle in the cavity may take any
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nonzero, but preferably high, value while complete wetting by liquid is assumed in the main pore
body (Figure 18). Using elementary geometry, the volume of the bubble can be related to the radius
of the gas-liquid interface. Figure 2 qualitatively portrays such a relationship for a hydrophilic cavity
(8 — a < 7/2), that satisfies the relation W/r < cos(§ — a). Hydrophobic cavities, first introduced
by Harvey et al. [54], were considered by Hirasaki et al. [59]. To proceed further, we will assume
that a self-similarity exists between the maximum size cavity and the size of the host pore body.
Thus, the ratio = W/r will be taken constant. In the absence of additional information, this
assumption is a reasonable one. Although the ensuing results are subject to this premise, however,
most of the expressions obtained are also indépendently valid.

Consider now the nucleation process in a conical cavity, with curvature corresponding to the
equilibrium value given by (56). The stability of mechanical equilibrium in gas-liquid interfaces
in cavities was examined by various authors [46, 59, 111]. A quite general result is obtained: me-
chanically stable interfaces (2 AF/dVE > 0) require configurations such that dr/dV < 0, while
mechanicaily unstable interfaces (d2AF/dVZ < 0) correspond to dr/dV > 0. Thus, for the hy-
drophilic cavity shown in Figure 18 the gas-liquid interface is unstable within the cavity, but
becomes stabilized at the pit mouth. Similar conclusions are drawn for the hydrophobic cavities
with pre-existing vapor (where, now, the interface is stable inside the cavity as well). In both cases,
the pit mouth radius W is the smallest possible radius for a stable equilibrium interface to exist
in the cavity. Hence, W dictates the critical supersaturation (56), beyond which the pore body is
substantially filled with vapor. It follows that the occupancy of a pore body via nucleation would
occur at a specific supersaturation corresponding to (56) and, thus, be uniquely correlated to the
pore body size, if the assumption on f is retained.

The fraction of pores that would nucleate (nucleation fraction) at a radius rq corresponding to
a given supersaturation (56) is thus

f:’/ g o(r)dr
[y as(r)dr

A constant b can also be introduced to allow favorable wettability conditions only for a fraction

fo=1b (59)

of such pits. This expression is needed for the evaluation of the accessibility functions [80, 81]
that were derived independent of the distribution of cavity sizes. Figure 19 shows the relationship
between § and f, for b = 1 and for the pore size distributions shown in Figure 20. Relatively small
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Figure 20: Pore body and pore throat size distributions.
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values of f; are obtained for small B for the particular distributions taken. This model will later

be used to calculate critical gas saturations and relative permeabilities.

3.2.4 Pressure Decline Rate

The effect of pressure decline rate on the critical supersaturation has been pursued by several
investigators. In the absence of issues other than strict nucleation, an estimate of its effect can
be directly obtained from the above analysis. For the present purposes, we shall define critical
supersaturation as that necessary for the occupancy of a single (or a few) pore(s) with gas, although
we are aware of other definitions that have also been used in the literature. If preexisting vapor
exists in hydrophobic conical cavities, the activation of the latter is almost instantaneous as soon
as the proper supersaturation is applied, thus no effect of pressure decline rate should be observed.
The possibility of some effect may exist, in the case of hydrophilic cavities with no initially trapped
vapor. A simple analysis, however, indicates that the eflect is negligible.
Assuming that the nucleation rate expression (57) is applicable,
dN A

—— = Kpet exp[—— (_W]’

dt (60)
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Figure 22: Critical supersaturation vs. pressure decline rate for f = 0.1

where A = 16x73f/ (3kBT). For a pressure decline rate of the form AP = at, an integration of (60)

yields
aN 1

Khee VA Tz
where z = VA/AP. The solution of (61) for N = 1 (arbitrarily selected but without loss in

exp(—z?) — v/werfc(z), | (61)

generality, as pointed out above) is shown in Figure 21 for various values of the wettability parameter
f and the decline rate‘a. It is noted that, although the effect of f is very significant (Figure 21),
as indeed expected, the pressure decline rate has a negligible influence on the supersaturation,
even for variations spanning 5 orders of magnitude (Figure 22). One concludes that the critical
supersaturation required for nucleation is a property of the liquid and the porous medium, and

practically independent of external parameters.

3.2.5 Pore Body Occupancy

Upon establishment of the critical supersaturation, the bubble interface becomes mechanically
unstable, thus growth occurs until the bubble radius reaches the pore body size (or detaches from the

pit). Further growth results into a decreasing radius of curvature, due to the converging pore walls,
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D 10~% cm?/sec

H;1 50 ym

k 1 darcy

K 3.75 x 10* psi/gr/cm?®
M, 20 gr/mol

P, 2000 psi

T 30 °C

¥ 30 dynes/cm

B 10 cp

p 0.8 gr/cm?

Table 1: Parameter values for bubble growth

and such configurations will be stable, if they would also happen to correspond to the equilibrium
curvature as specified by the existing supersaturation. As shown in a later section, such interfaces
are also stable to mass transfer. If the supersaturation is too large, invasion of surrounding pores
by vapor will ensue, until an appropriate stabilizing pore geometry is encountered. It is worthwhile
to stress this important characteristic of porous media, namely the stabilization of otherwise (in the
bulk) unstable interfaces. As a closing note we demarkate the conditions necessary for the bubble
not to detach from the cavity, before it grows to the pore body size. We shall balance surface and

gravity forces to obtain

3Bt ¥ iy
P (o (62)

where c; is a cavity perimeter constant, equal to 2 for a flat surface. For the values of Table 1, a
pore size r greater than about 400 um is required in order for gravity-induced detachment to be of

concern.

3.3 BUBBLE GROWTH

The preceding section described the conditions for the occupancy by the vapor phase of one (or a few

conhettéd) pore bodies. In the next part, the study of the growth of the vapor phase is undertaken.
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Figure 23: Schematic of a gas bubble in a porous medium.

For convenience, an isolated “bubble” is first, considered. An extension to a population of bubbles

is discussed for a special case in a later section.

3.3.1 Single Bubble in Porous Medium

We shall consider the growth of a single vapor bubble occupying a small part of an infinitely large
porous medium, the rest of which is filled with liquid (Figure 23). For the present purposes, other
nucleation events are suppressed, and we need not specify in detail the conditions for the existence
of the initial bubble. From its definition, the bubble is connected, although not necessarily spherical
(although individual interface menisci are spherical). A supersaturation AP = P; — P, in general
variable with time, but for the moment considered fixed, is assumed to apply far from the bubble.
The system is taken “infinitely large” so that the solute concentration far from the bubble, Cw, is

constant and equal to the solubility at pressure P,.

3.3.2 Equilibrium States

Preceding an analysis of growth, the study of possible equilibrium states is required. The question

posed is whether a gas bubble can exist in a porous medium in stable equilibrium with a super-

44



saturated liquid. It is well known that a vapor bubble in an unbounded bulk liquid is in unstable
mechanical equilibrium and will either grow indefinitely or collapse. Under the premise of chemical
equilibrium, the stability of gas-liquid interfaces in the presence of constraining surfaces has been
examined, as discussed in the nucleation part above. Those predictions imply that an equilibrium
gas bubble located such that its mean curvature lies between the smallest pore body curvature
(largest radius) and the smallest pore throat curvature (largest radius) associated with that pore
body, is stable. Here, we shall also consider the stability of the interface to mass transfer.

We take a gas bubble in equilibrium, occupying volume V,, at pressure P,, and containing n,
moles. Concentration and pressure in the liquid are spatially uniform and equal to C, and P,

respectively. Ideal gas conditions and linear phase equilibria dictate
KCxV, = n,RT, (63)

where R is the ideal gas constant, while mechanical equilibrium at the gas-liquid interface requires

spherical-shape menisci of constant mean curvature H,
KCy — Py, = 2vH,, (64)

Since the RHS in the above measures the capillary pressure of the porous medium, the present
analysis is effectively meaningful only for low supersaturations. Equilibrium states at high super-
saturations correspond to almost complete occupancy by the gas phase (with the possible exception
of thin films). Although conditions of low supersaturation are certainly violated in typical labora-
tory experiments, they are more likely to be satisfied in a typical field case, where pressure decline
rates on the order of psi/day or less may be common.

Consider small perturbations in the curvatm:e of an equilibrium vapor-liquid meniscus located
in a converging pore element (pore body to pore throat). Under the assumption of a constant
liquid pressure and fast ‘.kinetics at the interface, an increase (decrease) in curvature implies a
corresponding increase (decrease) in gas pressure, thus, an increase (decrease) in the concentration
at the interface. A concentration gradient in the liquid phase develops that leads to a solute mass
flux away from (towards) the interface, hence to a reduction (increase) in the gas phase volume. For
a converging pore element, the latter implies a restoration of the initial curvature, thus stability.
In the opposite case of a diverging pore, the mass transfer compounds the disturbance, and at least

to first order, the equilibrium state is unstable.
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Similar arguments also apply in the case where the gas phase surrounds a liquid “drop” and
the liquid can escape through thin films. There, the liquid pressure may be taken constant and the
previous approach is applicable. In the absence of thin films, however, the liquid compressibility
becomes important. The decrease in liquid volume upon advancement of the interface results
_into a substantial increase in liquid pressure. When the curvature also increases (as is the case in
converging pores) a concommitant increase in gas pressure and interface concentration follow, giving
rise to the previous mass transfer argument. Again, such interfaces are stable to mass transfer.
In the case of interfaces in diverging pores, there is a decrease in the interfacial curvature. The

concommitant change in the gas phase pressure, however, is expected to be positive

dPy dvy/dH
dH —(7— Vch )<0’ (65)
due to the small liquid compressibility, c,, which easily counterbalances capillary effects. A higher
interface concentration follows, thus leading to a stabilizing effect. Therefore, in the absence of

communication with the bulk, equilibrium gas-liquid interfaces surrounding liquid droplets are

stable to mass transfer, regardless of the particular volume-curvature relationship.

3.3.3 Bubblg Growth

The growth of a vapor bubble in a porous medium is controlled by forces similar to those in the
bulk, namely inertia, viscous, surface and pressure. Supersaturation in the liquid drives the process,
while the specific pore geometry of the porous medium constrains the growth pattern obtained. We
shall, first, study growth due to a supersaturation AC’, brought about by an imposed step change
in the liquid pressure, A P. Following Szekely and Martins [101], we shall characterize the growth
process in terms of suitable dimensionless groups. Typical parameter values used are listed in Table

1.

3.3.4 Dimensionless Groups

Denoting by H, a reference mean curvature of the menisci of the initial bubble, we define the key

dimensionless parameter
2vH,

P = AP

(66)
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Small supersaturations are comparable to surface forces and lead to O(1) or greater values in &,
while large supersaturations correspond to & < 1. In the Present i]lustratidns, the smallest value
that @ can attain is 10~5 (for AP =~ 2000 psia). A dimensionless expression for the driving force
for bubble growth is the Jacob number

AC

= Py’ (67)

which can be also expresed in terms of & by use of (66) and the ideal gas law

_ 2YRTH, 1

Ja = KM, P. &

(68)

For relatively small supersaturations, AP < P,, we take Py, =~ 2000 psia, so that at these

conditions the reference Jacob number is (Table 1)

_ 10

Ja= | (69)

Thus, for a small supersaturation, Ja is considerably less than O(1). On the other hand, for
moderate and large supersaturations, P., can be significantly small and Ja may reach values as
high as 20000 (when P is O(1 psia)), or even higher at conditions of vacuum. Although Ja
indicates the direction of growth, an additional useful indicator is the measure of diffusion vs.
inertia effects expressed thrqugh the parameter

Ja?
where
RZAP
G = ;L—I)T, (71)

and R, is the “bubble radius”. According to Szekely and Martins [101], B < 1 signifies mass trans-
fer (diffusion) control, while B > 1 denotes inertia-controlled process. In our case, a conservative
estimate of B yields

B = 10"5Ja%31/2, (72)

For small supersaturations, B < 1 and the process is clearly mass transfer controlled. Inertia
control may set in the process only under severe conditions, most likely requiring application of

vacuum. For example, even for a sharp reduction of P, to 1 atm, the estimated value of B is only
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O(1). Although atypical for a field case, processes with not small B may be used in laboratory
experiments.

Significant other parameters are the Schmidt number of the liquid phase
Se = -5~ 1.25 x 10* (73)
pD ’
indicating fast momentum transfer compared to mass transfer, and a modified capillary number
N = TR 1075, (74)

In the above, mass transfer control has been assumed in estimating liquid velocities and the “bubble
radius” was conservatively approximated by 50 um. We expect smaller values for N, when the
bubble size is larger and when the supersaturation is smaller. In the latter case one may use a

different time scale instead (see also below)
N, = —Ja?, (75)

which, for small Ja, unequivocally establishes capillary control in the momentum balance.

3.3.5 Bubble Growth Regimes

In discussing the growth of gas bubbles we shall proceed in order of increasing complexity from low

to high supersaturations.

Low Supersaturations, AP < Py

We consider a small step reduction AP of the initial liquid pressure P, to the value P, which is
still large for condition AP < P to be valid. This should be the case for field operations at low
pressure decline rates (see also below). At these conditions, the growth process is mass transfer-
controlled, inertia and viscous forces are negligible, and the solution density may be considered
constant in the diffusion equation. The relevant equations in dimensional notation read as follows.

In the pore space occupied by the liquid, one has

%(;l+g-vc = DV?C, (76)

Veu = 0. (77)
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The gas phase is taken at spatially constant pressure Py and has volume V. Denotiﬁg by A the
gas-liquid interface (which excludes possible thin films), a mass balance at the interface gives

pcu-s= DVC s, (78)

and in integrated form

GVeel=D [ s-veas, (19)

where s is the outwards pointing (from gas-to-liquid) normal. Ideal gas conditions, linear phase

behavior and the Laplace equation complete the description

Py M,

Pc = “RT (80)
Py = KC IA ’ (81)

where H is the mean curvature at the gas-liquid boundary, assumed prescribed by the pore ge-
ometry. The latter equation represents the momentum balance with negligible inertia and viscous

effects. Boundary and initial conditions

C-Cx at r— o0,
u—0 at r-— oo, (83)
C=Cx at t=0,
along with a specification of the initial “bubble” configuration are also needed.

The above system is, of course, too complex to be solved by simple methods. Fortunately,
additional simplifications can be made with an appropriate' dimensionless formulation. We scale
spatial distance by an initial “bubble radius” R,, time by R2/DJa and velocity by DJa/R,, bubble
volume by R3 and interfacial area by R2, and interfacial curvature by H, (which is generally

unrelated to R,). We further define dimensionless concentration and gas pressure

C-0C,
= —5 (84)
_ -PV"Poo
I=—725 (82)
to obtain
Ja(%—?+y_-V2) = V?3, (86)
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V.-yv = 0, (87)

T =1 atooandatT=0, (88)

where the nomenclature is self-evident, v being the dimensionless velocity, while at the gas-liquid

interface we have

ox
Vg = 5‘;, (89)
I = 3%, (90)
I = 2y, (91)

where 7 is the dimensionless curvature. Finally, the growth of the dimensionless volume T=V/R3

satisfies the equation
d AP (i)}

— [T+ I—)]=[| —
L ra+uph)= [ 34, (92)
which, in our case of low supersaturation, becomes
dT [i))
il A -a—sdA. (93)

It must be noted that the above dimensionless formulation was chosen so as to balance rates of
growth with diffusion. It is then apparent that as long as AP/P, is small, then Ja < 1, and the
mass transfer equation becomes

Vi =0, (94)

implying that the concentration field is quasi-static. The quasi-static approximation is widely used
in mass transfer involving growing phases at low supersaturations (e.g., Lifshitz and Slyozov [66]),
it has been rigorously derived by Scriven [93] and confirmed numerically by Szekely and Martins
(101}, and other authors in various contexts.

The emergence of a quasi-static concentration field has a significant impact on the method of
solution of the problem. Indeed, we shall show that our problem is mathematically equivalent to
that of immiscible displacement, where a low viscosity gas injected at a source, immiscibly displaces
an incompressible liquid of constant far-field pressure. A dimensionless formulation of the problem
is presented in Appendix 8. Direct comparison of (259)—(263) with (88)—(94) shows that the two

formulations are identical under the equivalence
ToA and 2« ¥. (95)
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The immiscible displacement from a single source described in Appendix 8 results into various
growth patterns depending on the relative importance of capillarity. When capillary forces pre-
dominate, the displacement is a percolation process, equilibrium states will be reached at the
specified capillary pressure, and the associated patterns are well known (in either ordinary or inva-
sion percolation). On the other hand, when viscous forces predominate, the displacement is of the
DLA type, no equilibrium states are possible and the growth pattern is determined solely by the
solution of the Laplace equation in the liquid.

