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Abstract

This report summarizes progress in a research effort to quantify the effects of nonuniform
flow on displacement performance in CO, floods. Results are reported in three areas:

(1) Effect of phase behavior in one-dimensional flow.
(2) Interaction of viscous instability and flow in heterogeneous porous media.
(3) Detection and representation of heterogeneity.

In the first area, the development of a new experimental apparatus for simultaneous meas-
urement of phase compositions, viscosities, and densities is described. Also reported are
results of calculations by the method of characteristics of the effects of the presence of dis-
solved methane on the development of miscibility. Those calculations show that measured
minimum miscibility pressures are insensitive to the presence of methane, because it partitions
so effectively into the CO,-rich phase that all the methane has been displaced before the CO,
arrives. The method of characteristics for analysis of the flow of CO,-steam-heavy oil mix-
tures with varying temperatures and the flow of ternary mixtures in a two-layer porous medium
with viscous crossflow is described. Also reported are results of an investigation of the
interaction of phase behavior with dispersive mixing. Those calculations show that the sensi-
tivity of the performance of a displacement to changes in the level of dispersion depends on
the size and shape of the two-phase region for ternary systems.

In the second area, partly-scaled experiments to study the effects of viscous instability in
the presence of permeability variation are described. In addition, results of detailed simulations
of the growth of viscous fingers in both homogeneous and heterogeneous porous media are
described. Those calculations indicate that when local permeability in/a heterogeneous permea-
bility field is correlated over a significant fraction of the flow length, the pattern of finger
growth is dominated by the permeability variation.

In the third area, use of a combination of pressure transient and well-to-well tracer tests
to detect the presence of reservoir heterogeneities is discussed. Also presented is a technique
for calculation of the transient pressure response to large scale heterogeneities and an analysis
of the pressure response of one- and two-dimensional composite reservoirs. Finally, results of
calculations of the effects heterogeneity and capillary and viscous crossflow are reported. They
show that for mild permeability variations, crossflow can mitigate effects of heterogeneity
sufficiently that representation cf the flow in terms of pseudorelative permeability functions is
reasonable.



1. Introduction

Extensive laboratory testing and a considerable body of field experience indicate that CO,
flood processes can displace oil effectively at both scales. The oil recovered at either scale
results from a complex interplay of interacting and competing transport mechanisms: phase
behavior, variations in fluid properties with phase compositions, diffusion and dispersion,
viscous instability, density and capillary driven crossflow and, of course, reservoir hetero-
geneity. The scale dependence of process performance results from the fact that the length
scales on which the various mechanisms have the largest impact change in different ways as
the scale of the displacement changes. Quantification of that scale dependence is the central
issue of current research on methods for more accurate prediction of CO, flood performance at
field scale.

Unfortunately, fully detailed field-scale simulation of the combined effects of phase
behavior and nonuniform flow caused by viscous instability, heterogeneity or both, is not pos-
sible using simulation techniques and computers currently available. Indeed, for the foresee-
able future simulations will be conducted with grid blocks that are large compared to some of
the scales of variation of rock properties and fluid compositions. Thus, large-scale simulation
representations will rely on averages of process mechanisms operating at smaller scales. The
objective of the research described in this report is to improve quantitative descriptions of the
interplay of process mechanisms and scales, so that averaged representations can be developed
that reflect those mechanisms with reasonable accuracy.

Because the overall problem is too complex to be attacked directly, we consider here a
sequence of simpler problems that illustrate behavior in relevant limiting cases. In chapter 2
we describe experimental equipment developed to study the phase behavior and fluid properties
of mixtures that occur during miscible displacements. Also reported in chapter 2 are formula-
tions and results of several calculations that examine interactions of phase behavior and flow in
one- and two-dimensional systems. Chapter 3 reports preliminary results of flow visualization
experiments to examine the interaction of viscous fingering with variations in permeability.
Also described are more extensive results of calculations of the long term growth of viscous
fingers in both homogeneous and heterogeneous flow systems.

In chapter 4 we examine the question of detection of reservoir heterogeneities by pressure
transient and well-to-well tracer tests. In addition, we report results of calculations that illus-
trate the importance of crossflow in flow in heterogeneous porous media and consider the
implications of crossflow for representation of the effects of heterogeneity by averaged
(pseudo-) relative permeability and fractional flow functions.

The results reported suggest that improved descriptions of process performance in nonuni-
form flow systems can be developed, though much work remains to be done. The research
effort described here is a step toward that goal.



2. Phase Behavior and Flow

High local displacement efficiency in a CO, or other miscible process depends on the
transfer of components between phases. If the transfer is efficient, and the effects of disper-
sion and nonuniform flow negligible, local displacement efficiency may approach 100 percent.
Thus, in nearly one-dimensional displacements, such as occur in a slim tube, for example,
phase behavior dominates the displacement process. Thus phase behavior and accompanying
fluid property data are an important part of any description of miscible flood processes. In
Section 2.1 we describe the design and testing of a new apparatus for phase behavior and fluid
property measurements. In Section 2.2 we consider the combined effects of phase behavior
and flow in one dimension. In that analysis the effect of methane (C;) dissolved in an oil is
studied by treating the CO,-0il system as a four component mixture rather than as a ternary
system. In Section 2.3 we apply a similar mathematical technique to study the behavior of
steam-water-CO,-oil displacements in which the temperature also varies. That analysis is an
investigation of the combined effects of phase behavior and viscosity reduction of a heavy oil
by heating and dissolved CO,.

In actual CO, floods, the effect of phase behavior on composition path is modified by the
nonuniform flow that inevitably results from reservoir heterogeneity and viscous instability. In
Section 2.4 we describe an analysis by the method of characteristics of flow of two-phase, ter-
nary mixtures in a two-layer system with crossflow. Because it includes effects of crossflow
and nonuniform flow that problem is a simplified model for the effects of phase behavior and
heterogeneity or viscous instability. In Section 2.5 we return to the effects of dispersion on
composition path and show that the magnitude of the interaction of dispersion and phase
behavior depends on the size and shape of the two-phase region. Those results may explain
why slim tube displacements using nitrogen appear to show length effects not observed in
similar displacements with CO,.

2.1 Supercritical Extraction, Phase Behavior and Fluid Properties

Gersem Andrade and Aaron Stessman

Miscible displacement processes may use carbon dioxide (CO,), nitrogen (N) or methane
(CH,) as the injected fluid. For all three fluids, efficient displacement results when the injected
fluid is dense enough to extract hydrocarbons from the reservoir fluid. Slim tube displacement
experiments indicate that pressures required for high recovery are much higher for N, and CH,
than for CO,. That behavior results from the low critical temperatures of N, (126°K) and CH,4
(191°K). Typical reservoir temperatures are farther above the critical temperatures of N, and
CH, than of CO,, and hence higher pressures are required to produce comparable molar densi-
ties. While it is known that high density is required for relatively efficient extraction, it is not
clear whether N,, CH,, and CO, extract the same amounts or types of hydrocarbons when the
injected fluid has similar molar density. To examine the relationship between the extraction for
the three fluid systems, an apparatus for phase composition measurements was designed and
assembled. The apparatus is designed to perform fluid property measurements in addition to
phase composition measurements, and is described in the next section.

2.1.1 Apparatus

The apparatus is based on a PVT cell mounted in a temperature-controlled oven as shown
in the schematic of Fig. 2.1.1.
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The positive displacement pump shown in Fig. 2.1.1 (HIP, model 62-6-10) and the con-
stant flow rate pump (Petrophysical Services, model M106-178) can be used to charge the PVT
cell (Ruska, model 2329) with a mixture of known composition using fluids from the supply
vessels (Temco, model CR-50). The pressure of the mixture is set by injecting or removing
mercury from the PVT cell using the constant flow rate pump, and is measured by a quartz
transducer (Paroscientific Digiquartz, model 1006K). The cell temperature is set by the con-
trollers in the oven and is measured by a platinum resistance thermometer (Stolab, model PL-
403). Once the cell is charged and the desired pressure and temperature conditions are
achieved, the mixture can be brought to thermodynamic equilibrium by means of a circulation
pump (Eldex, model B-100-1). After equilibrium is reached, the phases present are allowed to
separate, and the volumes of the phases can be measured by a digital height meter (Sony,
model H-2060).

To measure phase compositions and properties, the phases are then displaced, one at a
time, at a known flow rate by the constant flow rate pump through one of the flow paths to the
back pressure regulator (Temco, model BPR-5-9). Each path includes a densitometer
(Mettler/Paar, DMA-512), for density measurement, and a capillary tube (high pressure tubing,
0.006 in ID) for viscosity measurement. The viscosity is determined from the value of the
flow rate set by the pump and the pressure difference across the capillary tube, measured with
a pressure difference transducer (Sensotec, model HL-Z/5549-01).

Once the sample is displaced through the densitometer and capillary tube, it is blown
down to close to atmospheric pressure at the back pressure regulator. At low pressure and
room temperature, the phase being analyzed is allowed to separate into a vapor phase and a
liquid phase. The amount of liquid phase is determined by weight, and its composition is
measured by simulated distillation in a gas chromatograph (Hewlett-Packard, model 5880).
The low pressure vapor flows to an evacuated container of known volume. Measurement of
the pressure in the container and the room temperature allows calculation of the total number
of moles of gas using the ideal gas law. The gas in the container is then displaced by helium
to the gas chromatograph where its composition is determined. From the amounts and compo-
sitions of liquid and vapor, the phase composition can be calculated. Thus the apparatus
allows measurement of equilibrium phase compositions for all phases present in the PVT cell
as well as their fluid properties. Furthermore, physical samples are obtained so that a more
sophisticated compositional analysis can be performed if desired.

2.1.2 Calibration Runs

The accuracy of the results obtained with the apparatus described above depends on the
accuracy which volumes and flow rates are estimated. Volumes and flow rates are estimated
by the amounts of mercury displaced from the pumps to the system, and also by the measure-
ment of the position of fluid interfaces seen through the windows of the cell. The flow rates
must be known for the measurement of viscosity, and they are also related to the amount of
mercury displaced from the pumps with time.

As different conditions of pressure and temperature may occur in the pumps and in the
cell and in the capillary tubes, the volumes of mercury that are read directly from the pumps
are not necessarily equal to the volume injected or withdrawn from the cell or capillary tubes.
Thus, the response of the internal volumes of the pumps and cell when subjected to different
pressures and temperatures, as well as the relationship between the volume in the cell and the
position of the fluid interface seen through the windows of the cell, were evaluated in the cali-
bration runs described below.

(1) In order to determine the relationship between the volume read in the pumps and the
volume actually delivered, the pumps (HIP and PSI) are filled with mercury and then
some amounts of mercury (about 10 cc) are pumped and weighed. Pressures and tem-
peratures were recorded and the volume actually delivered was estimated using the densi-
ties of mercury at the temperature of the pump and at room temperature. The procedure



-5.

was repeated at different conditions of pressure and temperature and it was observed that
the HIP pump delivers 0.36097 cc per revolution with a relative error no greater than
0.6%, and the PSI pump delivers 1.00788 cc per each cubic centimeter read with a rela-
tive error no greater than 0.03%. It was decided then to use the PSI pump as the
volume reference for measurements with the apparatus.

(2)  The compressibility of the pumps was estimated by compressing mercury in the pumps
with the outlet valves closed and reading the volume required to raise the pressure to
values desired (0 to 8000 psi with 1000 psi steps).

(3) The volume in the cell and the corresponding height read in the height meter were cali-
brated using the set up shown in Fig. 2.1.2. A high pressure nitrogen bottle was used to
set pressures in the system, and the temperature was set by the controllers in the oven.
The cell was completely filled with mercury and some amount of mercury was with-
drawn (10 cc) with the PSI pump. The valve at the bottom of the cell was then closed
and the height of the interface mercury-decane was read. The volume of mercury actu-
ally withdrawn from the cell was determined by using the densities of mercury in the
pump and in the cell. The pressure was then increased stepwise (2000 psi steps) and
new measurements were made. The temperature was also increased stepwise and the
measurements repeated to access the volumetric behavior of the internal chamber of the
cell and the volume factor for the height meter at different pressure and temperatures.

(4) The densitometers and capillary tubes are currently being calibrated by charging the cell
with a fluid of known density and viscosity behavior at different conditions (decane and
methane) and displacing the fluid through each one of the sampling branches shown in
Fig. 2.1.1 at a known flow rate. The pressure difference across the capillary tube is
measured, and new conditions of pressure and temperature are established for further
measurements.

Addition of a microcomputer to the system is now underway. It will be used to automate
acquisition of phase volume, temperature and pressure data, so that consistency of volumetric
measurements can be checked while experiments are in progress.

2.2 Composition Paths in Four-Component Systems

Wesley W. Monroe

Understanding of the role of phase behavior in the development of miscibility in CO,
floods, vaporizing gas drives and condensing gas drives is usually derived from analysis of
composition paths represented on ternary or pseudo-ternary phase diagrams (Slobod and Koch
1953, Hutchinson and Braun 1961, Defrenne et al. 1961). Consideration of four-component
systems has been limited to the qualitative discussions of Defrenne et al. (1961), Rathmell et
al. (1971) and Stalkup (1983). Mathematical analysis of such flows has also been based on ter-
nary representations of the phase behavior of mixtures of the injected and in-place fluids. For
example, Welge et al. (1961) calculated composition paths for enriched gas drives and included
the effects of volume change as components transferred between phases. Helfferich (1981) gen-
eralized the analysis of Welge et al. to systems containing an arbitrary number of components,
but restricted consideration to those in which effects of volume change on mixing are negligi-
ble. Examples presented by Helfferich dealt with ternary systems only, however. Applications
of similar theory to ternary systems of interest in surfactant floods have been presented by Lar-
son (1979) and Hirasaki(1981). Dumore et al. (1984) extended the analysis of Welge et al.
and Helfferich to describe condensing and vaporizing gas drives for ternary systems in which
volume change on mixing is important.

All of those mathematical descriptions are for the limiting case of one-dimensional flow
in which the effects of dispersion are negligible. In such cases, it can be shown (Welge et al.
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Fig. 2.1.2.  Set up used for volumetric calibration of the PVT cell.
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1961, Helfferich 1981, Larsen 1979, Hirasaki 1981, Dumore et al. 1984) that compositions of
fluids that form during a displacement of oil by CO, do not pass through the two-phase region
unless the oil composition lies within the region of tie-line extensions on a ternary diagram.
Thus, the critical tie line, the tie line that is tangent to the binodal curve at the plait point,
marks the boundary between oil compositions that develop miscibility and those that do not.
According to the one-dimensional theory, the minimum miscibility pressure (MMP) is the pres-
sure at which the oil composition lies on the critical tie line, so that additional pressure
increases shrink the two-phase region enough to move the oil composition outside of the region
of tie-line extensions. That theory applies equally well to systems containing an arbitrary
number of components. In such systems, it is a surface in n, dimensions that divides original
oil compositions that develop miscibility from those that do not (Defrenne et al. 1961).

Experimental determination of the MMP is rarely based on analysis of phase diagrams,
however. Instead it is usually obtained from measurements of the fraction of oil recovered in a
slim tube displacement at a given pressure (Orr et al. 1982). Several criteria have been pro-
posed by which the MMP can be determined from displacement data. Most require that the
recovery be nearly 100 percent (typically greater than 90 percent) and that recovery increase
only slightly in displacements at pressures greater than the MMP (Orr et al. 1982, Yellig and
Metcalfe 1980, Holm and Josendal 1982). Numerous correlations have also been offered that
account for the effects of variations in temperature and oil composition on MMP. Several of
the correlations currently available (Yellig and Metcalfe 1980, Holm and Josendal 1982, Orr
and Silva 1985) do not account for the effect of the amount of light hydrocarbons, such as
methane (C;), present in the oil. Yellig and Metcalfe (1980) found, for example, that addition
of C; to an oil did not change MMP’s appreciably. Neglect of the presence of light hydrocar-
bons is based on the assumption that such components volatilize and are transported ahead of
the displacement front and hence, do not affect the development of miscibility (Holm and
Josendal 1982). Thus, the correlations include the provision that when there is enough of the
light components present to raise the bubble point pressure (BPP) of the oil above the MMP
predicted for the dead oil, then the BPP is taken to be the MMP.

