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ABSTRACT 
 
In the probabilistic approach for history matching, the information from the dynamic data 

is merged with the prior geologic information in order to generate permeability models 

consistent with the observed dynamic data as well as the prior geology. The relationship 

between dynamic response data and reservoir attributes may vary in different regions of 

the reservoir due to spatial variations in reservoir attributes, fluid properties, well 

configuration, flow constrains on wells etc. This implies probabilistic approach should 

then update different regions of the reservoir in different ways. This necessitates 

delineation of multiple reservoir domains in order to increase the accuracy of the 

approach. 

 

The research focuses on a probabilistic approach to integrate dynamic data that ensures 

consistency between reservoir models developed from one stage to the next. The 

algorithm relies on efficient parameterization of the dynamic data integration problem 

and permits rapid assessment of the updated reservoir model at each stage.  The report 

also outlines various domain decomposition schemes from the perspective of increasing 

the accuracy of probabilistic approach of history matching.  

 

Research progress in three important areas of the project are discussed: 

• Validation and testing the probabilistic approach to incorporating production data 

in reservoir models. 

• Development of a robust scheme for identifying reservoir regions that will result 

in a more robust parameterization of the history matching process. 

• Testing commercial simulators for parallel capability and development of a 

parallel algorithm for history matching. 
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INTRODUCTION 
 
Validating Probabilistic Approach for Dynamic Data 

Integration 
 
Reservoir Models are generated considering subsurface geological data obtained from 

different sources (such as seismic, well logging, well tests, stratigraphy, etc), and a 

geological model of heterogeneity. The variogram model is commonly used as the 

heterogeneity model and can be inferred from the same conditional subsurface 

information. These two components are combined within a simulation/interpolation 

framework to generate geological models conditioned to static information. 

 

Geostatistics as a geological modeling technique and its two original basis, the variogram 

model and the kriging interpolation methodology, were initiated by the work of Daniel 

Krige (1951) and built upon by Georges Matheron (1962-1963, 1965), with the purpose 

of providing locally accurate grade estimates of mining blocks; however, its application 

has extended from the mining industry to many other related disciplines, including the oil 

industry.  

 

The simple kriging (SK) estimator  at each location  of the target geological model 

 (such permeability or porosity field) is the best linear unbiased estimator and can be 

written as:  

*
SKk ju

( )k u

[ ]*

1
( ) ( ) ( ) ( )

N

SK j i j i i
i

k m u u k u m uλ
=

− = −∑  
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where, { }( ) ( ) , 1,...,j jm u E k u j J= = , are the known stationary means of the random 

function  at the locations ; J is the size of the model;  are the 

conditional data; and 

( )jk u ju ( ), 1,...,ik u i N=

( )i juλ  are the kriging weights for each conditional data at each 

location for the estimation at location . The weights are calculated from the following 

system of equations: 

ju

( ) ( )
1

( ) , 1,...,
N

k j i k i j
k

u C u u C u u i Nλ
=

− = − ∀ =∑  

 

where  is the covariance between locations  and , and is related to the 

variogram by: 

( i jC u u− ) iu ju

( ) ( ) ( )0i j i ju u C C u uγ − = − −  and ( ) { })0 ( iC Var k u= . The corresponding 

minimum estimation (error) variance 2
SKσ  is: 

( ) ( )2

1
( ) 0 ( )

N

SK j i j i j
i

u C u C u uσ λ
=

= − −∑  

 

Stochastic simulation was introduced by Matheron (1973) and Journel (1974) to correct 

for the smoothing effects and other artifacts of kriging (See Figure 1a.), allowing the 

reproduction of the spatial variance predicted by the variogram model. Different 

algorithms were developed including sequential simulation (Journel, 1983, Isaaks, 1990; 

Srivastava, 1992; Goovaerts, 1997; Chiles and Delfiner, 1999), which has become the 

workhorse for many current geostatistical applications.  
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The stochastic simulation approach is based on the calculation of probability distributions 

at individual locations, considering the conditional information and the spatial 

heterogeneity model. There are different methods for the construction of the local 

probability distributions, including the Gaussian approach where the kriging estimation 

and the estimation variance are used as the mean and the variance of the local normal 

conditional distribution. In another approach, the use of indicator transforms allows 

modeling multivariate distributions without relying on Gaussian assumption, to generate 

models that exhibit more connected and well-defined geological bodies. Figure 1 

compares the results of the original kriging interpolation technique with the Gaussian and 

the Indicator Sequential Simulations, considering the same conditional information. 

 

 

 

Figure 1:  Spatial interpolation obtained by: a) Kriging; b) Sequential Gaussian 
simulation and c) Sequential indicator simulation. 

 

The sequential simulation paradigm is based on Bayes theorem, where the N-variate 

probability distribution can be decomposed into the product of N univariate conditional 

probability distributions. Consequently, the N-variate distribution can be sampled in a 

sequence of N simulated values drawn from conditional probability distributions 

 3



progressively conditioned to more data. Each simulated value is assimilated into the data 

set and the uncertainty distribution at the next node is thus conditioned to that one 

additional piece of information. Sequential simulation corrects for the smoothness of the 

kriged map since the simulated models are samples from the multivariate distribution that 

depicts the joint variability of all points in space. 

 

Stochastic simulation also provides the capability to generate multiple equiprobable 

realizations, giving birth to the idea of assessing spatial uncertainty (Journel and 

Huijbregts, 1978) on reservoir models. 

 

Sequential Indicator Simulation 
 
Spatial distributions can be modeled following a non-parametric approach, where the 

local probability distributions  can be calculated from the available conditional 

information, by defining a set of thresholds 

( ; )iF u z

, 1,...,iz i NT=  to discretize the range of 

variability of the spatial variable, and subsequently performing indicator kriging using the 

indicator transformed variables. 

 

The indicator transform of a random variable is simply a binary transform: the value one 

is assigned if the value at a location is less than the threshold and zero if not. The 

expected value of an indicator random variable is therefore equivalent to the probability 

of that particular threshold. Hence, the probability distribution can be calculated by 

sequentially calculating the expected value of the indicator random variable 

corresponding to different thresholds. An indicator variable is defined as: 
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( ) 1,...,
( , )

1 ( )
i

i
i

i if k u z i NT
I u z

NT if k u z
≤ ∀ =⎧

= ⎨ + >⎩
 

 

Hence the indicator transform discretizes a continuous variable (such permeability) into 

classes or categories. The expected value of the indicator corresponding to a particular 

category is: 

{ }( , iE I u z = Prob{ }( ) ( )i kk u z F z≤ = i  

The indicator coded data is used to infer the experimental variogram at each threshold, 

allowing the usage of different heterogeneity models (variograms) for different 

thresholds. Then, at a particular location, the conditional expectation of the indicator 

random function for each threshold is determined by applying indicator kriging with the 

available indicator coded conditional information. 

( ) ( )* *

1
; ( ) ( ) ( ). ( ; )

n

i k i
i

iI u z n F z n u i u zα αλ
=

= = ∑ α  

where  is the indicator coded data at location u( ; )ii u zα α , with  conditional data; and 

the weights 

n

( )uαλ  are obtained by solving a kriging system that utilizes indicator 

covariances: 

( ) ( )
1

( , ) ; ; , 1,...,
n

i I i I o iu z C h z C h z nβ αβ α
β

λ α
=

= ∀ =∑  

 

This conditional expectation is the conditional probability for that particular threshold. 

The probabilities (conditional expectations) for the local conditional distributions are 

evaluated at a limited set of thresholds. Therefore, interpolation and extrapolation 

methods are required to obtain a continuous conditional cumulative distribution function. 
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Interpolation between the thresholds and tail extrapolations can be obtained applying 

different approaches such linear or hyperbolic interpolation/extrapolation or using 

tabulated values. 

 

Following the sequential simulation approach, a realization of the target reservoir model 

is generated by sequentially sampling from the local conditional distributions following a 

random path, where the previously sampled values become conditional information for 

the construction of subsequent local conditional distributions. The process is repeated 

until all the uninformed locations in the model are populated. Monte Carlo or other 

sampling technique can be applied on the local conditional distributions. Multiple 

realizations of the target reservoir can be obtained by altering the random path and/or 

changing the random draw from the local conditional distributions.  

 

The application of the Indicator sequential simulation approach can be summarized by 

the following: 

1. Select appropriate thresholds consistent with the spatial phenomena. 

2. Indicator code the data corresponding to different thresholds 

3. Infer indicator variogram/covariance model(s) for different thresholds. 

4. Define a random path to visit all uninformed locations. On each subsequent 

location of the random path apply the following sub-procedure: 

4.1. Calculate the conditional expectation of the indicator random function for all the       

thresholds, applying indicator kriging with the available indicator coded 

conditional information. 
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4.2. Correct for order relations (non-monotonicity of the distributions) on evaluated 

probabilities (conditional expectations). 

4.3. Monte Carlo sample a value from the local conditional distribution. In the 

sampling process, use interpolation/extrapolation methods to model a continuous 

ccdf from the discrete probabilities evaluated at the thresholds.  

4.4. Include the sampled value in the list of conditional information for subsequent 

estimations. 

5. A single realization of the target reservoir is obtained after all the uninformed 

locations have been visited following the random path. To generate multiple 

realization repeat step 4 with different random paths. 

 

An indicator sequential simulator has been implemented on C++ language, and validated 

with other algorithms available on public domain. This algorithm is the base code for the 

probability updating method utilized in the research project. In subsequent sections, 

additions including modules for gradual deformation of geological models, interface with 

flow simulators, and optimization schemes are also developed.  

 

Gradual Deformation of Geological Models using Dynamic Data 
 
Honoring the geological model is an important objective during the generation of static 

geological models; however, it is commonly forgotten during the integration of dynamic 

information. During the final stage of reservoir modeling, the history matching process, 

the perturbations or modification in the model should be conditioned not only to the 

reproduction of flow history, but also to honor the geological model of heterogeneity. In 
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the research project this goal is appraised by applying a probabilistic approach for 

gradual deformation of geological models. The gradual deformation is obtained by 

systematically perturbing the local conditional distributions with a deformation 

parameter, rd.  

 

Perturbation of Local Conditional Distributions 
 
Local conditional distributions are perturbed in order to obtain the local distributions 

conditioned to dynamic information. The deformation parameter, rd controls the 

magnitude of perturbation of the conditional distributions. Different perturbation schemes 

have been evaluated in order to define the methodology that better fits the objectives of 

the research. The deformation parameter, rd varies in the range [0, 1].  

 

The gradual deformation starts with a particular realization of the target reservoir, where 

all the model locations, cells or nodes have a simulated value that falls within a particular 

indicator category (range between two thresholds, or the upper/lower tails), that is 

referred as the initial class, . This realization is obtained by following a particular 

random path, sequentially generating the local conditional distributions and drawing 

values from them. 

Iz

 

During the gradual deformation of the geological model, the random path is fixed. 

Changing the sampling draws from local conditional distributions will introduce change 

in the local outcomes, and consequently the deformation in the geological model. The 
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perturbation in the local conditional distributions is introduced to render the model 

deformation more gradual, systematic and controlled.  

 

In the first perturbation scheme, the deformation parameter, Dr  reduces the probabilities 

of all indicator categories in the local conditional distribution, except that of the initial 

class, , which is proportionally increased. In this case the deformation parameter 

multiplies the probabilities of the off-class indicator categories and the probability of the 

initial class always increases (or remains the same for r

Iz

d = 1). This perturbation can be 

written in terms of the conditional probabilities as: 

 

1'

1

( ( ))

( ( )) 1 ( ( ))

D k i

NT
k i

D k j
j
j I

r F z n i I

F z n r F z n i I
+

=
≠

⎧ ⋅ ≠
⎪⎪= ⎨ − ⋅ =
⎪
⎪⎩

∑  

 

where ' ( ( ))k iF z n  is the perturbed local conditional probability. A deformation parameter 

of value zero will generate a distribution with probability 1 for the initial class, , 

ensuring the reproduction of the initial realization. A deformation parameter of value one 

will recover the local distribution conditioned to geological information. Since the 

deformation parameter only increases the probability of the initial class, the maximum 

deformation of the model is rather small, slowing the process of gradual deformation. 