Therefore, in view of the equivalence (95) we may then conjecture that at low supersaturations,
the growth of the gas bubble is as follows:

(i) When & ~ 0(1), i.e., 27H, ~ AP < P, the process is (invasion) percolation, the prop-

erties of which have been extensively studied in recent years [116]. For a given AP satisfying the
above, the bubble evolves towards an equilibrium percolation pattern, dictated by capillarity. It is

-apparent from (89-91), that the final pattern corresponds to n=1/&, (£ = 1). In conjunction
with the stabilify of equilibrium states discussed above, simple rules for the occupancy of the pore
space by gas can be constructed: Pores with small and allowed curvature n<1/®, (R > 2y/AP)
are occupied by gas, provided that they are accessible to the initial bubble. Predictions on critical
gas saturation and relative permeabilities for this classical percolation problem are presented in a
later section. ’

However, it should be cautioned that, although the final pattern is fixed, the rate of approach
may be quite slow, as is also the case in similar capillary invasion processes [104]; and may depend
significantly on the size of the gas bubble before supersaturation was applied. An order of magnitude
estimate for the dimensional time to equilibrium is

teg ~ i&i‘i’
¢DJa
where k is the medium permeability (that scales pore length), ¢ ié the porosity, and £ is the dimen-

(96)

sionless correlation length in the percolation process. The latter is generally O(1) away from the
percolation threshold (i.e. at low and high gas saturation), but increases sharply near percolation
(i.e. near the critical gas saturation). Although further research is certainly needed for definitive
answers, the above can be used to provide plausible estimates on the range of pressure decline
rates, where the above percolatlon regime is applicable. A practical approach is to approximate

the continuous pressure decline as a sequence of quasi-static, small AP steps, a.nd to ensure that
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sufficient time has been allotted for equilibrium. For a pressure decline rate a, a characteristic time
t* = AP/a is defined. We shall demand t* 3> .4, hence

¢APD

a L kfz

Jal. (97)

Taking & ~ O(1), £ ~ O(1), and using (69), the above yields a typical estimate of a < 10~* psi/sec,
far from percolation, which can be realistic in certain field cases. Of course, near the threshold,
the diffusion process slows down considerably, and even lower decline rates are required for the
percolation regime to be applicable.

(ii) When ® < 1, ie., 2yH, € AP & P, the process is diffusion-limited, capillarity is
unimportant, and the growth pattern should be of the DLA (Diffusion-Limited- Aggregation) type.
Here, with the possible exception of trapped liquid, equilibrium states do not exist other than full
occupancy of the medium by gas. Indeed, for & < 1, equations (90), (91) give ¥ = 0 at the gas-
liquid interface, which in view of the far-field boundary condition ¥ = 1 and (92) imply continuous
growth. The growth pattern resembles that of viscous-controlled, immiscible displacement with
unfavorable mobility ratio (Ca » 1, M » 1), a process recently studied by a DLA approach
[42]. The gas-occupied pore space is a fractal object of fixed fractal dimension. Evidently, in
such cases the use of classical concepts such as relative permeabilities and critical gas saturation is
inappropriate, although alternative methods have yet to be developed.

Processes with & values intermediate between the two extremes identified in (i) and (ii), are
naturally more complex, and our understanding of the displacement properties is poor, at present.
Likewise incomplete is our knowledge of processes with rapid enough pressure decline rate a, such
that the above constraint (97) is violated. In conjunction with other topics outlined below, these

issues call for further research.

Moderate Supersaturations, AP ~ P,

When the supersaturation step AP is comparable to the imposed liquid pressure P,, , surface
forces are negligible in the momentum balance, (# < 1), and inertia and viscous forces may still be
neglected (B < 1). Thus, the process is, again, mass transfer-controlled, although now Ja ~ O(1).
Equations (76), (77) of the previou.é section still describe the growth, although a modification to

account for liquid density changes must also be considered. Even in the absence of the latter,
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however, the problem is quite complex, since the quasi-static approximation (94) is no longer valid
when Ja is not small. Here the full diffusion-convection equation (76) must be considered, which is
further coupled with the flow field in the liquid. The solution to this complex problem is beyond

our scope.

Large Supersaturations, AP > P

We conclude this part by noting that at large supersaturations, inertia and viscous effects previously
‘ignored, acquire importance at the early stages of bubble growth, under conditions such that B > 1.
Examination of (72) reveals that the latter condition demands high AP, low P,, (possibly vacuum)
and low K (high gas solubility). In inertia-controlled growth the mass of gas in the bubble remains
constant, and the bubble expands following a polytropic law [84]. A first attempt to the solution
of this problem in porous media was undertaken by Epstein [38]. However, here too, the state of

the art is quite unsatisfactory and in need of additional work.

3.3.6 Growth from Multiple Source Sites

A final remark is necessary concerning the growth of gas bubbles that originate from more than one
nucleation sites. Our treatment of nucleation specifies that nucleation sites at various pore bodies
are instantly activated when the local supersaturation reaches a threshold value cha.ra.cterizing the
pore body. Thus, the possibility of growth from several sources is a real issue and must be addressed.
In the next section, we present a solution to this problem for the case of low supersaturations
or pressure decline rates, when capillarity predominates (case 3.3.5(i) above). A modification of
percolation theory is implemented to account for growth from multiple sites. Unfortunately, the
same cannot be done for any other case which are in need of further work. Finally, an application
of the present study to finite systems which are closed to mass transfer should have an interest
of its own. In such cases, growth, solute depletion, activation of nucleation sites and “bubble
coalescence” occur simultaneously and the underlying competition should share features common
to those studied by Lifshitz and Slyozov [66]. It must be remarked that several reported experiments

operate under the constraints of finite solute mass.
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3.4 PERCOLATION THEORY

It was pointed out above that at small supérsaturations, induced by a low pressure decline rate, a
quasi-static approximation applies. Gas phase occupancy is controlled by the capillary properties
of thé porous medium and can be simulated reasonably well with a percolation approach. Since
nucleation must also be allowed, the usual percolation approach must be modified to account for
generation at appropriate sites. Such a modification to ordinary percolation was recently presented
for capillary desorption processes in Bethe lattices [80, 81]. Here, we shall follow an identical
approach, although invasion percolation (that accounts for a finite compressibility of the trapped
liquid) yields probably a better description. However, the ensuing errors are small, if the gas
saturations are not too high, and negligible if the liquid can escape through thin films.

A network representation of the porous medium in terms of a Bethe lattice is taken. Although
lacking the reconnection properties of regular networks (such as a cubic), Bethe lattices allow
for closed-form solutions and yield reasonable approximations to real lattice properties, such as
accessibility, provided that the percolation thresholds are matched. For reasons, previously outlined
in detail, both site and bond (pore body and pore throat) distributions are considered. The rules
for occupancy of the pore space by the gas phase were described in section 1 and can be briefly
summarized as follows: Given a supersaturation AP = P, — P, pore bodies with size

27

r2Te= AP’

(98)

are allowed to be occupied. Those that are a.ctually occupied, however, must be connected through
occupied pore elements to source (nucleation) sites. Nucleation sites consist of all pore bodies with
size

T4 29

TZE—:EZ?, (99)

where f is a fraction, assumed small (8 < 1). Along with appropriate probability densxtles a.nd the‘
accessibility expressions derived in section 1, the above rules are sufficient for a complete descnptlon “
of the process. We shall illustrate the determination of the critical gas saturation as a function of
B, or equivalently the nucleation fraction f,. Gas-phase relative permeability curves will also be

derived.
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3.4.1 Critical Gas Saturation

To determine the critical gas saturation, we consider the supersaturation AP, corresponding to a

value r4, such that the allowed bond fraction is equal to the percolation threshold, p,

/w ap(r)dr = p. = 7 1_ T (100)

Tde

It must be noted that it is bond percolation that dictates connectivity, hence the bond distribution
is used. Thus, the supersaturation AP, at the onset of gas flow

AP, = % (101)
where rg. solves (100), is fixed for fixed Z and aj(r). Higher values in the coordination number
and larger throat sizes (permeability) yield correspondingly lower critical supersaturation. The
critical gas saturation S, is obtained by adding the volumetric contributions of the pore elements
associated with the infinitely-connected bonds (those on the percolation cluster) fo those connected
to nucleation sites that happen not to belong on the percolation cluster. For exé.mple, the number

fraction of such sites (termed accessible) is given by

XKoo= 0" = (1= FG=2)% ~ (1= 271+ (g - (102)
where
g= ./'-w a,(r)dr and ¢*=1-(1-p)?, (103)
and x solves |
2(1-2)%72 = (1- f)p(1 - p) 72 (104)

The corresponding saturation can then be directly obtained. Results are shown in Figure 24. We
note that Sy, crucially depends on the nucleation fraction (equivalently on §), ranging from zero,

in the absence of nucleation, to values as large as
Sge=1-(1-1p.)2. (105)

A precise determination, of course, requires among other input the accurate allotment of volume
to occupied sites and bonds, as well as their respective distributions. These parameters should vary

among the various porous media. For instance, some interesting results arise when a finite maximum
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cutoff in the body size distribution is taken, such that the ratio x = rg, /T4 .maz i8 nOt identically zero.
Depending on the position of 8 relative to this ratio, Sy, displays different sensitivity (Figure 25).
Values of 4 to the left of x correspond to cases such that although conditions for bond percolation
exist, gas phase occupancy has not occurred because of lack of nucleation sites. When the first (or

first few) such site(s) is (are) created (at ry = BTs,maz) the infinite cluster corresponding to that

value would eventually become occupied and takes on a relatively large value.

3.4.2 Relative Permeabilities

Given pore element occupancies the associated relative permeability curves can also be constructed.
The approach was pioneered by Heiba et al.[57, 56] and applied to a single component steam-water
system by Parlar and Yortsos [79] where a detailed account of the technical issues is given. Drainage
relative permeability pairs corresponding to internal gas drive are shown in Figure 26 for different
values of B. It is evident that the difference in the curves between internal and external drive is
reflected by a difference in 8, thus nucleation. For § gc =~ 0, the difference between the two processes

is negligible. As nucleation events increase (and B > k), S,c increases, and the curve shifts to the
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Figure 27: Internal gas drive relative permeabilities (Z = 6, 8 = 0.09, x = 0.10).

left. The effect can become as pronounced as allowed by the magnitude of S;.. Note that in these
cases, k. (S,c) = 0, while for §; < S, k,; =0 and k, < 1.

On the other hand, when nucleation effects are suppressed (8 < ), there is a sudden appearance
of a flowing gas phase saturation, and the relative permeability curve k., practically coincides with
that of an external drive, with the exception of course that it commences at S,. (Fig. 27). Besides

the obvious exceptions, the relative permeability to liquid is not significantly affected and remains

approximately the same in either internal or external drive.

3.5 SUMMARY AND CONCLUSIONS

In this section, a study of the basic mecﬁanisms involved in solution-gas drive and other related
liquid-to-vapor transitions in porous media was initiated. The principal issues of nucleation, su-
persaturation and gas-phase growth were examined. A simple geometric model was presented for
heterogeneous nucleation on the pore walls which was shown to be the dominant nucleation mech-
anism. It was, thereby, concluded that, for otherwise identical conditions, nucleation events are
likely to occur in the larger pore bodies first, and that the supersaturation needed for the appear-
ance of the first bubble should be largely independent of features unrelated to the porous media
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nature (such as, for example, the rate of pressure decline).

A detailed study of the phenomena involved in the growth of a single gas bubble in an unbounded
porous medium was next considered. The effects of capillarity, mass transfer, inertia and viscous
stresses were discussed. It was shown that at small supersaturations, stable equilibrium gas bubbles
in converging pore elements are possible. Complementing the stability to mechanical equilibrium,
stability to mass transfer was demonstrated. This is an essentjal requirement for the validity of the
quasi-static, percolation approach at low supersaturations.

The gas-phase growth was parametrized by various dimensionless groups and the A P/ P, ratio.
For small values of the latter, it was shown that the Process is mass transfer-controlled, and the
concentration field is quasi-static. When capillary effects dominate, (& >> 1) the process was
mapped to (invasidn) percolation, while in the opposite case ( << 1) the identification with a
DLA-like process was suggested. For larger values of the ratio, the process is still mass transfer-
controlled, although the diffusion is not quasi-static any longer. Inertia, viscous and density effects
af large supersaturations were discussed but not explored. Issues of activation of additional nu-
cleation sites, competition in growth and a finite supply were identified as important, but likewise
were not explored.

Limiting constraints on the pressure decline rate for the quasi-static percolation approach to
be valid were derived. Based on the latter, a mechanistic model was developed that accounted for
growth from multiple source sites. The critical gas saturation, S,., was obtained and shown to
depend crucially on the nucleation characteristics (taken here as a geometrical input) of the porous
medium. Relative permeability curves pertaining to internal gas drive were also developed. Related
issues for higher supérsaturations were not, however, discussed. The investigation highlighted the
challenging issues associated with phase transition and growth in porous media and identified areas
for future research. Processes, such as solution-gas drive, cavitation and boiling in porous media

would be the beneficiaries of such future advances.
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4 A STUDY OF STEADY-STATE STEAM-WATER COUNTERFLOW IN .
POROUS MEDIA

C. Satik, M. Parlar and Y.C. Yortsos

4.1 INTRODUCTION

The steady-state counterflow of a liquid and its vapor in porous media arises in many processes
driven by temperature gradients. Large scale applications involve geothermal systems [113, 95, 91,
12], thermal oil recovery [86], and nuclear waste disposal [32, 16], among others. Investigations on
the laboratory scale have emphasized porous heat pipes [50, 78] and boiling processes [31, 35, 24].
All these studies share common aspects, principally the phase change and its interplay with fluid
flow, heat transfer and capillarity.

Although change of fluid phase in porous media is fundamental to such routine applications
as drying [94], a precise description of the process is not presently available. Issues of nucleation,
stability of equilibrium states, sup.ersaturation and heat and mass transfer are yet to be fully
explored. Instead, the traditional approach is taken that vapor and liquid phases individually obey
Darcy’s law with saturation-dependent permeabilities.

Steady-state vapor-liquid flows in porous media have been modeled with such methodology for
several decades [74]. Notable recent applications to steam-water counterflow include the works by
Martin et al. [69], Schubert and Straus [92], Bau and Torrance [7], and Udell [105, 106]. The first
two studies analyze the problem in the geothermal context, by neglecting capillarity, but including
heat conduction. Udell [105, 106] considers the heat pipe version, in which capillarity predominates,
but conduction is neglected. Finally, Bau and Torrance [7] present a simplified analysis where both
conduction and capillarity are assumed negligible.

While previous studies have been instrumental in enhancing our understanding of the counter-
flow process, several areas are still obscure and in need of further investigation. In the context of a
heat pipe, unresolved is the role of heat conduction, particularly as it regards the critical heat flux
in bottom heating [7, 105, 106]. The characterization of the flow regime for heat fluxes lower than
the critical is also incomplete. The tacit, and unrealistic, assumption of an infinite, two-phase zone
of constant saturation has not been questionned. Finally, unclear is the role and the importance

of Kelvin effects in the process description. In the context of geothermal systems, the possible
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existence of two systems (vapor- and liquid-dominated) has long been proposed [69)]. However, the
question of selection of the particular regime also remains open.

The difficulty in obtaining answers to these questions is due to the approximations inherent to
the various models, and the fact that they become singular in the region of interest. To alleviate
this problem, a more detailed study is necessary. In recognition of the fact that all the above
applications represent essentially the same problem (although temperature gradients, thus flow
directions, may be of opposite sign), a common formalism should be possible. Specific cases should
then arise in the appropriate limits. This forms the main objective of this work. We shall consider
a complete formulation that includes capillarity, heat conduction, phase change and vapor pressure
lowering.

The flow model follows an extension of Darcy’s law using relative permeabilities, and allows for
vapor pressure lowering due to Kelvin effects. Both representations are based on the premise of
capillary control at the pore level, usually enforced for low values of capillary and Bond numbers,
and when temperature gradients are relatively low. Implicit is also the assumption that pore wall
curvature stabilizes vapor-liquid interfaces. Such conditions are necessary for a process description
in terms of saturation-dependent relative permeabilties and capillary pressure functions. Precise
criteria for their validity are currently under development, paralleling recent advances in the related
problem of bubble growth in porous media by diffusion [118], where such and other issues have been
addressed.

We pro‘ceed by deriving a dimensionless representation applicable to a general steady-state,
vapor-liquid counterflow. The heat pipe and geothermal problems are subsequently analysed sepa-
rately. We investigate boundary layers due to vapor pressure lowering and heat conduction in the
first case, and due to capillarity in the latter. The nature of the critical heat flux for bottom heating
in a heat pipe problem, and its dependence on process parameters are examined in detail. Finally,
for both heat pipe and geothermal problems we identify regimes, where steady-state counterflow

may not exist.

4.2 FORMULATION

We consider the steady state, countercurrent flow of a single component, two-phase, liquid-vapor

(e.g. steam-water) system. As a result of an externally imposed heat flux g, three regions develop
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Figure 28: Countercurrent flow schematic.

[105): Two no-flow regions (I or III in Fig. 28) containing mostly vapor or liquid, respectively,
and an intermediate two- phase region (II), where counterflow occurs. In our notation, the space
coordinate x increases in the direction from the liquid to the vapor. The system is inclined at an
angle § with respect to the horizontal, such that when 0 < # < = vapor is at the top, while the
vapor zone is at the bottom in the other case (7 < § < 27) .

Application of a momentum balance to the fluid phases gives

_ Kk oPy ) ) '

Vi = pr k.r ( 57 + prg sin @ (106)
_k Py . )

We = —-#Vk,.v ( 52 + pvgsind (107)

where the relative permeabilities k.7 and k,y depend on the liquid saturation, S. This formulation
ignores viscous coupling bet ween the two phases [62]. The two pressures are related via the capillary

pressure function
o
vE

- where the typical representation in terms of a Leverett J function was introduced.

Py — Py = P(§) = —=J(S) (108)

Permeability and capillary pressure functions are controlled by pore space geometry and topol-

ogy. Typical schematics are shown in Figure 29. The residual saturation values (St,, Sy,), below
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which flow of the respective phases ceases, should be noted. Significantly, and contrary to non-
condensing phases, however, the capillary pressure is not singular at the residual values, Salient
features of such properties for vapor-liquid systems are discussed elsewhere, following a percola-

tion approach [118], [79]. In the ensuing use will be made of simple, although ad hoc, numerical

expressions.