That provision is inconsistent with the analytical description of the development of misci-
bility. The composition of an oil at its BPP must be at the end of a tie line. Hence, such a
composition must lie within the region of tie line extensions if the oil composition is plotted on
a pseudoternary diagram. Thus, the definition of the MMP based on analysis of one-
dimensional flow of a ternary systems is in conflict with a portion of the experimental evidence
on the behavior of the MMP as the amount of gas dissolved in the oil increases.

To resolve the inconsistency we investigate the flow of a model four component CO,-
hydrocarbon system, CO,, C,, butane (C),, and decane (C,;), for which the Peng-Robinson
equation of state (PREOS, Peng and Robinson 1976) reproduces observed behavior with rea-
sonable accuracy (Larsen 1984, Monroe et al. 1987). We describe the extension of the calcula-
tions of Dumore et al. (1984) to four component systems, and then we use the PREOS
representation of the phase behavior to construct composition paths for the CO,-C;-C4-C;q sys-
tem. The solutions obtained show that it is indeed possible to have high displacement
efficiency even when the original oil composition does not lie outside the region of tie-line
extensions.

2.2.1 Mathematical Model

Given the PREOS representation of the phase behavior, composition paths can be calcu-
lated. The formulation of the flow equations follows that of Dumore et al. (1984). Purely
convective flow of a multicomponent, multiphase system through a one-dimensional, homo-
geneous porous medium is governed by the following mass balance equation

J & d v & .
"a't'zlx,!plsl'f'—a'x-gzlxquf,:() 1=1,nc (221)
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where v is the total velocity, and f; is the fractional flow of phase j, given by

kL
fo il (2.2.2)

.
ki I
=i

In the derivation of Eqgs. (2.2.1) and (2.2.2), effects of dispersion and capillary pressure have
been neglected. Substitution of the definitions

, ",
Gi=3 x; p; S F;= % > xipif;- (2.2.3)
Fl 1
into Eq. (2.2.1) gives
d0G; OF; )
S TR 0 i=1n. (2.2.4)

Here G; and F; represent the overall component concentration and the overall flux of com-
ponent i. Because phases present at any point are assumed to be in chemical equilibrium, the
phase compositions and properties can be obtained by performing a flash calculation given the
overall composition, C;. Thus, G; and F; are functions of the overall compositions and F; also
depends on the total velocity, v. If the dependent variables C; and v are represented as func-
tions of a dummy variable 1 = n(x,7), Eq. (2.2.4) can be written

6 o | 4o -
Hw T mE S0 b (2:23)
where
dG; ™-' 9G; dcy
—t = i=1,n, 2.2.6
dn Z:' 9, dn 220
and
dF; oF; *~1 9F; dC,
- d" E —t Tk i=1n, 2.2.7)

v e & 9C dn
Because m is a function of x and ¢

_om 4.0
dn = o dx + o dt (2.2.8)

We now seek solutions along characteristic curves, for which dn =0. Rearrangement of Eq.
(2.2.8) with substitution of any one of Egs. (2.2.5) gives

o 4

& _ o _ _dn _

i EN = 4G, i=1,n 2.2.9)
ox a4

There is one equation of the form of Eq. (2.2.9) for each of the n, components. The solution
sought is one for which the velocities, %’:— = A, are the same for all components. If so, Eq.
(2.2.9) can be rewritten in matrix form using Eqgs. (2.2.6) and (2.2.7) as

[F-xc?] C =0 (2.2.10)

oF; F; ;
where the entries in the ith row of F are — for k=1, n~1 and — 5 the entries in G g((:; for
k

oC;
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- dc;
k=1, n~1 and O (because G; is independent of v), and the vector C contains E for i=1,n~1

and ﬂ.

an

Eq. (2.2.10) is an eigenvalue problem for which solutions exist for eigenvalues given by
de:[F— )E] =0 (2.2.11)

For a system containing n, components, there are n~1 eigenvalues that represent velocity of an
overall composition along a composition (path) direction given by the associated eigenvector,
C. The eigenvectors represent composition variations that satisfy the restriction that individual
concentrations, C;, all move at the same velocity, referred to by Helfferich as coherence
(Helfferich 1981). Integration along the eigenvector directions yields a set of composition
"paths” that satisfy the coherence condition. Thus, there are three paths through any composi-
tion point in a four-component system. The last eigenvalue is infinite. It reflects the fact that
changes in overall velocity propagate instantaneously.

Solutions to problems of the form of Eq. (2.2.4) may or may not vary continuously. If
the solution varies continuously, Eq. (2.2.4) is the appropriate form of the material balance
equation. At jump discontinuities, however, an overall mass balance across the shock and
yields an expression for its velocity (Welge et al. 1961, Helfferich 1981, Larsen 1979, Hirasaki
1981, Dumore et al. 1984).

Fl-Fi
A; = E{’——G{ 2.2.12)
where the superscripts I and II refer to opposite sides of the shock. It can be shown that a
two-phase region can be entered only via a shock from a composition in the single phase
region to a composition in the two-phase region. Such a shock occurs along the extension of a
tie line (Welge et al. 1961, Helfferich 1981, Larsen 1979, Hirasaki 1981, Dumore et al. 1984).
Two types of jump discontinuities are observed in solutions for specific initial and injection
compositions. The first occurs when the shock in or out of the two-phase region is the limit of
a continuous variation along a tie line, which can occur because tie lines are themselves paths

(Helfferich 1981, Hirasaki 1981, Dumore et al. 1984). In such cases, the shock velocity is
given by (Dumore et al. 1984)

FI-F}

af
o (2.2.13)

v
A, 2
13 ¢ dS

because the shock velocity is equal to the velocity of the composition on the two-phase side of
the shock, the eigenvalue associated with the eigenvector that points along the tie line. As

several investigators have shown, that velocity is A = l-:—iis]: (Welge et al. 1961, Helfferich

1981, Hirasaki 1981, Dumore et al. 1984). We refer to such shocks as "tangent” shocks
because their velocities can be found from a graphical construction analogous to the familiar
Welge tangent construction for Buckley-Leverett solutions. The second type of shock is found
when the jump discontinuity occurs between two known compositions. In that case, the velo-
city is given directly by Eq. (2.2.12). Such shocks will be called "nontangent" shocks in the
discussion that follows.

2.2.2 Quaternary Grid Topology

Construction of a solution for a particular set of initial and injection conditions is com-
pleted by integrating along "paths,” the directions given by the eigenvectors through a
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particular composition point (Helfferich 1981). For example, paths through an arbitrarily
chosen point can be found by solving Eq. (2.2.10) for the three composition eigenvectors.
Then a small step is taken along one of the eigenvector directions and the procedure repeated.
Similar integration for each of the three eigenvectors through each composition point in the
quaternary diagram yields a mesh of composition paths that fills the diagram. Because paths
represent composition variations that satisfy the coherence condition, the solution for specific
initial and injection conditions follows a set of paths that connect the initial composition to the
injection composition. Of the many potential paths available, only one will also satisfy the
constraint that the composition velocity must increase monotonically from the inlet to the
outlet, a statement that fast-moving compositions must lie downstream of slow-moving ones.

Fig. 2.2.1 shows selected composition paths for the CO,-C;-C4-C;o system. Those paths
were calculated using the following expressions for oil and gas phase relative permeabilities

1—8-So |
kro - krom [ 1- Sor } (2.2.14)
Kyg=Kygm S, ¢ (2.2.15)

with kypp = kyom= 0.8, g =n,=3 and S,,=0.05. Phase viscosities were calculated using the
Lohrenz-Bray-Clark (1964) correlation, and phase compositions and densities were obtained
from a flash calculation using the PREOS. The three distinct paths through each point in the
quaternary phase diagram are illustrated for a tie line in the CO,-C,-C;, face. Fig. 2.2.2 is a
plot of the variation in eigenvalues with changes in gas saturation along a typical tie line. As
in the ternary cases described by Dumore et al. (1984) and Monroe (1986), tie lines are paths,

and the eigenvalue associated with the tie line is proportional to % As Fig. 2.2.2 indicates,

composition variations along the tie-line path are slower (have smaller eigenvalues) than other
paths at the ends of the tie line, are fastest in the middle of the tie line, and have intermediate
velocities in between. Thus, a particular path may be a fast, slow or intermediate path at
different positions along it.

As Fig. 2.2.1 shows, in addition to the tie-line path, there are also two nontie-line paths
associated with a given composition. As Fig. 2.2.9 illustrates, we use the designation "hor-
izontal" to refer to the nontie-line paths in the C;-C4-C;y and the CO,-C4-C;, faces, and "verti-
cal" to refer to those paths that extend from the C;-C,-C, face to the CO,-C4-Cy face. Fig.
2.2.2 and 10 show that there are four points along each tie line where the nontie-line paths are
tangent to the tie-line path. The tangent points are singular points of intersection of tie-line
and nontie-line paths where two of the eigenvalues are equal. Two of the singular points are at
the intersection of the tie line and the horizontal nontie-line paths, and the other two singular
points are at the intersection of the tie line and the vertical nontie-line path. Two of the singu-
lar points, one horizontal and one vertical path intersection point, are on either side of the
equivelocity surface, the locus of points at which the liquid and vapor phase velocities are
equal. The equivelocity and saturated phase surfaces are also paths that can be traversed either
vertically or horizontally. In the example that follows, we use the description of path geometry
shown in Fig. 2.2.1 and plots like Fig. 2.2.2 of velocity (eigenvalue) variations along tie lines
to select solution composition paths for given constant initial and injection compositions.

2.2.3 Sample Solution Path

Data for the first example solution are given in Table 2.2.1. At time zero, pure CO, is
injected into a porous medium containing a single-phase oil of constant composition. The
injection velocity is 1.0 m/d. The solution path is plotted on a quaternary diagram in Fig.
2.2.3, and the composition, saturation and velocity data are given in Table 2.2.2.
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Table 2.2.1

Initial and Injection Composition for Displacements
of Live and Dead Ofls at
160° F (71° C) and 1600 psia (11.0 MPa).

" Composition (mole fraction Molar
CO2 Methane Butane Decane || Density (g-mol/cc)
Injection Gas (mole fraction) || 1.00 000 | 0.00 000 | 662x10-5 |
Live Oil (mole fraction) 0.00 0.20 0.34 046 || 6.86x10"°
Dead Oil (mole fraction) {| 0.00 0.00 0.42 058 || 5.99x10°°
Table 2.2.2
Composition Path, Saturation and Velocity Results
for a Quaternary Displacement at
160° F (71° C) and 1600 psia (11.0 MPa).
T - Bl Total Gas Wave
Comment ll Composition (mole fraction) Velocity | Saturation | Velocity
) CO Cq Cq Cyo |l u (m/d) S A(m/d)
Injection 1.0 0.0 0.0 0.0 1.0 1.0
Composition
Slow Shock 0.9566 | 0.0000 | 0.0000 | 0.0434 || 0.9480 0.910 0.2693
Zone of Con- || 0.9566 | 0.0000 | 0.0000 | 0.0434 0.9480 0.910 0.8765
stant State '
Self Sharp- || 0.8483 | 0.0000 | 0.0978 | 0.0540 || 0.9481 0.642 0.8675 |
ening Wave
Continuous 0.8450 | 0.0000 | 0.0990 { 0.0560 {| 0.9482 0.618 0.9723
Variation 0.8413 | 0.0006 | 0.1002 | 0.0578 || 0.9485 0.596 0.9725
0.7025 | 0.0679 | 0.1269 | 0.1028 || 0.9586 0.446 0.9740
0.5019 | 0.1819 | 0.1597 | 0.1565 || 0.9751 0.380 0.9787
0.3001 | 0.3059 | 0.1892 | 0.2048 || 0.9897 0.340 0.9850
0.1025 | 0.4319 | 0.2162 | 0.2494 || 1.0021 0.309 0.9916
0.0000 | 0.4981 | 0.2299 | 0.2721 || 1.0077 0.294 0.9949
Zone of Con- || 0.0000 | 0.4981 | 0.2299 | 0.2721 || 1.0077 0.294 1.1009
stant State " "
Fast Shock || 0.0000 | 0.4981 | 0.2299 | 0.2721 || 1.0077 0.000 1.1009
Initial  Oil || 0.0000 | 0.2000 | 0.3354 | 0.4606 || 0.9489 0.0000
Composition "
Table 2.23
Variations of Saturations and Shock Veloclties
for Ofl Containing Increasing Amounts of C, at
160° F (71° C) and 1600 psia (11.0 MPa).
Oil Composition Slow Shock Methane Bank
(mole fraction) Velocity | Saturation || Trailing Vel | Leading Vel [ Saturation
Cq Cq |C v (m/d) [ v (m/d) v; (m/d) S
System 1 || 0.10 | 0.21 | 0.69 0.147 0.797 1.024 1.147 0.301
System 2 || 0.10 | 0.38 | 0.52 0.277 0.919 . 1.007 1.061 0.298
System 3 || 0.10 | 0.45 | 0.45 0.503 0.965 1.004 1.047 0.290
System 4 || 0.10 | 0.50 | 0.40 0.828 0.983 1.003 1.047 0.289
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In the following discussion, the calculated composition path is traced from the initial oil
composition to the injection gas composition. The composition variation that is the solution
must lie exclusively on paths, and velocities must decrease from the initial oil composition to
the injection gas composition. While the solution path may switch from one path to another,
the only allowable switch is from a faster path to a slower one (Helfferich 1981, Dumore et al.
1984). Finally, if there is a leading or fast shock, the composition jump must cross the
equivelocity surface, because composition jumps that do not cross that surface have velocities,
given by Eq. (2.2.12), that are less than the average interstitial velocity and hence cannot be
leading shocks.

The path enters the two phase region via a shock to a fast path along a tie line from the
initial oil composition, point a, to point b. Across the shock there is a step in C; concentration
with no CO, present. At point b the path switches immediately from a fast path to an inter-
mediate path. The step change from the initial composition to the two-phase region is not a
limit of a continuous variation. Therefore, it is a nontangent shock, and the velocity of the
shock can be calculated from the material balance Eq. (2.2.12). Because there are two veloci-
ties associated with the same overall composition at point b, a fluid bank is formed. The lead-
ing edge moves with the fast, tie-line path velocity, and the trailing edge moves with the
slower intermediate velocity of the vertical path. Fig. 2.2.2 illustrates the velocity change at
point b. (For brevity, all the velocity changes are illustrated qualitatively on a diagram for one
tie line; in reality the eigenvalues change slightly from tie line to tie line (Monroe 1986),
though all have the qualitative form shown in Fig. 2.2.2). The constant phase saturations and
compositions within the bank are illustrated in the profiles shown in Figs. 2.2.4 and 2.2.5.
Along the vertical, intermediate velocity path between points b and ¢, the concentration of CO,
is increasing, while the concentration of the other three components is decreasing. Point ¢ is
the singular point where the vertical path is tangent to a tie line in the CO,-C4-Cg face and
where two of the eigenvalues are equal (see Fig. 2.2.2). From point ¢ to d there is a continu-
ous variation along a tie line. Thus saturations vary, while the phase compositions and the
total velocity remain constant. At point d the solution switches at a second singular point from
the tie-line path to path that is tangent to the tie line at that point. Between points d and e the
wave velocities increase, and hence, a self-sharpening wave is formed. Point e is on the tie
line that extends through the injection gas composition. Finally, there is a jump from e to f, the
injection gas composition. The velocity of that nontangent shock is also calculated using Eq.
(2.2.12). The velocity calculated is greater than the composition velocity of point e on the
injection tie line. Therefore, the jump is not the limit of a continuous variation, and a trailing
bank is formed.