This drawback encouraged the evaluation of other perturbation schemes.  

Iz
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In the second perturbation scheme, the deformation parameter reduces the probability of 

the initial class in the local distributions, while the probabilities of the other indicator 

categories increase proportionally to their initial values. In this case the probability of the 

initial class is always reduced (or remains the same for rd = 1). This perturbation scheme 

can be written as: 

( )'
1

1

( ( ))

( ( )) 1 ( ( ))
( ( ))

( ( ))

D k i

k i D k I
k i NT

k j
j
j I

r F z n i I

F z n r F z n
i IF z n

F z n
+

=
≠

⎧ ⋅ =
⎪

− ⋅⎪
≠= ⎨

⎪
⎪
⎩

∑
 

 

 A deformation parameter of value zero will generate a distribution with probability 0 for 

the initial class, producing the maximum deformation of the geological model. A 

deformation parameter of value one will recover the local distribution conditioned to 

geological information. Now, the deformation parameter only decreases the probability of 

the initial class, ensuring the maximum deformation of the geological model, speeding 

the process of gradual deformation. However, this perturbation scheme does not allow the 

reproduction of the initial realization and consequently the deformation process is no 

longer systematic and controlled.  

 

In the third perturbation scheme, the two previous schemes were combined to ensure a 

more controlled, but at the same time fast gradual deformation of the geological model. 

In this case the probability of the initial class has a range of variation from 1 to 0 (for rd = 

0 to rd = 1), ensuring the reproduction of the initial realization for rd = 0.0, the recovery of 

the distribution conditioned to geological information for rd = 0.5, and rejecting the initial 

class and generating a maximum deformation for rd = 1.0. In this approach the range of 
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variation of the deformation parameter, rd, is divided in two intervals, values below and 

above 0.5. For values of rd below 0.5 the first perturbation scheme is applied using a 

transformed value of rd, rd’ = 2 x rd. For rd values above 0.5, the second perturbation 

scheme is applied with the transformed value of rd, rd’ = (2 – 2 x rd). The perturbation 

scheme can be written as: 

' 2 0.5
2 2 0.5

D D
D

D D

r r
r

r r
≤⎧

= ⎨ − >⎩
 

( )

'

1
'

1

' '

'

1

1

( ( )) ; 0.5

1 ( ( )) ; 0.5

( ( )) ( ( )) ; 0.5

( ( )) 1 ( ( ))
; 0.

( ( ))

D k i D

NT

D k j D
j
j I

k i D k i D

k i D k I
DNT

k j
j
j I

r F z n i I r

r F z n i I r

F z n r F z n i I r

F z n r F z n
i I r

F z n

+

=
≠

+

=
≠

⎧ ⋅ ≠ ≤
⎪
⎪ − ⋅ = ≤⎪
⎪
⎪= ⋅ = >⎨
⎪

− ⋅⎪ ≠ >⎪
⎪
⎪
⎩

∑

∑
5

 

 

Consequently, the probability of the initial class is increased from the original value for rd 

values below 0.5; and decreased for rd values above 0.5, ensuring a wider but controlled 

range of variation in the perturbation of the local distribution. Figure 2 shows the effect 

of the deformation parameter Dr  on the local conditional distribution under the 

perturbation scheme 3. Figure 3 shows the effect of the deformation parameter on the 

geological model. 
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EFFECT OF CALIBRATING PARAMETER RD 
ON LOCAL DISTRIBUTION
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Figure 2:  Effect of deformation parameter on local distribution. For rd = 0.5, the local 
distribution conditioned to geological information is recovered. The initial 
category, zI, is represented by the shaded area. 

 
 

rD=1.0 rD=0.4 

rD=0.0 

 
Figure 3.  Example of gradual deformation of geological models by probability 

perturbation method. A single parameter, rd determines the magnitude of the 
perturbation in this model. 

 
Yet another perturbation scheme is to be evaluated; a fourth case. In this case the 

perturbation introduced by the deformation parameter in the local distributions is 

controlled in order to generate a gradual transition between the local conditional 
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distribution of two different equiprobable realizations obtained with different random 

paths and different sampling draws. The deformation parameter plays the role of the 

weight in the weighted average between the corresponding probabilities of the indicator 

categories in the local distributions of both realizations. Consequently, values of 0.0 or 

1.0 for the deformation parameter will ensure the reproduction of either of the two initial 

realizations. The motivation behind this fourth perturbation scheme is the gradual 

deformation of geological models between two previously known states or realizations, 

differing from the three previous perturbation schemes where only the initial state of the 

gradual deformation is known.   

 

Conditioning of Local Distribution to Dynamic Information 
 
Now that the methodology for the perturbation of local conditional distributions in 

geological models has been defined, the next step is to couple the perturbation 

methodology with the dynamic response of the model. The ultimate goal of estimating 

the local probability distributions of the geological event A, (permeability, porosity, etc) 

conditioned to the dynamic information, C, i.e. P(A|C) requires the implementation of an 

optimization scheme to calibrate the deformation parameter, and the development of 

interfaces between the geological modeling algorithm and a flow simulator. Figure 4 

shows the impact of the deformation parameter on the flow response of the perturbed 

geological model. 
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Figure 4:  Effect of varying the rD parameter on: a) Oil production rate at Producer 1; b) 
Water cut at Producer 1; c) Oil production rate at Producer 2; d) Water cut at 
Producer 2. 
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Figure 5: Sensitivity of water saturation distribution in the reservoir at 4000 days and 
5200 days to rD parameter. 

 
The deformation parameter rD is calibrated using the Dekker-Brent Iterative optimization 

procedure where the objective is to improve the fit between the flow response of the 

model (from the simulator) and the production history. The Dekker-Brent algorithm is an 

inverse parabolic interpolation method that has the great advantage of being a non-

gradient based approach, and only requires the calculation of the objective function 

corresponding to different values of the deformation parameter. The calculation of 

gradients of the objective function with respect to the model parameters becomes 

prohibitively expensive, on repeated simulations. The Dekker-Brent Algorithm is used to 

estimate an optimal value of the deformation parameter, *
Dr  (abscissa), corresponding to a 

minimum value of the objective function, *( )DO f r∆ =  (ordinate). The algorithm require 

three abscissas, a, b and c with the corresponding values of the objective function f(a), 

f(b) and f(c); and b chosen such that a < b < c and f(a) > f(b) < f(c). The estimated 
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location of the abscissa ( *
Dr ) with the apparent minimum ordinate (objective function) is 

calculated by fitting a parabola through these three points.  

( )
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The next figure illustrates the process of the inverse parabolic interpolation.  
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Figure 6: Variation in objective function value and the process of convergence to a 
minimum by the Dekker-Brent algorithm. 

 
In this case, the objective function to be minimized is a measurement of the deviation 

between the simulated production response and the production history. Different 

production variables can be included in the objective function, including field and well 

pressures, single phase rates, two phase ratios, and basically any other variable that can 

be reported during the simulation, as long as there is a historical record to be compared 
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with. The individual variables are normalized to level their influence in the objective 

function. However, in some cases it might be useful to assign higher weights to some 

production variables in order to emphasize the relevance of their reproduction in the 

target model. The proposed objective function for N production variables on T time steps 

is:  

2

, ,

1 1 ,

T N
i t i t

t i i t

Sim Hist
Obj Fun

Hist= =

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑  

Where Simi,t Represents the Simulated value of the production variable i at time t, and 

Histi,t represent the correspondent Historical value for the same variable at the same time. 

The difference between the Simulated and the Historical values is normalized by the 

Historical value in order to control the influence of each variable in the objective 

function. However, this normalization method requires the exclusion of those historical 

values equal or close to zero, representing a drawback for the comparison of particular 

variables like the water cut. Other Objective functions can be easily implemented 

applying different norms and normalization methods.  

 

The evaluation of the objective function requires the implementation of an interface 

between the geological modeling algorithm and the flow simulator. The geological 

modeling algorithm is the main program which includes all the tasks in the probabilistic 

approach for dynamic data integration, except for the flow simulation. It also includes the 

task of combining the conditional probability distribution P(A|B) derived on the basis of 

geology and conditioning data (indicator kriging) and the conditional distribution 

obtained by probability perturbation P(A|C) into a joint-conditional distribution 
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P(A|B,C).  The geological model used in the flow simulator to calibrate the deformation 

parameter rD is sampled from this jointly conditioned distribution, P(A|B,C). The 

methodology for obtaining P(A|B,C) from the elemental distributions P(A|B) and P(A|C) 

will be explained later in this document. The complete probability updating procedure 

therefore consists of: 

− Performing indicator kriging and obtaining the conditional distributions P(A|B) at 

each unsampled location in the reservoir. Sample a realization from the P(A|B) by 

sequential simulation 

− Corresponding to that realization of the permeability field and making an initial guess 

for rD and obtaining corresponding P(A|C) 

− Merge P(A|C) with P(A|B) to obtain P(A|B,C) and sample a realization from 

P(A|B,C) 

− Perform flow simulation and obtain objective function. Revise estimate of rD using 

Dekker-Brent approach and repeat until objective function is minimized 

 

An important advantage of the probability perturbation method is that the complex non-

linear inverse problem involved in the integration of dynamic information is simplified to 

a single (or few) parameter(s) optimization problem as compared to other methodologies 

that deal with the optimization problem using a very large parameter set. 

 

The implemented interface between the geological modeling algorithm and the flow 

simulator is summarized in the following steps: 

 18



1. The geological modeling algorithm generates a file with a realization of the target 

model in the appropriate format. This file will be used by the flow simulator as an 

include file.  

2. The modeling algorithm invokes the flow simulator. 

3. The Flow simulator (ECLIPSE®) is run, generating an output file with the flow 

response of the realization. 

4. The geological modeling algorithm reads the simulated flow response from the 

output file and evaluates the objective function. 

5. The objective function is used into the optimization framework to generate a new 

realization of the geological model applying the gradual deformation approach.  

 

Conditional Distributions Conditioned to Dynamic and Static 
Information 
 
At this point, the methodology to estimate the local distribution conditioned to dynamic 

information, P(A|C), has been introduced, i.e. perturbing the local conditional 

distributions, with a parameter calibrated with the production history data. Yet, the 

contribution of the geological model of heterogeneity inferred from static information, 

P(A|B), needs to be honored in every realization of the reservoir model in order to ensure 

consistency with the geological model during all stages of the history matching 

procedure. Hence, probability distributions conditioned to dynamic information need to 

be combined with those conditioned to static information to obtain the global conditional 

distributions, P(A|B,C), from which the realizations of the target model are sampled. 
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The Permanence of Ratio Hypothesis (Journel, 2002) is the methodology applied to 

combine the individual distributions conditioned to each, dynamic and static information.  

The methodology is written in terms of ratios of probabilities, where the ratio is the 

relative distance to the occurrence of an event or a conditional event. The following 

distance or information measures a, b, c and x are defined: 

1 ( ) 1 ( | ) 1 ( | )
( ) ( | ) ( | )
P A P A B P A Ca b c

P A P A B P A C
− − −

= = =    1 ( | ,
( | , )
P A B Cx

P A B C
)−

=  

The quantity a, for example, denotes the relative distance to the event A given P(A). If 

P(A) is one, the relative distance a is zero. The relative distance a is infinity, if P(A) is 

zero. The measures b, c and x can be interpreted similarly.  