For the vapor pressure we take

By = Pyu(T)esp (- 2 P.(5)) (109)
to describe pressure lowering, and use the Clausius-Clapeyron formula
)= s (52 (3 3)
for phase equilibria. Mass and thermal energy balances complete the formulation
PLViz + pyVyz=0 (111)
PvLyVye +qn = ,\g_f , | (112)

To avoid unnecessary complications, all fluid properties are taken independent of P and T. Due to

different flow behavior the various regimes are examined separately.
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(i) No-Flow Regions
Region I is a no-flow, mostly vapor-occupied zone, where
0<S5< S5, (113)

thus k,z(S) = 0, Vi, = 0 and, from (6), Vy, = 0. At the residual value Sz,, bulk liquid in the
pore space becomes disconnected, and bulk flow ceases. The liquid being strongly wetting keeps
hydraulic continuity in the form of thin film flow, even for § < Sr, . These rates are quite low,
however, and will not be considered here. Thus, the pressure of the vapor phase is hydrostatic and

the temperature distribution linear
Py = Py — pygzsinf (114)

T = Tr + Aign= (115)
where Pr, T are constants. A saturation profile results

1 (Pyo(Tr + AIW))
J(5) = bln ( P; — pygzsind

(116)

where the dimensionless group b = ovr/ RTVk parametrizes Kelvin effects. For media of pra.cticﬂ
interest (b < 1) , the liquid is at low saturation (J(S) > 1) in most of region I, and exists in a
pendular state. Recent works [73] have thoroughly elucidated the capillary pressure- saturation
relationship in this regime. The extent (2;) of the vapor zone I is demarkated by setting S = Sf.,
in (11). For b < 1, one may approximate

Pyo(Tr + Argnz1) ~ Pr— pygzysind (117)

which is the condition for vapor saturation, and determines the boundary of the two'regions I, IT.
The sharp saturation rise to the residual value Sr. near the boundary (where the logarithm in
(116) becomes of order b) should be noted.

Likewise, region III is a no-flow, mostly liquid-occupied zone, where
1-Sy,<5<1 (118)
thus, k,v(§) =0, Vv, =0, and, from (7) , VL= = 0. Pressure and temperature profiles are linear
Pr, = Pipp— prgz sinf (119)
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T =T+ Arrrgee (120)

with Pryr, Trrr appropriate constants. In contrast to region I, where a saturation profile exists due.
to wettability, the bulk of region III (IITb in Figure 28) is at S = 1. Saturation changes are confined
within a narrow sub-domain (IIla), the boundary of which (z3) is the solution of P, = 0

Py o(Trrr + Arrrgnes) = Prrr — prgzasind (121)
To the left lies boundary z; , obtained by taking § = 1 — Sy, , and by neglecting the Kelvin effect

Py o(Trrr + Arr1gnzz) = Prrr — prges sinf + :)'_z J(1 - Sy,) (122)

(ii) Flow Region

The region of two-phase, countercurrent flow is the most interesting. It is here, where condensation
and evaporation occur, and where the interplay between phase change, heat transfer and capillarity
is most pronounced. Saturation and temperature profiles are described by two coupled equations

obtained by combining (106)-(112). After considerable algebra the following system is obtained

dr _ H(t,S)
% = F(r,5) (123)
ds G(r,S§
== _G(rS) 3 . (124)
{ F(T’ S)ag
where
H = k,g[(1 + bR,A)R), + sin 6k, (bRmA — R,R.)] + bkyy BR,RAA (125)
A
F = ko1[L+ bByA + by K R 5] + kv SRy 4 (126)
) A \ A . A
G =k, r[sin0R; + KRPR;,-"-_E- + sin 8k, v KR,, ;5-] + Bk.y[sindR, + KRPR".,._z] (127)

Dimensionless notation has been used, with £ denoting distance normalized by ¢ /vkgAp, to reflect
competition between gravity and capillarity, and = denoting temperature normalized by a suitably
chosen temperature T,. Variable 4 is a vapor pressure normalized by the saturation pressure at T,

and includes Kelvin effects

A=ezp (K(l -3)- bJ(S)) (128)
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The various dimensionless groups are defined in the Nomenclature and they are functions of the
fluid and rock properties, with the exception of Ry
qho
Ry = ———
Al To'\/ngp
which is a measure of the imposed heat flux, and is simply related to the parameters w or I' [105],

[92]

(129)

w = RyRp _ Arlpy
R, kngAPPV

The above constitute an initial value problem to be solved subject to appropriate initial conditions.

For the heat pipe problem [105] we shall take

T=% . S=55. atf=6 (131)

o

(130)

where Ty = T, + Argnz1, the reference temperature T, corresponds to the (dry) end of the vapor
zone, and the integration is in the direction of decreasing {. For the geothermal problem [92] we
shall consider |

r=1 ; S=1 at (=0 (132)

where To corresponds to the boundary of regions IIIa-IIIb, and the integration is in the direction of
increasing £. Forward integration of (123) and (124) subject to (131) and (132) uniquely determines
saturation and temperature profiles.

For future reference the dimensionless vapor flow velocity Vy ., normalized by kApg/uy, is also

derived
k,vk.o[sinfR, — bR, A + KR Ry 4 ]
Wae=— T (133)
F(r,5)

It must be remarked that, for all practical purposes (b < 1), the magnitude, but not the sign, of

the angle # can be scaled out in (123), (124), and(133), by rescaling the space variable { by | siné |
and the heat flux term R, (or w ) by 1/ | sinf |. Thus, it only suffices to study the generic cases
6=m/2, 3r/2.

Contrasted to the above, and excluding field-scale numerical simulators, present models are
quite simpler. The most advanced belongs to Udell [105, 106], for the heat pipe and to Schubert
and Straus [92], for the geothermal problem. These models arise as limiting cases of the above
formulation as will be shown below. To facilitate the presentation, however, the two cases are

examined separately.
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4.3 HEAT PIPE PROBLEM

In the context of the heat pipe problem we shall investigate Kelvin and heat conduction effects,
and will explore the critical heat flux curve. For this purpose, we will frequently refer to the model
in [105, 106], the corresponding temperature, saturation and vapor flux of which will be denoted
by ©,%, and ¥, respectively. In our notation, the analysis in [105, 106] is tantamount to taking
b < 1, and KR, > 1 with R,/R,, fixed, the latter condition corresponding to negligible heat
conduction. Indeed, at these limits, the vapor flow rate (133) reduces to

We— ¥ =w (134)

and the saturation eqn (124) becomes uncoupled from temperature

dx
'
J T

The above two limits delineate the validity of the previous results. The condition for negligible

=sin0+w(—1——+ ﬁ) | (135)

kv kL

Kelvin effects, 8 < 1, is generally well satisfied for most porous media of practical interest (e.g.
permeabilities exceeding O(md)). Neglecting heat conduction, on the other hand, requires K R,, >
1 at fixed R;/R., a significantly tighter restriction (e.g. k 3> O(100 md) for the experiment in
[105]. Substantial changes may result when this condition is not satisfied, as shown in the next

section.

4.4 BOUNDARY LAYER ANALYSIS

As a consequence of the conditions < 1, 1/KR,, < 1 two boundary layers arise at the ends of
region II. This is evident from (134) which requires a step change in the vapor flux, thus infinitely
large evaporation-condensation rates at the boundaries. In actuality, however, the vapor flux
vanishes smoothly at the two boundaries (where the two relative permeabilities also vanish), as

can be seen from an expansion of the full expression (133)

k.. KRy
Y i 85— Sk
Wz~ (136)
_ krVK::pRhA . §—1-5,

" We analyse the solution in the two regions by considering the more general case b < 1, finite K R,,,,
which is widely applicable to a large class of porous media.
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(i) Case b < 1, Finite KR,,

Here, the outer solution outside the boundary layer (superscript (o)) is obtained by neglecting
Kelvin effects in (123), (124) and (133)
dr® Ry —k,vR,R.

- L£LLC (137)
de 1+ krV'(T%)n)'{'

dse G((), 50))

A
d¢ ker(1+ krV%,-I(t"t_))?)Jl(‘g(o))

(138)

A
sinf k,v[R, + KRpRhwl

T (139)
1 + krV (-r(°))2

Near Sf, the saturation (although not the temperature) gradient diverges, thus a saturation rescal-

W=

ing is needed. We take the typical expa.nsion, k. ~ L(S — Sr.)", where L > 0 is constant and

n > 1, and rescale

S =St +b%(2) (140)
E=¢ - bz (141)

with a,x > 0 to be determined. Substitution into the full equations (123) and (124), subsequent

expansion and use of dominant balance [9], results into

=2 (142)

R

k=14 (143)

3=

1
One immediately concludes that the (evaporation) boundary layer is of the order b1+ %, The
corresponding vapor flux in the boundary layer is obtained from (133)

_ W25w)
We = Ttco-m (144)

It correctly predicts the vanishing of V-, at the one end (¢ = 0) and the asymptotic approach to

the outer value, V‘S:)(S Lr), at the other (¢ — o) (Figure 30a). In turn, the saturation profile can

be also constructed
a,n+1

o+ (n—+i-)—c- = —ez (145)
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dVy .
d¢

n-1
=1

b1+;1-'[1 + %_]3

thus, the dimensionless evaporation rate m = can be evaluated

(146)

where ¢, e and { are process constants (Appendix B). A normalized plot is shown in Figure 30b.
It is noted that all evaporation takes place within the boundary layer, m increasing from zero to
a maximum value, before rapidly decaying to zero at the end of the boundary layer (2 > 400).
The local rates intensify for smaller values of b, for example when the permeability increases, such
that the total evaporation rate over the layer remains finite

+o0 1
I=/ Lt iz = 1€ (147)
1] en

Of course, the latter equals the jump in the outer value V‘(,';)(S Lr), which is discontinuous at
SV

1
The above analysis shows that the evaporation region is a thin layer of order b1+ 7 at the
interface between dry and two-phase zones, and is principally controlled by vapor pressure lowering.

Outside this layer in region II, Kelvin effects are insignificant, regardless of the value of K R,., and
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the process is well described by the outer solutions (123), (137) and (139). In particular, the latter
shows that the vapor flux magnitude | Vi, | continuously decreases, as S increases, suggesting
that condensation occurs over the entire two-phase zone, and not strictly at the end as normally
assumed. On the other hand, local condensation rates depend on the value of KR,,. For large
values of the latter, as implicitly taken in {105, 106], condensation is restricted on a boundary layer
~at the interface between liquid and two-phase zones. This boundary layer is due to heat conduction

alone.

(ii) Case b« 1, KR,, >» 1, R,/R,, Finite
In this limit, the outer solutions (®,X and ¥) are given by expressions (134) and (135) and

d® w-kyvR,
B = K. (148)
'62' rV
Under the tacit, and sufficient, assumption b <« § = 1/KR,,, the previous analysis is valid, and
only the boundary layer near 1 — Sy, needs be considered. Now, however, the temperature gradient

also diverges. To proceed, we first note that to first-order the boundary temperature at £ is given
by the outer solution by combining (138) and (148) and integrating across the two-phase zone

J'(S)dS
k,v[sin6 + w(k%,— + E%)]

Here A = exp[K (1 — )] and it was implied that the denominator does not vanish (see also below).

—Sy,
Ry(Az — Ay) = w‘/; (149)

Next, we rescale saturation, spatial distance and temperature as before

§=1- Sy, - §%(2) (150)
E— & =08"2 (151)
0 =0;+87(2) 4 (152) ,’

to obtain with the use of dominant balance

(153)

)
Il
2
i

x
i
—
+
3= 3|~

(154)
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where m is the exponent in the permeability expansion k,y ~ M(1 — § — Sv+)™. The rescaled

saturation satisfies the equation

E‘_ _ wG
dz  J'(1- Sv.)1+ MGo™]

(155)

where G = A2/©% . An analysis similar to the previous applies, and identical results can be reached

regarding condensation rates. For example, the vapor flux inside the boundary layer has the form

w

V) = - — (156)

1+ T
which correctly predicts that Vi, vanishes at 1 — Sy, (¢ = 0) and approaches the asymptotic value
—w in the outer limit (¢ — co). We omit further details and only mention that both the boundary
location and the boundary temperature are accurately approximated at large KR,, from the outer
solutions. At such conditions, vapor condensation is restricted in a boundary layer of width § 1+
at the end of the two-phase zone, and the temperature drop across the two-phase region is given
by (149), which reflects solely the interaction between capillarity and phase change.

We conclude that in the general case of practical interest, evaporation occurs only within a
boundary layer in the vicinity of the vapor zone, outside of which vapor pressure lowering due
to Kelvin effects can be safely neglected. By contrast, condensation is driven by heat conduction
and, unless § = 1/KR,, < 1, it may not be neglected in the bulk of the two-phase zone. It is
expected that in several practical applications K R,, is not necessarily large, thus previous results
[7, 105, 106] may be inapplicable. The effect is most significant in the estimation of the critical
heat flux.

Critical Heat Flux

To proceed, a numerical scheme based on stiff ODE solvers was used, the integration starting
from region I and consecutively marching through regions II and III. Standard runs were carried
out at the conditions of Table 2. An illustration of the applicability of the scheme is shown in
Figure 31, where temperature and saturation profiles corresponding to the experiment in [105]
(6 = /2, b=0.0001346, K R, = 5184.033) are plotted.

An excellent match is obtained between experimental and theoretical predictions for the tem-

perature profile. Lack of data for saturation does not permit an assesment of the functional forms
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Sp. = 0.20
0.05
T,=1711C
P, =15 psi

o = 58.91 dynes/cm
vr = 18.76 cc/mole
pr = 0.9606 g/cm?®
pv = 0.0006 g/cm?

SVr =

pr = 2.824 1072 g/cm-sec
pv = 1.260 10~* g/cm-sec

/\[ = 3.0 W/m-K
Afrr = 1.2 W/m-K

Ar—=Aur
,\,,:.L_z_ﬂ(l__
§-5;
ke = T3
L (I—SL,)
1- S8y, -8
by = (22 2

P, =224-2.755 +1.35?

l_SVr

)3

Sve — Sp.) + Arr

Table 2: Parameter values for steam-water counterflow

72

"0



104 ¢

TrTTTIT
ISR

ot

103

T T I

i L db el

102
wt"

T T T

101

T TTTIIT

10°

1T TTITT

10! i ' : L L L s 2
102 103

Figure 32: Critical heat flux as a function of permeability for bottom heating.

used for relative permeabilities and capillary pressure. However, the plot exhibits the expected
salient boundary layer features (it must be noted that P.(0) is finite in the present model).

- Subsequently, a systematic numerical study was undertaken. In general, results consistent with
[105, 106] were obtained in the limit of large K R,,. For example, in the more interesting case
of bottom heating [106], critical heat flux values w,, were found, such that for w/(—sin 0) > wer
a two-phase zone exists of a length that decreases as w increases. This behavior was thoroughly
analysed previously [106]. Unexplored in past investigations, however, were the effects of K R, and

the nature of the solution for w < we,.

While at large K R, (or k) the critical flux was indeed found to approach the asymptote [106]

_ . k.rk.v }
Wer = (—sinf) mSa.x{ ]

(er + ﬂkrV

which is largely independent of process parameters, it was also found that w., slowly increases with

(157)

decreasing K R, (or k), and rapidly diverges when a critical permeability value k; is approached
(Figure 32). This singular behavior was verified for a host of parameter values, the standard case
yielding the estimate k; = 144 md, well within the range of natural reservoir rocks.

This interesting feature has not been noted before and may lead to significant implications.
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Given a process, a critical value k; can be demarkated such that steady-state solutions are possible
for k > ks, in which case a minimum heat flux is required (region A in Fig. 32). The magnitude
of the latter is not constant, although it approaches at large k the no-conduction asymptote (157).
In the opposite case, w < we, or k < k;, saturation and temperature profiles are ill-behaved, in a
manner to be precisely specified below, and the existence of steady-state solutions must be seriously
questionned.

The sensitivity of k, was subsequently investigated. Thermal conductivity was found to have
ho effect on ki,, although it significantly influences the shape and magnitude of the critical curve. A
sensitivity, generally weak, was observed upon an increase in the residual saturations (which lead
to a decrease of the overall permeabilities in the model of Table 1), the trend being a somewhat
higher threshold k; at lower residual saturations.

Most significant were the effects of capillarity and the imposed pressure P, (Fig. 33). In both
cases, the threshold value varied significantly, roughly in proportion to the square of /P, . While
substantial changes in & mainly require changes in the fluid chemistry, large variations in P, can
be accomplished with relative ease. Therefore, a wide variation in k; is possible. For the typical
conditions of previous laboratory experiments, relatively high thresholds should be expected. By
contrast, k; values of O( ud) would be obtained in typical geothermal systems involving large
pressures.

An interpretation of the criticalvpermeabi]ity value is offered in the following. Prior to this,
numerical results for top heating are also presented. As expected, no constraint in the process
parameters exists at large KR,,. At smaller permeability values, however, a sensitivity similar
to the previous was detected and a similar (although not as sharp) threshold k; was identified.
Now, steady-states are possible for any heat flux value, if k¥ > k;, and for sufficiently low heat flux
values, w < w,, if k < k; (region A in Fig. 34). In the opposite case (B in Fig. 34), a steady-state
counterflow may not be sustained. Sensitivity studies revealed features similar to the case of bottom
heating. Capillarity and imposed pressure P, were found to be the most important variables. In
fact, the two thresholds k; and k; were found to practically coincide.

A pictorial schematic of the above is shown in Fig. 35, where the composite of the critical heat
flux w,, near the critical region was constructed. For the case of top heating (0 < § < ), steady-

state solutions are possible within the “tunnel” at the front-left, the cross section of which expands
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Figure 35: Composite schematic of critical heat flux curve for both top and bottom heating.

to an infinitely large value when k > k;. Conversely, in the case of bottom heating (v < 6 < 27),
steady-states can be sustained only outside the “tunnel” at the back-right, the cross-section of
which also diverges when k < k.