The path just described satisfies all of the rules for path construction. A demonstration
that the path selected is the only one that satisfies the velocity constraint is given by Monroe
(1986). While the qualitative features of the solution can be seen from Figs. 2.2.2-2.2.5, the
solution cannot be obtained explicitly. Because of the formation of the two fluid banks at the
leading and trailing edge of the transition zone, the shocks to and from the two-phase region
are non-tangent shocks. The key to finding the solution path for the quaternary system is the
determination of the "crossover” tie line, the tie line that contains points ¢ and d in Fig. 2.2.3.
This tie line is uniquely identified because it is the only one that is tangent to both the vertical
and horizontal nontie-line paths that also intersect the initial and injection tie lines. The tie line
shown in the CO,-C,-C,, face of Fig. 2.2.1 is one such tie line. Each tie line in the CO,-C,-Cyp
face, for example, is a crossover tie line for an associated tie line in the C,-C4-Cyp face. In
fact, any tie line within the quaternary diagram is a crossover tie line for a set of initial and
injection tie lines that intersect the horizontal and vertical paths that are tangent to the cross-
over tie line.

To construct a solution for given initial and injection compositions for a path that con-
tains two fluid banks, a trial and error solution was required. To identify the crossover tie line,
an initial guess was made of the landing composition (point e in Figs. 2.2.2-2.2.5) within the
two phase region on the injection tie line. Then the intermediate path was followed to the
crossover tie line and down the vertical path to the C;-C,-C;, face. If the resulting tie line in
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the C,-C,-C;, face passed through the original oil composition, the correct crossover tie line
was identified. If not, the injection landing point composition was adjusted until the path
passed through the appropriate tie line through the initial composition.

2.2.4 Analysis

To determine the effect of dissolved C; on composition path, displacements were exam-
ined for live and dead oils with compositions shown in Table 2.2.1. Pure CO, was injected in
both displacements, and the dead oil differed from the live oil only in that the C; was removed.
Fig. 2.2.9 shows composition paths for the two displacements. The live oil path shows a
shock in the C;-C,-Cyo base, followed by a vertical path to the CO,-C,-C;, face. In the dead
oil displacement, the leading shock lies in the CO,-C4-Cyo face. While the two displacements
traverse slightly different tie lines in the CO,-C4-Cy face, those tie lines lie so close together
that they are difficult to distinguish in Fig. 2.2.6. Thus the portions of the composition paths
for the two displacements that lie in the CO,-C4-Cyo face differ only slightly, as Fig. 2.2.6.
Therefore, if the displacement of the dead oil traverses a tie line that is close to the plait point
in the CO,-C,-C;, face, the crossover tie line for a corresponding live oil will also be close to
the plait point.

The primary difference between the saturation profiles shown in Fig. 2.2.7 are the posi-
tion of the leading edge shock and the volume of the gas saturated zone behind the displace-
ment front. Fig. 2.2.4 shows that C, is the primary constituent of the leading bank in the live
oil displacement, and Fig. 2.2.7 shows that the bulk of the volume difference is also in that
region. Behind the leading bank the C; composition quickly drops to zero. Thus, all of the C,
moves in a bank ahead of the CO, front. The increased volume of the leading bank in the live
oil displacement is the result of smaller volume change on mixing that results when CO, dis-
solves in the live oil, and C, vaporizes, replacing some of the lost CO, volume in the vapor
phase. In the dead oil displacement, CO, also dissolves in the oil phase, losing volume as it
does so, but smaller amounts of the oil components volatilize and replace the shrinkage of the
vapor volume. Thus the leading edge advances more slowly in the dead oil displacement.

Behind the C; bank the saturation profiles are nearly identical. Where the composition
path varies along the tie line between points ¢ and d in Fig. 2.2.7, the C, travels in a bank.
The C, partitions more strongly into the vapor phase than does C,o, and hence it travels at the
front of the transition zone, as expected. Cj, is the last component to be extracted completely
at the trailing solubilization shock.

Fig. 2.2.8 reports C;, C4 and C,, recovery for the live and dead oil displacements. Before
breakthrough of the leading shock, fractional recovery of each component is the same. After
that point, the recovery curves show changes in slope that correspond to the arrival at the
outlet of the trailing edge of the C, bank in the live oil case, the self-sharpening wave, and the
trailing edge shock. Nearly all of the C; is recovered at CO, breakthrough, and all of the C, is
recovered after the self-sharpening wave breaks through. Comparison of the results of the two
displacements confirms that breakthrough of the leading edge shock occurs earlier in the four-
component case, but that recovery is nearly the same at later times. That behavior results
because there is very little difference in the saturation and composition profiles behind the
self-sharpening wave.

Reasons for the observed behavior are made clearer by considering how composition
paths change as miscibility develops. Table 2.2.3 shows calculated displacement data and
results for four one-dimensional displacements of oils with increasing C4 concentration. Addi-
tion of C, moves the overall composition of the oil toward the CO,-C,-C, face, and thus simu-
lates the development of miscibility by moving the oil composition toward the boundary of the
region of tie line extension. Composition paths for the four oils are shown in Fig. 2.2.9. As
the oil is enriched with C, from system 1 to 4 the velocity of the leading shock decreases, and
the velocity of the trailing shock increases (see Table 2.2.3). In addition, the portion of the
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Fig. 2.2.8.  Component recovery in live and dead oil displacements at 160° F (71° C)

and 1600 psia (11.0 MPa).
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path that lies in the CO,-C,-C,, face approaches the dew point locus on that face. Thus, in
system 4, most of the hydrocarbons have been solubilized into the transition zone, and the Sys-
tem is nearly miscible. Because there is no plait point in the C,-C,-C;, face at 1600 psia, no
oil composition at that pressure can develop miscibility completely. At some higher pressure
(above the C;-C, critical pressure), complete development of miscibility is possible for oils rich
enough in C,. When enough C, has been added that the original oil lies on the surface of criti-
cal tie lines, the composition path begins with a jump from the initial composition to the plait
point in the C;-C,-Cy, face, follows the locus of the plait points to the CO,-C4-Cy, face and
then follows the dew point locus.

It is interesting to note what happens to the C; bank as the system approaches miscibility.
Table 2.2.3 shows that the velocity difference between the leading and trailing edges of the C;
bank decreases with increasing C, concentration in the initial oil. Thus, though the size of the
C; bank does decrease it does not disappear. In fact, because the two-phase region spans the
ternary diagram from the C;-Cy, to the C;-Cy, binary edge, the analytical solution predicts that
it is not possible for displacement of an oil containing C; to develop miscibility at that pres-
sure. Recovery efficiency improves as the amount of C, is increased, however. Recovery at
breakthrough ranged from 81.2% for system 1 to 93.0% and 94.7% for systems 3 and 4. The
displacement of systems 3 and 4 would clearly be judged to be miscible by the criteria of
Holm and Josendal (1982) or Yellig and Metcalfe (1980).

The explanation for the improvement in recovery is based on the observation that the
crossover tie lines for the four oils approach the plait point in the CO,-C,-C,, face as the
amount of C, is increased from system 1 to 4. For the oils of systems 3 and 4, the crossover
tie lines are very near the plait point on the CO,-C4-Cy, face, even though the composition
paths fall well into the two-phase region in the C;-C,-C,, face. The final portion of the com-
position path passes so close to the plait point and the dew point portion of the binodal curve
that recovery is very high, despite the fact that the displacement passes through the two-phase
region.

The effect of the amount of C, present originally in the oil can be understood by observ-
ing the solution path for a series of oils with increasing C; concentration that lie along the
same tie-line extension in the C;-C,-C;, face (Monroe 1986). In such cases, only the velocity
of the leading edge shock changes, because the values of F! and G/ in Eq. (2.2.12) change. All
of the C; still moves at the leading edge of the transition zone, and the addition of C; has no
effect on the remaining composition path. In fact, even if the initial oil composition were inside
the two phase region, it would be possible for the oil to be displaced efficiently. As long as
the trailing portion of the displacement path passes close to the plait point and the binodal
curve, high recovery will be observed. Hence, use of the BPP as the MMP for systems that
have BPP’s that are above the predicted MMP may be overly conservative. Instead, it is
apparently possible, for one-dimensional displacements, at least, to have a nearly miscible dis-
placement for an oil that is below its bubble point pressure.

Finally the effect of addition of CO, to the original oil can also be seen from the compo-
sition path shown in Fig. 2.2.10. The vertical path intersects a sequence of tie lines in the inte-
rior of the quaternary diagram. Thus, the crossover tie line in the CO,-C4-Cy face is associ-
ated with a ruled surface made up of tie lines that all intersect the vertical path that is tangent
to the crossover tie line. Any initial oil composition that lies on an extension of a tie line in
that surface follows exactly the same composition path in the CO,-C,-C,, face. Hence, the
only effect of changing oil composition within that surface of tie line extensions is to change
the velocity and composition at the leading shock. As in the case of "oils" with no CO,
present initially, it is location of the crossover tie line that has the largest effect on recovery
efficiency.
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2.2.5 Comparison with Experimental Displacements

Metcalfe and Yarborough (1979) reported results of displacement experiments for CO,-
C4+Cyp and CO,-C;-C,-C;o mixtures. The displacements were performed in an 8 ft. x 2 in. 2.4
m x 5. cm) Berea sandstone core. Compositions of the mixtures displaced are shown in Fig.
2.2.11. Displacements were performed at 1500, 1700 and 1900 psia (10.3, 11.7 and 13.1
MPa). As Fig. 2.2.11 and similar plots at higher pressures given by Larsen (1984) indicate,
the live oil displaced was within the region of tie line extensions on the C;-C4-Cyp face at all
three pressures. The displacement at 1500 psia recovered 80% of the hydrocarbons and was
judged to be immiscible. The displacement of the corresponding dead oil at 1500 psia
recovered 81% and was also taken to be immiscible. Thus, the experimental observation is
consistent with the calculated composition paths shown in Figs. 2.2.6 and 2.2.7, which show
that after passage of the C, bank, displacement performance is nearly the same for both the
live and dead oils.

The displacements at 1700 and 1900 psia recovered 90 and 97% of the hydrocarbons and
were interpreted to be multiple-contact and first-contact miscible, respectively. Displacements
of the dead oil at the same pressures recovered 90 and 99% of the hydrocarbons. Analysis of
composition paths suggests, however, that at 1500 and 1700 psia, the displacements passed
through the two-phase region, but the crossover tie line at 1700 psia was close enough to the
plait point that recovery was high anyway. At 1900 psia, a pressure above the critical pressure
of the CO,-Cy, binary, the displacement developed miscibility because the injection fluid was
outside the region of tie line extensions. Methane banks were detected experimentally at 1500
and 1700 psia, but no C; bank was observed at 1900 psia. That result is also consistent with
the composition path calculations, which indicate that the length of the of the C; bank should
decrease as the pressure increases. Because the displacement at 1500 psia was immiscible,
enough liquid phase was left behind the displacement front that the C; bank was relatively
large, as is required by a simple material balance on C;. At 1700 psia, the amount of liquid
left behind the CO, front was much smaller because the dead oil was multiple-contact miscible.
Hence, the C; bank was much smaller.

Fig. 2.2.12 compares calculated normalized effluent C; concentrations with measure
values at 1500 psia. Also shown in Fig. 2.2.12 is an effluent C; concentration calculated with
a one-dimensional finite difference simulator. While the dispersion coefficient was set to zero
in that calculation, numerical dispersion from the two-point upstream weighting scheme used
caused the C, bank to be dispersed slightly. Both calculated C; banks arrived later than the
measured peak. It is possible that part of the disagreement is due to the presence of viscous
instability or gravity segregation (or both) in the corefloods, which would cause early break-
through of injected CO, and faster movement of leading banks. If so, the experimental dis-
placements were not strictly one-dimensional, and thus some disagreement with the analytical
solution is to be expected. In any case, the calculated solutions reproduce the qualitative
features of the measured effluent compositions. Successive banks rich in C; and C, were
observed, the C; bank arrived later, and the length of the bank decreased as displacement pres-
sure increased. The displacement performed at 1700 psia showed clearly that high recovery is
possible in a displacement that exhibits a leading C, bank. The calculations reported here indi-
cate that at that pressure, the displacement must have passed through the two-phase region, as
the observation of a C; bank confirms. Thus, experiments and theory indicate that high
recovery can be obtained even though the composition path passes through the two-phase
region and hence does not meet the strict definition of multiple-contact miscibility.

2.2.6 Discussion

The composition paths described here explain qualitatively why dissolved gas has
minimal effect on displacement efficiency, though crude oils are much more complex mixtures
than the simple hydrocarbon systems considered here. Because experimentalists routinely use
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displacement efficiency as a criterion for "miscibility," the calculated composition paths also
explain why the MMP is insensitive to the addition of dissolved gas to an oil. The calculate
paths confirm the qualitative argument of Holm and Josendal (1982) that C, partitions strongly
into the more mobile vapor phase and hence CO, following behind can displace efficiently the
remaining dead oil.

The results presented show that the distinction between miscible and immiscible displace-
ments is not sharp. High local displacement efficiency, which is most important, can occur
even when the displacement takes place entirely within the two-phase region. Use of the term
"miscible" to describe such displacements is unfortunate because it places the emphasis on the
number of phases present rather than on displacement efficiency. Instead, evaluation of
appropriate displacement pressures should focus on oil recovery rather than on indications of
two-phase flow. According to the composition path calculations, the existence of a C; bank is
evidence for two-phase flow, but the same calculations, as well as Metcalfe and Yarborough’s
experiments, indicate that if the definition of the MMP is based on recovery, a criterion for the
MMP based on the absence of a C; bank is probably too restrictive.

Additional experimental work is needed to confirm the prediction that high efficiency dis-
placement can occur at a pressure below the BPP. Verification of the theory will require that
the experimental displacement be nearly one-dimensional. Separate questions of considerable
importance for field-scale CO, floods are:

(1) What is the optimum displacement pressure when the flow is not one-dimensional, and
(2) Is that pressure substantially different from the one-dimensional MMP?

Answers to those questions will depend not only on the phase behavior of the CO,-crude oil
mixtures, but also on the length scales of the zones of fast and slow flow, whether due to
viscous instability or reservoir heterogeneity, and on rates of mixing between those zones
caused by dispersion, viscous and capillary crossflow and gravity segregation. Thus, the one-
dimensional analysis given here is only a first step toward more complete understanding of the
role of phase behavior in field-scale flows.

2.2.7 Conclusions

Analysis of composition paths for dispersion-free, one-dimensional displacement of C;-
C4-C;o mixtures by CO, leads to the following conclusions:

(1) Addition of dissolved C; to a dead oil causes formation of a leading C; bank unless the
live oil lies outside the region of tie line extensions in the quaternary diagram. If the
pressure is high enough that the dead oil develops miscibility, however, the C; bank will
appear at the outlet for a short time only.

(2) Oil recovery is controlled by the location of the crossover tie line. If that tie line lies
close to the plait point on the CO,-C4-C;, ternary diagram, oil recovery will be high, even
though the composition path passes through the two-phase region. If the oil that remains
after all C; is removed develops miscibility, the crossover tie line will be very close to
the plait point.

(3) Oils that share the same crossover tie line show the same recovery performance after CO,
breakthrough. Breakthrough times of leading C; banks depend on amounts of C, and
CO, present in the original oil, however.

(4) The presence of a C; bank should not be used as a single criterion for evaluating poten-
tial displacement pressures. Oil recovery is a more reliable indicator of performance for
one-dimensional flows.