 

According to the permanence of ratios hypothesis, the relative updating of a geological 

event due to a dynamic event (C) remains the same irrespective of the presence of the 

static event (B). This can be written in terms of a,b,c and x as: 

x c
b a

=  

Consequently, the joint probability of the geological event given the dynamic and static 

information can be calculated from the ratios of probabilities of the geological event, the 

geological event given the dynamic information and the geological event given the static 

information.  

( | , ) aP A B C
a bc

=
+

 

In the approach, the marginal probabilities of the static, P(B), and dynamic events, P(C), 

which are difficult to estimate in practice, are not required.  
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Summarizing, the local distribution conditioned to static information, Prob(A|B), and the 

updated conditional distribution conditioned to dynamic information, Prob(A|C) are 

combined with the prior distribution, Prob(A) to obtain the distribution conditioned to 

static and dynamic information, Prob(A|B,C), utilizing the Permanence of Ratio 

hypothesis.  

 

Development of a Robust Scheme for Parameterization of 

History Matching Schemes 
 
The objective of history matching is to modify a prior model for the reservoir such that 

the updated model reflects the available production data and the uncertainties in 

production forecasts are reduced. The resultant geological model must therefore not only 

reproduce production data by numerical simulation but it must also be consistent with the 

geological knowledge of the reservoir. 

 

The history matching process mainly consists of: 

1) Identifying model parameters that could be modified to effect history match. 

2) Defining a suitable objective function for the optimization procedure. 

3) Proper selection and design of an optimization technique for reducing the 

objective function to a minimum. 

4) Tracking computational cost associated with the flow simulations used within the 

selected optimization technique. 

 

Many sets of parameter estimates may yield nearly identical matches of the data. A 

decision therefore has to be taken during the history matching procedure to determine the 

set of parameters estimates that are most appropriate given prior knowledge about the 

geology. 

 

The data obtained from the field can be classified as static data or dynamic data. The 

static data do not vary with time e.g. permeability, porosity etc. while the dynamic data 

do vary with time e.g. production rates, well bore flowing pressures etc. The reservoir 
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model is developed based on the available static data using geostatistical simulation or a 

geological model. History matching techniques attempt to constrain the reservoir models 

to the dynamic data. The goal of the history matching is to minimize the objective 

function that measures difference between simulator response and the observed field 

data. The objective function may be defined as follows 

Q  =  (½)∑
i

∑
j

∑
k

2

2)(

ijk

simulated
ijk

observed
ijk zz

σ
−

 

Z is the measured value of a flow response such as bottom-hole pressure, gas oil ratio, 

oil production rates etc. Z  is the corresponding value obtained by performing a 

flow simulation on the reservoir model synthesized using the available data.

obs

simulated

ijkσ  is the 

measurement error. The index k means the type of observation data, j is the index for the 

number of wells, i is the index of the measurements dates for each well. The quantity 

 can be viewed as the weight assigned to the response Zijk2/1 σ ijk – the larger the 

measurement error, the less the contribution of the mismatch to the overall objective 

function. In the cases studied in this report, the measurement error is assumed to be the 

same for all the observations used in the calculation of the objective function. Despite 

this simplification, the behavior of the objective function is strongly non-linear and small 

perturbation to model parameters can result in large fluctuations of the objective function.  

 

Some authors have advocated that a prior information term (or regularization) should be 

added to the objective function formulation so that geological consistency is maintained 

during history matching process. Recently it has been proposed to add a 4D seismic data 

mismatch term in the objective function (Gosselin et al. 2000). 

 

The combined objective function can then be written as: 
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Where  

a, b are the user’s defined weight constants,  is the weight matrix assigned to seismic 

data.  is the history matching parameter (e.g. Permeability at a given grid cell),  

is the mean of the parameter.  is the inverse of the covariance matrix of permeability 

and s(m) is the seismic derived predicted values and e are the observed seismic values. 

The first two terms in the objective function measure the production mismatch and the 

deviation from the prior geological model while the last term quantifies the deviation 

from the seismic information. During this course of study only the production mismatch 

term was used in the objective function. 

sW

ky mean
ky

1−
pC

 

Sensitivity Analysis 
For the purpose of defining the domains the obvious choice would be to identify the 

sensitive regions to the objective function. Jacquard et al. (1965) first investigated the use 

of sensitivity coefficients.   Sensitivity coefficients are defined as derivatives of the target 

simulation output with respect to parameters being adjusted to get a history match. The 

sensitivities may be calculated for one of the following: 

1) Global objective function  

2) Well specific objective function  

3) Field phase (oil, water or gas) production rates  

4) Well specific phase production rates. 

 

Mathematically sensitivity coefficient may be defined as
x
f

∂
∂

 where, f is one of the 

simulator output listed above and x is the history matching parameter at a grid block, 

which is permeability for the cases presented in this report. In case the sensitivity were 

calculated with respect to multiple parameters xi (e.g. porosity, permeability, thickness 

etc.), then normalization of the parameters would have to be performed in order to render 

the resultant sensitivities comparable on the same scale.  
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Sensitivity analysis done by perturbing parameter values and computing resultant 

changes in objective function values is highly inefficient as compared to methods using   

adjoint equations (Chen et al., 1971; Chavent, et al., 1975). For determining the 

sensitivity coefficients for one parameter, the adjoint equation method would take an 

additional 20% simulation time. Numerical perturbation would need one full simulation 

run in order to evaluate the sensitivity. 

 

The program module Simopt in the ECLIPSE® suite has been used for the sensitivity 

analysis done in the report. Simopt uses the adjoint equation method for calculating 

sensitivity coefficients. All the flow sensitivity coefficients mentioned in this report are 

with respect to permeabilities in X direction. The results can be easily generalized to 

permeabilities in other directions.  

 
Parallel Computing for History Matching 
 
In parallel computing, a task is subdivided among many computer processors such that if 

done efficiently the total computational time scales with the number of CPUs assigned. 

Parallel computer architecture have generally been based on the following major 

concepts: 

a) SIMD – Single instruction multiple paths. 

b) MIMD – Multiple instruction multiple data paths 

 

The MIMD architecture has emerged recently and is based on the principle that each 

CPU can operate independently, with frequent synchronization among the CPUs. 

MIMD architecture has three basic memory configurations: 

− Flat shared memory: Allows access to all memory by each of the CPUs. This is costly 

and cannot scale well above 10 CPUs. 

− Multi-level shared memory: Based on the concept of cache i.e. sophisticated software 

or hardware keep track of the current location of data within the global memory of the 

system. 
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− Distributed memory. Has become the most popular for massively parallel computers. 

These machines are based on the use of RISC-based CPUs, some with attached vector 

processors. Performance of each CPUs varies from a few million floating-point 

operations per second to more than 100 Mflops. 

  

Recently the parallelization of reservoir simulators has been accomplished on distributed 

memory parallel computers. This parallelization has been accomplished on both MIMD 

and SIMD.  A critical analysis of parallel computing with respect to reservoir simulation 

has been done by Killough (SPE 26634, 1993). 

 

Message passing between the processors is critical to the performance of the distributed 

memory parallel computing. Two aspects of communication are important: latency and 

bandwidth. Latency may be defined as the time taken for setting up pathways between 

the processors and identifying locations that are involved in the transfer of data. In order 

to reduce the latency, several messages may be packed together, so that communication 

between the processors is reduced. In that case the bandwidth becomes critical. 

Theoretically, for an N*N grid solved on P processors: 

1) Total work time is proportional to N*N/P (Assuming complete parallelizing of the 

simulator) 

2) Communication time is proportional to N 

As the problem size increases: 

1) Latency is affixed cost 

2) Communication time increases with N 

3) Work time increases with N*N 

 

For inter-node connections, there are in general four options 

a) Fast Ethernet 

b) Gigabit 

c) Myrinet 

d) Quadrics 

Band width and Latency for various switches in PC-Clusters configuration is as follows 
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Switch Bandwidth (Mbytes/sec) Latency 

(microsecond) 

Fast Ethernet 12 150 

Gigabit 128 26-12 

Myrinet 421 7 

Quadrics 400 5 

 

The Myrinet and Quadrics have high bandwidth and are most suited for reservoir 

simulation. The research cluster used for this project has a gigabit switches between the 

different processing nodes. A reduction in parallel performance is therefore likely. 

 

Amdahl’s Law 
The efficiency of a parallel program can be assessed by comparing the performance 

speed of a parallel algorithm with that of a program run on a single node. That measure 

known as speedup can be written as: 

⎟
⎠
⎞

⎜
⎝
⎛ +

=

n
ps

Speedup 0.1  

s = serial fraction of program work including the communication overhead 

p = parallel fraction of program work 

n = number of parallel processors 

To achieve better efficiency the subdivided tasks among the processors should be large as 

compared to the inter-processor communication. Amdahl’s law implies that even the 

smallest portion of the model must be parallelized to achieve reasonable parallel 

efficiencies for a massively parallel processor with one hundred or more processors. In 

the notation of the above equation, making the fraction to be higher is better than keeping 

s to be high since the quantity p is divided by n the number of processors and the net gain 

in speedup may be considerable. Serial code sections become significant if a high number 

of CPUs (i.e. 100 + CPUs) are used in a single run. 
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It must be noted that parallel algorithms are generally less optimized than their serial 

counterparts and hence the performance of a parallel code running on a serial machine 

may often not be as good as the serial code running on the same serial machine.  

 

There are certain challenges using parallel computation for reservoir simulation: 

a) Firstly the non-recursive nature of existing linear solutions techniques for solving 

the sparse matrices encountered in reservoir simulation renders them unacceptable 

for massively parallel architectures. Considerable research is currently being 

focused on developing robust parallel linear equation solutions. Killough (SPE 

26634, 1993) proposed a complex preconditioning scheme for conjugate residual 

type iterative methods such as ORTHOMIN. 

b) The trade-off between load balancing and global data structure has yet to be 

thoroughly investigated. 

c) Well and facility constraints and production optimization are generally 

implemented using serial algorithms and these may lead to severe serial 

bottlenecks.                                                        

 

One of the key issues affecting the performance of parallel computing is load balancing. 

Load imbalances can severely reduce the efficiency of parallel computing. If one of the 

processor within a parallel job is multi-tasking or has not finished the allotted load, then 

other processors within the parallel job will end up waiting. Hence parallel jobs must 

have dedicated resource (i.e. the processors to be used for parallel processing should not 

be mult-tasking or processing other jobs). The point being that if the speed of one 

processor slows down, other processors would be waiting reducing the efficiency of the 

tasks that are spawned on the other processors as well). Two common load-balancing 

methods are   

− Static, data structures are allocated before beginning the computation 

− Dynamic, restructuring of data structures as the computation proceeds  

 

Wheeler and Smith (SPE 19804, 189) dealt with load imbalances brought about by 

irregularly shaped grids through a redistribution of active cells among the processors. 
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This technique works well in cases where the solution depends linearly on the number of 

grids blocks. But for cases where the solution is related non-linearly to the sub 

dimensions associated with the processor arbitrary redistribution of active cells can 

further exacerbate the problem. Killough (SPE 26634, 1993) distributed the computation 

work at each grid block within the simulation domain to all the processor nodes and 

assigned to each node its proportion of the calculations. A substantial improvement 

appears to be possible but unresolved issues still exist: 

a) The number of grid blocks will seldom be a perfect multiple of the number of 

nodes. 

b) The number of iteration will vary for each grid block. This implies that to achieve 

better load balancing, a prior idea of number of iterations and hence allocation of 

work to the computer nodes is necessary.  

c) The communication overhead may overshadow the performance of the algorithm. 