To analyze the critical heat flux curve, the nature of the solution for w < w,, must be examined.
We consider a representative example of bottom heating, with k=1d and parameter values S, =
Sy, = 0. Here the critical heat flux is we, = 0.45, a significantly larger value than 0.306348 obtained
from the estimate (157). A sequence of (7, S) and (£, §) trajectories are shown in Figures 36-38 for
the values w = 0.1,0.4, and 0.5, respectively. Plotted also are the level curves when the numerator
in (124) vanishes, G(7, §) = 0, a condition necessary for the change of slope in the (7, 5) trajectory.

The first case (Figure 36) is characteristic of one kind of ill-condition, namely the domain G > 0
is disconnected and does not extend over the entire saturation interval. As a result, the solution
trajectory changes slope at some point (A in Fig. 36), and further penetration into the two-phase
region leads to progressively higher steam saturation and unphysically low temperatures. Previous
investigators [7], [106] have speculated that a two-phase zone of “infinite” length would develop
under such conditions. While it is true that penetration depth for a given saturation is significantly

higher (Figure 36), and in fact it should increase even more as K R,, increases (both the trajectory
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Figure 36: Solution trajectories for bottom heating and w = 0.1: temperature vs. saturation (a)

and saturation vs. distance (b). the solid curves in (a) correspond to G = 0.

and the G = 0 level curve becoming steeper in the latter case), our results show that unrealistically
low temperatures and vapor pressures are eventually reached and the two-phase zone terminates
at non-physical values. We argue against the existence of a steady-state under such conditions.

The second case (Figure 37) is characteristic of a different kind of ill-condition. Although the
domain G > 0 spans the entire saturation interval (0, 1), the value of w is not high enough, thus
the (7,5) trajectory intersects the G = 0 curve before it reaches the end of the two-phase zone.
This condition is entirely due to the finite value in KR,,, the no-conduction model predicting
no pathological behavior for w > 0.306348, as pointed out above. By contrast, at the point of
intersection A, the saturation profile exhibits a turning point and the ill-condition of the previous
case is encountered. For sufficiently large values of w, however, the two curves are at large enough
distance, such that the solution trajectory terminates at the end of the two-phase zone before
intersection, and a true heat pipe is established (Fig. 38). Smaller values in k lead to increasingly
larger critical heat flux values and, at least within a certain range of k away from k;, the above
interpetation of the we, vs k curve applies.

While the departure of w,, from the asymptote (157) was attributed primarily to conduction,
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near the critical region (k ~ k;) capillarity becomes predominant. The condition determining
wer still remains the same, namely that a turning point in the saturation profile develops. It
was numerically observed that here, the latter occurs at the end of the two-phase zone, where

S —1- Sy, and k,y — 0. Substitution in G = 0, then yields

Wer 1 T2
6 - KR, (X)z >1 (138)

The novel feature, however, is that now w,, becomes infinitely large as k approaches k;, which in

view of the finite value of K R,, must be attributed to the vanishing of the vapor pressure 4;. An
estimate of the latter can be obtained from (123) and (124) by taking the large w limit

KAdr dJ k.L

R 35 = B+ B 15°)
which is further integrated to
1-Ser k. J'(S)dS
Ry (A2 — Ay) > / —_— 160
p( 2 1) Sie (er + ﬂkrV) ( )

Expectedly, this is also the limit of (149) for the case of horizontal heating. Thus, the critical
threshold k; can be determined in the limit 4, € 1
‘/1"5" dJ k.rdS

we(5) |

The above contains all essential features of the threshold value numerically observed, notably the

2
(161)

square dependence on the ratio o/ P, and the weaker effect of relative permeabilities. The agreement
between numerical and analytical results is excellent, as illustrated in Figure 39. After additional

algebra, an estimate of the critical curve near k; may be also derived

Wer (const)

Zsind  KRnm(k—ky)(In |k — ks |)?

(162)

The latter contains through R,, the numerically observed effect of A. As noted, conductivity
does not affect the threshold value, although it influences the shape of the critical curve.

Identical considerations apply for the case of top heating. The onset of critical behavior was
numerically found to coincide with unphysically low temperatures, first encountered at the end of
the two-phase region. In the limit 1 € w < w,, it is easily shown that the previous analysis holds
identically. |

79



100 7

T T3

10!

LR R LR
i 1110l

T

102

T T T TTTTT
1104t

T

10-3 " P SR Y L . PR T I W 4 - L
103 10-2 10! 100

knum

Figure 39: Numerical (dots) and analytical (line) predictions of threshold permeabilities for variable

pressure, interfacial tension, residual saturations and thermal conductivities.

To provide a more physical understanding, we first consider the horizontal case, § = 0./ For
negligible Kelvin and other secondary effects, the two-phase flow region starts when the vapor
becomes saturated, Py = P,. Counterflow in this region is possible only because of capillarity. In

fact, the changes in vapor pressure and capillary pressure are interrelated

ki gp (163)

dPy = ——L__4p,
PV er’*‘ﬂkrV

As long as capillarity is not strong, the vapor pressure drop across the region is not large

P:(SLr) er
=P [ i dn, (164)

and Py > 0. Problems arise when the permeability is low, such that capillarity is large enough for
the RHS to become negative. It is straightforward to show that the onset of this condition occurs
at the above threshold, k;. Below this value, capillarity imposes large pressure drops, thus negative
values for Py result with catastrophic consequences on the temperature profile. Clearly, ky (or k;)
also denotes the lowest permeability value below which steady-state, horizontal counterflow cannot

be sustained.
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When the medium is inclined, gravity opposes or supplements capillary action, depending on
~ whether the vapor overlies or underlies the liquid. For instance, the expression equivalent to (164)

is

Py =P / e R gp me [ Id 165
i A = A A e
where
: er+,BRukrV
I= SL ¥ Bty 166
% + Bhoy (166)

When heating is from the top, capillary pressure is counterbalanced by adverse gravity effects,
and a two-phase region may exist even for k < k; , provided that the heat flux is small enough.
For this, it is recalled that the extent of the two-phase zone increases as the heat flux decreases.
Certainly, heat transfer is of importance here. Opposite considerations apply for the case of bottom
heating. At least near kj, gravity would supplement capillarity in increasing pressure drops, with a
contribution roughly proportional to the extent of the two-phase zone. At low w < w,,, the latter
is large enough and a steady-state cannot be sustained.

One concludes that consideration of conduction and lower permeability values in the heat pipe
problem leads to unexpected, non-trivial corrections, particularly for the case of bottom heating.
The relevance of the threshold k; to heat pipe prob‘lems cannot be discounted. A possible distinction
from the geothermal problem to be discussed in the following, is the emphasis on capillarity, a
measure of which is the parameter R,. For values of the latter of O(1) or less, the corresponding
k; value would be of the same order with the medium permeability (compare eq.(161)), and the

regimes analysed above are likely to be encountered in a heat pipe problem.

4.5 GEOTHERMAL PROBLEM

- The next part of this paper addresses the geothermai version of the steady-state, vapor-liquid
counterflow, specifically the problem considered by Martin et al. {69] and Schubert and Straus
[92] among others. Here 0 < § < m, but the heating is from the bottom, namely the imposed
temperature gradient and heat flux are negative (in the direction from the liquid to the vapor). As
noted before, we shall take reference values corresponding to the liquid- two-phase zone interface,
where for simplicity the value Sy, = 0 will be assumed. Integration proceeds in the positive §
direction, from the liquid towards the vapor. The condition derived in [92] is also recalled that the

underlying liquid is subcooled, hence the temperature gradient or the heat flux may not exceed an
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upper limit. In our notation one obtains

PP 167
To obtain the geothermal problem from the original formulation (123)-(127), the following limit is

considered in the absence of Kelvin effects

KR,> 1 (168)

With reference conditions corresponding to the top of the liquid zone the above reads in dimensional

notation
L,P,M, o
“RL T (169)

Consistent with [69, 92] conditions (168) or (169) imply that capillarity is of secondary importance
and sharply differentiate geothermal and heat pipe problems. To proceed we utilize (168) in (123)-
(127) and obtain

dr  ker[KBm(-w) + KRnRoky ) -
FI G(r,5) : (170)
ds G(r, S8 .
Fri o (171)
k.r{1+ KRn, ‘?[krV]aS'
where we denoted ¢ = 1/K R, and
A A A
G(7,5) = kri[Ri + K Rmw— + KR —kev] + BEov [ Ry + K Rnw ] (172)

In general, G and K R,,w are of O(1) or less (compare with (167)). Thus, in the-geofhermal limit
€ < 1, solution trajectories (7, 5) have constant temperature, in regions where G is not small, and
closely follow the G = 0 curve, otherwise (Figure 40a). In the region of constant temperature,
the saturation changes rapidly over an interval of O(1) in length (which, as recalled, expresses a
balance between gravity and capillarity in the present notation). It is in this region, where capillarity
influences the saturation profile, and which was considered a sharp interface in the previous works
(69, 92].

Sigﬁiﬁcant temperature changes start occuring when the solution trajectory approaches the
curve G(1,5) = 0. For the conditions of Figure 40, the latter is precisely the vapor-dominated limit
analysed by Schubert and Straus [92] for a simpler model with straight-line relative permeabilities.
As is apparent from (171), the saturation gradient is very small (G < 1) in this domain, thus,
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Figure 40: Solution trajectories for the geothermal problem and ¢ = 0.0265275: temperature vs.

saturation (a) and saturation vs. distance (b). the solid curves in (a) correspond to G = 0.

the extent of the region is quite large (Fig. 40b). In the limit ¢ < 1, the region commences at
saturation S* satisfying G(1,5*) = 0, a condition previously derived in different notation [92]. At
larger values of ¢, capillarity can become important and must be also considered (Fig. 41). Here,
although ultimately attracted to the curve G(7,5) = 0, the solution trajectory shows substantial
temperature variatiop before the vapor-dominated region is entered.

With an approximation that rapidly improves as ¢ diminishes, the previous analysis [92] de-
scribes the behavior of steam-water counterflow in the geothermal context with excellent accuracy.
Considerations similar to [92] were also advanced by Martin et al. in an earlier publication [69].
While identifying the vapor-dominated regiine, Martin et al. additionally proposed the existence of
liquid-dominated regions. The present formulation readily yields such solutions as well. For this,
it is required that the equation G(1,5*) = 0 admits two solutions, a condition demanding higher
values in w.

At such conditions, the (r, §) diagram is divided into three regions (two far regions with G < 0
and a middle one with G > 0) by the two branches of the curve G = 0 (Figure 42). In the present

context, the proposed theory [69] can then be interpreted as follows: Vapor- or liquid- dominated
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Figure 41: Solution trajectories for the geothermal problem and ¢ = 0.0838876: temperature vs.

saturation (a) and saturation vs. distance (b). the solid curves in (a) correspond to G = 0.

regimes commence at points A or B, respectively, where G(lr, §*) = 0, and they subséquently
follow the respective branches of G(7,5) = 0 (paths AV, BL, respéctively). Such behavior appears
consistent with (170) and (171) in the limit € < 1, but it is doubtful that it actually materializes.

By definition, a solution trajectory must originate form the top of the liquid zone (point C,
where G < 0), other starting conditions being impossible in a steady-state counterflow system.
This trajectory has a negative slope and rapidly approaches the G = 0 branch to which it becomes
parallel (dashed line pathd CD in Figure 42). Somewhat similar to the heat pipe problem (Figure
36), the solution trajectory crosses over to the middle region (G > 0), thus acquires positive slope
and parallels the branch G = 0 from the other side (note that the two curves practically coincide
in Figure 42).

While being different than that previously proposed (path BL), this solution is not acceptable
either. An inspection of (171) reveals that £ must decrease along the path CD, contradicting the
requirement that, by convention, { increases in the direction from the “liquid” to the “vapor”. The
other alternative, namely the trajectory extending from point C in the direction opposite to D, is

also rejected as it leads to saturation values larger than one. It becomes evident that under such
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heat flux conditions a liquid-dominated regime is not realistic, while the vapor-dominated regime
" is never reached, certainly not when the starting point is the top of the liquid zone, as assumed
throughout. One is led to conjecture that steady-state solutions are not possible for such cases,
which require that the heat flux exceeds a certain value. The latter is easily determined to be the
upper bound (167). The implied contradiction serves to reinforce the above conclusion.

A final remark is also appropriate regarding the analysis presented by Bau and Torrance [7].
These authors examine a configuration with § = 37/2 and bottom heating (steam at the bottom,
temperature gradient in the direction from the vapor to the liquid zone), a problem analyzed in
the heat pipe section. In addition to conduction, however, they also neglect capillarity. Because
of the latter, some similarities with the geothermal problem may exist. In our formulation, their
analysis corresponds to the conditions KR, > 1, K R,. > 1. By simple rearrangement, equations
(123)-(127) read for this problem

dr er(w + krVRv)%‘SI"

—_— = €
ds G(r,5)%

(173)
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s _ G(r,S5) d§

d¢  k.pk.v dJ (174)
where ¢ = 1/K R, and
G(T) S) 4= (er + ﬂkrV)w — kepkey (175)

It readily follows that despite the small capillary effects, the problem is of the same nature as that
, of the heat pipe thoroughly analysed before. Thus, identical conclusions must be reached regarding
solution trajectories and the critical heat flux value, w,,, which is the necessary lower limit for the
existence of a steady-state, steam-water counterflow. Under the implied assumption of negligible

conduction, KR,, 3> 1, this critical value coincides with the asymptote (157).

4.6 CONCLUSIONS

In this section we have attempted to unify the description of a diverse set of problems arising in
heat pipe and geothermal contexts that contain the common mechanism of steady-state, vapor-
liquid counterflow. The formalism introduced encompasses several previous studies, which arise as
special cases at various limits. In particular, a quantitative assesment of the importance of gravity,
capillarity, phase equilibria, heat conduction and Kelvin effects becomes possible.

In the context of the heat pipe problem, it was shown that Kelvin effects are of significance only
over a narrow boundary layer at the vapor-two phase boundary, and are otherwise negligible in the
counterflow region. Heat conduction was found to influence saturation and temperature profiles
near the other end of the two-phase region. It was conjectured that for the case of bottom heating,
steady-state counterflow is not possible when the heat flux is below a critical value. Contrary
to previous results, the latter is constant only in the limit of large permeability. A permeability
threshold value k; was identified, such that no steady-state counterflow can exist for media of
lower permeability. The treshold reflects capillary effects and is mainly a function of the imposed
pressure,

The geothermal problem was similarly analysed. The results of Schubert and Straus [92), where
capillarity is neglected, were recovered as a limiting case of the present formulation. The same
limit is also applicable for the cases discussed by Martin et al. [69). However, the liquid-dominated
regime suggested in the latter was found to lead to non-physical predictions, and it was suggested

that such a steady-state may not be reached. It is hoped that the present analysis clarifies several
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of the issues involved in steady-state, vapor-liquid counterflow, and that it may be useful as a

backbone for further studies in this area.
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5 FLOW OF FOAMING SOLUTIONS IN POROUS MEDIA

S. Baghdikian and L.L. Handy

5.1 INTERFACIAL TENSION MEASUREMENTS

In order to reduce residual oil saturations using foaming solutions, the capillary number may
be increased by both decreasing the mobility of the gas phase and by reducing the interfacial
tension between the aqueous phase and the oil phase. Interfacial tensions were measured for several
surfactants which are known to be good foaming agents. Of these, the best in this respect was Shell
Enordet LTS18. However, LTS18 is not completely in solution nor is it a good foamer at room
temperature. At higher temperatures, its solubility and foamability increase but the interfacial
tension also increases. What oil recovery results we have to date indicate that, if any additional
oil is recovered with foaming solutions, it is recovered at high gas-and water-to oil ratios. For the
time being we have discontinued our efforts on this particular research objective, but it appears
we would have to use two surfactants to increasg the capillary number enough to affect residual oil
saturations—one for a foamer and another to reduce the interfacial tension.

The interfacial tension between oil and surfactant solution was measured using a spinning drop
apparatus. Low values of IFT were not obtained with the Chevron Chaser SD1000. Figure. 43
shows the IFT between dodecane and SD1000 as a function of temperature. The IFT is reduced
by a factor of about 10 as compared to oil-brine IFT. In oil displacement experiments with foam
the pressure drop was increased by a factor of 10. This translates to an increase of the capillary
number by a factor of 100. However, the residual oil saturation was not reduced any further than
in the case of simultaneous gas and brine injection.

The effect of temperature on IFT with LTS18 is shown in Figure 44. This surfactant reduces
the IFT by a factor of 10 as compared to SD1000. However, this surfactant is not a good foaming

agent at room temperature.

5.2 FOAM INCUBATION PERIOD

The study of foam flow mechanisms, with special emphasis on the conditions under which foam

formation is initiated in a porous medium, was done using Chevron SD1000. Some runs were initi-
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Figure 45: Pressure drop history with simultaneous flow of gas and surfactant solution.

ated in 4 inch long cores (1 inch in diameter). After surfactant adsorption was satisfied by injecting
5D1000, gas injection was started. Soon after foam formed, the pressure increased so rapidly that
‘the experiment had to be stopped. The same experiment was performed with lower injection rates.
It took a while before the pressure upsiream of the core increased. A third experiment was started
with even lower rates. It took about six days of injection before the pressure kicked off (see Fig.
45). It is worth noting that in all cases, the pressure surge occurred when the pressure drop reached

about the 10 psi range.