(5) Displacement of live oil at a pressure below its BPP will be efficient as long as the flow
is one-dimensional, and the dead oil develops miscibility when the C; is removed.
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2.3 Analytical Model of CO,-Steam-Heavy Oil Displacements
Jeffrey Wingard

In thermal recovery processes, steam is injected to heat the oil, reduce its viscosity and
improve recovery. If CO, is injected along with the steam or if CO, is created in situ by
combustion with injected oxygen, then the transfer of CO,, water and oil between phases
affects the flow process because dissolved CO, can reduce the viscosity of a heavy oil. In this
section we consider the flow of a three component system, CO,, water and oil that can form up
to three phases. In addition, we consider the effects of the temperature variations that occur
when injected fluid is hotter than fluid originally in place.

2.3.1 Mathematical Model
Model Description

The model uses the method of characteristics to solve a simplified flow of an arbitrary
number of components that partition into an arbitrary number of phases. The model is similar
to that developed by Helfferich (1981) and Dumore et al. (1984) and described here in Section
2.2, with the addition that the system has a temperature variation along the direction of flow.
The major assumptions of the model are:

1. The flow is one-dimensional

2. All mass and energy transport is by convection.

3 There is instantaneous chemical and thermal equilibrium.
Neglecting dispersion, a material balance on the i** component gives,

) "p Pp .
> Z} ¢ x;p; S; + z;, V-pix;v;=0 =1, n,. (2.3.1)
I =

The energy balance can be written in a similar form if all the transport is by convection. This
gives,

a Ilp np
g.Zq)prfSi'"(1_¢)p’"H"‘+.ZV'prJ'V;=O (2.3.2)
Fl =1
where
n, is the number of phases,
n, is the number of components,
x;  is the mole fraction of component i in phase j
E{ is the molar density (kg-mole/m>) of phase j
V; s the phase velocity vector (m/day),
S; is the saturation of phase j
¢ is the porosity, and
H;  is the enthalpy (J/kg-mole) of phase j
Following the derivation in Section 2.2, equations 2.3.1 and 2.3.2 can be simplified to,
Gi Oy o 233
o  ax o T (2:3:3)
and
£+a_@=o i=1,n, (2.4.4)

ot x
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where the following definitions have been applied.

and,

move at the same velocity. Helfferich (1981) calls this constraint "coherence".

p
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(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)

The composition and temperature solution sought is one for which sets of compositions

It means that

certain sets of composition and temperature move together through the flow system; these spe-
cial composition vectors are the solution to the problem. This constraint leads to the formula-
tion of the eigenvalue problem.
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where M is the dummy variable of the characteristic solution.
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det | F—A G| =0. For a three component system F and G are 4 x 4 matrices. The eigen-
values correspond to n, characteristic rates, or composition velocities and the last eigenvalue is
infinite. In both cases, the eigenvectors correspond to characteristic directions in the hodo-
graph space.

Eq. L2.3.9 is PI general eigenvalue problem for which a solution exists if and only if

Analytical Derivatives

The construction of the eigenvalue matrix , Eq. 2.3.9, requires that derivatives in the form
of G /0C and OF /9C be calculated. These derivatives are usually approximated by finite
difference calculations, the most common being a simple forward difference. This technique is
usually very accurate where the conditions do not change much with composition. Near phase
boundaries conditions can change drastically with the addition of even minute amounts of a
component. Under these conditions the simple finite difference scheme can fail to give accu-
rate results.

The derivatives required for the eigenvalue problem are represented by eight different
forms. These derivatives are, G /0C, oF /0C, G /3T, dF /0T, aT /dC, 9@ /dC, oT /3T, and
00 /dT. Equations for each of these derivatives will be developed from the most simple to the
more complex.

G-Derivatives

Taking the dG/dC derivative and expanding using the definition of G gives,

aG; oxy, 9P S
_ ik ¢ Pk Ok 3.1
3C, % PASkaCj +xlkskacj +x"‘pk8Cj (2.3.10)

The saturation term can be defined as the volume fraction, S, = V,/Vy. Substituting this
definition into Eq. 2.3.10 and expanding the volume quotient gives,

aGi "p ax,-k apk Xk aVk 8VT
ac, ~ & Pige t “ac; T Tvr |ac; T ¥, (@310

The density term can also be expanded to variables that are given by the equation of
state, remembering that p=P /ZRT the final representation of the G-Derivative is,

8G,- ax‘-k P aZk + XiPx [aVk aVTJ

"p

—_— = —_— —X; - (2.3.12)
The derivative with respect to temperature is calculated in the same manner, and all the

terms are similar with C; being replaced with T. The only change is in the density derivative.

Because the equation for density contains a temperature term, the results are slightly different.

The final equation is,

8G,~ _ "p 8xik P 1 E)Zk 1
or -2 PG TS [— |t

S
Vr | 0T “*ar

XPr | Vi dVp
YRZT |z, oT ~ T

] (2.3.13)

Analytic representation of these derivatives is possible when an equation of state is used.
Nuttaki, ez. al., present method for calculating the compressibility derivatives analytically using
three different equations of state. These methods can be used to provide analytic representa-
tions for the derivatives in Egs. 2.3.12 and 2.3.13.
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I'—Derivatives

The derivatives for the enthalpy analog to the saturation terms, I', follow the same
development as the G-Derivatives, in this case, the concentration or mole fraction term x;; is
replaces with the enthalpy of the phase, H,. The derivatives are,

E)F 0Z Z + H,p, aVk S HVT 2.3.14)
and the temperature derivatives is,
ar "p aHk 1 aZk 1 H/(pk aVk aVT
- Zk‘. PSigy — HiS "RZ,J [zk oT TV |or Yt (2:3.15)

The G and T derivatives are straight forward because all the terms involved are calculated
directly from the equation of state. The F and © derivatives deal with flux terms and must
take into account models that deal with the flowing properties of the fluids that are described
by relatively complex models.

F-Derivatives

The first two terms in the derivation of the F-Derivatives are similar to the development
of the G and T equations. The term that gives the trouble is the fractional flow term. Looking
at the fractional flow term it is similar to the saturation terms in the G-Derivatives because the
fractional flow is also the mobility fraction,

k
fk_ M =M (2.3.16)

n,
3 (kridip)
k

Using this definition, the fractional flow derivative can be written as,

oM oM

_aafk = __1_[_" - k_T} (2.3.17)

Using the definition of M allows us to calculate the derivatives,

oM k ok )
kO | M) 1Tk, Ok (2.3.18)

now substitution of this definition into Eq. 2.3.16 gives,
oy 1 I akrk Oty | &1 | 9kn o

-M— —|— -M=— 2.3.19

The derivatives of kr, and W, are dependent on the type of flow model that is used to calculate
these quantities. Depending on the complexity of the relative permeability and viscosity
model, these derivatives may be possible to calculate analytically. The viscosity model is the
most difficult to represent accurately with a few simple equations. The compositional and tem-
perature dependence of viscosity is complex and does not lend itself to simple interpretation.

©—-Derivatives

The enthalpy analog to the flux derivatives follow the same development as the F-
Derivatives, but have an added term that is not present in the mass fluxes. The term duy/dT is
very important in calculating the viscosity changes. The mass analog, dy,/dC;, drops out due to
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the assumption that the pure component viscosity does not depend on the concentration of
other components in the mixture, but only on the temperature and pressure. Again, this term
depends strongly on the models used for the viscosities and relative permeabilities.

Temperature Shock Calculations

When the composition paths indicate a jump or shock condition, a material balance across
the discontinuity is done to get the conditions on either side of the shock. When there is a
temperature shock a similar calculation is done using the enthalpy balance on either side of the
shock. The enthalpy balance over the volume covered by a moving shock contains an
accumulation term and a flux term. The accumulation term sums the enthalpy content for each
of the phases and the enthalpy stored in the matrix, this is written as,

e 1=0| - p= ot ot |1=0] 4
j ¢ I ¢
The flux terms are written,
"p "p
X0 fiH =X fiHf (23.21)
Jj j
where:
pj= molar density of phase j (kg-mol/m>)
Pm = density of matrix (kg/m”)
Sj= saturation of phase j
fi= fractional flow of phase j
H;= enthalpy of phase j (kJ/kg-mol)
H, =  enthalpy of matrix kJ/kg
V= total velocity (m/sec)
6= porosity
Superscript + = conditions ahead of the shock
Superscript - = conditions behind the shock

equating Egs. 2.3.20 and 2.3.21 represents the enthalpy analog to the material balance across a
shock.

The transition from the single phase region to the two phase region must occur via a
shock. This is because the velocities as given by the eigenvalues are discontinuous at the
binodal curve. The material balance tells us that this shock must lie along the te-line
extension that passes through the single phase composition. Applying the same procedure on
the enthalpy balance will indicate how the temperature changes from the single phase to the
two phase region.

Assume that the leading shock is being considered, this means that ahead of the shock
(+) there is a single phase, and behind (-) there are two phases. For simplicity call these two
phases oil and gas. The enthalpy balance across the shock is

Po ST H, +p; Sy Hy + [1—;—‘2] P H = p* H* = [‘%] prH

v

¢

+
(PofoH,+psfsHp) - VT prH* (2.3.22)



Solution of Eq. 2.3.22 for p* H',

(1 - v'19)
[_Jl ; } O (Ho — H;)] (2.3.23)

prHY = —— HS‘——‘b—f‘] P Hy + [S;—%f;] Py Hy +

The final term in Eq. 2.3.23 represents the contribution of the matrix. As the porosity goes to
one or the heat capacity of the matrix goes to zero, the enthalpy balance looks similar to the
component balances.

When the the matrix term is significant the fluid enthalpy is not a linear combination of
the enthalpies on the other side of the shock.

2.3.2 Programming

The Pathfinder program now calculates shock velocities and jump conditions along a
composition path using a set of end conditions. The velocities are calculated by doing a
material balance over one of the components and calculating the shock velocity.

For a simple composition path the calculation proceeds from the injection conditions to
the initial conditions. At the injection end both the composition and the injection velocity are
specified. A point in the two phase region is chosen that is on a tie-line that extends through
the injection conditions. The trailing shock is the point along the tie-line path that has the

minimum velocity as calculated by,
L [vini Fini — F!
Apai = = ini
GY =G Jmn

¢

The point where this minimum occurs is the landing point of the trailing shock.

Once in the two phase region, there is variation of the total velocity. Along the tie-line
path this velocity change is zero. The compositions of the phases do not change, hence the
densities, and the total velocity are constant. When the composition path moves along the non
tie-line path, the velocity change is given by the last component in the eigenvector.

The number of jumps or shocks depend on the composition paths, most of the step
changes encountered in the two phase region are the result of a self-sharpening wave, where
the velocities along a path decrease as towards the initial conditions.

(2.3.24)

The composition path exits the two phase region in a way similar to the entrance pro-
cedures. The composition path continues until the path intersects or is tangent to the tie-line
that extends through the exit conditions. From this point three alternatives are possible:

1) The location of the fast shock is between the landing point and the initial conditions. In
this case the composition path can move along the tie-line to the jump conditions without
violating the velocity constraint.

2) The location of the landing point is between the fast shock and the initial conditions.
This requires an immediate jump from the landing point to the initial conditions.

3) The landing point and the fast shock are the same. This case behaves like case #2, there
is an immediate jump to the initial conditions.

2.3.3 Results

The solution for the two-phase, constant temperature, system has been completed. The
results agree qualitatively with earlier expectations. The solution is essentially an injection of
two slightly soluble gases into an oil phase. The gases are in competition. As the
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concentration of a component in the vapor phase increases, that component is forced into the
liquid phase. Since the oil is already saturated, some of the other gas is forced out of the
liquid phase, back to the vapor.

Three components, water, n-Cy6, and CO,, were studied at a temperature of 900° R at a
pressure of 250 psia to keep the water in the vapor phase.

The phase diagram shown in Fig. 2.3.1 shows a large two phase region with the tie-lines
sweeping from the CO, to the water corners. According to the Schmidt-Wenzel equation, at
least, the solubility of water in the oil is small if any CO, is present, but as the CO, concentra-
tion drops, the water begins to readily dissolve in the oil, reaching a maximum of approxi-
mately 18 mole percent with no CO, present.

For this sample solution, injection conditions were set at 20 mole percent steam and 80
mole percent CO, . This mixture was injected into 100 percent Cis. Table 2.3.1 gives the
details of the proposed solution.

Figure 2.3.2 shows the proposed solution path and the eigenvalues along the path. The
eigenvalues are plotted against CO, mole fraction to locate the corresponding position on the
ternary diagram. The points marked A, B, and C are locations of shocks or significant breaks
in the composition and saturation profiles. These profiles are shown in Fig. 2.3.3.

For the solution path to be valid, the composition velocities must increase as the path
moves from injection to initial conditions. On the eigenvalue plot, the injection conditions
correspond to the 80 mole percent condition at the right end of the path. As the path moves
from the injection condition to the initial condition, the marked path is followed to the initial
condition of no CO, present. This represents a valid solution, one that satisfied the velocity
constraints as well as the continuity equation.

Points A, B, and C represent special conditions along the solution path. Point A is the
location of the trailing shock. It has been illustrated that the only way to enter a two-phase
region from single-phase conditions is by a shock along the tieline that extends through the
single-phase composition (Dumore et al. 1984).

This point represents the composition with the minimum velocity along the entrance tie-
line. Compositions with a greater CO, fraction move at a greater velocity and are swamped by
the compositions that follow the shock.

From point A to B, the solution path shows a continuous variation along the injection
tie-line. As the path moves from A to B, the phase compositions are constant, only the phase
saturations change (see Fig. 2.3.2). The liquid saturation increases from 0.055 at the slow
shock to 0.283 at point B.

Point B is a singular point where the path eigenvalues are equal. At this point, the solu-
tion path moves from the tie-line path to the non tie-line path.. This switch is required if the
path is to intersect the initial tie-line extension eventually.

Examination of the eigenvalues shows that the switch from the tie-line path to the non
tie-line path must take place at the first singular point. If the switch were to take place later,
the path would follow the tie-line path up to the top of the peak (see Fig. 2.3.2) and begin to
descend to the second switch. This decrease in velocity violates the constraint that velocities
must increase moving downstream. In addition, any path jump from the tie-line to nontie-line
path would also cause a decrease in velocity, so the tie-line path after the first singular point is
ruled out.

The solution now follows the non tie-line path from point B to C where the CO, fraction
goes to zero. During this period the C¢ fraction rapidly increases to a maximum of 0.73 then
decreases back to 0.65. This indicates the formation of a small oil bank as the water moves
from the vapor phase into the liquid phase. It is important to note that at 900° R the water is
much more soluble in the oil phase than is CO, (see the phase diagram, Fig. 2.3.1).
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Table 2.3.1. Details of Sample Solution with CO,-Steam Injection into Oil
at 900° R and 250 psia.

.. . Composition Liquid Wave
Condition Ref. Point CO, | n—Cy¢ | Water || Saturation | Velocity
Injection 0.800 0.000 0.200 0.000
Slow Shock A 0.569 0.275 0.356 0.055 0.092
Tie-Line A 0.569 0.275 0.356 0.055 0.092

B 0.245 0.660 0.095 0.283 0.859
Non Tie-Line B 0.245 0.660 0.095 0.283 0.859

C 0.000 0.650 0.350 0.641 1.170
Inital 0.000 1.000 0.000 1.000
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Fig. 2.3.1. Phase Diagram for CO, - Oil - Water system at 900 ° R and 250 psia using
Schmidt-Wenzel Equation Of State
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Fig. 2.3.3.
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After the composition path intersects the exit tie line, one of the three cases mentioned in
Section 2.2.3. applies. For this case, the second situation is the one that applies. The shock
velocities for the exit tie line are calculated using an equations similar to Eq. 2.3.22 replacing
the injections G and F with the G and F at the initial conditions. In this case, however, the
maximum velocity is chosen as the location of the fast shock. The point on the exit tie line
representing the fast shock is to the water side (or right side) of the landing point. This indi-
cates that there is an immediate jump to the initial conditions from the landing point.