 

Killough (SPE 29102, 1995) later proposed a receiver-initiated dynamic load-sharing 

algorithm to achieve high parallel efficiencies. It adapts the workload on each node in a 

dynamic way and can react to any sudden perturbation that can appear during the 

simulation. The algorithm suffers from the fact that there is significant loss in 

performance for a small number of processors since one processor is dedicated for 

supervising and monitoring the computation at the remaining nodes. 

 

Distributed Computing 
In a distributed configuration, the processors do not share memory or clocks. Distributed 

computing systems group individual processors together via network connections and 

pool the computing resources in order to accomplish CPU intensive computation. The 

network provides a means by which client and host machines communicate, sharing 

computed information or passing information that is required by the computations. Local 

area networks (LAN) of PCs connected by Ethernet connections are ubiquitous and are 

good examples of distributed computing. Distributed computing requires coordinating the 

efforts of a collection of processing nodes linked together by a network. The common 

tool used for the external parallelization is PVM (Parallel Virtual Machine).  PVM allows 
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the development of the programs that can send “slave” tasks to different cpus in a 

network.   

 

A strategy to apply distributed system to solve large-scale reservoir simulation problems 

has been demonstrated by Yu et al. (2002). 

 

The use of distributed computing/external parallelization to speed up history matching 

procedures has been studied by Schiozer and Sousa (SPE 39062, 1997). They showed 

that sensitivity analysis could be performed efficiently, as well as various direct search 

optimization techniques can be improved, by the use of external parallelization (or 

distributed computing). The choice of optimization techniques to be used is quiet 

important. Methods that use derivatives may have convergence problems. For this reason, 

Leitao and Schiozer (SPE 53977, 1999) recommends direct search methods that are most 

robust. Quenes et al (SPE 29107, 1995) applied parallelization techniques to history 

matching reporting good results. The benefits of external parallelization could be 

summarized as follows: 

− To calculate sensitivities 

− To determine the best search directions for direct optimization techniques. 

− To launch several simulations in direct search methods. 

 

There are some advantages of using external parallelization (or distributed computing) 

over parallel computing 

− Efficiency of current commercial simulator codes is maintained. 

− An existing network of workstations can be used without the need of high investment 

in parallel computers or in communication. 

 

The main disadvantage is slow data transfer imposed by the LAN communication 

protocols, but in this kind of work, actual computations are so time consuming that 

communication time can be neglected for practical applications. 
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Evaluation of existing parallel simulators  
Two commercial simulators Eclipse® and VIP® were tested for their parallel 

computation capabilities. Both have the parallel as well as the flux boundary options 

available. The flux boundary option is important from the standpoint of distributed 

computing. The choice of simulator was dictated by the availability of options (outputs) 

such as the Hessian matrix of the objective function that would help in identifying the 

sensitive regions. Simopt - a history-matching module in Eclipse, has the option to report 

sensitivities. The commercial simulator VIP doesn’t have similar options. Keeping in 

view this limitation of VIP, the following section dwells on important features of the 

Eclipse flow simulator that facilitate parallel computation and retrieval of flux boundary 

conditions. 

 
Eclipse (General) 
The Eclipse simulator suite consists of two separate simulators: Eclipse 100 

Specializing in black oil modeling, and Eclipse 300 specializing in compositional 

modeling. Eclipse 100 is a fully-implicit, three phase, three dimensional, general purpose 

black oil simulator with gas condensate options. Eclipse 100 can be used to simulate 1, 2 

or 3 phase systems. Two phase options (oil/water, oil/gas, gas/water) are solved as two 

component systems saving both computer storage and computer time. Eclipse 300 is a 

compositional simulator with cubic equation of state, pressure dependent K-value and 

black oil fluid treatments. Eclipse 300 can be run in fully implicit, IMPES and adaptive 

implicit (AIM) modes.  

 

Fully implicit technology (Black Oil) 
Eclipse (Black oil) uses the fully-implicit finite difference method to ensure numerical 

stability over long time steps. The non-linear fully-implicit equations are solved precisely 

by reducing all residuals to user set tolerances. Newton’s method is used to solve the non-

linear equations. The Jacobian matrix is fully expanded in all variables to ensure 

quadratic (fast) convergence. Most simulators cannot apply fully implicit methods to 

large problems. In Eclipse, these restrictions are removed by nested factorization, which 

solves large problems efficiently and reliably. 
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Adaptive Implicit and IMPES (Compositional) 
In a compositional model where the number of components and hence equations to be 

solved is greater than say 5 or 6, the cost of performing fully implicit simulations can 

become prohibitive in terms of both memory and CPU time. In Eclipse 300 this problem 

is tackled by using an adaptive implicit (AIM) scheme, making cells implicit only where 

necessary. In  Eclipse 300 adaptive implicit, fully implicit or IMPES solution techniques 

may be selected. For larger compositional studies AIM can be selected. 

 

Parallel Option 

The Parallel option allows a single simulation job to be distributed across a number of 

processors. This allows large simulations to be carried out in shorter time than would 

normally be the case with the standard simulators. The results obtained using a number of 

processors will generally agree with single processor solutions within limits of 

engineering accuracy. The scalability is poorer than one might expect, as the linear solver 

becomes less efficient when larger numbers of processors are utilized. Eclipse 100 first 

partitions the reservoir either in the x or the y direction, depending on the outer solver 

direction. The code is optimized so as to automatically divide the reservoir into domains 

with approximately equal numbers of active cells.  

  

For reservoirs with a significant number of inactive cells, the default partitioning is not 

sufficient to load-balance the domains. It is possible to control further the way in which 

cells are assigned to domains by applying the following formula:  

 
 

The one important difference between Parallel Eclipse 100 and Parallel Eclipse 300 is in 

the approach used for the parallelization of the linear solver. Eclipse 100 uses a modified 

nested factorization approach in which a 1-dimensional domain decomposition is 

performed, full coupling of the solution across the reservoir for each linear iteration is 

maintained, at the expense of increasing the work required per linear iteration by 1.3. 
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Eclipse 300 allows a 2-dimensional domain decomposition (For large numbers of 

domains, a two-dimensional decomposition is desirable, to avoid thin strip domains) 

approach.  

 

Flux Boundary Conditions 

Flux boundary conditions enable to runs to be performed on a small section of a field 

using the boundary conditions established from a full field run. These smaller field 

simulations can be distributed to the different nodes of a cluster. Flows across the 

boundary of the reduced field are written to a FLUX file at each min-time step of the full 

field run. The flux file is input to the smaller field simulation as the boundary condition 

for that simulation.  

 

Instead of using the flows of each phase from the full field run as boundary conditions on 

the reduced run, an alternative treatment (i.e. alternative set of boundary conditions)  

using pressure and saturations is available in Eclipse. When more severe changes are 

made to the flow regime and fluid distribution, the pressure boundary conditions should 

be used to allow the phases to re-distribute adjacent to the boundary and allow the switch 

from inflow/outflow in the full field run to outflow/inflow in the reduced run (i.e. the 

reverse flow directions to account for abrupt changes in reservoir fluid distribution).  

  

Theory of Principal Components Analysis 
 
The original motivation for defining reservoir zones on the basis of sensitivity 

coefficients came from typical history matching applications. As mentioned previously, 

during history matching, the permeability of each grid block is adjusted in order to obtain 

a simulated response close to the observed response. This implies that the optimization 

problem can be quite large (potentially equal to the number of grid blocks) for a field 

scale simulation model. It is just not efficient to search a parameter space that is so large 

and this has been the bane of traditional methods for history matching.  
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An approach for solving this problem is to group correlated grid blocks together. 

Different correlation measures can be defined and these include both static data based 

measures (e.g. the variogram of permeability, geobodies etc.) as well as dynamic 

measures (based on flow criteria). The flow-based measures account for flow across 

geologically or statically defined geobodies due to the imposed boundary conditions. 

Besides, since flow response characteristics constitute the objective function in the 

history matching procedure, it is sensible to base the identification of flow regions based 

on the dynamic correlation characteristics of the medium. When defining the regions, it is 

also important to realize that full independence between the different domains within a 

reservoir is not possible unless there are regions separated by zero permeability streaks or 

zero transmissibility faults. Nevertheless, an attempt can be made to isolate domains on 

the basis of least correlation in terms of their effect on the objective function. 

 

One scheme of identifying the regions on the basis of the high sensitivity and least 

correlation was presented by Robert Bissel (4TH European conference on Mathematics of 

Oil Recovery, Norway 1994). In that method, pilot points are identified and the 

sensitivity coefficients at the pilot point locations stored in the Hessian matrix is also 

calculated. The Hessian matrix is defined as follows: 
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where f is the objective function and x, y, z are the parameters (permeabilities at the pilot 

points). The Hessian matrix is a measure of the sensitivity of the objective function to the 

history matching parameters (permeabilities at different grid blocks). It also measures the 
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interaction of the parameters in different parts of the field and the resultant effect on the 

objective function. 

 

From a history matching perspective, the properties of a good Hessian are: 

1) Large diagonal elements This means that objective function is sensitive to the 

parameter at a particular location and is insensitive to the parameter value at 

neighboring locations. If small changes in the parameter values causes large 

changes in objective function, the value of the parameter corresponding to minima 

can be found accurately 

2) Similarly sized diagonal elements –This is required so that the matrix is well 

conditioned and small changes in the data do not cause large changes in the 

solution. 

The use of the Hessian matrix directly within optimization based history match 

approaches has been discussed in the literature. For this project, since the goal is to 

implement a fully probabilistic approach that relies on probability update parameters rD 

defined locally for different regions of the reservoir, the Hessian matrix is analyzed with 

an objective to determine reservoir regions. Several techniques for analyzing the Hessian 

matrix in order to define reservoir regions have been discussed in the literature and these 

are reviewed next. 

 

Factor Analysis 
Factor analysis is a multivariate data reduction method. The factors are constructed in a 

way that reduces the overall complexity of the problem and takes advantage of inherent 

interdependencies in the data. As a result a small number of factors will usually account 

for almost the same amount of information as do a much larger parameter set. Factor 

analysis creates a minimum number of new hypothetical variables such that the new 

variables contain most information.  

 

Mathematically stating, the parameter set pixi ,..,1, =  is expressed as a linear 

combination of factors : kjf j ,..,1, =

   ikikiii efafafax ++++= ...2211  
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1,122,111,11 ... +++++ ++++= ikkiiii efafafax  

   #  
   pkkpppp efafafax ++++= ,22,11, ...  
In the notation of linear algebra, the above mathematical model can be succinctly 

expressed as: 

                                      (1) )*(
'

)*()*()*( PNPKKNPN EAFX +=

Where X is the original parameter matrix, F is the matrix of factors, A the matrix of the 

factor loadings (or weights) and E is a matrix of residuals. K is the scalar used to denote 

the reduced set of factors to be used. K is always less than P, the number of original 

parameters. The number K is chosen such that the resultant factor set captures most of the 

original variance in the original parameter set. Higher the redundancy in the original data 

matrix the lesser the size K required for representing the set amount of variance. 

 

In the notation of Equation (1), it is assumed that we have N observations of each 

parameter Xi, i = 1,..,p. Each column of the matrix F has N elements representing the 

varying contribution of that factor towards the N realizations of the parameter. Hence, 

each factor is some unobservable attribute of the objects and F is the totality of such 

attributes for the objects. In reservoir modeling terms, the matrix X would have deviant 

scores of a permeability realization as a row vector. Deviant score of permeability at a 

particular location in the reservoir may be defined as the permeability obtained by 

subtracting the average permeability of the realization from the permeability value 

corresponding to that grid location.  