The conditions for this last experiment were as follows:
¢ Absolute permeability: k, = 700 md
e Surfactant flowrate: ¢,, = 0.175 mL/min

Gas flowrate: ¢, = 1.40 mL/min

Liquid Volume Fraction: LVF = 0.11

Gas Frontal Advance Rate: v = 14 m/Day
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Figure 46: Critical velocity for foam generation in Berea sandstone cores during co-injection of

nitrogen and surfactant solution (from Friedman et al. [47]).

Recently, Friedmann et al.[47] reported that there exist a critical velocity for foam to form (see
Fig. 46). Based on that equation (v, = 1.52(LV F)~1-%4), the minimum velocity in our experiment
~ should be about 40 m/day for foam to form. The actual ﬂdw velocity being much lower than
the critical one should inhibit the formation of foam. However, foam formation did take place as
observed in the pressure history in Figure 45. It would be interesting to investigate the effect of
flow rate on foam formation in the presence of oil.

Further experiments were performed to better define the conditions under which foam formation
is initiated. We observed that experiments run under different conditions of flowrate and back
pressure behave quite differently.

Figure 47 shows the pressure drop history of several corefloods performed under different back
pressures and flowrates. Experiments run without back pressure indicate a higher initial pressure
drop due to a higher gas expansion ratio as the gas is flowing. One can also deduce that the higher
the liquid rate, the higher the ultimate pressure drop will be and the quicker it will get there.

Other corefloods were performed using a prefoamer (see section 5.3). The pressure drop history

is shown in Figure 48. One can see that the effect of higher gas injection rate simply shortens the
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Pressure drop vs. gas rate
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Figure 49: Relationship between pressure drop and gas injection rate at constant surfactant injec-

tion rate.

incubation period for the system to reach the steady state pressure drop of about 180 psi.
The effect of gas injection rate as a function of pressure drop is shown in Figure 49. There seems

to be a critical gas rate to cause foaming and a significant pressure gradient. These experiments

were performed with a back pressure of 110 psi.

With no back pressure present, the effect of surfactant injection rate as a function of pressure
drop is shown in Figme 50. The surfactant rate was changed and the ultimate pressure drop was
recorded. Changing the rate from 0.2cc/min down to 0.lcc/min and then back up to 0.2cc/min
caused the pressure drop to decrease and then attain the initial value.

An experiment was performed where the rates of gas and surfactant flow were varied at different
steps and the pressure drop monitored. However, often it is not possible to duplicate results.
Within the accuracy that was possible to achieve, a discontinuity was observed in the increase of
pressure drop with an increase in flowrate. No significant pressure drop hysteresis was noticed
during the imbibition or the drainage cycle with changing flowrates. Persoff et al.[82] had noticed
that changing the liquid flowrate does not change the saturations significantly, although foam flow

resistance increases.
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Figure 50: Relationship between pressure drop and surfactant injection rate at constant gas injec-

tion rate.

The conditions that trigger a high pressure drop across the core are still not well understood.
In order to study the conditions that promote a fine textured foam formation, the pressure history
of different flow experiments were monitored. Upon comparison of the pressure response with the
flow conditions, it became apparent that the results are in agreement with what Persoff et al.[82]

recently reported.

The liquid saturation in the core has an average value of about 35%. Injecting 24PV’s of
surfactant solution at 0.57m/D after reaching steady-state foam flow conditions, increased the
liquid saturation to about 45%. Injecting 11PV’s of gas at 2.2m/D reduced the liquid saturation to
about 17%. The presence of the surfactant in the liquid phase prevents a wide range of saturation
to occur. ;

Persoff et al.’s[82] observation of a constant pressure gradient with a constant liquid velocity,
while varying the gas velocity, is in agreement with our results. The pressure drop obtained in the

core increases with increasing liquid velocity and is independent of gas velocity.
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5.3 EFFECT OF FOAM GENERATOR

The effects of using a foam generator in simultaneous injection of gas and surfactant solution was
evaluated. The use of a foam generator increased the steady-state pressure drop attained in the
experiment. Under all flow conditions, the use of a foam generator enhances the texture of the
foam. This in turn contributes to a higher pressure gradient. When injecting foaming solutions,
the use of a foam generator mixes the fluids before entering the porous medium whereas the lack
of a foam generator causes the fluids to enter the core in slugs. It is apparent that a minimum
pressure gradient is needed in order to form a fine textured foam.

De Vries et al.[30] did not notice any influence on their results upon varying the injected foam
texture by varying the properties of the foam generator. In their experiments, the pressure drop
was measured in a very short section in the middle of the core. Therefore, the foam texture is

changed by the porous medium by the time it reaches the middle section of the core.
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6 MODIFICATION OF BUCKLEY-LEVERETT AND JBN METHODS
FOR POWER-LAW FLUIDS

M. Salman, S. Baghdikian, L.L. Handy and Y.C. Yortsos

6.1 INTRODUCTION

The use of non-Newtonian fluids for purposes of mobility control is a routine operation in EOR
processes. A variety of rheologically complex fluids ranging from polymer solutions to gels, foams
and other additives are injected to improve sweep efficiencies, divert displacing fluids and prefer-
entially block swept zones [117]. In contrast to Newtonian fluids, however, the state of the art in

the modeling of flow of non-Newtonian fluids, either single--or multiphase, in porous media is far
| from complete. As a rule, the interplay of the nonlinear fluid rheology with the porespace geometry
and flow paths results in complicated problems, that prohibit the direct passage from the micro-
(pore) to the macroscale [96]. Thus, with few exceptions, laws analogous to Darcy’s for flow of
non-Newtonian fluids in porous media have not been developed.

Although frequently used in practice, the direct application of single capillary flow expressions
to porous media is in principle erroneous. The pore level relationship Ap/l = f(g) must in general
be replaced at the macroscopic level by a different relation Ap/L = F(Q,...), where F is a function
different than f. The important exception involves power-law fluids [65]. For such cases, the power-
law relationship between pressure drop and flow rate in a single capillary survives the averaging
over the multitude of interconnected pores. As a result, the local expressions for the well-studied
single capillary problem [21, 102], can be extrapolated to a porous medium, subject to appropriate
rescaling and modification.

Although this was apparently accepted without questioning, to the knowledge of these authors,
the first rigorous argument for its support was provided by Larson [65]. It was shown that the power-
law and its exponent remain the same for both the single capillary and the porous media, which
represents a significant advance for process modeling. The problem becomes then the determination
of the appropriate prefactor in the macroscopic expression, in principle a mere computational task.
Expressions currently used rely on the inaccurate model of a bundle of parallel capillaries [21, 102],
although more rigorous results [97, 17, 119] are rapidly emerging.

Similar issues arise in the simultaneous flow of a pair of immiscible fluids in porous media.
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However, when one or both of the two fluids are of the power-law type ahd the displacement
at the porescale is controlled by capillarity, the partition of the fluids in the pore network is rate-
independent. The concept of saturation-dependent relative permeability is then applicable, perhaps
in a modified form, to account for possible effects on the power-law exponent [119]. Under this
premise of capillary control (N, < 1), the macroscopic displacement can then be simulated in a
straightforward fashion.

Despite the considerable extent of applications involving non-Newtonian fluids in porous media,
it is surprising to note that the counterparts of familiar notions such as the fractional flow function,
the Buckley-Leverett displacement and the JBN method, have not appeared in the literature. The
need is p#rticula.rly felt in the interpretation of transient displacements in flow experiments, where
a non-Newtonian (perhaps power-law) fluid is involved [90, 121, 88]. Under such conditions, it is
not at all clear that the traditional JBN method [61] holds, or that the relative permeabilities so
obtained are meaningful. The development of alternatives must then be sought, starting with the
solution of the underlying displacemenf process.

In this section we present such an approach. We consider the modification of the JBN method
when powér-law fluids are involved in either drainage or imbibition, and examine the sensitivity of
the results to the rheological aspects of the fluid. In the process, we also need to solve the associated
Buckley-Leverett displacement equations. Generalizations to fluids of a more general rheology are
then suggested. The section is organized as follows: The basic aspects of the model that lead to rate-
dependent fractional flow are first reviewed. Buckley-Levelfett solutions and frontal displacement
features are next derived. The proper modification to the JBN method is subsequently presented.

Sensitivity studies and generalizations complete the study.
6.2 BUCKLEY-LEVERETT ANALYSIS

6.2.1 Fractional Flow

We consider the simultaneous flow of two immiscible phases in a horizontal porous medium, under
local capillary control. Although straightforward, effects of gravity are not considered. For simplic-
ity, we take the “oleic” phase (subscript o) to be Newtonian and non-wetting, and the “polymer
solution” phase (subscript p) to be a power-law, wetting fluid. The bulk rheology of the latter is
described by a power-law, which for one-dimensional shear flow reads [11]
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Tyz = K" (176)
Here 7, is the shear stress, 4 = |du,/dy| is the rate of shear, n is the power-law exponent and K

is the consistency index, the latter two being functions of the fluid composition.
The extension of Darcy’s law to describe single-phase flow of a power-law fluid in porous media

 is formally taken
k. 0p
n — — — — .

W= —()(gD) (177)
where k is the permeability to a Newtonian fluid. Parameter m has the dimensions viscosity /

velocity™ ! and the dependence

m= AKE1-"/2 (178)

‘The dimensionless prefactor A is a function of the geometry and topology of the medium, in

general unknown, although various simplifying estimates have appeared based on parallel capillary
models [21, 102]

A= i% (9": 3)”(150¢)(1-")/2 | (179)
b))

It was previously noted that the above expressions are in principle not accurate and should
be replaced by their ané.logues, e.g. those obtained from network studies [97, 17, 119]. A note
must also be made regarding the permeability value above. In the absence of adsorption and
inaccessible pore volume effects, the single-phase (e.g. brine) permeability value applies. In the
more likely opposite case, however, a different value is assumed: that corresponding to a different
porespace, where pores have effective sizes reduced by the adsorbed layer, a fraction of smaller
pores have become plugged and are inaccessible, and a slip condition at the pore walls may be
applicable [96, 121]. With the assumption of irreversible adsorption, this permeability value is
obtained upon exhaustively displacing (steady-state conditions) the polymer solution by ’brinwe. For
the case of transient displacement, however, significant complications may arise depending on the
particular displacement history [88]. Such issues are not considered in the present study, which
focuses primarily on rate effects on the displacement.

Consider, now, the extension to two-phase flow and forma.]ly take
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(up)" = - (k—ﬁ;ﬂ) (%) (182)

The relative permeabilities, k,, and k,p, thus introduced are independent of flow rate, as long
as capillarity controls at the porescale and adsorption/inaccessibility effects are rate-independent.
However, k,, (and to a lesser extent, k,,) may be functions of n [119], and are not necessarily
identical to those for an “oil-water” pair. It is also noted that the parameters k,, and m appear in
the relative conductance combination k,,/m. Thus a determination of both values simultaneously
is unlikely. For this reason, we elect to assign all saturation dependence into k., and simply take
m to be the single-phase constant given in (177)-(178).

Before proceeding further, it is useful to define the parameter (n # 1)

1/(n-1)
H= (f-‘i) (183)

m
with dimensions of velocity. This parameter is the ratio of a characteristic pore size (e.g. square

root of permeability) to a characteristic time

1/(n-1)
~ k172 (Ee
H~k ( K) (184)

and depends on both the porous medium and the fluid compositions. Thus, flow rate effects enter

via the dimensionless ratio

a=— (185)

where u; is the total flow velocity.

We proceed by neglecting capillarity at the macroscale to obtain

(up)™ = (uo)(H)" " A(S)) - (186)
where
A(Sp) = :—f% (187)

and substitute in the fractional flow fp = up/u; to get the relation
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1- fP = (a n—ll
FAASA (188)

Contrary to the Newtonian case, the fractional flow f, is not explicit. It is obtained instead
as the (only acceptable) root of the algebraic equation (188). Significantly, f, now depends on the
total rate as well, in addition to the exponent n and the saturation S,.

To illustrate various effects, fractional flow curves were constructed based on the following

relative permeability functions

kep = 5%, ko = (1 - §)? (189)

where § is the normalized saturation S = (Sp — Spr)/(1 — Spr — Sor). For convenience, the relative
permeabilities are taken independent of n, although this may not be appropriate near the residual
saturation of the power-law fluid. We restate, however, our intention to study effects of flow rate,
and we defer the reader to a more complete analysis of saturation and exponent effects in a related
study [119].

The effect of flow rate is shown in Figures 51a and 51b, for shear thinning and shear thickening
ﬂuids, respectively. As anticipated, for the case of shear thinning (Fig. 51a), the fractional flow
curves shift to the right (become more favorable in terms of displacement efficiency) when a de-
creases (lower flow rate or higher permeability media). While for shear thickening fluids (Fig. 51b),
the fractional flow is lowered at larger values of a (higher flow rate or low permeability media). A
simple asymptotic expression for the fractional flow f; near the residual value

(S -5 )-r/n
for BB (190)

verifies the above. 7 is the power-law exponent in the relative permeability.

The effect of n for otherwise constant values of o is less apparent. A simple analysis in this
case shows that f, is an increasing function of n, if the condition af, < 1 is satisfied (Figure 52a),
and a decreasing function of n, otherwise. For large enough flow rates (or values of a), therefore,

the f, curve rotates towards the vertical as the fluid becomes more shear thickening (Figures 52b,

52c).
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6.2.2 Frontal Displacement

We consider next the simultaneous flow of the two fluids at constant injection rate u,. The dis-

placement is described by the same equations as in the case of Newtonian fluids

Bf,,
at s+ 0z

where, now, f, solves (188). This is the prototypical first order, hyperbolic equation, solvable by

=0 (191)

characteristics [114] and typically involves a shock front and the associated tangent construction.
We shall focus on the case of imbibition (power-law fluid displacing a Newtonian fluid). The front

saturation, Syr, is obtained from the shock condition

pr dfp
= 192
, SpF — Spr dS, (192)
along with (188). Further manipulation leads to an equivalent expression
SpF — Sp..) dA _ fo+n(l-fp)
= 193
( A dS, 1-fp (193)
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Figure 53: Front saturation as a function of rate and power-law exponent: (a) imbibition, (b)

drainage.

Similar results are obtained for the drainage case, where now

(S,;— pF) A _ ., (- fp) (194)

A ds, Ip
The front saturation is plotted as a function of rate and exponent in Figures 53a and 53b, for
the cases of imbibition and drainage, respectively. The results for imbibition are quite instructive
and elucidate the importance of rate (Figure 53a). Front saturations and displacement efficiencies
increase with rate for shear thickening fluids. Opposite behavior is exhibited in the shear thinning
case. However, shear thickening yields results of higher efficiency only when the rate is large
enough. For values of a less than approximately one (Figure 53a), a shear thinning fluid would
lead to better recoveries. The latter case is of course favored at lower rates, higher permeabilities
and more -viscous oils. Similar results are obtained for a drainage process (Figure 53b).
Upon construction of the front saturation, other displacement features (average saturation,
breakthrough times, etc.) are obtained as in a standard Buckley-Leverett process. The exception

is the Johnson-Bossler-Neuman method, which requires additional modification.
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6.3 MODIFICATION OF THE JBN METHOD
6.3.1 Power-Law Fluids

We first consider a drainage process where a non-wetting, Newtonian fluid displaces a wetting,
power-law fluid. This rather unconventional process is experimentally desirable so that a wider
range of saturations becomes available for relative permeability determination [88]. The pressure

'drop across the core in the period following breakthrough is

L n
ap= [ )y (195)
0 kkrp

where capillary effects have been neglected. For convenience, we further define dimensionless dis-

tance zp = z/L, time tp = [; u,dt/$L and pressure drop App = Apk/[L(w;)"m], to obtain

1 n
App = /0 %dzp (196)

From the Buckley-Leverett solution, zp and f;, are interchangeable

zp = tpf, (197)

so that (196) becomes

-f;L n (]
App=tp | ) 4 (198)
rp

where subscript L refers to the producing side. Following the JBN approach, we next take z =
1/tp = f;L and rewrite (198) as

2App = /0 ’ (,’:idf; (199)
TP

Differentiating and making use of (188) finally leads to

d(zApp)] [d(App/tp)] _ (fo)"
=2 | = (200
which in dimensional notation reads
B dAp/Q) _ (1) (i .
mL(u)” d(1/Q:) (krp)L(fp) (201)
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With the exception of k.p(Spr), all other quantities in (201) are measurable. It should be noted
that were m allowed to vary with S,, the ratio of k,,/m would appear instead of k,, above. Oof
course, other JBN expressions, such as end saturation Sy, and producing fraction remain unchanged

as given by

Qp = Sp‘l — JpL + Qtpr (202)

It is apparent from (201) that for the case of a power-law fluid, the traditional method must be
slightly modified. The correction applies after the determination of fpz from the slope m; of the
log Q: vs. Qp plot (or the Q; vs. Q, plot), and the measurement of the end saturation Spr (eq.
(202)). To find the relative permeability k,p, the slope m; of the Ap/(Q:/$AL) vs. $AL/Q; plot
is taken and eq. (201) is used

ko = Lm(utpr)"
i

The exponent n on the RHS above should be noted. On the other hand, no modification is

(203)

needed for k,,, which can be found with the standard approach

ho=(LW)uJ1—ﬁM) (204)

k ma

Identical expressions apply for the imbibition process. The above gshow that no interpretation
error is incurred if the standard JBN method is used for the relative permeability of the Newtonian
fluid. By contrast, errors are anticipated for the relative permeability of the power-law fluid, as

demonstrated below.