2.3.4 Future Work

The problem of temperature variation for a strictly two-phase system is currently under
investigation. The grid of composition paths that change in temperature is calculated and the
velocities along these paths examined. As in the constant temperature case, the solution pro-
cedure includes construction of a path that moves from an injection point to an initial condition
at a different temperature and composition. While there are many potential paths, only one
will also satisfy the velocity constraint.

After these paths are characterized, the next step will be to examine solutions that
wraverse the three-phase region. This will be done using the same three components at a lower
temperature where the water forms an aqueous phase. Initially, isothermal paths will be used,
then temperature variation added to these solutions.

Other areas of interest are:

. Formulation of solutions for cases where the oil is divided into a volatile and non-
volatile fractions.

e  Examination of the phase behavior more closely by breaking the oil into many com-
ponents.

e Investigation of the solutions where lateral heat losses are included into the model.
This treatment may parallel some work done with layered systems by treating the
enthalpy as a component that has a flow term out of the system.

e  Study of the influence of relative permeability models, especially in the three-phase
region.

2.4 Interaction of Reservoir Heterogeneity and Phase Behavior

Kiran K. Pande

This project is aimed at describing the effect of phase behavior on flow in a linear, lay-
ered reservoir with viscous crossflow between the layers.

Helfferich (1981) calculated composition paths for multicomponent, multiphase displace-
ment in one-dimensional porous media. That theory uses the method of characteristics to solve
the governing differential material balance equations and construct a composition path grid for
the system. In the case of a three-component system, the composition path grid is mapped on
a ternary phase diagram. The composition route or solution path for a given set of initial and
injection conditions is determined using the constraint of monotonically increasing velocities
from the inlet to the downstream initial compositions. Dumore er al. (1984) extended
Helfferich’s analysis to include the effects of volume change on mixing. Extension of that
representation to four component systems is described in Section 2.2.

These theories of multicomponent, multiphase displacement have been applied to study
the effect of phase behavior on development of miscibility in displacement processes such as
CO, flooding. The analytical models provide an important tool to understand displacement
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mechanisms in multicomponent, multiphase flow processes. These analytical models are also
useful for calibrating and checking numerical reservoir simulation models which model mul-
ticomponent, multiphase flow. Analyses presented to date, however, have dealt only with the
effects of phase behavior in one-dimensional flow.

Immiscible displacement in a layered system with viscous crossflow has been modeled by
Zapata and Lake (1981). This project extends their work by considering the effects of phase
behavior as well. Thus, the combined effects of heterogeneity and phase behavior on process
performance are studied for the case of displacement in a layered porous medium with viscous
crossflow and component transfer between phases. The results of this study will be used to
answer a number of questions. For displacements in a homogeneous reservoir, it can be shown
(Helfferich (1981) ) that a gas drive will develop miscibility as long as the original oil compo-
sition does not lie within the region of tie line extensions on a ternary diagram. An important
question for the two layer problem considered here is whether the critical tie line, the tie line
tangent to the binodal curve, still constitutes the boundary between oil compositions which will
and will not develop miscibility. Simulations by Gardner and Ypma (1984) suggest that
viscous crossflow causes composition paths to fall deeper into the two-phase region when flow
is not uniform. An additional question of interest is whether further increases in pressure can
alleviate adverse effects of nonuniform flow.

2.4.1 Theory
Material balance equations are derived based on the following assumptions:

All fluids are incompressible.

The reservoir is a linear, layered system with uniform properties within a layer.
Capillary pressure effects are negligible.

Gravitational effects are negligible.

Viscous fingering can be neglected.

The displacement process is isothermal.

Fractional flow functions are unique functions of composition.

Phases are in local equilibrium everywhere.

W oo AW

Partial molar volumes of components are constant, i.e., there is no change in total
volume upon transfer of components between phases.

We consider the driving forces for viscous crossflow by examining the pressure distribu-
tion in a two layer linear reservoir with no vertical communication between layers (Zapata and
Lake (1981)). Figs. 2.4.1a and 2.4.1b illustrate the driving forces for viscous crossflow for
M <1 and M > 1 respectively, based on piston-like displacement within each layer. For a lay-
ered system with vertical communication and maximum viscous crossflow resulting in vertical
equilibrium, there will be no vertical pressure gradients. Figs. 2.4.1a and 2.4.1b show that
there is a point in the displacement where the pressure in layer 1 is equal to the pressure in
layer 2. Thus, there is no driving force for viscous crossflow at this point. Analysis of Figs.
2.4.1a and 2.4.1b suggests that the two-layer reservoir may be divided into two regions based
on the direction of crossflow in each region. The two regions are connected by the no
crossflow point. A unique pair of compositions exists at this point such that there is no driving
force for viscous crossflow. Figs. 2.4.2a and 2.4.2b illustrate schematically the directions of
crossflow for displacements with M < 1 and M > 1 respectively. Material balance equations
can be derived for each region. The solutions to these equations can be linked at the no
crossflow point. The material balance equations for each region are as follows:
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Fig. 2.4.1a.  Driving forces for viscous crossflow - M < 1.

INJECTOR

HIGH VELOCITY LAYER

PRESSURE

PRODUCER

DISTANCE

Fig. 2.4.1b. Driving forces for viscous crossflow - M > 1.
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Layer 1:

Layer 2:

Layer 1:

Layer 2:

oF;
qip %D =
oF2 .
- Qp + (Ff -
BxD
oF!
—qp—=— + (F? -
aXD
oF?
d2p D =
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Region I
oC]
oy 3 = Ln
2. 94D acy.

Fi ) = oh, - >
8xD atD
Region II

1 9q1p aci1
) Sy = R g
XD b
oC? ,
hz ._é; ’ 1= 1’ nc

(2.4.1)

1, n, (24.2)
1, n, (2.4.3)
(2.4.4)

where FX and C[ are the overall fractional flows and concentrations in the kth layer, gyp is the
dimensionless flow rate in the kth layer and Ry, is the dimensionless porosity-thickness pro-
duct. The definitions of those variables are:

Oy by
R¢hk - %H
B
> O by
¢ = k=nl
2 by
K=
H = Z‘: hk
k=1

(2.4.5)

(2.4.6)

(2.4.7)

(2.4.8)
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np
Cik = Z SJk C,'}‘( ’ i= 1, ng (249)
j=1
Qx
= I (2.4.10)
qxp Qr
G = WK, h Ak (2.4.11)
AX = total mobility in layer k (2.4.12)
Ip 5 kK
M= 3 M=% (2.4.13)
i=1 i=1 M
t
= —t (2.4.14)
OHWL
o
Qr = Y q (2.4.15)
k=
X
= = 2.4.16
Xp L ( )

and W and L are the width and length.
Since CX is only a function of xp and tp, we can write the total differential as follows

ock ock
—dxp + ——dtp, i = 1,n (2.4.17)

dck =
! atD

aXD

We can follow a fixed composition by setting dCX = 0 in Eq. 2.4.17. The velocity of some
constant composition, C¥, is given by

ock
ot
k _ D s
vk = - 3oF i=1,n (2.4.18)

aXD
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We can substitute for BCik/atD in the expression for vk using the material balance equations
(Egs. 4.2.1 - 4.2.4). For regionI

qp OF
1 _ R(bh] aXD
ci — a Cil

aXD

., i=1,n (2.4.19)

qp OF7 N (F! - FH damp
ox ox
h. D h D
vi = Rety ZR‘“ , i=1,n (2.4.20)
aC;

8xD

The method of characteristics, as discussed by Helfferich (1981), is used to solve the
material balance equations. The coherence condition, which states that all components move at
the same velocity, requires that

1 2

Ve = Vg, 1=1,n (2.4.21)

The material balance equations for Region I and Region II, coupled with the coherence condi-
tion, allows the problem to be formulated as an eigenvalue problem. In the formulation of the

eigenvalue problem vk = A. Then for Region I we have,

oC!  ap JF;

A = ,
axD R¢hl aXD

i=1n, (2.4.22)

oC? oF? F! - F}) 0
A i 42D LI (F; i) dqip , i =1, n, (2.4.23)
aXD R¢h2 aXD R¢h2 8xD

The derivatives oF;}/0xp, dF/0xp, and dq;p/dxp can be expanded as follows since Fl,
Fiz, and q;p are only functions of xp and tp:

oF! %21 oF! ach

Mp  m=19CL OXp

. i=1,n (2.4.24)

9F2 -1 92 ac2
aXD m=1 aCI%l aXD ’

i=1,n, (2.4.25)

9q1p -1 13qp 9Cn dqp OCZ
= X 1 + 2 3 ’
aXD m=1 acm aXD aCm Xp

i=1,n, (2.4.26)
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Substituting for the derivatives dF;"/dxp, dF/dxp, and dq;p/dxp in the coherence equations for
Region I (Egs. 2.4.22 - 2.4.23) yields:

aC-I n. -1 aF‘l acl
A i - Ji =2, i=1,n (2.4.27)
Xp Ron, m=1 9CL 0xp

A oC? _ qp =71 9F? aC? N (2.4.28
Oxp R, -y 3C2 Ixp 428)

(F! - FY) %! [9q;p aC} dq;p 9C2 )
SE R : ¢ S . i=ln
R¢h2 m=1 aC:m axD acm axD

A similar analysis for Region II yields the following coherence equations:

G0 _ i G OR acy | 2.4.29)
aXD - R¢h1 m=1 ach aXD ( o

(Fjl — Fiz) n -1 [aqlD acrll aQID aC%J .
+ ——t + s 1

= 1,
R¢h1 m=1 aC,}.‘ oxp aCr%l oxp D
aC.z n. -1 aFZ oC 2
g i _ 9w 12 - m. i=1,n (2.4.30)
axD R¢hz m=1 aCm XD

The Region I solution and the Region II solution are coupled at the no crossflow point.

Ternary System

The system of equations in matrix form for a ternary system is as follows:

Region 1
[ ] [ ]
oC} oc{
aXD aXD
A, B, C, D, aC; aC;
Az Bz C2 Dz aXD _ aXD
A; B; C; D, 8C12 = A BCIZ (2.4.31)
As By C4 Dy 3%p 3%p
oC? oC?
i aXDJ i 8xD ]
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qp OF]
A = — ey
R¢h1 aC1
qp OF;
Ay = — ey
R¢h1 ac1

_ F{ — F{ aqpp

Ax =
’ Ren, 9C|
A F; - F dqip
) R¢hz acll
5. = D oF]
: R0h1 aCZI
B qip OF;
27 Ry, oC}
B. = F; — F{ dqip
’ Ren, oG
B F; - F} dqmp
¢ R¢hz aC2
C, =0
C, = 0
Q@p OFf N Fl - F{ dqp
R¢h2 acl2 R¢h2 aC%
Qp OFF N F; - F} dap
R¢hz acl2 R¢h2 acl2

(2.4.32)

(2.4.33)

(2.4.34)

(2.4.35)

(2.4.36)

(2.437)

(2.4.38)

(2.4.39)

(2.4.40)

(2.4.41)

(2.4.42)

(2.4.43)



where,

(2.4.44)

(2.4.45)

(2.4.46)

(2.4.47)

(2.4.48)

D, = 0
D2 = O
qp OF? N F{ — F 9qp
Ren, oC} Ren,  oC3
qp OF2 N F; — F} 0qjp
Ren, 9C3 Ren,  9C3
Region II
Fac} Facll
aXD 8xD
C, D oC; 9C;
C2 D2 aXD _ l aXD
C; Dy aCIZ - aclz
C4 D4 aXD aXD
oC# oC?
i oxp ] i oxp ]
qip OF] N F! — F{ dqp
R¢h1 acll R¢h1 acll
ap OF;  Fi - Ff daw
R¢'h1 aCl1 R¢h1 aCll
Ay =0
Ay =0
qp OF] N F! - F} 9qp
Ren, 0Cy Ren,  9C;
_ gp OF N F, — F} dqpp
Ren, 9C; Ren,  9C3

(2.4.49)

(2.4.50)

(2.4.51)

(2.4.52)

(2.4.53)

(2.4.54)



By = 0 (2.4.55)
B, =0 (2.4.56)

Fl - F2 9
c, = - ! q“; (2.4.57)
Ren,  oC{

le - 1:‘22 dq;p

G = 2.4.58

2 Ron, ac? ( )
qp OFf

Cy = — 2.4.59

3 Ron, " 9C7 ( )
ap OFF

Cp = —— —— (2.4.60

7 Ry, oc? )

F! — F} oqpp

D, = 2.4.61

1 R¢hl aC22 ( )
F; — F? 9

D, = 22 J (2.4.62)

R¢h1 aCZ

oF?

D, = 22 Rt ¥ (2.4.63)
Ren, 9C3
oF?

D, = -2 2% (2.4.64)
R¢h2 8C2

Egs. 2.4.31 and 2.4.48 are general eigenvalue problems where solutions exist if and only
if det[J — AI] = 0. As in analyses of three-component flows composition paths are found
by solving the eigenvalue problem for eigenvalues (velocities of a given overall composition)
and eigenvectors (composition directions that satisfy coherence). In this case, however, the
composition paths will appear on separate ternary diagrams for each of the layers. The actual
solution path is chosen, as before, subject to the constraint of monotonically increasing veloci-
ties from the inlet to the downstream initial compositions.

The Peng-Robinson equation of state is used to calculate phase compositions. Phase
viscosities are calculated using the Lohrenz er al. (1964) version of the Jossi et al. (1962)
correlations. All phase composition and viscosity calculations are performed using the phase
behavior package developed by Nutakki et al. (1985). Phase densities are calculated as fol-
lows:
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n.

inlj(
k - izl i=1,n (2.4.65)
pj—ncx_l_("]_’P 4
Z__'_J_
i=1 Pci

where p,; is the molar density of component i at the reservoir temperature and pressure as cal-
culated from the Peng-Robinson equation of state, and xi]j‘ is the mole fraction of component i
in phase j in layer k. Phase densities are calculated using Eq. 2.4.65 rather than using the
phase densities predicted by the Peng-Robinson equation of state because of the assumption of
no volume change on mixing.

Relative permeabilities of the fluid phases are calculated using the following expressions:

S

ng
k, = k% | ——& 2.4.66
’g e [I—SW,—SO,J ( )

1-S;—Sor—Sur | ™
ko = k2 o T 2.4.67
TO TO [ 1 _ Swr _ Sor ( )
The following fractional flow expression is assumed:
k
Ky
k
H; .
fjk = np_JkE— , J= I, l'lp (2468)
s 1
. k
i=1 Ky

The derivatives in Eqs. 2.4.18 and 2.4.35 are evaluated using finite difference approxima-
tions since analytical evaluation of these derivatives is difficult due to the complexity of the
equation of state representation of phase compositions. In general a centered finite difference
approximation is used to approximate the derivatives, for example:

oF} F| (C{ + AC},C},CE C3) - F} (C{ - acl, ¢, ¢ c?