 

The factor loading matrix, A, contains the coefficients that must be used to combine the 

factors to obtain a particular value of permeability at a particular location. A column 

vector of A may be regarded as containing coefficients that describe the composition of 

the factors making up the original parameter, permeability in this case. A factor is thus a 

linear combination of the observed variables, a concept that is used in principal 

components analysis. 
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Eigenvalues and Eigenvectors 
There is a classical mathematical proof which states that for a symmetric Grammian 

matrix (which has nonnegative eigenvalues)  of rank r, a symmetric Gramian 

matrix  of a given lower rank k < r can be written that approximates S in a least 

squares sense. Mathematically stating 

)*( pps

)*( ppT

                                                       (2) ''
222

'
111 ... rrr uuuuuuS λλλ +++=

                                                      (3) ''
222

'
111 ... kkk uuuuuuT λλλ +++=

rk λλλλ >>>>> ......21 are the eigenvalues and  are the 

respective eigenvectors. 

rk uuuu >>>>> ......21

 

This Least-Square property of eigenvalues and eigenvectors has been used for the factor 

analysis of a covariance matrix. The covariance matrix is a positive definite matrix and 

hence Grammian matrix. Comparing the mathematical expressions (2) and (3) with the 

expression(1), it can be seen that the loading function ai are akin to the eigenvalues λi and 

the factors can be constructed on the basis of the eigenvectors ui. 

 

Geometrical interpretation of eigenvalues and eigenvectors 
In statistical jargon, a bivariate scatter diagram depicts the joint variability of a pair of 

variables. In the case of bivariate Gaussian distribution, equal density contours drawn on 

the bivariate plot are in the shape of ellipses. If the variables are uncorrelated, the ellipse 

is replaced with a circle and on the other hand if the variables are perfectly correlated, a 

line results. For more than two variables, the data points can be viewed as forming p-

dimensional hyperellipsoid. Pearson (1901) and later Hotelling (1933) realized that the 

major and minor axes of the hyperellipsoid are identified by the eigenvectors of the 

covariance matrix. Since the principal axes of the hyperellipsoid point in the direction of 

maximum variance, the placement of eigenvectors in multi-domensional space may be 

viewed as a problem of rotation of axes according to the criteria of maximum variance. 

The eigenvectors of the covariance matrix are uncorrelated in the sense that they are 

linearly independent and are sorted in the order of decreasing variance contribution. An 

eigenvalue of zero indicates that the corresponding minor axis of the hyperellipsoid is of 
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zero length. This suggests that the dimensionality of the space containing the data points 

is less than the original space.  

 

There are numerous methods mentioned in the factor analysis literature for determining 

the number of eigenvectors to be extracted and retained for representing the variability of 

the original phenomena. Some of more practical methods are described below: 

1) The proportion of the variance extracted by the eigenvector. The proportion can 

be obtained by dividing the corresponding eigenvalue with the trace of the 

Hessian matrix. Any threshold may then be applied on the amount of total 

variance (or the total information) extracted, say 80%. The real utility of PC 

analysis lies in the fact that few factors (eigenvectors) would extract most of the 

information. Thus, if there are 180 eigenvectors (corresponding to the Hessian 

matrix obtained from 180 pilot points), then the first few (not more than 5 in most 

cases) would serve the purpose of representing most of the variability exhibited 

by the Hessian. 

2) The size of the factor loading may be used as the basis.  

3) The significance of the residuals: Residual matrix may be calculated after 

extracting each eigenvector. The point at which no further factors need to be 

extracted is reached when the residual matrix consists of correlations solely due to 

random error.  

 

Rotation of factor axes 
Describing the data in terms of eigenvectors is akin to rotating the hyperellipsoid plotted 

using a original set of orthogonal axes and aligning it to a new set of orthogonal axis 

defined by the eigenvectors. The orthogonal eigenvectors point in the direction of 

maximum variance. However, it is important to realize that there can be other criteria for 

the rotation of axes. In fact there are an infinite number of sets of vectors that will 

describe the configuration of data as well. One of the objectives of factor analyses could 

be to display the configuration of the variables in as simple a manner as possible without 

worrying about maximum variances or orthogonality etc. 
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In case there is a lot of overlap of the components of eigen components among the 

eigenvectors i.e. the eigen component of two or more eigenvectors are high at a particular 

grid cell, then separation into sub-domains on the basis of maximum variance may not be 

possible and we may have to resort to alternate system of rotation of factor axes. 

Mathematically, it is simple matter to rotate one set of the axes to another set, provided 

that the angle of rotation is given. The major task is to determine the angle through which 

the axes must be rotated.  

 

Kaiser (1958) developed varimax method of rotation, which is one of the most popular 

methods of rotation of axes. A “simple” factor would be one having a few high loadings 

(eigen components) and many near zero loadings. This can be determined by specifying 

an angle of rotation such that the variance among the eigen components is maximized. To 

avoid sign complications, the variance of the squared eigen components is maximized. 

For the entire matrix of factor loadings, simplicity is attained when the sum of each 

individual factor variance attains a maximum. 
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Where, is an element in the rotated matrix, p is the number of eigen components and k 

is the number of eigen vectors. Kaiser suggested that each row of the matrix should be 

normalized to unit length before this variance is computed. Working with normalized 

rotated elements , the following expression for variance has to be maximized: 
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Where,  is a normalizing factor. The rotated elements  are obtained by applying the 

following transformation:  
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ija are the original loadings. The optimum value of jlθ that result in maximum variance 

is obtained by implementing an optimization procedure: 

• Substitute expression (6) in expression (5) and differentiate with respect to jlθ and 

set derivative to zero. 

• Determine jlθ for each possible pairs of j and l. The matrix of rotated loadings 

then can be obtained from: 

......1312 jlTTATB =                                                                       (7) 

Where represents the transformation matrix derived from the rotation of the 

factors j and l. 

jlT

 

The procedure described above is applicable for establishing variable groups when 

multiple realizations of parameter sets are available. In the context of this project, the 

factor analysis methodology outlined above is used to determine groups of locations that 

exhibit similar sensitivity characteristics. Some case examples demonstrating the 

applicability of the proposed methodology are discussed in the Results section.  
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EXECUTIVE SUMMARY 
 
The goal of history matching is to obtain a model of a reservoir from which reliable 

forecasts of future production can be obtained.  This project approaches the problem of 

developing a robust scheme for history matching with two guiding ideas.  First, the 

reservoir model that results from the scheme should be geologically plausible.  That is, 

the nature of permeability heterogeneity in the model, including correlation lengths and 

structures at multiple length scales, should be consistent with what is known about the 

geology of the reservoir.  The motivation for this condition is that the inverse problem 

represented by history matching – choosing a large set of parameters (local values of 

permeability) so that a small set of data (flow rates at wells as a function of time) is 

matched – is under-constrained.  A solution to this inverse problem that makes geological 

sense is more likely to provide reliable forecasts.  The second guiding idea is that it must 

be possible to obtain insight from a computer implementation of the history matching in a 

practical length of time (e.g. overnight).  The time scale for decision making in many 

industrial applications does not allow for lengthy calculations.  

 

We are implementing these ideas in this project by taking advantage of two technologies: 

a probabilistic approach for integrating production data into the reservoir model, and 

parallel/distributed computing for speeding up the turnaround time for forward 

simulations. 

 

Our probabilistic approach to dynamic data integration is based on conditional 

probability distributions that account for the uncertainty in permeability at any given 

location in the reservoir. At the beginning of the history matching process, these 

distributions embody the statistical properties of the reservoir heterogeneity as inferred 

from well logs, core samples, etc. The key idea being tested in this project is that the 

conditional probability distributions are iteratively updated during the history matching 

procedure to account for the additional information contained in the dynamic response 

data (the production histories). We have implemented this update with a perturbation 

parameter rD, that controls the magnitude of the deformation applied to the values of 

permeability in the model.  Four schemes for this perturbation have been developed, 
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yielding an approach that ensures a gradual deformation of the model.  This has proved to 

be a good way to maintain consistency between the model and the geological reality. To 

date we have demonstrated this scheme with a commercial simulator (Eclipse®) to 

perform the forward flow simulations for each permeability realization. 

 

We have extended the notion of a single perturbation parameter rD to consider a set of 

such parameters for a given reservoir.  Each parameter applies to a particular domain in 

the reservoir; the domains are non-overlapping.  This extension provides a basis for 

decomposing the flow simulation onto parallel/distributed computing platforms as well as 

for increasing the effectiveness of the perturbation scheme.  For the latter, we have used a 

sensitivity analysis.  The influence of the value of permeability at any given location 

upon the production data predicted from the forward model can be extracted from the 

simulator. We have applied a principal components analysis of these sensitivities to 

identify sub-regions within the reservoir domain that have the most influence on the flow 

behavior, and therefore are the most important regions to consider when varying the 

permeability values to effect a history match. Trials of this method on realistic reservoir 

test cases yielded encouraging results.  The sub-regions are also natural choices for 

decomposing the physical domain into sub-problems for distributed or parallel 

computing.  We have tested these ideas with two commercial simulators (Eclipse and 

VIP) for which parallel versions are available.  

 

We have implemented a rudimentary integration of all these ideas into a single history-

matching algorithm. Only preliminary tests have been carried out so far, but the results 

suggest that the approach will yield the desired properties: a robust method that finds a 

geologically consistent reservoir model in a reasonable amount of wall-clock time. This 

is a good foundation for the next phase of the research. 
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 EXPERIMENTAL 
 

In this project we are developing algorithms and implementing them on computers.  The 

scope of work does not include experiments.  

 
RESULTS AND DISCUSSION 
 
Development of a Robust Scheme for Parameterization of 

History Matching Schemes 
 
Sensitivity Analysis 
 
In order to demonstrate the sensitive analysis procedure, a deterministic reservoir model 

representative of a fluvial depositional environment has been used. The model has 

120,000 (100*120*10) grid blocks with high permeability channels. The channel 

distribution and orientation exhibit small changes from one layer to the next. The process 

for generating the synthetic data set including the calculation of pseudo-seismic 

responses has bee discussed in Mao, 2000. This particular reservoir model was used for 

many of the cases discussed later in this report and is referred to as the STAN5 data set 

throughout the report.  

 

Example 1 

Computing the sensitivity coefficient corresponding to the permeability in each grid 

block is practically not feasible due to the associated computational cost. The sensitivity 

analysis is done at 180 uniformly distributed pilot points. The sensitivity coefficients are 

then spatially interpolated to all other grid blocks. Since the different layers of the 

reservoir exhibit strong resemblance to one another, the strategy adopted for the analysis 

was to utilize one of the layers as the reference layer and the other layers as the 

incremental realizations for calculating the required sensitivities. For this case, the fifth 

and the third layers of the reservoir were used for computing sensitivities while the 

history was generated using the fourth layer. The history is generated for 500 days. 

Adjacent layers are chosen deliberately so that the initial guess is near to the actual 
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model. There are three producers and two injectors. Other details are included in the data 

file attached in Appendix A1.   

 

 
Figure 7:  Reservoir model utilized to generate the base case production history 

 

 
 
Figure 8:  The pair of permeability models used for calculating the sensitivity 

coefficients.  
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The following Figure 9 shows the global (derivative of global objective function with 

respect to permeabilities) sensitivity coefficients. The degree of change is proportional to 

absolute magnitude while the direction of change is governed by the sign of sensitivity 

coefficients.  The highest values are represented in red, the middle ones in green and the 

lowest in blue. The negative values are shown with the shaded lines. Negative sensitivity 

implies that permeability values in those regions need to be increased in order to match 

the flow response for the base case.  

 

 
(a) 
 

 
(b) 

Figure 9:  Global sensitivities for: a) 3rd layer, and b) 5th layer. The permeability 
corresponding to the 4th layer is used as the base model for calculating the 
sensitivities. 