6.3.2 Application

To illustrate the need for a JBN modification, numerical data generated from the Buckley-Leverett
solution were interpreted by using both unmodified and modified J BN expressions. The data were

obtained by calculating the producing-end saturation from the solution of (188) and

(1) dA . fptn(l-fp) (205)

1) @, = T o)
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Figure 54: Relative permeabilities calculated by unmodified and modified (solid curve) JBN meth-
ods for drainage and a=2: (a) shear thinning (n=0.5), (b) shear thickening (n=1.5).
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The latter is obtained by evaluating df,/dS, and setting df,/dS, = 1/tp at z = L. Pressure

data for the drainage case were in turn simulated using the formula

1/tp n
app=tp [ By (206)
0 rp

where the integrand is an implicit function of f}',. Similar equations apply for the imbibition case.
Analysis of the numerically generated data was based on interpolation using cubic splines. Typical
results are shown in Figure 54 for a drainage process. In both shear thinning (Figure 54a) and
shear thickening (Figure 54b) cases, the relative permeability to the Newtonian fluid (here taken
from (189)) is reproduced accurately with the unmodified JBN method. In fact, the two curves
coincide to the plotter accuracy.

By contrast, significant errors are predicted for the relative permeability of the power-law fluid.
While the modified version (solid curve) reproduces reliably the input relative permeability, the
unmodified original version (broken line) shows substantial error, even for the rather mild parameter
values used in the illustrations. In general, the unmodified version shows an erroneously higher
(lower) sensitivity to saturation for the shear thinning (thickening) case. Otherwise stated, the
drainage data under- (over) estimates the relative permeability to the shear thinning (thickening)
phase if evaluated with the original JBN method. Similar differences exist for imbibition, although
the error involved is not detectable in the narrow saturation range usually involved with such

process (Fig. 55).

6.3.3 Generalization

A simple physical interpretation of the proposed JBN modification is possible, if (201) is expressed

in the form

k Ir
2 Lutﬂapp,L (krp) L ( )

where

Happ,L = m(utpr)n_l (208)
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is the apparent viscosity of the power-law fluid evaluated at the conditions of the outlet end. The
implication is that the original JBN method can be applicable, provided that the apparent fluid
viscosity at the production end is used. The latter of course is variable with the wetting fluid
velocity, thus it changes as f,7 changes. In the JBN method terminology, the “reference Ap” does
not remain constant, but varies during the course of the process. It is, therefore, conjectured that
a similar correction may apply for any other fluid rheology. This is indeed true as can be readily
shown. For example, if the generalized counterpart of (192) is postulated to be

Oz

where k,, may depend on rate, we shall have the implicit relations

- _ kkrp(Sp; up) | OFp
%“[ m%)] (209

Uy = fou (210)

1
fo=
P71+ pp(up)/ oA (Spi up)
The saturation profile is then implicitly given by (191) as before. Rearrangement of the integrals

(211)

following the previous approach leads after considerable calculations to an expression identical to
(207) where the apparent viscosity is evaluated at the conditions of the producing end, piapp 1 =
#(fput). Independent knowledge of the apparent viscosity in the porous medium as a function of
rate allows the evaluation of the relative permeability. Equivalently, this implies that all saturation
effects are assigned to the relative permeability and that the fluid viscosity is only affected by
the flow rate. Unfortunately, this is only possible for power-law fluids where saturation and rate
effects can be decoupled. For fluids other than power-law, the relative permeability would depend,
in general, on the flow rate of the fluid as well, the latter being itself a function of the relative
permeabilities of the two fluids. Considerable care must then be exercised in order to extract the

correct flow rate dependence and to decouple it from the saturation dependence.

6.4 CONCLUDING REMARKS

In this section salient features of immiscible displacement in porous media when one of the two
fluids is of the power-law type were examined. It was shown that the Buckley-Leverett theory for 1-

D displacement is applicable, provided that the fractional flow is appropriately evaluated. Effects of
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rate and power-law exponent were studied and found to affect significantly the displacement profiles.
In addition, a modification of the JBN method was proposed for the interpretation of unsteady-
~ state experiments to measure relative permeabilities. It was found that direct application of the
original method leads to substantial errors and under- (over) estimates the saturation sensitivity

of the relative permeability of the power-law fluid in the shear thinning (thickening) case. A
generalization to fluids of other rheology was also proposed.
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7 CAUSTIC FLOODING AT ELEVATED TEMPERATURES

R. Aflaki and L. L. Handy

7.1 INTRODUCTION

The objective of this work is to establish pH and chemical composition profiles as a function of
length in caustic flooding at flow conditions. This would enable us to evaluate the state of final
equilibrium and to better forecast the performance of caustic flooding at reservoir conditions. It
has been recently shown that clays cause mineral transformation during caustic flooding. However,
such reactions and their effects have been studied only in batch experiments. In this work,we extend
the study of this clay-caustic interaction to dynamic systems. The nature of the reaction is also
examined. Finally, in previous flow experiments only the effluent has been monitored for variables
such as pH, Si, Al and Na. This work presents an improved experimental technique that allows for

chemical composition profiles to be obtained at several points in the core.

7.2 EXPERIMENTAL

The porous medium is made up of four Berea sandstone cores (1” diameter and 8” long) arranged
in series and placed in a constant temperature oven. Sampling is possible through by-pass lines,
while effluent pH is measured by an in-line probe.

Experiments were done in three series. In each experiment we started with the highest flow
rate. When no change was observed in the effluent pH, a steady state was assumed. The flow was
subsequently diverted for sampling to the end of 3rd, 2nd and 1st cores consecutively. The samples
were analyzed for Si and Al concentrations using atomic adsorption. After sampling, either the
temperature was raised or the flow rate was reduced, depending on the particular experiment, and
the same procedure was repeated.

Three sets of experiments were done corresponding to the following:

1st Set: T = 180°C; injected solution pH = 12.87, no NaCl; initial rate = 0.9 ft/day varied
down to 0.4 ft/day.

2nd Set: T = 180°C; injected pH solution = 12.87 with 2% NaCl; initial rate = 4.8 ft/day
varied down to 0.2 ft/day.
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3rd Set: initial T = 70°C varied up to 180°C; injected pH solution = 12.87 with 2% NaCl;
initial rate = 4.8 ft/day varied down to 0.4 ft/day.

All cores were saturated with 2% NaCl and flooded with 2% brine prior to caustic injection.

7.3 RESULTS AND DISCUSSION

The following results were obtained for the first set:

Fig. 56 shows a plot of pH vs. pore volume injected. Surprisingly, the caustic breakthrough
was delayed much longer than anticipated. However, after 16 PV the efluent pH increased to 12.1.
Sampling was done after 14 PV had been injected corresponding to conditions before steady- state
was achieved. Samples were also taken after steady-state was established. Fig. 57 shows effluent Si
concentration vs. PV injected; Si eluted at about the same time that caustic broke through. Fig.
58 shows pH vs. dimensionless length. Comparing the unsteady and steady-states the advance
of the the high pH front can be visualized. This front moved slowly and it broke through after
injection of 16 PV. At 0.4 ft/day the residence time was ‘increa.sed. Thereafter, lower pH or higher
consumption was noticed. Fig. 59 shows Si concentration as a function of dimensionless length.
There are no data between the injection point and the end of the first core; however, it is evident
that the concentration in solution of Si increased to values at least as high as the concentration
at the end of the first core. After the increase in Si concentration, a steady decline down to the
efluent end was observed. This decline coincides with the change of slope in Fig. 58. Also as the
high pH front advanced, the high Si concentration advanced accordingly.

The duration of this experiment was 30 days, and a total of 25 PV was injected.

The second set of experiments was next performed:

In this set of expei‘iments the procedure is slightly different from the previous. A more extensive
pre-flush was done to ensure complete divalent cation exchange. During pre-flush, the efluent end
pH was monitored and when the effluent end pH stabilized around neutral pH it was assumed
that the divalent ion-exchange was completed. The caustic solution contained 2% NaCl and the
experiment started at a higher rate. It is believed that ion exchange is a fast reversible reaction
that causes a delay in caustic breakthrough. This delay is usually within a maximum of 2 PV, If
the residence time is high enough (such as in a batch experiment), there is a competition between

dissolution and ion exchange reaction. In order to minimize the effect of dissolution, the starting
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Figure 56: Effiuent pH vs. PV injected for set 1.

rate was increased to 4.8 ft/day in this set. Adding NaCl to the caustic solution increases the
amount of ion exchange. Therefore more sites will be satisfied and once again a complete jon
exchange is ensured.

Fig. 60 shows the effluent end pH vs. pore volume injected at the starting rate of 4.8 ft/day. The
PH broke through after 1.5 PV which was considerably faster than the previous experiment (Fig.
56). The pH was stabilized at 11.7, the difference between the stabilized pH and the injected pH
being attributed to the dissolution reaction. Once the pH stabilized, samples were taken between
cores. Following this, the rate was reduced to 0.9 ft/day. The rate was further reduced to 0.4 and
0.2 ft/day successively in the above manner. Fig. 61 shows a plot of pH vs. dimensionless length.
As the rate was reduced, lower pH and higher hydroxyl ion consumption was noticed, indicating
that final equilibrium had not been achieved. Also a change in the slope is noticed similar to
the results of the previous experiment (Fig. 58). After the rate was reduced to 0.9 ft/day, the
high pH front lagged behind. This lower rate provided a higher residence time for the deposition
reaction to take place. This is evident from Fig. 62 which shows silica vs dimensionless length. A
change of slope is noticed, coinciding with the change of slope in Fig. 61. High pH was observed

at the place of high silica concentration. These fronts move slowly due to the slow reaction. In

113



T 1 l | 1 T l T T I T
—= Colorimetric Method
~- Atomic Adsorption
2000+ -
E :
a - -
S 1600
o
Q 1200} .
w
800 -]
400 |- . _—"— -
o a I 1 ! L ! ! !
0 4 8 |2 6 20 24
P.V.
Figure 57: Effluent Si concentration vs. PV injected for set 1.
| I ] 1
—— 55 Rate = 0.09 ml /min
_._UNSS (After 14 PV. _
40500 Rate = 0.09 mi/min)
--- 55 Rate = 0.04 ml/min
ST
‘El 3000 ,r\-\,\o ;
a I \
A 1 \
N I//' ~
2 2000k /i
n :
/
-
/
|OOO— /I'
i/
U
/
0 l l |
0 0.5

X/L
Figure 58: Profile of pH vs. length for set 1.
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Figure 59: Profile of Si concentration vs. length for set 1.

. this set of experiments sufficient time was not allowed for these fronts to breakthrough, therefore
a steady-state was not achieved. The effluent end @d in-between core samples were analyzed for
aluminum using atomic-adsorption. Fig. 63 shows Al;O3 concentration vs. dimensionless length.
The samples at the end of the first, second and fourth cores did not show any detectable aluminum.
However, at the end of the third core, some aluminum was measured.

The duration of this experiment was 30 days and a total of 22 PV was injected.

The final set of experiments involved a study of the effect of temperature. This experiment
started at an initial rate of 4.8 ft/day and temperature of 70°C. After steady-state was achieved,
the rate was reduced to 0.9 ft/day. Following steady-states at lower rates, the temperature was
increased, and the same procedure was repeated for higher temperatures. The temperature was
increased up to 180°C in this manner. |

At lower temperatures(up to 120°C), no significant pH drop was observed. At this point, it
should be mentioned that since the effluent pH is measured at room temperature it is possible
that the silicate ionization reactions are reversed upon cooling, to release OH ion. The measured
effluent pH is used only as a guideline rather than a variable for exact consumption calculations.

At low temparatures, due to the insignificant consumption, and also most of it being in the form of
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Figure 60: Effluent pH vs. PV injected for set 2.

reversible reactions, it is possible that the effluent pH is over-estimated. The silica concentration
is significantly lower than that observed at higher temperatures. As the rate was lowered to 0.9
ft/day, higher silica concentration was observed at the effluent, although no change in pH was
observed. This indicates that consumption was taking place but it could not be detected by the
measurements of the pH probe.

At 100°C slightly higher levels of silica concentration compared to 70°C were observed. However,
final equilibrium at this temperature was not achieved either. This can be concluded from the
observed higher silica concentration upon the reduction of the rate from 1 ft/day to 0.9 ft/day. At
lower temperatures, the reaction is slow and the state of final equilibrium is reached at much higher
residence times which could not be provided in this setup. |

At 120°C a reduction in pH was observed. Fig. 64 shows pH vs. dimensionless length at
different temperatures. Fig. 65 shows silica concentration vs. dimensionless length at 150°C.
Compared to 100°C the silica concentration at the effluent is more than double and even higher
concentrations were observed at the end of second and third cores. Also, there is an indication of
silica deposition somewhere after the end of the third core.

Once the temperature was increased to 150°C a significant reduction in pH was observed, the
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PH decreasing to 7.42. However, subsequently it slowly rose to 12.1. Fig. 64 shows the pH vs.
dimensionless length for 150°C. The samples were taken at different pore volume injected. Curve
1is at 3.6 PV, curve 2 is at 7.4 PV, and curve 3 is after total of 11 PV injected, at which time
steady-state was established. This delayed high pH front breakthrough is similar to set 1 and set 2.
In set 1, the high pH front‘ breakthrough occurred after 16 PV, and in set 2 after a total injection of
22 PV the high pH breakthrough was never detected. Fig. 65 shows silica vs. dimensionless length
at 150°C and the rate of .9 ft/day. The advance of high pH front coincides with the advance of high
silica concentration not only at the effluent, but also throughout the system at any time. Once the
steady-state at .9 ft/day was established the rate was reduced to .4 ft/day. Upon rate reduction,
no further change in effluent pH was noticed. However, the samples taken in-between the cores
show slightly higher pH at the end of the third core. Fig. 65 also shows silica vs. dimensionles.s ;
length at 150°C at the rate of .4 ft/day. There is no apparent change in the efluent pH and silica
concentration, compared to .9 ft/day. However, slightly higher silica concentrations at the end of
the third core were noticed. This coincides with the slightly higher pH at the end of the third core.
These slight changes show that further increase in pH or silica concentration might be noticeable,

were enough residence time allowed.

118



pH vs. Dimensionless Length
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Figure 64: Profile of pH vs. length for set 3 at various temperatures.

Keeping the rate constant at .4 ft/day the temperature was finally increased to 180°C. The pH
dropped to 11, and stayed practically constant. Assuming that steady-state was achieved, samples
in between cores were taken. pH profile and silica concentration profile are similar to those of Set
1 at the same rate.

Fig. 66 shows the e.fﬂuent pH, silica and alumina concentration vs. pore volume injected
throughout the experiment. Up to 120°C, silica concentration increases as the rate is decreased or
the temperature is increased as predicted by the dissolution reaction and its constant. At 150°C
upon the increase of temperature the pH dropped following drop in silica concentration, which |
suggests a different kind of reaction, one in which both silica and hydroxyl ion are consumed.
Once the pH increased to higher values, the silica concentration also increased. However, the
silica concentration leveled off at lower concentration than 120°C, indicating lower solubility at
150°C. Also in Fig. 66 Al concentration vs. pore volume injected is shown. At the beginning,
alumina, pH and silica eluted at the same time. At 70°C and after alumina concentration reached
the maximum, it dropped continuously until it leveled off at a constant value. The same trend
in alumina concentration was previously reported and attributed to the formation of new alumina

silicates. Also at 70°C the pH dropped for a short period of time, but subsequently increased again.
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Silica vs. Dimensionless Length
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Figure 65: Profile of Si concentration vs. length for set 3 at 150°C and various rates.

A simultaneous reduction in alumina concentration followed. At 150°C the trend is different than
that observed at 70°C. Significantly at 150°C no alumina was present in solution to react with the
soluble silica and to form alumino-silicates. Alumina disappeared from the solution completely,
sometime after the temperature was increased to 120°C.

From the results of the above experiments it can be concluded that a’reacti_on other than
dissolution reaction is responsible for the uptake of hydroxyl ion. This reaction causes a delay
in caustic breakthrough, and consumes hydroxyl ion as well as silica, since the sharp decline in
hydroxyl ion coincides with a sharp decline in silica concentration. Interaction of caustic with
alumina oxide, clays and other oxide surfaces are suggested as being responsible for the uptake of
the silica and hydroxyl ion. The effect of kaolinite on silica dissolution was studied recently by
some researchers and silica deposition has been noticed. They have described the silica deposition
as a mineral transformation reaction in which silica reacts with alumina along with hydroxyl ion
to form alumino-silicates of the zeolite family. Different reactions have been proposed to describe
the above reaction.

Our results can be explained based on a chemisorption reaction. In this reaction the silicic acid

is adsorbed onto the surface which is negatively charged. In this step, hydrogen ion is released
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from the surface. In the next step the sodium/hydrogen ion exchange takes place causing further
hydroxyl ion consumption. In this scheme, no alumina solution is required.

The chemisorption reaction is temperature-dependent, at lower temperatures no significant drop
in either pH or silica being observed. This reaction is also rate- dependent. This can be concluded
from the results of the second experiments and from the comparison of the results of the first and
the second experiment. At lower rates the drop in silica concentration was more significant and the

caustic breakthrough occured faster at the higher rate.

7.4 CONCLUSIONS

The following conclusions have been reached in this work:

1. Effluent silica concentration can not be reliably used as a sole measure of the amount of

consumption.
2. Clays contribute to consumption significantly through chemisorption reactions.

3. Chemisorption manifests itself in a manner similar to ion exchange reaction causing a delay

in caustic breakthrough.

4. Chemisorption reaction is temperature-dependent. At low temperatures, the amount of con-

sumption is negligible and breakthrough is not delayed.