= (2.4.69)
oC|! 2 ACY
Binary System
The system of equations in matrix form for a binary system is as follows:
Region I
oC} oC!
A, B a ox
[ Lo Dol =a | P (2.4.70)

Ay B oCc? oC?
[ dxp 0xp
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where,
qp OF]
Al = — — (2.4.71)
Ren, oC,
F! - FZ 2
A, = ———1 D (2.4.72)
R¢hz ac1
B, =0 (2.4.73)
oF? Ff - FZ d
B, = d2p 12 1 1 QU; (2.474)
R¢hz oC{ R¢h2 oCi
Region II
oC} oC}
Al Bx aXD axD
A, B, 8C12 = A 8C12 2.4.75)
aXD aXD
where,

Fl - Ff 9
S W (2.4.76)
R¢h1 aC; R‘M"l oC;
Ay = 0 2.4.77)
F! — F 0
B, = —_ 1 Jib (2.478)
R¢h1 aCl

oF?
B, = 2D — (2.4.79)
R¢hz ac1
Egs. 2.4.70 and 2.4.75 are general eigenvalue problems where solutions exist if and only

if det [ — A 1] = 0. Composition paths are found by solving the eigenvalue problem for
eigenvalues (velocities of a given composition) and eigenvectors (composition directions that
satisfy coherence.
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2.4.2 Results
Immiscible Binary System

The work of Zapata and Lake (1981) on immiscible displacement in a layered system
with viscous crossflow is actually a simple special case of the binary system theory described
above. If all components are immiscible, then cilj‘ = 0, foralli # j. Some features of the
more complicated three-component system solution may be illustrated using this simple case of
immiscible displacement. For the binary case the eigenvalues for Regions I and II are given
by:

M

A (2.4.80)

A, = B, (2.4.81)

The results presented in this section are for an immiscible water-oil displacement process
with the reservoir and fluid properties shown in Table 2.4.1. Relative permeabilities of the oil
and water phases are calculated using the following expressions:

Sw—Ser |™
= KO |—2¥ T Owr 2.4.82
kl'W ™ [I—Swr—sor] ( )

1-Sw—So |™
ko = kO [——W—"—'-J (2.4.83)

1—Swr—sor

The derivatives in Eqs. 2.4.70 and 2.4.75 are evaluated analytically.

The composition path is shown in Fig. 2.4.3. The solution path passes through the initial
and injection conditions. Note that the Region I and Region II solutions intersect at the no
crossflow point. The variation in velocity along the solution path as a function of the satura-
tion in layer 1 is shown in Fig. 2.4.4. A similar graph showing the variation in velocity along
the solution path as a function of the saturation in layer 2 is presented in Fig. 2.4.5. Note that
there is only one path which satisfies the constraint that the velocity must increase monotoni-
cally from the inlet to the downstream initial compositions. The saturation distributions in
layers 1 and 2 at tp = 0.2 are presented in Figs. 2.4.6 and 2.4.7 respectively. From Figs. 2.4.6
and 2.4.7 it is evident that there is a zone of constant state which corresponds to the no
crossflow region which couples the Region I and Region II solutions together.

2.4.3 Summary and Future Work

The analysis of immiscible binary systems indicates that similar calculations are possible
for systems with limited solubility of one component in another.

Currently composition paths are currently being computed for binary and ternary miscible
systems of CO, and C4, Cyo. Those solutions are constructed by the same procedure as that
described for the immiscible system. Eigenvalues and eigenvectors are calculated, and the
solution composition path is identified by applying the velocity constraint. When available, the
solutions to these problems will illustrate the interaction of crossflow with chromatographic
effects that control composition paths in multiple contact miscible displacements.
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Table 2.4.1. Reservoir and Fluid Properties

KK, 3.0
h;/hy 0.25
61/¢; 1.0
kv 1.0
k2 1.0
Hw 1.0
Ho 1.5
Sor 0.1
Swr 0.1
Ny 1.0

n, 1.0
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2.5 Effect of Dispersion on Composition Paths
in One-Dimensional Displacements

B. Walsh

In one dimensional flow in the absence of dispersion, composition paths on a ternary
diagram will avoid the two-phase region if the original oil composition lies outside the region
of tie line extensions (Hutchinson and Braun 1961, Helfferich 1981). When dispersion is
present, however, as it is in any real flow, composition paths may enter the two-phase region
even when the oil composition lies outside the region of tie line extensions (Gardner, et al.
1981, Orr et al. 1983). In this section, we examine the quantitative impact of dispersive mix-
ing on composition paths for various ternary phase diagrams.

Fig. 2.5.1 is a typical pseudoternary diagram that represents solvent (CO,), light hydro-
carbons (say C,-C;), which we will refer to as LPG, and heavy hydrocarbons. It has been
constructed using the following rules that are common to all the phase diagrams used in this
discussion:

(1) The size and shape of the two phase regions are determined by the phase compositions of
the solvent-heavies "binary", and the plait point composition. Normally we have used a
solubility of 0.5% heavies in solvent as the upper binary composition.

(2) There is no three-phase region in this or in any of the diagrams that follow.

(3) The tie lines are fan-like from a common apex on the zero-LPG axis. In the phase
diagram of Fig. 2.5.2 and in all the diagrams that follow it, only one tie line is shown.
We refer to that tie line as the pivot line. The remaining tie lines are constructed in the
following manner: tie lines to the left of the pivot line have a common focal point at the
intersection of the zero-LPG axis and the pivot line; tie lines to the right of the pivot line
have a common focal point at the intersection of the pivot line and the line tangent to the
binodal curve at the plait point.

(4) The tangent to the plait point passes through 0.1 LPG on the zero-solvent axis.

If oil of composition, 0.2 LPG and 0.8 Heavies, is displaced by solvent in a one-
dimensional slim tube in which there is no dispersion, the composition path can be calculated
using the method of characteristics (Helfferich 1981). It is shown in Fig. 2.5.1 as the dashed
line from 0.2 LPG to the binodal curve, and then as a line coincident with the dew point arm
of the binodal curve to the zero LPG axis, and thence to the solvent apex.

Figs. 2.5.2 and 2.5.3 show the results for the same displacement process calculated by an
explicit finite difference simulator. The simulator has been described previously (Orr 1980). It
assumes no volume change on mixing. Fig. 2.5.2 shows the composition paths for grid blocks
number 20, 100 and 200, calculated up to 1.2 PV (based on 200 grid blocks total). Fig. 2.5.3
shows the liquid saturation and mixture composition profiles at 0.4 PV. Also shown is the
liquid saturation profile at 1.2 PV.

In its original form the simulator neglected both physical dispersion and the pressure drop
across the displacement length. Thus, there is no length scale set in the simulator. Fig. 2.5.2
can therefore be taken to represent either composition paths at locations corresponding to 10%,
50% and 100% of the tube length, or the composition path at the end of the tube, where the
tube length has been represented by either 20, 100, or 200 grid blocks.

When considered in the first way, the figure illustrates the effect of length on the vaporiz-
ing gas drive enrichment process (though since there is no length scale in the equations, the
length corresponding to a single grid block could be in the order of mm or inches). When
considered in the second way, the figure might illustrate the improved recovery of heavy
hydrocarbons associated with either an increased number of equilibrium mass transfer stages,
or a lower level of dispersion. In either case a length scale has been introduced into the prob-
lem.
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Fig. 2.5.1.  Typical phase diagram used in composition path calculations.
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Fig. 2.5.2. Composition path calculated for varying levels of numerical dispersion.
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As implied in the previous paragraph the composition paths shown in Fig. 2.5.2 are indi-
cators of the ultimate recovery of heavies by the vaporizing gas drive process. "Higher" com-
position paths indicate higher recoveries.

Fig. 2.5.4 presents recovery curves for identical displacement processes, but with the tube
length divided into 50, 200, and 1000 grid blocks. If numerical dispersion is equivalent to phy-
sical dispersion, these correspond to single phase Peclet numbers of 133, 533, and 2666.
Clearly, recovery improves as the level of numerical dispersion decreases, as several investiga-
tors have pointed out.

Fig. 2.5.2 illustrates an interesting effect in the entrance length of the tube (i.e., the 20
grid block path). For this grid block, after all the LPG has been removed, the composition of
heavies increases from 0.18 to about 0.25, and then gradually decreases by successive extrac-
tion with solvent. Fig. 2.5.3 shows this as a bank of heavies being gradually displaced through
the tube. (Note how little this bank has moved between the two times.) The high liquid satura-
tions in the entrance length of the tube are a consequence of the phase behavior of mixtures of
the un-enriched solvent and original oil.

2.5.1 Representation of Physical Dispersion by Numerical Dispersion

It was assumed in the preceding section, and it is generally assumed, that numerical
dispersion or truncation error can be used to represent actual physical dispersion using the rela-
tionships derived by Lantz (1971) for single phase flow

(Vp™ = 3 (8xp - Arp) 2.5.1)

In a recent paper Ypma (1985) reported on a comparison between simulations of nitrogen
displacement of a light oil, using truncation error to represent dispersion in the first set of runs,
and then including a finite difference representation of dispersion in the simulator and repeating
the runs with very low levels of numerical dispersion. He observed that when actual physical
dispersion was included, the simulator predicted higher recoveries.

Fig. 2.5.5 is taken from Ypma’s paper. It indicates differences in calculated recoveries of
about 5% at a dispersion number of 0.01. (Ypma uses "dispersion number, D,,," instead of
inverse Peclet number.) That value would correspond to 40 grid blocks and Axp/Azp = 0.2, if
based on numerical dispersion only. Fig. 2.5.6 recasts our results from Fig. 2.5.4 and from
other simulations in the form used by Ypma, and also presents results of simulations in which
physical dispersion was included in the model. We observe minor (of the order of 1%)
differences between the two cases, but these differences do not widen as dispersion number
increases, as Ypma had observed.

We then constructed a phase diagram that was similar in its general features to the one
used by Ypma (Fig. 2.5.7) and repeated the comparison at total dispersion numbers of 0.0023
and 0.023. Recoveries obtained were higher than those reported by Ypma, but once again we
obtained differences of only 1-1.5% between the cases at both levels of dispersion. It is our
view therefore that the inclusion of explicit physical dispersion terms in the finite difference
simulator does not add substantially to the accuracy of the solution.

2.5.2 Effect of Phase Diagrams on Composition Paths

We observed when describing the features of Fig. 2.5.2 that the location of the composi-
tion path is an indicator of the degree of dispersion that is being simulated. Figs. 2.5.8 and
2.5.9 show the extent to which composition paths are modified by either the composition of the
oil being displaced, or the size of the two phase region. Fig. 2.5.10 shows the composition
paths observed with an unusually shaped phase diagram. In this case the trend towards the
dew point curve that is normally observed with decreasing levels of dispersion (increasing n),
is extremely slow. Note that the composition paths here are for 100, 500 and 1000 grid
blocks, instead of the 20, 100, 200 used previously.
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O Ypma’s data
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Fig. 2.5.7. Phase diagram based on Ypma’s data (1985).
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Grid block 20 (Pe = 53)
Grid block 100 (Pe = 266)
Grid block 200 (Pe = 533)

AV

LV V2 M. V2

HEAVIES 10 20 30 40 50 60 70 80 90 LPG

Fig. 2.5.8.  Composition paths for a CO; - hydrocarbon system with a large two-phase
region and varying levels of numerical dispersion.
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Grid block 20 (Pe = 53)

Grid block 100 (Pe = 267)
Grid block 200 (Pe = 533)

HEAVIES 10 20 30 40 SO 60 70 80 90 LPG

Fig. 2.5.9. Composition paths for a CO, - hydrocarbon system with a small two-phase
region and varying levels of numerical dispersion.
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Co2

Grid block 100 (Pe = 266)

HEAVIES 10 20 30 40 S50 60 70 8 90 LPG

Fig. 2.5.10. Composition paths calculated for varying levels of dispersion
for a phase diagram like that of Tirrawarra (Jap 1985).
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The phase diagram shown in Fig. 2.5.10 is similar to that of a light crude oil from an
Australian oil field, "Tirrawarra" in South Australia. Note that the oil composition is to the
right of the critical tie line, so the method of characteristics would indicate a composition path
tangent to the binodal curve near the plait point and then along the dew point line. The
unusual composition paths observed prompted us to ask again whether we are adequately
representing physical dispersion by truncation error in a case like this. When the runs were
repeated with a finite difference representation for physical dispersion and much lower trunca-
tion errors, we got essentially identical paths for corresponding values of dispersion number.
And Fig. 2.5.11 shows in a more familiar way the comparison between effective dispersion
levels as reflected in the relative shapes and heights of the LPG slug when the simulator uses
200 grid blocks (D,,,, = -002) and 1000 grid blocks (D,,, = .0004). That is, in this case, even
though larger numbers of grid blocks do not cause the composition path to move close to the
dew point curve, they still can be taken as a measure of the level of dispersion.

2.5.3 Geometrical Interpretation

In order to explain the observed effects we first recast the phase diagram (which is nor-
mally expressed in mole fractions) into volume fractions. We note that since we have already
made the assumption of zero volume change on mixing, straight lines on the mole fraction
diagram will map to straight lines on the volume fraction diagram, though parallelism will not
necessarily be maintained.

The explicit finite difference simulator solves the following balance equation for com-
ponent i in cell number k

AID
cH! = C?,k+—Ax—[F7,k—1— i (2.5.2)
D

In what follows, we drop the subscript i to simplify the notation. Eq. 2.5.1 can be rewritten
then as

Cl+aFl = Ci+aFp,y (2.5.3)

where C} is the volume fraction of component i in the kth grid block at time n, F} is the
volume fraction of component i in the flowing stream leaving the kth grid block at time n,
o = Atp/Axp, where Aty is expressed in pore volumes and Axp, is the dimensionless grid block
length.

Eq. 2.5.3 shows how C}*! is determined by the compositions in the current grid block
and in the upstream grid block at the previous time level. The equation can be represented
geometrically when expressed in its second form. Fig. 2.5.12 illustrates the geometrical solu-
tion of the equation for the three possible cases that would be encountered along a composition
path.

Case 1. The composition Cy is already in the 2-phase region. F is on the tie line since the
flowing stream composition is a mixture of the two phases that are in equilibrium
with C,. F,_; is on the tie line that contains Cj_;. M is determined by C; and F,
by the lever rule. From the geometry, the trajectory Cj to C3*! is parallel to the line
joining Fy and Fy_;.

Case 2. C,, is in the two phase region, but Cy is still single phase. M is on the line joining
F,, and C;. Since C; and F are coincident, C?*! must be on the same line.

Case 3. Both C,_; and C, are single phase. The same construction applies as in Case 2.

Thus the composition path will follow a straight line from the initial oil composition to
the two-phase region. Once in the two-phase region it will follow a path parallel to lines join-
ing the flowing stream compositions leaving the previous and the current grid block. Since in
most EOR processes the solvent-rich phase has gas-like viscosities, the flowing stream compo-
sitions quickly approach the dew point curve, and hence the composition paths are parallel to
the dewpoint curve.
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Also successive grid blocks enter the two-phase region to the right of the previous block,
so long as the tie line at the point of entry has a lower slope than the entry path. That behavior
is illustrated in Fig. 2.5.13. Suppose that the flowing stream composition of the (k-1)th grid
block is as shown in Fig. 2.5.13a. The labels are for the n-2, n-1, and nth time step. (Note
that in the case of an explicit finite difference simulator it is possible to solve the composition
paths for all times for each grid block in turn, even though it is conventional to solve for all
grid blocks at each time, and then to increment the time. It is this property that is the basis for
the comment on the duality of interpretation of Fig. 2.5.2 made previously.) C?2 is on the
line joining F7~? to the oil composition.

Fig. 2.5.13b illustrates the construction of the C, path at successive times for Atp/Axp=
0.25. The composition does not enter the two-phase region until the nth time step. Here it is
almost all liquid so we would expect a relatively small fractional flow of vapor, and hence F}
will have a value close to the izuid portion of the binodal curve. The trajectory C} to Citl s
parallel to the line joining Fj_; and F;. Because Fsubk® is the sum of the phase compositions
weighted by the fractional flow, and because the fractional flow of the low viscosity vapor is
relatively high, F; will lie to the right of the C, composition path for the tie line slopes shown,
so the (k+1)th path will enter the two-phase diagram to the right of the kth path.

As implied in Fig. 2.5.13b, the starting points for the two phase trajectories will be deter-
mined by the fractional flow curve for the system and by the (random) entry saturation for
each grid block. We would expect, and we observe, that within a few time steps after entry
into the two-phase region, the final straight line composition path is established at about the
same initial liquid saturation for all grid blocks.