 
Sensitivity coefficient can also be calculated on the basis of individual well response. The 
following Figures 10 and 11 depict the sensitivity of different well responses to the 
permeability variations in layer 3, given the 4th (STAN5) layer as the base case.  
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(a) 
 

 
(b) 

 
(c) 
 

 
(d) 

 
(e) 
 

 
(f) 

Figure 10:  Sensitivity coefficients for the layer 3 permeability model calculated on the 
basis of: a) Well 1 oil production rate; b) Well 2 oil production  rate; c) Well 3 
oil production rate; d) Well 1 water production rate; e)  Well 2 water 
production rate; and f) Well 3 water production rate. 
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(a) 
 

 
(b) 

 
(c) 

 
Figure 11:   Sensitivity coefficients for the layer 3 permeability model calculated 

 on the basis of: a) Well 1 gas oil ratio, b) Well 2 gas oil ratio, c) Well 3 
 gas oil ratio. 

  
The following observations are based on the results in Figures 10 and11: 

• Decreasing objective function defined on a per well basis may not be a wise 
approach for history matching. There are regions in the reservoir, that show positive 
sensitivities for one well and negative sensitivity for another well. This implies that 
decreasing the permeability in one region may decrease the objective function for 
one well but it may increase the objective function for another well. 

• Even for a particular well it is possible to decrease the mismatch for particular phase 
production rate at the cost of the increasing the mismatch for another phase. This is 
illustrated by the sensitivity regions defined on the basis of oil production and water 
production. 

• The sensitivity regions are consistent with the geological structure of the reservoir. 
The results indicate that local changes in permeability within the channel facies 
would result in maximum decrease in objective function value. However, it is also 
to be noted that such crisp delineation of the underlying geology may be a direct 
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consequence of the close resemblance of the layer 3 structure to the base case layer 
4 model.  

 
Based on the results and observations made above, it is proposed that a better approach to 
defining reservoir regions may be using the global objective function. The global 
objective function would be a weighted sum of individual phase production rates and 
would hence represent a compromise between competing flow response characteristics. 
 

Example 2 

In this case the permeability realization is very different from the base case unlike the 

earlier case where the initial guess closely resembled the base case (reference) model. 

Since an iterative, permeability updating procedure for history matching is proposed in 

this research, the objective is to gauge the frequency with which the reservoir zones 

designation would have to be updated during the iterative procedure. 

 

The base model is still the 4th layer of STAN5 and all other inputs remain the same. 

Sensitivity coefficients are calculated for two models. The first model has perm-y and 

perm-z equal to the base case while the perm-x is very different from the base case and is 

shown below. The second model is a constant permeability field with permeability being 

1000 md in all directions.  

 

  
Figure 12:  Permeability field with channel in the same place as in the base case model, 

but the channel permeability is reduced. The corresponding global sensitivity 
coefficients computed on the basis of the base case model are shown in the 
right. 
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Figure 13:  Global sensitivities corresponding to a homogeneous permeability field. 
 
In the absence of prior geological knowledge (Figure 13), the results suggest that the 

most appropriate approach to effect a history match is by increasing the permeability in 

the near well regions. In Figure 12, where there is reservoir continuity indicated by the 

presence of channels, reduction in objective function is obtained by increasing the 

permeability in some regions (maybe away from wells) and reducing the permeability in 

some other regions. In both these cases, the results seem to indicate that the sensitivity 

coefficients are not so reliable if the initial guess is not near the actual model. 

 
This important observation can be understood on the basis of the following conceptual 
plot.  
 

 

Permeability at a given grid block  

Global minima at true value 
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Figure 14:  Typical objective function profile and the importance of a good initial  guess. 
 
The sensitivity analysis would give reliable information if the initial guess is between 

points A and B. The negative slope of the objective function from A to the global minima 
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would suggest a negative sensitivity i.e. the permeability value in the grid block would 

have to be increased. If the permeability value becomes too high, the positive slope of the 

objective function profile from the global minimum point to B would suggest a positive 

sensitivity coefficient value and hence a decrease in permeability value to result in a 

history match. However, if the initial guess had been C, the negative slope of the 

objective function profile at C would suggest a negative sensitivity value and hence a 

increase in permeability and hence a further drift away from the true minimum value.  

 

Test Cases 
The factor analysis procedures described earlier can be applied on the basis of the 

correlation exhibited by flow sensitivities, porosity and pay thickness and/or reservoir 

permeability. The domain decomposition obtained using each of these criteria are 

presented in this section. 

 
Domain decomposition based on flow sensitivities 
Following procedure is followed for obtaining the domains based on principal component 

analysis of the Hessian matrix: 

1) Obtain eigenvalues and corresponding eigenvectors of the Hessian matrix. 

Eigenvectors thus evaluated would describe an n dimensional state, where n is the 

number of the pilot points (or the rank of the Hessian matrix).  

2) Interpolate the component of the eigenvector throughout the reservoir from the 

component values at the pilot points.  

3) Rank the eigenvalues based on their magnitude. The eigenvalues will always be 

positive since the Hessian matrix is positive definite.  

4) Apply a threshold on the size of domain covered by first eigenvector. It could be 

say 40% of the total grid blocks. In other words all the grid blocks for which the 

absolute value of the eigen component corresponding to the first eigenvector 

exceeds the P60 value (of the distribution of eigen components) are grouped 

together as the first domain. 

5) Follow step 4 for all the remaining eigenvectors with respective thresholds. 

During this step the grid block cells covered by the earlier (higher in rank) eigen 

components are excluded. 
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The number of eigenvectors retained would depend upon the amount of variance 

deemed necessary to be reproduced. An appropriate criterion for selecting the number 

of eigenvectors to be retained is still being tested. In principle, the thresholds should 

neither be too large which increases the correlation among the domains nor too small 

which leads to ineffective history matching since the identified domains will be too 

small. 

 

The above procedure for delineating reservoir domains was implemented and the 

results presented share the following color scheme in all the ensuing figures:  

First eigenvector positive components , negative components . 

Second eigenvector positive components , negative components . 

Third eigenvector positive components , negative components . 

Fourth eigenvector positive components , negative components . 

Fifth eigenvector positive components , negative components . 

 

The example below is based on the Principal Component analysis of the Hessian 

matrix derived from the 3rd layer of STAN5. The production history is generated 

using the 4th layer.  

 

 
(a) 

 

 
(b) 
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(c) 

 
(d) 

Figure 15:  a) Reservoir regions delineated by applying a 10% cut-off volume i.e. each 
eigenvector covers 10% of total grid blocks. The regions covered by the 
second and subsequent eigenvectors may not cover that  percentage of grid 
blocks due to the overlap with higher-ranking eigenvalue, b) Regions obtained 
by applying a 30% threshold, c) Regions obtained by applying a 50% 
threshold, and d) By applying different cut-off volumes to different 
eigenvectors: 20%, 25%, 30%, 35%, 40% cut-offs applied on the first, second, 
third, fourth and fifth eigenvectors respectively.  

 

In all the examples shown above, the information content in the eigenvalue is just used to 

rank the vectors. The results seem sensitive to the cut-off volume specified for identifying 

the regions corresponding to each eigenvector. A possible solution to reduce this 

dependency on cut-of thresholds may be to use the eigenvalues to scale the magnitude of 

the eigenvectors. Recall that in Step 4 of the algorithm, all grid blocks for which the 

absolute value of the eigen component corresponding to the first eigenvector exceeds the 

P60 value (of the distribution of eigen components) are grouped together as the first 

domain. When this procedure is implemented, it is possible that a particular grid cell is 

assigned to a particular eigendomain because its eigencomponent exceeded the P60 value 

corresponding to that eigenvector. But the same grid cell may have an eigen component 

corresponding to a lower ranked eigenvector that is more than that for the higher ranked 

eigenvector, but that location has already been marked to belong to a particular eigen 

domain. This causes the size of the domain corresponding to the higher ranked eigen-

vectors to swell and that corresponding to the lower ranked eigenvectors to be too small 

and thereby making it necessary to select different thresholds for different eigenvectors. 

Instead, if scaled eigenvectors are used then it is unlikely that significant overlaps 

between eigen components for different eignvectors would occur and so one common 

threshold may be used to obtain all eigen-domains. 
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Figure 16.  Domains delineated in the layer 3 of the STAN5 data set using scaled 

eigenvectors. The regions identified represent a 30% cut-off volume.  
 

In the results shown in Figure 16 there seems to be less overlap of regions after scaling of 

eigenvectors. 

 

Domain decomposition based on porosity and thickness  
Domain delineation based on principal component analysis of the Hessian matrix is 

computationally expensive. It may be argued that in lieu of calculating reservoir domains 

on the basis of flow sensitivities that could be expensive and extremely dependent on the 

particular permeability realization used to perform the flow simulation, we could utilize 

the porosity and thickness model for the reservoir to delineate reservoir zones. In most 

situations, it could be argued that porosity and reservoir thickness can be fairly reliably 

ascertained using auxiliary data such as seismic. 

 

In order to test this conjecture, an attempt was made to delineate the domains based just 

on the porosity and thickness at the grid blocks. Geobodies were defined on the basis of 

the product of porosity and thickness. Geobodies represent connected volumes of the 

reservoir that have storativity ( h⋅φ ) values greater than a threshold. The definition of 

geobodies was later modified in order to take into account the connectivity of storativity 

to a well location. In this revised scheme, all regions within a search radius around wells 

where the product of porosity and thickness exceeds a threshold are grouped in a domain. 

The search radius is made proportional to the upper flow rate constrains on the wells. 
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(a) 

 
(b) 
 

 
(c) 

Figure 17:  a) Base case model (Slice 4 of STAN5) used to generate the production 
history; b) Geobodies computed using the porosity and layer thickness 
information for Slice 4; c) Geobodies computed using a modified definition 
that focuses on a search radius of 16 units around well locations. 

 

Comparing the results in Figure 16 and Figure 17(c) it can be seen that the shape of the 

reservoir domains in the vicinity of wells appears fairly consistent in both the models. 

However, the interwell connectivity regions observed in Figure 16 are missing in Figure 

17(c). Updating permeability values in these interwell regions is likely to significantly 

influence the history match. 

 

It could be argued that the reservoir regions delineated in Figure 16 would be strongly 

dependent on the characteristics of the permeability realization and since the permeability 

model is likely to be very uncertain prior to history match, the robustness of the 

delineated regions is likely to be questionable. In order to test this argument, the 
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sensitivity based domain delineation procedure was applied for the case where a 

homogeneous permeability is assumed. That map shown in Figure 18 shows that though 

the shape of the reservoir regions is likely to change significantly during the process of 

history matching, the interwell connectivity regions continue to be important sensitivity 

regions and the configuration of wells and flow rates help define these connectivity 

regions. 

 

 
Figure 18:  Sensitivities computed for a homogeneous (1000 md permeabilities in  X, Y 

and Z directions) permeability field. 
 