5. Upon completion of chemisorption, new equilibrium will be established. These results show
that the amount of consumption after reaching equlibrium is due to dissolution and is not

very significant.
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8 CAPILLARY EFFECTS IN STEADY-STATE FLOW IN
HETEROGENEOUS CORES |

J. Chang and Y.C. Yortsos

8.1 INTRODUCTION

Effects of heterogeneity in immiscible flow in porous media are usually associated with mobility
contrast and viscous fingering (for example, see recent discussions by Giordano [48] and Araktingi
and Orr|[3] ). This is typically the case in predominantly parallel flows, occurring in stratified layered
media, and for large enough flow rates and spatial scales so that capillary effects are negligible.
Such nominally miscible displacements are presently simulated in considerable detail (e.g. Crump
[27]).

At the same time, permeability variations affect capillary pressure characteristics (e.g. through
the Leverett J-function, Bear [8] ). Contrary to the miscible case, capillary heterogeneity is most
pronounced when ‘tlluva flow is in series, and the flow rates low enough for the displacement to be
practically one-dimensional. Typical examples in opposite ends of this occurrence are the familiar
end-effects in immiscible flow (corresponding to an infinitely large permeability contrast), and the
no-flow, static saturation distribution in a layered system (Collins [23], Marle [67]).

For a number of laboratory studies, the condition of one-dimensional, macroscopic flows is
~ essential. Steady- and unsteady-state methods for measuring relative permeabilities are notable,
routine examples. For most fluid pairs, enforcement of this condition dictates flow rates low enough
for capillarity to suppress viscous fingering in the transverse direction (Peters and Flock [83] Yortsos
and Hickernell [120]). Capillz;rity is then comparable to viscous forces over length scales of the order
of core width or higher. At such conditions, any capillary heterogeneity in the direction of the
displacement will be manifested over macroscopic (core) scales. Indicative of this is the reported
relevance of end effects in relative permeability measurements (Odeh and Dotson [77]).

The increasing awareness of the heterogeneous nature of geological porous media (e.g. Lake and
Carroll [64] ), has led to renewed efforts towards a better understanding of the associated transport
processes. This paper addresses one such issue, namely the effect of capillary heterogeneity in
immiscible displacement. A limiting case of such effect involves equilibrium saturation profiles

'in a heterogeneous core at static conditions, thoroughly studied before on the basis of capillary
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continuity (Bear 8] , Collins [23] , Marle [67] ). An increase (decrease) in wetting phase saturation
accompanies a decrease (increase) in permeability, with the saturation roughly displaying a mirror
image of the permeability. With the exception of outflow end-effects, however, little is known about
corresponding profiles for the general case of flow systems.

In a recent study (Chang and Yortsos [18], hereafter denoted as Part I), we presented a nu-
merical investigation of the effects of capillary heterogeneity, induced by permeability variations,
in the case of transient, immiscible displacement. The saturation response varied considerably as
a function of the flowing fraction, the mobility ratio, the wettability and the spatial correlation of
the heterogeneity. Furthermore, the simple argument of capillary continuity was found insufficient
in interpreting the trends observed.

As a companion to Part I, this section presents a study of the steady-state displacement in
a heterogeneous core with emphasis on capillary effects. To illustrate qualitative trends we first
examine two model cases that allow for exact solutions, a linear (ramp) and a piecewise linear,
periodic (sawtooth) variation in the capillary variable 7(~ vk). General qualitative results are
subsequently obtained for arbitrary distributions. The study is completed with numerical solutions
that illustrate effects of randomness and spatial correlation. The results provide a simple explana-
tion of several of the effects observed in Part I, and elucidate the role of the various parameters,
such as fractional flow, mobility ratio, spatial correlation and permeability contrast. Fractional
flow and capillary pressure “composition paths” are also supplied. The analysis contains as special

cases the opposite limits of static (no flow) distribution and outlet end-effects.

8.2 FORMULATION

We consider the steady, one-dimensional flow, at total rate g, of two immiscible phases (subscripts
w and o to denote “water” and “oil”, respectively). A heterogeneous medium is assumed, such that

the capillary pressure varies spatially, e.g. according to the Leverett relationship

_ e

Although distribution in other pa.ra.mefers, such as wettability (7 cos f) can be readily considered,
the analysis is restricted to variable permeability only. Letting k* denote a characteristic value for
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the latter, the dimensionless parameter
) T=\/k/k* (213)

measures, in the present context, the heterogeneity of the medium. As in Part I, the ensuing
formulation assumes that dimensionless quantities (relative permeabilities and the capillary J-
function) are only functions of the saturation. This approximation is not strictly accurate and is
discussed later in some detail.

Using standard terminology and notation, the steady-state profile is described by the following

kkro(sw)fw(sw) ‘_122
HBoq dz

= F; = fu(Sw) (214)

where F; is the flow fraction of phase w at injection. We normalize further by denoting

( = z/L (215)
Sw_ch
uo= e (216)
- WEP

e = Lo (217)

Fu) = fulS0) (218)
Gw) = keod(Su)fulS) (219)
H(u) = —keofw(Sw)J'(u) (220)
#(Q) = dr(Q)/dC (221)

to obtain

F(u) - cG(u)r'(¢) - Fi = e H ) 7 (222)

In the above, L is a macroscopic length scaling heterogeneity. As in Part I, the following functional

forms are used for calculation convenience

kvw = u® (223)
ko = (1-—u)? (224)
J(u) = (1-u)(2u®-2u+1) (225)

where u denotes the saturation of the wetting phase. Typical schematics of the functions F(u), J(u),
G(u) and H(u) for water-wet systems are shown in Figure 67, where the solution u; of F(u) = F; is
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Figure 67: Schematic of functions F, J,G, and H forM =10. . .

also identified. Particular functions for the heterogeneity variable v will be assigned below. In all
cases, the core length is assumed large enough, compared to the heterogeneity scale, so that injec-
tion/production end-effects are not relevant. In the analytical model we consider a linear change
in the form of a ramp and a periodic profile in the form of a sawtooth, while variously correlated

variations are taken for the numerical investigation.

8.3 ANALYTICAL RESULTS
(1) Step-like change

We consider the saturation response to the step-like change (Figure 68 a)

T (<-1
T=4qal+b -l1<(<1 (226)
T+ C>1

where a is the slope (7 —7_)/2 and b the average (74 + 7_)/2. It must be noted that for convenience

in graphics, permeability and saturation profiles in all figures were plotted vs. an appropriately
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rescaled space variable ¢ alﬁvays varying in (0,1). The steady-state equation (222) takes the form

F(u)- F; = ET_H(u)%g- (<-1
F(u) — aeG(u) — F; = e(al + b)H(u)%}i -1<({<1
F(u) - F; = sr_,.H(u)g% 1<¢

For the linear variation (226), equationﬁ (227-229) can be integrated by quadratures

Y H(u)du (+1

e F —F - 1 ¢<-1
u H(u)du T
mu+ﬂw—um@_n—h;j -J<C<1
Y H(u)du (-1 <

‘ uy F(")—Fi— T+

(227)
(228)

(229)

(230)
(231)

(232)

In the above, we defined the constants of integration u_ = u(-1), u; = u(1), while continuity in

saturation was assumed at { = 1. Far from the heterogeneity, the saturation takes the constant

value u; dictated from the injected fraction. Note that u = u; is also a solution of (227, 229). This
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value is the same in both outer regions, in view of the assumption on the relative permeabilities.
(In the opposite case, the values may slightly differ from each other, with no qualitative effect, as
discussed below).

To proceed, we first show that in the interval { > 1, u = u;. Indeed, if uy > u_, equation (232)
requires either u > u; or u < u;, for { — 1 to be positive. The first condition yields an ever
increasing u, while the second an ever decreasing u, both of which are inadmissible. Likewise, if
uy < u;, equation (232) requires either u > u; or u < u,, also unacceptable for the same reason.
The only possibility left is u; = u;, which in turn requires u = u; for { > 1.

It remains to evaluate u_. Use of the above in (231) yields by continuity at { = —1

U H(u)du 1. T
w F@) MG —F A n (233)

where the relevant parameter A = ac was also defined. Thus, the complete solution is described .

by (230) and

u H(u)du _ L d S
A/u,- F(u)—»\G(u)-F;“h‘H —l<(<l (234)
U= 1<¢ (235)

where u_ solves (233). To locate u_ with respect to u;, we consider the two cases:

(a) Increasing permeability, a > 0

Here, the RHS of (234) is negative, implying two possibilities: u_ > u; and D(u) = F(u) -
aG(u) < F; in (u;, u-), oru_ <u; and D(u)> F; in (u_, uy). For increasing permeability,
aG(u) > 0, thus, D(u;) < F;, which promptly disqualifies the second option. It follows that
u, > u_ > u;, where u, is the solution of D(u) = F; (Figure 68 b).

A schematic of D(u) in the fractional flow diagram (dashed lines in Figure 68 b) resembles
a fractional flow function in the presence of gravity in an “updip” displacement. The associated
saturation profile is shown in Figure 68 c. The saturation builds up in the low permeability region,
¢ < —1, to the maximum value u_ determined from (233), before it declines continuously inside
the region of permeability variation —1 < { < 1 to the final value u;.

A physical interpretation to the above can be readily provided. For the wetting fluid to flow at
steady conditions in a progressively higher permeability medium, its saturation must decrease, in:

accordance with capillary continuity. Since, however, both asymptotic saturation values are equal,
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this can only be accomplished if the wetting fluid builds up a high enough saturation in the low
permeability part. We portray the corresponding “composition path” in the fractional flow diagram
(solid lines in Figuie 68 b) and in a (dimensional) capillary pressure vs. saturation diagram (Figure
68 d. line ABC). Note the difference with the path dictated from capillary continuity alone (solid
line DC, Figure 68 d). The essence of the above argument remains the same when the relative
permeabilities, thus the saturations, are different in the two outer regions.

It is worthwhile to examine the sensitivity of u_ to A, also expressed in terms of dimensional

variables as

3= W (VEs - VE)
Hoq L

An increase in ) is obtained by an increase in the permeability difference and/or by a decrease

(236)

in the flow rate, or the heterogeneity length. For simplicity, we shall take a constant, and finite,
permeability contrast. By differentiating (233) with respect to A

du_ _ /“— H(u)[F(u) - Fldu__ o (237)

A Ju; [F(u)= AG(u)— F?
i. e., it is straightforward to show that u_ is an increasing function of A\. A “composition path”
corresponding to a lower value of A is portrayed in Figure 68 d (line AEC).

The behavior at large ) is interesting. By rearrangement, we obtain

u_ H(u)du = (238)
. F(u) - F; T
Ug X _ G'(u) +

which for large ‘enough A yields

u_
/ H(u)du T (239)
uy G(u) T
In view of (215-221), the above can be reformulated to
T-— T+
which is the condition for continuity in capillary pressure
Pe(u-) = pe(uy) (241)

Therefore, in this limit, the saturation u_ takes its highest value (path ADC), as dictated from
standard end-effect arguments at static conditions. The limit can be independently reached by
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either a sharp discontinuity (rapid variation) or by a vanishing flow rate (static conditions). In
the former case, the saturation profile contains a kink (in the shape of A), that coincides with the
gradient in 7 (also a A-like kink). This behavior was frequently exhibited in the unsteady-state
profiles of Part I, which can now be properly interpreted (see also below). It is also remarked that
the analysis above holds equally well for infinitely large permeability contrast (74 3> 7_, the latter
value held constant). Since A is large under this condition as well, the previous result (240) is valid,
with u_ — 1 (path AFG in Figure 68 d). The condition of maximum wetting phase saturation

build-up for simultaneous flow is, of course, the well known end-effect in the producing side of a

core.

(b) Decreasing permeability, a < 0

For the case of decreasing permeability (Figure 69 a), an analysis similar to the previous holds.
Salient features are the following: a and A being negative, the function D(u) lies to the left of F'(u),
thus resembling flow in the presence of gravity in a “downdip” displacement (dashed lines in Figure
69). The solution u_ in equation (233) now satisfies u, < u_ < u;, thus the saturation profile is a

“mirror image” of the previous (Figure 69 c). The physical interpretation is also straightforward.
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Capillary continuity requires an increase in wetting saturation as the permeability decreases, and
this can only be accomplished by a fall-off of the wetting saturation near the end of the high
permeability region. “Composition paths” are shown in Figures 69 b, d (solid lines, and line ABC,
respectively). The difference with the path dictated from capillary continuity alone (line DC)
should be noted. As before, u_ is monotonically varying with A, with u_ approaching the static
value u_ = 0 in the limit A — —oo (steep gradient or static conditions).

We shall complete the analysis by considering the other limit, A — 0, obtained at high enough
rates (or at weak heterogeneity). Then, u_ ~ u; and the integral in (233) is reformulated as follows

- du 1. T
H(w) /1.4,- AG(uw;) — F'(u)(u — u;) ~ Xln i- (242)

where F(u), G(u) and H(u) were expanded and only leading order terms were retained. Upon
integration and rearrangement, the final result is obtained
F'(w)

o AG(w) | (T XH(w
u- =t s |1 (T“_“) (ui) (243)

where certain regularity conditions on F(u), F'(u) and H(u) have been assumed.

With the aid of the fractional flow diagrams, the above analysis can be used to illustrate effects
of other parameters. We shall consider injection fraction and mobility ratio.

For a > 0, an increase in the fraction F; results into higher values for u_. However, the
amplitude of the response, u_. — u; diminishes at large enough fractions and vanishes when only
wetting fluid is injected (Fi, uiy u_, all approach 1). At this condition, capillary heterogeneity is of
no relevance. By contrast, when F; approaches zero (or when mostly non-wetting fluid is injected),
a saturation response exists given by (233) with F; = 0. Opposite effects are obtained when a < 0.
Here the response vanishes when mostly non-wetting fluid is injected, while it remains significant
in the other limit (F; = 1). The above trends were detected in the transient displacement studies
of Part I.

The effect of the mobility ratio M cannot be identified as readily. However, some conclusions
may be drawn in limiting cases. Thus for a > 0, the response is highly pronounced when the
mobility ratio is large (M > 1), and, barely noticeable in the opposite case (M « 1). Opposite
trends are expected when a < 0. A note should finally be made regarding wettability. If u is taken
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as the saturation of the non-wetting phase, results follow in a straightforward manner, and they

are qualitatively the same to the above, subject to the transformation 7/ — —7'.

(ii) Periodic variation

To simulate a periodic variation we consider a model with T piecewise linear in the form of a

sawtooth (Figure 70 a). With appropriate rescaling we may take for a periodic cell

- ; 1< 0

a+C+1'+; 0<C<l

where a_, a, and { are arbitrary. Defining parameters as before, we shall obtain the solutions

u H(u)du T
)“/,,_F(u)~,\_a(u)—1~",-“1n€ ~1<(<0 (245)
and -
u H(u)du T

Ay =In— 0< (<! (246)

uy F(u)— M Gu)-F; =y

The two unknowns, u_ and u, are determined from continuity at { = 0 and periodicity at ¢ = £

u H(u)du _ v H(u)du T
My, FO) —MG@-F - F@ - Gm-F - Pr (247)

Note also the simpler form obtained by rearrangement

/‘“— H(u)[F(u) — F;ldu
up [F(u) = A4 G(v) - F][F(u) - A_G(u) ~ F]

=0 (248)
Without loss in generality, we take A, < 0, A_ > 0 (Figure 4a). As above, we also define functions
D_(u) and 'D+(u) to construct the fractional flow schematic (dashed line in Figure 70 b).
Consider, now, the saturations u*, u} where D_(u) = F;, Dy(u) = F;, respectively. The
fractional flow diagram is divided into four regions, within each of which the sign of the integrand
in (248) is constant. From the latter, u_ and u; may not fall into the same region. Furthermore,
neither saturation may lie in regions I or IV (otherwise, the saturation will assume somewhere the

values u® or u}, where one of the integrals in'(247) is singular). It follows that the two saturations

must lie in IT and III. Using one of (247), we then have

u- H(u)du 1. 7
= —In — 4
uw, F) A G -F_ r*m <0 (249)
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which can be satisfied by either one of the following: u_ > u; and D_(u) < F;, or u_ < uy and
D_(u) > F;. For the latter to be valid, u_ (thérefore, 1) must lie in region IV, a case already
excluded. It follows that u, < u; < u_. It is then easily shown that u decreases monotonically
in (-1, 0), acquires its lowest value, uy, at { = 0, and it increases monotonically in (0, £) to its
highest value, u_ at { = £. A schematic (£ = 1) is shown in Figure 70 c. Thus, the wetting phase
saturation follows a pattern which is “anti-symmetric” to that of the permeability. The saturation
falls-off as the permeability rises, and builds-up in regions of permeability decrease. Corresponding
paths in the fractional flow and the capillary pressure diagrams (line ABA) are shown in Figures
70 b, d. The path rotates towards the horizontal (CDC) in the limit of sharper heterogeneity (or at
static conditions), and towards the vertical (EFE) in the limit of weaker heterogeneity (or higher
flow rates) as shown in Figure 70 e. It can be easily shown that the corresponding limits in the two

cases are uy = u%, u_ = u*, and u; = u_ = u;, respectively.
+ +9 ’ + 3

8.4 GENERALIZATIONS AND NUMERICAL RESULTS
(i) Some General Results

Although the above analytical models provide considerable insight, they are restrictive in certain
respects. For example, the sawtooth model predicts that saturation maxima and minima coincide
with changes in 7/, a feature not noted in numerical simulations with smoother profiles. Figure 71
shows the response to a sinusoidal variation. Close inspection reveals that there is no correspondence
between the location of maxima and minima of 7 and u . A similar discrepancy arises between the
ramp model studied above, and one where the step change is simulated by a smoother, hyperbolic
tangent profile.