Figs. 2.5.14 and 2.5.15 demonstrate the consequences of these geometrical rules for two
arbitrary phase diagrams. Fig. 2.5.14 is similar to Fig. 2.5.2 and others we have used. The
composition paths move to the right as the number of grid blocks is increased; they are
approximately parallel to the dew point line; and successive paths are higher than previous
ones. This is because, though each path is established on entry at a liquid saturation of about
40%, the shape of the binodal curve and the fact that the paths are parallel to the dew point
line, causes relative liquid volumes to decrease with time.

Fig. 2.5.15 is similar to Fig. 2.5.10, but we have made it more extreme by making the
dew point and bubble point curves parallel. Once again the paths in the two phase region are
parallel to the dew point line; successive paths enter to the right of previous paths; all paths
establish about the same liquid saturation on entry; in this case however the parallelism of the
dew point and bubble point lines causes the paths to be essentially colinear. Whether that
behavior is a consequence of numerical effects or simply reflects composition paths that would
be obtained by the method of characteristics in the absence of dispersion requires further inves-
tigation.

Conclusions

Geometrical interpretation of calculated composition paths leads to the following conclu-
sions:

(1) Successive composition paths enter the two phase region richer in LPG by virtue of the
difference in slopes between the tie lines and the entry path.

(2) Within a few time steps, the final straight line composition path is established at a liquid
saturation determined by the fractional flow curves for the system.

(3) The composition paths are then all approximately parallel to the dew point curve.

(4) We observe an upward trend with increasing numbers of grid blocks (and hence increased
recovery) when we have a "conventional" phase diagram, i.e., when the bubble point and
dew point curves converge uniformly towards the plait point.

(5) When the bubble point and dew point curves are parallel, or nearly parallel, recovery
increases very slowly with increased numbers of grid blocks. Displacement performance

for systems exhibiting such phase diagrams will be sensitive to the level of dispersion.
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CO2

Grid block 10 (Pe = 27)
Grid block 25 (Pe = 67)
Grid block 50 (Pe = 133)
‘ Grid block 100 (Pe = 266)

"‘ Grid block 200 (Pe = 533)

V2

HEAVIES 10 20 30 40 50 60 70 8 90 LPG

Fig. 2.5.14.  Composition paths calculated for varying levels of numerical dispersion.
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Grid block 10 (Pe = 27)
Grid block 25 (Pe = 67)
Grid block 50 (Pe = 133)
Grid block 100 (Pe = 266)
Grid block 200 (Pe = 533)

HEAVIES 10 20 30 40 50 60 70 8 90 LPG

Fig. 2.5.15. Composition paths for varying levels of numerical dispersion for a binodal
curve with parallel sides.
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2.6 Summary

The results presented in this chapter delineate further the role of component partitioning
as it influences displacement performance. Analysis of a model four-component system by the
method of characteristics indicates why the addition of dissolved methane to a dead oil has
small effect on measured minimum miscibility pressures, despite the fact that the displacement
of the resulting mixture is no longer strictly "miscible" because the composition path of the
displacement passes through the two-phase region. That analysis resolves a long-standing
inconsistency between experimental observations and analysis of composition paths based on
ternary representations of phase behavior.

Application of the mathematical approach used in the analysis of four-component systems
is underway for two additional problems, flow of ternary mixtures with temperature variation,
and flow of ternary mixtures in a two-layer system with viscous crossflow. When completed,
both analyses will represent significant extensions of current theory for multiphase, multicom-
ponent flow in one dimension. The first problem is a model for the design of improved ther-
mal recovery processes, and the second is a prototype for study of the combined effects of
phase behavior and crossflow during nonuniform flow caused by heterogeneity or viscous ins-
tability or both. We consider the interaction of viscous instability with unstable flow, but
without the effects of phase behavior, in Chapter 3.

Finally, the impact of dispersive mixing on composition paths in ternary systems was
described. Direct computations show that sensitivity of composition paths to dispersion is
dependent on the size and shape of the two-phase region. That result suggests that careful
control of numerical dispersion may be required for some systems, especially those involving
displacement by N,, if accurate composition path information is to be obtained.
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3. Viscous Instability and Reservoir Heterogeneity

Miscible displacement processes, such as CO, flooding, rely on coupled phase behavior and
flow to generate compositions that avoid the two-phase region. Because there are no capillary
forces, which are usually responsible for oil entrapment, a miscible displacement can be potentially
one hundred percent efficient. In practice, however, this high recovery potential is usually not real-
ized because hydrodynamic instability leads to macroscopic fingering of the displacing fluid, result-
ing in a nonuniform displacement. This unfavorable behavior is further magnified by the hetero-
geneity of the porous media. The physical processes involved in this interaction are not fully
understood.  Consequently, currently available commercial reservoir simulators are unable to
predict accurately the performance of miscible displacements.

Most miscible displacement processes are influenced to some extent by the frontal fingering
phenomenon, caused by the usually unfavorable ratio of mobilities of the in-place oil and the
displacing solvent. In addition, all oil reservoirs are heterogeneous on some length scale. There-
fore if process simulation are to be accurate, some description of unstable flow in heterogeneous
porous media must be included in the formulation of a reservoir simulator. Before this can be
achieved, a better understanding of the length scales associated with the fingering phenomenon and
the porous media heterogeneities will be required. These length scales control the extent of the
mass transfer between the unswept oil and the displacing fluid. Mixing, in turn, is important
because it influences the phase behavior of the CO,-hydrocarbon mixtures, which controls micros-
copic displacement efficiency. If, for example, fingers that grow in field-scale flows are large and
widely spaced, then compositional effects of mixing between oil and CO, will be confined to a
small portion of the reservoir and hence will have minimal impact on displacement performance.
For such cases, simulators need only represent the gross movements of fluids in the reservoir. If,
on the other hand, fingers are small and closely spaced, mixing will be important and representa-
tions of the phase behavior of CO,-hydrocarbon mixtures will have to be included in the simula-
tions. Thus, resolution of these questions of scale is needed for design of improved reservoir
simulation tools.

In this chapter, only fingers driven by viscous instabilities will be examined. The main pur-
pose here is to quantify the transverse length scale, or wavelength, of viscous fingers that form in
unstable displacements in heterogeneous porous media. In homogeneous porous media, the most
unstable finger wavelength at initiation is controlled by dispersion. In subsequent growth, viscous
forces cause spreading at the tip of the finger and pinching at the tail. Finger widths must be con-
trolled by a competition between dispersion, which causes growth of a transition zone in viscosity
that reduces the driving force for instability, and subsequent splitting of fingers at the tip. If the
permeability distribution has large variance and exhibits correlation over a significant fraction of
the flow length, then finger widths are likely to be determined by the spatial correlation in the per-
meability field. If the permeability field has large variance but is correlated only at small scale,
permeability variations in the inlet region probably initiate fingers, but it is not clear how the per-
meability variation affects subsequent growth. Thus, the objective of the computations to be per-
formed is to establish whether permeability variation dominates finger formation and growth and if
so, what correlation length is required for a given permeability variance. In this chapter, results of
calculations of the growth of fingers in both uniform and heterogeneous permeability fields are
presented. Also, we describe the design and preliminary results of flow visualization experiments
aimed at testing the accuracy of the calculations.
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3.1 Numerical Simulation of the Growth of Viscous
Fingers in Heterogeneous Porous Media

Udo Araktingi

Much of the theory of viscous instability has been based on the analysis of the onset of insta-
bility (Gardner and Ypma, 1984, Heller, 1966, Perrine, 1963, Peters et al., 1984, Lee et al.,
1984, Tan and Homsy, 1986, Schowalter, 1965) in an attempt to predict growth rates and critical
wavelengths. The essential steps involved in all of these studies may be summarized as follows.
First, an unperturbed mathematical model is specified. Next, perturbations are introduced into the
dependent variables of the mathematical model. The resulting equations are subtracted from the
unperturbed model to derive the hydrodynamic equations for the perturbations. Then the perturba-
tion equations are usually solved by decomposing the initial perturbations into separate Fourier
components. This ensures that the stability analysis can proceed without concern about the exact
nature of the initial perturbation because the theory of Fourier transforms ensures the perturbations
can be synthesized from their Fourier components. Finally, the stability conclusions are drawn
from the behavior of the solutions. If the perturbations grow with time, then the displacement is
judged to be unstable and subject to fingering. If the perturbations diminish with time, then the
displacement is judged to be stable and will be free of fingering. The resulting linear stability
theory can be used to determine the conditions for the onset of instability, but cannot be used to
predict the long term behavior of the unstable displacement.

An alternate approach, the use of conventional finite difference techniques (Peacemen and
Rachford, 1962, Christie and Bond, 1986, Christie, 1987, Giordano et al., 1985) was first under-
taken using a large number of grid blocks to solve the convection-dispersion equation. However,
the resulting poor resolution masked any potential viscous fingers, and the use of a permeability
fluctuation was required to initiate the instabilities. Resulting effluent curves were found to be
dependent on the permeability distribution used. Consequently, with the advent of faster computers
and the development of more accurate numerical techniques, fine grid simulation of the growth of
viscous fingers has been used. However, the match between computed and published experimental
results has not been entirely satisfactory. On another level, empirical models (Koval, 1963, Todd
and Longstaff, 1972, Dougherty, 1963, Fayers, 1984, Fayers and Newly, 1987, Odeh, 1987) have
been suggested to give a basis for computation of miscible displacement. These models suffer
from the fact that the principal parameters involved have little or no direct physical significance.
These parameters can be fitted to simple one-dimensional laboratory experiments, for example, but
translation of the same parameter values to a three-dimensional reservoir is uncertain at best.

Recently a novel computational approach (Hatziavramidis, 1987, Tan and Homsy, 1987),
based on the method of weighted residuals, has been proposed. This method is still in the process
of being validated through experimental data matching. Chebyshev polynomials and Fourier func-
tions have both been used for the transform functions. The advantages of this method are
improved accuracy and computational speed. Because the equations are solved exactly, numerical
error at the grid points is eliminated. The use of fast Fourier transform (FFT) techniques allows
for much finer grids resulting in better finger resolution while still remaining faster than finite
difference schemes. There are also several drawbacks. First, periodic boundary conditions are
required in order to avoid any Gibbs phenomenon in the solutions. Such behavior was exhibited in
the one-dimensional results obtained using Chebyshev polynomials. The method is also awkward
for long time simulations because of the need to extend the current domain. Since the use of FFT
requires 2V calculations where N is the number of grid points, this could result in a severe compu-
tational burden.

Another promising approach (Meiburg and Homsy, 1987, Tryggvason and Aref, 1983),
currently only being applied to immiscible displacements in Hele Shaw cells is the vortex method.
The vorticity field is discretized with the corresponding velocity field being constructed by using
the Biot-Savart law. Since the flow is everywhere irrotational except at the interface between the
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two phases, only the vortex sheet at the interface needs to be discretized. This allows for a highly
accurate numerical technique. In the miscible case, the area to be discretized will now consist of
part, or the whole mixing zone. Efforts to apply this method to unstable miscible displacements
and determine its effectiveness are currently being undertaken by the same researchers.

Finally, a probabilistic approach (King and Scher, 1986, DeGregoria, 1985, King and Scher,
1985) based upon random-walk simulations of the solution of Laplace’s equation has been investi-
gated. In the limit of infinite mobility ratio, the method produces solutions to the problem of
diffusion-limited aggregation (DLA). This method uses a finite difference solution of the material
balance equations. Tracer particles carrying a concentration equivalent to one grid block are added
to the domain at a rate of one per time step. To determine where this particle should go, a stream-
line and an injected fluid concentration are chosen randomly. The intersection of those two con-
tours gives the location at which a tracer particle is added. When a streamline intersects a satura-
tion contour at more than one place, the one with the highest flow velocity is chosen. Fingers are
generated because low viscosity fluid replaces high viscosity fluid, streamlines become more
closely spaced, increasing the probability that a streamline in that neighborhood will be selected in
subsequent time steps. However, these models produce lower recoveries than observed in labora-
tory experiments due to the absence of any transverse dispersion (Orr and Sageev, 1986).

To investigate further the combined effects of instability and permeability variations, a new
model was formulated. This scheme uses a finite difference solution of the material balance equa-
tions to determine the pressure field, given the distribution of permeability and the current distribu-
tion of fluid viscosities. Tracer particles that carry a finite concentration of injected fluid are then
moved with velocities based on the pressure field. Effects of transverse and longitudinal dispersion
are included by perturbing the position of the particles after the convection step by amounts
selected from a normal distribution with a mean of zero and a variance that sets the relevant
dispersion coefficient. In effect, we assume that local velocity variations at scales smaller than a
grid block can be represented adequately by dispersion. Once the locations of all the tracer parti-
cles are determined, local viscosities can be evaluated and the process repeated for the next time
step. This scheme has the advantage that it controls the effects of numerical dispersion, but it
requires that many particles be tracked. In the next section, this computational scheme will be dis-
cussed in more detail. Also, it will be validated using analytical results and recoveries from dis-
placement runs at different mobility ratios will be compared to experimental results. Next, a brief
description of a method to generate heterogeneous permeability fields will be given. These per-
meability distributions will be used in the random-walk model to study the interaction between the
viscous fingers and the porous media. Finally, an attempt to include dispersion into the original
probabilistic model, formulated previously (Orr and Sageev, 1986), will be made.

3.1.1 Formulation of the Random-Walk Model

The assumptions made in developing this model were:

(1) First contact miscible, incompressible fluids with equal densities.
(2) Quarter power blending rule used to obtain viscosity of mixtures
(3) Darcy’s law applies.

(4) Two-dimensional flow for current model.

(5) Harmonic weighting used to calculate the mobilities.

The random-walk technique is based on the concept that dispersion in porous media is a ran-
dom process. This idea was explored in some detail by Prickett et al. (1981) for single-phase
flows in which the fluid viscosity is everywhere the same. In this section, we summarize the
approach they used for unit mobility flows, verify that our code reproduces their results, and then
show that the technique can also be applied to flows with variable viscosity.
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Prickett et al. argued that at the microscopic level, dispersion occurs because fluid elements
that start at adjacent positions follow a distribution of flow paths with slightly different lengths and
local flow velocities, as Fig. 3.1.1. illustrates. To represent that behavior, Prickett et al. modeled
the motion of a collection of particles, each of which is taken to represent an increment of volume
of the displacing fluid. Each particle is assumed to move in two ways during a time step. First,
the particle is moved with the mean flow velocity in the direction of the streamline passing through
the particle’s current location. Then the particle position is perturbed by random amounts
(governed by scaled probability distributions) to reflect the effects of transverse and longitudinal
dispersion.

The problem examined here is a first contact miscible flood in which a displacing fluid is
injected into a porous medium initially saturated with a resident fluid that is miscible in all propor-
tions with the displacing fluid. The mathematical model for such a displacement, neglecting grav-
ity effects and assuming incompressible fluids, is

V%ﬁ-VC%ﬁ”VC=%§iQ (3.1.1)
k

V=- =XV 3.1.2

v " p (3.1.2)

V-v=0 (3.1.3)

where ¥V is the local velocity, C, the local composition, D, the dispersion tensor, Q, the injection
rate per unit volume, k, the permeability, | the viscosity and p, the pressure.

In this method, the convection dispersion equation (Eq. 3.1.1) is not solved. Instead, the con-
tinuity equation (Eq. 3.1.3), in conjunction with Darcy’s law (Eq. 3.1.2) is solved using a point
finite difference scheme. As a result, velocity components are obtained at each grid point. The
basis for the displacement calculations is that the distribution of the concentration of displacing
fluid in a porous medium can be represented by the distribution of a finite number of discrete parti-
cles. Each of these particles is moved by Darcy flow and is assigned a volume that represents a
fraction of the total volume of displacing fluid involved. In the limit, as the number of particles
gets extremely large and approaches the molecular level, an exact solution to the actual situation is
obtained. However, it will be shown that relatively few particles are needed to arrive at a solution
accurate enough for the applications considered here.