Domain decomposition based on permeability covariance matrix 
Principal component analysis can also be applied to the covariance matrix describing the 

permeability variations in the reservoir. Once the eigenvectors are obtained appropriate 

thresholds in the manner described above may be applied to get the domains. It is 

expected that the domain delineation procedure using the covariance matrix would 

identify regions that exhibit similar permeability structure (geological facies). A potential 

drawback could be that the analysis is just based on the static data. It is possible that for 

particular boundary (well) conditions, there might be significant flow across facies 

boundaries, resulting in connected flow-based sensitivity regions but un-connected 

permeability-based regions. Conversely, permeability covariance in regions significantly 

removed from the well regions could still be identified as important reservoir regions 

based on PCA of the permeability covariance matrix, although their influence on the 

reduction of the history match objective function may be minimal. 
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A synthetic 100*120 permeability field was used to demonstrate the procedure for 

delineating reservoir regions using the covariance structure of the permeability field.  The 

reservoir was assumed to consist of three facies layers with equal proportion (4000 grid 

blocks each) of locations belonging to a particular facies. This is deliberately done to 

evaluate the efficacy of eigenvectors in identifying the facies. An exponential covariance 

structure was assumed for each facies, with the prior variance (sill) in facies 1 equal to 

800 md2,  facies 2 equal to 600 md2 and facies 3 equal to 1000 md2.  The correlation 

length is assumed to be 170 units within each facies. In the vertical direction (across 

facies), the correlation length is reduced to 20 units and the corresponding prior variance 

is assumed to be 100 md2.  A cut off 33% was applied to first three eigenvectors. The 

covariance matrix for this case is of the following form: 

 

The eigen domains identified by the principal component analysis procedure are shown in 

Figure 19 below. As can be seen, the eigenvectors could resolve the three facies 

perfectly. The facie with highest variance is being identified as most sensitive, the facies 

with the second highest variance as the next most sensitive and so on.   

 
Figure 19:   Figure showing the eigen domains based on covariance matrix of 

 permeabilities. The following is the color scheme employed: First 
 eigenvector positive components , second eigenvector positive 
 components  and third eigenvector positive components . 

 

A similar exercise was carried using 2nd, 3rd, 4th, 5th and 6th layer of STAN5. The 

covariance matrix was calculated from the above-mentioned 5 layers. The covariance 

between any pair of nodes in the reservoir domain was obtained using pairs of values at 
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those nodes over the 5 layers. The layers of the reservoir are therefore taken to be 

multiple realizations of a common stationary process and hence the covariance is 

calculated by employing a stationarity decision over the multiple layers of the reservoir. 

It must be noted that a covariance value calculated over a sample set of 5 is likely non- 

robust, nevertheless the calculation was performed to demonstrate the methodology. 

. 

 

 

 

 

(d)

(b)
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Figure 20: Reservoir regions for the STAN5 data obtained using the permeability 
covariance matrix: a) Applying a 60% cut-off for the first two eigenvectors of, 
b) Applying a 50% cut off on the first 3 eigenvectors, c) Applying a 50% cut-
off on the first 5 eigenvectors, d) Applying a 30% cut off on the first 5 
eigenvectors 
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As seen in Figure 20, the delineated zones retain the imprint of the channel feature 

common to all the reservoir layers. Increase in the number of eigenvectors retained to 

represent the variability and/or reduction in the cut off threshold, adds more noise to the 

resultant maps.  

 

In order to evaluate whether the lack of adequate statistical mass influences the 

calculation of the covariance matrix and hence the determination of eigen domains, the 

same exercise was performed on 50 realizations of a permeability field generated by the 

p-field simulation technique. The reservoir size is 50 x 50 grid blocks. The results shown 

in Figure 21 were obtained.  

 
 

 

 
Figure 21:  Reservoir regions delineated corresponding to a suite of permeability models 

obtained using p-field simulation. The eigen decomposition of  the 
permeability covariance was performed and the reservoir regions were 
obtained by: a) Applying a 60% cut-off for the first two eigenvectors, b) A 
50% cut off applied to the first 5 eigenvectors, and c) A 30% cut off applied to 
the first 5 eigenvectors. 
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It can be seen in the figure above that the choice of the cut-off threshold can have an 

important influence on the shape and size of the delineated zones. If the threshold is large 

then a number of grid nodes get assigned to regions spanned by the higher ranked 

eigenvectors and as a result the regions corresponding to the lower ranked eigenvectors 

are small.  

 

In the procedure described above, the reservoir regions are delineated based on the 

permeability variations observed over many permeability realizations while sensitivity 

coefficients from flow are calculated for a given realization. Another important 

observation is that the domains defined based on the principal component analysis of 

permeability covariance matrix are such that the most uncertain regions of the reservoir 

(with maximum variance) are calculated to have the highest eigen components and hence 

deemed most sensitive for history matching purposes. However, regions with the most 

uncertain parameters may not always be the most sensitive regions. For example, the 

permeabitities at particular reservoir regions may be most uncertain but if those locations 

are far away from wells, then they will contribute less to flow and hence may not be 

consequential to the objective function.  

 

Computational cost associated with sensitivity analysis 
As earlier mentioned calculation of sensitivity coefficient can cost as much as 20% of the 

total run time. Some approximations are necessary in order to keep the computational 

cost reasonable. The feasibility and robustness of reservoir regions defined by restricting 

the duration of the flow simulation runs was evaluated. The results in Figure 22 indicate 

that while the sensitivity coefficients do change in the magnitude with respect to time, 

their relative magnitudes remain the same provided the permeability, well constraints, 

number of wells remains the same. The sensitivity coefficients defined on percentile scale 

remain almost the same. This implies that reservoir regions defined by performing the 

flow simulation for a fraction of total simulation period would serve the purpose of 

defining reservoir regions.  
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It has to be emphasized that in this project, the objective of sensitivity analysis is only to 

identify reservoir regions. History matching would ultimately be performed using a 

probabilistic approach only. The absolute magnitudes of the sensitivity coefficients are 

not important since they are not used in the history matching process.  

 

   
Figure 22:  Sensitivity analysis performed on the 3rd layer of STAN5 (with 4th layer as 

base case for generating history) at a) 100 days, b) 500 days, and c) 1500 
days. 

 
 
Rotation of eigenvectors as per the Varimax criteria  
The procedure for determining the rotation angle that yields the maximum variance of 

eigen components (Varimax) was tested. Figure 23 (a)  shows the results of  the 

sensitivity analysis performed on the 3rd layer of STAN5 with the base case production 

history data generated for the 4th layer. The first four eigenvectors are plotted each with 

30% cut-offs. In that figure, there are some regions that are masked by higher ranking 

eigen vectors (e.g. the bright green regions that is masked by the blue colored eigen 

domain). Figure 23 (b) shows the first four eigenvectors rotated as per the varimax 

criteria each with 30% cut-offs. The variances are more evenly distributed in the case of 

regions obtained after variamx rotation. Net variance extracted remains the same for two 

cases but sensitivity constraint (i.e. the first eigenvector should align along the axis of 

maximum variance of hyper-ellipsoid) is compromised for the varimax case in order to 

get less overlap among the eigen components. The feasibility of applying eigen rotation 

to determine reservoir regions exhibiting least overlap is thus demonstrated. 
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Figure 23: Reservoir regions delineated corresponding to the 3rd layer of STAN5:  a) 

Using conventional PCA and eigenvectors aligned along the principal axes of 
the hyperellipsoid, b) After rotating the eigen components using a Varimax 
(maximizing the variance of eigen components) criteria. 

 
 
A Scheme For History Matching Using Domains In The Distributed Computing 
Environment . 
The property of the domains determined by applying the PCA procedure is that the 

regions exhibit least correlation in terms of their influence on the objective function. 

Thus, each domain can be perturbed on a different node of the cluster while aiming for 

the minimization of the global objective function. Finally the perturbed regions can be all 

put together and this would be justified since the perturbed domains are assured to be 

least correlated. The proposed approach is particularly suited for distributed computing 

since independent tasks of equal magnitude can be performed on multiple cpu nodes. 

This would amount to flow simulations of the same realization at different nodes while 

perturbing different regions. Rather than doing a full field flow simulation on the whole 

reservoir domain, certain low sensitive regions can be excluded based on the results of 

the sensitivity analysis. All the remaining gird location in the reservoir will be subject to 
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flow simulations on multiple nodes. At each node only the probability distribution 

corresponding to a particular domain will be perturbed – all nodes outside the domain 

retaining the original unperturbed probability distributions. Preliminary code 

development for implementing this scheme is already underway.   

Parallel Computing for History Matching 
The proposed approach for history matching utilizes reservoir regions determined by the 

sensitivity analysis procedure and subsequent perturbation of the local conditional 

distributions describing the uncertainty in permeability values in that region in order to 

effect a history match. The perturbation to the probability distributions are performed 

using an updating parameter termed rD. There can be two plausible ways of handling 

multiple “rds” corresponding to multiple domains i.e. parallel or distributed computing. 

Each has its merits. For parallel computing the first requirement is that the domains be of 

comparable size. This problem can be addressed by having two different definitions of 

domains i.e. that updating is done on the domains defined as per the sensitivity criteria 

while during the running of simulator the domains divided are defined such that they are 

equal in size. This implies that the flow simulation can consist of multiple rD regions, and 

so the problem of rD optimization of multi-parameter optimization. The resultant 

algorithm will therefore be complicated, defeating the very objective of the proposed 

history matching approach. 

 
Using distributed computing, the same problem of rD optimization can be approached 

using the 1-D optimization methodology that renders the proposed method efficient.  

Each domain can be perturbed at different node of the cluster while targeting the global 

objective function. Finally the perturbed regions can be put together since the domains 
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perturbed were least correlated. The proposed approach is particularly suited for 

distributed computing since independent tasks of equal magnitude need to be performed. 

This would amount to flow simulations of the same realization at different nodes while 

perturbing different regions. Rather than doing the flow simulation on whole realizations 

at different nodes, certain low sensitive regions may be excluded by using boundary 

conditions. These low sensitivity boundary regions would not need frequent updating 

since the there would be minimal flow across those regions. In the distributed 

environment, any commercially available serial flow simulator can be utilized at each of 

the computational node and furthermore, the high efficiency of serial algorithms can be 

put to use.  

   
Test Cases 
Parallel Simulation 
In order to demonstrate the parallel flow simulation capabilities of Parallel ECLIPSE 

100, the following cases were run.  

For Case1 and Case 2   a 4000 ft. x 4000 ft. x 20 ft reservoir model was assumed (with 

constant permeability of 500 md, constant porosity of 30%). The total number of grid 

blocks in the reservoir was assumed to be 48,000. The reservoir is assumed to have one 

vertical producer in the middle of the reservoir. Four parallel processors were utilized for 

the parallel simulation. Parallel Eclipse 100 was used that allows the reservoir to be 

divided in either X or Y dimension. Three cases were run, with identical reservoir 

dimensions and well locations. The simulation was run for 500 days. All parallel 

simulations utilized four processors. In our case the definition of aspect ratio is the 

number of grid blocks in x to y directions. The whole point of doing the following cases 

was to demonstrate that certain schemes of domain decomposition could be 

computationally efficient. In the later stages of the algorithm (after distributed computing 

part is over), the whole reservoir is subjected to one ‘rd’ optimization so as to remove any 

artifacts (if any). This information would then be useful to as to have computationally 

efficient domain decomposition scheme.  
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Case 1) Aspect ratio changed while the number of grid blocks are kept same 
 
The effect of the aspect ratio of the reservoir on the performance of the parallel 

simulation was assessed.  

Grids Aspect Ratio
Time 
(Sec) 

Producer 
Coordinates

4*4000*3 0.001 184 (2,2000) 
16*1000*3 0.016 75 (8,500) 
20*800*3 0.025 56 (10,400) 
40*400*3 0.1 144 (20,200) 
80*200*3 0.4 236 (40,100) 
160*100*3 1.6 322 (80,50) 
400*40*3 10 491 (200,20) 
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Figure 24:  Influence of aspect ratio on computation speed using ECLIPSE 100              

(1-D domain decomposition).  
 
Case 2) Aspect ratio constant while the number of grid blocks were changed 
 
The same reservoir scenario was simulated but this time with different grid resolution and 
keeping the aspect ratio constant. The grids employed are summarized below: 
 

 63



Grids No. of grids 
Time 
(Sec) 

4*4*3 48 4 
40*40*3 4800 21 
80*80*3 19200 76 

160*160*3 76800 530 
 
 

The results shown in Figure 25 indicate that maximum gain in computational speed is 

achieved when the grid size is increased by a factor of 100 from 100 grid blocks to 10000 

blocks. Subsequently, the computation slows down when the grid size is increased. This 

could be attributed to the increased communication between processors due the larger 

interacting surface area among the domains. 
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Figure 25: Plot of computation time against grid size. Non-linear scaling of computation 

speed with increase in grid size is indicated. 
 