To understand the qualitative response to more general profiles, we consider an arbitrary in-
terval, e.g. interval KL in Figure 72 a, where 7' varies monotonically between two extreme values
(negative and positive, respectively). We shall define as in the previous cases the function D, here

a function of ¢ as well (since A is now (-dependent)

A(¢) = e7'(€) (250)

D(x;¢) = F(u) - A()G(v) (251)
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The limiting curves, D_ and D, corresponding to Apmin = €7/, < 0 and Az = €75, > 0, are

shown in Figure 72 b (dashed lines). Consider also the curve F(u) (which is a D function with
A = er’ = 0) and the constant F;. Note that D_, D, correspond to inflection points, while F is
associated with maxima and minima of the T profile. The four curves D_, D,, F, and F; divide
the diagram into four regions I, II, ITI, IV, which join at point O, and which have the following

properties in view of (222)

Region I: dr/d({ <0, du/d{ >0
Region II: dr/d{ > 0, du/d{ >0
Region II:  dr/d¢ > 0, du/d( < 0
Region IV: dr/d{ <0, du/d({ <0

It is then straightforward to show the following (Figure 72 a):

t. On composition paths in this diagram, the direction of increasing ( is clockwise.
#t. Composition paths encircle point O, by intersecting F(u) twice (above and below O, points
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Figure 72: General model. (a) 7 and u profiles, () D and F functions and compositions paths.

A and C respectively) and by intersecting F; twice (to the right and left of O, points B and
D respectively).

#ii. Composition paths are tangent to D_ and D, curves in the upper left (I)'a.nd the lower right
(III) regions, (points E and F), respectively.

It follows that u attains its maximum at B, and its minimum at D. Therefore, the location of
the various features in the direction of increasing (, is as follows, starting from an inflection point
(minimum of ', point (F)):

Increase in u = T reaches a minimum (A) = u reaches a mazimum (B) => decrease in u =
T reaches an inflection point (E) = decrease in u = T reaches a mazimum (C) = u reaches a
minimum (D) => T reaches an inflection point (F).

Therefore, local maxima (minima) of u are sandwiched between local minima (maxima) and
local inflection points of 7. A richer illustration of this is shown in Figure 73 for a profile with
modulated waveform. The previous analytical results are also consistent with the above rules, since
in a sawtooth profile, inflection points coincide with maxima (or minima) of 7, thus with minima

(or maxima) of u , as indeed portrayed in Figure 71. Likewise, as £ increases, the maxima (minima)
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of T approach the minima (maxima) of u, so that in the static, no-flow limit, u and 7 are exactly
antisymmetric. The same correspondence should be expected when 7 has sharp variations (see

below).

(ii) Numerical Results

We complete the presentation with numerical simulation results for some model cases. All simula-
tions were performed backwards in (, starting with the condition u(1) = u;. A standard Newton-
Raphson method was used. Shown in Figure 74 are the results corresponding to a set of equal
length intervals with a random distribution of 7. In general, the predictions of the ramp problem
are well followed here, as expected. The next set corresponds to profiles constructed from the
trace of fBm (fractional Brownian motion), recently conjectured to represent natural porous media
(Hewett [58], 1986). Shown are the simulations corresponding to uncorrelated white noise (Figure
75) and correlated statistics with fractal dimension D = 1.2,1.8 (Figure 76, 77). The intensity of
the response is shown to decrease as.the correlation becomes stronger (and as ¢ decreases). This is

consistent with the analysis above, where lower values of ) here induced by large L (strong spatial
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correlation), lead to a weaker response. The behavior should be contrasted to the apposite trend
of higher sensitivity with increased spatial correlation, for the case of viscosity dominated displace-
ment. Careful examination shows that the general predictions of the preceding section are also
satisfied in the numerical simulations. The composition paths in the fractional flow and capillary
pressure diagrams are noteworthy in their complexity, which is, of course, only a reflection of the
imposed heterogeneity. The clockwise rofation of the paths with an increase in ¢ discussed above
was also verified.

The effects of other process parameters, such as mobility ratio, injection fraction and wettability

follow in a straightforward manner from the analysis of the step-profile.

8.5 DISCUSSION

The preceding analysis examined in detail the steady-state saturation response to heterogeneity in
capillarity (akin to macroscopic pining). Although it was implied that the latter is due primar-
ily to permeability changes, the analysis applies equally well to wettability variations, under the

postulated assumption that relative permeabilities are unaffected. This assumption needs to be
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discussed in some detail.

Changes in permeability reflect the combined variation of pore size, geometry or topology (see
for instance Thompson[104] and ought to affect relative permeabilities, at least to some extent.
The precise effect depends significantly on the cause of the variation. For an exact treatment, one
must characterize the macroscopic (core) heterogeneity in terms of spatial variation in the pore size
distribution and topology, extract the corresponding permeability variation from an appropriate
model and evaluate relative permeabilities and the Leverett function. The approach of Heiba [56] for
expressing the latter in terms of the pore microstructure offers an attractive option. Of course, this
method would require a precise description, involving to a great extent the geologic and diagenetic
history, a process specific to the porous medium.

On the other hand, if the permeability heterogeneity arises from a certain variation in the pore
size, it is likely that changes in the (dimensionless) relative permeabilities and Leverett function
(that affect functions F, G and H) would be small. This is certainly the case for pore-size distri-
butions that vary in a self-similar manner, as can be readily shown by applying a network model.

Keeping in mind the possible limitations, and, mostly, for simplicity, we have taken this latter ap-
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proach to use permeability as a descriptor of heterogeneity, and keeping unchanged dimensionless
functions such as relative permeabilities. Nevertheless it should be pointed out that the errors in-
volved with such approximations do not alter the qualitative features of the response, in particular
the composition paths.

The analysis presented above generalizes to flow conditions, previous results on capillary hetero-
geneity in static systems, and complements our numerical investigation of transient displacement
(Part I). Saturation profiles of the latter exhibited several of the features shown here, as the tran-
sient states rapidly settle into a quasi-steady state with locally constant flowing fraction. It was
shown that the saturation response faithfully reproduces permeability changes (namely local max-
ima and minima), under any conditions. On the other hand, the magnitude and phase lag of the
response (roughly equal to 57/4 for the sinusoidal case) depend significantly on the parameter
), and indirectly on the displacement properties (mobility ratio, etc.), with stronger responses
obtained at larger values of A.

A practical question that may arise in this context is the use of saturation profiles at steady-
state to uncover capillary (and possibly, permeability) heterogeneity. Expectedly, the answer is not
unequivocal. Determination of absolute values is quite difficult, since it would require knowledge of
additional unknown variables, such as the J function, etc., as can be seen in the simplest of cases
(ramp model). Somewhat promising appears to be the estimation of the power spectrum. For the
case of the sinusoidal variation, this is self-evident. More complex variations need additional study,
specifically as it pertains to the effect of the macroscopic capillary number, ¢.

Shown in Figure 78 are the power spectra for T and u corresponding to the static case (e
formally infinite, u obtained from eqn (240)) with  satisfying fBm with D = 1.2. The two spectra
are sufficiently close and the fractal dimension can be estimated from the slope in the plot to a
satisfactory precision (1.25 vs. the actual value 1.20). Necessary condition for this is a rather
mild variation in 7 so that the response in u is almost linear (otherwise some nonlinear estimation
methods must be used). The agreement gradually deteriorates at smaller values of ¢ (Figure 79
a), with quite large deviations at lower values (Figure 79 b). One concludes that a large enough
£ is required for good estimates. For systems with a fixed scale of heferogeneity, an increase in €
necessitates the decrease of the overall flow rate, possibly a matter of experimental inconvenience

regarding equilibrium times. On the other hand, for the fractal statistics of the type above, this
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may be also accomplished with an increase in the resolution of the saturation probe (effectively
decreasing L), provided of course that the latter exceeds lower cutoffs of the fractal statistics
and upper cutoffs for a continuum description. These simple observations provide only a cursory
overview of the practical issue. Further study of this problem and development of some practical
approaches would be desirable undertakings. It is hoped that the present analysis would be helpful

for such investigations.
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SUMMARY AND FUTURE WORK

Substantial progress has been made in our understanding of the mechanisms involved in vapor-liquid
flow in porous media:

- The onset of phase change (nucleation) has been analysed in detail. It is found that the critical
supersaturation is independent of the rate of pressure (temperature) decline, although a significant
dependence exists on the ensuing phase growth. The nucleation model proposed shows that as a
rule, nucleation effects are of a secondary quantitative importance. Critical gas saturations were
predicted in the range 0.01-0.1. Effects of general pore size distributions were also examined. Our
work also finds application to the related processes of cavitation and capillary desorption.

The phase growth following nucleation was classified according to the magnitude of the exter-
nally imposed supersaturation. This is a significant accomplishment that allows for the first time a
systematic approach to the problem of vapor (bubble) growth in porous media. It was established
that the practice usually taken in the simulation of field processes is valid, as long as the super-
saturation decline rates are low enough (substantially lower than 1 psi/day for the case of solution
gas-drive). Appropriate criteria were developed and relative permeability curves were predicted.
The need for further work when the above criteria are not satisfied was emphasized.

Appropriate macroscopic models for the steady, countercurrent flow of steam and water that
include heat conduction, capillary and Kelvin effects were formulated and solved. Such processes
found applications in steam injection and geothermal systems among others. It was established
that Kelvin effects are of importance in the boundary between dry and two-phase regions, and are
negligible otherwise. Careful study of the critical heat flux for the case of bottom heating showed
that a threshold permeability value exists, below which steady states may not exist. In addition, we
have accomplished a unified description of both heat pipe and geothermal problems and showed how
the various problems emerge as limiting cases. In this context, a previously proposed conjecture
on the existence of liquid-dominated steam- water systems, was found to be invalid.

Steady-state experiments with foaming solutions verified the existence of a critical flow rate,
above which the pressure drop increased severalfold. The latter was found to be independent of
the flow direction (drainage or imbibition) or the gas velocity. Emphasis has also been placed on
the end effects associated with laboratory core floods. Foam incubation phenomena have been

observed and are currently under investigation. Expectedly, the use of a prefoamer at the inlet led
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to enhanced foam texture and a higher pressure drop within the core.

In parallel, we were able to extend the traditional Buckley- Leverett and JBN methods for
non-Newtonian fluids of the power- law type. This has important implications in the prediction of
displacement efficiencies with the use of power-law additives. Shear-thickening fluids show improved
performance at higher flow rates, and ylower permeability media, the opposite being true for shear-
thinning fluids. The JBN modification quantifies the error incurred if the original method is used
to interpret unsteady- state relative permeability experiments, and should be of direct use to
laboratory experiments involving foams.

Our work on the use of caustic additives at elevated temperatures was completed by examin-
ing caustic consumption and silica dissolution in long cores. Our experimental evidence strongly
indicates that caustic consumption and the associated pH decline are significant in the presence of
clay at elevated (higher than 120°C) temperatures. We have attributed this to a reaction between
silica and alumina in solution to form alumino-silicates. We are led to the conclusion that caustic
solutions are not expected to be effective as steam additives in reservoirs containing clays. In view
of this reSult, further work in the area is not planned.

Considerable advances have been made in understanding effects of capillary heterogeneity under
non-static (flow) conditions. We have shown how the saturation profiles are affected in a region
of permeability variation due to capillarity, and we examined the effects of flow rate, fractional
flow, mobility ratio, wettability, and permeability contrast. These results are useful in processes in
heterogeneous media, e.g. in steam injection in fractured systems, and in foam flow.

This work contributes to the DOE EOR research in several ways: The complete development of
a chemical-steam simulator would allow field-scale sensitivity studies, particularly the investigation
of heterogeneity effects, at a considerably low cost. Many other users are expected to benefit from
such publicly available software. The fundamental understanding of vapor-liquid flow is paramount
to further improvements in steamfloods, to solution gas-drive, to gas condensate reservoirs and to
several other processes. The correct representation of the phenomena at fhe pore level is necessary
for the acémate description at the larger, macroscopic scale and the subsequent assessment of pro-
cess performance in more complex systems, including naturally fractured reservoirs, heterogeneous
and fractal media.

Our work in the use of steam additives has obvious implications to oil recovery. The dual role
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of mobility reduction and residual saturation decrease played by foaming solutions, is still to be
fully explored. The effect of permeability heterogeneity on the formation and propagation of foams
is a real issue, and may alleviate the requirement of large pressure drops. The potential to EOR
processes can hardly be overstated. On the other hand, the detrimental caustic consumption at
higher temperatures, effectively rules out the suitability of caustic as a viable steam additive.

Future research plans include the following:

1. We plan to continue work on the development of the chemical- steam simulator. We anticipate
accelerated progress in the near future.

2. We shall continue our work on vapor-liquid flow. On the theoretical side, we shall address
issues of heat transfer, heat flux and rate of supersaturation increase on the vapor phase growth.
Concurrent and countercurrent flows at the pore level will be studied. Effects of thin films and
gravity, and the presence of a third liquid phase will be considered, in an effort to quantify residual
oil saturations. On the experimental side, work on vapor-liquid flow involving micromodels and
Hele-Shaw cells is planned. The latter is prerequisite to steam injection in fractured systems. On
the macroscopic side, we shall investigate vapor-liquid phenomena in regions of large permeability
heterogeneity, e.g. naturally fractured systems and fractal media.

3. Further work in the area of foams and other steam additives for mobility control is planned.
The role of permeability heterogeneity on the foam properties will be investigated. The properties
of steam foams and their effectiveness in the presence of oil will be also examined. In parallel,
modeling efforts for the flow of non-Newtonian fluids in porous media will continue with emphasis

on the importance of spatial correlations in the properties of the porous medium.
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The following publications have resulted from this research during the period reported:

1. Parlar, M., and Yortsos, Y.C., "Percolation Theory of Vapor Adsorption-Desorption Pro-
cesses in Porous Media”, J. Colloid Interface Sci., 124, 162-176 (1988).

2. Parlar, M., and Yortsos, Y.C., "Nucleation and Pore Geometry Effects in Capillary Desorp-
tion Processes in Porous Media”, J. Colloid Interface Sci., 132, 425-443 (1989).

3. Yortsos, Y.C., and Parlar, M., ”Phase Change in Binary Mixtures in Porous Media: Appli-
cation to Solution Gas-Drive”, paper SPE 19697 presented at the 64th SPE Annual Fall Meéting,
San Antonio, TX (October 8-11, 1989).

4. Parlar, M., Ph. D. Thesis, Department of Petroleum Engineering, University of Southern
California (September 1989). '

5. Satik, C., Parlar, M., and Yortsos, Y.C., ”A Study of Sﬁeady- State Steam- Water Counterflow
in Porou;s"Medja”, Int. J. Heat Mass Transfer, submitted (1989).

6. Sa.iman, M., Baghdikian, S.Y., Handy, L.L., and Yortsos, Y.C., "Modification of Buckley-
Leverett ;md JBN Methods for Power-Law Fluids”, SPERE, submitted (1989).

| 7. Saneie, S., and Yortsos, Y.C., "Kinetics of Silica Dissolution and Hydroxyl Ion Consumption
in Alkaline Flloding”, paper SPE 17410 presented at the 1989 California Regional Meeting, Long
Beach CA (March 23-25, 1988).

8. Aflaki, R., Ph. D. Thesis, Department of Petroleum Engineering, University of Southern
California (December 1989, expected).

9. Chang, J., and Yortsos, Y.C., "Capillary Effects in Steady- State Flow in Heterogeneous
Cores”, Trans. Porous Media, accepted (1989).

10. Huh, D.G., and Handy, I..L., "Comparison of Steady- and Unsteady-State Flow of Gas and
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9 APPENDIX A

Consider the immiscible displacement of an incompressible liquid by the injection of an inviscid
gas at variable volumetric rate Q and constant pressure Pg at a point source. At creeping flow

conditions, the liquid pressure is typically taken to satisfy a Laplace equation

ViP = 0, (252)

P, = P;atr— oo. (253)

Locally, at the advancing gas interface we have

Pg = PL + 27H, (254)
and a growth condition
k 0P ’
U, = "% 08’ , (255)

where s is the local outer normal and Darcy’s law has been used to approximately relate velocity

and pressure gradient. An overall balance for the gas phase growth reads

d
Z1PeV1= peQ, (256)

which, in case of not-too-large variations in pressure becomes

‘% —Q= /A udA. (257)
Note that the second equality in (257) is a direct consequence of Reynolds Transport Theorem.
We shall, next, reduce the problem into a dimensionless form by normalizing spatial distance
by an initial gas phase radius R,, time by R2u/(Pg — P;)k and velocity by (Pg — P;)k/Rop, gas
volume by R3 and interfacial area by R2, and interfacial curvature by H, (again not necessarily

related to R,). Dimensionless liquid pressure is further defined by

T Pz — P; ’ ( )
to yield
ViT = 0, (259)

T = latr— oo, (260)
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while at the interface we get

LT
s - as’
T = 9y,

where ¥ = 2yH,/(Pg — F;). The dimensionless volume T also satisfies the equation

dY _ [ 8T

dr ~ ,4'6'.;'“’

while the latter also equals Qu/APR,k.

10 APPENDIX B

The dimensionless constants c, e, f are obtained by a straightforward analysis. We obtain

ﬂRpAlkrV(SLr) :
1+ krV(SLr)KRm’?_'il‘
i

cC=

A
R, + KRyBr—
1
R,A4:7'(51,)

e =

_nL

f=ﬂ

J'(SL,) €

(261)
(262)

(263)

(264)

(265)

(266)

where A; and 71 pertain to conditions at . For typical parameter values [18] and k = 1 d, we

obtain the estimates

c=2.469x10"* , e=280.5169 , f=3.0981x10°
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