The connection between the random-walk approach and the statistics of the particles was

demonstrated by Prickett et al. They considered the motion of a unit slug of tracer in an infinite
one-dimensional medium. In that case, the solution to Eq. 3.1.1 is (Bear, 1972)

_(x = Vr)?

1
Cx,t) = ———ex
) @rD 2 T ! 4Dyt

, (3.1.4)

where V is the flow velocity, D; is the longitudinal dispersion coefficient, and x and ¢ are space
and time. Fig. 3.1.2 shows the resulting concentrations of tracer plotted around the location of
mean flow x" =x — Vr.

To see how the flow problem is connected to the statistics of particles, consider a normal pro-
bability distribution, which has the density function, n (x),

Ry
n(x)= \/%0‘ exp l:— (xzélz) } (3.1.5)
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Fig. 3.1-2  Solution of the convection-dispersion equation (Bear
1972).



- 86 -

If we set

o =+2D;t (3.1.6)

and

u ="V, 3.1.7)

then Eqgs. 3.1.4 and 3.1.5 are equivalent, and
nx)=C(x,t) (3.1.8)

Therefore, the dispersion of particles can be represented as a random process.

Details of how the random-walk representation is implemented in a computational algorithm
are given by Prickett et al. Our code follows closely their implementation for the portion of the
code that deals with particle convection and dispersion.

3.1.2 Validation

Several tests were used to validate the random-walk model. First, it was compared to analyti-
cal solutions published by Prickett et al. Second, ideal miscible displacements similar to those
used to measure longitudinal and transverse dispersion coefficients were simulated to determine if
the input dispersivities were recovered in the calculated Peclet numbers. Finally, the experiments
performed by Blackwell et al. (1959) for displacements in a linear two-dimensional model at vari-
ous mobility ratios were simulated.

Analytical Solutions

Three different cases were simulated, all with unit mobility ratio and for a homogeneous
porous medium.

Case -1- Longitudinal dispersion in uniform one dimensional flow with continuous injection at
inlet.

The theoretical equation for this case is approximated well by:

x=-V (3.1.11)

1
C/C, =—erfc
° 2 f ZVDLI

where D; = 4.5 ft¥/day, V = 1 ft/day. The transverse dispersivity was set to zero. This calcula-
tion is identical to that described in Fig. 51 of Prickett et al. (the same random number generator
and seed were used). Fig. 3.1.3 shows the results plotted for different times. The numerical solu-
tion does approximate the analytical one, and the results reproduce those of Prickett et al., an indi-
cation that the implementation in our code is correct. The match can easily be improved by
increasing the number of particles used (in the case shown it was 100 particles to represent unit
solvent concentration in a grid block) and finer grid mesh (3x30 grid was used here). Note that
C/C, > 1 at the inlet. This is a statistical phenomenon, which could be eliminated by increasing
the number of particles injected and the number of grid blocks. It occurs when the composition of
a block is near 1.0 because occasionally random motions cause the number of particles to exceed
that required to give a concentration of 1.0. In subsequent time steps, however, the concentration
drops again due to the same random motions.



- 87 -

1-2_l|||llllI|TTlllll||IT]‘IIIIllllllllllllllll|llllllll|lllll

08

IlllllllIllllIIllIll|llllllllllllllllllr

o E
806;—
2 t =20 days t = 160 days
04 =
0.25— _E
oilllllll IIIlllIlllllllllll'lllllllllllIllll Illllllllf:E
0 50 100 150 200 250 300
DISTANCE feet

Fig. 3.1-3  Longitudinal dispersion in one-dimensional flow with
continuous injection at inlet.

sojllllllllll‘lllllll|l|lllllll'IlllllllIlllllllllllllllllll

t = 150 days

10

llllIlIlIlllIIllllllllllllll'llllllllIllllllllll-

MY ITYITSEeTa RIRATRRRTIANTEN:
0 s0 100 150 200 250 300

DISTANCE, feet

Fig. 3.1-4a Longitudinal dispersion in uniform one-dimensional flow
with a slug of tracer injected at inlet (100 particles).



- 88 -

100 ﬁT‘lllllllllT'llIlIllllll1|l‘lllll‘llT'll'lllYlYll!ll||lll

o

LR BAREA

IIIlLIIl'lllllllllllllllllIllllllllIlllIIIIIlLL

Ill[l'l‘llllllll"('lfill

0 30 100 150 200 25 300

DISTANCE, feet

Fig. 3.1-4b Longitudinal dispersion in uniform one-dimensional flow
with a slug of tracer injected at inlet (200 particles).

lso ]lll"ll‘lll‘lll'['lllllll“llll|‘|lll||||l|ll|!lllllll"‘-l
100 p—
. [ t =10 days .
iy t = 150 days ]
_ i

0
0 50 100 150 200 250 300

DISTANCE, feet
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Case -2- Longitudinal dispersion in uniform one-dimensional flow with a slug of tracer injected
at inlet.

The data for this problem are the same as the those used in the previous case, except that a slug is
injected. This calculation duplicates that reported by Prickett et al. in their Fig. 53. Fig. 3.1.4
compares the results of this simulation with the theoretical results given by the following equation
(Bear, 1972)

N, dx vy
o0& ex [—ul— (3.1.12)

~ NanDy1 4D, t

where N,dx is the number of particles times the grid length over which particles are counted. The
effects of injecting slugs of increasing number of particles are illustrated by comparing Figs.
3.14a, 3.1.4b and 3.1.4c. The agreement between the approximate solution and the analytical
solution improves as the number of particles taken to represent unit concentration increases.

Case -3- Longitudinal and transverse dispersion in uniform one dimensional flow with a slug of
tracer injected at the inlet.

Again, the data for this problem are the same as previously used except that the transverse disper-
sivity is no longer zero These results reproduce those reported by Prickett et al. in their Fig. 58.
Now Dy = 1.125 ft*/day. The theoretical solution for this case is given by Fried (1975).

4TVt \jdL dT 4dL \%3 4dT Vit

(3.1.13)

where N, is the number of particles times flow rate times time increment. Figs. 3.1.5a-3.1.5d
show that the agreement between the analytical and numerical results is good.

Recovery of input dispersion values

In order to examine how the random-walk model mimics numerically the effects of disper-
sion, ideal miscible displacement simulations were performed. Approximate longitudinal Peclet
numbers were obtained by fitting calculated effluent composition data to a straight line in arith-
metic probability coordinates. The longitudinal dispersion coefficient was then calculated from the
Peclet number as:

VL
D, = —
L Pe

(3.1.14)
where V =40 ft/day ,L, =6 ft ,L, =2 ft and the input D; = 0.1457 ft¥day. Fig. 3.1.6
shows the range of the calculated dispersion coefficients and its dependence on grid size and seed
number for the random number generator.

Transverse Peclet numbers were measured by developing code that simulated the sand packed
column arrangement (Perkins and Johnston, 1963) shown in Fig. 3.1.7. The transverse dispersion
number was then obtained from the Peclet number in the same manner described above. The data
used were also the same with Dy = 0.0055 ft%/day.
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For both cases, the magnitudes of values calculated increased with increasing mesh size and
were nearly independent of the seed number used. The ranges varied from about *+ 20% for a
30 x 20 grid to about = 5% for a 90 x 20 grid in the longitudinal dispersion case. Figs. 3.1.6 and
3.1.8 indicate that the computational scheme used reproduces well the input values.

The examples shown here demonstrate that the code written to perform the particle-tracking
calculations reproduces the unit mobility results reported by the originators of the method, and they
confirm that the method gives accurate numerical solutions. Furthermore, they show that effects of
numerical dispersion are small if reasonable grid resolution is used. Hence we are now ready to
test whether the approach is suitable for flows in which the viscosity of the injected fluid differs
from that of the fluid displaced.

Comparison with experimental results

Blackwell’s experiments were carried out to investigate fingering in homogeneous sands. The
results used were those obtained from a sandpack model with dimensions 3/8" x 24" x 72" at
reported flow rates between 30 — 50 ft/day. The sandpack was tested to assess the homogeneity
of the packing using equal density and viscosity fluids containing dyes. The results of the assess-
ment also allowed calculation of the effective dispersion coefficient. The values of dispersion
coefficients used in these simulations were calculated using previously derived formulae (Pozzi and
Blackwell, 1963). At a flow rate of 40 ft/day the calculated dispersion coefficients were

D; = 0.1457 ft*day
Dy = 0.0045 ft*day

Fig. 3.1.9 shows the experimental data for four different mobility ratios ranging from 5 to
375, and the results obtained from the simulation runs. The agreement between calculated and
experimental values of the oil recovery is very good. For the mobility ratio of 5, 86 and 150 a
60 x 60 grid was used. For the last mobility ratio case (M = 375) a finer grid (80 x 60) was
needed in order to simulate the experimental results satisfactorily. Except for refinement of the
grid, no adjustment of input parameters was made to achieve the agreement shown in Fig. 3.1.9.

It was found throughout this set of simulation runs that the transverse grid resolution was the
dominant factor in obtaining a good match of the experimental results because it controlled the
amount of crossflow between streamlines. Runs were made with even finer grid meshes
(120 x 60) but the results were unchanged. The number of grids in the longitudinal direction did
not greatly affect the outcome of the simulations. Additional numerical experiments showed that
the choice of seed number for the random number generator did not significantly alter the results.

3.1.3 Model Performance Characteristics

A problem with the model is that concentrations greater than unity are possible. Such
behavior is exhibited in Fig. 3.1.3, where concentrations of 1.1 occur. In the two-dimensional
case, concentrations exceed values of two and even more are quite common. However, they occur
only in the impermeable boundary grid blocks. This behavior can be explained as follows. Since
each injected particle represents a volume of fluid, a grid block can only contain only so many par-
ticles before the concentration exceeds unity. Because dispersion process in the model is random,
particles tend to drift into adjacent blocks. In the inner grid blocks, this behavior is averaged out
over time and space and concentrations rarely exceed unity. And if so, only by a small fraction,
usually smaller than a tenth. However, the same does not happen in the boundary blocks. First of
all, these blocks are half the size of inner grid blocks. Secondly, since the boundaries are imperme-
able, the transverse velocities are very small meaning that particles drifting into these blocks will
tend to remain there and accumulate over time. As a result, these outer boundary blocks are
dropped when mapping concentration contours.
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The behavior described above is dependent on the number of particles use to fill a grid block.
Twenty-five particles per grid block were used in the validation runs made to reproduce
Blackwell’s experimental data. Fig. 3.1.10 shows the recovery curve obtained using only ten parti-
cles per grid block. It can be seen that the experimental data is not reproduced as well as for the
25 particle case. Also some boundary blocks displayed concentrations greater than nine. These con-
centrations dropped to about three with 25 particles and dropped even further to 1.3 with 100 parti-
cles per grid block. It would obviously be ideal to run all cases using 100 or more particles per
grid block. Unfortunately this is not feasible because the model’s run time is directly proportional
to the number of particles in the system. Run times on a Gould 9080 for several cases are shown
in Table 3.1. Run time is also dependent on the mobility ratio because the number of iterations
required by the matrix solver at each time step increase, with increasing mobility ratio.

When performing the validation runs, good resolution in the transverse direction was shown
to be very important. An insufficient number of rows results in high velocities occurring at very
few grid blocks. Breakthrough time is not affected by this, but after breakthrough recovery is
always much higher than the experimental recovery. For runs with mobility ratios ranging between
5 and 150 a 60 x 60 grid size gave very satisfactory results, as shown in Fig. 3.1.9. However, for
a mobility ratio of 375 a 80 X 60 grid size was needed to obtain the same level of accuracy as for
the previous cases. To test the convergence, additional runs with a 120 x 60 grid size were made
for different mobility ratios. The results were identical to the ones obtained for the smaller grid
size.

This model can easily be used to represent linear, radial or five-spot patterns. All that needs
to be done is to solve the diffusivity equation with the appropriate boundary conditions. This
amounts to rewriting one subroutine in the model’s code. Also any type of injection and produc-
tion pattern can be modeled, meaning that particles can be introduced anywhere into the system by
specifying the initial position of the particles.

3.1.4 Inclusion of Heterogeneities

In order to study the interaction between viscous fingering and heterogeneous porous media, a
permeability field must be generated. To use existing methods (Journel and Huijbregts, 1978), it is
assumed that permeability is a regionalized variable with second order stationarity meaning that the
mean of the distribution is independent of location and that spatial correlation between two samples
depends only on the distance separating them.

The Dykstra-Parsons coefficient (Dykstra and Parsons, 1950) defined below can be used to
describe the permeability variation:

kso— kgay -
Vo =~ - 1 —e Om (3.1.15)

To express spatial correlation, a correlation length scale A is introduced. The degree of corre-
lation between the permeabilities at two points decreases as the distance separating them increases.
When that distance becomes greater than the correlation length scale, the permeabilities become
uncorrelated. The correlation length is made dimensionless by normalizing it as follows:

Y
hp = (3.1.16)

The moving average method (Luster, 1984, Mishra, 1987) is used to generate a correlated
permeability field. Using an average permeability of 100 md. with a small variance (Vg =0.1)
and a correlation length of 3 feet, the permeability field shown in Fig. 3.1.11 was obtained. Figs.
3.1.12 through 3.1.15 show the progression of a displacement for a mobility ratio M = 20 through
the permeability field. The contour line represents a concentration of 0.4. Approximately twelve
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Table 3.1.1. Run Times for Simulation of Blackwell’s Viscous Fingering
Experiments

Grid Size  Mobility Ratio  Particles per block PVI  CPU time(min)

60x60 86 25 1.5 1980
60x60 86 25 1.0 1360
60x60 86 100 1.0 4830
60x60 86 10 1.0 480
60x60 375 25 1.0 1740
60x60 5 25 1.0 720
120x60 86 25 1.0 3570

60x40 86 25 1.0 1140
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Permeability field with k,,, = 100 md, Vg, = 0.1

Fig. 3.1-11
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fingers formed initially, but only four fingers survive at 0.30 pore volumes injected. The variance
of the permeability field was then increased (V,, = 0.9) while keeping the remaining parameters
identical. Results are shown in Figs. 3.1.16 through 3.1.20. Now only one finger dominates the
displacement. The finger follows the high permeability streak and at breakthrough splits up due to
several high permeability regions near the outlet.

An additional case was run for a completely homogeneous permeability field and is presented
in Fig. 3.1.21 through 3.1.25 for comparison. As expected, this displacement approximates the
behavior displayed in the smaller variance run discussed above, with the four fingers dominating.
As injection is continued, the four fingers coalesced into one large finger.

3.1.5 Probabilistic Model

After considering the encouraging results obtained with the random-walk model, the proba-
bilistic model was modified so that dispersion would be treated similarly to the dispersion step
described in the previous section. After determining the intersection of the randomly chosen
streamline and concentration contour, that location is perturbed by random amounts corresponding
to longitudinal and transverse dispersion, as described for the random-walk scheme. The injected
fluid concentration at that location is then incremented. This method generates fingers because low
viscosity fluid replaces high viscosity fluid, streamlines become more closely spaced, and hence the

NOTE: This report was revised on July 20, 1995. The text of this portion of the report continues
on p. 116.
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Fig. 3.1-17  Displacement for M = 20, PVI = 0.05 showing the 0.4
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T v T
1 P
48 8.4

Fig. 3.1-18  Displacement for M = 20, PVI = 0.10 showing the 0.4
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Fig. 3.1-19  Displacement for M = 20, PVI = 0.20 showing the 0.4
concentration contour line.

Fig. 3.1-20  Displacement for M = 20, PVI = 0.30 showing the 0.4
concentration contour line.
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Fig. 3.1-21  Displacement for M = 20, PVI = 0.10 showing the 0.4
concentration contour line in a homogeneous permeability field.
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