 
Case 3) Number of grid blocks are kept same while the aspect ratio and the physical  
dimensions of reservoirs are varied 
 
The reservoir is assumed to have constant permeability of 500 md, constant porosity of 

30%.  The reservoir is assumed to have one vertical producer in the middle of the 

reservoir. Four parallel processors were utilized for the parallel simulation. Parallel 

Eclipse 100 was used that allows the reservoir to be divided in either X or Y dimension. 

Three cases were run, with identical reservoir dimensions and well locations. The 

simulation was run for 500 days. Parallel simulations utilized four processors.  
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Physical dimension of grid blocks were kept same i.e. 500 ft, 500 ft and 50 ft in x, y and z 

directions respectively. 
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Figure 26:  Plot of computation time versus aspect ratio while adjusting the grid block 

sizes so as to keep the reservoir dimension the same. 
 
The results indicate that simulations performed with approximately the same number of 
blocks in the x and y directions and with square grid blocks are the most efficient. 
 
 
Flux Boundary Conditions 

The following are the results obtained while simulating a small section of the field using 

the boundary conditions obtained from the full-scale simulation. The full field has 50*50 

gridblocks while the smaller sections have 25*25 grid blocks. Fluxes (flows of each 

phase from the full field run as a function of time) are used as boundary conditions. The 

full field simulation took 21 seconds while the smaller section took 9 seconds. Figure 27 

shows the pressures and oil saturations at the end of 5000 days. Comparing the grid bloc 

pressures and saturations obtained for the sub domain simulations against the full field 
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simulation values, the accuracy of the sub-domain simulation results was ± 1 psi. The 

saturations were alike up to three places of decimal. 

 

 
(a) 

 
(b) 

(c) (d) 
Figure 27:  Full field flow simulation results: a) Pressure variations in the reservoir at 500 

days obtained by full field simulation; b) Pressure variations in a domain 
obtained corresponding to boundary conditions derived from the full field 
simulation; c) Oil saturation values obtained by full field simulation, and d) 
Oil saturation values obtained for sub-domain simulation using boundary 
conditions derived from full field simulation. 

 

The choice of simulator was dictated by the availability of the calculation options that 

facilitate identification of sensitive regions and provide Hessian matrix of the objective 

function. Various Parallel and Boundary flux cases were run for the preliminary checks 

on Eclipse. A scheme for using parallel and distributed computing, specifically from the 

project’s point of view has been formulated. 
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Validating Probabilistic Approach for Dynamic Data Integration 
Putting Things Together – A Gradual Updating Procedure for History 
Matching  
An approach that uses a probability perturbation method for gradual deformation of 

geological models conditioned to dynamic information has been presented. This 

approach, compared to other perturbation methods, offers the important advantages of 

preserving the prior geological heterogeneity model and simplifying the history match 

process to a single (or few) parameter(s) optimization problem.  

 

The reproduction of historical production data is a complex non-linear inverse problem. 

This implies that the probability updating cannot be accomplished in a single perturbation 

loop starting from an initial realization of the permeability field; calibrates an optimal rD 

value and obtains an updated probability distribution reflecting the dynamic 

characteristics of the reservoir. Instead, a multi-loop iterative process is required to 

update the geological model using the dynamic data. 

 

A Markov-Chain is a stochastic updating procedure where the parameter state at any step 

of the procedure is assumed to be dependent only on the state immediately prior to that 

step.  Thus the proposed realization at any stage of the process depends only on the 

preceding realization in the sequence, and the convergence towards the desired 

realization depends on carefully specifying the transition from one realization to the next 

one, i.e. the methodology for the new proposed realization. In this case, the parameter rD 

controls the transition of the permeability value at a location from one category to the 

next. The calibration of the deformation parameter to condition the gradual deformation 
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of the geological model to dynamic information represents the internal optimization 

scheme. The converged model and realization at the end of the inner loop is then used as 

the starting realization for the next sequence of inner Dekker-Brent optimization runs to 

determine the conditional distribution P(A|C). 

 

In the implemented Markov chain approach, on every updating step, from iteration step l  

to step  of the outer loop, the probability distributions conditioned to dynamic and 

static information, , are obtained by applying the permanence of ratio 

hypothesis to combine distributions conditioned to static information. The distribution 

 is obtained from geological data and heterogeneity model and the distribution 

conditioned to dynamic information, 

1l +

1( | , )lP A B C +

( | )lP A B

1( | )lP A C +  is estimated knowing the indicator 

category at each location from the realization sampled from , the prior 

distribution P(A) and the deformation parameter, 

A),|( CBAP

Dr , calibrated using the Dekker-Brent 

iterative optimization procedure. The converged distribution  is then used as 

the starting point for the next inner Dekker-Brent loop until global match to the historic 

data is attained.  

1( | , )lP A B C +

 

Even though the two-loop Markov chain procedure ensures global convergence, the 

introduction of multiple sets of inner optimization schemes requires multiple evaluations 

of the flow response. However, the dynamic-calibrated gradual deformation methodology 

renders the history match process faster and more controlled, increasing the consistency 
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between the initial and the proposed realizations at every step, and improving the rate of 

convergence of the objective function. 

Preliminary evaluations of the algorithm for dynamic data integration using the proposed 

probabilistic approach have been pursued with the synthetic case described in the 

following table. 

TABLE 1.  Description Of The Synthetic Simulation Case Used To Evaluate The 
Probabilistic Dynamic Data Integration Algorithm. 

SIMULATION PROPERTY/DESCRIPTION VALUE 
Simulation Model Black Oil 
Solution  Implicit 
Simulation Period, years 2 
Grid (Cartesian) 50x50x5 
Active Grid blocks 12500 
Grid block dimensions, ft3 80x80x4 
Porosity  0.22 
Kx = Ky (Mean – Std Dev), md  200 - 250 
Kz/Kx 0.15 
Saturation Pressure, psi 5064 
Water-Oil Contact, ft 9000 
Gas-Oil Contact, ft 4000 
Reference Depth, ft  7300 
Initial Pressure @ 7300 ft, psi 6000 
Residual Water Saturation 0.18 
Residual Oil Saturation 0.24 
Oil Relative Permeability Endpoint 0.7 
Water Relative Permeability Endpoint  0.5 
Oil Gravity (API) 35 
Water Injectors  1 
Injection – Control Rate, Stb/day 5000 
Injection – BHP upper Limit, psi 8000 
Oil Producers 2 
Production – Control BHP Lower limit, psi 2000 
Production – Minimum rate, Stb/day 10 

 
 
Figures 28-32 describe the convergence characteristics of the algorithm on the synthetic 

case study.  
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Figure 28:  Field Pressure History Match obtained with the probabilistic dynamic data 
integration algorithm for the synthetic case study. Results after forty flow 
simulation runs.  
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Figure 29:  Field Production History Match of synthetic case using the probability 
perturbation method. Final model is obtained after 40 simulation runs. 
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Run 1 Run 5 Run 13

Run 21 Run 32 Run 40

 

Figure 30:  Example of Gradual Deformation of geological models, obtained with the 
probability perturbation method. Variations in the Third layer of the 
Geological model through 40 flow simulation runs are presented.  

 
 

 
Figure 31: Third layer of the reference geological model used in the synthetic case to 

generate the historical production data.  
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Figure 32:  Example of Convergence in the objective function applying the probabilistic 
approach for assisted history matching by gradual updating of conditional 
distributions using dynamic information.  

 
 
 
CONCLUSION 
 
The general procedure for gradual updating of geological models within an assisted 

history matching framework can be summarized in the following steps: 

 

1. An indicator sequential simulator is used to generate an initial stochastic 

realization of the target reservoir model and calculate the local probability 

distributions conditioned to static information. 

2. A Markov chain iterative updating process is started with the initial realization. 

The Markov chain forms the outer loop of the procedure and every outer step or 

outer iteration includes the following sub procedures: 
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2.1. Generate a new set of random draws to sample from the local conditional 

distributions. This set of sampling draw is fixed during each outer iteration, but 

changes from an outer iteration to another. 

2.2. Evaluate the Objective function at different values of the deformation parameter, 

rd, screening the whole range of variability [0, 1]. Usually 5 different values are 

enough to get started. For each value of rd, a different geological model is 

obtained and run in the flow simulator; and the objective function is evaluated. 

2.3. Pick the value of the deformation parameter with the minimum objective 

function and start the calibration process of rd with the dynamic data using the 

Dekker-Brent iterative algorithm. This calibration process is called the inner 

loop, and the number of inner steps or inner iterations can be fixed or controlled 

by a tolerance in the change of the objective function in consecutive steps.  

2.4. Use the best model (with the minimum objective function) to update the 

stochastic realization. When the best model is obtained with a deformation 

parameter of zero, no updating is required (the realization remains invariant). 

This is the final step of the outer loop.  

3. Repeat step 2 (outer loop) until a tolerance in the objective function (history 

match) has been reached or for a fix number of outer iterations. 

4. Print out final geological realization with the corresponding flow response.  

Analysis of schemes for optimal parameterization of the history matching procedure in a 

parallel and distributed computing environment leads to the following conclusions: 

 
1)  Global rather than well specific objective function should be minimized by 

perturbing permeability values locally within domains.   

 

 73



2)  Reservoir regions based on sensitivity coefficients calculated for an initial guess of 

the permeability field that is far from the “truth” may not be very reliable. It is 

therefore necessary to re-compute the reservoir regions as the permeability field is 

being updated during the history matching process. 

 
3)  The grouping of correlated grid blocks (from flow perspective) has been proposed 

by some researchers as a way to simplify the history-matching problem by 

decreasing the number of parameters to be optimized. In this project, the feasibility 

of using the same concept to define reservoir regions has been explored. The 

procedure ensures that the defined domains are least correlated in terms of their 

effect on the objective function. 

 

4)  Domains have been defined by performing principal component analysis of the 

Hessian matrix (sensitivity coefficients) and the permeability covariance matrix and 

then subsequently applying a cut-off threshold in order to obtain reservoir regions 

that span a reasonable volume of the reservoir. A variance threshold may also be 

specified in order to reduce the number of eigen vectors (regions). 

 

5)  Domains have also been defined by first suitably scaling the eigenvectors then 

applying a single threshold rather than different threshold for different eigenvectors. 

Further testing of this concept for reducing sensitivity to user specified parameters 

are required. 

 

6)  In case there is high degree of overlap among the eigen-components of different 

eigenvectors, rotation of eigenvectors using a variance maximization procedure is 

proposed and has been tested.  

 

7)  While doing Principal Component analysis of permeability coefficient matrix,  

regions with the highest uncertainty (variance) are identified as the most sensitive. 

However, a drawback with using static data for domain delineation is that it is very 

much possible that there is very high flow across facies due to particular well 
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locations i.e. facies are correlated from flow perspective but not statically. Also 

high variance (or high sensitivity statically) regions may have not much flow 

associated and thus would not affect the objective function in any significant way. 

 

8)  Domain decomposition based on porosity and thickness was tried. From the test 

cases it appeared that sensitivity coefficients are a strong function of the 

permeability realization in consideration. Geobodies defined on the basis on 

sensitivities and coefficients were inadequate to define the domains. 

 

9)  In order to counter the high computational cost associated with sensitivity analysis 

an approximation based on analysis of limited duration of production data has been 

proposed. The delineated zones were determined  to be robust. 

 

10)  A scheme for history matching using the domains in the distributed computing 

environment has been discussed.  
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